Patch to fix mips64-elf varargs aliasing failures.
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 88, 89, 91-97, 1998 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register.
35
36 Call `put_var_into_stack' when you learn, belatedly, that a variable
37 previously given a pseudo-register must in fact go in the stack.
38 This function changes the DECL_RTL to be a stack slot instead of a reg
39 then scans all the RTL instructions so far generated to correct them. */
40
41 #include "config.h"
42 #include <stdio.h>
43 #ifdef HAVE_STDLIB_H
44 #include <stdlib.h>
45 #endif
46 #include "rtl.h"
47 #include "tree.h"
48 #include "flags.h"
49 #include "except.h"
50 #include "function.h"
51 #include "insn-flags.h"
52 #include "expr.h"
53 #include "insn-codes.h"
54 #include "regs.h"
55 #include "hard-reg-set.h"
56 #include "insn-config.h"
57 #include "recog.h"
58 #include "output.h"
59 #include "basic-block.h"
60 #include "obstack.h"
61
62 #ifndef TRAMPOLINE_ALIGNMENT
63 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
64 #endif
65
66 /* Some systems use __main in a way incompatible with its use in gcc, in these
67 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
68 give the same symbol without quotes for an alternative entry point. You
69 must define both, or neither. */
70 #ifndef NAME__MAIN
71 #define NAME__MAIN "__main"
72 #define SYMBOL__MAIN __main
73 #endif
74
75 /* Round a value to the lowest integer less than it that is a multiple of
76 the required alignment. Avoid using division in case the value is
77 negative. Assume the alignment is a power of two. */
78 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
79
80 /* Similar, but round to the next highest integer that meets the
81 alignment. */
82 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
83
84 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
85 during rtl generation. If they are different register numbers, this is
86 always true. It may also be true if
87 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
88 generation. See fix_lexical_addr for details. */
89
90 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
91 #define NEED_SEPARATE_AP
92 #endif
93
94 /* Number of bytes of args popped by function being compiled on its return.
95 Zero if no bytes are to be popped.
96 May affect compilation of return insn or of function epilogue. */
97
98 int current_function_pops_args;
99
100 /* Nonzero if function being compiled needs to be given an address
101 where the value should be stored. */
102
103 int current_function_returns_struct;
104
105 /* Nonzero if function being compiled needs to
106 return the address of where it has put a structure value. */
107
108 int current_function_returns_pcc_struct;
109
110 /* Nonzero if function being compiled needs to be passed a static chain. */
111
112 int current_function_needs_context;
113
114 /* Nonzero if function being compiled can call setjmp. */
115
116 int current_function_calls_setjmp;
117
118 /* Nonzero if function being compiled can call longjmp. */
119
120 int current_function_calls_longjmp;
121
122 /* Nonzero if function being compiled receives nonlocal gotos
123 from nested functions. */
124
125 int current_function_has_nonlocal_label;
126
127 /* Nonzero if function being compiled has nonlocal gotos to parent
128 function. */
129
130 int current_function_has_nonlocal_goto;
131
132 /* Nonzero if function being compiled contains nested functions. */
133
134 int current_function_contains_functions;
135
136 /* Nonzero if the current function is a thunk (a lightweight function that
137 just adjusts one of its arguments and forwards to another function), so
138 we should try to cut corners where we can. */
139 int current_function_is_thunk;
140
141 /* Nonzero if function being compiled can call alloca,
142 either as a subroutine or builtin. */
143
144 int current_function_calls_alloca;
145
146 /* Nonzero if the current function returns a pointer type */
147
148 int current_function_returns_pointer;
149
150 /* If some insns can be deferred to the delay slots of the epilogue, the
151 delay list for them is recorded here. */
152
153 rtx current_function_epilogue_delay_list;
154
155 /* If function's args have a fixed size, this is that size, in bytes.
156 Otherwise, it is -1.
157 May affect compilation of return insn or of function epilogue. */
158
159 int current_function_args_size;
160
161 /* # bytes the prologue should push and pretend that the caller pushed them.
162 The prologue must do this, but only if parms can be passed in registers. */
163
164 int current_function_pretend_args_size;
165
166 /* # of bytes of outgoing arguments. If ACCUMULATE_OUTGOING_ARGS is
167 defined, the needed space is pushed by the prologue. */
168
169 int current_function_outgoing_args_size;
170
171 /* This is the offset from the arg pointer to the place where the first
172 anonymous arg can be found, if there is one. */
173
174 rtx current_function_arg_offset_rtx;
175
176 /* Nonzero if current function uses varargs.h or equivalent.
177 Zero for functions that use stdarg.h. */
178
179 int current_function_varargs;
180
181 /* Nonzero if current function uses stdarg.h or equivalent.
182 Zero for functions that use varargs.h. */
183
184 int current_function_stdarg;
185
186 /* Quantities of various kinds of registers
187 used for the current function's args. */
188
189 CUMULATIVE_ARGS current_function_args_info;
190
191 /* Name of function now being compiled. */
192
193 char *current_function_name;
194
195 /* If non-zero, an RTL expression for the location at which the current
196 function returns its result. If the current function returns its
197 result in a register, current_function_return_rtx will always be
198 the hard register containing the result. */
199
200 rtx current_function_return_rtx;
201
202 /* Nonzero if the current function uses the constant pool. */
203
204 int current_function_uses_const_pool;
205
206 /* Nonzero if the current function uses pic_offset_table_rtx. */
207 int current_function_uses_pic_offset_table;
208
209 /* The arg pointer hard register, or the pseudo into which it was copied. */
210 rtx current_function_internal_arg_pointer;
211
212 /* The FUNCTION_DECL for an inline function currently being expanded. */
213 tree inline_function_decl;
214
215 /* Number of function calls seen so far in current function. */
216
217 int function_call_count;
218
219 /* List (chain of TREE_LIST) of LABEL_DECLs for all nonlocal labels
220 (labels to which there can be nonlocal gotos from nested functions)
221 in this function. */
222
223 tree nonlocal_labels;
224
225 /* RTX for stack slot that holds the current handler for nonlocal gotos.
226 Zero when function does not have nonlocal labels. */
227
228 rtx nonlocal_goto_handler_slot;
229
230 /* RTX for stack slot that holds the stack pointer value to restore
231 for a nonlocal goto.
232 Zero when function does not have nonlocal labels. */
233
234 rtx nonlocal_goto_stack_level;
235
236 /* Label that will go on parm cleanup code, if any.
237 Jumping to this label runs cleanup code for parameters, if
238 such code must be run. Following this code is the logical return label. */
239
240 rtx cleanup_label;
241
242 /* Label that will go on function epilogue.
243 Jumping to this label serves as a "return" instruction
244 on machines which require execution of the epilogue on all returns. */
245
246 rtx return_label;
247
248 /* List (chain of EXPR_LISTs) of pseudo-regs of SAVE_EXPRs.
249 So we can mark them all live at the end of the function, if nonopt. */
250 rtx save_expr_regs;
251
252 /* List (chain of EXPR_LISTs) of all stack slots in this function.
253 Made for the sake of unshare_all_rtl. */
254 rtx stack_slot_list;
255
256 /* Chain of all RTL_EXPRs that have insns in them. */
257 tree rtl_expr_chain;
258
259 /* Label to jump back to for tail recursion, or 0 if we have
260 not yet needed one for this function. */
261 rtx tail_recursion_label;
262
263 /* Place after which to insert the tail_recursion_label if we need one. */
264 rtx tail_recursion_reentry;
265
266 /* Location at which to save the argument pointer if it will need to be
267 referenced. There are two cases where this is done: if nonlocal gotos
268 exist, or if vars stored at an offset from the argument pointer will be
269 needed by inner routines. */
270
271 rtx arg_pointer_save_area;
272
273 /* Offset to end of allocated area of stack frame.
274 If stack grows down, this is the address of the last stack slot allocated.
275 If stack grows up, this is the address for the next slot. */
276 HOST_WIDE_INT frame_offset;
277
278 /* List (chain of TREE_LISTs) of static chains for containing functions.
279 Each link has a FUNCTION_DECL in the TREE_PURPOSE and a reg rtx
280 in an RTL_EXPR in the TREE_VALUE. */
281 static tree context_display;
282
283 /* List (chain of TREE_LISTs) of trampolines for nested functions.
284 The trampoline sets up the static chain and jumps to the function.
285 We supply the trampoline's address when the function's address is requested.
286
287 Each link has a FUNCTION_DECL in the TREE_PURPOSE and a reg rtx
288 in an RTL_EXPR in the TREE_VALUE. */
289 static tree trampoline_list;
290
291 /* Insn after which register parms and SAVE_EXPRs are born, if nonopt. */
292 static rtx parm_birth_insn;
293
294 #if 0
295 /* Nonzero if a stack slot has been generated whose address is not
296 actually valid. It means that the generated rtl must all be scanned
297 to detect and correct the invalid addresses where they occur. */
298 static int invalid_stack_slot;
299 #endif
300
301 /* Last insn of those whose job was to put parms into their nominal homes. */
302 static rtx last_parm_insn;
303
304 /* 1 + last pseudo register number possibly used for loading a copy
305 of a parameter of this function. */
306 int max_parm_reg;
307
308 /* Vector indexed by REGNO, containing location on stack in which
309 to put the parm which is nominally in pseudo register REGNO,
310 if we discover that that parm must go in the stack. The highest
311 element in this vector is one less than MAX_PARM_REG, above. */
312 rtx *parm_reg_stack_loc;
313
314 /* Nonzero once virtual register instantiation has been done.
315 assign_stack_local uses frame_pointer_rtx when this is nonzero. */
316 static int virtuals_instantiated;
317
318 /* These variables hold pointers to functions to
319 save and restore machine-specific data,
320 in push_function_context and pop_function_context. */
321 void (*save_machine_status) PROTO((struct function *));
322 void (*restore_machine_status) PROTO((struct function *));
323
324 /* Nonzero if we need to distinguish between the return value of this function
325 and the return value of a function called by this function. This helps
326 integrate.c */
327
328 extern int rtx_equal_function_value_matters;
329 extern tree sequence_rtl_expr;
330 \f
331 /* In order to evaluate some expressions, such as function calls returning
332 structures in memory, we need to temporarily allocate stack locations.
333 We record each allocated temporary in the following structure.
334
335 Associated with each temporary slot is a nesting level. When we pop up
336 one level, all temporaries associated with the previous level are freed.
337 Normally, all temporaries are freed after the execution of the statement
338 in which they were created. However, if we are inside a ({...}) grouping,
339 the result may be in a temporary and hence must be preserved. If the
340 result could be in a temporary, we preserve it if we can determine which
341 one it is in. If we cannot determine which temporary may contain the
342 result, all temporaries are preserved. A temporary is preserved by
343 pretending it was allocated at the previous nesting level.
344
345 Automatic variables are also assigned temporary slots, at the nesting
346 level where they are defined. They are marked a "kept" so that
347 free_temp_slots will not free them. */
348
349 struct temp_slot
350 {
351 /* Points to next temporary slot. */
352 struct temp_slot *next;
353 /* The rtx to used to reference the slot. */
354 rtx slot;
355 /* The rtx used to represent the address if not the address of the
356 slot above. May be an EXPR_LIST if multiple addresses exist. */
357 rtx address;
358 /* The size, in units, of the slot. */
359 int size;
360 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
361 tree rtl_expr;
362 /* Non-zero if this temporary is currently in use. */
363 char in_use;
364 /* Non-zero if this temporary has its address taken. */
365 char addr_taken;
366 /* Nesting level at which this slot is being used. */
367 int level;
368 /* Non-zero if this should survive a call to free_temp_slots. */
369 int keep;
370 /* The offset of the slot from the frame_pointer, including extra space
371 for alignment. This info is for combine_temp_slots. */
372 int base_offset;
373 /* The size of the slot, including extra space for alignment. This
374 info is for combine_temp_slots. */
375 int full_size;
376 };
377
378 /* List of all temporaries allocated, both available and in use. */
379
380 struct temp_slot *temp_slots;
381
382 /* Current nesting level for temporaries. */
383
384 int temp_slot_level;
385 \f
386 /* This structure is used to record MEMs or pseudos used to replace VAR, any
387 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
388 maintain this list in case two operands of an insn were required to match;
389 in that case we must ensure we use the same replacement. */
390
391 struct fixup_replacement
392 {
393 rtx old;
394 rtx new;
395 struct fixup_replacement *next;
396 };
397
398 /* Forward declarations. */
399
400 static struct temp_slot *find_temp_slot_from_address PROTO((rtx));
401 static void put_reg_into_stack PROTO((struct function *, rtx, tree,
402 enum machine_mode, enum machine_mode,
403 int, int));
404 static void fixup_var_refs PROTO((rtx, enum machine_mode, int));
405 static struct fixup_replacement
406 *find_fixup_replacement PROTO((struct fixup_replacement **, rtx));
407 static void fixup_var_refs_insns PROTO((rtx, enum machine_mode, int,
408 rtx, int));
409 static void fixup_var_refs_1 PROTO((rtx, enum machine_mode, rtx *, rtx,
410 struct fixup_replacement **));
411 static rtx fixup_memory_subreg PROTO((rtx, rtx, int));
412 static rtx walk_fixup_memory_subreg PROTO((rtx, rtx, int));
413 static rtx fixup_stack_1 PROTO((rtx, rtx));
414 static void optimize_bit_field PROTO((rtx, rtx, rtx *));
415 static void instantiate_decls PROTO((tree, int));
416 static void instantiate_decls_1 PROTO((tree, int));
417 static void instantiate_decl PROTO((rtx, int, int));
418 static int instantiate_virtual_regs_1 PROTO((rtx *, rtx, int));
419 static void delete_handlers PROTO((void));
420 static void pad_to_arg_alignment PROTO((struct args_size *, int));
421 #ifndef ARGS_GROW_DOWNWARD
422 static void pad_below PROTO((struct args_size *, enum machine_mode,
423 tree));
424 #endif
425 static tree round_down PROTO((tree, int));
426 static rtx round_trampoline_addr PROTO((rtx));
427 static tree blocks_nreverse PROTO((tree));
428 static int all_blocks PROTO((tree, tree *));
429 static int *record_insns PROTO((rtx));
430 static int contains PROTO((rtx, int *));
431 static void put_addressof_into_stack PROTO((rtx));
432 static void purge_addressof_1 PROTO((rtx *, rtx, int));
433 \f
434 /* Pointer to chain of `struct function' for containing functions. */
435 struct function *outer_function_chain;
436
437 /* Given a function decl for a containing function,
438 return the `struct function' for it. */
439
440 struct function *
441 find_function_data (decl)
442 tree decl;
443 {
444 struct function *p;
445 for (p = outer_function_chain; p; p = p->next)
446 if (p->decl == decl)
447 return p;
448 abort ();
449 }
450
451 /* Save the current context for compilation of a nested function.
452 This is called from language-specific code.
453 The caller is responsible for saving any language-specific status,
454 since this function knows only about language-independent variables. */
455
456 void
457 push_function_context_to (context)
458 tree context;
459 {
460 struct function *p = (struct function *) xmalloc (sizeof (struct function));
461
462 p->next = outer_function_chain;
463 outer_function_chain = p;
464
465 p->name = current_function_name;
466 p->decl = current_function_decl;
467 p->pops_args = current_function_pops_args;
468 p->returns_struct = current_function_returns_struct;
469 p->returns_pcc_struct = current_function_returns_pcc_struct;
470 p->returns_pointer = current_function_returns_pointer;
471 p->needs_context = current_function_needs_context;
472 p->calls_setjmp = current_function_calls_setjmp;
473 p->calls_longjmp = current_function_calls_longjmp;
474 p->calls_alloca = current_function_calls_alloca;
475 p->has_nonlocal_label = current_function_has_nonlocal_label;
476 p->has_nonlocal_goto = current_function_has_nonlocal_goto;
477 p->contains_functions = current_function_contains_functions;
478 p->is_thunk = current_function_is_thunk;
479 p->args_size = current_function_args_size;
480 p->pretend_args_size = current_function_pretend_args_size;
481 p->arg_offset_rtx = current_function_arg_offset_rtx;
482 p->varargs = current_function_varargs;
483 p->stdarg = current_function_stdarg;
484 p->uses_const_pool = current_function_uses_const_pool;
485 p->uses_pic_offset_table = current_function_uses_pic_offset_table;
486 p->internal_arg_pointer = current_function_internal_arg_pointer;
487 p->max_parm_reg = max_parm_reg;
488 p->parm_reg_stack_loc = parm_reg_stack_loc;
489 p->outgoing_args_size = current_function_outgoing_args_size;
490 p->return_rtx = current_function_return_rtx;
491 p->nonlocal_goto_handler_slot = nonlocal_goto_handler_slot;
492 p->nonlocal_goto_stack_level = nonlocal_goto_stack_level;
493 p->nonlocal_labels = nonlocal_labels;
494 p->cleanup_label = cleanup_label;
495 p->return_label = return_label;
496 p->save_expr_regs = save_expr_regs;
497 p->stack_slot_list = stack_slot_list;
498 p->parm_birth_insn = parm_birth_insn;
499 p->frame_offset = frame_offset;
500 p->tail_recursion_label = tail_recursion_label;
501 p->tail_recursion_reentry = tail_recursion_reentry;
502 p->arg_pointer_save_area = arg_pointer_save_area;
503 p->rtl_expr_chain = rtl_expr_chain;
504 p->last_parm_insn = last_parm_insn;
505 p->context_display = context_display;
506 p->trampoline_list = trampoline_list;
507 p->function_call_count = function_call_count;
508 p->temp_slots = temp_slots;
509 p->temp_slot_level = temp_slot_level;
510 p->fixup_var_refs_queue = 0;
511 p->epilogue_delay_list = current_function_epilogue_delay_list;
512 p->args_info = current_function_args_info;
513
514 save_tree_status (p, context);
515 save_storage_status (p);
516 save_emit_status (p);
517 init_emit ();
518 save_expr_status (p);
519 save_stmt_status (p);
520 save_varasm_status (p, context);
521
522 if (save_machine_status)
523 (*save_machine_status) (p);
524 }
525
526 void
527 push_function_context ()
528 {
529 push_function_context_to (current_function_decl);
530 }
531
532 /* Restore the last saved context, at the end of a nested function.
533 This function is called from language-specific code. */
534
535 void
536 pop_function_context_from (context)
537 tree context;
538 {
539 struct function *p = outer_function_chain;
540
541 outer_function_chain = p->next;
542
543 current_function_contains_functions
544 = p->contains_functions || p->inline_obstacks
545 || context == current_function_decl;
546 current_function_name = p->name;
547 current_function_decl = p->decl;
548 current_function_pops_args = p->pops_args;
549 current_function_returns_struct = p->returns_struct;
550 current_function_returns_pcc_struct = p->returns_pcc_struct;
551 current_function_returns_pointer = p->returns_pointer;
552 current_function_needs_context = p->needs_context;
553 current_function_calls_setjmp = p->calls_setjmp;
554 current_function_calls_longjmp = p->calls_longjmp;
555 current_function_calls_alloca = p->calls_alloca;
556 current_function_has_nonlocal_label = p->has_nonlocal_label;
557 current_function_has_nonlocal_goto = p->has_nonlocal_goto;
558 current_function_is_thunk = p->is_thunk;
559 current_function_args_size = p->args_size;
560 current_function_pretend_args_size = p->pretend_args_size;
561 current_function_arg_offset_rtx = p->arg_offset_rtx;
562 current_function_varargs = p->varargs;
563 current_function_stdarg = p->stdarg;
564 current_function_uses_const_pool = p->uses_const_pool;
565 current_function_uses_pic_offset_table = p->uses_pic_offset_table;
566 current_function_internal_arg_pointer = p->internal_arg_pointer;
567 max_parm_reg = p->max_parm_reg;
568 parm_reg_stack_loc = p->parm_reg_stack_loc;
569 current_function_outgoing_args_size = p->outgoing_args_size;
570 current_function_return_rtx = p->return_rtx;
571 nonlocal_goto_handler_slot = p->nonlocal_goto_handler_slot;
572 nonlocal_goto_stack_level = p->nonlocal_goto_stack_level;
573 nonlocal_labels = p->nonlocal_labels;
574 cleanup_label = p->cleanup_label;
575 return_label = p->return_label;
576 save_expr_regs = p->save_expr_regs;
577 stack_slot_list = p->stack_slot_list;
578 parm_birth_insn = p->parm_birth_insn;
579 frame_offset = p->frame_offset;
580 tail_recursion_label = p->tail_recursion_label;
581 tail_recursion_reentry = p->tail_recursion_reentry;
582 arg_pointer_save_area = p->arg_pointer_save_area;
583 rtl_expr_chain = p->rtl_expr_chain;
584 last_parm_insn = p->last_parm_insn;
585 context_display = p->context_display;
586 trampoline_list = p->trampoline_list;
587 function_call_count = p->function_call_count;
588 temp_slots = p->temp_slots;
589 temp_slot_level = p->temp_slot_level;
590 current_function_epilogue_delay_list = p->epilogue_delay_list;
591 reg_renumber = 0;
592 current_function_args_info = p->args_info;
593
594 restore_tree_status (p, context);
595 restore_storage_status (p);
596 restore_expr_status (p);
597 restore_emit_status (p);
598 restore_stmt_status (p);
599 restore_varasm_status (p);
600
601 if (restore_machine_status)
602 (*restore_machine_status) (p);
603
604 /* Finish doing put_var_into_stack for any of our variables
605 which became addressable during the nested function. */
606 {
607 struct var_refs_queue *queue = p->fixup_var_refs_queue;
608 for (; queue; queue = queue->next)
609 fixup_var_refs (queue->modified, queue->promoted_mode, queue->unsignedp);
610 }
611
612 free (p);
613
614 /* Reset variables that have known state during rtx generation. */
615 rtx_equal_function_value_matters = 1;
616 virtuals_instantiated = 0;
617 }
618
619 void pop_function_context ()
620 {
621 pop_function_context_from (current_function_decl);
622 }
623 \f
624 /* Allocate fixed slots in the stack frame of the current function. */
625
626 /* Return size needed for stack frame based on slots so far allocated.
627 This size counts from zero. It is not rounded to STACK_BOUNDARY;
628 the caller may have to do that. */
629
630 HOST_WIDE_INT
631 get_frame_size ()
632 {
633 #ifdef FRAME_GROWS_DOWNWARD
634 return -frame_offset;
635 #else
636 return frame_offset;
637 #endif
638 }
639
640 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
641 with machine mode MODE.
642
643 ALIGN controls the amount of alignment for the address of the slot:
644 0 means according to MODE,
645 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
646 positive specifies alignment boundary in bits.
647
648 We do not round to stack_boundary here. */
649
650 rtx
651 assign_stack_local (mode, size, align)
652 enum machine_mode mode;
653 int size;
654 int align;
655 {
656 register rtx x, addr;
657 int bigend_correction = 0;
658 int alignment;
659
660 if (align == 0)
661 {
662 alignment = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
663 if (mode == BLKmode)
664 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
665 }
666 else if (align == -1)
667 {
668 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
669 size = CEIL_ROUND (size, alignment);
670 }
671 else
672 alignment = align / BITS_PER_UNIT;
673
674 /* Round frame offset to that alignment.
675 We must be careful here, since FRAME_OFFSET might be negative and
676 division with a negative dividend isn't as well defined as we might
677 like. So we instead assume that ALIGNMENT is a power of two and
678 use logical operations which are unambiguous. */
679 #ifdef FRAME_GROWS_DOWNWARD
680 frame_offset = FLOOR_ROUND (frame_offset, alignment);
681 #else
682 frame_offset = CEIL_ROUND (frame_offset, alignment);
683 #endif
684
685 /* On a big-endian machine, if we are allocating more space than we will use,
686 use the least significant bytes of those that are allocated. */
687 if (BYTES_BIG_ENDIAN && mode != BLKmode)
688 bigend_correction = size - GET_MODE_SIZE (mode);
689
690 #ifdef FRAME_GROWS_DOWNWARD
691 frame_offset -= size;
692 #endif
693
694 /* If we have already instantiated virtual registers, return the actual
695 address relative to the frame pointer. */
696 if (virtuals_instantiated)
697 addr = plus_constant (frame_pointer_rtx,
698 (frame_offset + bigend_correction
699 + STARTING_FRAME_OFFSET));
700 else
701 addr = plus_constant (virtual_stack_vars_rtx,
702 frame_offset + bigend_correction);
703
704 #ifndef FRAME_GROWS_DOWNWARD
705 frame_offset += size;
706 #endif
707
708 x = gen_rtx_MEM (mode, addr);
709
710 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
711
712 return x;
713 }
714
715 /* Assign a stack slot in a containing function.
716 First three arguments are same as in preceding function.
717 The last argument specifies the function to allocate in. */
718
719 rtx
720 assign_outer_stack_local (mode, size, align, function)
721 enum machine_mode mode;
722 int size;
723 int align;
724 struct function *function;
725 {
726 register rtx x, addr;
727 int bigend_correction = 0;
728 int alignment;
729
730 /* Allocate in the memory associated with the function in whose frame
731 we are assigning. */
732 push_obstacks (function->function_obstack,
733 function->function_maybepermanent_obstack);
734
735 if (align == 0)
736 {
737 alignment = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
738 if (mode == BLKmode)
739 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
740 }
741 else if (align == -1)
742 {
743 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
744 size = CEIL_ROUND (size, alignment);
745 }
746 else
747 alignment = align / BITS_PER_UNIT;
748
749 /* Round frame offset to that alignment. */
750 #ifdef FRAME_GROWS_DOWNWARD
751 function->frame_offset = FLOOR_ROUND (function->frame_offset, alignment);
752 #else
753 function->frame_offset = CEIL_ROUND (function->frame_offset, alignment);
754 #endif
755
756 /* On a big-endian machine, if we are allocating more space than we will use,
757 use the least significant bytes of those that are allocated. */
758 if (BYTES_BIG_ENDIAN && mode != BLKmode)
759 bigend_correction = size - GET_MODE_SIZE (mode);
760
761 #ifdef FRAME_GROWS_DOWNWARD
762 function->frame_offset -= size;
763 #endif
764 addr = plus_constant (virtual_stack_vars_rtx,
765 function->frame_offset + bigend_correction);
766 #ifndef FRAME_GROWS_DOWNWARD
767 function->frame_offset += size;
768 #endif
769
770 x = gen_rtx_MEM (mode, addr);
771
772 function->stack_slot_list
773 = gen_rtx_EXPR_LIST (VOIDmode, x, function->stack_slot_list);
774
775 pop_obstacks ();
776
777 return x;
778 }
779 \f
780 /* Allocate a temporary stack slot and record it for possible later
781 reuse.
782
783 MODE is the machine mode to be given to the returned rtx.
784
785 SIZE is the size in units of the space required. We do no rounding here
786 since assign_stack_local will do any required rounding.
787
788 KEEP is 1 if this slot is to be retained after a call to
789 free_temp_slots. Automatic variables for a block are allocated
790 with this flag. KEEP is 2, if we allocate a longer term temporary,
791 whose lifetime is controlled by CLEANUP_POINT_EXPRs. */
792
793 rtx
794 assign_stack_temp (mode, size, keep)
795 enum machine_mode mode;
796 int size;
797 int keep;
798 {
799 struct temp_slot *p, *best_p = 0;
800
801 /* If SIZE is -1 it means that somebody tried to allocate a temporary
802 of a variable size. */
803 if (size == -1)
804 abort ();
805
806 /* First try to find an available, already-allocated temporary that is the
807 exact size we require. */
808 for (p = temp_slots; p; p = p->next)
809 if (p->size == size && GET_MODE (p->slot) == mode && ! p->in_use)
810 break;
811
812 /* If we didn't find, one, try one that is larger than what we want. We
813 find the smallest such. */
814 if (p == 0)
815 for (p = temp_slots; p; p = p->next)
816 if (p->size > size && GET_MODE (p->slot) == mode && ! p->in_use
817 && (best_p == 0 || best_p->size > p->size))
818 best_p = p;
819
820 /* Make our best, if any, the one to use. */
821 if (best_p)
822 {
823 /* If there are enough aligned bytes left over, make them into a new
824 temp_slot so that the extra bytes don't get wasted. Do this only
825 for BLKmode slots, so that we can be sure of the alignment. */
826 if (GET_MODE (best_p->slot) == BLKmode)
827 {
828 int alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
829 int rounded_size = CEIL_ROUND (size, alignment);
830
831 if (best_p->size - rounded_size >= alignment)
832 {
833 p = (struct temp_slot *) oballoc (sizeof (struct temp_slot));
834 p->in_use = p->addr_taken = 0;
835 p->size = best_p->size - rounded_size;
836 p->base_offset = best_p->base_offset + rounded_size;
837 p->full_size = best_p->full_size - rounded_size;
838 p->slot = gen_rtx_MEM (BLKmode,
839 plus_constant (XEXP (best_p->slot, 0),
840 rounded_size));
841 p->address = 0;
842 p->rtl_expr = 0;
843 p->next = temp_slots;
844 temp_slots = p;
845
846 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
847 stack_slot_list);
848
849 best_p->size = rounded_size;
850 best_p->full_size = rounded_size;
851 }
852 }
853
854 p = best_p;
855 }
856
857 /* If we still didn't find one, make a new temporary. */
858 if (p == 0)
859 {
860 int frame_offset_old = frame_offset;
861 p = (struct temp_slot *) oballoc (sizeof (struct temp_slot));
862 /* If the temp slot mode doesn't indicate the alignment,
863 use the largest possible, so no one will be disappointed. */
864 p->slot = assign_stack_local (mode, size, mode == BLKmode ? -1 : 0);
865 /* The following slot size computation is necessary because we don't
866 know the actual size of the temporary slot until assign_stack_local
867 has performed all the frame alignment and size rounding for the
868 requested temporary. Note that extra space added for alignment
869 can be either above or below this stack slot depending on which
870 way the frame grows. We include the extra space if and only if it
871 is above this slot. */
872 #ifdef FRAME_GROWS_DOWNWARD
873 p->size = frame_offset_old - frame_offset;
874 #else
875 p->size = size;
876 #endif
877 /* Now define the fields used by combine_temp_slots. */
878 #ifdef FRAME_GROWS_DOWNWARD
879 p->base_offset = frame_offset;
880 p->full_size = frame_offset_old - frame_offset;
881 #else
882 p->base_offset = frame_offset_old;
883 p->full_size = frame_offset - frame_offset_old;
884 #endif
885 p->address = 0;
886 p->next = temp_slots;
887 temp_slots = p;
888 }
889
890 p->in_use = 1;
891 p->addr_taken = 0;
892 p->rtl_expr = sequence_rtl_expr;
893
894 if (keep == 2)
895 {
896 p->level = target_temp_slot_level;
897 p->keep = 0;
898 }
899 else
900 {
901 p->level = temp_slot_level;
902 p->keep = keep;
903 }
904
905 /* We may be reusing an old slot, so clear any MEM flags that may have been
906 set from before. */
907 RTX_UNCHANGING_P (p->slot) = 0;
908 MEM_IN_STRUCT_P (p->slot) = 0;
909 return p->slot;
910 }
911 \f
912 /* Assign a temporary of given TYPE.
913 KEEP is as for assign_stack_temp.
914 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
915 it is 0 if a register is OK.
916 DONT_PROMOTE is 1 if we should not promote values in register
917 to wider modes. */
918
919 rtx
920 assign_temp (type, keep, memory_required, dont_promote)
921 tree type;
922 int keep;
923 int memory_required;
924 int dont_promote;
925 {
926 enum machine_mode mode = TYPE_MODE (type);
927 int unsignedp = TREE_UNSIGNED (type);
928
929 if (mode == BLKmode || memory_required)
930 {
931 int size = int_size_in_bytes (type);
932 rtx tmp;
933
934 /* Unfortunately, we don't yet know how to allocate variable-sized
935 temporaries. However, sometimes we have a fixed upper limit on
936 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
937 instead. This is the case for Chill variable-sized strings. */
938 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
939 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
940 && TREE_CODE (TYPE_ARRAY_MAX_SIZE (type)) == INTEGER_CST)
941 size = TREE_INT_CST_LOW (TYPE_ARRAY_MAX_SIZE (type));
942
943 tmp = assign_stack_temp (mode, size, keep);
944 MEM_IN_STRUCT_P (tmp) = AGGREGATE_TYPE_P (type);
945 return tmp;
946 }
947
948 #ifndef PROMOTE_FOR_CALL_ONLY
949 if (! dont_promote)
950 mode = promote_mode (type, mode, &unsignedp, 0);
951 #endif
952
953 return gen_reg_rtx (mode);
954 }
955 \f
956 /* Combine temporary stack slots which are adjacent on the stack.
957
958 This allows for better use of already allocated stack space. This is only
959 done for BLKmode slots because we can be sure that we won't have alignment
960 problems in this case. */
961
962 void
963 combine_temp_slots ()
964 {
965 struct temp_slot *p, *q;
966 struct temp_slot *prev_p, *prev_q;
967 /* Determine where to free back to after this function. */
968 rtx free_pointer = rtx_alloc (CONST_INT);
969
970 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
971 {
972 int delete_p = 0;
973 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
974 for (q = p->next, prev_q = p; q; q = prev_q->next)
975 {
976 int delete_q = 0;
977 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
978 {
979 if (p->base_offset + p->full_size == q->base_offset)
980 {
981 /* Q comes after P; combine Q into P. */
982 p->size += q->size;
983 p->full_size += q->full_size;
984 delete_q = 1;
985 }
986 else if (q->base_offset + q->full_size == p->base_offset)
987 {
988 /* P comes after Q; combine P into Q. */
989 q->size += p->size;
990 q->full_size += p->full_size;
991 delete_p = 1;
992 break;
993 }
994 }
995 /* Either delete Q or advance past it. */
996 if (delete_q)
997 prev_q->next = q->next;
998 else
999 prev_q = q;
1000 }
1001 /* Either delete P or advance past it. */
1002 if (delete_p)
1003 {
1004 if (prev_p)
1005 prev_p->next = p->next;
1006 else
1007 temp_slots = p->next;
1008 }
1009 else
1010 prev_p = p;
1011 }
1012
1013 /* Free all the RTL made by plus_constant. */
1014 rtx_free (free_pointer);
1015 }
1016 \f
1017 /* Find the temp slot corresponding to the object at address X. */
1018
1019 static struct temp_slot *
1020 find_temp_slot_from_address (x)
1021 rtx x;
1022 {
1023 struct temp_slot *p;
1024 rtx next;
1025
1026 for (p = temp_slots; p; p = p->next)
1027 {
1028 if (! p->in_use)
1029 continue;
1030 else if (XEXP (p->slot, 0) == x
1031 || p->address == x
1032 || (GET_CODE (x) == PLUS
1033 && XEXP (x, 0) == virtual_stack_vars_rtx
1034 && GET_CODE (XEXP (x, 1)) == CONST_INT
1035 && INTVAL (XEXP (x, 1)) >= p->base_offset
1036 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
1037 return p;
1038
1039 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
1040 for (next = p->address; next; next = XEXP (next, 1))
1041 if (XEXP (next, 0) == x)
1042 return p;
1043 }
1044
1045 return 0;
1046 }
1047
1048 /* Indicate that NEW is an alternate way of referring to the temp slot
1049 that previous was known by OLD. */
1050
1051 void
1052 update_temp_slot_address (old, new)
1053 rtx old, new;
1054 {
1055 struct temp_slot *p = find_temp_slot_from_address (old);
1056
1057 /* If none, return. Else add NEW as an alias. */
1058 if (p == 0)
1059 return;
1060 else if (p->address == 0)
1061 p->address = new;
1062 else
1063 {
1064 if (GET_CODE (p->address) != EXPR_LIST)
1065 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1066
1067 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1068 }
1069 }
1070
1071 /* If X could be a reference to a temporary slot, mark the fact that its
1072 address was taken. */
1073
1074 void
1075 mark_temp_addr_taken (x)
1076 rtx x;
1077 {
1078 struct temp_slot *p;
1079
1080 if (x == 0)
1081 return;
1082
1083 /* If X is not in memory or is at a constant address, it cannot be in
1084 a temporary slot. */
1085 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1086 return;
1087
1088 p = find_temp_slot_from_address (XEXP (x, 0));
1089 if (p != 0)
1090 p->addr_taken = 1;
1091 }
1092
1093 /* If X could be a reference to a temporary slot, mark that slot as
1094 belonging to the to one level higher than the current level. If X
1095 matched one of our slots, just mark that one. Otherwise, we can't
1096 easily predict which it is, so upgrade all of them. Kept slots
1097 need not be touched.
1098
1099 This is called when an ({...}) construct occurs and a statement
1100 returns a value in memory. */
1101
1102 void
1103 preserve_temp_slots (x)
1104 rtx x;
1105 {
1106 struct temp_slot *p = 0;
1107
1108 /* If there is no result, we still might have some objects whose address
1109 were taken, so we need to make sure they stay around. */
1110 if (x == 0)
1111 {
1112 for (p = temp_slots; p; p = p->next)
1113 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1114 p->level--;
1115
1116 return;
1117 }
1118
1119 /* If X is a register that is being used as a pointer, see if we have
1120 a temporary slot we know it points to. To be consistent with
1121 the code below, we really should preserve all non-kept slots
1122 if we can't find a match, but that seems to be much too costly. */
1123 if (GET_CODE (x) == REG && REGNO_POINTER_FLAG (REGNO (x)))
1124 p = find_temp_slot_from_address (x);
1125
1126 /* If X is not in memory or is at a constant address, it cannot be in
1127 a temporary slot, but it can contain something whose address was
1128 taken. */
1129 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1130 {
1131 for (p = temp_slots; p; p = p->next)
1132 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1133 p->level--;
1134
1135 return;
1136 }
1137
1138 /* First see if we can find a match. */
1139 if (p == 0)
1140 p = find_temp_slot_from_address (XEXP (x, 0));
1141
1142 if (p != 0)
1143 {
1144 /* Move everything at our level whose address was taken to our new
1145 level in case we used its address. */
1146 struct temp_slot *q;
1147
1148 if (p->level == temp_slot_level)
1149 {
1150 for (q = temp_slots; q; q = q->next)
1151 if (q != p && q->addr_taken && q->level == p->level)
1152 q->level--;
1153
1154 p->level--;
1155 p->addr_taken = 0;
1156 }
1157 return;
1158 }
1159
1160 /* Otherwise, preserve all non-kept slots at this level. */
1161 for (p = temp_slots; p; p = p->next)
1162 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1163 p->level--;
1164 }
1165
1166 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1167 with that RTL_EXPR, promote it into a temporary slot at the present
1168 level so it will not be freed when we free slots made in the
1169 RTL_EXPR. */
1170
1171 void
1172 preserve_rtl_expr_result (x)
1173 rtx x;
1174 {
1175 struct temp_slot *p;
1176
1177 /* If X is not in memory or is at a constant address, it cannot be in
1178 a temporary slot. */
1179 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1180 return;
1181
1182 /* If we can find a match, move it to our level unless it is already at
1183 an upper level. */
1184 p = find_temp_slot_from_address (XEXP (x, 0));
1185 if (p != 0)
1186 {
1187 p->level = MIN (p->level, temp_slot_level);
1188 p->rtl_expr = 0;
1189 }
1190
1191 return;
1192 }
1193
1194 /* Free all temporaries used so far. This is normally called at the end
1195 of generating code for a statement. Don't free any temporaries
1196 currently in use for an RTL_EXPR that hasn't yet been emitted.
1197 We could eventually do better than this since it can be reused while
1198 generating the same RTL_EXPR, but this is complex and probably not
1199 worthwhile. */
1200
1201 void
1202 free_temp_slots ()
1203 {
1204 struct temp_slot *p;
1205
1206 for (p = temp_slots; p; p = p->next)
1207 if (p->in_use && p->level == temp_slot_level && ! p->keep
1208 && p->rtl_expr == 0)
1209 p->in_use = 0;
1210
1211 combine_temp_slots ();
1212 }
1213
1214 /* Free all temporary slots used in T, an RTL_EXPR node. */
1215
1216 void
1217 free_temps_for_rtl_expr (t)
1218 tree t;
1219 {
1220 struct temp_slot *p;
1221
1222 for (p = temp_slots; p; p = p->next)
1223 if (p->rtl_expr == t)
1224 p->in_use = 0;
1225
1226 combine_temp_slots ();
1227 }
1228
1229 /* Mark all temporaries ever allocated in this function as not suitable
1230 for reuse until the current level is exited. */
1231
1232 void
1233 mark_all_temps_used ()
1234 {
1235 struct temp_slot *p;
1236
1237 for (p = temp_slots; p; p = p->next)
1238 {
1239 p->in_use = p->keep = 1;
1240 p->level = MIN (p->level, temp_slot_level);
1241 }
1242 }
1243
1244 /* Push deeper into the nesting level for stack temporaries. */
1245
1246 void
1247 push_temp_slots ()
1248 {
1249 temp_slot_level++;
1250 }
1251
1252 /* Pop a temporary nesting level. All slots in use in the current level
1253 are freed. */
1254
1255 void
1256 pop_temp_slots ()
1257 {
1258 struct temp_slot *p;
1259
1260 for (p = temp_slots; p; p = p->next)
1261 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1262 p->in_use = 0;
1263
1264 combine_temp_slots ();
1265
1266 temp_slot_level--;
1267 }
1268
1269 /* Initialize temporary slots. */
1270
1271 void
1272 init_temp_slots ()
1273 {
1274 /* We have not allocated any temporaries yet. */
1275 temp_slots = 0;
1276 temp_slot_level = 0;
1277 target_temp_slot_level = 0;
1278 }
1279 \f
1280 /* Retroactively move an auto variable from a register to a stack slot.
1281 This is done when an address-reference to the variable is seen. */
1282
1283 void
1284 put_var_into_stack (decl)
1285 tree decl;
1286 {
1287 register rtx reg;
1288 enum machine_mode promoted_mode, decl_mode;
1289 struct function *function = 0;
1290 tree context;
1291 int can_use_addressof;
1292
1293 context = decl_function_context (decl);
1294
1295 /* Get the current rtl used for this object and it's original mode. */
1296 reg = TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl) : DECL_RTL (decl);
1297
1298 /* No need to do anything if decl has no rtx yet
1299 since in that case caller is setting TREE_ADDRESSABLE
1300 and a stack slot will be assigned when the rtl is made. */
1301 if (reg == 0)
1302 return;
1303
1304 /* Get the declared mode for this object. */
1305 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1306 : DECL_MODE (decl));
1307 /* Get the mode it's actually stored in. */
1308 promoted_mode = GET_MODE (reg);
1309
1310 /* If this variable comes from an outer function,
1311 find that function's saved context. */
1312 if (context != current_function_decl && context != inline_function_decl)
1313 for (function = outer_function_chain; function; function = function->next)
1314 if (function->decl == context)
1315 break;
1316
1317 /* If this is a variable-size object with a pseudo to address it,
1318 put that pseudo into the stack, if the var is nonlocal. */
1319 if (DECL_NONLOCAL (decl)
1320 && GET_CODE (reg) == MEM
1321 && GET_CODE (XEXP (reg, 0)) == REG
1322 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1323 {
1324 reg = XEXP (reg, 0);
1325 decl_mode = promoted_mode = GET_MODE (reg);
1326 }
1327
1328 can_use_addressof
1329 = (function == 0
1330 /* FIXME make it work for promoted modes too */
1331 && decl_mode == promoted_mode
1332 #ifdef NON_SAVING_SETJMP
1333 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1334 #endif
1335 );
1336
1337 /* If we can't use ADDRESSOF, make sure we see through one we already
1338 generated. */
1339 if (! can_use_addressof && GET_CODE (reg) == MEM
1340 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1341 reg = XEXP (XEXP (reg, 0), 0);
1342
1343 /* Now we should have a value that resides in one or more pseudo regs. */
1344
1345 if (GET_CODE (reg) == REG)
1346 {
1347 /* If this variable lives in the current function and we don't need
1348 to put things in the stack for the sake of setjmp, try to keep it
1349 in a register until we know we actually need the address. */
1350 if (can_use_addressof)
1351 gen_mem_addressof (reg, decl);
1352 else
1353 put_reg_into_stack (function, reg, TREE_TYPE (decl),
1354 promoted_mode, decl_mode,
1355 TREE_SIDE_EFFECTS (decl), 0);
1356 }
1357 else if (GET_CODE (reg) == CONCAT)
1358 {
1359 /* A CONCAT contains two pseudos; put them both in the stack.
1360 We do it so they end up consecutive. */
1361 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1362 tree part_type = TREE_TYPE (TREE_TYPE (decl));
1363 #ifdef FRAME_GROWS_DOWNWARD
1364 /* Since part 0 should have a lower address, do it second. */
1365 put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
1366 part_mode, TREE_SIDE_EFFECTS (decl), 0);
1367 put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
1368 part_mode, TREE_SIDE_EFFECTS (decl), 0);
1369 #else
1370 put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
1371 part_mode, TREE_SIDE_EFFECTS (decl), 0);
1372 put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
1373 part_mode, TREE_SIDE_EFFECTS (decl), 0);
1374 #endif
1375
1376 /* Change the CONCAT into a combined MEM for both parts. */
1377 PUT_CODE (reg, MEM);
1378 MEM_VOLATILE_P (reg) = MEM_VOLATILE_P (XEXP (reg, 0));
1379
1380 /* The two parts are in memory order already.
1381 Use the lower parts address as ours. */
1382 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1383 /* Prevent sharing of rtl that might lose. */
1384 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1385 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1386 }
1387 else
1388 return;
1389
1390 if (flag_check_memory_usage)
1391 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
1392 XEXP (reg, 0), ptr_mode,
1393 GEN_INT (GET_MODE_SIZE (GET_MODE (reg))),
1394 TYPE_MODE (sizetype),
1395 GEN_INT (MEMORY_USE_RW),
1396 TYPE_MODE (integer_type_node));
1397 }
1398
1399 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1400 into the stack frame of FUNCTION (0 means the current function).
1401 DECL_MODE is the machine mode of the user-level data type.
1402 PROMOTED_MODE is the machine mode of the register.
1403 VOLATILE_P is nonzero if this is for a "volatile" decl. */
1404
1405 static void
1406 put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p,
1407 original_regno)
1408 struct function *function;
1409 rtx reg;
1410 tree type;
1411 enum machine_mode promoted_mode, decl_mode;
1412 int volatile_p;
1413 int original_regno;
1414 {
1415 rtx new = 0;
1416 int regno = original_regno;
1417
1418 if (regno == 0)
1419 regno = REGNO (reg);
1420
1421 if (function)
1422 {
1423 if (regno < function->max_parm_reg)
1424 new = function->parm_reg_stack_loc[regno];
1425 if (new == 0)
1426 new = assign_outer_stack_local (decl_mode, GET_MODE_SIZE (decl_mode),
1427 0, function);
1428 }
1429 else
1430 {
1431 if (regno < max_parm_reg)
1432 new = parm_reg_stack_loc[regno];
1433 if (new == 0)
1434 new = assign_stack_local (decl_mode, GET_MODE_SIZE (decl_mode), 0);
1435 }
1436
1437 PUT_MODE (reg, decl_mode);
1438 XEXP (reg, 0) = XEXP (new, 0);
1439 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1440 MEM_VOLATILE_P (reg) = volatile_p;
1441 PUT_CODE (reg, MEM);
1442
1443 /* If this is a memory ref that contains aggregate components,
1444 mark it as such for cse and loop optimize. If we are reusing a
1445 previously generated stack slot, then we need to copy the bit in
1446 case it was set for other reasons. For instance, it is set for
1447 __builtin_va_alist. */
1448 MEM_IN_STRUCT_P (reg) = AGGREGATE_TYPE_P (type) | MEM_IN_STRUCT_P (new);
1449
1450 /* Now make sure that all refs to the variable, previously made
1451 when it was a register, are fixed up to be valid again. */
1452 if (function)
1453 {
1454 struct var_refs_queue *temp;
1455
1456 /* Variable is inherited; fix it up when we get back to its function. */
1457 push_obstacks (function->function_obstack,
1458 function->function_maybepermanent_obstack);
1459
1460 /* See comment in restore_tree_status in tree.c for why this needs to be
1461 on saveable obstack. */
1462 temp
1463 = (struct var_refs_queue *) savealloc (sizeof (struct var_refs_queue));
1464 temp->modified = reg;
1465 temp->promoted_mode = promoted_mode;
1466 temp->unsignedp = TREE_UNSIGNED (type);
1467 temp->next = function->fixup_var_refs_queue;
1468 function->fixup_var_refs_queue = temp;
1469 pop_obstacks ();
1470 }
1471 else
1472 /* Variable is local; fix it up now. */
1473 fixup_var_refs (reg, promoted_mode, TREE_UNSIGNED (type));
1474 }
1475 \f
1476 static void
1477 fixup_var_refs (var, promoted_mode, unsignedp)
1478 rtx var;
1479 enum machine_mode promoted_mode;
1480 int unsignedp;
1481 {
1482 tree pending;
1483 rtx first_insn = get_insns ();
1484 struct sequence_stack *stack = sequence_stack;
1485 tree rtl_exps = rtl_expr_chain;
1486
1487 /* Must scan all insns for stack-refs that exceed the limit. */
1488 fixup_var_refs_insns (var, promoted_mode, unsignedp, first_insn, stack == 0);
1489
1490 /* Scan all pending sequences too. */
1491 for (; stack; stack = stack->next)
1492 {
1493 push_to_sequence (stack->first);
1494 fixup_var_refs_insns (var, promoted_mode, unsignedp,
1495 stack->first, stack->next != 0);
1496 /* Update remembered end of sequence
1497 in case we added an insn at the end. */
1498 stack->last = get_last_insn ();
1499 end_sequence ();
1500 }
1501
1502 /* Scan all waiting RTL_EXPRs too. */
1503 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1504 {
1505 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1506 if (seq != const0_rtx && seq != 0)
1507 {
1508 push_to_sequence (seq);
1509 fixup_var_refs_insns (var, promoted_mode, unsignedp, seq, 0);
1510 end_sequence ();
1511 }
1512 }
1513 }
1514 \f
1515 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1516 some part of an insn. Return a struct fixup_replacement whose OLD
1517 value is equal to X. Allocate a new structure if no such entry exists. */
1518
1519 static struct fixup_replacement *
1520 find_fixup_replacement (replacements, x)
1521 struct fixup_replacement **replacements;
1522 rtx x;
1523 {
1524 struct fixup_replacement *p;
1525
1526 /* See if we have already replaced this. */
1527 for (p = *replacements; p && p->old != x; p = p->next)
1528 ;
1529
1530 if (p == 0)
1531 {
1532 p = (struct fixup_replacement *) oballoc (sizeof (struct fixup_replacement));
1533 p->old = x;
1534 p->new = 0;
1535 p->next = *replacements;
1536 *replacements = p;
1537 }
1538
1539 return p;
1540 }
1541
1542 /* Scan the insn-chain starting with INSN for refs to VAR
1543 and fix them up. TOPLEVEL is nonzero if this chain is the
1544 main chain of insns for the current function. */
1545
1546 static void
1547 fixup_var_refs_insns (var, promoted_mode, unsignedp, insn, toplevel)
1548 rtx var;
1549 enum machine_mode promoted_mode;
1550 int unsignedp;
1551 rtx insn;
1552 int toplevel;
1553 {
1554 rtx call_dest = 0;
1555
1556 while (insn)
1557 {
1558 rtx next = NEXT_INSN (insn);
1559 rtx note;
1560 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1561 {
1562 /* If this is a CLOBBER of VAR, delete it.
1563
1564 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1565 and REG_RETVAL notes too. */
1566 if (GET_CODE (PATTERN (insn)) == CLOBBER
1567 && XEXP (PATTERN (insn), 0) == var)
1568 {
1569 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1570 /* The REG_LIBCALL note will go away since we are going to
1571 turn INSN into a NOTE, so just delete the
1572 corresponding REG_RETVAL note. */
1573 remove_note (XEXP (note, 0),
1574 find_reg_note (XEXP (note, 0), REG_RETVAL,
1575 NULL_RTX));
1576
1577 /* In unoptimized compilation, we shouldn't call delete_insn
1578 except in jump.c doing warnings. */
1579 PUT_CODE (insn, NOTE);
1580 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1581 NOTE_SOURCE_FILE (insn) = 0;
1582 }
1583
1584 /* The insn to load VAR from a home in the arglist
1585 is now a no-op. When we see it, just delete it. */
1586 else if (toplevel
1587 && GET_CODE (PATTERN (insn)) == SET
1588 && SET_DEST (PATTERN (insn)) == var
1589 /* If this represents the result of an insn group,
1590 don't delete the insn. */
1591 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1592 && rtx_equal_p (SET_SRC (PATTERN (insn)), var))
1593 {
1594 /* In unoptimized compilation, we shouldn't call delete_insn
1595 except in jump.c doing warnings. */
1596 PUT_CODE (insn, NOTE);
1597 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1598 NOTE_SOURCE_FILE (insn) = 0;
1599 if (insn == last_parm_insn)
1600 last_parm_insn = PREV_INSN (next);
1601 }
1602 else
1603 {
1604 struct fixup_replacement *replacements = 0;
1605 rtx next_insn = NEXT_INSN (insn);
1606
1607 if (SMALL_REGISTER_CLASSES)
1608 {
1609 /* If the insn that copies the results of a CALL_INSN
1610 into a pseudo now references VAR, we have to use an
1611 intermediate pseudo since we want the life of the
1612 return value register to be only a single insn.
1613
1614 If we don't use an intermediate pseudo, such things as
1615 address computations to make the address of VAR valid
1616 if it is not can be placed between the CALL_INSN and INSN.
1617
1618 To make sure this doesn't happen, we record the destination
1619 of the CALL_INSN and see if the next insn uses both that
1620 and VAR. */
1621
1622 if (call_dest != 0 && GET_CODE (insn) == INSN
1623 && reg_mentioned_p (var, PATTERN (insn))
1624 && reg_mentioned_p (call_dest, PATTERN (insn)))
1625 {
1626 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1627
1628 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1629
1630 PATTERN (insn) = replace_rtx (PATTERN (insn),
1631 call_dest, temp);
1632 }
1633
1634 if (GET_CODE (insn) == CALL_INSN
1635 && GET_CODE (PATTERN (insn)) == SET)
1636 call_dest = SET_DEST (PATTERN (insn));
1637 else if (GET_CODE (insn) == CALL_INSN
1638 && GET_CODE (PATTERN (insn)) == PARALLEL
1639 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1640 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1641 else
1642 call_dest = 0;
1643 }
1644
1645 /* See if we have to do anything to INSN now that VAR is in
1646 memory. If it needs to be loaded into a pseudo, use a single
1647 pseudo for the entire insn in case there is a MATCH_DUP
1648 between two operands. We pass a pointer to the head of
1649 a list of struct fixup_replacements. If fixup_var_refs_1
1650 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1651 it will record them in this list.
1652
1653 If it allocated a pseudo for any replacement, we copy into
1654 it here. */
1655
1656 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1657 &replacements);
1658
1659 /* If this is last_parm_insn, and any instructions were output
1660 after it to fix it up, then we must set last_parm_insn to
1661 the last such instruction emitted. */
1662 if (insn == last_parm_insn)
1663 last_parm_insn = PREV_INSN (next_insn);
1664
1665 while (replacements)
1666 {
1667 if (GET_CODE (replacements->new) == REG)
1668 {
1669 rtx insert_before;
1670 rtx seq;
1671
1672 /* OLD might be a (subreg (mem)). */
1673 if (GET_CODE (replacements->old) == SUBREG)
1674 replacements->old
1675 = fixup_memory_subreg (replacements->old, insn, 0);
1676 else
1677 replacements->old
1678 = fixup_stack_1 (replacements->old, insn);
1679
1680 insert_before = insn;
1681
1682 /* If we are changing the mode, do a conversion.
1683 This might be wasteful, but combine.c will
1684 eliminate much of the waste. */
1685
1686 if (GET_MODE (replacements->new)
1687 != GET_MODE (replacements->old))
1688 {
1689 start_sequence ();
1690 convert_move (replacements->new,
1691 replacements->old, unsignedp);
1692 seq = gen_sequence ();
1693 end_sequence ();
1694 }
1695 else
1696 seq = gen_move_insn (replacements->new,
1697 replacements->old);
1698
1699 emit_insn_before (seq, insert_before);
1700 }
1701
1702 replacements = replacements->next;
1703 }
1704 }
1705
1706 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1707 But don't touch other insns referred to by reg-notes;
1708 we will get them elsewhere. */
1709 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1710 if (GET_CODE (note) != INSN_LIST)
1711 XEXP (note, 0)
1712 = walk_fixup_memory_subreg (XEXP (note, 0), insn, 1);
1713 }
1714 insn = next;
1715 }
1716 }
1717 \f
1718 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1719 See if the rtx expression at *LOC in INSN needs to be changed.
1720
1721 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1722 contain a list of original rtx's and replacements. If we find that we need
1723 to modify this insn by replacing a memory reference with a pseudo or by
1724 making a new MEM to implement a SUBREG, we consult that list to see if
1725 we have already chosen a replacement. If none has already been allocated,
1726 we allocate it and update the list. fixup_var_refs_insns will copy VAR
1727 or the SUBREG, as appropriate, to the pseudo. */
1728
1729 static void
1730 fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements)
1731 register rtx var;
1732 enum machine_mode promoted_mode;
1733 register rtx *loc;
1734 rtx insn;
1735 struct fixup_replacement **replacements;
1736 {
1737 register int i;
1738 register rtx x = *loc;
1739 RTX_CODE code = GET_CODE (x);
1740 register char *fmt;
1741 register rtx tem, tem1;
1742 struct fixup_replacement *replacement;
1743
1744 switch (code)
1745 {
1746 case ADDRESSOF:
1747 if (XEXP (x, 0) == var)
1748 {
1749 /* Prevent sharing of rtl that might lose. */
1750 rtx sub = copy_rtx (XEXP (var, 0));
1751
1752 start_sequence ();
1753
1754 if (! validate_change (insn, loc, sub, 0))
1755 {
1756 rtx y = force_operand (sub, NULL_RTX);
1757
1758 if (! validate_change (insn, loc, y, 0))
1759 *loc = copy_to_reg (y);
1760 }
1761
1762 emit_insn_before (gen_sequence (), insn);
1763 end_sequence ();
1764 }
1765 return;
1766
1767 case MEM:
1768 if (var == x)
1769 {
1770 /* If we already have a replacement, use it. Otherwise,
1771 try to fix up this address in case it is invalid. */
1772
1773 replacement = find_fixup_replacement (replacements, var);
1774 if (replacement->new)
1775 {
1776 *loc = replacement->new;
1777 return;
1778 }
1779
1780 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1781
1782 /* Unless we are forcing memory to register or we changed the mode,
1783 we can leave things the way they are if the insn is valid. */
1784
1785 INSN_CODE (insn) = -1;
1786 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1787 && recog_memoized (insn) >= 0)
1788 return;
1789
1790 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1791 return;
1792 }
1793
1794 /* If X contains VAR, we need to unshare it here so that we update
1795 each occurrence separately. But all identical MEMs in one insn
1796 must be replaced with the same rtx because of the possibility of
1797 MATCH_DUPs. */
1798
1799 if (reg_mentioned_p (var, x))
1800 {
1801 replacement = find_fixup_replacement (replacements, x);
1802 if (replacement->new == 0)
1803 replacement->new = copy_most_rtx (x, var);
1804
1805 *loc = x = replacement->new;
1806 }
1807 break;
1808
1809 case REG:
1810 case CC0:
1811 case PC:
1812 case CONST_INT:
1813 case CONST:
1814 case SYMBOL_REF:
1815 case LABEL_REF:
1816 case CONST_DOUBLE:
1817 return;
1818
1819 case SIGN_EXTRACT:
1820 case ZERO_EXTRACT:
1821 /* Note that in some cases those types of expressions are altered
1822 by optimize_bit_field, and do not survive to get here. */
1823 if (XEXP (x, 0) == var
1824 || (GET_CODE (XEXP (x, 0)) == SUBREG
1825 && SUBREG_REG (XEXP (x, 0)) == var))
1826 {
1827 /* Get TEM as a valid MEM in the mode presently in the insn.
1828
1829 We don't worry about the possibility of MATCH_DUP here; it
1830 is highly unlikely and would be tricky to handle. */
1831
1832 tem = XEXP (x, 0);
1833 if (GET_CODE (tem) == SUBREG)
1834 {
1835 if (GET_MODE_BITSIZE (GET_MODE (tem))
1836 > GET_MODE_BITSIZE (GET_MODE (var)))
1837 {
1838 replacement = find_fixup_replacement (replacements, var);
1839 if (replacement->new == 0)
1840 replacement->new = gen_reg_rtx (GET_MODE (var));
1841 SUBREG_REG (tem) = replacement->new;
1842 }
1843 else
1844 tem = fixup_memory_subreg (tem, insn, 0);
1845 }
1846 else
1847 tem = fixup_stack_1 (tem, insn);
1848
1849 /* Unless we want to load from memory, get TEM into the proper mode
1850 for an extract from memory. This can only be done if the
1851 extract is at a constant position and length. */
1852
1853 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
1854 && GET_CODE (XEXP (x, 2)) == CONST_INT
1855 && ! mode_dependent_address_p (XEXP (tem, 0))
1856 && ! MEM_VOLATILE_P (tem))
1857 {
1858 enum machine_mode wanted_mode = VOIDmode;
1859 enum machine_mode is_mode = GET_MODE (tem);
1860 int pos = INTVAL (XEXP (x, 2));
1861
1862 #ifdef HAVE_extzv
1863 if (GET_CODE (x) == ZERO_EXTRACT)
1864 wanted_mode = insn_operand_mode[(int) CODE_FOR_extzv][1];
1865 #endif
1866 #ifdef HAVE_extv
1867 if (GET_CODE (x) == SIGN_EXTRACT)
1868 wanted_mode = insn_operand_mode[(int) CODE_FOR_extv][1];
1869 #endif
1870 /* If we have a narrower mode, we can do something. */
1871 if (wanted_mode != VOIDmode
1872 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
1873 {
1874 int offset = pos / BITS_PER_UNIT;
1875 rtx old_pos = XEXP (x, 2);
1876 rtx newmem;
1877
1878 /* If the bytes and bits are counted differently, we
1879 must adjust the offset. */
1880 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
1881 offset = (GET_MODE_SIZE (is_mode)
1882 - GET_MODE_SIZE (wanted_mode) - offset);
1883
1884 pos %= GET_MODE_BITSIZE (wanted_mode);
1885
1886 newmem = gen_rtx_MEM (wanted_mode,
1887 plus_constant (XEXP (tem, 0), offset));
1888 RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (tem);
1889 MEM_VOLATILE_P (newmem) = MEM_VOLATILE_P (tem);
1890 MEM_IN_STRUCT_P (newmem) = MEM_IN_STRUCT_P (tem);
1891
1892 /* Make the change and see if the insn remains valid. */
1893 INSN_CODE (insn) = -1;
1894 XEXP (x, 0) = newmem;
1895 XEXP (x, 2) = GEN_INT (pos);
1896
1897 if (recog_memoized (insn) >= 0)
1898 return;
1899
1900 /* Otherwise, restore old position. XEXP (x, 0) will be
1901 restored later. */
1902 XEXP (x, 2) = old_pos;
1903 }
1904 }
1905
1906 /* If we get here, the bitfield extract insn can't accept a memory
1907 reference. Copy the input into a register. */
1908
1909 tem1 = gen_reg_rtx (GET_MODE (tem));
1910 emit_insn_before (gen_move_insn (tem1, tem), insn);
1911 XEXP (x, 0) = tem1;
1912 return;
1913 }
1914 break;
1915
1916 case SUBREG:
1917 if (SUBREG_REG (x) == var)
1918 {
1919 /* If this is a special SUBREG made because VAR was promoted
1920 from a wider mode, replace it with VAR and call ourself
1921 recursively, this time saying that the object previously
1922 had its current mode (by virtue of the SUBREG). */
1923
1924 if (SUBREG_PROMOTED_VAR_P (x))
1925 {
1926 *loc = var;
1927 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements);
1928 return;
1929 }
1930
1931 /* If this SUBREG makes VAR wider, it has become a paradoxical
1932 SUBREG with VAR in memory, but these aren't allowed at this
1933 stage of the compilation. So load VAR into a pseudo and take
1934 a SUBREG of that pseudo. */
1935 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
1936 {
1937 replacement = find_fixup_replacement (replacements, var);
1938 if (replacement->new == 0)
1939 replacement->new = gen_reg_rtx (GET_MODE (var));
1940 SUBREG_REG (x) = replacement->new;
1941 return;
1942 }
1943
1944 /* See if we have already found a replacement for this SUBREG.
1945 If so, use it. Otherwise, make a MEM and see if the insn
1946 is recognized. If not, or if we should force MEM into a register,
1947 make a pseudo for this SUBREG. */
1948 replacement = find_fixup_replacement (replacements, x);
1949 if (replacement->new)
1950 {
1951 *loc = replacement->new;
1952 return;
1953 }
1954
1955 replacement->new = *loc = fixup_memory_subreg (x, insn, 0);
1956
1957 INSN_CODE (insn) = -1;
1958 if (! flag_force_mem && recog_memoized (insn) >= 0)
1959 return;
1960
1961 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
1962 return;
1963 }
1964 break;
1965
1966 case SET:
1967 /* First do special simplification of bit-field references. */
1968 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
1969 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
1970 optimize_bit_field (x, insn, 0);
1971 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
1972 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
1973 optimize_bit_field (x, insn, NULL_PTR);
1974
1975 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
1976 into a register and then store it back out. */
1977 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
1978 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
1979 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
1980 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
1981 > GET_MODE_SIZE (GET_MODE (var))))
1982 {
1983 replacement = find_fixup_replacement (replacements, var);
1984 if (replacement->new == 0)
1985 replacement->new = gen_reg_rtx (GET_MODE (var));
1986
1987 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
1988 emit_insn_after (gen_move_insn (var, replacement->new), insn);
1989 }
1990
1991 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
1992 insn into a pseudo and store the low part of the pseudo into VAR. */
1993 if (GET_CODE (SET_DEST (x)) == SUBREG
1994 && SUBREG_REG (SET_DEST (x)) == var
1995 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
1996 > GET_MODE_SIZE (GET_MODE (var))))
1997 {
1998 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
1999 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2000 tem)),
2001 insn);
2002 break;
2003 }
2004
2005 {
2006 rtx dest = SET_DEST (x);
2007 rtx src = SET_SRC (x);
2008 #ifdef HAVE_insv
2009 rtx outerdest = dest;
2010 #endif
2011
2012 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2013 || GET_CODE (dest) == SIGN_EXTRACT
2014 || GET_CODE (dest) == ZERO_EXTRACT)
2015 dest = XEXP (dest, 0);
2016
2017 if (GET_CODE (src) == SUBREG)
2018 src = XEXP (src, 0);
2019
2020 /* If VAR does not appear at the top level of the SET
2021 just scan the lower levels of the tree. */
2022
2023 if (src != var && dest != var)
2024 break;
2025
2026 /* We will need to rerecognize this insn. */
2027 INSN_CODE (insn) = -1;
2028
2029 #ifdef HAVE_insv
2030 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var)
2031 {
2032 /* Since this case will return, ensure we fixup all the
2033 operands here. */
2034 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2035 insn, replacements);
2036 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2037 insn, replacements);
2038 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2039 insn, replacements);
2040
2041 tem = XEXP (outerdest, 0);
2042
2043 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2044 that may appear inside a ZERO_EXTRACT.
2045 This was legitimate when the MEM was a REG. */
2046 if (GET_CODE (tem) == SUBREG
2047 && SUBREG_REG (tem) == var)
2048 tem = fixup_memory_subreg (tem, insn, 0);
2049 else
2050 tem = fixup_stack_1 (tem, insn);
2051
2052 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2053 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2054 && ! mode_dependent_address_p (XEXP (tem, 0))
2055 && ! MEM_VOLATILE_P (tem))
2056 {
2057 enum machine_mode wanted_mode
2058 = insn_operand_mode[(int) CODE_FOR_insv][0];
2059 enum machine_mode is_mode = GET_MODE (tem);
2060 int width = INTVAL (XEXP (outerdest, 1));
2061 int pos = INTVAL (XEXP (outerdest, 2));
2062
2063 /* If we have a narrower mode, we can do something. */
2064 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2065 {
2066 int offset = pos / BITS_PER_UNIT;
2067 rtx old_pos = XEXP (outerdest, 2);
2068 rtx newmem;
2069
2070 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2071 offset = (GET_MODE_SIZE (is_mode)
2072 - GET_MODE_SIZE (wanted_mode) - offset);
2073
2074 pos %= GET_MODE_BITSIZE (wanted_mode);
2075
2076 newmem = gen_rtx_MEM (wanted_mode,
2077 plus_constant (XEXP (tem, 0), offset));
2078 RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (tem);
2079 MEM_VOLATILE_P (newmem) = MEM_VOLATILE_P (tem);
2080 MEM_IN_STRUCT_P (newmem) = MEM_IN_STRUCT_P (tem);
2081
2082 /* Make the change and see if the insn remains valid. */
2083 INSN_CODE (insn) = -1;
2084 XEXP (outerdest, 0) = newmem;
2085 XEXP (outerdest, 2) = GEN_INT (pos);
2086
2087 if (recog_memoized (insn) >= 0)
2088 return;
2089
2090 /* Otherwise, restore old position. XEXP (x, 0) will be
2091 restored later. */
2092 XEXP (outerdest, 2) = old_pos;
2093 }
2094 }
2095
2096 /* If we get here, the bit-field store doesn't allow memory
2097 or isn't located at a constant position. Load the value into
2098 a register, do the store, and put it back into memory. */
2099
2100 tem1 = gen_reg_rtx (GET_MODE (tem));
2101 emit_insn_before (gen_move_insn (tem1, tem), insn);
2102 emit_insn_after (gen_move_insn (tem, tem1), insn);
2103 XEXP (outerdest, 0) = tem1;
2104 return;
2105 }
2106 #endif
2107
2108 /* STRICT_LOW_PART is a no-op on memory references
2109 and it can cause combinations to be unrecognizable,
2110 so eliminate it. */
2111
2112 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2113 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2114
2115 /* A valid insn to copy VAR into or out of a register
2116 must be left alone, to avoid an infinite loop here.
2117 If the reference to VAR is by a subreg, fix that up,
2118 since SUBREG is not valid for a memref.
2119 Also fix up the address of the stack slot.
2120
2121 Note that we must not try to recognize the insn until
2122 after we know that we have valid addresses and no
2123 (subreg (mem ...) ...) constructs, since these interfere
2124 with determining the validity of the insn. */
2125
2126 if ((SET_SRC (x) == var
2127 || (GET_CODE (SET_SRC (x)) == SUBREG
2128 && SUBREG_REG (SET_SRC (x)) == var))
2129 && (GET_CODE (SET_DEST (x)) == REG
2130 || (GET_CODE (SET_DEST (x)) == SUBREG
2131 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2132 && GET_MODE (var) == promoted_mode
2133 && x == single_set (insn))
2134 {
2135 rtx pat;
2136
2137 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2138 if (replacement->new)
2139 SET_SRC (x) = replacement->new;
2140 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2141 SET_SRC (x) = replacement->new
2142 = fixup_memory_subreg (SET_SRC (x), insn, 0);
2143 else
2144 SET_SRC (x) = replacement->new
2145 = fixup_stack_1 (SET_SRC (x), insn);
2146
2147 if (recog_memoized (insn) >= 0)
2148 return;
2149
2150 /* INSN is not valid, but we know that we want to
2151 copy SET_SRC (x) to SET_DEST (x) in some way. So
2152 we generate the move and see whether it requires more
2153 than one insn. If it does, we emit those insns and
2154 delete INSN. Otherwise, we an just replace the pattern
2155 of INSN; we have already verified above that INSN has
2156 no other function that to do X. */
2157
2158 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2159 if (GET_CODE (pat) == SEQUENCE)
2160 {
2161 emit_insn_after (pat, insn);
2162 PUT_CODE (insn, NOTE);
2163 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2164 NOTE_SOURCE_FILE (insn) = 0;
2165 }
2166 else
2167 PATTERN (insn) = pat;
2168
2169 return;
2170 }
2171
2172 if ((SET_DEST (x) == var
2173 || (GET_CODE (SET_DEST (x)) == SUBREG
2174 && SUBREG_REG (SET_DEST (x)) == var))
2175 && (GET_CODE (SET_SRC (x)) == REG
2176 || (GET_CODE (SET_SRC (x)) == SUBREG
2177 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2178 && GET_MODE (var) == promoted_mode
2179 && x == single_set (insn))
2180 {
2181 rtx pat;
2182
2183 if (GET_CODE (SET_DEST (x)) == SUBREG)
2184 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn, 0);
2185 else
2186 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2187
2188 if (recog_memoized (insn) >= 0)
2189 return;
2190
2191 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2192 if (GET_CODE (pat) == SEQUENCE)
2193 {
2194 emit_insn_after (pat, insn);
2195 PUT_CODE (insn, NOTE);
2196 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2197 NOTE_SOURCE_FILE (insn) = 0;
2198 }
2199 else
2200 PATTERN (insn) = pat;
2201
2202 return;
2203 }
2204
2205 /* Otherwise, storing into VAR must be handled specially
2206 by storing into a temporary and copying that into VAR
2207 with a new insn after this one. Note that this case
2208 will be used when storing into a promoted scalar since
2209 the insn will now have different modes on the input
2210 and output and hence will be invalid (except for the case
2211 of setting it to a constant, which does not need any
2212 change if it is valid). We generate extra code in that case,
2213 but combine.c will eliminate it. */
2214
2215 if (dest == var)
2216 {
2217 rtx temp;
2218 rtx fixeddest = SET_DEST (x);
2219
2220 /* STRICT_LOW_PART can be discarded, around a MEM. */
2221 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2222 fixeddest = XEXP (fixeddest, 0);
2223 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2224 if (GET_CODE (fixeddest) == SUBREG)
2225 {
2226 fixeddest = fixup_memory_subreg (fixeddest, insn, 0);
2227 promoted_mode = GET_MODE (fixeddest);
2228 }
2229 else
2230 fixeddest = fixup_stack_1 (fixeddest, insn);
2231
2232 temp = gen_reg_rtx (promoted_mode);
2233
2234 emit_insn_after (gen_move_insn (fixeddest,
2235 gen_lowpart (GET_MODE (fixeddest),
2236 temp)),
2237 insn);
2238
2239 SET_DEST (x) = temp;
2240 }
2241 }
2242
2243 default:
2244 break;
2245 }
2246
2247 /* Nothing special about this RTX; fix its operands. */
2248
2249 fmt = GET_RTX_FORMAT (code);
2250 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2251 {
2252 if (fmt[i] == 'e')
2253 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements);
2254 if (fmt[i] == 'E')
2255 {
2256 register int j;
2257 for (j = 0; j < XVECLEN (x, i); j++)
2258 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2259 insn, replacements);
2260 }
2261 }
2262 }
2263 \f
2264 /* Given X, an rtx of the form (SUBREG:m1 (MEM:m2 addr)),
2265 return an rtx (MEM:m1 newaddr) which is equivalent.
2266 If any insns must be emitted to compute NEWADDR, put them before INSN.
2267
2268 UNCRITICAL nonzero means accept paradoxical subregs.
2269 This is used for subregs found inside REG_NOTES. */
2270
2271 static rtx
2272 fixup_memory_subreg (x, insn, uncritical)
2273 rtx x;
2274 rtx insn;
2275 int uncritical;
2276 {
2277 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
2278 rtx addr = XEXP (SUBREG_REG (x), 0);
2279 enum machine_mode mode = GET_MODE (x);
2280 rtx result;
2281
2282 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2283 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
2284 && ! uncritical)
2285 abort ();
2286
2287 if (BYTES_BIG_ENDIAN)
2288 offset += (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2289 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
2290 addr = plus_constant (addr, offset);
2291 if (!flag_force_addr && memory_address_p (mode, addr))
2292 /* Shortcut if no insns need be emitted. */
2293 return change_address (SUBREG_REG (x), mode, addr);
2294 start_sequence ();
2295 result = change_address (SUBREG_REG (x), mode, addr);
2296 emit_insn_before (gen_sequence (), insn);
2297 end_sequence ();
2298 return result;
2299 }
2300
2301 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2302 Replace subexpressions of X in place.
2303 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2304 Otherwise return X, with its contents possibly altered.
2305
2306 If any insns must be emitted to compute NEWADDR, put them before INSN.
2307
2308 UNCRITICAL is as in fixup_memory_subreg. */
2309
2310 static rtx
2311 walk_fixup_memory_subreg (x, insn, uncritical)
2312 register rtx x;
2313 rtx insn;
2314 int uncritical;
2315 {
2316 register enum rtx_code code;
2317 register char *fmt;
2318 register int i;
2319
2320 if (x == 0)
2321 return 0;
2322
2323 code = GET_CODE (x);
2324
2325 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2326 return fixup_memory_subreg (x, insn, uncritical);
2327
2328 /* Nothing special about this RTX; fix its operands. */
2329
2330 fmt = GET_RTX_FORMAT (code);
2331 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2332 {
2333 if (fmt[i] == 'e')
2334 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn, uncritical);
2335 if (fmt[i] == 'E')
2336 {
2337 register int j;
2338 for (j = 0; j < XVECLEN (x, i); j++)
2339 XVECEXP (x, i, j)
2340 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn, uncritical);
2341 }
2342 }
2343 return x;
2344 }
2345 \f
2346 /* For each memory ref within X, if it refers to a stack slot
2347 with an out of range displacement, put the address in a temp register
2348 (emitting new insns before INSN to load these registers)
2349 and alter the memory ref to use that register.
2350 Replace each such MEM rtx with a copy, to avoid clobberage. */
2351
2352 static rtx
2353 fixup_stack_1 (x, insn)
2354 rtx x;
2355 rtx insn;
2356 {
2357 register int i;
2358 register RTX_CODE code = GET_CODE (x);
2359 register char *fmt;
2360
2361 if (code == MEM)
2362 {
2363 register rtx ad = XEXP (x, 0);
2364 /* If we have address of a stack slot but it's not valid
2365 (displacement is too large), compute the sum in a register. */
2366 if (GET_CODE (ad) == PLUS
2367 && GET_CODE (XEXP (ad, 0)) == REG
2368 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2369 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2370 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2371 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2372 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2373 #endif
2374 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2375 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2376 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2377 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2378 {
2379 rtx temp, seq;
2380 if (memory_address_p (GET_MODE (x), ad))
2381 return x;
2382
2383 start_sequence ();
2384 temp = copy_to_reg (ad);
2385 seq = gen_sequence ();
2386 end_sequence ();
2387 emit_insn_before (seq, insn);
2388 return change_address (x, VOIDmode, temp);
2389 }
2390 return x;
2391 }
2392
2393 fmt = GET_RTX_FORMAT (code);
2394 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2395 {
2396 if (fmt[i] == 'e')
2397 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2398 if (fmt[i] == 'E')
2399 {
2400 register int j;
2401 for (j = 0; j < XVECLEN (x, i); j++)
2402 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2403 }
2404 }
2405 return x;
2406 }
2407 \f
2408 /* Optimization: a bit-field instruction whose field
2409 happens to be a byte or halfword in memory
2410 can be changed to a move instruction.
2411
2412 We call here when INSN is an insn to examine or store into a bit-field.
2413 BODY is the SET-rtx to be altered.
2414
2415 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2416 (Currently this is called only from function.c, and EQUIV_MEM
2417 is always 0.) */
2418
2419 static void
2420 optimize_bit_field (body, insn, equiv_mem)
2421 rtx body;
2422 rtx insn;
2423 rtx *equiv_mem;
2424 {
2425 register rtx bitfield;
2426 int destflag;
2427 rtx seq = 0;
2428 enum machine_mode mode;
2429
2430 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2431 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2432 bitfield = SET_DEST (body), destflag = 1;
2433 else
2434 bitfield = SET_SRC (body), destflag = 0;
2435
2436 /* First check that the field being stored has constant size and position
2437 and is in fact a byte or halfword suitably aligned. */
2438
2439 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2440 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2441 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2442 != BLKmode)
2443 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2444 {
2445 register rtx memref = 0;
2446
2447 /* Now check that the containing word is memory, not a register,
2448 and that it is safe to change the machine mode. */
2449
2450 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2451 memref = XEXP (bitfield, 0);
2452 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2453 && equiv_mem != 0)
2454 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2455 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2456 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2457 memref = SUBREG_REG (XEXP (bitfield, 0));
2458 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2459 && equiv_mem != 0
2460 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2461 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2462
2463 if (memref
2464 && ! mode_dependent_address_p (XEXP (memref, 0))
2465 && ! MEM_VOLATILE_P (memref))
2466 {
2467 /* Now adjust the address, first for any subreg'ing
2468 that we are now getting rid of,
2469 and then for which byte of the word is wanted. */
2470
2471 register int offset = INTVAL (XEXP (bitfield, 2));
2472 rtx insns;
2473
2474 /* Adjust OFFSET to count bits from low-address byte. */
2475 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2476 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2477 - offset - INTVAL (XEXP (bitfield, 1)));
2478
2479 /* Adjust OFFSET to count bytes from low-address byte. */
2480 offset /= BITS_PER_UNIT;
2481 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2482 {
2483 offset += SUBREG_WORD (XEXP (bitfield, 0)) * UNITS_PER_WORD;
2484 if (BYTES_BIG_ENDIAN)
2485 offset -= (MIN (UNITS_PER_WORD,
2486 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2487 - MIN (UNITS_PER_WORD,
2488 GET_MODE_SIZE (GET_MODE (memref))));
2489 }
2490
2491 start_sequence ();
2492 memref = change_address (memref, mode,
2493 plus_constant (XEXP (memref, 0), offset));
2494 insns = get_insns ();
2495 end_sequence ();
2496 emit_insns_before (insns, insn);
2497
2498 /* Store this memory reference where
2499 we found the bit field reference. */
2500
2501 if (destflag)
2502 {
2503 validate_change (insn, &SET_DEST (body), memref, 1);
2504 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2505 {
2506 rtx src = SET_SRC (body);
2507 while (GET_CODE (src) == SUBREG
2508 && SUBREG_WORD (src) == 0)
2509 src = SUBREG_REG (src);
2510 if (GET_MODE (src) != GET_MODE (memref))
2511 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2512 validate_change (insn, &SET_SRC (body), src, 1);
2513 }
2514 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2515 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2516 /* This shouldn't happen because anything that didn't have
2517 one of these modes should have got converted explicitly
2518 and then referenced through a subreg.
2519 This is so because the original bit-field was
2520 handled by agg_mode and so its tree structure had
2521 the same mode that memref now has. */
2522 abort ();
2523 }
2524 else
2525 {
2526 rtx dest = SET_DEST (body);
2527
2528 while (GET_CODE (dest) == SUBREG
2529 && SUBREG_WORD (dest) == 0
2530 && (GET_MODE_CLASS (GET_MODE (dest))
2531 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest)))))
2532 dest = SUBREG_REG (dest);
2533
2534 validate_change (insn, &SET_DEST (body), dest, 1);
2535
2536 if (GET_MODE (dest) == GET_MODE (memref))
2537 validate_change (insn, &SET_SRC (body), memref, 1);
2538 else
2539 {
2540 /* Convert the mem ref to the destination mode. */
2541 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2542
2543 start_sequence ();
2544 convert_move (newreg, memref,
2545 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2546 seq = get_insns ();
2547 end_sequence ();
2548
2549 validate_change (insn, &SET_SRC (body), newreg, 1);
2550 }
2551 }
2552
2553 /* See if we can convert this extraction or insertion into
2554 a simple move insn. We might not be able to do so if this
2555 was, for example, part of a PARALLEL.
2556
2557 If we succeed, write out any needed conversions. If we fail,
2558 it is hard to guess why we failed, so don't do anything
2559 special; just let the optimization be suppressed. */
2560
2561 if (apply_change_group () && seq)
2562 emit_insns_before (seq, insn);
2563 }
2564 }
2565 }
2566 \f
2567 /* These routines are responsible for converting virtual register references
2568 to the actual hard register references once RTL generation is complete.
2569
2570 The following four variables are used for communication between the
2571 routines. They contain the offsets of the virtual registers from their
2572 respective hard registers. */
2573
2574 static int in_arg_offset;
2575 static int var_offset;
2576 static int dynamic_offset;
2577 static int out_arg_offset;
2578
2579 /* In most machines, the stack pointer register is equivalent to the bottom
2580 of the stack. */
2581
2582 #ifndef STACK_POINTER_OFFSET
2583 #define STACK_POINTER_OFFSET 0
2584 #endif
2585
2586 /* If not defined, pick an appropriate default for the offset of dynamically
2587 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2588 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2589
2590 #ifndef STACK_DYNAMIC_OFFSET
2591
2592 #ifdef ACCUMULATE_OUTGOING_ARGS
2593 /* The bottom of the stack points to the actual arguments. If
2594 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2595 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2596 stack space for register parameters is not pushed by the caller, but
2597 rather part of the fixed stack areas and hence not included in
2598 `current_function_outgoing_args_size'. Nevertheless, we must allow
2599 for it when allocating stack dynamic objects. */
2600
2601 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2602 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2603 (current_function_outgoing_args_size \
2604 + REG_PARM_STACK_SPACE (FNDECL) + (STACK_POINTER_OFFSET))
2605
2606 #else
2607 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2608 (current_function_outgoing_args_size + (STACK_POINTER_OFFSET))
2609 #endif
2610
2611 #else
2612 #define STACK_DYNAMIC_OFFSET(FNDECL) STACK_POINTER_OFFSET
2613 #endif
2614 #endif
2615
2616 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just had
2617 its address taken. DECL is the decl for the object stored in the
2618 register, for later use if we do need to force REG into the stack.
2619 REG is overwritten by the MEM like in put_reg_into_stack. */
2620
2621 rtx
2622 gen_mem_addressof (reg, decl)
2623 rtx reg;
2624 tree decl;
2625 {
2626 tree type = TREE_TYPE (decl);
2627
2628 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)), REGNO (reg));
2629 SET_ADDRESSOF_DECL (r, decl);
2630
2631 XEXP (reg, 0) = r;
2632 PUT_CODE (reg, MEM);
2633 PUT_MODE (reg, DECL_MODE (decl));
2634 MEM_VOLATILE_P (reg) = TREE_SIDE_EFFECTS (decl);
2635 MEM_IN_STRUCT_P (reg) = AGGREGATE_TYPE_P (type);
2636
2637 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type));
2638 return reg;
2639 }
2640
2641 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2642
2643 void
2644 flush_addressof (decl)
2645 tree decl;
2646 {
2647 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2648 && DECL_RTL (decl) != 0
2649 && GET_CODE (DECL_RTL (decl)) == MEM
2650 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2651 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2652 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0));
2653 }
2654
2655 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2656
2657 static void
2658 put_addressof_into_stack (r)
2659 rtx r;
2660 {
2661 tree decl = ADDRESSOF_DECL (r);
2662 rtx reg = XEXP (r, 0);
2663
2664 if (GET_CODE (reg) != REG)
2665 abort ();
2666
2667 put_reg_into_stack (0, reg, TREE_TYPE (decl), GET_MODE (reg),
2668 DECL_MODE (decl), TREE_SIDE_EFFECTS (decl),
2669 ADDRESSOF_REGNO (r));
2670 }
2671
2672 /* Helper function for purge_addressof. See if the rtx expression at *LOC
2673 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
2674 the stack. */
2675
2676 static void
2677 purge_addressof_1 (loc, insn, force)
2678 rtx *loc;
2679 rtx insn;
2680 int force;
2681 {
2682 rtx x;
2683 RTX_CODE code;
2684 int i, j;
2685 char *fmt;
2686
2687 /* Re-start here to avoid recursion in common cases. */
2688 restart:
2689
2690 x = *loc;
2691 if (x == 0)
2692 return;
2693
2694 code = GET_CODE (x);
2695
2696 if (code == ADDRESSOF && GET_CODE (XEXP (x, 0)) == MEM)
2697 {
2698 rtx insns;
2699 /* We must create a copy of the rtx because it was created by
2700 overwriting a REG rtx which is always shared. */
2701 rtx sub = copy_rtx (XEXP (XEXP (x, 0), 0));
2702
2703 if (validate_change (insn, loc, sub, 0))
2704 return;
2705
2706 start_sequence ();
2707 if (! validate_change (insn, loc,
2708 force_operand (sub, NULL_RTX),
2709 0))
2710 abort ();
2711
2712 insns = get_insns ();
2713 end_sequence ();
2714 emit_insns_before (insns, insn);
2715 return;
2716 }
2717 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
2718 {
2719 rtx sub = XEXP (XEXP (x, 0), 0);
2720 if (GET_CODE (sub) == MEM)
2721 sub = gen_rtx_MEM (GET_MODE (x), copy_rtx (XEXP (sub, 0)));
2722 if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
2723 {
2724 if (! BYTES_BIG_ENDIAN && ! WORDS_BIG_ENDIAN)
2725 {
2726 rtx sub2 = gen_rtx_SUBREG (GET_MODE (x), sub, 0);
2727 if (validate_change (insn, loc, sub2, 0))
2728 goto restart;
2729 }
2730 }
2731 else if (validate_change (insn, loc, sub, 0))
2732 goto restart;
2733 /* else give up and put it into the stack */
2734 }
2735 else if (code == ADDRESSOF)
2736 {
2737 put_addressof_into_stack (x);
2738 return;
2739 }
2740
2741 /* Scan all subexpressions. */
2742 fmt = GET_RTX_FORMAT (code);
2743 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2744 {
2745 if (*fmt == 'e')
2746 purge_addressof_1 (&XEXP (x, i), insn, force);
2747 else if (*fmt == 'E')
2748 for (j = 0; j < XVECLEN (x, i); j++)
2749 purge_addressof_1 (&XVECEXP (x, i, j), insn, force);
2750 }
2751 }
2752
2753 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
2754 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
2755 stack. */
2756
2757 void
2758 purge_addressof (insns)
2759 rtx insns;
2760 {
2761 rtx insn;
2762 for (insn = insns; insn; insn = NEXT_INSN (insn))
2763 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2764 || GET_CODE (insn) == CALL_INSN)
2765 {
2766 purge_addressof_1 (&PATTERN (insn), insn,
2767 asm_noperands (PATTERN (insn)) > 0);
2768 purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0);
2769 }
2770 }
2771 \f
2772 /* Pass through the INSNS of function FNDECL and convert virtual register
2773 references to hard register references. */
2774
2775 void
2776 instantiate_virtual_regs (fndecl, insns)
2777 tree fndecl;
2778 rtx insns;
2779 {
2780 rtx insn;
2781 int i;
2782
2783 /* Compute the offsets to use for this function. */
2784 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
2785 var_offset = STARTING_FRAME_OFFSET;
2786 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
2787 out_arg_offset = STACK_POINTER_OFFSET;
2788
2789 /* Scan all variables and parameters of this function. For each that is
2790 in memory, instantiate all virtual registers if the result is a valid
2791 address. If not, we do it later. That will handle most uses of virtual
2792 regs on many machines. */
2793 instantiate_decls (fndecl, 1);
2794
2795 /* Initialize recognition, indicating that volatile is OK. */
2796 init_recog ();
2797
2798 /* Scan through all the insns, instantiating every virtual register still
2799 present. */
2800 for (insn = insns; insn; insn = NEXT_INSN (insn))
2801 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2802 || GET_CODE (insn) == CALL_INSN)
2803 {
2804 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
2805 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
2806 }
2807
2808 /* Instantiate the stack slots for the parm registers, for later use in
2809 addressof elimination. */
2810 for (i = 0; i < max_parm_reg; ++i)
2811 if (parm_reg_stack_loc[i])
2812 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
2813
2814 /* Now instantiate the remaining register equivalences for debugging info.
2815 These will not be valid addresses. */
2816 instantiate_decls (fndecl, 0);
2817
2818 /* Indicate that, from now on, assign_stack_local should use
2819 frame_pointer_rtx. */
2820 virtuals_instantiated = 1;
2821 }
2822
2823 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
2824 all virtual registers in their DECL_RTL's.
2825
2826 If VALID_ONLY, do this only if the resulting address is still valid.
2827 Otherwise, always do it. */
2828
2829 static void
2830 instantiate_decls (fndecl, valid_only)
2831 tree fndecl;
2832 int valid_only;
2833 {
2834 tree decl;
2835
2836 if (DECL_SAVED_INSNS (fndecl))
2837 /* When compiling an inline function, the obstack used for
2838 rtl allocation is the maybepermanent_obstack. Calling
2839 `resume_temporary_allocation' switches us back to that
2840 obstack while we process this function's parameters. */
2841 resume_temporary_allocation ();
2842
2843 /* Process all parameters of the function. */
2844 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2845 {
2846 int size = int_size_in_bytes (TREE_TYPE (decl));
2847 instantiate_decl (DECL_RTL (decl), size, valid_only);
2848
2849 /* If the parameter was promoted, then the incoming RTL mode may be
2850 larger than the declared type size. We must use the larger of
2851 the two sizes. */
2852 size = MAX (GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl))), size);
2853 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
2854 }
2855
2856 /* Now process all variables defined in the function or its subblocks. */
2857 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
2858
2859 if (DECL_INLINE (fndecl) || DECL_DEFER_OUTPUT (fndecl))
2860 {
2861 /* Save all rtl allocated for this function by raising the
2862 high-water mark on the maybepermanent_obstack. */
2863 preserve_data ();
2864 /* All further rtl allocation is now done in the current_obstack. */
2865 rtl_in_current_obstack ();
2866 }
2867 }
2868
2869 /* Subroutine of instantiate_decls: Process all decls in the given
2870 BLOCK node and all its subblocks. */
2871
2872 static void
2873 instantiate_decls_1 (let, valid_only)
2874 tree let;
2875 int valid_only;
2876 {
2877 tree t;
2878
2879 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
2880 instantiate_decl (DECL_RTL (t), int_size_in_bytes (TREE_TYPE (t)),
2881 valid_only);
2882
2883 /* Process all subblocks. */
2884 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
2885 instantiate_decls_1 (t, valid_only);
2886 }
2887
2888 /* Subroutine of the preceding procedures: Given RTL representing a
2889 decl and the size of the object, do any instantiation required.
2890
2891 If VALID_ONLY is non-zero, it means that the RTL should only be
2892 changed if the new address is valid. */
2893
2894 static void
2895 instantiate_decl (x, size, valid_only)
2896 rtx x;
2897 int size;
2898 int valid_only;
2899 {
2900 enum machine_mode mode;
2901 rtx addr;
2902
2903 /* If this is not a MEM, no need to do anything. Similarly if the
2904 address is a constant or a register that is not a virtual register. */
2905
2906 if (x == 0 || GET_CODE (x) != MEM)
2907 return;
2908
2909 addr = XEXP (x, 0);
2910 if (CONSTANT_P (addr)
2911 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
2912 || (GET_CODE (addr) == REG
2913 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
2914 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
2915 return;
2916
2917 /* If we should only do this if the address is valid, copy the address.
2918 We need to do this so we can undo any changes that might make the
2919 address invalid. This copy is unfortunate, but probably can't be
2920 avoided. */
2921
2922 if (valid_only)
2923 addr = copy_rtx (addr);
2924
2925 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
2926
2927 if (valid_only)
2928 {
2929 /* Now verify that the resulting address is valid for every integer or
2930 floating-point mode up to and including SIZE bytes long. We do this
2931 since the object might be accessed in any mode and frame addresses
2932 are shared. */
2933
2934 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2935 mode != VOIDmode && GET_MODE_SIZE (mode) <= size;
2936 mode = GET_MODE_WIDER_MODE (mode))
2937 if (! memory_address_p (mode, addr))
2938 return;
2939
2940 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
2941 mode != VOIDmode && GET_MODE_SIZE (mode) <= size;
2942 mode = GET_MODE_WIDER_MODE (mode))
2943 if (! memory_address_p (mode, addr))
2944 return;
2945 }
2946
2947 /* Put back the address now that we have updated it and we either know
2948 it is valid or we don't care whether it is valid. */
2949
2950 XEXP (x, 0) = addr;
2951 }
2952 \f
2953 /* Given a pointer to a piece of rtx and an optional pointer to the
2954 containing object, instantiate any virtual registers present in it.
2955
2956 If EXTRA_INSNS, we always do the replacement and generate
2957 any extra insns before OBJECT. If it zero, we do nothing if replacement
2958 is not valid.
2959
2960 Return 1 if we either had nothing to do or if we were able to do the
2961 needed replacement. Return 0 otherwise; we only return zero if
2962 EXTRA_INSNS is zero.
2963
2964 We first try some simple transformations to avoid the creation of extra
2965 pseudos. */
2966
2967 static int
2968 instantiate_virtual_regs_1 (loc, object, extra_insns)
2969 rtx *loc;
2970 rtx object;
2971 int extra_insns;
2972 {
2973 rtx x;
2974 RTX_CODE code;
2975 rtx new = 0;
2976 int offset;
2977 rtx temp;
2978 rtx seq;
2979 int i, j;
2980 char *fmt;
2981
2982 /* Re-start here to avoid recursion in common cases. */
2983 restart:
2984
2985 x = *loc;
2986 if (x == 0)
2987 return 1;
2988
2989 code = GET_CODE (x);
2990
2991 /* Check for some special cases. */
2992 switch (code)
2993 {
2994 case CONST_INT:
2995 case CONST_DOUBLE:
2996 case CONST:
2997 case SYMBOL_REF:
2998 case CODE_LABEL:
2999 case PC:
3000 case CC0:
3001 case ASM_INPUT:
3002 case ADDR_VEC:
3003 case ADDR_DIFF_VEC:
3004 case RETURN:
3005 return 1;
3006
3007 case SET:
3008 /* We are allowed to set the virtual registers. This means that
3009 that the actual register should receive the source minus the
3010 appropriate offset. This is used, for example, in the handling
3011 of non-local gotos. */
3012 if (SET_DEST (x) == virtual_incoming_args_rtx)
3013 new = arg_pointer_rtx, offset = - in_arg_offset;
3014 else if (SET_DEST (x) == virtual_stack_vars_rtx)
3015 new = frame_pointer_rtx, offset = - var_offset;
3016 else if (SET_DEST (x) == virtual_stack_dynamic_rtx)
3017 new = stack_pointer_rtx, offset = - dynamic_offset;
3018 else if (SET_DEST (x) == virtual_outgoing_args_rtx)
3019 new = stack_pointer_rtx, offset = - out_arg_offset;
3020
3021 if (new)
3022 {
3023 /* The only valid sources here are PLUS or REG. Just do
3024 the simplest possible thing to handle them. */
3025 if (GET_CODE (SET_SRC (x)) != REG
3026 && GET_CODE (SET_SRC (x)) != PLUS)
3027 abort ();
3028
3029 start_sequence ();
3030 if (GET_CODE (SET_SRC (x)) != REG)
3031 temp = force_operand (SET_SRC (x), NULL_RTX);
3032 else
3033 temp = SET_SRC (x);
3034 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3035 seq = get_insns ();
3036 end_sequence ();
3037
3038 emit_insns_before (seq, object);
3039 SET_DEST (x) = new;
3040
3041 if (! validate_change (object, &SET_SRC (x), temp, 0)
3042 || ! extra_insns)
3043 abort ();
3044
3045 return 1;
3046 }
3047
3048 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3049 loc = &SET_SRC (x);
3050 goto restart;
3051
3052 case PLUS:
3053 /* Handle special case of virtual register plus constant. */
3054 if (CONSTANT_P (XEXP (x, 1)))
3055 {
3056 rtx old, new_offset;
3057
3058 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3059 if (GET_CODE (XEXP (x, 0)) == PLUS)
3060 {
3061 rtx inner = XEXP (XEXP (x, 0), 0);
3062
3063 if (inner == virtual_incoming_args_rtx)
3064 new = arg_pointer_rtx, offset = in_arg_offset;
3065 else if (inner == virtual_stack_vars_rtx)
3066 new = frame_pointer_rtx, offset = var_offset;
3067 else if (inner == virtual_stack_dynamic_rtx)
3068 new = stack_pointer_rtx, offset = dynamic_offset;
3069 else if (inner == virtual_outgoing_args_rtx)
3070 new = stack_pointer_rtx, offset = out_arg_offset;
3071 else
3072 {
3073 loc = &XEXP (x, 0);
3074 goto restart;
3075 }
3076
3077 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3078 extra_insns);
3079 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3080 }
3081
3082 else if (XEXP (x, 0) == virtual_incoming_args_rtx)
3083 new = arg_pointer_rtx, offset = in_arg_offset;
3084 else if (XEXP (x, 0) == virtual_stack_vars_rtx)
3085 new = frame_pointer_rtx, offset = var_offset;
3086 else if (XEXP (x, 0) == virtual_stack_dynamic_rtx)
3087 new = stack_pointer_rtx, offset = dynamic_offset;
3088 else if (XEXP (x, 0) == virtual_outgoing_args_rtx)
3089 new = stack_pointer_rtx, offset = out_arg_offset;
3090 else
3091 {
3092 /* We know the second operand is a constant. Unless the
3093 first operand is a REG (which has been already checked),
3094 it needs to be checked. */
3095 if (GET_CODE (XEXP (x, 0)) != REG)
3096 {
3097 loc = &XEXP (x, 0);
3098 goto restart;
3099 }
3100 return 1;
3101 }
3102
3103 new_offset = plus_constant (XEXP (x, 1), offset);
3104
3105 /* If the new constant is zero, try to replace the sum with just
3106 the register. */
3107 if (new_offset == const0_rtx
3108 && validate_change (object, loc, new, 0))
3109 return 1;
3110
3111 /* Next try to replace the register and new offset.
3112 There are two changes to validate here and we can't assume that
3113 in the case of old offset equals new just changing the register
3114 will yield a valid insn. In the interests of a little efficiency,
3115 however, we only call validate change once (we don't queue up the
3116 changes and then call apply_change_group). */
3117
3118 old = XEXP (x, 0);
3119 if (offset == 0
3120 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3121 : (XEXP (x, 0) = new,
3122 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3123 {
3124 if (! extra_insns)
3125 {
3126 XEXP (x, 0) = old;
3127 return 0;
3128 }
3129
3130 /* Otherwise copy the new constant into a register and replace
3131 constant with that register. */
3132 temp = gen_reg_rtx (Pmode);
3133 XEXP (x, 0) = new;
3134 if (validate_change (object, &XEXP (x, 1), temp, 0))
3135 emit_insn_before (gen_move_insn (temp, new_offset), object);
3136 else
3137 {
3138 /* If that didn't work, replace this expression with a
3139 register containing the sum. */
3140
3141 XEXP (x, 0) = old;
3142 new = gen_rtx_PLUS (Pmode, new, new_offset);
3143
3144 start_sequence ();
3145 temp = force_operand (new, NULL_RTX);
3146 seq = get_insns ();
3147 end_sequence ();
3148
3149 emit_insns_before (seq, object);
3150 if (! validate_change (object, loc, temp, 0)
3151 && ! validate_replace_rtx (x, temp, object))
3152 abort ();
3153 }
3154 }
3155
3156 return 1;
3157 }
3158
3159 /* Fall through to generic two-operand expression case. */
3160 case EXPR_LIST:
3161 case CALL:
3162 case COMPARE:
3163 case MINUS:
3164 case MULT:
3165 case DIV: case UDIV:
3166 case MOD: case UMOD:
3167 case AND: case IOR: case XOR:
3168 case ROTATERT: case ROTATE:
3169 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
3170 case NE: case EQ:
3171 case GE: case GT: case GEU: case GTU:
3172 case LE: case LT: case LEU: case LTU:
3173 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
3174 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
3175 loc = &XEXP (x, 0);
3176 goto restart;
3177
3178 case MEM:
3179 /* Most cases of MEM that convert to valid addresses have already been
3180 handled by our scan of decls. The only special handling we
3181 need here is to make a copy of the rtx to ensure it isn't being
3182 shared if we have to change it to a pseudo.
3183
3184 If the rtx is a simple reference to an address via a virtual register,
3185 it can potentially be shared. In such cases, first try to make it
3186 a valid address, which can also be shared. Otherwise, copy it and
3187 proceed normally.
3188
3189 First check for common cases that need no processing. These are
3190 usually due to instantiation already being done on a previous instance
3191 of a shared rtx. */
3192
3193 temp = XEXP (x, 0);
3194 if (CONSTANT_ADDRESS_P (temp)
3195 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3196 || temp == arg_pointer_rtx
3197 #endif
3198 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3199 || temp == hard_frame_pointer_rtx
3200 #endif
3201 || temp == frame_pointer_rtx)
3202 return 1;
3203
3204 if (GET_CODE (temp) == PLUS
3205 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3206 && (XEXP (temp, 0) == frame_pointer_rtx
3207 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3208 || XEXP (temp, 0) == hard_frame_pointer_rtx
3209 #endif
3210 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3211 || XEXP (temp, 0) == arg_pointer_rtx
3212 #endif
3213 ))
3214 return 1;
3215
3216 if (temp == virtual_stack_vars_rtx
3217 || temp == virtual_incoming_args_rtx
3218 || (GET_CODE (temp) == PLUS
3219 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3220 && (XEXP (temp, 0) == virtual_stack_vars_rtx
3221 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
3222 {
3223 /* This MEM may be shared. If the substitution can be done without
3224 the need to generate new pseudos, we want to do it in place
3225 so all copies of the shared rtx benefit. The call below will
3226 only make substitutions if the resulting address is still
3227 valid.
3228
3229 Note that we cannot pass X as the object in the recursive call
3230 since the insn being processed may not allow all valid
3231 addresses. However, if we were not passed on object, we can
3232 only modify X without copying it if X will have a valid
3233 address.
3234
3235 ??? Also note that this can still lose if OBJECT is an insn that
3236 has less restrictions on an address that some other insn.
3237 In that case, we will modify the shared address. This case
3238 doesn't seem very likely, though. One case where this could
3239 happen is in the case of a USE or CLOBBER reference, but we
3240 take care of that below. */
3241
3242 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
3243 object ? object : x, 0))
3244 return 1;
3245
3246 /* Otherwise make a copy and process that copy. We copy the entire
3247 RTL expression since it might be a PLUS which could also be
3248 shared. */
3249 *loc = x = copy_rtx (x);
3250 }
3251
3252 /* Fall through to generic unary operation case. */
3253 case SUBREG:
3254 case STRICT_LOW_PART:
3255 case NEG: case NOT:
3256 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
3257 case SIGN_EXTEND: case ZERO_EXTEND:
3258 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3259 case FLOAT: case FIX:
3260 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3261 case ABS:
3262 case SQRT:
3263 case FFS:
3264 /* These case either have just one operand or we know that we need not
3265 check the rest of the operands. */
3266 loc = &XEXP (x, 0);
3267 goto restart;
3268
3269 case USE:
3270 case CLOBBER:
3271 /* If the operand is a MEM, see if the change is a valid MEM. If not,
3272 go ahead and make the invalid one, but do it to a copy. For a REG,
3273 just make the recursive call, since there's no chance of a problem. */
3274
3275 if ((GET_CODE (XEXP (x, 0)) == MEM
3276 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
3277 0))
3278 || (GET_CODE (XEXP (x, 0)) == REG
3279 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
3280 return 1;
3281
3282 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
3283 loc = &XEXP (x, 0);
3284 goto restart;
3285
3286 case REG:
3287 /* Try to replace with a PLUS. If that doesn't work, compute the sum
3288 in front of this insn and substitute the temporary. */
3289 if (x == virtual_incoming_args_rtx)
3290 new = arg_pointer_rtx, offset = in_arg_offset;
3291 else if (x == virtual_stack_vars_rtx)
3292 new = frame_pointer_rtx, offset = var_offset;
3293 else if (x == virtual_stack_dynamic_rtx)
3294 new = stack_pointer_rtx, offset = dynamic_offset;
3295 else if (x == virtual_outgoing_args_rtx)
3296 new = stack_pointer_rtx, offset = out_arg_offset;
3297
3298 if (new)
3299 {
3300 temp = plus_constant (new, offset);
3301 if (!validate_change (object, loc, temp, 0))
3302 {
3303 if (! extra_insns)
3304 return 0;
3305
3306 start_sequence ();
3307 temp = force_operand (temp, NULL_RTX);
3308 seq = get_insns ();
3309 end_sequence ();
3310
3311 emit_insns_before (seq, object);
3312 if (! validate_change (object, loc, temp, 0)
3313 && ! validate_replace_rtx (x, temp, object))
3314 abort ();
3315 }
3316 }
3317
3318 return 1;
3319
3320 case ADDRESSOF:
3321 if (GET_CODE (XEXP (x, 0)) == REG)
3322 return 1;
3323
3324 else if (GET_CODE (XEXP (x, 0)) == MEM)
3325 {
3326 /* If we have a (addressof (mem ..)), do any instantiation inside
3327 since we know we'll be making the inside valid when we finally
3328 remove the ADDRESSOF. */
3329 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
3330 return 1;
3331 }
3332 break;
3333
3334 default:
3335 break;
3336 }
3337
3338 /* Scan all subexpressions. */
3339 fmt = GET_RTX_FORMAT (code);
3340 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3341 if (*fmt == 'e')
3342 {
3343 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
3344 return 0;
3345 }
3346 else if (*fmt == 'E')
3347 for (j = 0; j < XVECLEN (x, i); j++)
3348 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
3349 extra_insns))
3350 return 0;
3351
3352 return 1;
3353 }
3354 \f
3355 /* Optimization: assuming this function does not receive nonlocal gotos,
3356 delete the handlers for such, as well as the insns to establish
3357 and disestablish them. */
3358
3359 static void
3360 delete_handlers ()
3361 {
3362 rtx insn;
3363 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3364 {
3365 /* Delete the handler by turning off the flag that would
3366 prevent jump_optimize from deleting it.
3367 Also permit deletion of the nonlocal labels themselves
3368 if nothing local refers to them. */
3369 if (GET_CODE (insn) == CODE_LABEL)
3370 {
3371 tree t, last_t;
3372
3373 LABEL_PRESERVE_P (insn) = 0;
3374
3375 /* Remove it from the nonlocal_label list, to avoid confusing
3376 flow. */
3377 for (t = nonlocal_labels, last_t = 0; t;
3378 last_t = t, t = TREE_CHAIN (t))
3379 if (DECL_RTL (TREE_VALUE (t)) == insn)
3380 break;
3381 if (t)
3382 {
3383 if (! last_t)
3384 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
3385 else
3386 TREE_CHAIN (last_t) = TREE_CHAIN (t);
3387 }
3388 }
3389 if (GET_CODE (insn) == INSN
3390 && ((nonlocal_goto_handler_slot != 0
3391 && reg_mentioned_p (nonlocal_goto_handler_slot, PATTERN (insn)))
3392 || (nonlocal_goto_stack_level != 0
3393 && reg_mentioned_p (nonlocal_goto_stack_level,
3394 PATTERN (insn)))))
3395 delete_insn (insn);
3396 }
3397 }
3398
3399 /* Return a list (chain of EXPR_LIST nodes) for the nonlocal labels
3400 of the current function. */
3401
3402 rtx
3403 nonlocal_label_rtx_list ()
3404 {
3405 tree t;
3406 rtx x = 0;
3407
3408 for (t = nonlocal_labels; t; t = TREE_CHAIN (t))
3409 x = gen_rtx_EXPR_LIST (VOIDmode, label_rtx (TREE_VALUE (t)), x);
3410
3411 return x;
3412 }
3413 \f
3414 /* Output a USE for any register use in RTL.
3415 This is used with -noreg to mark the extent of lifespan
3416 of any registers used in a user-visible variable's DECL_RTL. */
3417
3418 void
3419 use_variable (rtl)
3420 rtx rtl;
3421 {
3422 if (GET_CODE (rtl) == REG)
3423 /* This is a register variable. */
3424 emit_insn (gen_rtx_USE (VOIDmode, rtl));
3425 else if (GET_CODE (rtl) == MEM
3426 && GET_CODE (XEXP (rtl, 0)) == REG
3427 && (REGNO (XEXP (rtl, 0)) < FIRST_VIRTUAL_REGISTER
3428 || REGNO (XEXP (rtl, 0)) > LAST_VIRTUAL_REGISTER)
3429 && XEXP (rtl, 0) != current_function_internal_arg_pointer)
3430 /* This is a variable-sized structure. */
3431 emit_insn (gen_rtx_USE (VOIDmode, XEXP (rtl, 0)));
3432 }
3433
3434 /* Like use_variable except that it outputs the USEs after INSN
3435 instead of at the end of the insn-chain. */
3436
3437 void
3438 use_variable_after (rtl, insn)
3439 rtx rtl, insn;
3440 {
3441 if (GET_CODE (rtl) == REG)
3442 /* This is a register variable. */
3443 emit_insn_after (gen_rtx_USE (VOIDmode, rtl), insn);
3444 else if (GET_CODE (rtl) == MEM
3445 && GET_CODE (XEXP (rtl, 0)) == REG
3446 && (REGNO (XEXP (rtl, 0)) < FIRST_VIRTUAL_REGISTER
3447 || REGNO (XEXP (rtl, 0)) > LAST_VIRTUAL_REGISTER)
3448 && XEXP (rtl, 0) != current_function_internal_arg_pointer)
3449 /* This is a variable-sized structure. */
3450 emit_insn_after (gen_rtx_USE (VOIDmode, XEXP (rtl, 0)), insn);
3451 }
3452 \f
3453 int
3454 max_parm_reg_num ()
3455 {
3456 return max_parm_reg;
3457 }
3458
3459 /* Return the first insn following those generated by `assign_parms'. */
3460
3461 rtx
3462 get_first_nonparm_insn ()
3463 {
3464 if (last_parm_insn)
3465 return NEXT_INSN (last_parm_insn);
3466 return get_insns ();
3467 }
3468
3469 /* Return the first NOTE_INSN_BLOCK_BEG note in the function.
3470 Crash if there is none. */
3471
3472 rtx
3473 get_first_block_beg ()
3474 {
3475 register rtx searcher;
3476 register rtx insn = get_first_nonparm_insn ();
3477
3478 for (searcher = insn; searcher; searcher = NEXT_INSN (searcher))
3479 if (GET_CODE (searcher) == NOTE
3480 && NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG)
3481 return searcher;
3482
3483 abort (); /* Invalid call to this function. (See comments above.) */
3484 return NULL_RTX;
3485 }
3486
3487 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
3488 This means a type for which function calls must pass an address to the
3489 function or get an address back from the function.
3490 EXP may be a type node or an expression (whose type is tested). */
3491
3492 int
3493 aggregate_value_p (exp)
3494 tree exp;
3495 {
3496 int i, regno, nregs;
3497 rtx reg;
3498 tree type;
3499 if (TREE_CODE_CLASS (TREE_CODE (exp)) == 't')
3500 type = exp;
3501 else
3502 type = TREE_TYPE (exp);
3503
3504 if (RETURN_IN_MEMORY (type))
3505 return 1;
3506 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
3507 and thus can't be returned in registers. */
3508 if (TREE_ADDRESSABLE (type))
3509 return 1;
3510 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
3511 return 1;
3512 /* Make sure we have suitable call-clobbered regs to return
3513 the value in; if not, we must return it in memory. */
3514 reg = hard_function_value (type, 0);
3515
3516 /* If we have something other than a REG (e.g. a PARALLEL), then assume
3517 it is OK. */
3518 if (GET_CODE (reg) != REG)
3519 return 0;
3520
3521 regno = REGNO (reg);
3522 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
3523 for (i = 0; i < nregs; i++)
3524 if (! call_used_regs[regno + i])
3525 return 1;
3526 return 0;
3527 }
3528 \f
3529 /* Assign RTL expressions to the function's parameters.
3530 This may involve copying them into registers and using
3531 those registers as the RTL for them.
3532
3533 If SECOND_TIME is non-zero it means that this function is being
3534 called a second time. This is done by integrate.c when a function's
3535 compilation is deferred. We need to come back here in case the
3536 FUNCTION_ARG macro computes items needed for the rest of the compilation
3537 (such as changing which registers are fixed or caller-saved). But suppress
3538 writing any insns or setting DECL_RTL of anything in this case. */
3539
3540 void
3541 assign_parms (fndecl, second_time)
3542 tree fndecl;
3543 int second_time;
3544 {
3545 register tree parm;
3546 register rtx entry_parm = 0;
3547 register rtx stack_parm = 0;
3548 CUMULATIVE_ARGS args_so_far;
3549 enum machine_mode promoted_mode, passed_mode;
3550 enum machine_mode nominal_mode, promoted_nominal_mode;
3551 int unsignedp;
3552 /* Total space needed so far for args on the stack,
3553 given as a constant and a tree-expression. */
3554 struct args_size stack_args_size;
3555 tree fntype = TREE_TYPE (fndecl);
3556 tree fnargs = DECL_ARGUMENTS (fndecl);
3557 /* This is used for the arg pointer when referring to stack args. */
3558 rtx internal_arg_pointer;
3559 /* This is a dummy PARM_DECL that we used for the function result if
3560 the function returns a structure. */
3561 tree function_result_decl = 0;
3562 int varargs_setup = 0;
3563 rtx conversion_insns = 0;
3564
3565 /* Nonzero if the last arg is named `__builtin_va_alist',
3566 which is used on some machines for old-fashioned non-ANSI varargs.h;
3567 this should be stuck onto the stack as if it had arrived there. */
3568 int hide_last_arg
3569 = (current_function_varargs
3570 && fnargs
3571 && (parm = tree_last (fnargs)) != 0
3572 && DECL_NAME (parm)
3573 && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
3574 "__builtin_va_alist")));
3575
3576 /* Nonzero if function takes extra anonymous args.
3577 This means the last named arg must be on the stack
3578 right before the anonymous ones. */
3579 int stdarg
3580 = (TYPE_ARG_TYPES (fntype) != 0
3581 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3582 != void_type_node));
3583
3584 current_function_stdarg = stdarg;
3585
3586 /* If the reg that the virtual arg pointer will be translated into is
3587 not a fixed reg or is the stack pointer, make a copy of the virtual
3588 arg pointer, and address parms via the copy. The frame pointer is
3589 considered fixed even though it is not marked as such.
3590
3591 The second time through, simply use ap to avoid generating rtx. */
3592
3593 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
3594 || ! (fixed_regs[ARG_POINTER_REGNUM]
3595 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM))
3596 && ! second_time)
3597 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
3598 else
3599 internal_arg_pointer = virtual_incoming_args_rtx;
3600 current_function_internal_arg_pointer = internal_arg_pointer;
3601
3602 stack_args_size.constant = 0;
3603 stack_args_size.var = 0;
3604
3605 /* If struct value address is treated as the first argument, make it so. */
3606 if (aggregate_value_p (DECL_RESULT (fndecl))
3607 && ! current_function_returns_pcc_struct
3608 && struct_value_incoming_rtx == 0)
3609 {
3610 tree type = build_pointer_type (TREE_TYPE (fntype));
3611
3612 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
3613
3614 DECL_ARG_TYPE (function_result_decl) = type;
3615 TREE_CHAIN (function_result_decl) = fnargs;
3616 fnargs = function_result_decl;
3617 }
3618
3619 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
3620 parm_reg_stack_loc = (rtx *) savealloc (max_parm_reg * sizeof (rtx));
3621 bzero ((char *) parm_reg_stack_loc, max_parm_reg * sizeof (rtx));
3622
3623 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
3624 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
3625 #else
3626 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0);
3627 #endif
3628
3629 /* We haven't yet found an argument that we must push and pretend the
3630 caller did. */
3631 current_function_pretend_args_size = 0;
3632
3633 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3634 {
3635 int aggregate = AGGREGATE_TYPE_P (TREE_TYPE (parm));
3636 struct args_size stack_offset;
3637 struct args_size arg_size;
3638 int passed_pointer = 0;
3639 int did_conversion = 0;
3640 tree passed_type = DECL_ARG_TYPE (parm);
3641 tree nominal_type = TREE_TYPE (parm);
3642
3643 /* Set LAST_NAMED if this is last named arg before some
3644 anonymous args. */
3645 int last_named = ((TREE_CHAIN (parm) == 0
3646 || DECL_NAME (TREE_CHAIN (parm)) == 0)
3647 && (stdarg || current_function_varargs));
3648 /* Set NAMED_ARG if this arg should be treated as a named arg. For
3649 most machines, if this is a varargs/stdarg function, then we treat
3650 the last named arg as if it were anonymous too. */
3651 #ifdef STRICT_ARGUMENT_NAMING
3652 int named_arg = 1;
3653 #else
3654 int named_arg = ! last_named;
3655 #endif
3656 /* If this is a varargs function, then we want to treat the last named
3657 argument as if it was an aggregate, because it might be accessed as
3658 one by the va_arg macros. This is necessary to make the aliasing
3659 code handle this parm correctly. */
3660 if (hide_last_arg && last_named)
3661 aggregate = 1;
3662
3663 if (TREE_TYPE (parm) == error_mark_node
3664 /* This can happen after weird syntax errors
3665 or if an enum type is defined among the parms. */
3666 || TREE_CODE (parm) != PARM_DECL
3667 || passed_type == NULL)
3668 {
3669 DECL_INCOMING_RTL (parm) = DECL_RTL (parm)
3670 = gen_rtx_MEM (BLKmode, const0_rtx);
3671 TREE_USED (parm) = 1;
3672 continue;
3673 }
3674
3675 /* For varargs.h function, save info about regs and stack space
3676 used by the individual args, not including the va_alist arg. */
3677 if (hide_last_arg && last_named)
3678 current_function_args_info = args_so_far;
3679
3680 /* Find mode of arg as it is passed, and mode of arg
3681 as it should be during execution of this function. */
3682 passed_mode = TYPE_MODE (passed_type);
3683 nominal_mode = TYPE_MODE (nominal_type);
3684
3685 /* If the parm's mode is VOID, its value doesn't matter,
3686 and avoid the usual things like emit_move_insn that could crash. */
3687 if (nominal_mode == VOIDmode)
3688 {
3689 DECL_INCOMING_RTL (parm) = DECL_RTL (parm) = const0_rtx;
3690 continue;
3691 }
3692
3693 /* If the parm is to be passed as a transparent union, use the
3694 type of the first field for the tests below. We have already
3695 verified that the modes are the same. */
3696 if (DECL_TRANSPARENT_UNION (parm)
3697 || TYPE_TRANSPARENT_UNION (passed_type))
3698 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
3699
3700 /* See if this arg was passed by invisible reference. It is if
3701 it is an object whose size depends on the contents of the
3702 object itself or if the machine requires these objects be passed
3703 that way. */
3704
3705 if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
3706 && contains_placeholder_p (TYPE_SIZE (passed_type)))
3707 || TREE_ADDRESSABLE (passed_type)
3708 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
3709 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
3710 passed_type, named_arg)
3711 #endif
3712 )
3713 {
3714 passed_type = nominal_type = build_pointer_type (passed_type);
3715 passed_pointer = 1;
3716 passed_mode = nominal_mode = Pmode;
3717 }
3718
3719 promoted_mode = passed_mode;
3720
3721 #ifdef PROMOTE_FUNCTION_ARGS
3722 /* Compute the mode in which the arg is actually extended to. */
3723 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
3724 #endif
3725
3726 /* Let machine desc say which reg (if any) the parm arrives in.
3727 0 means it arrives on the stack. */
3728 #ifdef FUNCTION_INCOMING_ARG
3729 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
3730 passed_type, named_arg);
3731 #else
3732 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
3733 passed_type, named_arg);
3734 #endif
3735
3736 if (entry_parm == 0)
3737 promoted_mode = passed_mode;
3738
3739 #ifdef SETUP_INCOMING_VARARGS
3740 /* If this is the last named parameter, do any required setup for
3741 varargs or stdargs. We need to know about the case of this being an
3742 addressable type, in which case we skip the registers it
3743 would have arrived in.
3744
3745 For stdargs, LAST_NAMED will be set for two parameters, the one that
3746 is actually the last named, and the dummy parameter. We only
3747 want to do this action once.
3748
3749 Also, indicate when RTL generation is to be suppressed. */
3750 if (last_named && !varargs_setup)
3751 {
3752 SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
3753 current_function_pretend_args_size,
3754 second_time);
3755 varargs_setup = 1;
3756 }
3757 #endif
3758
3759 /* Determine parm's home in the stack,
3760 in case it arrives in the stack or we should pretend it did.
3761
3762 Compute the stack position and rtx where the argument arrives
3763 and its size.
3764
3765 There is one complexity here: If this was a parameter that would
3766 have been passed in registers, but wasn't only because it is
3767 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
3768 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
3769 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
3770 0 as it was the previous time. */
3771
3772 locate_and_pad_parm (promoted_mode, passed_type,
3773 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3774 1,
3775 #else
3776 #ifdef FUNCTION_INCOMING_ARG
3777 FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
3778 passed_type,
3779 (named_arg
3780 || varargs_setup)) != 0,
3781 #else
3782 FUNCTION_ARG (args_so_far, promoted_mode,
3783 passed_type,
3784 named_arg || varargs_setup) != 0,
3785 #endif
3786 #endif
3787 fndecl, &stack_args_size, &stack_offset, &arg_size);
3788
3789 if (! second_time)
3790 {
3791 rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);
3792
3793 if (offset_rtx == const0_rtx)
3794 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
3795 else
3796 stack_parm = gen_rtx_MEM (promoted_mode,
3797 gen_rtx_PLUS (Pmode,
3798 internal_arg_pointer,
3799 offset_rtx));
3800
3801 /* If this is a memory ref that contains aggregate components,
3802 mark it as such for cse and loop optimize. Likewise if it
3803 is readonly. */
3804 MEM_IN_STRUCT_P (stack_parm) = aggregate;
3805 RTX_UNCHANGING_P (stack_parm) = TREE_READONLY (parm);
3806 }
3807
3808 /* If this parameter was passed both in registers and in the stack,
3809 use the copy on the stack. */
3810 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
3811 entry_parm = 0;
3812
3813 #ifdef FUNCTION_ARG_PARTIAL_NREGS
3814 /* If this parm was passed part in regs and part in memory,
3815 pretend it arrived entirely in memory
3816 by pushing the register-part onto the stack.
3817
3818 In the special case of a DImode or DFmode that is split,
3819 we could put it together in a pseudoreg directly,
3820 but for now that's not worth bothering with. */
3821
3822 if (entry_parm)
3823 {
3824 int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
3825 passed_type, named_arg);
3826
3827 if (nregs > 0)
3828 {
3829 current_function_pretend_args_size
3830 = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
3831 / (PARM_BOUNDARY / BITS_PER_UNIT)
3832 * (PARM_BOUNDARY / BITS_PER_UNIT));
3833
3834 if (! second_time)
3835 {
3836 /* Handle calls that pass values in multiple non-contiguous
3837 locations. The Irix 6 ABI has examples of this. */
3838 if (GET_CODE (entry_parm) == PARALLEL)
3839 emit_group_store (validize_mem (stack_parm),
3840 entry_parm);
3841 else
3842 move_block_from_reg (REGNO (entry_parm),
3843 validize_mem (stack_parm), nregs,
3844 int_size_in_bytes (TREE_TYPE (parm)));
3845 }
3846 entry_parm = stack_parm;
3847 }
3848 }
3849 #endif
3850
3851 /* If we didn't decide this parm came in a register,
3852 by default it came on the stack. */
3853 if (entry_parm == 0)
3854 entry_parm = stack_parm;
3855
3856 /* Record permanently how this parm was passed. */
3857 if (! second_time)
3858 DECL_INCOMING_RTL (parm) = entry_parm;
3859
3860 /* If there is actually space on the stack for this parm,
3861 count it in stack_args_size; otherwise set stack_parm to 0
3862 to indicate there is no preallocated stack slot for the parm. */
3863
3864 if (entry_parm == stack_parm
3865 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
3866 /* On some machines, even if a parm value arrives in a register
3867 there is still an (uninitialized) stack slot allocated for it.
3868
3869 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
3870 whether this parameter already has a stack slot allocated,
3871 because an arg block exists only if current_function_args_size
3872 is larger than some threshold, and we haven't calculated that
3873 yet. So, for now, we just assume that stack slots never exist
3874 in this case. */
3875 || REG_PARM_STACK_SPACE (fndecl) > 0
3876 #endif
3877 )
3878 {
3879 stack_args_size.constant += arg_size.constant;
3880 if (arg_size.var)
3881 ADD_PARM_SIZE (stack_args_size, arg_size.var);
3882 }
3883 else
3884 /* No stack slot was pushed for this parm. */
3885 stack_parm = 0;
3886
3887 /* Update info on where next arg arrives in registers. */
3888
3889 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
3890 passed_type, named_arg);
3891
3892 /* If this is our second time through, we are done with this parm. */
3893 if (second_time)
3894 continue;
3895
3896 /* If we can't trust the parm stack slot to be aligned enough
3897 for its ultimate type, don't use that slot after entry.
3898 We'll make another stack slot, if we need one. */
3899 {
3900 int thisparm_boundary
3901 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
3902
3903 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
3904 stack_parm = 0;
3905 }
3906
3907 /* If parm was passed in memory, and we need to convert it on entry,
3908 don't store it back in that same slot. */
3909 if (entry_parm != 0
3910 && nominal_mode != BLKmode && nominal_mode != passed_mode)
3911 stack_parm = 0;
3912
3913 #if 0
3914 /* Now adjust STACK_PARM to the mode and precise location
3915 where this parameter should live during execution,
3916 if we discover that it must live in the stack during execution.
3917 To make debuggers happier on big-endian machines, we store
3918 the value in the last bytes of the space available. */
3919
3920 if (nominal_mode != BLKmode && nominal_mode != passed_mode
3921 && stack_parm != 0)
3922 {
3923 rtx offset_rtx;
3924
3925 if (BYTES_BIG_ENDIAN
3926 && GET_MODE_SIZE (nominal_mode) < UNITS_PER_WORD)
3927 stack_offset.constant += (GET_MODE_SIZE (passed_mode)
3928 - GET_MODE_SIZE (nominal_mode));
3929
3930 offset_rtx = ARGS_SIZE_RTX (stack_offset);
3931 if (offset_rtx == const0_rtx)
3932 stack_parm = gen_rtx_MEM (nominal_mode, internal_arg_pointer);
3933 else
3934 stack_parm = gen_rtx_MEM (nominal_mode,
3935 gen_rtx_PLUS (Pmode,
3936 internal_arg_pointer,
3937 offset_rtx));
3938
3939 /* If this is a memory ref that contains aggregate components,
3940 mark it as such for cse and loop optimize. */
3941 MEM_IN_STRUCT_P (stack_parm) = aggregate;
3942 }
3943 #endif /* 0 */
3944
3945 #ifdef STACK_REGS
3946 /* We need this "use" info, because the gcc-register->stack-register
3947 converter in reg-stack.c needs to know which registers are active
3948 at the start of the function call. The actual parameter loading
3949 instructions are not always available then anymore, since they might
3950 have been optimised away. */
3951
3952 if (GET_CODE (entry_parm) == REG && !(hide_last_arg && last_named))
3953 emit_insn (gen_rtx_USE (GET_MODE (entry_parm), entry_parm));
3954 #endif
3955
3956 /* ENTRY_PARM is an RTX for the parameter as it arrives,
3957 in the mode in which it arrives.
3958 STACK_PARM is an RTX for a stack slot where the parameter can live
3959 during the function (in case we want to put it there).
3960 STACK_PARM is 0 if no stack slot was pushed for it.
3961
3962 Now output code if necessary to convert ENTRY_PARM to
3963 the type in which this function declares it,
3964 and store that result in an appropriate place,
3965 which may be a pseudo reg, may be STACK_PARM,
3966 or may be a local stack slot if STACK_PARM is 0.
3967
3968 Set DECL_RTL to that place. */
3969
3970 if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
3971 {
3972 /* If a BLKmode arrives in registers, copy it to a stack slot.
3973 Handle calls that pass values in multiple non-contiguous
3974 locations. The Irix 6 ABI has examples of this. */
3975 if (GET_CODE (entry_parm) == REG
3976 || GET_CODE (entry_parm) == PARALLEL)
3977 {
3978 int size_stored
3979 = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
3980 UNITS_PER_WORD);
3981
3982 /* Note that we will be storing an integral number of words.
3983 So we have to be careful to ensure that we allocate an
3984 integral number of words. We do this below in the
3985 assign_stack_local if space was not allocated in the argument
3986 list. If it was, this will not work if PARM_BOUNDARY is not
3987 a multiple of BITS_PER_WORD. It isn't clear how to fix this
3988 if it becomes a problem. */
3989
3990 if (stack_parm == 0)
3991 {
3992 stack_parm
3993 = assign_stack_local (GET_MODE (entry_parm),
3994 size_stored, 0);
3995
3996 /* If this is a memory ref that contains aggregate
3997 components, mark it as such for cse and loop optimize. */
3998 MEM_IN_STRUCT_P (stack_parm) = aggregate;
3999 }
4000
4001 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4002 abort ();
4003
4004 if (TREE_READONLY (parm))
4005 RTX_UNCHANGING_P (stack_parm) = 1;
4006
4007 /* Handle calls that pass values in multiple non-contiguous
4008 locations. The Irix 6 ABI has examples of this. */
4009 if (GET_CODE (entry_parm) == PARALLEL)
4010 emit_group_store (validize_mem (stack_parm), entry_parm);
4011 else
4012 move_block_from_reg (REGNO (entry_parm),
4013 validize_mem (stack_parm),
4014 size_stored / UNITS_PER_WORD,
4015 int_size_in_bytes (TREE_TYPE (parm)));
4016 }
4017 DECL_RTL (parm) = stack_parm;
4018 }
4019 else if (! ((obey_regdecls && ! DECL_REGISTER (parm)
4020 && ! DECL_INLINE (fndecl))
4021 /* layout_decl may set this. */
4022 || TREE_ADDRESSABLE (parm)
4023 || TREE_SIDE_EFFECTS (parm)
4024 /* If -ffloat-store specified, don't put explicit
4025 float variables into registers. */
4026 || (flag_float_store
4027 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4028 /* Always assign pseudo to structure return or item passed
4029 by invisible reference. */
4030 || passed_pointer || parm == function_result_decl)
4031 {
4032 /* Store the parm in a pseudoregister during the function, but we
4033 may need to do it in a wider mode. */
4034
4035 register rtx parmreg;
4036 int regno, regnoi, regnor;
4037
4038 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4039
4040 promoted_nominal_mode
4041 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4042
4043 parmreg = gen_reg_rtx (promoted_nominal_mode);
4044 mark_user_reg (parmreg);
4045
4046 /* If this was an item that we received a pointer to, set DECL_RTL
4047 appropriately. */
4048 if (passed_pointer)
4049 {
4050 DECL_RTL (parm)
4051 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)), parmreg);
4052 MEM_IN_STRUCT_P (DECL_RTL (parm)) = aggregate;
4053 }
4054 else
4055 DECL_RTL (parm) = parmreg;
4056
4057 /* Copy the value into the register. */
4058 if (nominal_mode != passed_mode
4059 || promoted_nominal_mode != promoted_mode)
4060 {
4061 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4062 mode, by the caller. We now have to convert it to
4063 NOMINAL_MODE, if different. However, PARMREG may be in
4064 a different mode than NOMINAL_MODE if it is being stored
4065 promoted.
4066
4067 If ENTRY_PARM is a hard register, it might be in a register
4068 not valid for operating in its mode (e.g., an odd-numbered
4069 register for a DFmode). In that case, moves are the only
4070 thing valid, so we can't do a convert from there. This
4071 occurs when the calling sequence allow such misaligned
4072 usages.
4073
4074 In addition, the conversion may involve a call, which could
4075 clobber parameters which haven't been copied to pseudo
4076 registers yet. Therefore, we must first copy the parm to
4077 a pseudo reg here, and save the conversion until after all
4078 parameters have been moved. */
4079
4080 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4081
4082 emit_move_insn (tempreg, validize_mem (entry_parm));
4083
4084 push_to_sequence (conversion_insns);
4085 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4086
4087 expand_assignment (parm,
4088 make_tree (nominal_type, tempreg), 0, 0);
4089 conversion_insns = get_insns ();
4090 did_conversion = 1;
4091 end_sequence ();
4092 }
4093 else
4094 emit_move_insn (parmreg, validize_mem (entry_parm));
4095
4096 /* If we were passed a pointer but the actual value
4097 can safely live in a register, put it in one. */
4098 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4099 && ! ((obey_regdecls && ! DECL_REGISTER (parm)
4100 && ! DECL_INLINE (fndecl))
4101 /* layout_decl may set this. */
4102 || TREE_ADDRESSABLE (parm)
4103 || TREE_SIDE_EFFECTS (parm)
4104 /* If -ffloat-store specified, don't put explicit
4105 float variables into registers. */
4106 || (flag_float_store
4107 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)))
4108 {
4109 /* We can't use nominal_mode, because it will have been set to
4110 Pmode above. We must use the actual mode of the parm. */
4111 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4112 mark_user_reg (parmreg);
4113 emit_move_insn (parmreg, DECL_RTL (parm));
4114 DECL_RTL (parm) = parmreg;
4115 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4116 now the parm. */
4117 stack_parm = 0;
4118 }
4119 #ifdef FUNCTION_ARG_CALLEE_COPIES
4120 /* If we are passed an arg by reference and it is our responsibility
4121 to make a copy, do it now.
4122 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4123 original argument, so we must recreate them in the call to
4124 FUNCTION_ARG_CALLEE_COPIES. */
4125 /* ??? Later add code to handle the case that if the argument isn't
4126 modified, don't do the copy. */
4127
4128 else if (passed_pointer
4129 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4130 TYPE_MODE (DECL_ARG_TYPE (parm)),
4131 DECL_ARG_TYPE (parm),
4132 named_arg)
4133 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
4134 {
4135 rtx copy;
4136 tree type = DECL_ARG_TYPE (parm);
4137
4138 /* This sequence may involve a library call perhaps clobbering
4139 registers that haven't been copied to pseudos yet. */
4140
4141 push_to_sequence (conversion_insns);
4142
4143 if (TYPE_SIZE (type) == 0
4144 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4145 /* This is a variable sized object. */
4146 copy = gen_rtx_MEM (BLKmode,
4147 allocate_dynamic_stack_space
4148 (expr_size (parm), NULL_RTX,
4149 TYPE_ALIGN (type)));
4150 else
4151 copy = assign_stack_temp (TYPE_MODE (type),
4152 int_size_in_bytes (type), 1);
4153 MEM_IN_STRUCT_P (copy) = AGGREGATE_TYPE_P (type);
4154 RTX_UNCHANGING_P (copy) = TREE_READONLY (parm);
4155
4156 store_expr (parm, copy, 0);
4157 emit_move_insn (parmreg, XEXP (copy, 0));
4158 if (flag_check_memory_usage)
4159 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
4160 XEXP (copy, 0), ptr_mode,
4161 GEN_INT (int_size_in_bytes (type)),
4162 TYPE_MODE (sizetype),
4163 GEN_INT (MEMORY_USE_RW),
4164 TYPE_MODE (integer_type_node));
4165 conversion_insns = get_insns ();
4166 did_conversion = 1;
4167 end_sequence ();
4168 }
4169 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4170
4171 /* In any case, record the parm's desired stack location
4172 in case we later discover it must live in the stack.
4173
4174 If it is a COMPLEX value, store the stack location for both
4175 halves. */
4176
4177 if (GET_CODE (parmreg) == CONCAT)
4178 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
4179 else
4180 regno = REGNO (parmreg);
4181
4182 if (regno >= max_parm_reg)
4183 {
4184 rtx *new;
4185 int old_max_parm_reg = max_parm_reg;
4186
4187 /* It's slow to expand this one register at a time,
4188 but it's also rare and we need max_parm_reg to be
4189 precisely correct. */
4190 max_parm_reg = regno + 1;
4191 new = (rtx *) savealloc (max_parm_reg * sizeof (rtx));
4192 bcopy ((char *) parm_reg_stack_loc, (char *) new,
4193 old_max_parm_reg * sizeof (rtx));
4194 bzero ((char *) (new + old_max_parm_reg),
4195 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
4196 parm_reg_stack_loc = new;
4197 }
4198
4199 if (GET_CODE (parmreg) == CONCAT)
4200 {
4201 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
4202
4203 regnor = REGNO (gen_realpart (submode, parmreg));
4204 regnoi = REGNO (gen_imagpart (submode, parmreg));
4205
4206 if (stack_parm != 0)
4207 {
4208 parm_reg_stack_loc[regnor]
4209 = gen_realpart (submode, stack_parm);
4210 parm_reg_stack_loc[regnoi]
4211 = gen_imagpart (submode, stack_parm);
4212 }
4213 else
4214 {
4215 parm_reg_stack_loc[regnor] = 0;
4216 parm_reg_stack_loc[regnoi] = 0;
4217 }
4218 }
4219 else
4220 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
4221
4222 /* Mark the register as eliminable if we did no conversion
4223 and it was copied from memory at a fixed offset,
4224 and the arg pointer was not copied to a pseudo-reg.
4225 If the arg pointer is a pseudo reg or the offset formed
4226 an invalid address, such memory-equivalences
4227 as we make here would screw up life analysis for it. */
4228 if (nominal_mode == passed_mode
4229 && ! did_conversion
4230 && stack_parm != 0
4231 && GET_CODE (stack_parm) == MEM
4232 && stack_offset.var == 0
4233 && reg_mentioned_p (virtual_incoming_args_rtx,
4234 XEXP (stack_parm, 0)))
4235 {
4236 rtx linsn = get_last_insn ();
4237 rtx sinsn, set;
4238
4239 /* Mark complex types separately. */
4240 if (GET_CODE (parmreg) == CONCAT)
4241 /* Scan backwards for the set of the real and
4242 imaginary parts. */
4243 for (sinsn = linsn; sinsn != 0;
4244 sinsn = prev_nonnote_insn (sinsn))
4245 {
4246 set = single_set (sinsn);
4247 if (set != 0
4248 && SET_DEST (set) == regno_reg_rtx [regnoi])
4249 REG_NOTES (sinsn)
4250 = gen_rtx_EXPR_LIST (REG_EQUIV,
4251 parm_reg_stack_loc[regnoi],
4252 REG_NOTES (sinsn));
4253 else if (set != 0
4254 && SET_DEST (set) == regno_reg_rtx [regnor])
4255 REG_NOTES (sinsn)
4256 = gen_rtx_EXPR_LIST (REG_EQUIV,
4257 parm_reg_stack_loc[regnor],
4258 REG_NOTES (sinsn));
4259 }
4260 else if ((set = single_set (linsn)) != 0
4261 && SET_DEST (set) == parmreg)
4262 REG_NOTES (linsn)
4263 = gen_rtx_EXPR_LIST (REG_EQUIV,
4264 stack_parm, REG_NOTES (linsn));
4265 }
4266
4267 /* For pointer data type, suggest pointer register. */
4268 if (TREE_CODE (TREE_TYPE (parm)) == POINTER_TYPE)
4269 mark_reg_pointer (parmreg,
4270 (TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm)))
4271 / BITS_PER_UNIT));
4272 }
4273 else
4274 {
4275 /* Value must be stored in the stack slot STACK_PARM
4276 during function execution. */
4277
4278 if (promoted_mode != nominal_mode)
4279 {
4280 /* Conversion is required. */
4281 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4282
4283 emit_move_insn (tempreg, validize_mem (entry_parm));
4284
4285 push_to_sequence (conversion_insns);
4286 entry_parm = convert_to_mode (nominal_mode, tempreg,
4287 TREE_UNSIGNED (TREE_TYPE (parm)));
4288 if (stack_parm)
4289 {
4290 /* ??? This may need a big-endian conversion on sparc64. */
4291 stack_parm = change_address (stack_parm, nominal_mode,
4292 NULL_RTX);
4293 }
4294 conversion_insns = get_insns ();
4295 did_conversion = 1;
4296 end_sequence ();
4297 }
4298
4299 if (entry_parm != stack_parm)
4300 {
4301 if (stack_parm == 0)
4302 {
4303 stack_parm
4304 = assign_stack_local (GET_MODE (entry_parm),
4305 GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
4306 /* If this is a memory ref that contains aggregate components,
4307 mark it as such for cse and loop optimize. */
4308 MEM_IN_STRUCT_P (stack_parm) = aggregate;
4309 }
4310
4311 if (promoted_mode != nominal_mode)
4312 {
4313 push_to_sequence (conversion_insns);
4314 emit_move_insn (validize_mem (stack_parm),
4315 validize_mem (entry_parm));
4316 conversion_insns = get_insns ();
4317 end_sequence ();
4318 }
4319 else
4320 emit_move_insn (validize_mem (stack_parm),
4321 validize_mem (entry_parm));
4322 }
4323 if (flag_check_memory_usage
4324 && entry_parm != stack_parm
4325 && promoted_mode != nominal_mode)
4326 {
4327 push_to_sequence (conversion_insns);
4328 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
4329 XEXP (stack_parm, 0), ptr_mode,
4330 GEN_INT (GET_MODE_SIZE (GET_MODE
4331 (entry_parm))),
4332 TYPE_MODE (sizetype),
4333 GEN_INT (MEMORY_USE_RW),
4334 TYPE_MODE (integer_type_node));
4335
4336 conversion_insns = get_insns ();
4337 end_sequence ();
4338 }
4339 DECL_RTL (parm) = stack_parm;
4340 }
4341
4342 /* If this "parameter" was the place where we are receiving the
4343 function's incoming structure pointer, set up the result. */
4344 if (parm == function_result_decl)
4345 {
4346 tree result = DECL_RESULT (fndecl);
4347 tree restype = TREE_TYPE (result);
4348
4349 DECL_RTL (result)
4350 = gen_rtx_MEM (DECL_MODE (result), DECL_RTL (parm));
4351
4352 MEM_IN_STRUCT_P (DECL_RTL (result)) = AGGREGATE_TYPE_P (restype);
4353 }
4354
4355 if (TREE_THIS_VOLATILE (parm))
4356 MEM_VOLATILE_P (DECL_RTL (parm)) = 1;
4357 if (TREE_READONLY (parm))
4358 RTX_UNCHANGING_P (DECL_RTL (parm)) = 1;
4359 }
4360
4361 /* Output all parameter conversion instructions (possibly including calls)
4362 now that all parameters have been copied out of hard registers. */
4363 emit_insns (conversion_insns);
4364
4365 last_parm_insn = get_last_insn ();
4366
4367 current_function_args_size = stack_args_size.constant;
4368
4369 /* Adjust function incoming argument size for alignment and
4370 minimum length. */
4371
4372 #ifdef REG_PARM_STACK_SPACE
4373 #ifndef MAYBE_REG_PARM_STACK_SPACE
4374 current_function_args_size = MAX (current_function_args_size,
4375 REG_PARM_STACK_SPACE (fndecl));
4376 #endif
4377 #endif
4378
4379 #ifdef STACK_BOUNDARY
4380 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
4381
4382 current_function_args_size
4383 = ((current_function_args_size + STACK_BYTES - 1)
4384 / STACK_BYTES) * STACK_BYTES;
4385 #endif
4386
4387 #ifdef ARGS_GROW_DOWNWARD
4388 current_function_arg_offset_rtx
4389 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
4390 : expand_expr (size_binop (MINUS_EXPR, stack_args_size.var,
4391 size_int (-stack_args_size.constant)),
4392 NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_BAD));
4393 #else
4394 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
4395 #endif
4396
4397 /* See how many bytes, if any, of its args a function should try to pop
4398 on return. */
4399
4400 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
4401 current_function_args_size);
4402
4403 /* For stdarg.h function, save info about
4404 regs and stack space used by the named args. */
4405
4406 if (!hide_last_arg)
4407 current_function_args_info = args_so_far;
4408
4409 /* Set the rtx used for the function return value. Put this in its
4410 own variable so any optimizers that need this information don't have
4411 to include tree.h. Do this here so it gets done when an inlined
4412 function gets output. */
4413
4414 current_function_return_rtx = DECL_RTL (DECL_RESULT (fndecl));
4415 }
4416 \f
4417 /* Indicate whether REGNO is an incoming argument to the current function
4418 that was promoted to a wider mode. If so, return the RTX for the
4419 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
4420 that REGNO is promoted from and whether the promotion was signed or
4421 unsigned. */
4422
4423 #ifdef PROMOTE_FUNCTION_ARGS
4424
4425 rtx
4426 promoted_input_arg (regno, pmode, punsignedp)
4427 int regno;
4428 enum machine_mode *pmode;
4429 int *punsignedp;
4430 {
4431 tree arg;
4432
4433 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
4434 arg = TREE_CHAIN (arg))
4435 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
4436 && REGNO (DECL_INCOMING_RTL (arg)) == regno
4437 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
4438 {
4439 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
4440 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
4441
4442 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
4443 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
4444 && mode != DECL_MODE (arg))
4445 {
4446 *pmode = DECL_MODE (arg);
4447 *punsignedp = unsignedp;
4448 return DECL_INCOMING_RTL (arg);
4449 }
4450 }
4451
4452 return 0;
4453 }
4454
4455 #endif
4456 \f
4457 /* Compute the size and offset from the start of the stacked arguments for a
4458 parm passed in mode PASSED_MODE and with type TYPE.
4459
4460 INITIAL_OFFSET_PTR points to the current offset into the stacked
4461 arguments.
4462
4463 The starting offset and size for this parm are returned in *OFFSET_PTR
4464 and *ARG_SIZE_PTR, respectively.
4465
4466 IN_REGS is non-zero if the argument will be passed in registers. It will
4467 never be set if REG_PARM_STACK_SPACE is not defined.
4468
4469 FNDECL is the function in which the argument was defined.
4470
4471 There are two types of rounding that are done. The first, controlled by
4472 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
4473 list to be aligned to the specific boundary (in bits). This rounding
4474 affects the initial and starting offsets, but not the argument size.
4475
4476 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4477 optionally rounds the size of the parm to PARM_BOUNDARY. The
4478 initial offset is not affected by this rounding, while the size always
4479 is and the starting offset may be. */
4480
4481 /* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
4482 initial_offset_ptr is positive because locate_and_pad_parm's
4483 callers pass in the total size of args so far as
4484 initial_offset_ptr. arg_size_ptr is always positive.*/
4485
4486 void
4487 locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
4488 initial_offset_ptr, offset_ptr, arg_size_ptr)
4489 enum machine_mode passed_mode;
4490 tree type;
4491 int in_regs;
4492 tree fndecl;
4493 struct args_size *initial_offset_ptr;
4494 struct args_size *offset_ptr;
4495 struct args_size *arg_size_ptr;
4496 {
4497 tree sizetree
4498 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
4499 enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
4500 int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
4501
4502 #ifdef REG_PARM_STACK_SPACE
4503 /* If we have found a stack parm before we reach the end of the
4504 area reserved for registers, skip that area. */
4505 if (! in_regs)
4506 {
4507 int reg_parm_stack_space = 0;
4508
4509 #ifdef MAYBE_REG_PARM_STACK_SPACE
4510 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
4511 #else
4512 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
4513 #endif
4514 if (reg_parm_stack_space > 0)
4515 {
4516 if (initial_offset_ptr->var)
4517 {
4518 initial_offset_ptr->var
4519 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
4520 size_int (reg_parm_stack_space));
4521 initial_offset_ptr->constant = 0;
4522 }
4523 else if (initial_offset_ptr->constant < reg_parm_stack_space)
4524 initial_offset_ptr->constant = reg_parm_stack_space;
4525 }
4526 }
4527 #endif /* REG_PARM_STACK_SPACE */
4528
4529 arg_size_ptr->var = 0;
4530 arg_size_ptr->constant = 0;
4531
4532 #ifdef ARGS_GROW_DOWNWARD
4533 if (initial_offset_ptr->var)
4534 {
4535 offset_ptr->constant = 0;
4536 offset_ptr->var = size_binop (MINUS_EXPR, integer_zero_node,
4537 initial_offset_ptr->var);
4538 }
4539 else
4540 {
4541 offset_ptr->constant = - initial_offset_ptr->constant;
4542 offset_ptr->var = 0;
4543 }
4544 if (where_pad != none
4545 && (TREE_CODE (sizetree) != INTEGER_CST
4546 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
4547 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
4548 SUB_PARM_SIZE (*offset_ptr, sizetree);
4549 if (where_pad != downward)
4550 pad_to_arg_alignment (offset_ptr, boundary);
4551 if (initial_offset_ptr->var)
4552 {
4553 arg_size_ptr->var = size_binop (MINUS_EXPR,
4554 size_binop (MINUS_EXPR,
4555 integer_zero_node,
4556 initial_offset_ptr->var),
4557 offset_ptr->var);
4558 }
4559 else
4560 {
4561 arg_size_ptr->constant = (- initial_offset_ptr->constant
4562 - offset_ptr->constant);
4563 }
4564 #else /* !ARGS_GROW_DOWNWARD */
4565 pad_to_arg_alignment (initial_offset_ptr, boundary);
4566 *offset_ptr = *initial_offset_ptr;
4567
4568 #ifdef PUSH_ROUNDING
4569 if (passed_mode != BLKmode)
4570 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
4571 #endif
4572
4573 /* Pad_below needs the pre-rounded size to know how much to pad below
4574 so this must be done before rounding up. */
4575 if (where_pad == downward
4576 /* However, BLKmode args passed in regs have their padding done elsewhere.
4577 The stack slot must be able to hold the entire register. */
4578 && !(in_regs && passed_mode == BLKmode))
4579 pad_below (offset_ptr, passed_mode, sizetree);
4580
4581 if (where_pad != none
4582 && (TREE_CODE (sizetree) != INTEGER_CST
4583 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
4584 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
4585
4586 ADD_PARM_SIZE (*arg_size_ptr, sizetree);
4587 #endif /* ARGS_GROW_DOWNWARD */
4588 }
4589
4590 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4591 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4592
4593 static void
4594 pad_to_arg_alignment (offset_ptr, boundary)
4595 struct args_size *offset_ptr;
4596 int boundary;
4597 {
4598 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4599
4600 if (boundary > BITS_PER_UNIT)
4601 {
4602 if (offset_ptr->var)
4603 {
4604 offset_ptr->var =
4605 #ifdef ARGS_GROW_DOWNWARD
4606 round_down
4607 #else
4608 round_up
4609 #endif
4610 (ARGS_SIZE_TREE (*offset_ptr),
4611 boundary / BITS_PER_UNIT);
4612 offset_ptr->constant = 0; /*?*/
4613 }
4614 else
4615 offset_ptr->constant =
4616 #ifdef ARGS_GROW_DOWNWARD
4617 FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
4618 #else
4619 CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
4620 #endif
4621 }
4622 }
4623
4624 #ifndef ARGS_GROW_DOWNWARD
4625 static void
4626 pad_below (offset_ptr, passed_mode, sizetree)
4627 struct args_size *offset_ptr;
4628 enum machine_mode passed_mode;
4629 tree sizetree;
4630 {
4631 if (passed_mode != BLKmode)
4632 {
4633 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
4634 offset_ptr->constant
4635 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
4636 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
4637 - GET_MODE_SIZE (passed_mode));
4638 }
4639 else
4640 {
4641 if (TREE_CODE (sizetree) != INTEGER_CST
4642 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
4643 {
4644 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4645 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
4646 /* Add it in. */
4647 ADD_PARM_SIZE (*offset_ptr, s2);
4648 SUB_PARM_SIZE (*offset_ptr, sizetree);
4649 }
4650 }
4651 }
4652 #endif
4653
4654 static tree
4655 round_down (value, divisor)
4656 tree value;
4657 int divisor;
4658 {
4659 return size_binop (MULT_EXPR,
4660 size_binop (FLOOR_DIV_EXPR, value, size_int (divisor)),
4661 size_int (divisor));
4662 }
4663 \f
4664 /* Walk the tree of blocks describing the binding levels within a function
4665 and warn about uninitialized variables.
4666 This is done after calling flow_analysis and before global_alloc
4667 clobbers the pseudo-regs to hard regs. */
4668
4669 void
4670 uninitialized_vars_warning (block)
4671 tree block;
4672 {
4673 register tree decl, sub;
4674 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
4675 {
4676 if (TREE_CODE (decl) == VAR_DECL
4677 /* These warnings are unreliable for and aggregates
4678 because assigning the fields one by one can fail to convince
4679 flow.c that the entire aggregate was initialized.
4680 Unions are troublesome because members may be shorter. */
4681 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
4682 && DECL_RTL (decl) != 0
4683 && GET_CODE (DECL_RTL (decl)) == REG
4684 && regno_uninitialized (REGNO (DECL_RTL (decl))))
4685 warning_with_decl (decl,
4686 "`%s' might be used uninitialized in this function");
4687 if (TREE_CODE (decl) == VAR_DECL
4688 && DECL_RTL (decl) != 0
4689 && GET_CODE (DECL_RTL (decl)) == REG
4690 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
4691 warning_with_decl (decl,
4692 "variable `%s' might be clobbered by `longjmp' or `vfork'");
4693 }
4694 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
4695 uninitialized_vars_warning (sub);
4696 }
4697
4698 /* Do the appropriate part of uninitialized_vars_warning
4699 but for arguments instead of local variables. */
4700
4701 void
4702 setjmp_args_warning ()
4703 {
4704 register tree decl;
4705 for (decl = DECL_ARGUMENTS (current_function_decl);
4706 decl; decl = TREE_CHAIN (decl))
4707 if (DECL_RTL (decl) != 0
4708 && GET_CODE (DECL_RTL (decl)) == REG
4709 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
4710 warning_with_decl (decl, "argument `%s' might be clobbered by `longjmp' or `vfork'");
4711 }
4712
4713 /* If this function call setjmp, put all vars into the stack
4714 unless they were declared `register'. */
4715
4716 void
4717 setjmp_protect (block)
4718 tree block;
4719 {
4720 register tree decl, sub;
4721 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
4722 if ((TREE_CODE (decl) == VAR_DECL
4723 || TREE_CODE (decl) == PARM_DECL)
4724 && DECL_RTL (decl) != 0
4725 && (GET_CODE (DECL_RTL (decl)) == REG
4726 || (GET_CODE (DECL_RTL (decl)) == MEM
4727 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
4728 /* If this variable came from an inline function, it must be
4729 that it's life doesn't overlap the setjmp. If there was a
4730 setjmp in the function, it would already be in memory. We
4731 must exclude such variable because their DECL_RTL might be
4732 set to strange things such as virtual_stack_vars_rtx. */
4733 && ! DECL_FROM_INLINE (decl)
4734 && (
4735 #ifdef NON_SAVING_SETJMP
4736 /* If longjmp doesn't restore the registers,
4737 don't put anything in them. */
4738 NON_SAVING_SETJMP
4739 ||
4740 #endif
4741 ! DECL_REGISTER (decl)))
4742 put_var_into_stack (decl);
4743 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
4744 setjmp_protect (sub);
4745 }
4746 \f
4747 /* Like the previous function, but for args instead of local variables. */
4748
4749 void
4750 setjmp_protect_args ()
4751 {
4752 register tree decl;
4753 for (decl = DECL_ARGUMENTS (current_function_decl);
4754 decl; decl = TREE_CHAIN (decl))
4755 if ((TREE_CODE (decl) == VAR_DECL
4756 || TREE_CODE (decl) == PARM_DECL)
4757 && DECL_RTL (decl) != 0
4758 && (GET_CODE (DECL_RTL (decl)) == REG
4759 || (GET_CODE (DECL_RTL (decl)) == MEM
4760 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
4761 && (
4762 /* If longjmp doesn't restore the registers,
4763 don't put anything in them. */
4764 #ifdef NON_SAVING_SETJMP
4765 NON_SAVING_SETJMP
4766 ||
4767 #endif
4768 ! DECL_REGISTER (decl)))
4769 put_var_into_stack (decl);
4770 }
4771 \f
4772 /* Return the context-pointer register corresponding to DECL,
4773 or 0 if it does not need one. */
4774
4775 rtx
4776 lookup_static_chain (decl)
4777 tree decl;
4778 {
4779 tree context = decl_function_context (decl);
4780 tree link;
4781
4782 if (context == 0
4783 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
4784 return 0;
4785
4786 /* We treat inline_function_decl as an alias for the current function
4787 because that is the inline function whose vars, types, etc.
4788 are being merged into the current function.
4789 See expand_inline_function. */
4790 if (context == current_function_decl || context == inline_function_decl)
4791 return virtual_stack_vars_rtx;
4792
4793 for (link = context_display; link; link = TREE_CHAIN (link))
4794 if (TREE_PURPOSE (link) == context)
4795 return RTL_EXPR_RTL (TREE_VALUE (link));
4796
4797 abort ();
4798 }
4799 \f
4800 /* Convert a stack slot address ADDR for variable VAR
4801 (from a containing function)
4802 into an address valid in this function (using a static chain). */
4803
4804 rtx
4805 fix_lexical_addr (addr, var)
4806 rtx addr;
4807 tree var;
4808 {
4809 rtx basereg;
4810 int displacement;
4811 tree context = decl_function_context (var);
4812 struct function *fp;
4813 rtx base = 0;
4814
4815 /* If this is the present function, we need not do anything. */
4816 if (context == current_function_decl || context == inline_function_decl)
4817 return addr;
4818
4819 for (fp = outer_function_chain; fp; fp = fp->next)
4820 if (fp->decl == context)
4821 break;
4822
4823 if (fp == 0)
4824 abort ();
4825
4826 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
4827 addr = XEXP (XEXP (addr, 0), 0);
4828
4829 /* Decode given address as base reg plus displacement. */
4830 if (GET_CODE (addr) == REG)
4831 basereg = addr, displacement = 0;
4832 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
4833 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
4834 else
4835 abort ();
4836
4837 /* We accept vars reached via the containing function's
4838 incoming arg pointer and via its stack variables pointer. */
4839 if (basereg == fp->internal_arg_pointer)
4840 {
4841 /* If reached via arg pointer, get the arg pointer value
4842 out of that function's stack frame.
4843
4844 There are two cases: If a separate ap is needed, allocate a
4845 slot in the outer function for it and dereference it that way.
4846 This is correct even if the real ap is actually a pseudo.
4847 Otherwise, just adjust the offset from the frame pointer to
4848 compensate. */
4849
4850 #ifdef NEED_SEPARATE_AP
4851 rtx addr;
4852
4853 if (fp->arg_pointer_save_area == 0)
4854 fp->arg_pointer_save_area
4855 = assign_outer_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0, fp);
4856
4857 addr = fix_lexical_addr (XEXP (fp->arg_pointer_save_area, 0), var);
4858 addr = memory_address (Pmode, addr);
4859
4860 base = copy_to_reg (gen_rtx_MEM (Pmode, addr));
4861 #else
4862 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
4863 base = lookup_static_chain (var);
4864 #endif
4865 }
4866
4867 else if (basereg == virtual_stack_vars_rtx)
4868 {
4869 /* This is the same code as lookup_static_chain, duplicated here to
4870 avoid an extra call to decl_function_context. */
4871 tree link;
4872
4873 for (link = context_display; link; link = TREE_CHAIN (link))
4874 if (TREE_PURPOSE (link) == context)
4875 {
4876 base = RTL_EXPR_RTL (TREE_VALUE (link));
4877 break;
4878 }
4879 }
4880
4881 if (base == 0)
4882 abort ();
4883
4884 /* Use same offset, relative to appropriate static chain or argument
4885 pointer. */
4886 return plus_constant (base, displacement);
4887 }
4888 \f
4889 /* Return the address of the trampoline for entering nested fn FUNCTION.
4890 If necessary, allocate a trampoline (in the stack frame)
4891 and emit rtl to initialize its contents (at entry to this function). */
4892
4893 rtx
4894 trampoline_address (function)
4895 tree function;
4896 {
4897 tree link;
4898 tree rtlexp;
4899 rtx tramp;
4900 struct function *fp;
4901 tree fn_context;
4902
4903 /* Find an existing trampoline and return it. */
4904 for (link = trampoline_list; link; link = TREE_CHAIN (link))
4905 if (TREE_PURPOSE (link) == function)
4906 return
4907 round_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
4908
4909 for (fp = outer_function_chain; fp; fp = fp->next)
4910 for (link = fp->trampoline_list; link; link = TREE_CHAIN (link))
4911 if (TREE_PURPOSE (link) == function)
4912 {
4913 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
4914 function);
4915 return round_trampoline_addr (tramp);
4916 }
4917
4918 /* None exists; we must make one. */
4919
4920 /* Find the `struct function' for the function containing FUNCTION. */
4921 fp = 0;
4922 fn_context = decl_function_context (function);
4923 if (fn_context != current_function_decl
4924 && fn_context != inline_function_decl)
4925 for (fp = outer_function_chain; fp; fp = fp->next)
4926 if (fp->decl == fn_context)
4927 break;
4928
4929 /* Allocate run-time space for this trampoline
4930 (usually in the defining function's stack frame). */
4931 #ifdef ALLOCATE_TRAMPOLINE
4932 tramp = ALLOCATE_TRAMPOLINE (fp);
4933 #else
4934 /* If rounding needed, allocate extra space
4935 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
4936 #ifdef TRAMPOLINE_ALIGNMENT
4937 #define TRAMPOLINE_REAL_SIZE \
4938 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
4939 #else
4940 #define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE)
4941 #endif
4942 if (fp != 0)
4943 tramp = assign_outer_stack_local (BLKmode, TRAMPOLINE_REAL_SIZE, 0, fp);
4944 else
4945 tramp = assign_stack_local (BLKmode, TRAMPOLINE_REAL_SIZE, 0);
4946 #endif
4947
4948 /* Record the trampoline for reuse and note it for later initialization
4949 by expand_function_end. */
4950 if (fp != 0)
4951 {
4952 push_obstacks (fp->function_maybepermanent_obstack,
4953 fp->function_maybepermanent_obstack);
4954 rtlexp = make_node (RTL_EXPR);
4955 RTL_EXPR_RTL (rtlexp) = tramp;
4956 fp->trampoline_list = tree_cons (function, rtlexp, fp->trampoline_list);
4957 pop_obstacks ();
4958 }
4959 else
4960 {
4961 /* Make the RTL_EXPR node temporary, not momentary, so that the
4962 trampoline_list doesn't become garbage. */
4963 int momentary = suspend_momentary ();
4964 rtlexp = make_node (RTL_EXPR);
4965 resume_momentary (momentary);
4966
4967 RTL_EXPR_RTL (rtlexp) = tramp;
4968 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
4969 }
4970
4971 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
4972 return round_trampoline_addr (tramp);
4973 }
4974
4975 /* Given a trampoline address,
4976 round it to multiple of TRAMPOLINE_ALIGNMENT. */
4977
4978 static rtx
4979 round_trampoline_addr (tramp)
4980 rtx tramp;
4981 {
4982 #ifdef TRAMPOLINE_ALIGNMENT
4983 /* Round address up to desired boundary. */
4984 rtx temp = gen_reg_rtx (Pmode);
4985 temp = expand_binop (Pmode, add_optab, tramp,
4986 GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1),
4987 temp, 0, OPTAB_LIB_WIDEN);
4988 tramp = expand_binop (Pmode, and_optab, temp,
4989 GEN_INT (- TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT),
4990 temp, 0, OPTAB_LIB_WIDEN);
4991 #endif
4992 return tramp;
4993 }
4994 \f
4995 /* The functions identify_blocks and reorder_blocks provide a way to
4996 reorder the tree of BLOCK nodes, for optimizers that reshuffle or
4997 duplicate portions of the RTL code. Call identify_blocks before
4998 changing the RTL, and call reorder_blocks after. */
4999
5000 /* Put all this function's BLOCK nodes including those that are chained
5001 onto the first block into a vector, and return it.
5002 Also store in each NOTE for the beginning or end of a block
5003 the index of that block in the vector.
5004 The arguments are BLOCK, the chain of top-level blocks of the function,
5005 and INSNS, the insn chain of the function. */
5006
5007 tree *
5008 identify_blocks (block, insns)
5009 tree block;
5010 rtx insns;
5011 {
5012 int n_blocks;
5013 tree *block_vector;
5014 int *block_stack;
5015 int depth = 0;
5016 int next_block_number = 1;
5017 int current_block_number = 1;
5018 rtx insn;
5019
5020 if (block == 0)
5021 return 0;
5022
5023 n_blocks = all_blocks (block, 0);
5024 block_vector = (tree *) xmalloc (n_blocks * sizeof (tree));
5025 block_stack = (int *) alloca (n_blocks * sizeof (int));
5026
5027 all_blocks (block, block_vector);
5028
5029 for (insn = insns; insn; insn = NEXT_INSN (insn))
5030 if (GET_CODE (insn) == NOTE)
5031 {
5032 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5033 {
5034 block_stack[depth++] = current_block_number;
5035 current_block_number = next_block_number;
5036 NOTE_BLOCK_NUMBER (insn) = next_block_number++;
5037 }
5038 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5039 {
5040 current_block_number = block_stack[--depth];
5041 NOTE_BLOCK_NUMBER (insn) = current_block_number;
5042 }
5043 }
5044
5045 if (n_blocks != next_block_number)
5046 abort ();
5047
5048 return block_vector;
5049 }
5050
5051 /* Given BLOCK_VECTOR which was returned by identify_blocks,
5052 and a revised instruction chain, rebuild the tree structure
5053 of BLOCK nodes to correspond to the new order of RTL.
5054 The new block tree is inserted below TOP_BLOCK.
5055 Returns the current top-level block. */
5056
5057 tree
5058 reorder_blocks (block_vector, block, insns)
5059 tree *block_vector;
5060 tree block;
5061 rtx insns;
5062 {
5063 tree current_block = block;
5064 rtx insn;
5065
5066 if (block_vector == 0)
5067 return block;
5068
5069 /* Prune the old trees away, so that it doesn't get in the way. */
5070 BLOCK_SUBBLOCKS (current_block) = 0;
5071 BLOCK_CHAIN (current_block) = 0;
5072
5073 for (insn = insns; insn; insn = NEXT_INSN (insn))
5074 if (GET_CODE (insn) == NOTE)
5075 {
5076 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5077 {
5078 tree block = block_vector[NOTE_BLOCK_NUMBER (insn)];
5079 /* If we have seen this block before, copy it. */
5080 if (TREE_ASM_WRITTEN (block))
5081 block = copy_node (block);
5082 BLOCK_SUBBLOCKS (block) = 0;
5083 TREE_ASM_WRITTEN (block) = 1;
5084 BLOCK_SUPERCONTEXT (block) = current_block;
5085 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
5086 BLOCK_SUBBLOCKS (current_block) = block;
5087 current_block = block;
5088 NOTE_SOURCE_FILE (insn) = 0;
5089 }
5090 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5091 {
5092 BLOCK_SUBBLOCKS (current_block)
5093 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
5094 current_block = BLOCK_SUPERCONTEXT (current_block);
5095 NOTE_SOURCE_FILE (insn) = 0;
5096 }
5097 }
5098
5099 BLOCK_SUBBLOCKS (current_block)
5100 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
5101 return current_block;
5102 }
5103
5104 /* Reverse the order of elements in the chain T of blocks,
5105 and return the new head of the chain (old last element). */
5106
5107 static tree
5108 blocks_nreverse (t)
5109 tree t;
5110 {
5111 register tree prev = 0, decl, next;
5112 for (decl = t; decl; decl = next)
5113 {
5114 next = BLOCK_CHAIN (decl);
5115 BLOCK_CHAIN (decl) = prev;
5116 prev = decl;
5117 }
5118 return prev;
5119 }
5120
5121 /* Count the subblocks of the list starting with BLOCK, and list them
5122 all into the vector VECTOR. Also clear TREE_ASM_WRITTEN in all
5123 blocks. */
5124
5125 static int
5126 all_blocks (block, vector)
5127 tree block;
5128 tree *vector;
5129 {
5130 int n_blocks = 0;
5131
5132 while (block)
5133 {
5134 TREE_ASM_WRITTEN (block) = 0;
5135
5136 /* Record this block. */
5137 if (vector)
5138 vector[n_blocks] = block;
5139
5140 ++n_blocks;
5141
5142 /* Record the subblocks, and their subblocks... */
5143 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
5144 vector ? vector + n_blocks : 0);
5145 block = BLOCK_CHAIN (block);
5146 }
5147
5148 return n_blocks;
5149 }
5150 \f
5151 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
5152 and initialize static variables for generating RTL for the statements
5153 of the function. */
5154
5155 void
5156 init_function_start (subr, filename, line)
5157 tree subr;
5158 char *filename;
5159 int line;
5160 {
5161 init_stmt_for_function ();
5162
5163 cse_not_expected = ! optimize;
5164
5165 /* Caller save not needed yet. */
5166 caller_save_needed = 0;
5167
5168 /* No stack slots have been made yet. */
5169 stack_slot_list = 0;
5170
5171 /* There is no stack slot for handling nonlocal gotos. */
5172 nonlocal_goto_handler_slot = 0;
5173 nonlocal_goto_stack_level = 0;
5174
5175 /* No labels have been declared for nonlocal use. */
5176 nonlocal_labels = 0;
5177
5178 /* No function calls so far in this function. */
5179 function_call_count = 0;
5180
5181 /* No parm regs have been allocated.
5182 (This is important for output_inline_function.) */
5183 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
5184
5185 /* Initialize the RTL mechanism. */
5186 init_emit ();
5187
5188 /* Initialize the queue of pending postincrement and postdecrements,
5189 and some other info in expr.c. */
5190 init_expr ();
5191
5192 /* We haven't done register allocation yet. */
5193 reg_renumber = 0;
5194
5195 init_const_rtx_hash_table ();
5196
5197 current_function_name = (*decl_printable_name) (subr, 2);
5198
5199 /* Nonzero if this is a nested function that uses a static chain. */
5200
5201 current_function_needs_context
5202 = (decl_function_context (current_function_decl) != 0
5203 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
5204
5205 /* Set if a call to setjmp is seen. */
5206 current_function_calls_setjmp = 0;
5207
5208 /* Set if a call to longjmp is seen. */
5209 current_function_calls_longjmp = 0;
5210
5211 current_function_calls_alloca = 0;
5212 current_function_has_nonlocal_label = 0;
5213 current_function_has_nonlocal_goto = 0;
5214 current_function_contains_functions = 0;
5215 current_function_is_thunk = 0;
5216
5217 current_function_returns_pcc_struct = 0;
5218 current_function_returns_struct = 0;
5219 current_function_epilogue_delay_list = 0;
5220 current_function_uses_const_pool = 0;
5221 current_function_uses_pic_offset_table = 0;
5222
5223 /* We have not yet needed to make a label to jump to for tail-recursion. */
5224 tail_recursion_label = 0;
5225
5226 /* We haven't had a need to make a save area for ap yet. */
5227
5228 arg_pointer_save_area = 0;
5229
5230 /* No stack slots allocated yet. */
5231 frame_offset = 0;
5232
5233 /* No SAVE_EXPRs in this function yet. */
5234 save_expr_regs = 0;
5235
5236 /* No RTL_EXPRs in this function yet. */
5237 rtl_expr_chain = 0;
5238
5239 /* Set up to allocate temporaries. */
5240 init_temp_slots ();
5241
5242 /* Within function body, compute a type's size as soon it is laid out. */
5243 immediate_size_expand++;
5244
5245 /* We haven't made any trampolines for this function yet. */
5246 trampoline_list = 0;
5247
5248 init_pending_stack_adjust ();
5249 inhibit_defer_pop = 0;
5250
5251 current_function_outgoing_args_size = 0;
5252
5253 /* Prevent ever trying to delete the first instruction of a function.
5254 Also tell final how to output a linenum before the function prologue. */
5255 emit_line_note (filename, line);
5256
5257 /* Make sure first insn is a note even if we don't want linenums.
5258 This makes sure the first insn will never be deleted.
5259 Also, final expects a note to appear there. */
5260 emit_note (NULL_PTR, NOTE_INSN_DELETED);
5261
5262 /* Set flags used by final.c. */
5263 if (aggregate_value_p (DECL_RESULT (subr)))
5264 {
5265 #ifdef PCC_STATIC_STRUCT_RETURN
5266 current_function_returns_pcc_struct = 1;
5267 #endif
5268 current_function_returns_struct = 1;
5269 }
5270
5271 /* Warn if this value is an aggregate type,
5272 regardless of which calling convention we are using for it. */
5273 if (warn_aggregate_return
5274 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
5275 warning ("function returns an aggregate");
5276
5277 current_function_returns_pointer
5278 = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
5279
5280 /* Indicate that we need to distinguish between the return value of the
5281 present function and the return value of a function being called. */
5282 rtx_equal_function_value_matters = 1;
5283
5284 /* Indicate that we have not instantiated virtual registers yet. */
5285 virtuals_instantiated = 0;
5286
5287 /* Indicate we have no need of a frame pointer yet. */
5288 frame_pointer_needed = 0;
5289
5290 /* By default assume not varargs or stdarg. */
5291 current_function_varargs = 0;
5292 current_function_stdarg = 0;
5293 }
5294
5295 /* Indicate that the current function uses extra args
5296 not explicitly mentioned in the argument list in any fashion. */
5297
5298 void
5299 mark_varargs ()
5300 {
5301 current_function_varargs = 1;
5302 }
5303
5304 /* Expand a call to __main at the beginning of a possible main function. */
5305
5306 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
5307 #undef HAS_INIT_SECTION
5308 #define HAS_INIT_SECTION
5309 #endif
5310
5311 void
5312 expand_main_function ()
5313 {
5314 #if !defined (HAS_INIT_SECTION)
5315 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, NAME__MAIN), 0,
5316 VOIDmode, 0);
5317 #endif /* not HAS_INIT_SECTION */
5318 }
5319 \f
5320 extern struct obstack permanent_obstack;
5321
5322 /* Start the RTL for a new function, and set variables used for
5323 emitting RTL.
5324 SUBR is the FUNCTION_DECL node.
5325 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
5326 the function's parameters, which must be run at any return statement. */
5327
5328 void
5329 expand_function_start (subr, parms_have_cleanups)
5330 tree subr;
5331 int parms_have_cleanups;
5332 {
5333 register int i;
5334 tree tem;
5335 rtx last_ptr;
5336
5337 /* Make sure volatile mem refs aren't considered
5338 valid operands of arithmetic insns. */
5339 init_recog_no_volatile ();
5340
5341 /* If function gets a static chain arg, store it in the stack frame.
5342 Do this first, so it gets the first stack slot offset. */
5343 if (current_function_needs_context)
5344 {
5345 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5346
5347 /* Delay copying static chain if it is not a register to avoid
5348 conflicts with regs used for parameters. */
5349 if (! SMALL_REGISTER_CLASSES
5350 || GET_CODE (static_chain_incoming_rtx) == REG)
5351 emit_move_insn (last_ptr, static_chain_incoming_rtx);
5352 }
5353
5354 /* If the parameters of this function need cleaning up, get a label
5355 for the beginning of the code which executes those cleanups. This must
5356 be done before doing anything with return_label. */
5357 if (parms_have_cleanups)
5358 cleanup_label = gen_label_rtx ();
5359 else
5360 cleanup_label = 0;
5361
5362 /* Make the label for return statements to jump to, if this machine
5363 does not have a one-instruction return and uses an epilogue,
5364 or if it returns a structure, or if it has parm cleanups. */
5365 #ifdef HAVE_return
5366 if (cleanup_label == 0 && HAVE_return
5367 && ! current_function_returns_pcc_struct
5368 && ! (current_function_returns_struct && ! optimize))
5369 return_label = 0;
5370 else
5371 return_label = gen_label_rtx ();
5372 #else
5373 return_label = gen_label_rtx ();
5374 #endif
5375
5376 /* Initialize rtx used to return the value. */
5377 /* Do this before assign_parms so that we copy the struct value address
5378 before any library calls that assign parms might generate. */
5379
5380 /* Decide whether to return the value in memory or in a register. */
5381 if (aggregate_value_p (DECL_RESULT (subr)))
5382 {
5383 /* Returning something that won't go in a register. */
5384 register rtx value_address = 0;
5385
5386 #ifdef PCC_STATIC_STRUCT_RETURN
5387 if (current_function_returns_pcc_struct)
5388 {
5389 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
5390 value_address = assemble_static_space (size);
5391 }
5392 else
5393 #endif
5394 {
5395 /* Expect to be passed the address of a place to store the value.
5396 If it is passed as an argument, assign_parms will take care of
5397 it. */
5398 if (struct_value_incoming_rtx)
5399 {
5400 value_address = gen_reg_rtx (Pmode);
5401 emit_move_insn (value_address, struct_value_incoming_rtx);
5402 }
5403 }
5404 if (value_address)
5405 {
5406 DECL_RTL (DECL_RESULT (subr))
5407 = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
5408 MEM_IN_STRUCT_P (DECL_RTL (DECL_RESULT (subr)))
5409 = AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
5410 }
5411 }
5412 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
5413 /* If return mode is void, this decl rtl should not be used. */
5414 DECL_RTL (DECL_RESULT (subr)) = 0;
5415 else if (parms_have_cleanups)
5416 {
5417 /* If function will end with cleanup code for parms,
5418 compute the return values into a pseudo reg,
5419 which we will copy into the true return register
5420 after the cleanups are done. */
5421
5422 enum machine_mode mode = DECL_MODE (DECL_RESULT (subr));
5423
5424 #ifdef PROMOTE_FUNCTION_RETURN
5425 tree type = TREE_TYPE (DECL_RESULT (subr));
5426 int unsignedp = TREE_UNSIGNED (type);
5427
5428 mode = promote_mode (type, mode, &unsignedp, 1);
5429 #endif
5430
5431 DECL_RTL (DECL_RESULT (subr)) = gen_reg_rtx (mode);
5432 }
5433 else
5434 /* Scalar, returned in a register. */
5435 {
5436 #ifdef FUNCTION_OUTGOING_VALUE
5437 DECL_RTL (DECL_RESULT (subr))
5438 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (subr)), subr);
5439 #else
5440 DECL_RTL (DECL_RESULT (subr))
5441 = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (subr)), subr);
5442 #endif
5443
5444 /* Mark this reg as the function's return value. */
5445 if (GET_CODE (DECL_RTL (DECL_RESULT (subr))) == REG)
5446 {
5447 REG_FUNCTION_VALUE_P (DECL_RTL (DECL_RESULT (subr))) = 1;
5448 /* Needed because we may need to move this to memory
5449 in case it's a named return value whose address is taken. */
5450 DECL_REGISTER (DECL_RESULT (subr)) = 1;
5451 }
5452 }
5453
5454 /* Initialize rtx for parameters and local variables.
5455 In some cases this requires emitting insns. */
5456
5457 assign_parms (subr, 0);
5458
5459 /* Copy the static chain now if it wasn't a register. The delay is to
5460 avoid conflicts with the parameter passing registers. */
5461
5462 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
5463 if (GET_CODE (static_chain_incoming_rtx) != REG)
5464 emit_move_insn (last_ptr, static_chain_incoming_rtx);
5465
5466 /* The following was moved from init_function_start.
5467 The move is supposed to make sdb output more accurate. */
5468 /* Indicate the beginning of the function body,
5469 as opposed to parm setup. */
5470 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_BEG);
5471
5472 /* If doing stupid allocation, mark parms as born here. */
5473
5474 if (GET_CODE (get_last_insn ()) != NOTE)
5475 emit_note (NULL_PTR, NOTE_INSN_DELETED);
5476 parm_birth_insn = get_last_insn ();
5477
5478 if (obey_regdecls)
5479 {
5480 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_parm_reg; i++)
5481 use_variable (regno_reg_rtx[i]);
5482
5483 if (current_function_internal_arg_pointer != virtual_incoming_args_rtx)
5484 use_variable (current_function_internal_arg_pointer);
5485 }
5486
5487 context_display = 0;
5488 if (current_function_needs_context)
5489 {
5490 /* Fetch static chain values for containing functions. */
5491 tem = decl_function_context (current_function_decl);
5492 /* If not doing stupid register allocation copy the static chain
5493 pointer into a pseudo. If we have small register classes, copy
5494 the value from memory if static_chain_incoming_rtx is a REG. If
5495 we do stupid register allocation, we use the stack address
5496 generated above. */
5497 if (tem && ! obey_regdecls)
5498 {
5499 /* If the static chain originally came in a register, put it back
5500 there, then move it out in the next insn. The reason for
5501 this peculiar code is to satisfy function integration. */
5502 if (SMALL_REGISTER_CLASSES
5503 && GET_CODE (static_chain_incoming_rtx) == REG)
5504 emit_move_insn (static_chain_incoming_rtx, last_ptr);
5505 last_ptr = copy_to_reg (static_chain_incoming_rtx);
5506 }
5507
5508 while (tem)
5509 {
5510 tree rtlexp = make_node (RTL_EXPR);
5511
5512 RTL_EXPR_RTL (rtlexp) = last_ptr;
5513 context_display = tree_cons (tem, rtlexp, context_display);
5514 tem = decl_function_context (tem);
5515 if (tem == 0)
5516 break;
5517 /* Chain thru stack frames, assuming pointer to next lexical frame
5518 is found at the place we always store it. */
5519 #ifdef FRAME_GROWS_DOWNWARD
5520 last_ptr = plus_constant (last_ptr, - GET_MODE_SIZE (Pmode));
5521 #endif
5522 last_ptr = copy_to_reg (gen_rtx_MEM (Pmode,
5523 memory_address (Pmode, last_ptr)));
5524
5525 /* If we are not optimizing, ensure that we know that this
5526 piece of context is live over the entire function. */
5527 if (! optimize)
5528 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
5529 save_expr_regs);
5530 }
5531 }
5532
5533 /* After the display initializations is where the tail-recursion label
5534 should go, if we end up needing one. Ensure we have a NOTE here
5535 since some things (like trampolines) get placed before this. */
5536 tail_recursion_reentry = emit_note (NULL_PTR, NOTE_INSN_DELETED);
5537
5538 /* Evaluate now the sizes of any types declared among the arguments. */
5539 for (tem = nreverse (get_pending_sizes ()); tem; tem = TREE_CHAIN (tem))
5540 {
5541 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode,
5542 EXPAND_MEMORY_USE_BAD);
5543 /* Flush the queue in case this parameter declaration has
5544 side-effects. */
5545 emit_queue ();
5546 }
5547
5548 /* Make sure there is a line number after the function entry setup code. */
5549 force_next_line_note ();
5550 }
5551 \f
5552 /* Generate RTL for the end of the current function.
5553 FILENAME and LINE are the current position in the source file.
5554
5555 It is up to language-specific callers to do cleanups for parameters--
5556 or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */
5557
5558 void
5559 expand_function_end (filename, line, end_bindings)
5560 char *filename;
5561 int line;
5562 int end_bindings;
5563 {
5564 register int i;
5565 tree link;
5566
5567 #ifdef TRAMPOLINE_TEMPLATE
5568 static rtx initial_trampoline;
5569 #endif
5570
5571 #ifdef NON_SAVING_SETJMP
5572 /* Don't put any variables in registers if we call setjmp
5573 on a machine that fails to restore the registers. */
5574 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
5575 {
5576 if (DECL_INITIAL (current_function_decl) != error_mark_node)
5577 setjmp_protect (DECL_INITIAL (current_function_decl));
5578
5579 setjmp_protect_args ();
5580 }
5581 #endif
5582
5583 /* Save the argument pointer if a save area was made for it. */
5584 if (arg_pointer_save_area)
5585 {
5586 rtx x = gen_move_insn (arg_pointer_save_area, virtual_incoming_args_rtx);
5587 emit_insn_before (x, tail_recursion_reentry);
5588 }
5589
5590 /* Initialize any trampolines required by this function. */
5591 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5592 {
5593 tree function = TREE_PURPOSE (link);
5594 rtx context = lookup_static_chain (function);
5595 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
5596 rtx blktramp;
5597 rtx seq;
5598
5599 #ifdef TRAMPOLINE_TEMPLATE
5600 /* First make sure this compilation has a template for
5601 initializing trampolines. */
5602 if (initial_trampoline == 0)
5603 {
5604 end_temporary_allocation ();
5605 initial_trampoline
5606 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
5607 resume_temporary_allocation ();
5608 }
5609 #endif
5610
5611 /* Generate insns to initialize the trampoline. */
5612 start_sequence ();
5613 tramp = round_trampoline_addr (XEXP (tramp, 0));
5614 #ifdef TRAMPOLINE_TEMPLATE
5615 blktramp = change_address (initial_trampoline, BLKmode, tramp);
5616 emit_block_move (blktramp, initial_trampoline,
5617 GEN_INT (TRAMPOLINE_SIZE),
5618 TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT);
5619 #endif
5620 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
5621 seq = get_insns ();
5622 end_sequence ();
5623
5624 /* Put those insns at entry to the containing function (this one). */
5625 emit_insns_before (seq, tail_recursion_reentry);
5626 }
5627
5628 /* If we are doing stack checking and this function makes calls,
5629 do a stack probe at the start of the function to ensure we have enough
5630 space for another stack frame. */
5631 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
5632 {
5633 rtx insn, seq;
5634
5635 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5636 if (GET_CODE (insn) == CALL_INSN)
5637 {
5638 start_sequence ();
5639 probe_stack_range (STACK_CHECK_PROTECT,
5640 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
5641 seq = get_insns ();
5642 end_sequence ();
5643 emit_insns_before (seq, tail_recursion_reentry);
5644 break;
5645 }
5646 }
5647
5648 /* Warn about unused parms if extra warnings were specified. */
5649 if (warn_unused && extra_warnings)
5650 {
5651 tree decl;
5652
5653 for (decl = DECL_ARGUMENTS (current_function_decl);
5654 decl; decl = TREE_CHAIN (decl))
5655 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
5656 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
5657 warning_with_decl (decl, "unused parameter `%s'");
5658 }
5659
5660 /* Delete handlers for nonlocal gotos if nothing uses them. */
5661 if (nonlocal_goto_handler_slot != 0 && !current_function_has_nonlocal_label)
5662 delete_handlers ();
5663
5664 /* End any sequences that failed to be closed due to syntax errors. */
5665 while (in_sequence_p ())
5666 end_sequence ();
5667
5668 /* Outside function body, can't compute type's actual size
5669 until next function's body starts. */
5670 immediate_size_expand--;
5671
5672 /* If doing stupid register allocation,
5673 mark register parms as dying here. */
5674
5675 if (obey_regdecls)
5676 {
5677 rtx tem;
5678 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_parm_reg; i++)
5679 use_variable (regno_reg_rtx[i]);
5680
5681 /* Likewise for the regs of all the SAVE_EXPRs in the function. */
5682
5683 for (tem = save_expr_regs; tem; tem = XEXP (tem, 1))
5684 {
5685 use_variable (XEXP (tem, 0));
5686 use_variable_after (XEXP (tem, 0), parm_birth_insn);
5687 }
5688
5689 if (current_function_internal_arg_pointer != virtual_incoming_args_rtx)
5690 use_variable (current_function_internal_arg_pointer);
5691 }
5692
5693 clear_pending_stack_adjust ();
5694 do_pending_stack_adjust ();
5695
5696 /* Mark the end of the function body.
5697 If control reaches this insn, the function can drop through
5698 without returning a value. */
5699 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_END);
5700
5701 /* Must mark the last line number note in the function, so that the test
5702 coverage code can avoid counting the last line twice. This just tells
5703 the code to ignore the immediately following line note, since there
5704 already exists a copy of this note somewhere above. This line number
5705 note is still needed for debugging though, so we can't delete it. */
5706 if (flag_test_coverage)
5707 emit_note (NULL_PTR, NOTE_REPEATED_LINE_NUMBER);
5708
5709 /* Output a linenumber for the end of the function.
5710 SDB depends on this. */
5711 emit_line_note_force (filename, line);
5712
5713 /* Output the label for the actual return from the function,
5714 if one is expected. This happens either because a function epilogue
5715 is used instead of a return instruction, or because a return was done
5716 with a goto in order to run local cleanups, or because of pcc-style
5717 structure returning. */
5718
5719 if (return_label)
5720 emit_label (return_label);
5721
5722 /* C++ uses this. */
5723 if (end_bindings)
5724 expand_end_bindings (0, 0, 0);
5725
5726 /* Now handle any leftover exception regions that may have been
5727 created for the parameters. */
5728 {
5729 rtx last = get_last_insn ();
5730 rtx label;
5731
5732 expand_leftover_cleanups ();
5733
5734 /* If the above emitted any code, may sure we jump around it. */
5735 if (last != get_last_insn ())
5736 {
5737 label = gen_label_rtx ();
5738 last = emit_jump_insn_after (gen_jump (label), last);
5739 last = emit_barrier_after (last);
5740 emit_label (label);
5741 }
5742 }
5743
5744 /* If we had calls to alloca, and this machine needs
5745 an accurate stack pointer to exit the function,
5746 insert some code to save and restore the stack pointer. */
5747 #ifdef EXIT_IGNORE_STACK
5748 if (! EXIT_IGNORE_STACK)
5749 #endif
5750 if (current_function_calls_alloca)
5751 {
5752 rtx tem = 0;
5753
5754 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
5755 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
5756 }
5757
5758 /* If scalar return value was computed in a pseudo-reg,
5759 copy that to the hard return register. */
5760 if (DECL_RTL (DECL_RESULT (current_function_decl)) != 0
5761 && GET_CODE (DECL_RTL (DECL_RESULT (current_function_decl))) == REG
5762 && (REGNO (DECL_RTL (DECL_RESULT (current_function_decl)))
5763 >= FIRST_PSEUDO_REGISTER))
5764 {
5765 rtx real_decl_result;
5766
5767 #ifdef FUNCTION_OUTGOING_VALUE
5768 real_decl_result
5769 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
5770 current_function_decl);
5771 #else
5772 real_decl_result
5773 = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
5774 current_function_decl);
5775 #endif
5776 REG_FUNCTION_VALUE_P (real_decl_result) = 1;
5777 /* If this is a BLKmode structure being returned in registers, then use
5778 the mode computed in expand_return. */
5779 if (GET_MODE (real_decl_result) == BLKmode)
5780 PUT_MODE (real_decl_result,
5781 GET_MODE (DECL_RTL (DECL_RESULT (current_function_decl))));
5782 emit_move_insn (real_decl_result,
5783 DECL_RTL (DECL_RESULT (current_function_decl)));
5784 emit_insn (gen_rtx_USE (VOIDmode, real_decl_result));
5785
5786 /* The delay slot scheduler assumes that current_function_return_rtx
5787 holds the hard register containing the return value, not a temporary
5788 pseudo. */
5789 current_function_return_rtx = real_decl_result;
5790 }
5791
5792 /* If returning a structure, arrange to return the address of the value
5793 in a place where debuggers expect to find it.
5794
5795 If returning a structure PCC style,
5796 the caller also depends on this value.
5797 And current_function_returns_pcc_struct is not necessarily set. */
5798 if (current_function_returns_struct
5799 || current_function_returns_pcc_struct)
5800 {
5801 rtx value_address = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
5802 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5803 #ifdef FUNCTION_OUTGOING_VALUE
5804 rtx outgoing
5805 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
5806 current_function_decl);
5807 #else
5808 rtx outgoing
5809 = FUNCTION_VALUE (build_pointer_type (type),
5810 current_function_decl);
5811 #endif
5812
5813 /* Mark this as a function return value so integrate will delete the
5814 assignment and USE below when inlining this function. */
5815 REG_FUNCTION_VALUE_P (outgoing) = 1;
5816
5817 emit_move_insn (outgoing, value_address);
5818 use_variable (outgoing);
5819 }
5820
5821 /* Output a return insn if we are using one.
5822 Otherwise, let the rtl chain end here, to drop through
5823 into the epilogue. */
5824
5825 #ifdef HAVE_return
5826 if (HAVE_return)
5827 {
5828 emit_jump_insn (gen_return ());
5829 emit_barrier ();
5830 }
5831 #endif
5832
5833 /* Fix up any gotos that jumped out to the outermost
5834 binding level of the function.
5835 Must follow emitting RETURN_LABEL. */
5836
5837 /* If you have any cleanups to do at this point,
5838 and they need to create temporary variables,
5839 then you will lose. */
5840 expand_fixups (get_insns ());
5841 }
5842 \f
5843 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
5844
5845 static int *prologue;
5846 static int *epilogue;
5847
5848 /* Create an array that records the INSN_UIDs of INSNS (either a sequence
5849 or a single insn). */
5850
5851 static int *
5852 record_insns (insns)
5853 rtx insns;
5854 {
5855 int *vec;
5856
5857 if (GET_CODE (insns) == SEQUENCE)
5858 {
5859 int len = XVECLEN (insns, 0);
5860 vec = (int *) oballoc ((len + 1) * sizeof (int));
5861 vec[len] = 0;
5862 while (--len >= 0)
5863 vec[len] = INSN_UID (XVECEXP (insns, 0, len));
5864 }
5865 else
5866 {
5867 vec = (int *) oballoc (2 * sizeof (int));
5868 vec[0] = INSN_UID (insns);
5869 vec[1] = 0;
5870 }
5871 return vec;
5872 }
5873
5874 /* Determine how many INSN_UIDs in VEC are part of INSN. */
5875
5876 static int
5877 contains (insn, vec)
5878 rtx insn;
5879 int *vec;
5880 {
5881 register int i, j;
5882
5883 if (GET_CODE (insn) == INSN
5884 && GET_CODE (PATTERN (insn)) == SEQUENCE)
5885 {
5886 int count = 0;
5887 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5888 for (j = 0; vec[j]; j++)
5889 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == vec[j])
5890 count++;
5891 return count;
5892 }
5893 else
5894 {
5895 for (j = 0; vec[j]; j++)
5896 if (INSN_UID (insn) == vec[j])
5897 return 1;
5898 }
5899 return 0;
5900 }
5901
5902 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5903 this into place with notes indicating where the prologue ends and where
5904 the epilogue begins. Update the basic block information when possible. */
5905
5906 void
5907 thread_prologue_and_epilogue_insns (f)
5908 rtx f;
5909 {
5910 #ifdef HAVE_prologue
5911 if (HAVE_prologue)
5912 {
5913 rtx head, seq;
5914
5915 /* The first insn (a NOTE_INSN_DELETED) is followed by zero or more
5916 prologue insns and a NOTE_INSN_PROLOGUE_END. */
5917 emit_note_after (NOTE_INSN_PROLOGUE_END, f);
5918 seq = gen_prologue ();
5919 head = emit_insn_after (seq, f);
5920
5921 /* Include the new prologue insns in the first block. Ignore them
5922 if they form a basic block unto themselves. */
5923 if (basic_block_head && n_basic_blocks
5924 && GET_CODE (basic_block_head[0]) != CODE_LABEL)
5925 basic_block_head[0] = NEXT_INSN (f);
5926
5927 /* Retain a map of the prologue insns. */
5928 prologue = record_insns (GET_CODE (seq) == SEQUENCE ? seq : head);
5929 }
5930 else
5931 #endif
5932 prologue = 0;
5933
5934 #ifdef HAVE_epilogue
5935 if (HAVE_epilogue)
5936 {
5937 rtx insn = get_last_insn ();
5938 rtx prev = prev_nonnote_insn (insn);
5939
5940 /* If we end with a BARRIER, we don't need an epilogue. */
5941 if (! (prev && GET_CODE (prev) == BARRIER))
5942 {
5943 rtx tail, seq, tem;
5944 rtx first_use = 0;
5945 rtx last_use = 0;
5946
5947 /* The last basic block ends with a NOTE_INSN_EPILOGUE_BEG, the
5948 epilogue insns, the USE insns at the end of a function,
5949 the jump insn that returns, and then a BARRIER. */
5950
5951 /* Move the USE insns at the end of a function onto a list. */
5952 while (prev
5953 && GET_CODE (prev) == INSN
5954 && GET_CODE (PATTERN (prev)) == USE)
5955 {
5956 tem = prev;
5957 prev = prev_nonnote_insn (prev);
5958
5959 NEXT_INSN (PREV_INSN (tem)) = NEXT_INSN (tem);
5960 PREV_INSN (NEXT_INSN (tem)) = PREV_INSN (tem);
5961 if (first_use)
5962 {
5963 NEXT_INSN (tem) = first_use;
5964 PREV_INSN (first_use) = tem;
5965 }
5966 first_use = tem;
5967 if (!last_use)
5968 last_use = tem;
5969 }
5970
5971 emit_barrier_after (insn);
5972
5973 seq = gen_epilogue ();
5974 tail = emit_jump_insn_after (seq, insn);
5975
5976 /* Insert the USE insns immediately before the return insn, which
5977 must be the first instruction before the final barrier. */
5978 if (first_use)
5979 {
5980 tem = prev_nonnote_insn (get_last_insn ());
5981 NEXT_INSN (PREV_INSN (tem)) = first_use;
5982 PREV_INSN (first_use) = PREV_INSN (tem);
5983 PREV_INSN (tem) = last_use;
5984 NEXT_INSN (last_use) = tem;
5985 }
5986
5987 emit_note_after (NOTE_INSN_EPILOGUE_BEG, insn);
5988
5989 /* Include the new epilogue insns in the last block. Ignore
5990 them if they form a basic block unto themselves. */
5991 if (basic_block_end && n_basic_blocks
5992 && GET_CODE (basic_block_end[n_basic_blocks - 1]) != JUMP_INSN)
5993 basic_block_end[n_basic_blocks - 1] = tail;
5994
5995 /* Retain a map of the epilogue insns. */
5996 epilogue = record_insns (GET_CODE (seq) == SEQUENCE ? seq : tail);
5997 return;
5998 }
5999 }
6000 #endif
6001 epilogue = 0;
6002 }
6003
6004 /* Reposition the prologue-end and epilogue-begin notes after instruction
6005 scheduling and delayed branch scheduling. */
6006
6007 void
6008 reposition_prologue_and_epilogue_notes (f)
6009 rtx f;
6010 {
6011 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
6012 /* Reposition the prologue and epilogue notes. */
6013 if (n_basic_blocks)
6014 {
6015 rtx next, prev;
6016 int len;
6017
6018 if (prologue)
6019 {
6020 register rtx insn, note = 0;
6021
6022 /* Scan from the beginning until we reach the last prologue insn.
6023 We apparently can't depend on basic_block_{head,end} after
6024 reorg has run. */
6025 for (len = 0; prologue[len]; len++)
6026 ;
6027 for (insn = f; len && insn; insn = NEXT_INSN (insn))
6028 {
6029 if (GET_CODE (insn) == NOTE)
6030 {
6031 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
6032 note = insn;
6033 }
6034 else if ((len -= contains (insn, prologue)) == 0)
6035 {
6036 /* Find the prologue-end note if we haven't already, and
6037 move it to just after the last prologue insn. */
6038 if (note == 0)
6039 {
6040 for (note = insn; (note = NEXT_INSN (note));)
6041 if (GET_CODE (note) == NOTE
6042 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
6043 break;
6044 }
6045 next = NEXT_INSN (note);
6046 prev = PREV_INSN (note);
6047 if (prev)
6048 NEXT_INSN (prev) = next;
6049 if (next)
6050 PREV_INSN (next) = prev;
6051 add_insn_after (note, insn);
6052 }
6053 }
6054 }
6055
6056 if (epilogue)
6057 {
6058 register rtx insn, note = 0;
6059
6060 /* Scan from the end until we reach the first epilogue insn.
6061 We apparently can't depend on basic_block_{head,end} after
6062 reorg has run. */
6063 for (len = 0; epilogue[len]; len++)
6064 ;
6065 for (insn = get_last_insn (); len && insn; insn = PREV_INSN (insn))
6066 {
6067 if (GET_CODE (insn) == NOTE)
6068 {
6069 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
6070 note = insn;
6071 }
6072 else if ((len -= contains (insn, epilogue)) == 0)
6073 {
6074 /* Find the epilogue-begin note if we haven't already, and
6075 move it to just before the first epilogue insn. */
6076 if (note == 0)
6077 {
6078 for (note = insn; (note = PREV_INSN (note));)
6079 if (GET_CODE (note) == NOTE
6080 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
6081 break;
6082 }
6083 next = NEXT_INSN (note);
6084 prev = PREV_INSN (note);
6085 if (prev)
6086 NEXT_INSN (prev) = next;
6087 if (next)
6088 PREV_INSN (next) = prev;
6089 add_insn_after (note, PREV_INSN (insn));
6090 }
6091 }
6092 }
6093 }
6094 #endif /* HAVE_prologue or HAVE_epilogue */
6095 }