passes.c (execute_todo): Do not call ggc_collect conditional here.
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
24
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
28
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl-error.h"
39 #include "tree.h"
40 #include "flags.h"
41 #include "except.h"
42 #include "function.h"
43 #include "expr.h"
44 #include "optabs.h"
45 #include "libfuncs.h"
46 #include "regs.h"
47 #include "hard-reg-set.h"
48 #include "insn-config.h"
49 #include "recog.h"
50 #include "output.h"
51 #include "basic-block.h"
52 #include "hashtab.h"
53 #include "ggc.h"
54 #include "tm_p.h"
55 #include "langhooks.h"
56 #include "target.h"
57 #include "common/common-target.h"
58 #include "gimple.h"
59 #include "tree-pass.h"
60 #include "predict.h"
61 #include "df.h"
62 #include "params.h"
63 #include "bb-reorder.h"
64
65 /* So we can assign to cfun in this file. */
66 #undef cfun
67
68 #ifndef STACK_ALIGNMENT_NEEDED
69 #define STACK_ALIGNMENT_NEEDED 1
70 #endif
71
72 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
73
74 /* Some systems use __main in a way incompatible with its use in gcc, in these
75 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
76 give the same symbol without quotes for an alternative entry point. You
77 must define both, or neither. */
78 #ifndef NAME__MAIN
79 #define NAME__MAIN "__main"
80 #endif
81
82 /* Round a value to the lowest integer less than it that is a multiple of
83 the required alignment. Avoid using division in case the value is
84 negative. Assume the alignment is a power of two. */
85 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
86
87 /* Similar, but round to the next highest integer that meets the
88 alignment. */
89 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
90
91 /* Nonzero once virtual register instantiation has been done.
92 assign_stack_local uses frame_pointer_rtx when this is nonzero.
93 calls.c:emit_library_call_value_1 uses it to set up
94 post-instantiation libcalls. */
95 int virtuals_instantiated;
96
97 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
98 static GTY(()) int funcdef_no;
99
100 /* These variables hold pointers to functions to create and destroy
101 target specific, per-function data structures. */
102 struct machine_function * (*init_machine_status) (void);
103
104 /* The currently compiled function. */
105 struct function *cfun = 0;
106
107 /* These hashes record the prologue and epilogue insns. */
108 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
109 htab_t prologue_insn_hash;
110 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
111 htab_t epilogue_insn_hash;
112 \f
113
114 htab_t types_used_by_vars_hash = NULL;
115 vec<tree, va_gc> *types_used_by_cur_var_decl;
116
117 /* Forward declarations. */
118
119 static struct temp_slot *find_temp_slot_from_address (rtx);
120 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
121 static void pad_below (struct args_size *, enum machine_mode, tree);
122 static void reorder_blocks_1 (rtx, tree, vec<tree> *);
123 static int all_blocks (tree, tree *);
124 static tree *get_block_vector (tree, int *);
125 extern tree debug_find_var_in_block_tree (tree, tree);
126 /* We always define `record_insns' even if it's not used so that we
127 can always export `prologue_epilogue_contains'. */
128 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
129 static bool contains (const_rtx, htab_t);
130 static void prepare_function_start (void);
131 static void do_clobber_return_reg (rtx, void *);
132 static void do_use_return_reg (rtx, void *);
133 static void set_insn_locations (rtx, int) ATTRIBUTE_UNUSED;
134 \f
135 /* Stack of nested functions. */
136 /* Keep track of the cfun stack. */
137
138 typedef struct function *function_p;
139
140 static vec<function_p> function_context_stack;
141
142 /* Save the current context for compilation of a nested function.
143 This is called from language-specific code. */
144
145 void
146 push_function_context (void)
147 {
148 if (cfun == 0)
149 allocate_struct_function (NULL, false);
150
151 function_context_stack.safe_push (cfun);
152 set_cfun (NULL);
153 }
154
155 /* Restore the last saved context, at the end of a nested function.
156 This function is called from language-specific code. */
157
158 void
159 pop_function_context (void)
160 {
161 struct function *p = function_context_stack.pop ();
162 set_cfun (p);
163 current_function_decl = p->decl;
164
165 /* Reset variables that have known state during rtx generation. */
166 virtuals_instantiated = 0;
167 generating_concat_p = 1;
168 }
169
170 /* Clear out all parts of the state in F that can safely be discarded
171 after the function has been parsed, but not compiled, to let
172 garbage collection reclaim the memory. */
173
174 void
175 free_after_parsing (struct function *f)
176 {
177 f->language = 0;
178 }
179
180 /* Clear out all parts of the state in F that can safely be discarded
181 after the function has been compiled, to let garbage collection
182 reclaim the memory. */
183
184 void
185 free_after_compilation (struct function *f)
186 {
187 prologue_insn_hash = NULL;
188 epilogue_insn_hash = NULL;
189
190 free (crtl->emit.regno_pointer_align);
191
192 memset (crtl, 0, sizeof (struct rtl_data));
193 f->eh = NULL;
194 f->machine = NULL;
195 f->cfg = NULL;
196
197 regno_reg_rtx = NULL;
198 }
199 \f
200 /* Return size needed for stack frame based on slots so far allocated.
201 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
202 the caller may have to do that. */
203
204 HOST_WIDE_INT
205 get_frame_size (void)
206 {
207 if (FRAME_GROWS_DOWNWARD)
208 return -frame_offset;
209 else
210 return frame_offset;
211 }
212
213 /* Issue an error message and return TRUE if frame OFFSET overflows in
214 the signed target pointer arithmetics for function FUNC. Otherwise
215 return FALSE. */
216
217 bool
218 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
219 {
220 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
221
222 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
223 /* Leave room for the fixed part of the frame. */
224 - 64 * UNITS_PER_WORD)
225 {
226 error_at (DECL_SOURCE_LOCATION (func),
227 "total size of local objects too large");
228 return TRUE;
229 }
230
231 return FALSE;
232 }
233
234 /* Return stack slot alignment in bits for TYPE and MODE. */
235
236 static unsigned int
237 get_stack_local_alignment (tree type, enum machine_mode mode)
238 {
239 unsigned int alignment;
240
241 if (mode == BLKmode)
242 alignment = BIGGEST_ALIGNMENT;
243 else
244 alignment = GET_MODE_ALIGNMENT (mode);
245
246 /* Allow the frond-end to (possibly) increase the alignment of this
247 stack slot. */
248 if (! type)
249 type = lang_hooks.types.type_for_mode (mode, 0);
250
251 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
252 }
253
254 /* Determine whether it is possible to fit a stack slot of size SIZE and
255 alignment ALIGNMENT into an area in the stack frame that starts at
256 frame offset START and has a length of LENGTH. If so, store the frame
257 offset to be used for the stack slot in *POFFSET and return true;
258 return false otherwise. This function will extend the frame size when
259 given a start/length pair that lies at the end of the frame. */
260
261 static bool
262 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
263 HOST_WIDE_INT size, unsigned int alignment,
264 HOST_WIDE_INT *poffset)
265 {
266 HOST_WIDE_INT this_frame_offset;
267 int frame_off, frame_alignment, frame_phase;
268
269 /* Calculate how many bytes the start of local variables is off from
270 stack alignment. */
271 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
272 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
273 frame_phase = frame_off ? frame_alignment - frame_off : 0;
274
275 /* Round the frame offset to the specified alignment. */
276
277 /* We must be careful here, since FRAME_OFFSET might be negative and
278 division with a negative dividend isn't as well defined as we might
279 like. So we instead assume that ALIGNMENT is a power of two and
280 use logical operations which are unambiguous. */
281 if (FRAME_GROWS_DOWNWARD)
282 this_frame_offset
283 = (FLOOR_ROUND (start + length - size - frame_phase,
284 (unsigned HOST_WIDE_INT) alignment)
285 + frame_phase);
286 else
287 this_frame_offset
288 = (CEIL_ROUND (start - frame_phase,
289 (unsigned HOST_WIDE_INT) alignment)
290 + frame_phase);
291
292 /* See if it fits. If this space is at the edge of the frame,
293 consider extending the frame to make it fit. Our caller relies on
294 this when allocating a new slot. */
295 if (frame_offset == start && this_frame_offset < frame_offset)
296 frame_offset = this_frame_offset;
297 else if (this_frame_offset < start)
298 return false;
299 else if (start + length == frame_offset
300 && this_frame_offset + size > start + length)
301 frame_offset = this_frame_offset + size;
302 else if (this_frame_offset + size > start + length)
303 return false;
304
305 *poffset = this_frame_offset;
306 return true;
307 }
308
309 /* Create a new frame_space structure describing free space in the stack
310 frame beginning at START and ending at END, and chain it into the
311 function's frame_space_list. */
312
313 static void
314 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
315 {
316 struct frame_space *space = ggc_alloc_frame_space ();
317 space->next = crtl->frame_space_list;
318 crtl->frame_space_list = space;
319 space->start = start;
320 space->length = end - start;
321 }
322
323 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
324 with machine mode MODE.
325
326 ALIGN controls the amount of alignment for the address of the slot:
327 0 means according to MODE,
328 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
329 -2 means use BITS_PER_UNIT,
330 positive specifies alignment boundary in bits.
331
332 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
333 alignment and ASLK_RECORD_PAD bit set if we should remember
334 extra space we allocated for alignment purposes. When we are
335 called from assign_stack_temp_for_type, it is not set so we don't
336 track the same stack slot in two independent lists.
337
338 We do not round to stack_boundary here. */
339
340 rtx
341 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
342 int align, int kind)
343 {
344 rtx x, addr;
345 int bigend_correction = 0;
346 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
347 unsigned int alignment, alignment_in_bits;
348
349 if (align == 0)
350 {
351 alignment = get_stack_local_alignment (NULL, mode);
352 alignment /= BITS_PER_UNIT;
353 }
354 else if (align == -1)
355 {
356 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
357 size = CEIL_ROUND (size, alignment);
358 }
359 else if (align == -2)
360 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
361 else
362 alignment = align / BITS_PER_UNIT;
363
364 alignment_in_bits = alignment * BITS_PER_UNIT;
365
366 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
367 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
368 {
369 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
370 alignment = alignment_in_bits / BITS_PER_UNIT;
371 }
372
373 if (SUPPORTS_STACK_ALIGNMENT)
374 {
375 if (crtl->stack_alignment_estimated < alignment_in_bits)
376 {
377 if (!crtl->stack_realign_processed)
378 crtl->stack_alignment_estimated = alignment_in_bits;
379 else
380 {
381 /* If stack is realigned and stack alignment value
382 hasn't been finalized, it is OK not to increase
383 stack_alignment_estimated. The bigger alignment
384 requirement is recorded in stack_alignment_needed
385 below. */
386 gcc_assert (!crtl->stack_realign_finalized);
387 if (!crtl->stack_realign_needed)
388 {
389 /* It is OK to reduce the alignment as long as the
390 requested size is 0 or the estimated stack
391 alignment >= mode alignment. */
392 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
393 || size == 0
394 || (crtl->stack_alignment_estimated
395 >= GET_MODE_ALIGNMENT (mode)));
396 alignment_in_bits = crtl->stack_alignment_estimated;
397 alignment = alignment_in_bits / BITS_PER_UNIT;
398 }
399 }
400 }
401 }
402
403 if (crtl->stack_alignment_needed < alignment_in_bits)
404 crtl->stack_alignment_needed = alignment_in_bits;
405 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
406 crtl->max_used_stack_slot_alignment = alignment_in_bits;
407
408 if (mode != BLKmode || size != 0)
409 {
410 if (kind & ASLK_RECORD_PAD)
411 {
412 struct frame_space **psp;
413
414 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
415 {
416 struct frame_space *space = *psp;
417 if (!try_fit_stack_local (space->start, space->length, size,
418 alignment, &slot_offset))
419 continue;
420 *psp = space->next;
421 if (slot_offset > space->start)
422 add_frame_space (space->start, slot_offset);
423 if (slot_offset + size < space->start + space->length)
424 add_frame_space (slot_offset + size,
425 space->start + space->length);
426 goto found_space;
427 }
428 }
429 }
430 else if (!STACK_ALIGNMENT_NEEDED)
431 {
432 slot_offset = frame_offset;
433 goto found_space;
434 }
435
436 old_frame_offset = frame_offset;
437
438 if (FRAME_GROWS_DOWNWARD)
439 {
440 frame_offset -= size;
441 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
442
443 if (kind & ASLK_RECORD_PAD)
444 {
445 if (slot_offset > frame_offset)
446 add_frame_space (frame_offset, slot_offset);
447 if (slot_offset + size < old_frame_offset)
448 add_frame_space (slot_offset + size, old_frame_offset);
449 }
450 }
451 else
452 {
453 frame_offset += size;
454 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
455
456 if (kind & ASLK_RECORD_PAD)
457 {
458 if (slot_offset > old_frame_offset)
459 add_frame_space (old_frame_offset, slot_offset);
460 if (slot_offset + size < frame_offset)
461 add_frame_space (slot_offset + size, frame_offset);
462 }
463 }
464
465 found_space:
466 /* On a big-endian machine, if we are allocating more space than we will use,
467 use the least significant bytes of those that are allocated. */
468 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
469 bigend_correction = size - GET_MODE_SIZE (mode);
470
471 /* If we have already instantiated virtual registers, return the actual
472 address relative to the frame pointer. */
473 if (virtuals_instantiated)
474 addr = plus_constant (Pmode, frame_pointer_rtx,
475 trunc_int_for_mode
476 (slot_offset + bigend_correction
477 + STARTING_FRAME_OFFSET, Pmode));
478 else
479 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
480 trunc_int_for_mode
481 (slot_offset + bigend_correction,
482 Pmode));
483
484 x = gen_rtx_MEM (mode, addr);
485 set_mem_align (x, alignment_in_bits);
486 MEM_NOTRAP_P (x) = 1;
487
488 stack_slot_list
489 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
490
491 if (frame_offset_overflow (frame_offset, current_function_decl))
492 frame_offset = 0;
493
494 return x;
495 }
496
497 /* Wrap up assign_stack_local_1 with last parameter as false. */
498
499 rtx
500 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
501 {
502 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
503 }
504 \f
505 /* In order to evaluate some expressions, such as function calls returning
506 structures in memory, we need to temporarily allocate stack locations.
507 We record each allocated temporary in the following structure.
508
509 Associated with each temporary slot is a nesting level. When we pop up
510 one level, all temporaries associated with the previous level are freed.
511 Normally, all temporaries are freed after the execution of the statement
512 in which they were created. However, if we are inside a ({...}) grouping,
513 the result may be in a temporary and hence must be preserved. If the
514 result could be in a temporary, we preserve it if we can determine which
515 one it is in. If we cannot determine which temporary may contain the
516 result, all temporaries are preserved. A temporary is preserved by
517 pretending it was allocated at the previous nesting level. */
518
519 struct GTY(()) temp_slot {
520 /* Points to next temporary slot. */
521 struct temp_slot *next;
522 /* Points to previous temporary slot. */
523 struct temp_slot *prev;
524 /* The rtx to used to reference the slot. */
525 rtx slot;
526 /* The size, in units, of the slot. */
527 HOST_WIDE_INT size;
528 /* The type of the object in the slot, or zero if it doesn't correspond
529 to a type. We use this to determine whether a slot can be reused.
530 It can be reused if objects of the type of the new slot will always
531 conflict with objects of the type of the old slot. */
532 tree type;
533 /* The alignment (in bits) of the slot. */
534 unsigned int align;
535 /* Nonzero if this temporary is currently in use. */
536 char in_use;
537 /* Nesting level at which this slot is being used. */
538 int level;
539 /* The offset of the slot from the frame_pointer, including extra space
540 for alignment. This info is for combine_temp_slots. */
541 HOST_WIDE_INT base_offset;
542 /* The size of the slot, including extra space for alignment. This
543 info is for combine_temp_slots. */
544 HOST_WIDE_INT full_size;
545 };
546
547 /* A table of addresses that represent a stack slot. The table is a mapping
548 from address RTXen to a temp slot. */
549 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
550 static size_t n_temp_slots_in_use;
551
552 /* Entry for the above hash table. */
553 struct GTY(()) temp_slot_address_entry {
554 hashval_t hash;
555 rtx address;
556 struct temp_slot *temp_slot;
557 };
558
559 /* Removes temporary slot TEMP from LIST. */
560
561 static void
562 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
563 {
564 if (temp->next)
565 temp->next->prev = temp->prev;
566 if (temp->prev)
567 temp->prev->next = temp->next;
568 else
569 *list = temp->next;
570
571 temp->prev = temp->next = NULL;
572 }
573
574 /* Inserts temporary slot TEMP to LIST. */
575
576 static void
577 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
578 {
579 temp->next = *list;
580 if (*list)
581 (*list)->prev = temp;
582 temp->prev = NULL;
583 *list = temp;
584 }
585
586 /* Returns the list of used temp slots at LEVEL. */
587
588 static struct temp_slot **
589 temp_slots_at_level (int level)
590 {
591 if (level >= (int) vec_safe_length (used_temp_slots))
592 vec_safe_grow_cleared (used_temp_slots, level + 1);
593
594 return &(*used_temp_slots)[level];
595 }
596
597 /* Returns the maximal temporary slot level. */
598
599 static int
600 max_slot_level (void)
601 {
602 if (!used_temp_slots)
603 return -1;
604
605 return used_temp_slots->length () - 1;
606 }
607
608 /* Moves temporary slot TEMP to LEVEL. */
609
610 static void
611 move_slot_to_level (struct temp_slot *temp, int level)
612 {
613 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
614 insert_slot_to_list (temp, temp_slots_at_level (level));
615 temp->level = level;
616 }
617
618 /* Make temporary slot TEMP available. */
619
620 static void
621 make_slot_available (struct temp_slot *temp)
622 {
623 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
624 insert_slot_to_list (temp, &avail_temp_slots);
625 temp->in_use = 0;
626 temp->level = -1;
627 n_temp_slots_in_use--;
628 }
629
630 /* Compute the hash value for an address -> temp slot mapping.
631 The value is cached on the mapping entry. */
632 static hashval_t
633 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
634 {
635 int do_not_record = 0;
636 return hash_rtx (t->address, GET_MODE (t->address),
637 &do_not_record, NULL, false);
638 }
639
640 /* Return the hash value for an address -> temp slot mapping. */
641 static hashval_t
642 temp_slot_address_hash (const void *p)
643 {
644 const struct temp_slot_address_entry *t;
645 t = (const struct temp_slot_address_entry *) p;
646 return t->hash;
647 }
648
649 /* Compare two address -> temp slot mapping entries. */
650 static int
651 temp_slot_address_eq (const void *p1, const void *p2)
652 {
653 const struct temp_slot_address_entry *t1, *t2;
654 t1 = (const struct temp_slot_address_entry *) p1;
655 t2 = (const struct temp_slot_address_entry *) p2;
656 return exp_equiv_p (t1->address, t2->address, 0, true);
657 }
658
659 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
660 static void
661 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
662 {
663 void **slot;
664 struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
665 t->address = address;
666 t->temp_slot = temp_slot;
667 t->hash = temp_slot_address_compute_hash (t);
668 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
669 *slot = t;
670 }
671
672 /* Remove an address -> temp slot mapping entry if the temp slot is
673 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
674 static int
675 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
676 {
677 const struct temp_slot_address_entry *t;
678 t = (const struct temp_slot_address_entry *) *slot;
679 if (! t->temp_slot->in_use)
680 htab_clear_slot (temp_slot_address_table, slot);
681 return 1;
682 }
683
684 /* Remove all mappings of addresses to unused temp slots. */
685 static void
686 remove_unused_temp_slot_addresses (void)
687 {
688 /* Use quicker clearing if there aren't any active temp slots. */
689 if (n_temp_slots_in_use)
690 htab_traverse (temp_slot_address_table,
691 remove_unused_temp_slot_addresses_1,
692 NULL);
693 else
694 htab_empty (temp_slot_address_table);
695 }
696
697 /* Find the temp slot corresponding to the object at address X. */
698
699 static struct temp_slot *
700 find_temp_slot_from_address (rtx x)
701 {
702 struct temp_slot *p;
703 struct temp_slot_address_entry tmp, *t;
704
705 /* First try the easy way:
706 See if X exists in the address -> temp slot mapping. */
707 tmp.address = x;
708 tmp.temp_slot = NULL;
709 tmp.hash = temp_slot_address_compute_hash (&tmp);
710 t = (struct temp_slot_address_entry *)
711 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
712 if (t)
713 return t->temp_slot;
714
715 /* If we have a sum involving a register, see if it points to a temp
716 slot. */
717 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
718 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
719 return p;
720 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
721 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
722 return p;
723
724 /* Last resort: Address is a virtual stack var address. */
725 if (GET_CODE (x) == PLUS
726 && XEXP (x, 0) == virtual_stack_vars_rtx
727 && CONST_INT_P (XEXP (x, 1)))
728 {
729 int i;
730 for (i = max_slot_level (); i >= 0; i--)
731 for (p = *temp_slots_at_level (i); p; p = p->next)
732 {
733 if (INTVAL (XEXP (x, 1)) >= p->base_offset
734 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
735 return p;
736 }
737 }
738
739 return NULL;
740 }
741 \f
742 /* Allocate a temporary stack slot and record it for possible later
743 reuse.
744
745 MODE is the machine mode to be given to the returned rtx.
746
747 SIZE is the size in units of the space required. We do no rounding here
748 since assign_stack_local will do any required rounding.
749
750 TYPE is the type that will be used for the stack slot. */
751
752 rtx
753 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
754 tree type)
755 {
756 unsigned int align;
757 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
758 rtx slot;
759
760 /* If SIZE is -1 it means that somebody tried to allocate a temporary
761 of a variable size. */
762 gcc_assert (size != -1);
763
764 align = get_stack_local_alignment (type, mode);
765
766 /* Try to find an available, already-allocated temporary of the proper
767 mode which meets the size and alignment requirements. Choose the
768 smallest one with the closest alignment.
769
770 If assign_stack_temp is called outside of the tree->rtl expansion,
771 we cannot reuse the stack slots (that may still refer to
772 VIRTUAL_STACK_VARS_REGNUM). */
773 if (!virtuals_instantiated)
774 {
775 for (p = avail_temp_slots; p; p = p->next)
776 {
777 if (p->align >= align && p->size >= size
778 && GET_MODE (p->slot) == mode
779 && objects_must_conflict_p (p->type, type)
780 && (best_p == 0 || best_p->size > p->size
781 || (best_p->size == p->size && best_p->align > p->align)))
782 {
783 if (p->align == align && p->size == size)
784 {
785 selected = p;
786 cut_slot_from_list (selected, &avail_temp_slots);
787 best_p = 0;
788 break;
789 }
790 best_p = p;
791 }
792 }
793 }
794
795 /* Make our best, if any, the one to use. */
796 if (best_p)
797 {
798 selected = best_p;
799 cut_slot_from_list (selected, &avail_temp_slots);
800
801 /* If there are enough aligned bytes left over, make them into a new
802 temp_slot so that the extra bytes don't get wasted. Do this only
803 for BLKmode slots, so that we can be sure of the alignment. */
804 if (GET_MODE (best_p->slot) == BLKmode)
805 {
806 int alignment = best_p->align / BITS_PER_UNIT;
807 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
808
809 if (best_p->size - rounded_size >= alignment)
810 {
811 p = ggc_alloc_temp_slot ();
812 p->in_use = 0;
813 p->size = best_p->size - rounded_size;
814 p->base_offset = best_p->base_offset + rounded_size;
815 p->full_size = best_p->full_size - rounded_size;
816 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
817 p->align = best_p->align;
818 p->type = best_p->type;
819 insert_slot_to_list (p, &avail_temp_slots);
820
821 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
822 stack_slot_list);
823
824 best_p->size = rounded_size;
825 best_p->full_size = rounded_size;
826 }
827 }
828 }
829
830 /* If we still didn't find one, make a new temporary. */
831 if (selected == 0)
832 {
833 HOST_WIDE_INT frame_offset_old = frame_offset;
834
835 p = ggc_alloc_temp_slot ();
836
837 /* We are passing an explicit alignment request to assign_stack_local.
838 One side effect of that is assign_stack_local will not round SIZE
839 to ensure the frame offset remains suitably aligned.
840
841 So for requests which depended on the rounding of SIZE, we go ahead
842 and round it now. We also make sure ALIGNMENT is at least
843 BIGGEST_ALIGNMENT. */
844 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
845 p->slot = assign_stack_local_1 (mode,
846 (mode == BLKmode
847 ? CEIL_ROUND (size,
848 (int) align
849 / BITS_PER_UNIT)
850 : size),
851 align, 0);
852
853 p->align = align;
854
855 /* The following slot size computation is necessary because we don't
856 know the actual size of the temporary slot until assign_stack_local
857 has performed all the frame alignment and size rounding for the
858 requested temporary. Note that extra space added for alignment
859 can be either above or below this stack slot depending on which
860 way the frame grows. We include the extra space if and only if it
861 is above this slot. */
862 if (FRAME_GROWS_DOWNWARD)
863 p->size = frame_offset_old - frame_offset;
864 else
865 p->size = size;
866
867 /* Now define the fields used by combine_temp_slots. */
868 if (FRAME_GROWS_DOWNWARD)
869 {
870 p->base_offset = frame_offset;
871 p->full_size = frame_offset_old - frame_offset;
872 }
873 else
874 {
875 p->base_offset = frame_offset_old;
876 p->full_size = frame_offset - frame_offset_old;
877 }
878
879 selected = p;
880 }
881
882 p = selected;
883 p->in_use = 1;
884 p->type = type;
885 p->level = temp_slot_level;
886 n_temp_slots_in_use++;
887
888 pp = temp_slots_at_level (p->level);
889 insert_slot_to_list (p, pp);
890 insert_temp_slot_address (XEXP (p->slot, 0), p);
891
892 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
893 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
894 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
895
896 /* If we know the alias set for the memory that will be used, use
897 it. If there's no TYPE, then we don't know anything about the
898 alias set for the memory. */
899 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
900 set_mem_align (slot, align);
901
902 /* If a type is specified, set the relevant flags. */
903 if (type != 0)
904 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
905 MEM_NOTRAP_P (slot) = 1;
906
907 return slot;
908 }
909
910 /* Allocate a temporary stack slot and record it for possible later
911 reuse. First two arguments are same as in preceding function. */
912
913 rtx
914 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size)
915 {
916 return assign_stack_temp_for_type (mode, size, NULL_TREE);
917 }
918 \f
919 /* Assign a temporary.
920 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
921 and so that should be used in error messages. In either case, we
922 allocate of the given type.
923 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
924 it is 0 if a register is OK.
925 DONT_PROMOTE is 1 if we should not promote values in register
926 to wider modes. */
927
928 rtx
929 assign_temp (tree type_or_decl, int memory_required,
930 int dont_promote ATTRIBUTE_UNUSED)
931 {
932 tree type, decl;
933 enum machine_mode mode;
934 #ifdef PROMOTE_MODE
935 int unsignedp;
936 #endif
937
938 if (DECL_P (type_or_decl))
939 decl = type_or_decl, type = TREE_TYPE (decl);
940 else
941 decl = NULL, type = type_or_decl;
942
943 mode = TYPE_MODE (type);
944 #ifdef PROMOTE_MODE
945 unsignedp = TYPE_UNSIGNED (type);
946 #endif
947
948 if (mode == BLKmode || memory_required)
949 {
950 HOST_WIDE_INT size = int_size_in_bytes (type);
951 rtx tmp;
952
953 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
954 problems with allocating the stack space. */
955 if (size == 0)
956 size = 1;
957
958 /* Unfortunately, we don't yet know how to allocate variable-sized
959 temporaries. However, sometimes we can find a fixed upper limit on
960 the size, so try that instead. */
961 else if (size == -1)
962 size = max_int_size_in_bytes (type);
963
964 /* The size of the temporary may be too large to fit into an integer. */
965 /* ??? Not sure this should happen except for user silliness, so limit
966 this to things that aren't compiler-generated temporaries. The
967 rest of the time we'll die in assign_stack_temp_for_type. */
968 if (decl && size == -1
969 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
970 {
971 error ("size of variable %q+D is too large", decl);
972 size = 1;
973 }
974
975 tmp = assign_stack_temp_for_type (mode, size, type);
976 return tmp;
977 }
978
979 #ifdef PROMOTE_MODE
980 if (! dont_promote)
981 mode = promote_mode (type, mode, &unsignedp);
982 #endif
983
984 return gen_reg_rtx (mode);
985 }
986 \f
987 /* Combine temporary stack slots which are adjacent on the stack.
988
989 This allows for better use of already allocated stack space. This is only
990 done for BLKmode slots because we can be sure that we won't have alignment
991 problems in this case. */
992
993 static void
994 combine_temp_slots (void)
995 {
996 struct temp_slot *p, *q, *next, *next_q;
997 int num_slots;
998
999 /* We can't combine slots, because the information about which slot
1000 is in which alias set will be lost. */
1001 if (flag_strict_aliasing)
1002 return;
1003
1004 /* If there are a lot of temp slots, don't do anything unless
1005 high levels of optimization. */
1006 if (! flag_expensive_optimizations)
1007 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1008 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1009 return;
1010
1011 for (p = avail_temp_slots; p; p = next)
1012 {
1013 int delete_p = 0;
1014
1015 next = p->next;
1016
1017 if (GET_MODE (p->slot) != BLKmode)
1018 continue;
1019
1020 for (q = p->next; q; q = next_q)
1021 {
1022 int delete_q = 0;
1023
1024 next_q = q->next;
1025
1026 if (GET_MODE (q->slot) != BLKmode)
1027 continue;
1028
1029 if (p->base_offset + p->full_size == q->base_offset)
1030 {
1031 /* Q comes after P; combine Q into P. */
1032 p->size += q->size;
1033 p->full_size += q->full_size;
1034 delete_q = 1;
1035 }
1036 else if (q->base_offset + q->full_size == p->base_offset)
1037 {
1038 /* P comes after Q; combine P into Q. */
1039 q->size += p->size;
1040 q->full_size += p->full_size;
1041 delete_p = 1;
1042 break;
1043 }
1044 if (delete_q)
1045 cut_slot_from_list (q, &avail_temp_slots);
1046 }
1047
1048 /* Either delete P or advance past it. */
1049 if (delete_p)
1050 cut_slot_from_list (p, &avail_temp_slots);
1051 }
1052 }
1053 \f
1054 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1055 slot that previously was known by OLD_RTX. */
1056
1057 void
1058 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1059 {
1060 struct temp_slot *p;
1061
1062 if (rtx_equal_p (old_rtx, new_rtx))
1063 return;
1064
1065 p = find_temp_slot_from_address (old_rtx);
1066
1067 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1068 NEW_RTX is a register, see if one operand of the PLUS is a
1069 temporary location. If so, NEW_RTX points into it. Otherwise,
1070 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1071 in common between them. If so, try a recursive call on those
1072 values. */
1073 if (p == 0)
1074 {
1075 if (GET_CODE (old_rtx) != PLUS)
1076 return;
1077
1078 if (REG_P (new_rtx))
1079 {
1080 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1081 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1082 return;
1083 }
1084 else if (GET_CODE (new_rtx) != PLUS)
1085 return;
1086
1087 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1088 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1089 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1090 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1091 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1092 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1093 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1094 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1095
1096 return;
1097 }
1098
1099 /* Otherwise add an alias for the temp's address. */
1100 insert_temp_slot_address (new_rtx, p);
1101 }
1102
1103 /* If X could be a reference to a temporary slot, mark that slot as
1104 belonging to the to one level higher than the current level. If X
1105 matched one of our slots, just mark that one. Otherwise, we can't
1106 easily predict which it is, so upgrade all of them.
1107
1108 This is called when an ({...}) construct occurs and a statement
1109 returns a value in memory. */
1110
1111 void
1112 preserve_temp_slots (rtx x)
1113 {
1114 struct temp_slot *p = 0, *next;
1115
1116 if (x == 0)
1117 return;
1118
1119 /* If X is a register that is being used as a pointer, see if we have
1120 a temporary slot we know it points to. */
1121 if (REG_P (x) && REG_POINTER (x))
1122 p = find_temp_slot_from_address (x);
1123
1124 /* If X is not in memory or is at a constant address, it cannot be in
1125 a temporary slot. */
1126 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1127 return;
1128
1129 /* First see if we can find a match. */
1130 if (p == 0)
1131 p = find_temp_slot_from_address (XEXP (x, 0));
1132
1133 if (p != 0)
1134 {
1135 if (p->level == temp_slot_level)
1136 move_slot_to_level (p, temp_slot_level - 1);
1137 return;
1138 }
1139
1140 /* Otherwise, preserve all non-kept slots at this level. */
1141 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1142 {
1143 next = p->next;
1144 move_slot_to_level (p, temp_slot_level - 1);
1145 }
1146 }
1147
1148 /* Free all temporaries used so far. This is normally called at the
1149 end of generating code for a statement. */
1150
1151 void
1152 free_temp_slots (void)
1153 {
1154 struct temp_slot *p, *next;
1155 bool some_available = false;
1156
1157 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1158 {
1159 next = p->next;
1160 make_slot_available (p);
1161 some_available = true;
1162 }
1163
1164 if (some_available)
1165 {
1166 remove_unused_temp_slot_addresses ();
1167 combine_temp_slots ();
1168 }
1169 }
1170
1171 /* Push deeper into the nesting level for stack temporaries. */
1172
1173 void
1174 push_temp_slots (void)
1175 {
1176 temp_slot_level++;
1177 }
1178
1179 /* Pop a temporary nesting level. All slots in use in the current level
1180 are freed. */
1181
1182 void
1183 pop_temp_slots (void)
1184 {
1185 free_temp_slots ();
1186 temp_slot_level--;
1187 }
1188
1189 /* Initialize temporary slots. */
1190
1191 void
1192 init_temp_slots (void)
1193 {
1194 /* We have not allocated any temporaries yet. */
1195 avail_temp_slots = 0;
1196 vec_alloc (used_temp_slots, 0);
1197 temp_slot_level = 0;
1198 n_temp_slots_in_use = 0;
1199
1200 /* Set up the table to map addresses to temp slots. */
1201 if (! temp_slot_address_table)
1202 temp_slot_address_table = htab_create_ggc (32,
1203 temp_slot_address_hash,
1204 temp_slot_address_eq,
1205 NULL);
1206 else
1207 htab_empty (temp_slot_address_table);
1208 }
1209 \f
1210 /* Functions and data structures to keep track of the values hard regs
1211 had at the start of the function. */
1212
1213 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1214 and has_hard_reg_initial_val.. */
1215 typedef struct GTY(()) initial_value_pair {
1216 rtx hard_reg;
1217 rtx pseudo;
1218 } initial_value_pair;
1219 /* ??? This could be a VEC but there is currently no way to define an
1220 opaque VEC type. This could be worked around by defining struct
1221 initial_value_pair in function.h. */
1222 typedef struct GTY(()) initial_value_struct {
1223 int num_entries;
1224 int max_entries;
1225 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1226 } initial_value_struct;
1227
1228 /* If a pseudo represents an initial hard reg (or expression), return
1229 it, else return NULL_RTX. */
1230
1231 rtx
1232 get_hard_reg_initial_reg (rtx reg)
1233 {
1234 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1235 int i;
1236
1237 if (ivs == 0)
1238 return NULL_RTX;
1239
1240 for (i = 0; i < ivs->num_entries; i++)
1241 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1242 return ivs->entries[i].hard_reg;
1243
1244 return NULL_RTX;
1245 }
1246
1247 /* Make sure that there's a pseudo register of mode MODE that stores the
1248 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1249
1250 rtx
1251 get_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1252 {
1253 struct initial_value_struct *ivs;
1254 rtx rv;
1255
1256 rv = has_hard_reg_initial_val (mode, regno);
1257 if (rv)
1258 return rv;
1259
1260 ivs = crtl->hard_reg_initial_vals;
1261 if (ivs == 0)
1262 {
1263 ivs = ggc_alloc_initial_value_struct ();
1264 ivs->num_entries = 0;
1265 ivs->max_entries = 5;
1266 ivs->entries = ggc_alloc_vec_initial_value_pair (5);
1267 crtl->hard_reg_initial_vals = ivs;
1268 }
1269
1270 if (ivs->num_entries >= ivs->max_entries)
1271 {
1272 ivs->max_entries += 5;
1273 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1274 ivs->max_entries);
1275 }
1276
1277 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1278 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1279
1280 return ivs->entries[ivs->num_entries++].pseudo;
1281 }
1282
1283 /* See if get_hard_reg_initial_val has been used to create a pseudo
1284 for the initial value of hard register REGNO in mode MODE. Return
1285 the associated pseudo if so, otherwise return NULL. */
1286
1287 rtx
1288 has_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1289 {
1290 struct initial_value_struct *ivs;
1291 int i;
1292
1293 ivs = crtl->hard_reg_initial_vals;
1294 if (ivs != 0)
1295 for (i = 0; i < ivs->num_entries; i++)
1296 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1297 && REGNO (ivs->entries[i].hard_reg) == regno)
1298 return ivs->entries[i].pseudo;
1299
1300 return NULL_RTX;
1301 }
1302
1303 unsigned int
1304 emit_initial_value_sets (void)
1305 {
1306 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1307 int i;
1308 rtx seq;
1309
1310 if (ivs == 0)
1311 return 0;
1312
1313 start_sequence ();
1314 for (i = 0; i < ivs->num_entries; i++)
1315 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1316 seq = get_insns ();
1317 end_sequence ();
1318
1319 emit_insn_at_entry (seq);
1320 return 0;
1321 }
1322
1323 /* Return the hardreg-pseudoreg initial values pair entry I and
1324 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1325 bool
1326 initial_value_entry (int i, rtx *hreg, rtx *preg)
1327 {
1328 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1329 if (!ivs || i >= ivs->num_entries)
1330 return false;
1331
1332 *hreg = ivs->entries[i].hard_reg;
1333 *preg = ivs->entries[i].pseudo;
1334 return true;
1335 }
1336 \f
1337 /* These routines are responsible for converting virtual register references
1338 to the actual hard register references once RTL generation is complete.
1339
1340 The following four variables are used for communication between the
1341 routines. They contain the offsets of the virtual registers from their
1342 respective hard registers. */
1343
1344 static int in_arg_offset;
1345 static int var_offset;
1346 static int dynamic_offset;
1347 static int out_arg_offset;
1348 static int cfa_offset;
1349
1350 /* In most machines, the stack pointer register is equivalent to the bottom
1351 of the stack. */
1352
1353 #ifndef STACK_POINTER_OFFSET
1354 #define STACK_POINTER_OFFSET 0
1355 #endif
1356
1357 /* If not defined, pick an appropriate default for the offset of dynamically
1358 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1359 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1360
1361 #ifndef STACK_DYNAMIC_OFFSET
1362
1363 /* The bottom of the stack points to the actual arguments. If
1364 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1365 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1366 stack space for register parameters is not pushed by the caller, but
1367 rather part of the fixed stack areas and hence not included in
1368 `crtl->outgoing_args_size'. Nevertheless, we must allow
1369 for it when allocating stack dynamic objects. */
1370
1371 #if defined(REG_PARM_STACK_SPACE)
1372 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1373 ((ACCUMULATE_OUTGOING_ARGS \
1374 ? (crtl->outgoing_args_size \
1375 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1376 : REG_PARM_STACK_SPACE (FNDECL))) \
1377 : 0) + (STACK_POINTER_OFFSET))
1378 #else
1379 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1380 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1381 + (STACK_POINTER_OFFSET))
1382 #endif
1383 #endif
1384
1385 \f
1386 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1387 is a virtual register, return the equivalent hard register and set the
1388 offset indirectly through the pointer. Otherwise, return 0. */
1389
1390 static rtx
1391 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1392 {
1393 rtx new_rtx;
1394 HOST_WIDE_INT offset;
1395
1396 if (x == virtual_incoming_args_rtx)
1397 {
1398 if (stack_realign_drap)
1399 {
1400 /* Replace virtual_incoming_args_rtx with internal arg
1401 pointer if DRAP is used to realign stack. */
1402 new_rtx = crtl->args.internal_arg_pointer;
1403 offset = 0;
1404 }
1405 else
1406 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1407 }
1408 else if (x == virtual_stack_vars_rtx)
1409 new_rtx = frame_pointer_rtx, offset = var_offset;
1410 else if (x == virtual_stack_dynamic_rtx)
1411 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1412 else if (x == virtual_outgoing_args_rtx)
1413 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1414 else if (x == virtual_cfa_rtx)
1415 {
1416 #ifdef FRAME_POINTER_CFA_OFFSET
1417 new_rtx = frame_pointer_rtx;
1418 #else
1419 new_rtx = arg_pointer_rtx;
1420 #endif
1421 offset = cfa_offset;
1422 }
1423 else if (x == virtual_preferred_stack_boundary_rtx)
1424 {
1425 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1426 offset = 0;
1427 }
1428 else
1429 return NULL_RTX;
1430
1431 *poffset = offset;
1432 return new_rtx;
1433 }
1434
1435 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1436 Instantiate any virtual registers present inside of *LOC. The expression
1437 is simplified, as much as possible, but is not to be considered "valid"
1438 in any sense implied by the target. If any change is made, set CHANGED
1439 to true. */
1440
1441 static int
1442 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1443 {
1444 HOST_WIDE_INT offset;
1445 bool *changed = (bool *) data;
1446 rtx x, new_rtx;
1447
1448 x = *loc;
1449 if (x == 0)
1450 return 0;
1451
1452 switch (GET_CODE (x))
1453 {
1454 case REG:
1455 new_rtx = instantiate_new_reg (x, &offset);
1456 if (new_rtx)
1457 {
1458 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1459 if (changed)
1460 *changed = true;
1461 }
1462 return -1;
1463
1464 case PLUS:
1465 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1466 if (new_rtx)
1467 {
1468 new_rtx = plus_constant (GET_MODE (x), new_rtx, offset);
1469 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1470 if (changed)
1471 *changed = true;
1472 return -1;
1473 }
1474
1475 /* FIXME -- from old code */
1476 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1477 we can commute the PLUS and SUBREG because pointers into the
1478 frame are well-behaved. */
1479 break;
1480
1481 default:
1482 break;
1483 }
1484
1485 return 0;
1486 }
1487
1488 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1489 matches the predicate for insn CODE operand OPERAND. */
1490
1491 static int
1492 safe_insn_predicate (int code, int operand, rtx x)
1493 {
1494 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1495 }
1496
1497 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1498 registers present inside of insn. The result will be a valid insn. */
1499
1500 static void
1501 instantiate_virtual_regs_in_insn (rtx insn)
1502 {
1503 HOST_WIDE_INT offset;
1504 int insn_code, i;
1505 bool any_change = false;
1506 rtx set, new_rtx, x, seq;
1507
1508 /* There are some special cases to be handled first. */
1509 set = single_set (insn);
1510 if (set)
1511 {
1512 /* We're allowed to assign to a virtual register. This is interpreted
1513 to mean that the underlying register gets assigned the inverse
1514 transformation. This is used, for example, in the handling of
1515 non-local gotos. */
1516 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1517 if (new_rtx)
1518 {
1519 start_sequence ();
1520
1521 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1522 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1523 GEN_INT (-offset));
1524 x = force_operand (x, new_rtx);
1525 if (x != new_rtx)
1526 emit_move_insn (new_rtx, x);
1527
1528 seq = get_insns ();
1529 end_sequence ();
1530
1531 emit_insn_before (seq, insn);
1532 delete_insn (insn);
1533 return;
1534 }
1535
1536 /* Handle a straight copy from a virtual register by generating a
1537 new add insn. The difference between this and falling through
1538 to the generic case is avoiding a new pseudo and eliminating a
1539 move insn in the initial rtl stream. */
1540 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1541 if (new_rtx && offset != 0
1542 && REG_P (SET_DEST (set))
1543 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1544 {
1545 start_sequence ();
1546
1547 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1548 new_rtx, GEN_INT (offset), SET_DEST (set),
1549 1, OPTAB_LIB_WIDEN);
1550 if (x != SET_DEST (set))
1551 emit_move_insn (SET_DEST (set), x);
1552
1553 seq = get_insns ();
1554 end_sequence ();
1555
1556 emit_insn_before (seq, insn);
1557 delete_insn (insn);
1558 return;
1559 }
1560
1561 extract_insn (insn);
1562 insn_code = INSN_CODE (insn);
1563
1564 /* Handle a plus involving a virtual register by determining if the
1565 operands remain valid if they're modified in place. */
1566 if (GET_CODE (SET_SRC (set)) == PLUS
1567 && recog_data.n_operands >= 3
1568 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1569 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1570 && CONST_INT_P (recog_data.operand[2])
1571 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1572 {
1573 offset += INTVAL (recog_data.operand[2]);
1574
1575 /* If the sum is zero, then replace with a plain move. */
1576 if (offset == 0
1577 && REG_P (SET_DEST (set))
1578 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1579 {
1580 start_sequence ();
1581 emit_move_insn (SET_DEST (set), new_rtx);
1582 seq = get_insns ();
1583 end_sequence ();
1584
1585 emit_insn_before (seq, insn);
1586 delete_insn (insn);
1587 return;
1588 }
1589
1590 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1591
1592 /* Using validate_change and apply_change_group here leaves
1593 recog_data in an invalid state. Since we know exactly what
1594 we want to check, do those two by hand. */
1595 if (safe_insn_predicate (insn_code, 1, new_rtx)
1596 && safe_insn_predicate (insn_code, 2, x))
1597 {
1598 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1599 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1600 any_change = true;
1601
1602 /* Fall through into the regular operand fixup loop in
1603 order to take care of operands other than 1 and 2. */
1604 }
1605 }
1606 }
1607 else
1608 {
1609 extract_insn (insn);
1610 insn_code = INSN_CODE (insn);
1611 }
1612
1613 /* In the general case, we expect virtual registers to appear only in
1614 operands, and then only as either bare registers or inside memories. */
1615 for (i = 0; i < recog_data.n_operands; ++i)
1616 {
1617 x = recog_data.operand[i];
1618 switch (GET_CODE (x))
1619 {
1620 case MEM:
1621 {
1622 rtx addr = XEXP (x, 0);
1623 bool changed = false;
1624
1625 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1626 if (!changed)
1627 continue;
1628
1629 start_sequence ();
1630 x = replace_equiv_address (x, addr);
1631 /* It may happen that the address with the virtual reg
1632 was valid (e.g. based on the virtual stack reg, which might
1633 be acceptable to the predicates with all offsets), whereas
1634 the address now isn't anymore, for instance when the address
1635 is still offsetted, but the base reg isn't virtual-stack-reg
1636 anymore. Below we would do a force_reg on the whole operand,
1637 but this insn might actually only accept memory. Hence,
1638 before doing that last resort, try to reload the address into
1639 a register, so this operand stays a MEM. */
1640 if (!safe_insn_predicate (insn_code, i, x))
1641 {
1642 addr = force_reg (GET_MODE (addr), addr);
1643 x = replace_equiv_address (x, addr);
1644 }
1645 seq = get_insns ();
1646 end_sequence ();
1647 if (seq)
1648 emit_insn_before (seq, insn);
1649 }
1650 break;
1651
1652 case REG:
1653 new_rtx = instantiate_new_reg (x, &offset);
1654 if (new_rtx == NULL)
1655 continue;
1656 if (offset == 0)
1657 x = new_rtx;
1658 else
1659 {
1660 start_sequence ();
1661
1662 /* Careful, special mode predicates may have stuff in
1663 insn_data[insn_code].operand[i].mode that isn't useful
1664 to us for computing a new value. */
1665 /* ??? Recognize address_operand and/or "p" constraints
1666 to see if (plus new offset) is a valid before we put
1667 this through expand_simple_binop. */
1668 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1669 GEN_INT (offset), NULL_RTX,
1670 1, OPTAB_LIB_WIDEN);
1671 seq = get_insns ();
1672 end_sequence ();
1673 emit_insn_before (seq, insn);
1674 }
1675 break;
1676
1677 case SUBREG:
1678 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1679 if (new_rtx == NULL)
1680 continue;
1681 if (offset != 0)
1682 {
1683 start_sequence ();
1684 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1685 GEN_INT (offset), NULL_RTX,
1686 1, OPTAB_LIB_WIDEN);
1687 seq = get_insns ();
1688 end_sequence ();
1689 emit_insn_before (seq, insn);
1690 }
1691 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1692 GET_MODE (new_rtx), SUBREG_BYTE (x));
1693 gcc_assert (x);
1694 break;
1695
1696 default:
1697 continue;
1698 }
1699
1700 /* At this point, X contains the new value for the operand.
1701 Validate the new value vs the insn predicate. Note that
1702 asm insns will have insn_code -1 here. */
1703 if (!safe_insn_predicate (insn_code, i, x))
1704 {
1705 start_sequence ();
1706 if (REG_P (x))
1707 {
1708 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1709 x = copy_to_reg (x);
1710 }
1711 else
1712 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1713 seq = get_insns ();
1714 end_sequence ();
1715 if (seq)
1716 emit_insn_before (seq, insn);
1717 }
1718
1719 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1720 any_change = true;
1721 }
1722
1723 if (any_change)
1724 {
1725 /* Propagate operand changes into the duplicates. */
1726 for (i = 0; i < recog_data.n_dups; ++i)
1727 *recog_data.dup_loc[i]
1728 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1729
1730 /* Force re-recognition of the instruction for validation. */
1731 INSN_CODE (insn) = -1;
1732 }
1733
1734 if (asm_noperands (PATTERN (insn)) >= 0)
1735 {
1736 if (!check_asm_operands (PATTERN (insn)))
1737 {
1738 error_for_asm (insn, "impossible constraint in %<asm%>");
1739 /* For asm goto, instead of fixing up all the edges
1740 just clear the template and clear input operands
1741 (asm goto doesn't have any output operands). */
1742 if (JUMP_P (insn))
1743 {
1744 rtx asm_op = extract_asm_operands (PATTERN (insn));
1745 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1746 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1747 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1748 }
1749 else
1750 delete_insn (insn);
1751 }
1752 }
1753 else
1754 {
1755 if (recog_memoized (insn) < 0)
1756 fatal_insn_not_found (insn);
1757 }
1758 }
1759
1760 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1761 do any instantiation required. */
1762
1763 void
1764 instantiate_decl_rtl (rtx x)
1765 {
1766 rtx addr;
1767
1768 if (x == 0)
1769 return;
1770
1771 /* If this is a CONCAT, recurse for the pieces. */
1772 if (GET_CODE (x) == CONCAT)
1773 {
1774 instantiate_decl_rtl (XEXP (x, 0));
1775 instantiate_decl_rtl (XEXP (x, 1));
1776 return;
1777 }
1778
1779 /* If this is not a MEM, no need to do anything. Similarly if the
1780 address is a constant or a register that is not a virtual register. */
1781 if (!MEM_P (x))
1782 return;
1783
1784 addr = XEXP (x, 0);
1785 if (CONSTANT_P (addr)
1786 || (REG_P (addr)
1787 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1788 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1789 return;
1790
1791 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1792 }
1793
1794 /* Helper for instantiate_decls called via walk_tree: Process all decls
1795 in the given DECL_VALUE_EXPR. */
1796
1797 static tree
1798 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1799 {
1800 tree t = *tp;
1801 if (! EXPR_P (t))
1802 {
1803 *walk_subtrees = 0;
1804 if (DECL_P (t))
1805 {
1806 if (DECL_RTL_SET_P (t))
1807 instantiate_decl_rtl (DECL_RTL (t));
1808 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1809 && DECL_INCOMING_RTL (t))
1810 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1811 if ((TREE_CODE (t) == VAR_DECL
1812 || TREE_CODE (t) == RESULT_DECL)
1813 && DECL_HAS_VALUE_EXPR_P (t))
1814 {
1815 tree v = DECL_VALUE_EXPR (t);
1816 walk_tree (&v, instantiate_expr, NULL, NULL);
1817 }
1818 }
1819 }
1820 return NULL;
1821 }
1822
1823 /* Subroutine of instantiate_decls: Process all decls in the given
1824 BLOCK node and all its subblocks. */
1825
1826 static void
1827 instantiate_decls_1 (tree let)
1828 {
1829 tree t;
1830
1831 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1832 {
1833 if (DECL_RTL_SET_P (t))
1834 instantiate_decl_rtl (DECL_RTL (t));
1835 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1836 {
1837 tree v = DECL_VALUE_EXPR (t);
1838 walk_tree (&v, instantiate_expr, NULL, NULL);
1839 }
1840 }
1841
1842 /* Process all subblocks. */
1843 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1844 instantiate_decls_1 (t);
1845 }
1846
1847 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1848 all virtual registers in their DECL_RTL's. */
1849
1850 static void
1851 instantiate_decls (tree fndecl)
1852 {
1853 tree decl;
1854 unsigned ix;
1855
1856 /* Process all parameters of the function. */
1857 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1858 {
1859 instantiate_decl_rtl (DECL_RTL (decl));
1860 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1861 if (DECL_HAS_VALUE_EXPR_P (decl))
1862 {
1863 tree v = DECL_VALUE_EXPR (decl);
1864 walk_tree (&v, instantiate_expr, NULL, NULL);
1865 }
1866 }
1867
1868 if ((decl = DECL_RESULT (fndecl))
1869 && TREE_CODE (decl) == RESULT_DECL)
1870 {
1871 if (DECL_RTL_SET_P (decl))
1872 instantiate_decl_rtl (DECL_RTL (decl));
1873 if (DECL_HAS_VALUE_EXPR_P (decl))
1874 {
1875 tree v = DECL_VALUE_EXPR (decl);
1876 walk_tree (&v, instantiate_expr, NULL, NULL);
1877 }
1878 }
1879
1880 /* Now process all variables defined in the function or its subblocks. */
1881 instantiate_decls_1 (DECL_INITIAL (fndecl));
1882
1883 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1884 if (DECL_RTL_SET_P (decl))
1885 instantiate_decl_rtl (DECL_RTL (decl));
1886 vec_free (cfun->local_decls);
1887 }
1888
1889 /* Pass through the INSNS of function FNDECL and convert virtual register
1890 references to hard register references. */
1891
1892 static unsigned int
1893 instantiate_virtual_regs (void)
1894 {
1895 rtx insn;
1896
1897 /* Compute the offsets to use for this function. */
1898 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1899 var_offset = STARTING_FRAME_OFFSET;
1900 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1901 out_arg_offset = STACK_POINTER_OFFSET;
1902 #ifdef FRAME_POINTER_CFA_OFFSET
1903 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1904 #else
1905 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1906 #endif
1907
1908 /* Initialize recognition, indicating that volatile is OK. */
1909 init_recog ();
1910
1911 /* Scan through all the insns, instantiating every virtual register still
1912 present. */
1913 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1914 if (INSN_P (insn))
1915 {
1916 /* These patterns in the instruction stream can never be recognized.
1917 Fortunately, they shouldn't contain virtual registers either. */
1918 if (GET_CODE (PATTERN (insn)) == USE
1919 || GET_CODE (PATTERN (insn)) == CLOBBER
1920 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1921 continue;
1922 else if (DEBUG_INSN_P (insn))
1923 for_each_rtx (&INSN_VAR_LOCATION (insn),
1924 instantiate_virtual_regs_in_rtx, NULL);
1925 else
1926 instantiate_virtual_regs_in_insn (insn);
1927
1928 if (INSN_DELETED_P (insn))
1929 continue;
1930
1931 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1932
1933 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1934 if (CALL_P (insn))
1935 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1936 instantiate_virtual_regs_in_rtx, NULL);
1937 }
1938
1939 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1940 instantiate_decls (current_function_decl);
1941
1942 targetm.instantiate_decls ();
1943
1944 /* Indicate that, from now on, assign_stack_local should use
1945 frame_pointer_rtx. */
1946 virtuals_instantiated = 1;
1947
1948 return 0;
1949 }
1950
1951 struct rtl_opt_pass pass_instantiate_virtual_regs =
1952 {
1953 {
1954 RTL_PASS,
1955 "vregs", /* name */
1956 OPTGROUP_NONE, /* optinfo_flags */
1957 NULL, /* gate */
1958 instantiate_virtual_regs, /* execute */
1959 NULL, /* sub */
1960 NULL, /* next */
1961 0, /* static_pass_number */
1962 TV_NONE, /* tv_id */
1963 0, /* properties_required */
1964 0, /* properties_provided */
1965 0, /* properties_destroyed */
1966 0, /* todo_flags_start */
1967 0 /* todo_flags_finish */
1968 }
1969 };
1970
1971 \f
1972 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1973 This means a type for which function calls must pass an address to the
1974 function or get an address back from the function.
1975 EXP may be a type node or an expression (whose type is tested). */
1976
1977 int
1978 aggregate_value_p (const_tree exp, const_tree fntype)
1979 {
1980 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1981 int i, regno, nregs;
1982 rtx reg;
1983
1984 if (fntype)
1985 switch (TREE_CODE (fntype))
1986 {
1987 case CALL_EXPR:
1988 {
1989 tree fndecl = get_callee_fndecl (fntype);
1990 fntype = (fndecl
1991 ? TREE_TYPE (fndecl)
1992 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1993 }
1994 break;
1995 case FUNCTION_DECL:
1996 fntype = TREE_TYPE (fntype);
1997 break;
1998 case FUNCTION_TYPE:
1999 case METHOD_TYPE:
2000 break;
2001 case IDENTIFIER_NODE:
2002 fntype = NULL_TREE;
2003 break;
2004 default:
2005 /* We don't expect other tree types here. */
2006 gcc_unreachable ();
2007 }
2008
2009 if (VOID_TYPE_P (type))
2010 return 0;
2011
2012 /* If a record should be passed the same as its first (and only) member
2013 don't pass it as an aggregate. */
2014 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2015 return aggregate_value_p (first_field (type), fntype);
2016
2017 /* If the front end has decided that this needs to be passed by
2018 reference, do so. */
2019 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2020 && DECL_BY_REFERENCE (exp))
2021 return 1;
2022
2023 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2024 if (fntype && TREE_ADDRESSABLE (fntype))
2025 return 1;
2026
2027 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2028 and thus can't be returned in registers. */
2029 if (TREE_ADDRESSABLE (type))
2030 return 1;
2031
2032 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2033 return 1;
2034
2035 if (targetm.calls.return_in_memory (type, fntype))
2036 return 1;
2037
2038 /* Make sure we have suitable call-clobbered regs to return
2039 the value in; if not, we must return it in memory. */
2040 reg = hard_function_value (type, 0, fntype, 0);
2041
2042 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2043 it is OK. */
2044 if (!REG_P (reg))
2045 return 0;
2046
2047 regno = REGNO (reg);
2048 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2049 for (i = 0; i < nregs; i++)
2050 if (! call_used_regs[regno + i])
2051 return 1;
2052
2053 return 0;
2054 }
2055 \f
2056 /* Return true if we should assign DECL a pseudo register; false if it
2057 should live on the local stack. */
2058
2059 bool
2060 use_register_for_decl (const_tree decl)
2061 {
2062 if (!targetm.calls.allocate_stack_slots_for_args())
2063 return true;
2064
2065 /* Honor volatile. */
2066 if (TREE_SIDE_EFFECTS (decl))
2067 return false;
2068
2069 /* Honor addressability. */
2070 if (TREE_ADDRESSABLE (decl))
2071 return false;
2072
2073 /* Only register-like things go in registers. */
2074 if (DECL_MODE (decl) == BLKmode)
2075 return false;
2076
2077 /* If -ffloat-store specified, don't put explicit float variables
2078 into registers. */
2079 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2080 propagates values across these stores, and it probably shouldn't. */
2081 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2082 return false;
2083
2084 /* If we're not interested in tracking debugging information for
2085 this decl, then we can certainly put it in a register. */
2086 if (DECL_IGNORED_P (decl))
2087 return true;
2088
2089 if (optimize)
2090 return true;
2091
2092 if (!DECL_REGISTER (decl))
2093 return false;
2094
2095 switch (TREE_CODE (TREE_TYPE (decl)))
2096 {
2097 case RECORD_TYPE:
2098 case UNION_TYPE:
2099 case QUAL_UNION_TYPE:
2100 /* When not optimizing, disregard register keyword for variables with
2101 types containing methods, otherwise the methods won't be callable
2102 from the debugger. */
2103 if (TYPE_METHODS (TREE_TYPE (decl)))
2104 return false;
2105 break;
2106 default:
2107 break;
2108 }
2109
2110 return true;
2111 }
2112
2113 /* Return true if TYPE should be passed by invisible reference. */
2114
2115 bool
2116 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2117 tree type, bool named_arg)
2118 {
2119 if (type)
2120 {
2121 /* If this type contains non-trivial constructors, then it is
2122 forbidden for the middle-end to create any new copies. */
2123 if (TREE_ADDRESSABLE (type))
2124 return true;
2125
2126 /* GCC post 3.4 passes *all* variable sized types by reference. */
2127 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2128 return true;
2129
2130 /* If a record type should be passed the same as its first (and only)
2131 member, use the type and mode of that member. */
2132 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2133 {
2134 type = TREE_TYPE (first_field (type));
2135 mode = TYPE_MODE (type);
2136 }
2137 }
2138
2139 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2140 type, named_arg);
2141 }
2142
2143 /* Return true if TYPE, which is passed by reference, should be callee
2144 copied instead of caller copied. */
2145
2146 bool
2147 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2148 tree type, bool named_arg)
2149 {
2150 if (type && TREE_ADDRESSABLE (type))
2151 return false;
2152 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2153 named_arg);
2154 }
2155
2156 /* Structures to communicate between the subroutines of assign_parms.
2157 The first holds data persistent across all parameters, the second
2158 is cleared out for each parameter. */
2159
2160 struct assign_parm_data_all
2161 {
2162 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2163 should become a job of the target or otherwise encapsulated. */
2164 CUMULATIVE_ARGS args_so_far_v;
2165 cumulative_args_t args_so_far;
2166 struct args_size stack_args_size;
2167 tree function_result_decl;
2168 tree orig_fnargs;
2169 rtx first_conversion_insn;
2170 rtx last_conversion_insn;
2171 HOST_WIDE_INT pretend_args_size;
2172 HOST_WIDE_INT extra_pretend_bytes;
2173 int reg_parm_stack_space;
2174 };
2175
2176 struct assign_parm_data_one
2177 {
2178 tree nominal_type;
2179 tree passed_type;
2180 rtx entry_parm;
2181 rtx stack_parm;
2182 enum machine_mode nominal_mode;
2183 enum machine_mode passed_mode;
2184 enum machine_mode promoted_mode;
2185 struct locate_and_pad_arg_data locate;
2186 int partial;
2187 BOOL_BITFIELD named_arg : 1;
2188 BOOL_BITFIELD passed_pointer : 1;
2189 BOOL_BITFIELD on_stack : 1;
2190 BOOL_BITFIELD loaded_in_reg : 1;
2191 };
2192
2193 /* A subroutine of assign_parms. Initialize ALL. */
2194
2195 static void
2196 assign_parms_initialize_all (struct assign_parm_data_all *all)
2197 {
2198 tree fntype ATTRIBUTE_UNUSED;
2199
2200 memset (all, 0, sizeof (*all));
2201
2202 fntype = TREE_TYPE (current_function_decl);
2203
2204 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2205 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2206 #else
2207 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2208 current_function_decl, -1);
2209 #endif
2210 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2211
2212 #ifdef REG_PARM_STACK_SPACE
2213 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2214 #endif
2215 }
2216
2217 /* If ARGS contains entries with complex types, split the entry into two
2218 entries of the component type. Return a new list of substitutions are
2219 needed, else the old list. */
2220
2221 static void
2222 split_complex_args (vec<tree> *args)
2223 {
2224 unsigned i;
2225 tree p;
2226
2227 FOR_EACH_VEC_ELT (*args, i, p)
2228 {
2229 tree type = TREE_TYPE (p);
2230 if (TREE_CODE (type) == COMPLEX_TYPE
2231 && targetm.calls.split_complex_arg (type))
2232 {
2233 tree decl;
2234 tree subtype = TREE_TYPE (type);
2235 bool addressable = TREE_ADDRESSABLE (p);
2236
2237 /* Rewrite the PARM_DECL's type with its component. */
2238 p = copy_node (p);
2239 TREE_TYPE (p) = subtype;
2240 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2241 DECL_MODE (p) = VOIDmode;
2242 DECL_SIZE (p) = NULL;
2243 DECL_SIZE_UNIT (p) = NULL;
2244 /* If this arg must go in memory, put it in a pseudo here.
2245 We can't allow it to go in memory as per normal parms,
2246 because the usual place might not have the imag part
2247 adjacent to the real part. */
2248 DECL_ARTIFICIAL (p) = addressable;
2249 DECL_IGNORED_P (p) = addressable;
2250 TREE_ADDRESSABLE (p) = 0;
2251 layout_decl (p, 0);
2252 (*args)[i] = p;
2253
2254 /* Build a second synthetic decl. */
2255 decl = build_decl (EXPR_LOCATION (p),
2256 PARM_DECL, NULL_TREE, subtype);
2257 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2258 DECL_ARTIFICIAL (decl) = addressable;
2259 DECL_IGNORED_P (decl) = addressable;
2260 layout_decl (decl, 0);
2261 args->safe_insert (++i, decl);
2262 }
2263 }
2264 }
2265
2266 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2267 the hidden struct return argument, and (abi willing) complex args.
2268 Return the new parameter list. */
2269
2270 static vec<tree>
2271 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2272 {
2273 tree fndecl = current_function_decl;
2274 tree fntype = TREE_TYPE (fndecl);
2275 vec<tree> fnargs = vNULL;
2276 tree arg;
2277
2278 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2279 fnargs.safe_push (arg);
2280
2281 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2282
2283 /* If struct value address is treated as the first argument, make it so. */
2284 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2285 && ! cfun->returns_pcc_struct
2286 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2287 {
2288 tree type = build_pointer_type (TREE_TYPE (fntype));
2289 tree decl;
2290
2291 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2292 PARM_DECL, get_identifier (".result_ptr"), type);
2293 DECL_ARG_TYPE (decl) = type;
2294 DECL_ARTIFICIAL (decl) = 1;
2295 DECL_NAMELESS (decl) = 1;
2296 TREE_CONSTANT (decl) = 1;
2297
2298 DECL_CHAIN (decl) = all->orig_fnargs;
2299 all->orig_fnargs = decl;
2300 fnargs.safe_insert (0, decl);
2301
2302 all->function_result_decl = decl;
2303 }
2304
2305 /* If the target wants to split complex arguments into scalars, do so. */
2306 if (targetm.calls.split_complex_arg)
2307 split_complex_args (&fnargs);
2308
2309 return fnargs;
2310 }
2311
2312 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2313 data for the parameter. Incorporate ABI specifics such as pass-by-
2314 reference and type promotion. */
2315
2316 static void
2317 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2318 struct assign_parm_data_one *data)
2319 {
2320 tree nominal_type, passed_type;
2321 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2322 int unsignedp;
2323
2324 memset (data, 0, sizeof (*data));
2325
2326 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2327 if (!cfun->stdarg)
2328 data->named_arg = 1; /* No variadic parms. */
2329 else if (DECL_CHAIN (parm))
2330 data->named_arg = 1; /* Not the last non-variadic parm. */
2331 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2332 data->named_arg = 1; /* Only variadic ones are unnamed. */
2333 else
2334 data->named_arg = 0; /* Treat as variadic. */
2335
2336 nominal_type = TREE_TYPE (parm);
2337 passed_type = DECL_ARG_TYPE (parm);
2338
2339 /* Look out for errors propagating this far. Also, if the parameter's
2340 type is void then its value doesn't matter. */
2341 if (TREE_TYPE (parm) == error_mark_node
2342 /* This can happen after weird syntax errors
2343 or if an enum type is defined among the parms. */
2344 || TREE_CODE (parm) != PARM_DECL
2345 || passed_type == NULL
2346 || VOID_TYPE_P (nominal_type))
2347 {
2348 nominal_type = passed_type = void_type_node;
2349 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2350 goto egress;
2351 }
2352
2353 /* Find mode of arg as it is passed, and mode of arg as it should be
2354 during execution of this function. */
2355 passed_mode = TYPE_MODE (passed_type);
2356 nominal_mode = TYPE_MODE (nominal_type);
2357
2358 /* If the parm is to be passed as a transparent union or record, use the
2359 type of the first field for the tests below. We have already verified
2360 that the modes are the same. */
2361 if ((TREE_CODE (passed_type) == UNION_TYPE
2362 || TREE_CODE (passed_type) == RECORD_TYPE)
2363 && TYPE_TRANSPARENT_AGGR (passed_type))
2364 passed_type = TREE_TYPE (first_field (passed_type));
2365
2366 /* See if this arg was passed by invisible reference. */
2367 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2368 passed_type, data->named_arg))
2369 {
2370 passed_type = nominal_type = build_pointer_type (passed_type);
2371 data->passed_pointer = true;
2372 passed_mode = nominal_mode = Pmode;
2373 }
2374
2375 /* Find mode as it is passed by the ABI. */
2376 unsignedp = TYPE_UNSIGNED (passed_type);
2377 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2378 TREE_TYPE (current_function_decl), 0);
2379
2380 egress:
2381 data->nominal_type = nominal_type;
2382 data->passed_type = passed_type;
2383 data->nominal_mode = nominal_mode;
2384 data->passed_mode = passed_mode;
2385 data->promoted_mode = promoted_mode;
2386 }
2387
2388 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2389
2390 static void
2391 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2392 struct assign_parm_data_one *data, bool no_rtl)
2393 {
2394 int varargs_pretend_bytes = 0;
2395
2396 targetm.calls.setup_incoming_varargs (all->args_so_far,
2397 data->promoted_mode,
2398 data->passed_type,
2399 &varargs_pretend_bytes, no_rtl);
2400
2401 /* If the back-end has requested extra stack space, record how much is
2402 needed. Do not change pretend_args_size otherwise since it may be
2403 nonzero from an earlier partial argument. */
2404 if (varargs_pretend_bytes > 0)
2405 all->pretend_args_size = varargs_pretend_bytes;
2406 }
2407
2408 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2409 the incoming location of the current parameter. */
2410
2411 static void
2412 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2413 struct assign_parm_data_one *data)
2414 {
2415 HOST_WIDE_INT pretend_bytes = 0;
2416 rtx entry_parm;
2417 bool in_regs;
2418
2419 if (data->promoted_mode == VOIDmode)
2420 {
2421 data->entry_parm = data->stack_parm = const0_rtx;
2422 return;
2423 }
2424
2425 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2426 data->promoted_mode,
2427 data->passed_type,
2428 data->named_arg);
2429
2430 if (entry_parm == 0)
2431 data->promoted_mode = data->passed_mode;
2432
2433 /* Determine parm's home in the stack, in case it arrives in the stack
2434 or we should pretend it did. Compute the stack position and rtx where
2435 the argument arrives and its size.
2436
2437 There is one complexity here: If this was a parameter that would
2438 have been passed in registers, but wasn't only because it is
2439 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2440 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2441 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2442 as it was the previous time. */
2443 in_regs = entry_parm != 0;
2444 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2445 in_regs = true;
2446 #endif
2447 if (!in_regs && !data->named_arg)
2448 {
2449 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2450 {
2451 rtx tem;
2452 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2453 data->promoted_mode,
2454 data->passed_type, true);
2455 in_regs = tem != NULL;
2456 }
2457 }
2458
2459 /* If this parameter was passed both in registers and in the stack, use
2460 the copy on the stack. */
2461 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2462 data->passed_type))
2463 entry_parm = 0;
2464
2465 if (entry_parm)
2466 {
2467 int partial;
2468
2469 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2470 data->promoted_mode,
2471 data->passed_type,
2472 data->named_arg);
2473 data->partial = partial;
2474
2475 /* The caller might already have allocated stack space for the
2476 register parameters. */
2477 if (partial != 0 && all->reg_parm_stack_space == 0)
2478 {
2479 /* Part of this argument is passed in registers and part
2480 is passed on the stack. Ask the prologue code to extend
2481 the stack part so that we can recreate the full value.
2482
2483 PRETEND_BYTES is the size of the registers we need to store.
2484 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2485 stack space that the prologue should allocate.
2486
2487 Internally, gcc assumes that the argument pointer is aligned
2488 to STACK_BOUNDARY bits. This is used both for alignment
2489 optimizations (see init_emit) and to locate arguments that are
2490 aligned to more than PARM_BOUNDARY bits. We must preserve this
2491 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2492 a stack boundary. */
2493
2494 /* We assume at most one partial arg, and it must be the first
2495 argument on the stack. */
2496 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2497
2498 pretend_bytes = partial;
2499 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2500
2501 /* We want to align relative to the actual stack pointer, so
2502 don't include this in the stack size until later. */
2503 all->extra_pretend_bytes = all->pretend_args_size;
2504 }
2505 }
2506
2507 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2508 entry_parm ? data->partial : 0, current_function_decl,
2509 &all->stack_args_size, &data->locate);
2510
2511 /* Update parm_stack_boundary if this parameter is passed in the
2512 stack. */
2513 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2514 crtl->parm_stack_boundary = data->locate.boundary;
2515
2516 /* Adjust offsets to include the pretend args. */
2517 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2518 data->locate.slot_offset.constant += pretend_bytes;
2519 data->locate.offset.constant += pretend_bytes;
2520
2521 data->entry_parm = entry_parm;
2522 }
2523
2524 /* A subroutine of assign_parms. If there is actually space on the stack
2525 for this parm, count it in stack_args_size and return true. */
2526
2527 static bool
2528 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2529 struct assign_parm_data_one *data)
2530 {
2531 /* Trivially true if we've no incoming register. */
2532 if (data->entry_parm == NULL)
2533 ;
2534 /* Also true if we're partially in registers and partially not,
2535 since we've arranged to drop the entire argument on the stack. */
2536 else if (data->partial != 0)
2537 ;
2538 /* Also true if the target says that it's passed in both registers
2539 and on the stack. */
2540 else if (GET_CODE (data->entry_parm) == PARALLEL
2541 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2542 ;
2543 /* Also true if the target says that there's stack allocated for
2544 all register parameters. */
2545 else if (all->reg_parm_stack_space > 0)
2546 ;
2547 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2548 else
2549 return false;
2550
2551 all->stack_args_size.constant += data->locate.size.constant;
2552 if (data->locate.size.var)
2553 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2554
2555 return true;
2556 }
2557
2558 /* A subroutine of assign_parms. Given that this parameter is allocated
2559 stack space by the ABI, find it. */
2560
2561 static void
2562 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2563 {
2564 rtx offset_rtx, stack_parm;
2565 unsigned int align, boundary;
2566
2567 /* If we're passing this arg using a reg, make its stack home the
2568 aligned stack slot. */
2569 if (data->entry_parm)
2570 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2571 else
2572 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2573
2574 stack_parm = crtl->args.internal_arg_pointer;
2575 if (offset_rtx != const0_rtx)
2576 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2577 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2578
2579 if (!data->passed_pointer)
2580 {
2581 set_mem_attributes (stack_parm, parm, 1);
2582 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2583 while promoted mode's size is needed. */
2584 if (data->promoted_mode != BLKmode
2585 && data->promoted_mode != DECL_MODE (parm))
2586 {
2587 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2588 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2589 {
2590 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2591 data->promoted_mode);
2592 if (offset)
2593 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2594 }
2595 }
2596 }
2597
2598 boundary = data->locate.boundary;
2599 align = BITS_PER_UNIT;
2600
2601 /* If we're padding upward, we know that the alignment of the slot
2602 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2603 intentionally forcing upward padding. Otherwise we have to come
2604 up with a guess at the alignment based on OFFSET_RTX. */
2605 if (data->locate.where_pad != downward || data->entry_parm)
2606 align = boundary;
2607 else if (CONST_INT_P (offset_rtx))
2608 {
2609 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2610 align = align & -align;
2611 }
2612 set_mem_align (stack_parm, align);
2613
2614 if (data->entry_parm)
2615 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2616
2617 data->stack_parm = stack_parm;
2618 }
2619
2620 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2621 always valid and contiguous. */
2622
2623 static void
2624 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2625 {
2626 rtx entry_parm = data->entry_parm;
2627 rtx stack_parm = data->stack_parm;
2628
2629 /* If this parm was passed part in regs and part in memory, pretend it
2630 arrived entirely in memory by pushing the register-part onto the stack.
2631 In the special case of a DImode or DFmode that is split, we could put
2632 it together in a pseudoreg directly, but for now that's not worth
2633 bothering with. */
2634 if (data->partial != 0)
2635 {
2636 /* Handle calls that pass values in multiple non-contiguous
2637 locations. The Irix 6 ABI has examples of this. */
2638 if (GET_CODE (entry_parm) == PARALLEL)
2639 emit_group_store (validize_mem (stack_parm), entry_parm,
2640 data->passed_type,
2641 int_size_in_bytes (data->passed_type));
2642 else
2643 {
2644 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2645 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2646 data->partial / UNITS_PER_WORD);
2647 }
2648
2649 entry_parm = stack_parm;
2650 }
2651
2652 /* If we didn't decide this parm came in a register, by default it came
2653 on the stack. */
2654 else if (entry_parm == NULL)
2655 entry_parm = stack_parm;
2656
2657 /* When an argument is passed in multiple locations, we can't make use
2658 of this information, but we can save some copying if the whole argument
2659 is passed in a single register. */
2660 else if (GET_CODE (entry_parm) == PARALLEL
2661 && data->nominal_mode != BLKmode
2662 && data->passed_mode != BLKmode)
2663 {
2664 size_t i, len = XVECLEN (entry_parm, 0);
2665
2666 for (i = 0; i < len; i++)
2667 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2668 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2669 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2670 == data->passed_mode)
2671 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2672 {
2673 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2674 break;
2675 }
2676 }
2677
2678 data->entry_parm = entry_parm;
2679 }
2680
2681 /* A subroutine of assign_parms. Reconstitute any values which were
2682 passed in multiple registers and would fit in a single register. */
2683
2684 static void
2685 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2686 {
2687 rtx entry_parm = data->entry_parm;
2688
2689 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2690 This can be done with register operations rather than on the
2691 stack, even if we will store the reconstituted parameter on the
2692 stack later. */
2693 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2694 {
2695 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2696 emit_group_store (parmreg, entry_parm, data->passed_type,
2697 GET_MODE_SIZE (GET_MODE (entry_parm)));
2698 entry_parm = parmreg;
2699 }
2700
2701 data->entry_parm = entry_parm;
2702 }
2703
2704 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2705 always valid and properly aligned. */
2706
2707 static void
2708 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2709 {
2710 rtx stack_parm = data->stack_parm;
2711
2712 /* If we can't trust the parm stack slot to be aligned enough for its
2713 ultimate type, don't use that slot after entry. We'll make another
2714 stack slot, if we need one. */
2715 if (stack_parm
2716 && ((STRICT_ALIGNMENT
2717 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2718 || (data->nominal_type
2719 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2720 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2721 stack_parm = NULL;
2722
2723 /* If parm was passed in memory, and we need to convert it on entry,
2724 don't store it back in that same slot. */
2725 else if (data->entry_parm == stack_parm
2726 && data->nominal_mode != BLKmode
2727 && data->nominal_mode != data->passed_mode)
2728 stack_parm = NULL;
2729
2730 /* If stack protection is in effect for this function, don't leave any
2731 pointers in their passed stack slots. */
2732 else if (crtl->stack_protect_guard
2733 && (flag_stack_protect == 2
2734 || data->passed_pointer
2735 || POINTER_TYPE_P (data->nominal_type)))
2736 stack_parm = NULL;
2737
2738 data->stack_parm = stack_parm;
2739 }
2740
2741 /* A subroutine of assign_parms. Return true if the current parameter
2742 should be stored as a BLKmode in the current frame. */
2743
2744 static bool
2745 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2746 {
2747 if (data->nominal_mode == BLKmode)
2748 return true;
2749 if (GET_MODE (data->entry_parm) == BLKmode)
2750 return true;
2751
2752 #ifdef BLOCK_REG_PADDING
2753 /* Only assign_parm_setup_block knows how to deal with register arguments
2754 that are padded at the least significant end. */
2755 if (REG_P (data->entry_parm)
2756 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2757 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2758 == (BYTES_BIG_ENDIAN ? upward : downward)))
2759 return true;
2760 #endif
2761
2762 return false;
2763 }
2764
2765 /* A subroutine of assign_parms. Arrange for the parameter to be
2766 present and valid in DATA->STACK_RTL. */
2767
2768 static void
2769 assign_parm_setup_block (struct assign_parm_data_all *all,
2770 tree parm, struct assign_parm_data_one *data)
2771 {
2772 rtx entry_parm = data->entry_parm;
2773 rtx stack_parm = data->stack_parm;
2774 HOST_WIDE_INT size;
2775 HOST_WIDE_INT size_stored;
2776
2777 if (GET_CODE (entry_parm) == PARALLEL)
2778 entry_parm = emit_group_move_into_temps (entry_parm);
2779
2780 size = int_size_in_bytes (data->passed_type);
2781 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2782 if (stack_parm == 0)
2783 {
2784 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2785 stack_parm = assign_stack_local (BLKmode, size_stored,
2786 DECL_ALIGN (parm));
2787 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2788 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2789 set_mem_attributes (stack_parm, parm, 1);
2790 }
2791
2792 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2793 calls that pass values in multiple non-contiguous locations. */
2794 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2795 {
2796 rtx mem;
2797
2798 /* Note that we will be storing an integral number of words.
2799 So we have to be careful to ensure that we allocate an
2800 integral number of words. We do this above when we call
2801 assign_stack_local if space was not allocated in the argument
2802 list. If it was, this will not work if PARM_BOUNDARY is not
2803 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2804 if it becomes a problem. Exception is when BLKmode arrives
2805 with arguments not conforming to word_mode. */
2806
2807 if (data->stack_parm == 0)
2808 ;
2809 else if (GET_CODE (entry_parm) == PARALLEL)
2810 ;
2811 else
2812 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2813
2814 mem = validize_mem (stack_parm);
2815
2816 /* Handle values in multiple non-contiguous locations. */
2817 if (GET_CODE (entry_parm) == PARALLEL)
2818 {
2819 push_to_sequence2 (all->first_conversion_insn,
2820 all->last_conversion_insn);
2821 emit_group_store (mem, entry_parm, data->passed_type, size);
2822 all->first_conversion_insn = get_insns ();
2823 all->last_conversion_insn = get_last_insn ();
2824 end_sequence ();
2825 }
2826
2827 else if (size == 0)
2828 ;
2829
2830 /* If SIZE is that of a mode no bigger than a word, just use
2831 that mode's store operation. */
2832 else if (size <= UNITS_PER_WORD)
2833 {
2834 enum machine_mode mode
2835 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2836
2837 if (mode != BLKmode
2838 #ifdef BLOCK_REG_PADDING
2839 && (size == UNITS_PER_WORD
2840 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2841 != (BYTES_BIG_ENDIAN ? upward : downward)))
2842 #endif
2843 )
2844 {
2845 rtx reg;
2846
2847 /* We are really truncating a word_mode value containing
2848 SIZE bytes into a value of mode MODE. If such an
2849 operation requires no actual instructions, we can refer
2850 to the value directly in mode MODE, otherwise we must
2851 start with the register in word_mode and explicitly
2852 convert it. */
2853 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2854 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2855 else
2856 {
2857 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2858 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2859 }
2860 emit_move_insn (change_address (mem, mode, 0), reg);
2861 }
2862
2863 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2864 machine must be aligned to the left before storing
2865 to memory. Note that the previous test doesn't
2866 handle all cases (e.g. SIZE == 3). */
2867 else if (size != UNITS_PER_WORD
2868 #ifdef BLOCK_REG_PADDING
2869 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2870 == downward)
2871 #else
2872 && BYTES_BIG_ENDIAN
2873 #endif
2874 )
2875 {
2876 rtx tem, x;
2877 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2878 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2879
2880 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2881 tem = change_address (mem, word_mode, 0);
2882 emit_move_insn (tem, x);
2883 }
2884 else
2885 move_block_from_reg (REGNO (entry_parm), mem,
2886 size_stored / UNITS_PER_WORD);
2887 }
2888 else
2889 move_block_from_reg (REGNO (entry_parm), mem,
2890 size_stored / UNITS_PER_WORD);
2891 }
2892 else if (data->stack_parm == 0)
2893 {
2894 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2895 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2896 BLOCK_OP_NORMAL);
2897 all->first_conversion_insn = get_insns ();
2898 all->last_conversion_insn = get_last_insn ();
2899 end_sequence ();
2900 }
2901
2902 data->stack_parm = stack_parm;
2903 SET_DECL_RTL (parm, stack_parm);
2904 }
2905
2906 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2907 parameter. Get it there. Perform all ABI specified conversions. */
2908
2909 static void
2910 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2911 struct assign_parm_data_one *data)
2912 {
2913 rtx parmreg, validated_mem;
2914 rtx equiv_stack_parm;
2915 enum machine_mode promoted_nominal_mode;
2916 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2917 bool did_conversion = false;
2918 bool need_conversion, moved;
2919
2920 /* Store the parm in a pseudoregister during the function, but we may
2921 need to do it in a wider mode. Using 2 here makes the result
2922 consistent with promote_decl_mode and thus expand_expr_real_1. */
2923 promoted_nominal_mode
2924 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2925 TREE_TYPE (current_function_decl), 2);
2926
2927 parmreg = gen_reg_rtx (promoted_nominal_mode);
2928
2929 if (!DECL_ARTIFICIAL (parm))
2930 mark_user_reg (parmreg);
2931
2932 /* If this was an item that we received a pointer to,
2933 set DECL_RTL appropriately. */
2934 if (data->passed_pointer)
2935 {
2936 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2937 set_mem_attributes (x, parm, 1);
2938 SET_DECL_RTL (parm, x);
2939 }
2940 else
2941 SET_DECL_RTL (parm, parmreg);
2942
2943 assign_parm_remove_parallels (data);
2944
2945 /* Copy the value into the register, thus bridging between
2946 assign_parm_find_data_types and expand_expr_real_1. */
2947
2948 equiv_stack_parm = data->stack_parm;
2949 validated_mem = validize_mem (data->entry_parm);
2950
2951 need_conversion = (data->nominal_mode != data->passed_mode
2952 || promoted_nominal_mode != data->promoted_mode);
2953 moved = false;
2954
2955 if (need_conversion
2956 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2957 && data->nominal_mode == data->passed_mode
2958 && data->nominal_mode == GET_MODE (data->entry_parm))
2959 {
2960 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2961 mode, by the caller. We now have to convert it to
2962 NOMINAL_MODE, if different. However, PARMREG may be in
2963 a different mode than NOMINAL_MODE if it is being stored
2964 promoted.
2965
2966 If ENTRY_PARM is a hard register, it might be in a register
2967 not valid for operating in its mode (e.g., an odd-numbered
2968 register for a DFmode). In that case, moves are the only
2969 thing valid, so we can't do a convert from there. This
2970 occurs when the calling sequence allow such misaligned
2971 usages.
2972
2973 In addition, the conversion may involve a call, which could
2974 clobber parameters which haven't been copied to pseudo
2975 registers yet.
2976
2977 First, we try to emit an insn which performs the necessary
2978 conversion. We verify that this insn does not clobber any
2979 hard registers. */
2980
2981 enum insn_code icode;
2982 rtx op0, op1;
2983
2984 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
2985 unsignedp);
2986
2987 op0 = parmreg;
2988 op1 = validated_mem;
2989 if (icode != CODE_FOR_nothing
2990 && insn_operand_matches (icode, 0, op0)
2991 && insn_operand_matches (icode, 1, op1))
2992 {
2993 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
2994 rtx insn, insns, t = op1;
2995 HARD_REG_SET hardregs;
2996
2997 start_sequence ();
2998 /* If op1 is a hard register that is likely spilled, first
2999 force it into a pseudo, otherwise combiner might extend
3000 its lifetime too much. */
3001 if (GET_CODE (t) == SUBREG)
3002 t = SUBREG_REG (t);
3003 if (REG_P (t)
3004 && HARD_REGISTER_P (t)
3005 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3006 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3007 {
3008 t = gen_reg_rtx (GET_MODE (op1));
3009 emit_move_insn (t, op1);
3010 }
3011 else
3012 t = op1;
3013 insn = gen_extend_insn (op0, t, promoted_nominal_mode,
3014 data->passed_mode, unsignedp);
3015 emit_insn (insn);
3016 insns = get_insns ();
3017
3018 moved = true;
3019 CLEAR_HARD_REG_SET (hardregs);
3020 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3021 {
3022 if (INSN_P (insn))
3023 note_stores (PATTERN (insn), record_hard_reg_sets,
3024 &hardregs);
3025 if (!hard_reg_set_empty_p (hardregs))
3026 moved = false;
3027 }
3028
3029 end_sequence ();
3030
3031 if (moved)
3032 {
3033 emit_insn (insns);
3034 if (equiv_stack_parm != NULL_RTX)
3035 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3036 equiv_stack_parm);
3037 }
3038 }
3039 }
3040
3041 if (moved)
3042 /* Nothing to do. */
3043 ;
3044 else if (need_conversion)
3045 {
3046 /* We did not have an insn to convert directly, or the sequence
3047 generated appeared unsafe. We must first copy the parm to a
3048 pseudo reg, and save the conversion until after all
3049 parameters have been moved. */
3050
3051 int save_tree_used;
3052 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3053
3054 emit_move_insn (tempreg, validated_mem);
3055
3056 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3057 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3058
3059 if (GET_CODE (tempreg) == SUBREG
3060 && GET_MODE (tempreg) == data->nominal_mode
3061 && REG_P (SUBREG_REG (tempreg))
3062 && data->nominal_mode == data->passed_mode
3063 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3064 && GET_MODE_SIZE (GET_MODE (tempreg))
3065 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3066 {
3067 /* The argument is already sign/zero extended, so note it
3068 into the subreg. */
3069 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3070 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
3071 }
3072
3073 /* TREE_USED gets set erroneously during expand_assignment. */
3074 save_tree_used = TREE_USED (parm);
3075 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3076 TREE_USED (parm) = save_tree_used;
3077 all->first_conversion_insn = get_insns ();
3078 all->last_conversion_insn = get_last_insn ();
3079 end_sequence ();
3080
3081 did_conversion = true;
3082 }
3083 else
3084 emit_move_insn (parmreg, validated_mem);
3085
3086 /* If we were passed a pointer but the actual value can safely live
3087 in a register, put it in one. */
3088 if (data->passed_pointer
3089 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
3090 /* If by-reference argument was promoted, demote it. */
3091 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
3092 || use_register_for_decl (parm)))
3093 {
3094 /* We can't use nominal_mode, because it will have been set to
3095 Pmode above. We must use the actual mode of the parm. */
3096 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3097 mark_user_reg (parmreg);
3098
3099 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3100 {
3101 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3102 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3103
3104 push_to_sequence2 (all->first_conversion_insn,
3105 all->last_conversion_insn);
3106 emit_move_insn (tempreg, DECL_RTL (parm));
3107 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3108 emit_move_insn (parmreg, tempreg);
3109 all->first_conversion_insn = get_insns ();
3110 all->last_conversion_insn = get_last_insn ();
3111 end_sequence ();
3112
3113 did_conversion = true;
3114 }
3115 else
3116 emit_move_insn (parmreg, DECL_RTL (parm));
3117
3118 SET_DECL_RTL (parm, parmreg);
3119
3120 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3121 now the parm. */
3122 data->stack_parm = NULL;
3123 }
3124
3125 /* Mark the register as eliminable if we did no conversion and it was
3126 copied from memory at a fixed offset, and the arg pointer was not
3127 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3128 offset formed an invalid address, such memory-equivalences as we
3129 make here would screw up life analysis for it. */
3130 if (data->nominal_mode == data->passed_mode
3131 && !did_conversion
3132 && data->stack_parm != 0
3133 && MEM_P (data->stack_parm)
3134 && data->locate.offset.var == 0
3135 && reg_mentioned_p (virtual_incoming_args_rtx,
3136 XEXP (data->stack_parm, 0)))
3137 {
3138 rtx linsn = get_last_insn ();
3139 rtx sinsn, set;
3140
3141 /* Mark complex types separately. */
3142 if (GET_CODE (parmreg) == CONCAT)
3143 {
3144 enum machine_mode submode
3145 = GET_MODE_INNER (GET_MODE (parmreg));
3146 int regnor = REGNO (XEXP (parmreg, 0));
3147 int regnoi = REGNO (XEXP (parmreg, 1));
3148 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3149 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3150 GET_MODE_SIZE (submode));
3151
3152 /* Scan backwards for the set of the real and
3153 imaginary parts. */
3154 for (sinsn = linsn; sinsn != 0;
3155 sinsn = prev_nonnote_insn (sinsn))
3156 {
3157 set = single_set (sinsn);
3158 if (set == 0)
3159 continue;
3160
3161 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3162 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3163 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3164 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3165 }
3166 }
3167 else
3168 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3169 }
3170
3171 /* For pointer data type, suggest pointer register. */
3172 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3173 mark_reg_pointer (parmreg,
3174 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3175 }
3176
3177 /* A subroutine of assign_parms. Allocate stack space to hold the current
3178 parameter. Get it there. Perform all ABI specified conversions. */
3179
3180 static void
3181 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3182 struct assign_parm_data_one *data)
3183 {
3184 /* Value must be stored in the stack slot STACK_PARM during function
3185 execution. */
3186 bool to_conversion = false;
3187
3188 assign_parm_remove_parallels (data);
3189
3190 if (data->promoted_mode != data->nominal_mode)
3191 {
3192 /* Conversion is required. */
3193 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3194
3195 emit_move_insn (tempreg, validize_mem (data->entry_parm));
3196
3197 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3198 to_conversion = true;
3199
3200 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3201 TYPE_UNSIGNED (TREE_TYPE (parm)));
3202
3203 if (data->stack_parm)
3204 {
3205 int offset = subreg_lowpart_offset (data->nominal_mode,
3206 GET_MODE (data->stack_parm));
3207 /* ??? This may need a big-endian conversion on sparc64. */
3208 data->stack_parm
3209 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3210 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3211 set_mem_offset (data->stack_parm,
3212 MEM_OFFSET (data->stack_parm) + offset);
3213 }
3214 }
3215
3216 if (data->entry_parm != data->stack_parm)
3217 {
3218 rtx src, dest;
3219
3220 if (data->stack_parm == 0)
3221 {
3222 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3223 GET_MODE (data->entry_parm),
3224 TYPE_ALIGN (data->passed_type));
3225 data->stack_parm
3226 = assign_stack_local (GET_MODE (data->entry_parm),
3227 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3228 align);
3229 set_mem_attributes (data->stack_parm, parm, 1);
3230 }
3231
3232 dest = validize_mem (data->stack_parm);
3233 src = validize_mem (data->entry_parm);
3234
3235 if (MEM_P (src))
3236 {
3237 /* Use a block move to handle potentially misaligned entry_parm. */
3238 if (!to_conversion)
3239 push_to_sequence2 (all->first_conversion_insn,
3240 all->last_conversion_insn);
3241 to_conversion = true;
3242
3243 emit_block_move (dest, src,
3244 GEN_INT (int_size_in_bytes (data->passed_type)),
3245 BLOCK_OP_NORMAL);
3246 }
3247 else
3248 emit_move_insn (dest, src);
3249 }
3250
3251 if (to_conversion)
3252 {
3253 all->first_conversion_insn = get_insns ();
3254 all->last_conversion_insn = get_last_insn ();
3255 end_sequence ();
3256 }
3257
3258 SET_DECL_RTL (parm, data->stack_parm);
3259 }
3260
3261 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3262 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3263
3264 static void
3265 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3266 vec<tree> fnargs)
3267 {
3268 tree parm;
3269 tree orig_fnargs = all->orig_fnargs;
3270 unsigned i = 0;
3271
3272 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3273 {
3274 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3275 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3276 {
3277 rtx tmp, real, imag;
3278 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3279
3280 real = DECL_RTL (fnargs[i]);
3281 imag = DECL_RTL (fnargs[i + 1]);
3282 if (inner != GET_MODE (real))
3283 {
3284 real = gen_lowpart_SUBREG (inner, real);
3285 imag = gen_lowpart_SUBREG (inner, imag);
3286 }
3287
3288 if (TREE_ADDRESSABLE (parm))
3289 {
3290 rtx rmem, imem;
3291 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3292 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3293 DECL_MODE (parm),
3294 TYPE_ALIGN (TREE_TYPE (parm)));
3295
3296 /* split_complex_arg put the real and imag parts in
3297 pseudos. Move them to memory. */
3298 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3299 set_mem_attributes (tmp, parm, 1);
3300 rmem = adjust_address_nv (tmp, inner, 0);
3301 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3302 push_to_sequence2 (all->first_conversion_insn,
3303 all->last_conversion_insn);
3304 emit_move_insn (rmem, real);
3305 emit_move_insn (imem, imag);
3306 all->first_conversion_insn = get_insns ();
3307 all->last_conversion_insn = get_last_insn ();
3308 end_sequence ();
3309 }
3310 else
3311 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3312 SET_DECL_RTL (parm, tmp);
3313
3314 real = DECL_INCOMING_RTL (fnargs[i]);
3315 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3316 if (inner != GET_MODE (real))
3317 {
3318 real = gen_lowpart_SUBREG (inner, real);
3319 imag = gen_lowpart_SUBREG (inner, imag);
3320 }
3321 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3322 set_decl_incoming_rtl (parm, tmp, false);
3323 i++;
3324 }
3325 }
3326 }
3327
3328 /* Assign RTL expressions to the function's parameters. This may involve
3329 copying them into registers and using those registers as the DECL_RTL. */
3330
3331 static void
3332 assign_parms (tree fndecl)
3333 {
3334 struct assign_parm_data_all all;
3335 tree parm;
3336 vec<tree> fnargs;
3337 unsigned i;
3338
3339 crtl->args.internal_arg_pointer
3340 = targetm.calls.internal_arg_pointer ();
3341
3342 assign_parms_initialize_all (&all);
3343 fnargs = assign_parms_augmented_arg_list (&all);
3344
3345 FOR_EACH_VEC_ELT (fnargs, i, parm)
3346 {
3347 struct assign_parm_data_one data;
3348
3349 /* Extract the type of PARM; adjust it according to ABI. */
3350 assign_parm_find_data_types (&all, parm, &data);
3351
3352 /* Early out for errors and void parameters. */
3353 if (data.passed_mode == VOIDmode)
3354 {
3355 SET_DECL_RTL (parm, const0_rtx);
3356 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3357 continue;
3358 }
3359
3360 /* Estimate stack alignment from parameter alignment. */
3361 if (SUPPORTS_STACK_ALIGNMENT)
3362 {
3363 unsigned int align
3364 = targetm.calls.function_arg_boundary (data.promoted_mode,
3365 data.passed_type);
3366 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3367 align);
3368 if (TYPE_ALIGN (data.nominal_type) > align)
3369 align = MINIMUM_ALIGNMENT (data.nominal_type,
3370 TYPE_MODE (data.nominal_type),
3371 TYPE_ALIGN (data.nominal_type));
3372 if (crtl->stack_alignment_estimated < align)
3373 {
3374 gcc_assert (!crtl->stack_realign_processed);
3375 crtl->stack_alignment_estimated = align;
3376 }
3377 }
3378
3379 if (cfun->stdarg && !DECL_CHAIN (parm))
3380 assign_parms_setup_varargs (&all, &data, false);
3381
3382 /* Find out where the parameter arrives in this function. */
3383 assign_parm_find_entry_rtl (&all, &data);
3384
3385 /* Find out where stack space for this parameter might be. */
3386 if (assign_parm_is_stack_parm (&all, &data))
3387 {
3388 assign_parm_find_stack_rtl (parm, &data);
3389 assign_parm_adjust_entry_rtl (&data);
3390 }
3391
3392 /* Record permanently how this parm was passed. */
3393 if (data.passed_pointer)
3394 {
3395 rtx incoming_rtl
3396 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3397 data.entry_parm);
3398 set_decl_incoming_rtl (parm, incoming_rtl, true);
3399 }
3400 else
3401 set_decl_incoming_rtl (parm, data.entry_parm, false);
3402
3403 /* Update info on where next arg arrives in registers. */
3404 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3405 data.passed_type, data.named_arg);
3406
3407 assign_parm_adjust_stack_rtl (&data);
3408
3409 if (assign_parm_setup_block_p (&data))
3410 assign_parm_setup_block (&all, parm, &data);
3411 else if (data.passed_pointer || use_register_for_decl (parm))
3412 assign_parm_setup_reg (&all, parm, &data);
3413 else
3414 assign_parm_setup_stack (&all, parm, &data);
3415 }
3416
3417 if (targetm.calls.split_complex_arg)
3418 assign_parms_unsplit_complex (&all, fnargs);
3419
3420 fnargs.release ();
3421
3422 /* Output all parameter conversion instructions (possibly including calls)
3423 now that all parameters have been copied out of hard registers. */
3424 emit_insn (all.first_conversion_insn);
3425
3426 /* Estimate reload stack alignment from scalar return mode. */
3427 if (SUPPORTS_STACK_ALIGNMENT)
3428 {
3429 if (DECL_RESULT (fndecl))
3430 {
3431 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3432 enum machine_mode mode = TYPE_MODE (type);
3433
3434 if (mode != BLKmode
3435 && mode != VOIDmode
3436 && !AGGREGATE_TYPE_P (type))
3437 {
3438 unsigned int align = GET_MODE_ALIGNMENT (mode);
3439 if (crtl->stack_alignment_estimated < align)
3440 {
3441 gcc_assert (!crtl->stack_realign_processed);
3442 crtl->stack_alignment_estimated = align;
3443 }
3444 }
3445 }
3446 }
3447
3448 /* If we are receiving a struct value address as the first argument, set up
3449 the RTL for the function result. As this might require code to convert
3450 the transmitted address to Pmode, we do this here to ensure that possible
3451 preliminary conversions of the address have been emitted already. */
3452 if (all.function_result_decl)
3453 {
3454 tree result = DECL_RESULT (current_function_decl);
3455 rtx addr = DECL_RTL (all.function_result_decl);
3456 rtx x;
3457
3458 if (DECL_BY_REFERENCE (result))
3459 {
3460 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3461 x = addr;
3462 }
3463 else
3464 {
3465 SET_DECL_VALUE_EXPR (result,
3466 build1 (INDIRECT_REF, TREE_TYPE (result),
3467 all.function_result_decl));
3468 addr = convert_memory_address (Pmode, addr);
3469 x = gen_rtx_MEM (DECL_MODE (result), addr);
3470 set_mem_attributes (x, result, 1);
3471 }
3472
3473 DECL_HAS_VALUE_EXPR_P (result) = 1;
3474
3475 SET_DECL_RTL (result, x);
3476 }
3477
3478 /* We have aligned all the args, so add space for the pretend args. */
3479 crtl->args.pretend_args_size = all.pretend_args_size;
3480 all.stack_args_size.constant += all.extra_pretend_bytes;
3481 crtl->args.size = all.stack_args_size.constant;
3482
3483 /* Adjust function incoming argument size for alignment and
3484 minimum length. */
3485
3486 #ifdef REG_PARM_STACK_SPACE
3487 crtl->args.size = MAX (crtl->args.size,
3488 REG_PARM_STACK_SPACE (fndecl));
3489 #endif
3490
3491 crtl->args.size = CEIL_ROUND (crtl->args.size,
3492 PARM_BOUNDARY / BITS_PER_UNIT);
3493
3494 #ifdef ARGS_GROW_DOWNWARD
3495 crtl->args.arg_offset_rtx
3496 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3497 : expand_expr (size_diffop (all.stack_args_size.var,
3498 size_int (-all.stack_args_size.constant)),
3499 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3500 #else
3501 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3502 #endif
3503
3504 /* See how many bytes, if any, of its args a function should try to pop
3505 on return. */
3506
3507 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3508 TREE_TYPE (fndecl),
3509 crtl->args.size);
3510
3511 /* For stdarg.h function, save info about
3512 regs and stack space used by the named args. */
3513
3514 crtl->args.info = all.args_so_far_v;
3515
3516 /* Set the rtx used for the function return value. Put this in its
3517 own variable so any optimizers that need this information don't have
3518 to include tree.h. Do this here so it gets done when an inlined
3519 function gets output. */
3520
3521 crtl->return_rtx
3522 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3523 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3524
3525 /* If scalar return value was computed in a pseudo-reg, or was a named
3526 return value that got dumped to the stack, copy that to the hard
3527 return register. */
3528 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3529 {
3530 tree decl_result = DECL_RESULT (fndecl);
3531 rtx decl_rtl = DECL_RTL (decl_result);
3532
3533 if (REG_P (decl_rtl)
3534 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3535 : DECL_REGISTER (decl_result))
3536 {
3537 rtx real_decl_rtl;
3538
3539 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3540 fndecl, true);
3541 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3542 /* The delay slot scheduler assumes that crtl->return_rtx
3543 holds the hard register containing the return value, not a
3544 temporary pseudo. */
3545 crtl->return_rtx = real_decl_rtl;
3546 }
3547 }
3548 }
3549
3550 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3551 For all seen types, gimplify their sizes. */
3552
3553 static tree
3554 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3555 {
3556 tree t = *tp;
3557
3558 *walk_subtrees = 0;
3559 if (TYPE_P (t))
3560 {
3561 if (POINTER_TYPE_P (t))
3562 *walk_subtrees = 1;
3563 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3564 && !TYPE_SIZES_GIMPLIFIED (t))
3565 {
3566 gimplify_type_sizes (t, (gimple_seq *) data);
3567 *walk_subtrees = 1;
3568 }
3569 }
3570
3571 return NULL;
3572 }
3573
3574 /* Gimplify the parameter list for current_function_decl. This involves
3575 evaluating SAVE_EXPRs of variable sized parameters and generating code
3576 to implement callee-copies reference parameters. Returns a sequence of
3577 statements to add to the beginning of the function. */
3578
3579 gimple_seq
3580 gimplify_parameters (void)
3581 {
3582 struct assign_parm_data_all all;
3583 tree parm;
3584 gimple_seq stmts = NULL;
3585 vec<tree> fnargs;
3586 unsigned i;
3587
3588 assign_parms_initialize_all (&all);
3589 fnargs = assign_parms_augmented_arg_list (&all);
3590
3591 FOR_EACH_VEC_ELT (fnargs, i, parm)
3592 {
3593 struct assign_parm_data_one data;
3594
3595 /* Extract the type of PARM; adjust it according to ABI. */
3596 assign_parm_find_data_types (&all, parm, &data);
3597
3598 /* Early out for errors and void parameters. */
3599 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3600 continue;
3601
3602 /* Update info on where next arg arrives in registers. */
3603 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3604 data.passed_type, data.named_arg);
3605
3606 /* ??? Once upon a time variable_size stuffed parameter list
3607 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3608 turned out to be less than manageable in the gimple world.
3609 Now we have to hunt them down ourselves. */
3610 walk_tree_without_duplicates (&data.passed_type,
3611 gimplify_parm_type, &stmts);
3612
3613 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3614 {
3615 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3616 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3617 }
3618
3619 if (data.passed_pointer)
3620 {
3621 tree type = TREE_TYPE (data.passed_type);
3622 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3623 type, data.named_arg))
3624 {
3625 tree local, t;
3626
3627 /* For constant-sized objects, this is trivial; for
3628 variable-sized objects, we have to play games. */
3629 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3630 && !(flag_stack_check == GENERIC_STACK_CHECK
3631 && compare_tree_int (DECL_SIZE_UNIT (parm),
3632 STACK_CHECK_MAX_VAR_SIZE) > 0))
3633 {
3634 local = create_tmp_var (type, get_name (parm));
3635 DECL_IGNORED_P (local) = 0;
3636 /* If PARM was addressable, move that flag over
3637 to the local copy, as its address will be taken,
3638 not the PARMs. Keep the parms address taken
3639 as we'll query that flag during gimplification. */
3640 if (TREE_ADDRESSABLE (parm))
3641 TREE_ADDRESSABLE (local) = 1;
3642 else if (TREE_CODE (type) == COMPLEX_TYPE
3643 || TREE_CODE (type) == VECTOR_TYPE)
3644 DECL_GIMPLE_REG_P (local) = 1;
3645 }
3646 else
3647 {
3648 tree ptr_type, addr;
3649
3650 ptr_type = build_pointer_type (type);
3651 addr = create_tmp_reg (ptr_type, get_name (parm));
3652 DECL_IGNORED_P (addr) = 0;
3653 local = build_fold_indirect_ref (addr);
3654
3655 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3656 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3657 size_int (DECL_ALIGN (parm)));
3658
3659 /* The call has been built for a variable-sized object. */
3660 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3661 t = fold_convert (ptr_type, t);
3662 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3663 gimplify_and_add (t, &stmts);
3664 }
3665
3666 gimplify_assign (local, parm, &stmts);
3667
3668 SET_DECL_VALUE_EXPR (parm, local);
3669 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3670 }
3671 }
3672 }
3673
3674 fnargs.release ();
3675
3676 return stmts;
3677 }
3678 \f
3679 /* Compute the size and offset from the start of the stacked arguments for a
3680 parm passed in mode PASSED_MODE and with type TYPE.
3681
3682 INITIAL_OFFSET_PTR points to the current offset into the stacked
3683 arguments.
3684
3685 The starting offset and size for this parm are returned in
3686 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3687 nonzero, the offset is that of stack slot, which is returned in
3688 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3689 padding required from the initial offset ptr to the stack slot.
3690
3691 IN_REGS is nonzero if the argument will be passed in registers. It will
3692 never be set if REG_PARM_STACK_SPACE is not defined.
3693
3694 FNDECL is the function in which the argument was defined.
3695
3696 There are two types of rounding that are done. The first, controlled by
3697 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3698 argument list to be aligned to the specific boundary (in bits). This
3699 rounding affects the initial and starting offsets, but not the argument
3700 size.
3701
3702 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3703 optionally rounds the size of the parm to PARM_BOUNDARY. The
3704 initial offset is not affected by this rounding, while the size always
3705 is and the starting offset may be. */
3706
3707 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3708 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3709 callers pass in the total size of args so far as
3710 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3711
3712 void
3713 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3714 int partial, tree fndecl ATTRIBUTE_UNUSED,
3715 struct args_size *initial_offset_ptr,
3716 struct locate_and_pad_arg_data *locate)
3717 {
3718 tree sizetree;
3719 enum direction where_pad;
3720 unsigned int boundary, round_boundary;
3721 int reg_parm_stack_space = 0;
3722 int part_size_in_regs;
3723
3724 #ifdef REG_PARM_STACK_SPACE
3725 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3726
3727 /* If we have found a stack parm before we reach the end of the
3728 area reserved for registers, skip that area. */
3729 if (! in_regs)
3730 {
3731 if (reg_parm_stack_space > 0)
3732 {
3733 if (initial_offset_ptr->var)
3734 {
3735 initial_offset_ptr->var
3736 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3737 ssize_int (reg_parm_stack_space));
3738 initial_offset_ptr->constant = 0;
3739 }
3740 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3741 initial_offset_ptr->constant = reg_parm_stack_space;
3742 }
3743 }
3744 #endif /* REG_PARM_STACK_SPACE */
3745
3746 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3747
3748 sizetree
3749 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3750 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3751 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3752 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3753 type);
3754 locate->where_pad = where_pad;
3755
3756 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3757 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3758 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3759
3760 locate->boundary = boundary;
3761
3762 if (SUPPORTS_STACK_ALIGNMENT)
3763 {
3764 /* stack_alignment_estimated can't change after stack has been
3765 realigned. */
3766 if (crtl->stack_alignment_estimated < boundary)
3767 {
3768 if (!crtl->stack_realign_processed)
3769 crtl->stack_alignment_estimated = boundary;
3770 else
3771 {
3772 /* If stack is realigned and stack alignment value
3773 hasn't been finalized, it is OK not to increase
3774 stack_alignment_estimated. The bigger alignment
3775 requirement is recorded in stack_alignment_needed
3776 below. */
3777 gcc_assert (!crtl->stack_realign_finalized
3778 && crtl->stack_realign_needed);
3779 }
3780 }
3781 }
3782
3783 /* Remember if the outgoing parameter requires extra alignment on the
3784 calling function side. */
3785 if (crtl->stack_alignment_needed < boundary)
3786 crtl->stack_alignment_needed = boundary;
3787 if (crtl->preferred_stack_boundary < boundary)
3788 crtl->preferred_stack_boundary = boundary;
3789
3790 #ifdef ARGS_GROW_DOWNWARD
3791 locate->slot_offset.constant = -initial_offset_ptr->constant;
3792 if (initial_offset_ptr->var)
3793 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3794 initial_offset_ptr->var);
3795
3796 {
3797 tree s2 = sizetree;
3798 if (where_pad != none
3799 && (!host_integerp (sizetree, 1)
3800 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3801 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
3802 SUB_PARM_SIZE (locate->slot_offset, s2);
3803 }
3804
3805 locate->slot_offset.constant += part_size_in_regs;
3806
3807 if (!in_regs
3808 #ifdef REG_PARM_STACK_SPACE
3809 || REG_PARM_STACK_SPACE (fndecl) > 0
3810 #endif
3811 )
3812 pad_to_arg_alignment (&locate->slot_offset, boundary,
3813 &locate->alignment_pad);
3814
3815 locate->size.constant = (-initial_offset_ptr->constant
3816 - locate->slot_offset.constant);
3817 if (initial_offset_ptr->var)
3818 locate->size.var = size_binop (MINUS_EXPR,
3819 size_binop (MINUS_EXPR,
3820 ssize_int (0),
3821 initial_offset_ptr->var),
3822 locate->slot_offset.var);
3823
3824 /* Pad_below needs the pre-rounded size to know how much to pad
3825 below. */
3826 locate->offset = locate->slot_offset;
3827 if (where_pad == downward)
3828 pad_below (&locate->offset, passed_mode, sizetree);
3829
3830 #else /* !ARGS_GROW_DOWNWARD */
3831 if (!in_regs
3832 #ifdef REG_PARM_STACK_SPACE
3833 || REG_PARM_STACK_SPACE (fndecl) > 0
3834 #endif
3835 )
3836 pad_to_arg_alignment (initial_offset_ptr, boundary,
3837 &locate->alignment_pad);
3838 locate->slot_offset = *initial_offset_ptr;
3839
3840 #ifdef PUSH_ROUNDING
3841 if (passed_mode != BLKmode)
3842 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3843 #endif
3844
3845 /* Pad_below needs the pre-rounded size to know how much to pad below
3846 so this must be done before rounding up. */
3847 locate->offset = locate->slot_offset;
3848 if (where_pad == downward)
3849 pad_below (&locate->offset, passed_mode, sizetree);
3850
3851 if (where_pad != none
3852 && (!host_integerp (sizetree, 1)
3853 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3854 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
3855
3856 ADD_PARM_SIZE (locate->size, sizetree);
3857
3858 locate->size.constant -= part_size_in_regs;
3859 #endif /* ARGS_GROW_DOWNWARD */
3860
3861 #ifdef FUNCTION_ARG_OFFSET
3862 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3863 #endif
3864 }
3865
3866 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3867 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3868
3869 static void
3870 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3871 struct args_size *alignment_pad)
3872 {
3873 tree save_var = NULL_TREE;
3874 HOST_WIDE_INT save_constant = 0;
3875 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3876 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3877
3878 #ifdef SPARC_STACK_BOUNDARY_HACK
3879 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3880 the real alignment of %sp. However, when it does this, the
3881 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3882 if (SPARC_STACK_BOUNDARY_HACK)
3883 sp_offset = 0;
3884 #endif
3885
3886 if (boundary > PARM_BOUNDARY)
3887 {
3888 save_var = offset_ptr->var;
3889 save_constant = offset_ptr->constant;
3890 }
3891
3892 alignment_pad->var = NULL_TREE;
3893 alignment_pad->constant = 0;
3894
3895 if (boundary > BITS_PER_UNIT)
3896 {
3897 if (offset_ptr->var)
3898 {
3899 tree sp_offset_tree = ssize_int (sp_offset);
3900 tree offset = size_binop (PLUS_EXPR,
3901 ARGS_SIZE_TREE (*offset_ptr),
3902 sp_offset_tree);
3903 #ifdef ARGS_GROW_DOWNWARD
3904 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3905 #else
3906 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3907 #endif
3908
3909 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3910 /* ARGS_SIZE_TREE includes constant term. */
3911 offset_ptr->constant = 0;
3912 if (boundary > PARM_BOUNDARY)
3913 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3914 save_var);
3915 }
3916 else
3917 {
3918 offset_ptr->constant = -sp_offset +
3919 #ifdef ARGS_GROW_DOWNWARD
3920 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3921 #else
3922 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3923 #endif
3924 if (boundary > PARM_BOUNDARY)
3925 alignment_pad->constant = offset_ptr->constant - save_constant;
3926 }
3927 }
3928 }
3929
3930 static void
3931 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3932 {
3933 if (passed_mode != BLKmode)
3934 {
3935 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3936 offset_ptr->constant
3937 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3938 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3939 - GET_MODE_SIZE (passed_mode));
3940 }
3941 else
3942 {
3943 if (TREE_CODE (sizetree) != INTEGER_CST
3944 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3945 {
3946 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3947 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3948 /* Add it in. */
3949 ADD_PARM_SIZE (*offset_ptr, s2);
3950 SUB_PARM_SIZE (*offset_ptr, sizetree);
3951 }
3952 }
3953 }
3954 \f
3955
3956 /* True if register REGNO was alive at a place where `setjmp' was
3957 called and was set more than once or is an argument. Such regs may
3958 be clobbered by `longjmp'. */
3959
3960 static bool
3961 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3962 {
3963 /* There appear to be cases where some local vars never reach the
3964 backend but have bogus regnos. */
3965 if (regno >= max_reg_num ())
3966 return false;
3967
3968 return ((REG_N_SETS (regno) > 1
3969 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3970 && REGNO_REG_SET_P (setjmp_crosses, regno));
3971 }
3972
3973 /* Walk the tree of blocks describing the binding levels within a
3974 function and warn about variables the might be killed by setjmp or
3975 vfork. This is done after calling flow_analysis before register
3976 allocation since that will clobber the pseudo-regs to hard
3977 regs. */
3978
3979 static void
3980 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3981 {
3982 tree decl, sub;
3983
3984 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
3985 {
3986 if (TREE_CODE (decl) == VAR_DECL
3987 && DECL_RTL_SET_P (decl)
3988 && REG_P (DECL_RTL (decl))
3989 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3990 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3991 " %<longjmp%> or %<vfork%>", decl);
3992 }
3993
3994 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3995 setjmp_vars_warning (setjmp_crosses, sub);
3996 }
3997
3998 /* Do the appropriate part of setjmp_vars_warning
3999 but for arguments instead of local variables. */
4000
4001 static void
4002 setjmp_args_warning (bitmap setjmp_crosses)
4003 {
4004 tree decl;
4005 for (decl = DECL_ARGUMENTS (current_function_decl);
4006 decl; decl = DECL_CHAIN (decl))
4007 if (DECL_RTL (decl) != 0
4008 && REG_P (DECL_RTL (decl))
4009 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4010 warning (OPT_Wclobbered,
4011 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4012 decl);
4013 }
4014
4015 /* Generate warning messages for variables live across setjmp. */
4016
4017 void
4018 generate_setjmp_warnings (void)
4019 {
4020 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4021
4022 if (n_basic_blocks == NUM_FIXED_BLOCKS
4023 || bitmap_empty_p (setjmp_crosses))
4024 return;
4025
4026 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4027 setjmp_args_warning (setjmp_crosses);
4028 }
4029
4030 \f
4031 /* Reverse the order of elements in the fragment chain T of blocks,
4032 and return the new head of the chain (old last element).
4033 In addition to that clear BLOCK_SAME_RANGE flags when needed
4034 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4035 its super fragment origin. */
4036
4037 static tree
4038 block_fragments_nreverse (tree t)
4039 {
4040 tree prev = 0, block, next, prev_super = 0;
4041 tree super = BLOCK_SUPERCONTEXT (t);
4042 if (BLOCK_FRAGMENT_ORIGIN (super))
4043 super = BLOCK_FRAGMENT_ORIGIN (super);
4044 for (block = t; block; block = next)
4045 {
4046 next = BLOCK_FRAGMENT_CHAIN (block);
4047 BLOCK_FRAGMENT_CHAIN (block) = prev;
4048 if ((prev && !BLOCK_SAME_RANGE (prev))
4049 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4050 != prev_super))
4051 BLOCK_SAME_RANGE (block) = 0;
4052 prev_super = BLOCK_SUPERCONTEXT (block);
4053 BLOCK_SUPERCONTEXT (block) = super;
4054 prev = block;
4055 }
4056 t = BLOCK_FRAGMENT_ORIGIN (t);
4057 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4058 != prev_super)
4059 BLOCK_SAME_RANGE (t) = 0;
4060 BLOCK_SUPERCONTEXT (t) = super;
4061 return prev;
4062 }
4063
4064 /* Reverse the order of elements in the chain T of blocks,
4065 and return the new head of the chain (old last element).
4066 Also do the same on subblocks and reverse the order of elements
4067 in BLOCK_FRAGMENT_CHAIN as well. */
4068
4069 static tree
4070 blocks_nreverse_all (tree t)
4071 {
4072 tree prev = 0, block, next;
4073 for (block = t; block; block = next)
4074 {
4075 next = BLOCK_CHAIN (block);
4076 BLOCK_CHAIN (block) = prev;
4077 if (BLOCK_FRAGMENT_CHAIN (block)
4078 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4079 {
4080 BLOCK_FRAGMENT_CHAIN (block)
4081 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4082 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4083 BLOCK_SAME_RANGE (block) = 0;
4084 }
4085 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4086 prev = block;
4087 }
4088 return prev;
4089 }
4090
4091
4092 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4093 and create duplicate blocks. */
4094 /* ??? Need an option to either create block fragments or to create
4095 abstract origin duplicates of a source block. It really depends
4096 on what optimization has been performed. */
4097
4098 void
4099 reorder_blocks (void)
4100 {
4101 tree block = DECL_INITIAL (current_function_decl);
4102 vec<tree> block_stack;
4103
4104 if (block == NULL_TREE)
4105 return;
4106
4107 block_stack.create (10);
4108
4109 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4110 clear_block_marks (block);
4111
4112 /* Prune the old trees away, so that they don't get in the way. */
4113 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4114 BLOCK_CHAIN (block) = NULL_TREE;
4115
4116 /* Recreate the block tree from the note nesting. */
4117 reorder_blocks_1 (get_insns (), block, &block_stack);
4118 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4119
4120 block_stack.release ();
4121 }
4122
4123 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4124
4125 void
4126 clear_block_marks (tree block)
4127 {
4128 while (block)
4129 {
4130 TREE_ASM_WRITTEN (block) = 0;
4131 clear_block_marks (BLOCK_SUBBLOCKS (block));
4132 block = BLOCK_CHAIN (block);
4133 }
4134 }
4135
4136 static void
4137 reorder_blocks_1 (rtx insns, tree current_block, vec<tree> *p_block_stack)
4138 {
4139 rtx insn;
4140 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4141
4142 for (insn = insns; insn; insn = NEXT_INSN (insn))
4143 {
4144 if (NOTE_P (insn))
4145 {
4146 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4147 {
4148 tree block = NOTE_BLOCK (insn);
4149 tree origin;
4150
4151 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4152 origin = block;
4153
4154 if (prev_end)
4155 BLOCK_SAME_RANGE (prev_end) = 0;
4156 prev_end = NULL_TREE;
4157
4158 /* If we have seen this block before, that means it now
4159 spans multiple address regions. Create a new fragment. */
4160 if (TREE_ASM_WRITTEN (block))
4161 {
4162 tree new_block = copy_node (block);
4163
4164 BLOCK_SAME_RANGE (new_block) = 0;
4165 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4166 BLOCK_FRAGMENT_CHAIN (new_block)
4167 = BLOCK_FRAGMENT_CHAIN (origin);
4168 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4169
4170 NOTE_BLOCK (insn) = new_block;
4171 block = new_block;
4172 }
4173
4174 if (prev_beg == current_block && prev_beg)
4175 BLOCK_SAME_RANGE (block) = 1;
4176
4177 prev_beg = origin;
4178
4179 BLOCK_SUBBLOCKS (block) = 0;
4180 TREE_ASM_WRITTEN (block) = 1;
4181 /* When there's only one block for the entire function,
4182 current_block == block and we mustn't do this, it
4183 will cause infinite recursion. */
4184 if (block != current_block)
4185 {
4186 tree super;
4187 if (block != origin)
4188 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4189 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4190 (origin))
4191 == current_block);
4192 if (p_block_stack->is_empty ())
4193 super = current_block;
4194 else
4195 {
4196 super = p_block_stack->last ();
4197 gcc_assert (super == current_block
4198 || BLOCK_FRAGMENT_ORIGIN (super)
4199 == current_block);
4200 }
4201 BLOCK_SUPERCONTEXT (block) = super;
4202 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4203 BLOCK_SUBBLOCKS (current_block) = block;
4204 current_block = origin;
4205 }
4206 p_block_stack->safe_push (block);
4207 }
4208 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4209 {
4210 NOTE_BLOCK (insn) = p_block_stack->pop ();
4211 current_block = BLOCK_SUPERCONTEXT (current_block);
4212 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4213 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4214 prev_beg = NULL_TREE;
4215 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4216 ? NOTE_BLOCK (insn) : NULL_TREE;
4217 }
4218 }
4219 else
4220 {
4221 prev_beg = NULL_TREE;
4222 if (prev_end)
4223 BLOCK_SAME_RANGE (prev_end) = 0;
4224 prev_end = NULL_TREE;
4225 }
4226 }
4227 }
4228
4229 /* Reverse the order of elements in the chain T of blocks,
4230 and return the new head of the chain (old last element). */
4231
4232 tree
4233 blocks_nreverse (tree t)
4234 {
4235 tree prev = 0, block, next;
4236 for (block = t; block; block = next)
4237 {
4238 next = BLOCK_CHAIN (block);
4239 BLOCK_CHAIN (block) = prev;
4240 prev = block;
4241 }
4242 return prev;
4243 }
4244
4245 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4246 by modifying the last node in chain 1 to point to chain 2. */
4247
4248 tree
4249 block_chainon (tree op1, tree op2)
4250 {
4251 tree t1;
4252
4253 if (!op1)
4254 return op2;
4255 if (!op2)
4256 return op1;
4257
4258 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4259 continue;
4260 BLOCK_CHAIN (t1) = op2;
4261
4262 #ifdef ENABLE_TREE_CHECKING
4263 {
4264 tree t2;
4265 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4266 gcc_assert (t2 != t1);
4267 }
4268 #endif
4269
4270 return op1;
4271 }
4272
4273 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4274 non-NULL, list them all into VECTOR, in a depth-first preorder
4275 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4276 blocks. */
4277
4278 static int
4279 all_blocks (tree block, tree *vector)
4280 {
4281 int n_blocks = 0;
4282
4283 while (block)
4284 {
4285 TREE_ASM_WRITTEN (block) = 0;
4286
4287 /* Record this block. */
4288 if (vector)
4289 vector[n_blocks] = block;
4290
4291 ++n_blocks;
4292
4293 /* Record the subblocks, and their subblocks... */
4294 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4295 vector ? vector + n_blocks : 0);
4296 block = BLOCK_CHAIN (block);
4297 }
4298
4299 return n_blocks;
4300 }
4301
4302 /* Return a vector containing all the blocks rooted at BLOCK. The
4303 number of elements in the vector is stored in N_BLOCKS_P. The
4304 vector is dynamically allocated; it is the caller's responsibility
4305 to call `free' on the pointer returned. */
4306
4307 static tree *
4308 get_block_vector (tree block, int *n_blocks_p)
4309 {
4310 tree *block_vector;
4311
4312 *n_blocks_p = all_blocks (block, NULL);
4313 block_vector = XNEWVEC (tree, *n_blocks_p);
4314 all_blocks (block, block_vector);
4315
4316 return block_vector;
4317 }
4318
4319 static GTY(()) int next_block_index = 2;
4320
4321 /* Set BLOCK_NUMBER for all the blocks in FN. */
4322
4323 void
4324 number_blocks (tree fn)
4325 {
4326 int i;
4327 int n_blocks;
4328 tree *block_vector;
4329
4330 /* For SDB and XCOFF debugging output, we start numbering the blocks
4331 from 1 within each function, rather than keeping a running
4332 count. */
4333 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4334 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4335 next_block_index = 1;
4336 #endif
4337
4338 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4339
4340 /* The top-level BLOCK isn't numbered at all. */
4341 for (i = 1; i < n_blocks; ++i)
4342 /* We number the blocks from two. */
4343 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4344
4345 free (block_vector);
4346
4347 return;
4348 }
4349
4350 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4351
4352 DEBUG_FUNCTION tree
4353 debug_find_var_in_block_tree (tree var, tree block)
4354 {
4355 tree t;
4356
4357 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4358 if (t == var)
4359 return block;
4360
4361 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4362 {
4363 tree ret = debug_find_var_in_block_tree (var, t);
4364 if (ret)
4365 return ret;
4366 }
4367
4368 return NULL_TREE;
4369 }
4370 \f
4371 /* Keep track of whether we're in a dummy function context. If we are,
4372 we don't want to invoke the set_current_function hook, because we'll
4373 get into trouble if the hook calls target_reinit () recursively or
4374 when the initial initialization is not yet complete. */
4375
4376 static bool in_dummy_function;
4377
4378 /* Invoke the target hook when setting cfun. Update the optimization options
4379 if the function uses different options than the default. */
4380
4381 static void
4382 invoke_set_current_function_hook (tree fndecl)
4383 {
4384 if (!in_dummy_function)
4385 {
4386 tree opts = ((fndecl)
4387 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4388 : optimization_default_node);
4389
4390 if (!opts)
4391 opts = optimization_default_node;
4392
4393 /* Change optimization options if needed. */
4394 if (optimization_current_node != opts)
4395 {
4396 optimization_current_node = opts;
4397 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4398 }
4399
4400 targetm.set_current_function (fndecl);
4401 this_fn_optabs = this_target_optabs;
4402
4403 if (opts != optimization_default_node)
4404 {
4405 init_tree_optimization_optabs (opts);
4406 if (TREE_OPTIMIZATION_OPTABS (opts))
4407 this_fn_optabs = (struct target_optabs *)
4408 TREE_OPTIMIZATION_OPTABS (opts);
4409 }
4410 }
4411 }
4412
4413 /* cfun should never be set directly; use this function. */
4414
4415 void
4416 set_cfun (struct function *new_cfun)
4417 {
4418 if (cfun != new_cfun)
4419 {
4420 cfun = new_cfun;
4421 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4422 }
4423 }
4424
4425 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4426
4427 static vec<function_p> cfun_stack;
4428
4429 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4430 current_function_decl accordingly. */
4431
4432 void
4433 push_cfun (struct function *new_cfun)
4434 {
4435 gcc_assert ((!cfun && !current_function_decl)
4436 || (cfun && current_function_decl == cfun->decl));
4437 cfun_stack.safe_push (cfun);
4438 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4439 set_cfun (new_cfun);
4440 }
4441
4442 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4443
4444 void
4445 pop_cfun (void)
4446 {
4447 struct function *new_cfun = cfun_stack.pop ();
4448 /* When in_dummy_function, we do have a cfun but current_function_decl is
4449 NULL. We also allow pushing NULL cfun and subsequently changing
4450 current_function_decl to something else and have both restored by
4451 pop_cfun. */
4452 gcc_checking_assert (in_dummy_function
4453 || !cfun
4454 || current_function_decl == cfun->decl);
4455 set_cfun (new_cfun);
4456 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4457 }
4458
4459 /* Return value of funcdef and increase it. */
4460 int
4461 get_next_funcdef_no (void)
4462 {
4463 return funcdef_no++;
4464 }
4465
4466 /* Return value of funcdef. */
4467 int
4468 get_last_funcdef_no (void)
4469 {
4470 return funcdef_no;
4471 }
4472
4473 /* Allocate a function structure for FNDECL and set its contents
4474 to the defaults. Set cfun to the newly-allocated object.
4475 Some of the helper functions invoked during initialization assume
4476 that cfun has already been set. Therefore, assign the new object
4477 directly into cfun and invoke the back end hook explicitly at the
4478 very end, rather than initializing a temporary and calling set_cfun
4479 on it.
4480
4481 ABSTRACT_P is true if this is a function that will never be seen by
4482 the middle-end. Such functions are front-end concepts (like C++
4483 function templates) that do not correspond directly to functions
4484 placed in object files. */
4485
4486 void
4487 allocate_struct_function (tree fndecl, bool abstract_p)
4488 {
4489 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4490
4491 cfun = ggc_alloc_cleared_function ();
4492
4493 init_eh_for_function ();
4494
4495 if (init_machine_status)
4496 cfun->machine = (*init_machine_status) ();
4497
4498 #ifdef OVERRIDE_ABI_FORMAT
4499 OVERRIDE_ABI_FORMAT (fndecl);
4500 #endif
4501
4502 if (fndecl != NULL_TREE)
4503 {
4504 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4505 cfun->decl = fndecl;
4506 current_function_funcdef_no = get_next_funcdef_no ();
4507 }
4508
4509 invoke_set_current_function_hook (fndecl);
4510
4511 if (fndecl != NULL_TREE)
4512 {
4513 tree result = DECL_RESULT (fndecl);
4514 if (!abstract_p && aggregate_value_p (result, fndecl))
4515 {
4516 #ifdef PCC_STATIC_STRUCT_RETURN
4517 cfun->returns_pcc_struct = 1;
4518 #endif
4519 cfun->returns_struct = 1;
4520 }
4521
4522 cfun->stdarg = stdarg_p (fntype);
4523
4524 /* Assume all registers in stdarg functions need to be saved. */
4525 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4526 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4527
4528 /* ??? This could be set on a per-function basis by the front-end
4529 but is this worth the hassle? */
4530 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4531 }
4532 }
4533
4534 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4535 instead of just setting it. */
4536
4537 void
4538 push_struct_function (tree fndecl)
4539 {
4540 /* When in_dummy_function we might be in the middle of a pop_cfun and
4541 current_function_decl and cfun may not match. */
4542 gcc_assert (in_dummy_function
4543 || (!cfun && !current_function_decl)
4544 || (cfun && current_function_decl == cfun->decl));
4545 cfun_stack.safe_push (cfun);
4546 current_function_decl = fndecl;
4547 allocate_struct_function (fndecl, false);
4548 }
4549
4550 /* Reset crtl and other non-struct-function variables to defaults as
4551 appropriate for emitting rtl at the start of a function. */
4552
4553 static void
4554 prepare_function_start (void)
4555 {
4556 gcc_assert (!crtl->emit.x_last_insn);
4557 init_temp_slots ();
4558 init_emit ();
4559 init_varasm_status ();
4560 init_expr ();
4561 default_rtl_profile ();
4562
4563 if (flag_stack_usage_info)
4564 {
4565 cfun->su = ggc_alloc_cleared_stack_usage ();
4566 cfun->su->static_stack_size = -1;
4567 }
4568
4569 cse_not_expected = ! optimize;
4570
4571 /* Caller save not needed yet. */
4572 caller_save_needed = 0;
4573
4574 /* We haven't done register allocation yet. */
4575 reg_renumber = 0;
4576
4577 /* Indicate that we have not instantiated virtual registers yet. */
4578 virtuals_instantiated = 0;
4579
4580 /* Indicate that we want CONCATs now. */
4581 generating_concat_p = 1;
4582
4583 /* Indicate we have no need of a frame pointer yet. */
4584 frame_pointer_needed = 0;
4585 }
4586
4587 /* Initialize the rtl expansion mechanism so that we can do simple things
4588 like generate sequences. This is used to provide a context during global
4589 initialization of some passes. You must call expand_dummy_function_end
4590 to exit this context. */
4591
4592 void
4593 init_dummy_function_start (void)
4594 {
4595 gcc_assert (!in_dummy_function);
4596 in_dummy_function = true;
4597 push_struct_function (NULL_TREE);
4598 prepare_function_start ();
4599 }
4600
4601 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4602 and initialize static variables for generating RTL for the statements
4603 of the function. */
4604
4605 void
4606 init_function_start (tree subr)
4607 {
4608 if (subr && DECL_STRUCT_FUNCTION (subr))
4609 set_cfun (DECL_STRUCT_FUNCTION (subr));
4610 else
4611 allocate_struct_function (subr, false);
4612 prepare_function_start ();
4613 decide_function_section (subr);
4614
4615 /* Warn if this value is an aggregate type,
4616 regardless of which calling convention we are using for it. */
4617 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4618 warning (OPT_Waggregate_return, "function returns an aggregate");
4619 }
4620
4621
4622 void
4623 expand_main_function (void)
4624 {
4625 #if (defined(INVOKE__main) \
4626 || (!defined(HAS_INIT_SECTION) \
4627 && !defined(INIT_SECTION_ASM_OP) \
4628 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4629 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4630 #endif
4631 }
4632 \f
4633 /* Expand code to initialize the stack_protect_guard. This is invoked at
4634 the beginning of a function to be protected. */
4635
4636 #ifndef HAVE_stack_protect_set
4637 # define HAVE_stack_protect_set 0
4638 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4639 #endif
4640
4641 void
4642 stack_protect_prologue (void)
4643 {
4644 tree guard_decl = targetm.stack_protect_guard ();
4645 rtx x, y;
4646
4647 x = expand_normal (crtl->stack_protect_guard);
4648 y = expand_normal (guard_decl);
4649
4650 /* Allow the target to copy from Y to X without leaking Y into a
4651 register. */
4652 if (HAVE_stack_protect_set)
4653 {
4654 rtx insn = gen_stack_protect_set (x, y);
4655 if (insn)
4656 {
4657 emit_insn (insn);
4658 return;
4659 }
4660 }
4661
4662 /* Otherwise do a straight move. */
4663 emit_move_insn (x, y);
4664 }
4665
4666 /* Expand code to verify the stack_protect_guard. This is invoked at
4667 the end of a function to be protected. */
4668
4669 #ifndef HAVE_stack_protect_test
4670 # define HAVE_stack_protect_test 0
4671 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4672 #endif
4673
4674 void
4675 stack_protect_epilogue (void)
4676 {
4677 tree guard_decl = targetm.stack_protect_guard ();
4678 rtx label = gen_label_rtx ();
4679 rtx x, y, tmp;
4680
4681 x = expand_normal (crtl->stack_protect_guard);
4682 y = expand_normal (guard_decl);
4683
4684 /* Allow the target to compare Y with X without leaking either into
4685 a register. */
4686 switch (HAVE_stack_protect_test != 0)
4687 {
4688 case 1:
4689 tmp = gen_stack_protect_test (x, y, label);
4690 if (tmp)
4691 {
4692 emit_insn (tmp);
4693 break;
4694 }
4695 /* FALLTHRU */
4696
4697 default:
4698 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4699 break;
4700 }
4701
4702 /* The noreturn predictor has been moved to the tree level. The rtl-level
4703 predictors estimate this branch about 20%, which isn't enough to get
4704 things moved out of line. Since this is the only extant case of adding
4705 a noreturn function at the rtl level, it doesn't seem worth doing ought
4706 except adding the prediction by hand. */
4707 tmp = get_last_insn ();
4708 if (JUMP_P (tmp))
4709 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4710
4711 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4712 free_temp_slots ();
4713 emit_label (label);
4714 }
4715 \f
4716 /* Start the RTL for a new function, and set variables used for
4717 emitting RTL.
4718 SUBR is the FUNCTION_DECL node.
4719 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4720 the function's parameters, which must be run at any return statement. */
4721
4722 void
4723 expand_function_start (tree subr)
4724 {
4725 /* Make sure volatile mem refs aren't considered
4726 valid operands of arithmetic insns. */
4727 init_recog_no_volatile ();
4728
4729 crtl->profile
4730 = (profile_flag
4731 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4732
4733 crtl->limit_stack
4734 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4735
4736 /* Make the label for return statements to jump to. Do not special
4737 case machines with special return instructions -- they will be
4738 handled later during jump, ifcvt, or epilogue creation. */
4739 return_label = gen_label_rtx ();
4740
4741 /* Initialize rtx used to return the value. */
4742 /* Do this before assign_parms so that we copy the struct value address
4743 before any library calls that assign parms might generate. */
4744
4745 /* Decide whether to return the value in memory or in a register. */
4746 if (aggregate_value_p (DECL_RESULT (subr), subr))
4747 {
4748 /* Returning something that won't go in a register. */
4749 rtx value_address = 0;
4750
4751 #ifdef PCC_STATIC_STRUCT_RETURN
4752 if (cfun->returns_pcc_struct)
4753 {
4754 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4755 value_address = assemble_static_space (size);
4756 }
4757 else
4758 #endif
4759 {
4760 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4761 /* Expect to be passed the address of a place to store the value.
4762 If it is passed as an argument, assign_parms will take care of
4763 it. */
4764 if (sv)
4765 {
4766 value_address = gen_reg_rtx (Pmode);
4767 emit_move_insn (value_address, sv);
4768 }
4769 }
4770 if (value_address)
4771 {
4772 rtx x = value_address;
4773 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4774 {
4775 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4776 set_mem_attributes (x, DECL_RESULT (subr), 1);
4777 }
4778 SET_DECL_RTL (DECL_RESULT (subr), x);
4779 }
4780 }
4781 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4782 /* If return mode is void, this decl rtl should not be used. */
4783 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4784 else
4785 {
4786 /* Compute the return values into a pseudo reg, which we will copy
4787 into the true return register after the cleanups are done. */
4788 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4789 if (TYPE_MODE (return_type) != BLKmode
4790 && targetm.calls.return_in_msb (return_type))
4791 /* expand_function_end will insert the appropriate padding in
4792 this case. Use the return value's natural (unpadded) mode
4793 within the function proper. */
4794 SET_DECL_RTL (DECL_RESULT (subr),
4795 gen_reg_rtx (TYPE_MODE (return_type)));
4796 else
4797 {
4798 /* In order to figure out what mode to use for the pseudo, we
4799 figure out what the mode of the eventual return register will
4800 actually be, and use that. */
4801 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4802
4803 /* Structures that are returned in registers are not
4804 aggregate_value_p, so we may see a PARALLEL or a REG. */
4805 if (REG_P (hard_reg))
4806 SET_DECL_RTL (DECL_RESULT (subr),
4807 gen_reg_rtx (GET_MODE (hard_reg)));
4808 else
4809 {
4810 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4811 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4812 }
4813 }
4814
4815 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4816 result to the real return register(s). */
4817 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4818 }
4819
4820 /* Initialize rtx for parameters and local variables.
4821 In some cases this requires emitting insns. */
4822 assign_parms (subr);
4823
4824 /* If function gets a static chain arg, store it. */
4825 if (cfun->static_chain_decl)
4826 {
4827 tree parm = cfun->static_chain_decl;
4828 rtx local, chain, insn;
4829
4830 local = gen_reg_rtx (Pmode);
4831 chain = targetm.calls.static_chain (current_function_decl, true);
4832
4833 set_decl_incoming_rtl (parm, chain, false);
4834 SET_DECL_RTL (parm, local);
4835 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4836
4837 insn = emit_move_insn (local, chain);
4838
4839 /* Mark the register as eliminable, similar to parameters. */
4840 if (MEM_P (chain)
4841 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4842 set_dst_reg_note (insn, REG_EQUIV, chain, local);
4843 }
4844
4845 /* If the function receives a non-local goto, then store the
4846 bits we need to restore the frame pointer. */
4847 if (cfun->nonlocal_goto_save_area)
4848 {
4849 tree t_save;
4850 rtx r_save;
4851
4852 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4853 gcc_assert (DECL_RTL_SET_P (var));
4854
4855 t_save = build4 (ARRAY_REF,
4856 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
4857 cfun->nonlocal_goto_save_area,
4858 integer_zero_node, NULL_TREE, NULL_TREE);
4859 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4860 gcc_assert (GET_MODE (r_save) == Pmode);
4861
4862 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4863 update_nonlocal_goto_save_area ();
4864 }
4865
4866 /* The following was moved from init_function_start.
4867 The move is supposed to make sdb output more accurate. */
4868 /* Indicate the beginning of the function body,
4869 as opposed to parm setup. */
4870 emit_note (NOTE_INSN_FUNCTION_BEG);
4871
4872 gcc_assert (NOTE_P (get_last_insn ()));
4873
4874 parm_birth_insn = get_last_insn ();
4875
4876 if (crtl->profile)
4877 {
4878 #ifdef PROFILE_HOOK
4879 PROFILE_HOOK (current_function_funcdef_no);
4880 #endif
4881 }
4882
4883 /* If we are doing generic stack checking, the probe should go here. */
4884 if (flag_stack_check == GENERIC_STACK_CHECK)
4885 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4886 }
4887 \f
4888 /* Undo the effects of init_dummy_function_start. */
4889 void
4890 expand_dummy_function_end (void)
4891 {
4892 gcc_assert (in_dummy_function);
4893
4894 /* End any sequences that failed to be closed due to syntax errors. */
4895 while (in_sequence_p ())
4896 end_sequence ();
4897
4898 /* Outside function body, can't compute type's actual size
4899 until next function's body starts. */
4900
4901 free_after_parsing (cfun);
4902 free_after_compilation (cfun);
4903 pop_cfun ();
4904 in_dummy_function = false;
4905 }
4906
4907 /* Call DOIT for each hard register used as a return value from
4908 the current function. */
4909
4910 void
4911 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4912 {
4913 rtx outgoing = crtl->return_rtx;
4914
4915 if (! outgoing)
4916 return;
4917
4918 if (REG_P (outgoing))
4919 (*doit) (outgoing, arg);
4920 else if (GET_CODE (outgoing) == PARALLEL)
4921 {
4922 int i;
4923
4924 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4925 {
4926 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4927
4928 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4929 (*doit) (x, arg);
4930 }
4931 }
4932 }
4933
4934 static void
4935 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4936 {
4937 emit_clobber (reg);
4938 }
4939
4940 void
4941 clobber_return_register (void)
4942 {
4943 diddle_return_value (do_clobber_return_reg, NULL);
4944
4945 /* In case we do use pseudo to return value, clobber it too. */
4946 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4947 {
4948 tree decl_result = DECL_RESULT (current_function_decl);
4949 rtx decl_rtl = DECL_RTL (decl_result);
4950 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4951 {
4952 do_clobber_return_reg (decl_rtl, NULL);
4953 }
4954 }
4955 }
4956
4957 static void
4958 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4959 {
4960 emit_use (reg);
4961 }
4962
4963 static void
4964 use_return_register (void)
4965 {
4966 diddle_return_value (do_use_return_reg, NULL);
4967 }
4968
4969 /* Possibly warn about unused parameters. */
4970 void
4971 do_warn_unused_parameter (tree fn)
4972 {
4973 tree decl;
4974
4975 for (decl = DECL_ARGUMENTS (fn);
4976 decl; decl = DECL_CHAIN (decl))
4977 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4978 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4979 && !TREE_NO_WARNING (decl))
4980 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4981 }
4982
4983 static GTY(()) rtx initial_trampoline;
4984
4985 /* Generate RTL for the end of the current function. */
4986
4987 void
4988 expand_function_end (void)
4989 {
4990 rtx clobber_after;
4991
4992 /* If arg_pointer_save_area was referenced only from a nested
4993 function, we will not have initialized it yet. Do that now. */
4994 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4995 get_arg_pointer_save_area ();
4996
4997 /* If we are doing generic stack checking and this function makes calls,
4998 do a stack probe at the start of the function to ensure we have enough
4999 space for another stack frame. */
5000 if (flag_stack_check == GENERIC_STACK_CHECK)
5001 {
5002 rtx insn, seq;
5003
5004 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5005 if (CALL_P (insn))
5006 {
5007 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5008 start_sequence ();
5009 if (STACK_CHECK_MOVING_SP)
5010 anti_adjust_stack_and_probe (max_frame_size, true);
5011 else
5012 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5013 seq = get_insns ();
5014 end_sequence ();
5015 set_insn_locations (seq, prologue_location);
5016 emit_insn_before (seq, stack_check_probe_note);
5017 break;
5018 }
5019 }
5020
5021 /* End any sequences that failed to be closed due to syntax errors. */
5022 while (in_sequence_p ())
5023 end_sequence ();
5024
5025 clear_pending_stack_adjust ();
5026 do_pending_stack_adjust ();
5027
5028 /* Output a linenumber for the end of the function.
5029 SDB depends on this. */
5030 set_curr_insn_location (input_location);
5031
5032 /* Before the return label (if any), clobber the return
5033 registers so that they are not propagated live to the rest of
5034 the function. This can only happen with functions that drop
5035 through; if there had been a return statement, there would
5036 have either been a return rtx, or a jump to the return label.
5037
5038 We delay actual code generation after the current_function_value_rtx
5039 is computed. */
5040 clobber_after = get_last_insn ();
5041
5042 /* Output the label for the actual return from the function. */
5043 emit_label (return_label);
5044
5045 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5046 {
5047 /* Let except.c know where it should emit the call to unregister
5048 the function context for sjlj exceptions. */
5049 if (flag_exceptions)
5050 sjlj_emit_function_exit_after (get_last_insn ());
5051 }
5052 else
5053 {
5054 /* We want to ensure that instructions that may trap are not
5055 moved into the epilogue by scheduling, because we don't
5056 always emit unwind information for the epilogue. */
5057 if (cfun->can_throw_non_call_exceptions)
5058 emit_insn (gen_blockage ());
5059 }
5060
5061 /* If this is an implementation of throw, do what's necessary to
5062 communicate between __builtin_eh_return and the epilogue. */
5063 expand_eh_return ();
5064
5065 /* If scalar return value was computed in a pseudo-reg, or was a named
5066 return value that got dumped to the stack, copy that to the hard
5067 return register. */
5068 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5069 {
5070 tree decl_result = DECL_RESULT (current_function_decl);
5071 rtx decl_rtl = DECL_RTL (decl_result);
5072
5073 if (REG_P (decl_rtl)
5074 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5075 : DECL_REGISTER (decl_result))
5076 {
5077 rtx real_decl_rtl = crtl->return_rtx;
5078
5079 /* This should be set in assign_parms. */
5080 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5081
5082 /* If this is a BLKmode structure being returned in registers,
5083 then use the mode computed in expand_return. Note that if
5084 decl_rtl is memory, then its mode may have been changed,
5085 but that crtl->return_rtx has not. */
5086 if (GET_MODE (real_decl_rtl) == BLKmode)
5087 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5088
5089 /* If a non-BLKmode return value should be padded at the least
5090 significant end of the register, shift it left by the appropriate
5091 amount. BLKmode results are handled using the group load/store
5092 machinery. */
5093 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5094 && REG_P (real_decl_rtl)
5095 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5096 {
5097 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5098 REGNO (real_decl_rtl)),
5099 decl_rtl);
5100 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5101 }
5102 /* If a named return value dumped decl_return to memory, then
5103 we may need to re-do the PROMOTE_MODE signed/unsigned
5104 extension. */
5105 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5106 {
5107 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5108 promote_function_mode (TREE_TYPE (decl_result),
5109 GET_MODE (decl_rtl), &unsignedp,
5110 TREE_TYPE (current_function_decl), 1);
5111
5112 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5113 }
5114 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5115 {
5116 /* If expand_function_start has created a PARALLEL for decl_rtl,
5117 move the result to the real return registers. Otherwise, do
5118 a group load from decl_rtl for a named return. */
5119 if (GET_CODE (decl_rtl) == PARALLEL)
5120 emit_group_move (real_decl_rtl, decl_rtl);
5121 else
5122 emit_group_load (real_decl_rtl, decl_rtl,
5123 TREE_TYPE (decl_result),
5124 int_size_in_bytes (TREE_TYPE (decl_result)));
5125 }
5126 /* In the case of complex integer modes smaller than a word, we'll
5127 need to generate some non-trivial bitfield insertions. Do that
5128 on a pseudo and not the hard register. */
5129 else if (GET_CODE (decl_rtl) == CONCAT
5130 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5131 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5132 {
5133 int old_generating_concat_p;
5134 rtx tmp;
5135
5136 old_generating_concat_p = generating_concat_p;
5137 generating_concat_p = 0;
5138 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5139 generating_concat_p = old_generating_concat_p;
5140
5141 emit_move_insn (tmp, decl_rtl);
5142 emit_move_insn (real_decl_rtl, tmp);
5143 }
5144 else
5145 emit_move_insn (real_decl_rtl, decl_rtl);
5146 }
5147 }
5148
5149 /* If returning a structure, arrange to return the address of the value
5150 in a place where debuggers expect to find it.
5151
5152 If returning a structure PCC style,
5153 the caller also depends on this value.
5154 And cfun->returns_pcc_struct is not necessarily set. */
5155 if (cfun->returns_struct
5156 || cfun->returns_pcc_struct)
5157 {
5158 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5159 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5160 rtx outgoing;
5161
5162 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5163 type = TREE_TYPE (type);
5164 else
5165 value_address = XEXP (value_address, 0);
5166
5167 outgoing = targetm.calls.function_value (build_pointer_type (type),
5168 current_function_decl, true);
5169
5170 /* Mark this as a function return value so integrate will delete the
5171 assignment and USE below when inlining this function. */
5172 REG_FUNCTION_VALUE_P (outgoing) = 1;
5173
5174 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5175 value_address = convert_memory_address (GET_MODE (outgoing),
5176 value_address);
5177
5178 emit_move_insn (outgoing, value_address);
5179
5180 /* Show return register used to hold result (in this case the address
5181 of the result. */
5182 crtl->return_rtx = outgoing;
5183 }
5184
5185 /* Emit the actual code to clobber return register. */
5186 {
5187 rtx seq;
5188
5189 start_sequence ();
5190 clobber_return_register ();
5191 seq = get_insns ();
5192 end_sequence ();
5193
5194 emit_insn_after (seq, clobber_after);
5195 }
5196
5197 /* Output the label for the naked return from the function. */
5198 if (naked_return_label)
5199 emit_label (naked_return_label);
5200
5201 /* @@@ This is a kludge. We want to ensure that instructions that
5202 may trap are not moved into the epilogue by scheduling, because
5203 we don't always emit unwind information for the epilogue. */
5204 if (cfun->can_throw_non_call_exceptions
5205 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5206 emit_insn (gen_blockage ());
5207
5208 /* If stack protection is enabled for this function, check the guard. */
5209 if (crtl->stack_protect_guard)
5210 stack_protect_epilogue ();
5211
5212 /* If we had calls to alloca, and this machine needs
5213 an accurate stack pointer to exit the function,
5214 insert some code to save and restore the stack pointer. */
5215 if (! EXIT_IGNORE_STACK
5216 && cfun->calls_alloca)
5217 {
5218 rtx tem = 0, seq;
5219
5220 start_sequence ();
5221 emit_stack_save (SAVE_FUNCTION, &tem);
5222 seq = get_insns ();
5223 end_sequence ();
5224 emit_insn_before (seq, parm_birth_insn);
5225
5226 emit_stack_restore (SAVE_FUNCTION, tem);
5227 }
5228
5229 /* ??? This should no longer be necessary since stupid is no longer with
5230 us, but there are some parts of the compiler (eg reload_combine, and
5231 sh mach_dep_reorg) that still try and compute their own lifetime info
5232 instead of using the general framework. */
5233 use_return_register ();
5234 }
5235
5236 rtx
5237 get_arg_pointer_save_area (void)
5238 {
5239 rtx ret = arg_pointer_save_area;
5240
5241 if (! ret)
5242 {
5243 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5244 arg_pointer_save_area = ret;
5245 }
5246
5247 if (! crtl->arg_pointer_save_area_init)
5248 {
5249 rtx seq;
5250
5251 /* Save the arg pointer at the beginning of the function. The
5252 generated stack slot may not be a valid memory address, so we
5253 have to check it and fix it if necessary. */
5254 start_sequence ();
5255 emit_move_insn (validize_mem (ret),
5256 crtl->args.internal_arg_pointer);
5257 seq = get_insns ();
5258 end_sequence ();
5259
5260 push_topmost_sequence ();
5261 emit_insn_after (seq, entry_of_function ());
5262 pop_topmost_sequence ();
5263
5264 crtl->arg_pointer_save_area_init = true;
5265 }
5266
5267 return ret;
5268 }
5269 \f
5270 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5271 for the first time. */
5272
5273 static void
5274 record_insns (rtx insns, rtx end, htab_t *hashp)
5275 {
5276 rtx tmp;
5277 htab_t hash = *hashp;
5278
5279 if (hash == NULL)
5280 *hashp = hash
5281 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5282
5283 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5284 {
5285 void **slot = htab_find_slot (hash, tmp, INSERT);
5286 gcc_assert (*slot == NULL);
5287 *slot = tmp;
5288 }
5289 }
5290
5291 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5292 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5293 insn, then record COPY as well. */
5294
5295 void
5296 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5297 {
5298 htab_t hash;
5299 void **slot;
5300
5301 hash = epilogue_insn_hash;
5302 if (!hash || !htab_find (hash, insn))
5303 {
5304 hash = prologue_insn_hash;
5305 if (!hash || !htab_find (hash, insn))
5306 return;
5307 }
5308
5309 slot = htab_find_slot (hash, copy, INSERT);
5310 gcc_assert (*slot == NULL);
5311 *slot = copy;
5312 }
5313
5314 /* Set the location of the insn chain starting at INSN to LOC. */
5315 static void
5316 set_insn_locations (rtx insn, int loc)
5317 {
5318 while (insn != NULL_RTX)
5319 {
5320 if (INSN_P (insn))
5321 INSN_LOCATION (insn) = loc;
5322 insn = NEXT_INSN (insn);
5323 }
5324 }
5325
5326 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5327 we can be running after reorg, SEQUENCE rtl is possible. */
5328
5329 static bool
5330 contains (const_rtx insn, htab_t hash)
5331 {
5332 if (hash == NULL)
5333 return false;
5334
5335 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5336 {
5337 int i;
5338 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5339 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
5340 return true;
5341 return false;
5342 }
5343
5344 return htab_find (hash, insn) != NULL;
5345 }
5346
5347 int
5348 prologue_epilogue_contains (const_rtx insn)
5349 {
5350 if (contains (insn, prologue_insn_hash))
5351 return 1;
5352 if (contains (insn, epilogue_insn_hash))
5353 return 1;
5354 return 0;
5355 }
5356
5357 #ifdef HAVE_simple_return
5358
5359 /* Return true if INSN requires the stack frame to be set up.
5360 PROLOGUE_USED contains the hard registers used in the function
5361 prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
5362 prologue to set up for the function. */
5363 bool
5364 requires_stack_frame_p (rtx insn, HARD_REG_SET prologue_used,
5365 HARD_REG_SET set_up_by_prologue)
5366 {
5367 df_ref *df_rec;
5368 HARD_REG_SET hardregs;
5369 unsigned regno;
5370
5371 if (CALL_P (insn))
5372 return !SIBLING_CALL_P (insn);
5373
5374 /* We need a frame to get the unique CFA expected by the unwinder. */
5375 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
5376 return true;
5377
5378 CLEAR_HARD_REG_SET (hardregs);
5379 for (df_rec = DF_INSN_DEFS (insn); *df_rec; df_rec++)
5380 {
5381 rtx dreg = DF_REF_REG (*df_rec);
5382
5383 if (!REG_P (dreg))
5384 continue;
5385
5386 add_to_hard_reg_set (&hardregs, GET_MODE (dreg),
5387 REGNO (dreg));
5388 }
5389 if (hard_reg_set_intersect_p (hardregs, prologue_used))
5390 return true;
5391 AND_COMPL_HARD_REG_SET (hardregs, call_used_reg_set);
5392 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5393 if (TEST_HARD_REG_BIT (hardregs, regno)
5394 && df_regs_ever_live_p (regno))
5395 return true;
5396
5397 for (df_rec = DF_INSN_USES (insn); *df_rec; df_rec++)
5398 {
5399 rtx reg = DF_REF_REG (*df_rec);
5400
5401 if (!REG_P (reg))
5402 continue;
5403
5404 add_to_hard_reg_set (&hardregs, GET_MODE (reg),
5405 REGNO (reg));
5406 }
5407 if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
5408 return true;
5409
5410 return false;
5411 }
5412
5413 /* See whether BB has a single successor that uses [REGNO, END_REGNO),
5414 and if BB is its only predecessor. Return that block if so,
5415 otherwise return null. */
5416
5417 static basic_block
5418 next_block_for_reg (basic_block bb, int regno, int end_regno)
5419 {
5420 edge e, live_edge;
5421 edge_iterator ei;
5422 bitmap live;
5423 int i;
5424
5425 live_edge = NULL;
5426 FOR_EACH_EDGE (e, ei, bb->succs)
5427 {
5428 live = df_get_live_in (e->dest);
5429 for (i = regno; i < end_regno; i++)
5430 if (REGNO_REG_SET_P (live, i))
5431 {
5432 if (live_edge && live_edge != e)
5433 return NULL;
5434 live_edge = e;
5435 }
5436 }
5437
5438 /* We can sometimes encounter dead code. Don't try to move it
5439 into the exit block. */
5440 if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR)
5441 return NULL;
5442
5443 /* Reject targets of abnormal edges. This is needed for correctness
5444 on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
5445 exception edges even though it is generally treated as call-saved
5446 for the majority of the compilation. Moving across abnormal edges
5447 isn't going to be interesting for shrink-wrap usage anyway. */
5448 if (live_edge->flags & EDGE_ABNORMAL)
5449 return NULL;
5450
5451 if (EDGE_COUNT (live_edge->dest->preds) > 1)
5452 return NULL;
5453
5454 return live_edge->dest;
5455 }
5456
5457 /* Try to move INSN from BB to a successor. Return true on success.
5458 USES and DEFS are the set of registers that are used and defined
5459 after INSN in BB. */
5460
5461 static bool
5462 move_insn_for_shrink_wrap (basic_block bb, rtx insn,
5463 const HARD_REG_SET uses,
5464 const HARD_REG_SET defs)
5465 {
5466 rtx set, src, dest;
5467 bitmap live_out, live_in, bb_uses, bb_defs;
5468 unsigned int i, dregno, end_dregno, sregno, end_sregno;
5469 basic_block next_block;
5470
5471 /* Look for a simple register copy. */
5472 set = single_set (insn);
5473 if (!set)
5474 return false;
5475 src = SET_SRC (set);
5476 dest = SET_DEST (set);
5477 if (!REG_P (dest) || !REG_P (src))
5478 return false;
5479
5480 /* Make sure that the source register isn't defined later in BB. */
5481 sregno = REGNO (src);
5482 end_sregno = END_REGNO (src);
5483 if (overlaps_hard_reg_set_p (defs, GET_MODE (src), sregno))
5484 return false;
5485
5486 /* Make sure that the destination register isn't referenced later in BB. */
5487 dregno = REGNO (dest);
5488 end_dregno = END_REGNO (dest);
5489 if (overlaps_hard_reg_set_p (uses, GET_MODE (dest), dregno)
5490 || overlaps_hard_reg_set_p (defs, GET_MODE (dest), dregno))
5491 return false;
5492
5493 /* See whether there is a successor block to which we could move INSN. */
5494 next_block = next_block_for_reg (bb, dregno, end_dregno);
5495 if (!next_block)
5496 return false;
5497
5498 /* At this point we are committed to moving INSN, but let's try to
5499 move it as far as we can. */
5500 do
5501 {
5502 live_out = df_get_live_out (bb);
5503 live_in = df_get_live_in (next_block);
5504 bb = next_block;
5505
5506 /* Check whether BB uses DEST or clobbers DEST. We need to add
5507 INSN to BB if so. Either way, DEST is no longer live on entry,
5508 except for any part that overlaps SRC (next loop). */
5509 bb_uses = &DF_LR_BB_INFO (bb)->use;
5510 bb_defs = &DF_LR_BB_INFO (bb)->def;
5511 for (i = dregno; i < end_dregno; i++)
5512 {
5513 if (REGNO_REG_SET_P (bb_uses, i) || REGNO_REG_SET_P (bb_defs, i))
5514 next_block = NULL;
5515 CLEAR_REGNO_REG_SET (live_out, i);
5516 CLEAR_REGNO_REG_SET (live_in, i);
5517 }
5518
5519 /* Check whether BB clobbers SRC. We need to add INSN to BB if so.
5520 Either way, SRC is now live on entry. */
5521 for (i = sregno; i < end_sregno; i++)
5522 {
5523 if (REGNO_REG_SET_P (bb_defs, i))
5524 next_block = NULL;
5525 SET_REGNO_REG_SET (live_out, i);
5526 SET_REGNO_REG_SET (live_in, i);
5527 }
5528
5529 /* If we don't need to add the move to BB, look for a single
5530 successor block. */
5531 if (next_block)
5532 next_block = next_block_for_reg (next_block, dregno, end_dregno);
5533 }
5534 while (next_block);
5535
5536 /* BB now defines DEST. It only uses the parts of DEST that overlap SRC
5537 (next loop). */
5538 for (i = dregno; i < end_dregno; i++)
5539 {
5540 CLEAR_REGNO_REG_SET (bb_uses, i);
5541 SET_REGNO_REG_SET (bb_defs, i);
5542 }
5543
5544 /* BB now uses SRC. */
5545 for (i = sregno; i < end_sregno; i++)
5546 SET_REGNO_REG_SET (bb_uses, i);
5547
5548 emit_insn_after (PATTERN (insn), bb_note (bb));
5549 delete_insn (insn);
5550 return true;
5551 }
5552
5553 /* Look for register copies in the first block of the function, and move
5554 them down into successor blocks if the register is used only on one
5555 path. This exposes more opportunities for shrink-wrapping. These
5556 kinds of sets often occur when incoming argument registers are moved
5557 to call-saved registers because their values are live across one or
5558 more calls during the function. */
5559
5560 static void
5561 prepare_shrink_wrap (basic_block entry_block)
5562 {
5563 rtx insn, curr, x;
5564 HARD_REG_SET uses, defs;
5565 df_ref *ref;
5566
5567 CLEAR_HARD_REG_SET (uses);
5568 CLEAR_HARD_REG_SET (defs);
5569 FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
5570 if (NONDEBUG_INSN_P (insn)
5571 && !move_insn_for_shrink_wrap (entry_block, insn, uses, defs))
5572 {
5573 /* Add all defined registers to DEFs. */
5574 for (ref = DF_INSN_DEFS (insn); *ref; ref++)
5575 {
5576 x = DF_REF_REG (*ref);
5577 if (REG_P (x) && HARD_REGISTER_P (x))
5578 SET_HARD_REG_BIT (defs, REGNO (x));
5579 }
5580
5581 /* Add all used registers to USESs. */
5582 for (ref = DF_INSN_USES (insn); *ref; ref++)
5583 {
5584 x = DF_REF_REG (*ref);
5585 if (REG_P (x) && HARD_REGISTER_P (x))
5586 SET_HARD_REG_BIT (uses, REGNO (x));
5587 }
5588 }
5589 }
5590
5591 #endif
5592
5593 #ifdef HAVE_return
5594 /* Insert use of return register before the end of BB. */
5595
5596 static void
5597 emit_use_return_register_into_block (basic_block bb)
5598 {
5599 rtx seq, insn;
5600 start_sequence ();
5601 use_return_register ();
5602 seq = get_insns ();
5603 end_sequence ();
5604 insn = BB_END (bb);
5605 #ifdef HAVE_cc0
5606 if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
5607 insn = prev_cc0_setter (insn);
5608 #endif
5609 emit_insn_before (seq, insn);
5610 }
5611
5612
5613 /* Create a return pattern, either simple_return or return, depending on
5614 simple_p. */
5615
5616 static rtx
5617 gen_return_pattern (bool simple_p)
5618 {
5619 #ifdef HAVE_simple_return
5620 return simple_p ? gen_simple_return () : gen_return ();
5621 #else
5622 gcc_assert (!simple_p);
5623 return gen_return ();
5624 #endif
5625 }
5626
5627 /* Insert an appropriate return pattern at the end of block BB. This
5628 also means updating block_for_insn appropriately. SIMPLE_P is
5629 the same as in gen_return_pattern and passed to it. */
5630
5631 static void
5632 emit_return_into_block (bool simple_p, basic_block bb)
5633 {
5634 rtx jump, pat;
5635 jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5636 pat = PATTERN (jump);
5637 if (GET_CODE (pat) == PARALLEL)
5638 pat = XVECEXP (pat, 0, 0);
5639 gcc_assert (ANY_RETURN_P (pat));
5640 JUMP_LABEL (jump) = pat;
5641 }
5642 #endif
5643
5644 /* Set JUMP_LABEL for a return insn. */
5645
5646 void
5647 set_return_jump_label (rtx returnjump)
5648 {
5649 rtx pat = PATTERN (returnjump);
5650 if (GET_CODE (pat) == PARALLEL)
5651 pat = XVECEXP (pat, 0, 0);
5652 if (ANY_RETURN_P (pat))
5653 JUMP_LABEL (returnjump) = pat;
5654 else
5655 JUMP_LABEL (returnjump) = ret_rtx;
5656 }
5657
5658 #ifdef HAVE_simple_return
5659 /* Create a copy of BB instructions and insert at BEFORE. Redirect
5660 preds of BB to COPY_BB if they don't appear in NEED_PROLOGUE. */
5661 static void
5662 dup_block_and_redirect (basic_block bb, basic_block copy_bb, rtx before,
5663 bitmap_head *need_prologue)
5664 {
5665 edge_iterator ei;
5666 edge e;
5667 rtx insn = BB_END (bb);
5668
5669 /* We know BB has a single successor, so there is no need to copy a
5670 simple jump at the end of BB. */
5671 if (simplejump_p (insn))
5672 insn = PREV_INSN (insn);
5673
5674 start_sequence ();
5675 duplicate_insn_chain (BB_HEAD (bb), insn);
5676 if (dump_file)
5677 {
5678 unsigned count = 0;
5679 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5680 if (active_insn_p (insn))
5681 ++count;
5682 fprintf (dump_file, "Duplicating bb %d to bb %d, %u active insns.\n",
5683 bb->index, copy_bb->index, count);
5684 }
5685 insn = get_insns ();
5686 end_sequence ();
5687 emit_insn_before (insn, before);
5688
5689 /* Redirect all the paths that need no prologue into copy_bb. */
5690 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
5691 if (!bitmap_bit_p (need_prologue, e->src->index))
5692 {
5693 int freq = EDGE_FREQUENCY (e);
5694 copy_bb->count += e->count;
5695 copy_bb->frequency += EDGE_FREQUENCY (e);
5696 e->dest->count -= e->count;
5697 if (e->dest->count < 0)
5698 e->dest->count = 0;
5699 e->dest->frequency -= freq;
5700 if (e->dest->frequency < 0)
5701 e->dest->frequency = 0;
5702 redirect_edge_and_branch_force (e, copy_bb);
5703 continue;
5704 }
5705 else
5706 ei_next (&ei);
5707 }
5708 #endif
5709
5710 #if defined (HAVE_return) || defined (HAVE_simple_return)
5711 /* Return true if there are any active insns between HEAD and TAIL. */
5712 static bool
5713 active_insn_between (rtx head, rtx tail)
5714 {
5715 while (tail)
5716 {
5717 if (active_insn_p (tail))
5718 return true;
5719 if (tail == head)
5720 return false;
5721 tail = PREV_INSN (tail);
5722 }
5723 return false;
5724 }
5725
5726 /* LAST_BB is a block that exits, and empty of active instructions.
5727 Examine its predecessors for jumps that can be converted to
5728 (conditional) returns. */
5729 static vec<edge>
5730 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5731 vec<edge> unconverted ATTRIBUTE_UNUSED)
5732 {
5733 int i;
5734 basic_block bb;
5735 rtx label;
5736 edge_iterator ei;
5737 edge e;
5738 vec<basic_block> src_bbs;
5739
5740 src_bbs.create (EDGE_COUNT (last_bb->preds));
5741 FOR_EACH_EDGE (e, ei, last_bb->preds)
5742 if (e->src != ENTRY_BLOCK_PTR)
5743 src_bbs.quick_push (e->src);
5744
5745 label = BB_HEAD (last_bb);
5746
5747 FOR_EACH_VEC_ELT (src_bbs, i, bb)
5748 {
5749 rtx jump = BB_END (bb);
5750
5751 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5752 continue;
5753
5754 e = find_edge (bb, last_bb);
5755
5756 /* If we have an unconditional jump, we can replace that
5757 with a simple return instruction. */
5758 if (simplejump_p (jump))
5759 {
5760 /* The use of the return register might be present in the exit
5761 fallthru block. Either:
5762 - removing the use is safe, and we should remove the use in
5763 the exit fallthru block, or
5764 - removing the use is not safe, and we should add it here.
5765 For now, we conservatively choose the latter. Either of the
5766 2 helps in crossjumping. */
5767 emit_use_return_register_into_block (bb);
5768
5769 emit_return_into_block (simple_p, bb);
5770 delete_insn (jump);
5771 }
5772
5773 /* If we have a conditional jump branching to the last
5774 block, we can try to replace that with a conditional
5775 return instruction. */
5776 else if (condjump_p (jump))
5777 {
5778 rtx dest;
5779
5780 if (simple_p)
5781 dest = simple_return_rtx;
5782 else
5783 dest = ret_rtx;
5784 if (!redirect_jump (jump, dest, 0))
5785 {
5786 #ifdef HAVE_simple_return
5787 if (simple_p)
5788 {
5789 if (dump_file)
5790 fprintf (dump_file,
5791 "Failed to redirect bb %d branch.\n", bb->index);
5792 unconverted.safe_push (e);
5793 }
5794 #endif
5795 continue;
5796 }
5797
5798 /* See comment in simplejump_p case above. */
5799 emit_use_return_register_into_block (bb);
5800
5801 /* If this block has only one successor, it both jumps
5802 and falls through to the fallthru block, so we can't
5803 delete the edge. */
5804 if (single_succ_p (bb))
5805 continue;
5806 }
5807 else
5808 {
5809 #ifdef HAVE_simple_return
5810 if (simple_p)
5811 {
5812 if (dump_file)
5813 fprintf (dump_file,
5814 "Failed to redirect bb %d branch.\n", bb->index);
5815 unconverted.safe_push (e);
5816 }
5817 #endif
5818 continue;
5819 }
5820
5821 /* Fix up the CFG for the successful change we just made. */
5822 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5823 e->flags &= ~EDGE_CROSSING;
5824 }
5825 src_bbs.release ();
5826 return unconverted;
5827 }
5828
5829 /* Emit a return insn for the exit fallthru block. */
5830 static basic_block
5831 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5832 {
5833 basic_block last_bb = exit_fallthru_edge->src;
5834
5835 if (JUMP_P (BB_END (last_bb)))
5836 {
5837 last_bb = split_edge (exit_fallthru_edge);
5838 exit_fallthru_edge = single_succ_edge (last_bb);
5839 }
5840 emit_barrier_after (BB_END (last_bb));
5841 emit_return_into_block (simple_p, last_bb);
5842 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5843 return last_bb;
5844 }
5845 #endif
5846
5847
5848 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5849 this into place with notes indicating where the prologue ends and where
5850 the epilogue begins. Update the basic block information when possible.
5851
5852 Notes on epilogue placement:
5853 There are several kinds of edges to the exit block:
5854 * a single fallthru edge from LAST_BB
5855 * possibly, edges from blocks containing sibcalls
5856 * possibly, fake edges from infinite loops
5857
5858 The epilogue is always emitted on the fallthru edge from the last basic
5859 block in the function, LAST_BB, into the exit block.
5860
5861 If LAST_BB is empty except for a label, it is the target of every
5862 other basic block in the function that ends in a return. If a
5863 target has a return or simple_return pattern (possibly with
5864 conditional variants), these basic blocks can be changed so that a
5865 return insn is emitted into them, and their target is adjusted to
5866 the real exit block.
5867
5868 Notes on shrink wrapping: We implement a fairly conservative
5869 version of shrink-wrapping rather than the textbook one. We only
5870 generate a single prologue and a single epilogue. This is
5871 sufficient to catch a number of interesting cases involving early
5872 exits.
5873
5874 First, we identify the blocks that require the prologue to occur before
5875 them. These are the ones that modify a call-saved register, or reference
5876 any of the stack or frame pointer registers. To simplify things, we then
5877 mark everything reachable from these blocks as also requiring a prologue.
5878 This takes care of loops automatically, and avoids the need to examine
5879 whether MEMs reference the frame, since it is sufficient to check for
5880 occurrences of the stack or frame pointer.
5881
5882 We then compute the set of blocks for which the need for a prologue
5883 is anticipatable (borrowing terminology from the shrink-wrapping
5884 description in Muchnick's book). These are the blocks which either
5885 require a prologue themselves, or those that have only successors
5886 where the prologue is anticipatable. The prologue needs to be
5887 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5888 is not. For the moment, we ensure that only one such edge exists.
5889
5890 The epilogue is placed as described above, but we make a
5891 distinction between inserting return and simple_return patterns
5892 when modifying other blocks that end in a return. Blocks that end
5893 in a sibcall omit the sibcall_epilogue if the block is not in
5894 ANTIC. */
5895
5896 static void
5897 thread_prologue_and_epilogue_insns (void)
5898 {
5899 bool inserted;
5900 #ifdef HAVE_simple_return
5901 vec<edge> unconverted_simple_returns = vNULL;
5902 bool nonempty_prologue;
5903 bitmap_head bb_flags;
5904 unsigned max_grow_size;
5905 #endif
5906 rtx returnjump;
5907 rtx seq ATTRIBUTE_UNUSED, epilogue_end ATTRIBUTE_UNUSED;
5908 rtx prologue_seq ATTRIBUTE_UNUSED, split_prologue_seq ATTRIBUTE_UNUSED;
5909 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5910 edge_iterator ei;
5911
5912 df_analyze ();
5913
5914 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
5915
5916 inserted = false;
5917 seq = NULL_RTX;
5918 epilogue_end = NULL_RTX;
5919 returnjump = NULL_RTX;
5920
5921 /* Can't deal with multiple successors of the entry block at the
5922 moment. Function should always have at least one entry
5923 point. */
5924 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5925 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
5926 orig_entry_edge = entry_edge;
5927
5928 split_prologue_seq = NULL_RTX;
5929 if (flag_split_stack
5930 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5931 == NULL))
5932 {
5933 #ifndef HAVE_split_stack_prologue
5934 gcc_unreachable ();
5935 #else
5936 gcc_assert (HAVE_split_stack_prologue);
5937
5938 start_sequence ();
5939 emit_insn (gen_split_stack_prologue ());
5940 split_prologue_seq = get_insns ();
5941 end_sequence ();
5942
5943 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5944 set_insn_locations (split_prologue_seq, prologue_location);
5945 #endif
5946 }
5947
5948 prologue_seq = NULL_RTX;
5949 #ifdef HAVE_prologue
5950 if (HAVE_prologue)
5951 {
5952 start_sequence ();
5953 seq = gen_prologue ();
5954 emit_insn (seq);
5955
5956 /* Insert an explicit USE for the frame pointer
5957 if the profiling is on and the frame pointer is required. */
5958 if (crtl->profile && frame_pointer_needed)
5959 emit_use (hard_frame_pointer_rtx);
5960
5961 /* Retain a map of the prologue insns. */
5962 record_insns (seq, NULL, &prologue_insn_hash);
5963 emit_note (NOTE_INSN_PROLOGUE_END);
5964
5965 /* Ensure that instructions are not moved into the prologue when
5966 profiling is on. The call to the profiling routine can be
5967 emitted within the live range of a call-clobbered register. */
5968 if (!targetm.profile_before_prologue () && crtl->profile)
5969 emit_insn (gen_blockage ());
5970
5971 prologue_seq = get_insns ();
5972 end_sequence ();
5973 set_insn_locations (prologue_seq, prologue_location);
5974 }
5975 #endif
5976
5977 #ifdef HAVE_simple_return
5978 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5979
5980 /* Try to perform a kind of shrink-wrapping, making sure the
5981 prologue/epilogue is emitted only around those parts of the
5982 function that require it. */
5983
5984 nonempty_prologue = false;
5985 for (seq = prologue_seq; seq; seq = NEXT_INSN (seq))
5986 if (!NOTE_P (seq) || NOTE_KIND (seq) != NOTE_INSN_PROLOGUE_END)
5987 {
5988 nonempty_prologue = true;
5989 break;
5990 }
5991
5992 if (flag_shrink_wrap && HAVE_simple_return
5993 && (targetm.profile_before_prologue () || !crtl->profile)
5994 && nonempty_prologue && !crtl->calls_eh_return)
5995 {
5996 HARD_REG_SET prologue_clobbered, prologue_used, live_on_edge;
5997 struct hard_reg_set_container set_up_by_prologue;
5998 rtx p_insn;
5999 vec<basic_block> vec;
6000 basic_block bb;
6001 bitmap_head bb_antic_flags;
6002 bitmap_head bb_on_list;
6003 bitmap_head bb_tail;
6004
6005 if (dump_file)
6006 fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");
6007
6008 /* Compute the registers set and used in the prologue. */
6009 CLEAR_HARD_REG_SET (prologue_clobbered);
6010 CLEAR_HARD_REG_SET (prologue_used);
6011 for (p_insn = prologue_seq; p_insn; p_insn = NEXT_INSN (p_insn))
6012 {
6013 HARD_REG_SET this_used;
6014 if (!NONDEBUG_INSN_P (p_insn))
6015 continue;
6016
6017 CLEAR_HARD_REG_SET (this_used);
6018 note_uses (&PATTERN (p_insn), record_hard_reg_uses,
6019 &this_used);
6020 AND_COMPL_HARD_REG_SET (this_used, prologue_clobbered);
6021 IOR_HARD_REG_SET (prologue_used, this_used);
6022 note_stores (PATTERN (p_insn), record_hard_reg_sets,
6023 &prologue_clobbered);
6024 }
6025
6026 prepare_shrink_wrap (entry_edge->dest);
6027
6028 bitmap_initialize (&bb_antic_flags, &bitmap_default_obstack);
6029 bitmap_initialize (&bb_on_list, &bitmap_default_obstack);
6030 bitmap_initialize (&bb_tail, &bitmap_default_obstack);
6031
6032 /* Find the set of basic blocks that require a stack frame,
6033 and blocks that are too big to be duplicated. */
6034
6035 vec.create (n_basic_blocks);
6036
6037 CLEAR_HARD_REG_SET (set_up_by_prologue.set);
6038 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6039 STACK_POINTER_REGNUM);
6040 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
6041 if (frame_pointer_needed)
6042 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6043 HARD_FRAME_POINTER_REGNUM);
6044 if (pic_offset_table_rtx)
6045 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6046 PIC_OFFSET_TABLE_REGNUM);
6047 if (crtl->drap_reg)
6048 add_to_hard_reg_set (&set_up_by_prologue.set,
6049 GET_MODE (crtl->drap_reg),
6050 REGNO (crtl->drap_reg));
6051 if (targetm.set_up_by_prologue)
6052 targetm.set_up_by_prologue (&set_up_by_prologue);
6053
6054 /* We don't use a different max size depending on
6055 optimize_bb_for_speed_p because increasing shrink-wrapping
6056 opportunities by duplicating tail blocks can actually result
6057 in an overall decrease in code size. */
6058 max_grow_size = get_uncond_jump_length ();
6059 max_grow_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
6060
6061 FOR_EACH_BB (bb)
6062 {
6063 rtx insn;
6064 unsigned size = 0;
6065
6066 FOR_BB_INSNS (bb, insn)
6067 if (NONDEBUG_INSN_P (insn))
6068 {
6069 if (requires_stack_frame_p (insn, prologue_used,
6070 set_up_by_prologue.set))
6071 {
6072 if (bb == entry_edge->dest)
6073 goto fail_shrinkwrap;
6074 bitmap_set_bit (&bb_flags, bb->index);
6075 vec.quick_push (bb);
6076 break;
6077 }
6078 else if (size <= max_grow_size)
6079 {
6080 size += get_attr_min_length (insn);
6081 if (size > max_grow_size)
6082 bitmap_set_bit (&bb_on_list, bb->index);
6083 }
6084 }
6085 }
6086
6087 /* Blocks that really need a prologue, or are too big for tails. */
6088 bitmap_ior_into (&bb_on_list, &bb_flags);
6089
6090 /* For every basic block that needs a prologue, mark all blocks
6091 reachable from it, so as to ensure they are also seen as
6092 requiring a prologue. */
6093 while (!vec.is_empty ())
6094 {
6095 basic_block tmp_bb = vec.pop ();
6096
6097 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6098 if (e->dest != EXIT_BLOCK_PTR
6099 && bitmap_set_bit (&bb_flags, e->dest->index))
6100 vec.quick_push (e->dest);
6101 }
6102
6103 /* Find the set of basic blocks that need no prologue, have a
6104 single successor, can be duplicated, meet a max size
6105 requirement, and go to the exit via like blocks. */
6106 vec.quick_push (EXIT_BLOCK_PTR);
6107 while (!vec.is_empty ())
6108 {
6109 basic_block tmp_bb = vec.pop ();
6110
6111 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6112 if (single_succ_p (e->src)
6113 && !bitmap_bit_p (&bb_on_list, e->src->index)
6114 && can_duplicate_block_p (e->src))
6115 {
6116 edge pe;
6117 edge_iterator pei;
6118
6119 /* If there is predecessor of e->src which doesn't
6120 need prologue and the edge is complex,
6121 we might not be able to redirect the branch
6122 to a copy of e->src. */
6123 FOR_EACH_EDGE (pe, pei, e->src->preds)
6124 if ((pe->flags & EDGE_COMPLEX) != 0
6125 && !bitmap_bit_p (&bb_flags, pe->src->index))
6126 break;
6127 if (pe == NULL && bitmap_set_bit (&bb_tail, e->src->index))
6128 vec.quick_push (e->src);
6129 }
6130 }
6131
6132 /* Now walk backwards from every block that is marked as needing
6133 a prologue to compute the bb_antic_flags bitmap. Exclude
6134 tail blocks; They can be duplicated to be used on paths not
6135 needing a prologue. */
6136 bitmap_clear (&bb_on_list);
6137 bitmap_and_compl (&bb_antic_flags, &bb_flags, &bb_tail);
6138 FOR_EACH_BB (bb)
6139 {
6140 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6141 continue;
6142 FOR_EACH_EDGE (e, ei, bb->preds)
6143 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6144 && bitmap_set_bit (&bb_on_list, e->src->index))
6145 vec.quick_push (e->src);
6146 }
6147 while (!vec.is_empty ())
6148 {
6149 basic_block tmp_bb = vec.pop ();
6150 bool all_set = true;
6151
6152 bitmap_clear_bit (&bb_on_list, tmp_bb->index);
6153 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6154 if (!bitmap_bit_p (&bb_antic_flags, e->dest->index))
6155 {
6156 all_set = false;
6157 break;
6158 }
6159
6160 if (all_set)
6161 {
6162 bitmap_set_bit (&bb_antic_flags, tmp_bb->index);
6163 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6164 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6165 && bitmap_set_bit (&bb_on_list, e->src->index))
6166 vec.quick_push (e->src);
6167 }
6168 }
6169 /* Find exactly one edge that leads to a block in ANTIC from
6170 a block that isn't. */
6171 if (!bitmap_bit_p (&bb_antic_flags, entry_edge->dest->index))
6172 FOR_EACH_BB (bb)
6173 {
6174 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6175 continue;
6176 FOR_EACH_EDGE (e, ei, bb->preds)
6177 if (!bitmap_bit_p (&bb_antic_flags, e->src->index))
6178 {
6179 if (entry_edge != orig_entry_edge)
6180 {
6181 entry_edge = orig_entry_edge;
6182 if (dump_file)
6183 fprintf (dump_file, "More than one candidate edge.\n");
6184 goto fail_shrinkwrap;
6185 }
6186 if (dump_file)
6187 fprintf (dump_file, "Found candidate edge for "
6188 "shrink-wrapping, %d->%d.\n", e->src->index,
6189 e->dest->index);
6190 entry_edge = e;
6191 }
6192 }
6193
6194 if (entry_edge != orig_entry_edge)
6195 {
6196 /* Test whether the prologue is known to clobber any register
6197 (other than FP or SP) which are live on the edge. */
6198 CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
6199 if (frame_pointer_needed)
6200 CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);
6201 REG_SET_TO_HARD_REG_SET (live_on_edge,
6202 df_get_live_in (entry_edge->dest));
6203 if (hard_reg_set_intersect_p (live_on_edge, prologue_clobbered))
6204 {
6205 entry_edge = orig_entry_edge;
6206 if (dump_file)
6207 fprintf (dump_file,
6208 "Shrink-wrapping aborted due to clobber.\n");
6209 }
6210 }
6211 if (entry_edge != orig_entry_edge)
6212 {
6213 crtl->shrink_wrapped = true;
6214 if (dump_file)
6215 fprintf (dump_file, "Performing shrink-wrapping.\n");
6216
6217 /* Find tail blocks reachable from both blocks needing a
6218 prologue and blocks not needing a prologue. */
6219 if (!bitmap_empty_p (&bb_tail))
6220 FOR_EACH_BB (bb)
6221 {
6222 bool some_pro, some_no_pro;
6223 if (!bitmap_bit_p (&bb_tail, bb->index))
6224 continue;
6225 some_pro = some_no_pro = false;
6226 FOR_EACH_EDGE (e, ei, bb->preds)
6227 {
6228 if (bitmap_bit_p (&bb_flags, e->src->index))
6229 some_pro = true;
6230 else
6231 some_no_pro = true;
6232 }
6233 if (some_pro && some_no_pro)
6234 vec.quick_push (bb);
6235 else
6236 bitmap_clear_bit (&bb_tail, bb->index);
6237 }
6238 /* Find the head of each tail. */
6239 while (!vec.is_empty ())
6240 {
6241 basic_block tbb = vec.pop ();
6242
6243 if (!bitmap_bit_p (&bb_tail, tbb->index))
6244 continue;
6245
6246 while (single_succ_p (tbb))
6247 {
6248 tbb = single_succ (tbb);
6249 bitmap_clear_bit (&bb_tail, tbb->index);
6250 }
6251 }
6252 /* Now duplicate the tails. */
6253 if (!bitmap_empty_p (&bb_tail))
6254 FOR_EACH_BB_REVERSE (bb)
6255 {
6256 basic_block copy_bb, tbb;
6257 rtx insert_point;
6258 int eflags;
6259
6260 if (!bitmap_clear_bit (&bb_tail, bb->index))
6261 continue;
6262
6263 /* Create a copy of BB, instructions and all, for
6264 use on paths that don't need a prologue.
6265 Ideal placement of the copy is on a fall-thru edge
6266 or after a block that would jump to the copy. */
6267 FOR_EACH_EDGE (e, ei, bb->preds)
6268 if (!bitmap_bit_p (&bb_flags, e->src->index)
6269 && single_succ_p (e->src))
6270 break;
6271 if (e)
6272 {
6273 copy_bb = create_basic_block (NEXT_INSN (BB_END (e->src)),
6274 NULL_RTX, e->src);
6275 BB_COPY_PARTITION (copy_bb, e->src);
6276 }
6277 else
6278 {
6279 /* Otherwise put the copy at the end of the function. */
6280 copy_bb = create_basic_block (NULL_RTX, NULL_RTX,
6281 EXIT_BLOCK_PTR->prev_bb);
6282 BB_COPY_PARTITION (copy_bb, bb);
6283 }
6284
6285 insert_point = emit_note_after (NOTE_INSN_DELETED,
6286 BB_END (copy_bb));
6287 emit_barrier_after (BB_END (copy_bb));
6288
6289 tbb = bb;
6290 while (1)
6291 {
6292 dup_block_and_redirect (tbb, copy_bb, insert_point,
6293 &bb_flags);
6294 tbb = single_succ (tbb);
6295 if (tbb == EXIT_BLOCK_PTR)
6296 break;
6297 e = split_block (copy_bb, PREV_INSN (insert_point));
6298 copy_bb = e->dest;
6299 }
6300
6301 /* Quiet verify_flow_info by (ab)using EDGE_FAKE.
6302 We have yet to add a simple_return to the tails,
6303 as we'd like to first convert_jumps_to_returns in
6304 case the block is no longer used after that. */
6305 eflags = EDGE_FAKE;
6306 if (CALL_P (PREV_INSN (insert_point))
6307 && SIBLING_CALL_P (PREV_INSN (insert_point)))
6308 eflags = EDGE_SIBCALL | EDGE_ABNORMAL;
6309 make_single_succ_edge (copy_bb, EXIT_BLOCK_PTR, eflags);
6310
6311 /* verify_flow_info doesn't like a note after a
6312 sibling call. */
6313 delete_insn (insert_point);
6314 if (bitmap_empty_p (&bb_tail))
6315 break;
6316 }
6317 }
6318
6319 fail_shrinkwrap:
6320 bitmap_clear (&bb_tail);
6321 bitmap_clear (&bb_antic_flags);
6322 bitmap_clear (&bb_on_list);
6323 vec.release ();
6324 }
6325 #endif
6326
6327 if (split_prologue_seq != NULL_RTX)
6328 {
6329 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6330 inserted = true;
6331 }
6332 if (prologue_seq != NULL_RTX)
6333 {
6334 insert_insn_on_edge (prologue_seq, entry_edge);
6335 inserted = true;
6336 }
6337
6338 /* If the exit block has no non-fake predecessors, we don't need
6339 an epilogue. */
6340 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6341 if ((e->flags & EDGE_FAKE) == 0)
6342 break;
6343 if (e == NULL)
6344 goto epilogue_done;
6345
6346 rtl_profile_for_bb (EXIT_BLOCK_PTR);
6347
6348 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR->preds);
6349
6350 /* If we're allowed to generate a simple return instruction, then by
6351 definition we don't need a full epilogue. If the last basic
6352 block before the exit block does not contain active instructions,
6353 examine its predecessors and try to emit (conditional) return
6354 instructions. */
6355 #ifdef HAVE_simple_return
6356 if (entry_edge != orig_entry_edge)
6357 {
6358 if (optimize)
6359 {
6360 unsigned i, last;
6361
6362 /* convert_jumps_to_returns may add to EXIT_BLOCK_PTR->preds
6363 (but won't remove). Stop at end of current preds. */
6364 last = EDGE_COUNT (EXIT_BLOCK_PTR->preds);
6365 for (i = 0; i < last; i++)
6366 {
6367 e = EDGE_I (EXIT_BLOCK_PTR->preds, i);
6368 if (LABEL_P (BB_HEAD (e->src))
6369 && !bitmap_bit_p (&bb_flags, e->src->index)
6370 && !active_insn_between (BB_HEAD (e->src), BB_END (e->src)))
6371 unconverted_simple_returns
6372 = convert_jumps_to_returns (e->src, true,
6373 unconverted_simple_returns);
6374 }
6375 }
6376
6377 if (exit_fallthru_edge != NULL
6378 && EDGE_COUNT (exit_fallthru_edge->src->preds) != 0
6379 && !bitmap_bit_p (&bb_flags, exit_fallthru_edge->src->index))
6380 {
6381 basic_block last_bb;
6382
6383 last_bb = emit_return_for_exit (exit_fallthru_edge, true);
6384 returnjump = BB_END (last_bb);
6385 exit_fallthru_edge = NULL;
6386 }
6387 }
6388 #endif
6389 #ifdef HAVE_return
6390 if (HAVE_return)
6391 {
6392 if (exit_fallthru_edge == NULL)
6393 goto epilogue_done;
6394
6395 if (optimize)
6396 {
6397 basic_block last_bb = exit_fallthru_edge->src;
6398
6399 if (LABEL_P (BB_HEAD (last_bb))
6400 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
6401 convert_jumps_to_returns (last_bb, false, vNULL);
6402
6403 if (EDGE_COUNT (last_bb->preds) != 0
6404 && single_succ_p (last_bb))
6405 {
6406 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
6407 epilogue_end = returnjump = BB_END (last_bb);
6408 #ifdef HAVE_simple_return
6409 /* Emitting the return may add a basic block.
6410 Fix bb_flags for the added block. */
6411 if (last_bb != exit_fallthru_edge->src)
6412 bitmap_set_bit (&bb_flags, last_bb->index);
6413 #endif
6414 goto epilogue_done;
6415 }
6416 }
6417 }
6418 #endif
6419
6420 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6421 this marker for the splits of EH_RETURN patterns, and nothing else
6422 uses the flag in the meantime. */
6423 epilogue_completed = 1;
6424
6425 #ifdef HAVE_eh_return
6426 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6427 some targets, these get split to a special version of the epilogue
6428 code. In order to be able to properly annotate these with unwind
6429 info, try to split them now. If we get a valid split, drop an
6430 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6431 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6432 {
6433 rtx prev, last, trial;
6434
6435 if (e->flags & EDGE_FALLTHRU)
6436 continue;
6437 last = BB_END (e->src);
6438 if (!eh_returnjump_p (last))
6439 continue;
6440
6441 prev = PREV_INSN (last);
6442 trial = try_split (PATTERN (last), last, 1);
6443 if (trial == last)
6444 continue;
6445
6446 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6447 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6448 }
6449 #endif
6450
6451 /* If nothing falls through into the exit block, we don't need an
6452 epilogue. */
6453
6454 if (exit_fallthru_edge == NULL)
6455 goto epilogue_done;
6456
6457 #ifdef HAVE_epilogue
6458 if (HAVE_epilogue)
6459 {
6460 start_sequence ();
6461 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
6462 seq = gen_epilogue ();
6463 if (seq)
6464 emit_jump_insn (seq);
6465
6466 /* Retain a map of the epilogue insns. */
6467 record_insns (seq, NULL, &epilogue_insn_hash);
6468 set_insn_locations (seq, epilogue_location);
6469
6470 seq = get_insns ();
6471 returnjump = get_last_insn ();
6472 end_sequence ();
6473
6474 insert_insn_on_edge (seq, exit_fallthru_edge);
6475 inserted = true;
6476
6477 if (JUMP_P (returnjump))
6478 set_return_jump_label (returnjump);
6479 }
6480 else
6481 #endif
6482 {
6483 basic_block cur_bb;
6484
6485 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
6486 goto epilogue_done;
6487 /* We have a fall-through edge to the exit block, the source is not
6488 at the end of the function, and there will be an assembler epilogue
6489 at the end of the function.
6490 We can't use force_nonfallthru here, because that would try to
6491 use return. Inserting a jump 'by hand' is extremely messy, so
6492 we take advantage of cfg_layout_finalize using
6493 fixup_fallthru_exit_predecessor. */
6494 cfg_layout_initialize (0);
6495 FOR_EACH_BB (cur_bb)
6496 if (cur_bb->index >= NUM_FIXED_BLOCKS
6497 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6498 cur_bb->aux = cur_bb->next_bb;
6499 cfg_layout_finalize ();
6500 }
6501
6502 epilogue_done:
6503
6504 default_rtl_profile ();
6505
6506 if (inserted)
6507 {
6508 sbitmap blocks;
6509
6510 commit_edge_insertions ();
6511
6512 /* Look for basic blocks within the prologue insns. */
6513 blocks = sbitmap_alloc (last_basic_block);
6514 bitmap_clear (blocks);
6515 bitmap_set_bit (blocks, entry_edge->dest->index);
6516 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
6517 find_many_sub_basic_blocks (blocks);
6518 sbitmap_free (blocks);
6519
6520 /* The epilogue insns we inserted may cause the exit edge to no longer
6521 be fallthru. */
6522 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6523 {
6524 if (((e->flags & EDGE_FALLTHRU) != 0)
6525 && returnjump_p (BB_END (e->src)))
6526 e->flags &= ~EDGE_FALLTHRU;
6527 }
6528 }
6529
6530 #ifdef HAVE_simple_return
6531 /* If there were branches to an empty LAST_BB which we tried to
6532 convert to conditional simple_returns, but couldn't for some
6533 reason, create a block to hold a simple_return insn and redirect
6534 those remaining edges. */
6535 if (!unconverted_simple_returns.is_empty ())
6536 {
6537 basic_block simple_return_block_hot = NULL;
6538 basic_block simple_return_block_cold = NULL;
6539 edge pending_edge_hot = NULL;
6540 edge pending_edge_cold = NULL;
6541 basic_block exit_pred = EXIT_BLOCK_PTR->prev_bb;
6542 int i;
6543
6544 gcc_assert (entry_edge != orig_entry_edge);
6545
6546 /* See if we can reuse the last insn that was emitted for the
6547 epilogue. */
6548 if (returnjump != NULL_RTX
6549 && JUMP_LABEL (returnjump) == simple_return_rtx)
6550 {
6551 e = split_block (BLOCK_FOR_INSN (returnjump), PREV_INSN (returnjump));
6552 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6553 simple_return_block_hot = e->dest;
6554 else
6555 simple_return_block_cold = e->dest;
6556 }
6557
6558 /* Also check returns we might need to add to tail blocks. */
6559 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6560 if (EDGE_COUNT (e->src->preds) != 0
6561 && (e->flags & EDGE_FAKE) != 0
6562 && !bitmap_bit_p (&bb_flags, e->src->index))
6563 {
6564 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6565 pending_edge_hot = e;
6566 else
6567 pending_edge_cold = e;
6568 }
6569
6570 FOR_EACH_VEC_ELT (unconverted_simple_returns, i, e)
6571 {
6572 basic_block *pdest_bb;
6573 edge pending;
6574
6575 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6576 {
6577 pdest_bb = &simple_return_block_hot;
6578 pending = pending_edge_hot;
6579 }
6580 else
6581 {
6582 pdest_bb = &simple_return_block_cold;
6583 pending = pending_edge_cold;
6584 }
6585
6586 if (*pdest_bb == NULL && pending != NULL)
6587 {
6588 emit_return_into_block (true, pending->src);
6589 pending->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6590 *pdest_bb = pending->src;
6591 }
6592 else if (*pdest_bb == NULL)
6593 {
6594 basic_block bb;
6595 rtx start;
6596
6597 bb = create_basic_block (NULL, NULL, exit_pred);
6598 BB_COPY_PARTITION (bb, e->src);
6599 start = emit_jump_insn_after (gen_simple_return (),
6600 BB_END (bb));
6601 JUMP_LABEL (start) = simple_return_rtx;
6602 emit_barrier_after (start);
6603
6604 *pdest_bb = bb;
6605 make_edge (bb, EXIT_BLOCK_PTR, 0);
6606 }
6607 redirect_edge_and_branch_force (e, *pdest_bb);
6608 }
6609 unconverted_simple_returns.release ();
6610 }
6611
6612 if (entry_edge != orig_entry_edge)
6613 {
6614 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6615 if (EDGE_COUNT (e->src->preds) != 0
6616 && (e->flags & EDGE_FAKE) != 0
6617 && !bitmap_bit_p (&bb_flags, e->src->index))
6618 {
6619 emit_return_into_block (true, e->src);
6620 e->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6621 }
6622 }
6623 #endif
6624
6625 #ifdef HAVE_sibcall_epilogue
6626 /* Emit sibling epilogues before any sibling call sites. */
6627 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
6628 {
6629 basic_block bb = e->src;
6630 rtx insn = BB_END (bb);
6631 rtx ep_seq;
6632
6633 if (!CALL_P (insn)
6634 || ! SIBLING_CALL_P (insn)
6635 #ifdef HAVE_simple_return
6636 || (entry_edge != orig_entry_edge
6637 && !bitmap_bit_p (&bb_flags, bb->index))
6638 #endif
6639 )
6640 {
6641 ei_next (&ei);
6642 continue;
6643 }
6644
6645 ep_seq = gen_sibcall_epilogue ();
6646 if (ep_seq)
6647 {
6648 start_sequence ();
6649 emit_note (NOTE_INSN_EPILOGUE_BEG);
6650 emit_insn (ep_seq);
6651 seq = get_insns ();
6652 end_sequence ();
6653
6654 /* Retain a map of the epilogue insns. Used in life analysis to
6655 avoid getting rid of sibcall epilogue insns. Do this before we
6656 actually emit the sequence. */
6657 record_insns (seq, NULL, &epilogue_insn_hash);
6658 set_insn_locations (seq, epilogue_location);
6659
6660 emit_insn_before (seq, insn);
6661 }
6662 ei_next (&ei);
6663 }
6664 #endif
6665
6666 #ifdef HAVE_epilogue
6667 if (epilogue_end)
6668 {
6669 rtx insn, next;
6670
6671 /* Similarly, move any line notes that appear after the epilogue.
6672 There is no need, however, to be quite so anal about the existence
6673 of such a note. Also possibly move
6674 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6675 info generation. */
6676 for (insn = epilogue_end; insn; insn = next)
6677 {
6678 next = NEXT_INSN (insn);
6679 if (NOTE_P (insn)
6680 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6681 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
6682 }
6683 }
6684 #endif
6685
6686 #ifdef HAVE_simple_return
6687 bitmap_clear (&bb_flags);
6688 #endif
6689
6690 /* Threading the prologue and epilogue changes the artificial refs
6691 in the entry and exit blocks. */
6692 epilogue_completed = 1;
6693 df_update_entry_exit_and_calls ();
6694 }
6695
6696 /* Reposition the prologue-end and epilogue-begin notes after
6697 instruction scheduling. */
6698
6699 void
6700 reposition_prologue_and_epilogue_notes (void)
6701 {
6702 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
6703 || defined (HAVE_sibcall_epilogue)
6704 /* Since the hash table is created on demand, the fact that it is
6705 non-null is a signal that it is non-empty. */
6706 if (prologue_insn_hash != NULL)
6707 {
6708 size_t len = htab_elements (prologue_insn_hash);
6709 rtx insn, last = NULL, note = NULL;
6710
6711 /* Scan from the beginning until we reach the last prologue insn. */
6712 /* ??? While we do have the CFG intact, there are two problems:
6713 (1) The prologue can contain loops (typically probing the stack),
6714 which means that the end of the prologue isn't in the first bb.
6715 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6716 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6717 {
6718 if (NOTE_P (insn))
6719 {
6720 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6721 note = insn;
6722 }
6723 else if (contains (insn, prologue_insn_hash))
6724 {
6725 last = insn;
6726 if (--len == 0)
6727 break;
6728 }
6729 }
6730
6731 if (last)
6732 {
6733 if (note == NULL)
6734 {
6735 /* Scan forward looking for the PROLOGUE_END note. It should
6736 be right at the beginning of the block, possibly with other
6737 insn notes that got moved there. */
6738 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6739 {
6740 if (NOTE_P (note)
6741 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6742 break;
6743 }
6744 }
6745
6746 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6747 if (LABEL_P (last))
6748 last = NEXT_INSN (last);
6749 reorder_insns (note, note, last);
6750 }
6751 }
6752
6753 if (epilogue_insn_hash != NULL)
6754 {
6755 edge_iterator ei;
6756 edge e;
6757
6758 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6759 {
6760 rtx insn, first = NULL, note = NULL;
6761 basic_block bb = e->src;
6762
6763 /* Scan from the beginning until we reach the first epilogue insn. */
6764 FOR_BB_INSNS (bb, insn)
6765 {
6766 if (NOTE_P (insn))
6767 {
6768 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6769 {
6770 note = insn;
6771 if (first != NULL)
6772 break;
6773 }
6774 }
6775 else if (first == NULL && contains (insn, epilogue_insn_hash))
6776 {
6777 first = insn;
6778 if (note != NULL)
6779 break;
6780 }
6781 }
6782
6783 if (note)
6784 {
6785 /* If the function has a single basic block, and no real
6786 epilogue insns (e.g. sibcall with no cleanup), the
6787 epilogue note can get scheduled before the prologue
6788 note. If we have frame related prologue insns, having
6789 them scanned during the epilogue will result in a crash.
6790 In this case re-order the epilogue note to just before
6791 the last insn in the block. */
6792 if (first == NULL)
6793 first = BB_END (bb);
6794
6795 if (PREV_INSN (first) != note)
6796 reorder_insns (note, note, PREV_INSN (first));
6797 }
6798 }
6799 }
6800 #endif /* HAVE_prologue or HAVE_epilogue */
6801 }
6802
6803 /* Returns the name of function declared by FNDECL. */
6804 const char *
6805 fndecl_name (tree fndecl)
6806 {
6807 if (fndecl == NULL)
6808 return "(nofn)";
6809 return lang_hooks.decl_printable_name (fndecl, 2);
6810 }
6811
6812 /* Returns the name of function FN. */
6813 const char *
6814 function_name (struct function *fn)
6815 {
6816 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6817 return fndecl_name (fndecl);
6818 }
6819
6820 /* Returns the name of the current function. */
6821 const char *
6822 current_function_name (void)
6823 {
6824 return function_name (cfun);
6825 }
6826 \f
6827
6828 static unsigned int
6829 rest_of_handle_check_leaf_regs (void)
6830 {
6831 #ifdef LEAF_REGISTERS
6832 crtl->uses_only_leaf_regs
6833 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6834 #endif
6835 return 0;
6836 }
6837
6838 /* Insert a TYPE into the used types hash table of CFUN. */
6839
6840 static void
6841 used_types_insert_helper (tree type, struct function *func)
6842 {
6843 if (type != NULL && func != NULL)
6844 {
6845 void **slot;
6846
6847 if (func->used_types_hash == NULL)
6848 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
6849 htab_eq_pointer, NULL);
6850 slot = htab_find_slot (func->used_types_hash, type, INSERT);
6851 if (*slot == NULL)
6852 *slot = type;
6853 }
6854 }
6855
6856 /* Given a type, insert it into the used hash table in cfun. */
6857 void
6858 used_types_insert (tree t)
6859 {
6860 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6861 if (TYPE_NAME (t))
6862 break;
6863 else
6864 t = TREE_TYPE (t);
6865 if (TREE_CODE (t) == ERROR_MARK)
6866 return;
6867 if (TYPE_NAME (t) == NULL_TREE
6868 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6869 t = TYPE_MAIN_VARIANT (t);
6870 if (debug_info_level > DINFO_LEVEL_NONE)
6871 {
6872 if (cfun)
6873 used_types_insert_helper (t, cfun);
6874 else
6875 {
6876 /* So this might be a type referenced by a global variable.
6877 Record that type so that we can later decide to emit its
6878 debug information. */
6879 vec_safe_push (types_used_by_cur_var_decl, t);
6880 }
6881 }
6882 }
6883
6884 /* Helper to Hash a struct types_used_by_vars_entry. */
6885
6886 static hashval_t
6887 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6888 {
6889 gcc_assert (entry && entry->var_decl && entry->type);
6890
6891 return iterative_hash_object (entry->type,
6892 iterative_hash_object (entry->var_decl, 0));
6893 }
6894
6895 /* Hash function of the types_used_by_vars_entry hash table. */
6896
6897 hashval_t
6898 types_used_by_vars_do_hash (const void *x)
6899 {
6900 const struct types_used_by_vars_entry *entry =
6901 (const struct types_used_by_vars_entry *) x;
6902
6903 return hash_types_used_by_vars_entry (entry);
6904 }
6905
6906 /*Equality function of the types_used_by_vars_entry hash table. */
6907
6908 int
6909 types_used_by_vars_eq (const void *x1, const void *x2)
6910 {
6911 const struct types_used_by_vars_entry *e1 =
6912 (const struct types_used_by_vars_entry *) x1;
6913 const struct types_used_by_vars_entry *e2 =
6914 (const struct types_used_by_vars_entry *)x2;
6915
6916 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6917 }
6918
6919 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6920
6921 void
6922 types_used_by_var_decl_insert (tree type, tree var_decl)
6923 {
6924 if (type != NULL && var_decl != NULL)
6925 {
6926 void **slot;
6927 struct types_used_by_vars_entry e;
6928 e.var_decl = var_decl;
6929 e.type = type;
6930 if (types_used_by_vars_hash == NULL)
6931 types_used_by_vars_hash =
6932 htab_create_ggc (37, types_used_by_vars_do_hash,
6933 types_used_by_vars_eq, NULL);
6934 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
6935 hash_types_used_by_vars_entry (&e), INSERT);
6936 if (*slot == NULL)
6937 {
6938 struct types_used_by_vars_entry *entry;
6939 entry = ggc_alloc_types_used_by_vars_entry ();
6940 entry->type = type;
6941 entry->var_decl = var_decl;
6942 *slot = entry;
6943 }
6944 }
6945 }
6946
6947 struct rtl_opt_pass pass_leaf_regs =
6948 {
6949 {
6950 RTL_PASS,
6951 "*leaf_regs", /* name */
6952 OPTGROUP_NONE, /* optinfo_flags */
6953 NULL, /* gate */
6954 rest_of_handle_check_leaf_regs, /* execute */
6955 NULL, /* sub */
6956 NULL, /* next */
6957 0, /* static_pass_number */
6958 TV_NONE, /* tv_id */
6959 0, /* properties_required */
6960 0, /* properties_provided */
6961 0, /* properties_destroyed */
6962 0, /* todo_flags_start */
6963 0 /* todo_flags_finish */
6964 }
6965 };
6966
6967 static unsigned int
6968 rest_of_handle_thread_prologue_and_epilogue (void)
6969 {
6970 if (optimize)
6971 cleanup_cfg (CLEANUP_EXPENSIVE);
6972
6973 /* On some machines, the prologue and epilogue code, or parts thereof,
6974 can be represented as RTL. Doing so lets us schedule insns between
6975 it and the rest of the code and also allows delayed branch
6976 scheduling to operate in the epilogue. */
6977 thread_prologue_and_epilogue_insns ();
6978
6979 /* The stack usage info is finalized during prologue expansion. */
6980 if (flag_stack_usage_info)
6981 output_stack_usage ();
6982
6983 return 0;
6984 }
6985
6986 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
6987 {
6988 {
6989 RTL_PASS,
6990 "pro_and_epilogue", /* name */
6991 OPTGROUP_NONE, /* optinfo_flags */
6992 NULL, /* gate */
6993 rest_of_handle_thread_prologue_and_epilogue, /* execute */
6994 NULL, /* sub */
6995 NULL, /* next */
6996 0, /* static_pass_number */
6997 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6998 0, /* properties_required */
6999 0, /* properties_provided */
7000 0, /* properties_destroyed */
7001 TODO_verify_flow, /* todo_flags_start */
7002 TODO_df_verify | TODO_df_finish
7003 | TODO_verify_rtl_sharing /* todo_flags_finish */
7004 }
7005 };
7006 \f
7007
7008 /* This mini-pass fixes fall-out from SSA in asm statements that have
7009 in-out constraints. Say you start with
7010
7011 orig = inout;
7012 asm ("": "+mr" (inout));
7013 use (orig);
7014
7015 which is transformed very early to use explicit output and match operands:
7016
7017 orig = inout;
7018 asm ("": "=mr" (inout) : "0" (inout));
7019 use (orig);
7020
7021 Or, after SSA and copyprop,
7022
7023 asm ("": "=mr" (inout_2) : "0" (inout_1));
7024 use (inout_1);
7025
7026 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
7027 they represent two separate values, so they will get different pseudo
7028 registers during expansion. Then, since the two operands need to match
7029 per the constraints, but use different pseudo registers, reload can
7030 only register a reload for these operands. But reloads can only be
7031 satisfied by hardregs, not by memory, so we need a register for this
7032 reload, just because we are presented with non-matching operands.
7033 So, even though we allow memory for this operand, no memory can be
7034 used for it, just because the two operands don't match. This can
7035 cause reload failures on register-starved targets.
7036
7037 So it's a symptom of reload not being able to use memory for reloads
7038 or, alternatively it's also a symptom of both operands not coming into
7039 reload as matching (in which case the pseudo could go to memory just
7040 fine, as the alternative allows it, and no reload would be necessary).
7041 We fix the latter problem here, by transforming
7042
7043 asm ("": "=mr" (inout_2) : "0" (inout_1));
7044
7045 back to
7046
7047 inout_2 = inout_1;
7048 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
7049
7050 static void
7051 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
7052 {
7053 int i;
7054 bool changed = false;
7055 rtx op = SET_SRC (p_sets[0]);
7056 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
7057 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
7058 bool *output_matched = XALLOCAVEC (bool, noutputs);
7059
7060 memset (output_matched, 0, noutputs * sizeof (bool));
7061 for (i = 0; i < ninputs; i++)
7062 {
7063 rtx input, output, insns;
7064 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
7065 char *end;
7066 int match, j;
7067
7068 if (*constraint == '%')
7069 constraint++;
7070
7071 match = strtoul (constraint, &end, 10);
7072 if (end == constraint)
7073 continue;
7074
7075 gcc_assert (match < noutputs);
7076 output = SET_DEST (p_sets[match]);
7077 input = RTVEC_ELT (inputs, i);
7078 /* Only do the transformation for pseudos. */
7079 if (! REG_P (output)
7080 || rtx_equal_p (output, input)
7081 || (GET_MODE (input) != VOIDmode
7082 && GET_MODE (input) != GET_MODE (output)))
7083 continue;
7084
7085 /* We can't do anything if the output is also used as input,
7086 as we're going to overwrite it. */
7087 for (j = 0; j < ninputs; j++)
7088 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
7089 break;
7090 if (j != ninputs)
7091 continue;
7092
7093 /* Avoid changing the same input several times. For
7094 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
7095 only change in once (to out1), rather than changing it
7096 first to out1 and afterwards to out2. */
7097 if (i > 0)
7098 {
7099 for (j = 0; j < noutputs; j++)
7100 if (output_matched[j] && input == SET_DEST (p_sets[j]))
7101 break;
7102 if (j != noutputs)
7103 continue;
7104 }
7105 output_matched[match] = true;
7106
7107 start_sequence ();
7108 emit_move_insn (output, input);
7109 insns = get_insns ();
7110 end_sequence ();
7111 emit_insn_before (insns, insn);
7112
7113 /* Now replace all mentions of the input with output. We can't
7114 just replace the occurrence in inputs[i], as the register might
7115 also be used in some other input (or even in an address of an
7116 output), which would mean possibly increasing the number of
7117 inputs by one (namely 'output' in addition), which might pose
7118 a too complicated problem for reload to solve. E.g. this situation:
7119
7120 asm ("" : "=r" (output), "=m" (input) : "0" (input))
7121
7122 Here 'input' is used in two occurrences as input (once for the
7123 input operand, once for the address in the second output operand).
7124 If we would replace only the occurrence of the input operand (to
7125 make the matching) we would be left with this:
7126
7127 output = input
7128 asm ("" : "=r" (output), "=m" (input) : "0" (output))
7129
7130 Now we suddenly have two different input values (containing the same
7131 value, but different pseudos) where we formerly had only one.
7132 With more complicated asms this might lead to reload failures
7133 which wouldn't have happen without this pass. So, iterate over
7134 all operands and replace all occurrences of the register used. */
7135 for (j = 0; j < noutputs; j++)
7136 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
7137 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
7138 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
7139 input, output);
7140 for (j = 0; j < ninputs; j++)
7141 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
7142 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
7143 input, output);
7144
7145 changed = true;
7146 }
7147
7148 if (changed)
7149 df_insn_rescan (insn);
7150 }
7151
7152 static unsigned
7153 rest_of_match_asm_constraints (void)
7154 {
7155 basic_block bb;
7156 rtx insn, pat, *p_sets;
7157 int noutputs;
7158
7159 if (!crtl->has_asm_statement)
7160 return 0;
7161
7162 df_set_flags (DF_DEFER_INSN_RESCAN);
7163 FOR_EACH_BB (bb)
7164 {
7165 FOR_BB_INSNS (bb, insn)
7166 {
7167 if (!INSN_P (insn))
7168 continue;
7169
7170 pat = PATTERN (insn);
7171 if (GET_CODE (pat) == PARALLEL)
7172 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
7173 else if (GET_CODE (pat) == SET)
7174 p_sets = &PATTERN (insn), noutputs = 1;
7175 else
7176 continue;
7177
7178 if (GET_CODE (*p_sets) == SET
7179 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
7180 match_asm_constraints_1 (insn, p_sets, noutputs);
7181 }
7182 }
7183
7184 return TODO_df_finish;
7185 }
7186
7187 struct rtl_opt_pass pass_match_asm_constraints =
7188 {
7189 {
7190 RTL_PASS,
7191 "asmcons", /* name */
7192 OPTGROUP_NONE, /* optinfo_flags */
7193 NULL, /* gate */
7194 rest_of_match_asm_constraints, /* execute */
7195 NULL, /* sub */
7196 NULL, /* next */
7197 0, /* static_pass_number */
7198 TV_NONE, /* tv_id */
7199 0, /* properties_required */
7200 0, /* properties_provided */
7201 0, /* properties_destroyed */
7202 0, /* todo_flags_start */
7203 0 /* todo_flags_finish */
7204 }
7205 };
7206
7207
7208 #include "gt-function.h"