cgraphunit.c: Replace %J by an explicit location.
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
62 #include "gimple.h"
63 #include "tree-pass.h"
64 #include "predict.h"
65 #include "df.h"
66 #include "timevar.h"
67 #include "vecprim.h"
68
69 /* So we can assign to cfun in this file. */
70 #undef cfun
71
72 #ifndef STACK_ALIGNMENT_NEEDED
73 #define STACK_ALIGNMENT_NEEDED 1
74 #endif
75
76 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
77
78 /* Some systems use __main in a way incompatible with its use in gcc, in these
79 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
80 give the same symbol without quotes for an alternative entry point. You
81 must define both, or neither. */
82 #ifndef NAME__MAIN
83 #define NAME__MAIN "__main"
84 #endif
85
86 /* Round a value to the lowest integer less than it that is a multiple of
87 the required alignment. Avoid using division in case the value is
88 negative. Assume the alignment is a power of two. */
89 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
90
91 /* Similar, but round to the next highest integer that meets the
92 alignment. */
93 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
94
95 /* Nonzero if function being compiled doesn't contain any calls
96 (ignoring the prologue and epilogue). This is set prior to
97 local register allocation and is valid for the remaining
98 compiler passes. */
99 int current_function_is_leaf;
100
101 /* Nonzero if function being compiled doesn't modify the stack pointer
102 (ignoring the prologue and epilogue). This is only valid after
103 pass_stack_ptr_mod has run. */
104 int current_function_sp_is_unchanging;
105
106 /* Nonzero if the function being compiled is a leaf function which only
107 uses leaf registers. This is valid after reload (specifically after
108 sched2) and is useful only if the port defines LEAF_REGISTERS. */
109 int current_function_uses_only_leaf_regs;
110
111 /* Nonzero once virtual register instantiation has been done.
112 assign_stack_local uses frame_pointer_rtx when this is nonzero.
113 calls.c:emit_library_call_value_1 uses it to set up
114 post-instantiation libcalls. */
115 int virtuals_instantiated;
116
117 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
118 static GTY(()) int funcdef_no;
119
120 /* These variables hold pointers to functions to create and destroy
121 target specific, per-function data structures. */
122 struct machine_function * (*init_machine_status) (void);
123
124 /* The currently compiled function. */
125 struct function *cfun = 0;
126
127 /* These hashes record the prologue and epilogue insns. */
128 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
129 htab_t prologue_insn_hash;
130 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
131 htab_t epilogue_insn_hash;
132 \f
133 /* Forward declarations. */
134
135 static struct temp_slot *find_temp_slot_from_address (rtx);
136 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
137 static void pad_below (struct args_size *, enum machine_mode, tree);
138 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
139 static int all_blocks (tree, tree *);
140 static tree *get_block_vector (tree, int *);
141 extern tree debug_find_var_in_block_tree (tree, tree);
142 /* We always define `record_insns' even if it's not used so that we
143 can always export `prologue_epilogue_contains'. */
144 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
145 static bool contains (const_rtx, htab_t);
146 #ifdef HAVE_return
147 static void emit_return_into_block (basic_block);
148 #endif
149 static void prepare_function_start (void);
150 static void do_clobber_return_reg (rtx, void *);
151 static void do_use_return_reg (rtx, void *);
152 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
153 \f
154 /* Stack of nested functions. */
155 /* Keep track of the cfun stack. */
156
157 typedef struct function *function_p;
158
159 DEF_VEC_P(function_p);
160 DEF_VEC_ALLOC_P(function_p,heap);
161 static VEC(function_p,heap) *function_context_stack;
162
163 /* Save the current context for compilation of a nested function.
164 This is called from language-specific code. */
165
166 void
167 push_function_context (void)
168 {
169 if (cfun == 0)
170 allocate_struct_function (NULL, false);
171
172 VEC_safe_push (function_p, heap, function_context_stack, cfun);
173 set_cfun (NULL);
174 }
175
176 /* Restore the last saved context, at the end of a nested function.
177 This function is called from language-specific code. */
178
179 void
180 pop_function_context (void)
181 {
182 struct function *p = VEC_pop (function_p, function_context_stack);
183 set_cfun (p);
184 current_function_decl = p->decl;
185
186 /* Reset variables that have known state during rtx generation. */
187 virtuals_instantiated = 0;
188 generating_concat_p = 1;
189 }
190
191 /* Clear out all parts of the state in F that can safely be discarded
192 after the function has been parsed, but not compiled, to let
193 garbage collection reclaim the memory. */
194
195 void
196 free_after_parsing (struct function *f)
197 {
198 f->language = 0;
199 }
200
201 /* Clear out all parts of the state in F that can safely be discarded
202 after the function has been compiled, to let garbage collection
203 reclaim the memory. */
204
205 void
206 free_after_compilation (struct function *f)
207 {
208 prologue_insn_hash = NULL;
209 epilogue_insn_hash = NULL;
210
211 if (crtl->emit.regno_pointer_align)
212 free (crtl->emit.regno_pointer_align);
213
214 memset (crtl, 0, sizeof (struct rtl_data));
215 f->eh = NULL;
216 f->machine = NULL;
217 f->cfg = NULL;
218
219 regno_reg_rtx = NULL;
220 insn_locators_free ();
221 }
222 \f
223 /* Return size needed for stack frame based on slots so far allocated.
224 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
225 the caller may have to do that. */
226
227 HOST_WIDE_INT
228 get_frame_size (void)
229 {
230 if (FRAME_GROWS_DOWNWARD)
231 return -frame_offset;
232 else
233 return frame_offset;
234 }
235
236 /* Issue an error message and return TRUE if frame OFFSET overflows in
237 the signed target pointer arithmetics for function FUNC. Otherwise
238 return FALSE. */
239
240 bool
241 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
242 {
243 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
244
245 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
246 /* Leave room for the fixed part of the frame. */
247 - 64 * UNITS_PER_WORD)
248 {
249 error_at (DECL_SOURCE_LOCATION (func),
250 "total size of local objects too large");
251 return TRUE;
252 }
253
254 return FALSE;
255 }
256
257 /* Return stack slot alignment in bits for TYPE and MODE. */
258
259 static unsigned int
260 get_stack_local_alignment (tree type, enum machine_mode mode)
261 {
262 unsigned int alignment;
263
264 if (mode == BLKmode)
265 alignment = BIGGEST_ALIGNMENT;
266 else
267 alignment = GET_MODE_ALIGNMENT (mode);
268
269 /* Allow the frond-end to (possibly) increase the alignment of this
270 stack slot. */
271 if (! type)
272 type = lang_hooks.types.type_for_mode (mode, 0);
273
274 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
275 }
276
277 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
278 with machine mode MODE.
279
280 ALIGN controls the amount of alignment for the address of the slot:
281 0 means according to MODE,
282 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
283 -2 means use BITS_PER_UNIT,
284 positive specifies alignment boundary in bits.
285
286 If REDUCE_ALIGNMENT_OK is true, it is OK to reduce alignment.
287
288 We do not round to stack_boundary here. */
289
290 rtx
291 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
292 int align,
293 bool reduce_alignment_ok ATTRIBUTE_UNUSED)
294 {
295 rtx x, addr;
296 int bigend_correction = 0;
297 unsigned int alignment, alignment_in_bits;
298 int frame_off, frame_alignment, frame_phase;
299
300 if (align == 0)
301 {
302 alignment = get_stack_local_alignment (NULL, mode);
303 alignment /= BITS_PER_UNIT;
304 }
305 else if (align == -1)
306 {
307 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
308 size = CEIL_ROUND (size, alignment);
309 }
310 else if (align == -2)
311 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
312 else
313 alignment = align / BITS_PER_UNIT;
314
315 alignment_in_bits = alignment * BITS_PER_UNIT;
316
317 if (FRAME_GROWS_DOWNWARD)
318 frame_offset -= size;
319
320 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
321 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
322 {
323 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
324 alignment = alignment_in_bits / BITS_PER_UNIT;
325 }
326
327 if (SUPPORTS_STACK_ALIGNMENT)
328 {
329 if (crtl->stack_alignment_estimated < alignment_in_bits)
330 {
331 if (!crtl->stack_realign_processed)
332 crtl->stack_alignment_estimated = alignment_in_bits;
333 else
334 {
335 /* If stack is realigned and stack alignment value
336 hasn't been finalized, it is OK not to increase
337 stack_alignment_estimated. The bigger alignment
338 requirement is recorded in stack_alignment_needed
339 below. */
340 gcc_assert (!crtl->stack_realign_finalized);
341 if (!crtl->stack_realign_needed)
342 {
343 /* It is OK to reduce the alignment as long as the
344 requested size is 0 or the estimated stack
345 alignment >= mode alignment. */
346 gcc_assert (reduce_alignment_ok
347 || size == 0
348 || (crtl->stack_alignment_estimated
349 >= GET_MODE_ALIGNMENT (mode)));
350 alignment_in_bits = crtl->stack_alignment_estimated;
351 alignment = alignment_in_bits / BITS_PER_UNIT;
352 }
353 }
354 }
355 }
356
357 if (crtl->stack_alignment_needed < alignment_in_bits)
358 crtl->stack_alignment_needed = alignment_in_bits;
359 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
360 crtl->max_used_stack_slot_alignment = alignment_in_bits;
361
362 /* Calculate how many bytes the start of local variables is off from
363 stack alignment. */
364 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
365 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
366 frame_phase = frame_off ? frame_alignment - frame_off : 0;
367
368 /* Round the frame offset to the specified alignment. The default is
369 to always honor requests to align the stack but a port may choose to
370 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
371 if (STACK_ALIGNMENT_NEEDED
372 || mode != BLKmode
373 || size != 0)
374 {
375 /* We must be careful here, since FRAME_OFFSET might be negative and
376 division with a negative dividend isn't as well defined as we might
377 like. So we instead assume that ALIGNMENT is a power of two and
378 use logical operations which are unambiguous. */
379 if (FRAME_GROWS_DOWNWARD)
380 frame_offset
381 = (FLOOR_ROUND (frame_offset - frame_phase,
382 (unsigned HOST_WIDE_INT) alignment)
383 + frame_phase);
384 else
385 frame_offset
386 = (CEIL_ROUND (frame_offset - frame_phase,
387 (unsigned HOST_WIDE_INT) alignment)
388 + frame_phase);
389 }
390
391 /* On a big-endian machine, if we are allocating more space than we will use,
392 use the least significant bytes of those that are allocated. */
393 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
394 bigend_correction = size - GET_MODE_SIZE (mode);
395
396 /* If we have already instantiated virtual registers, return the actual
397 address relative to the frame pointer. */
398 if (virtuals_instantiated)
399 addr = plus_constant (frame_pointer_rtx,
400 trunc_int_for_mode
401 (frame_offset + bigend_correction
402 + STARTING_FRAME_OFFSET, Pmode));
403 else
404 addr = plus_constant (virtual_stack_vars_rtx,
405 trunc_int_for_mode
406 (frame_offset + bigend_correction,
407 Pmode));
408
409 if (!FRAME_GROWS_DOWNWARD)
410 frame_offset += size;
411
412 x = gen_rtx_MEM (mode, addr);
413 set_mem_align (x, alignment_in_bits);
414 MEM_NOTRAP_P (x) = 1;
415
416 stack_slot_list
417 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
418
419 if (frame_offset_overflow (frame_offset, current_function_decl))
420 frame_offset = 0;
421
422 return x;
423 }
424
425 /* Wrap up assign_stack_local_1 with last parameter as false. */
426
427 rtx
428 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
429 {
430 return assign_stack_local_1 (mode, size, align, false);
431 }
432 \f
433 \f
434 /* In order to evaluate some expressions, such as function calls returning
435 structures in memory, we need to temporarily allocate stack locations.
436 We record each allocated temporary in the following structure.
437
438 Associated with each temporary slot is a nesting level. When we pop up
439 one level, all temporaries associated with the previous level are freed.
440 Normally, all temporaries are freed after the execution of the statement
441 in which they were created. However, if we are inside a ({...}) grouping,
442 the result may be in a temporary and hence must be preserved. If the
443 result could be in a temporary, we preserve it if we can determine which
444 one it is in. If we cannot determine which temporary may contain the
445 result, all temporaries are preserved. A temporary is preserved by
446 pretending it was allocated at the previous nesting level.
447
448 Automatic variables are also assigned temporary slots, at the nesting
449 level where they are defined. They are marked a "kept" so that
450 free_temp_slots will not free them. */
451
452 struct GTY(()) temp_slot {
453 /* Points to next temporary slot. */
454 struct temp_slot *next;
455 /* Points to previous temporary slot. */
456 struct temp_slot *prev;
457 /* The rtx to used to reference the slot. */
458 rtx slot;
459 /* The size, in units, of the slot. */
460 HOST_WIDE_INT size;
461 /* The type of the object in the slot, or zero if it doesn't correspond
462 to a type. We use this to determine whether a slot can be reused.
463 It can be reused if objects of the type of the new slot will always
464 conflict with objects of the type of the old slot. */
465 tree type;
466 /* The alignment (in bits) of the slot. */
467 unsigned int align;
468 /* Nonzero if this temporary is currently in use. */
469 char in_use;
470 /* Nonzero if this temporary has its address taken. */
471 char addr_taken;
472 /* Nesting level at which this slot is being used. */
473 int level;
474 /* Nonzero if this should survive a call to free_temp_slots. */
475 int keep;
476 /* The offset of the slot from the frame_pointer, including extra space
477 for alignment. This info is for combine_temp_slots. */
478 HOST_WIDE_INT base_offset;
479 /* The size of the slot, including extra space for alignment. This
480 info is for combine_temp_slots. */
481 HOST_WIDE_INT full_size;
482 };
483
484 /* A table of addresses that represent a stack slot. The table is a mapping
485 from address RTXen to a temp slot. */
486 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
487
488 /* Entry for the above hash table. */
489 struct GTY(()) temp_slot_address_entry {
490 hashval_t hash;
491 rtx address;
492 struct temp_slot *temp_slot;
493 };
494
495 /* Removes temporary slot TEMP from LIST. */
496
497 static void
498 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
499 {
500 if (temp->next)
501 temp->next->prev = temp->prev;
502 if (temp->prev)
503 temp->prev->next = temp->next;
504 else
505 *list = temp->next;
506
507 temp->prev = temp->next = NULL;
508 }
509
510 /* Inserts temporary slot TEMP to LIST. */
511
512 static void
513 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
514 {
515 temp->next = *list;
516 if (*list)
517 (*list)->prev = temp;
518 temp->prev = NULL;
519 *list = temp;
520 }
521
522 /* Returns the list of used temp slots at LEVEL. */
523
524 static struct temp_slot **
525 temp_slots_at_level (int level)
526 {
527 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
528 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
529
530 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
531 }
532
533 /* Returns the maximal temporary slot level. */
534
535 static int
536 max_slot_level (void)
537 {
538 if (!used_temp_slots)
539 return -1;
540
541 return VEC_length (temp_slot_p, used_temp_slots) - 1;
542 }
543
544 /* Moves temporary slot TEMP to LEVEL. */
545
546 static void
547 move_slot_to_level (struct temp_slot *temp, int level)
548 {
549 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
550 insert_slot_to_list (temp, temp_slots_at_level (level));
551 temp->level = level;
552 }
553
554 /* Make temporary slot TEMP available. */
555
556 static void
557 make_slot_available (struct temp_slot *temp)
558 {
559 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
560 insert_slot_to_list (temp, &avail_temp_slots);
561 temp->in_use = 0;
562 temp->level = -1;
563 }
564
565 /* Compute the hash value for an address -> temp slot mapping.
566 The value is cached on the mapping entry. */
567 static hashval_t
568 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
569 {
570 int do_not_record = 0;
571 return hash_rtx (t->address, GET_MODE (t->address),
572 &do_not_record, NULL, false);
573 }
574
575 /* Return the hash value for an address -> temp slot mapping. */
576 static hashval_t
577 temp_slot_address_hash (const void *p)
578 {
579 const struct temp_slot_address_entry *t;
580 t = (const struct temp_slot_address_entry *) p;
581 return t->hash;
582 }
583
584 /* Compare two address -> temp slot mapping entries. */
585 static int
586 temp_slot_address_eq (const void *p1, const void *p2)
587 {
588 const struct temp_slot_address_entry *t1, *t2;
589 t1 = (const struct temp_slot_address_entry *) p1;
590 t2 = (const struct temp_slot_address_entry *) p2;
591 return exp_equiv_p (t1->address, t2->address, 0, true);
592 }
593
594 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
595 static void
596 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
597 {
598 void **slot;
599 struct temp_slot_address_entry *t = GGC_NEW (struct temp_slot_address_entry);
600 t->address = address;
601 t->temp_slot = temp_slot;
602 t->hash = temp_slot_address_compute_hash (t);
603 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
604 *slot = t;
605 }
606
607 /* Remove an address -> temp slot mapping entry if the temp slot is
608 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
609 static int
610 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
611 {
612 const struct temp_slot_address_entry *t;
613 t = (const struct temp_slot_address_entry *) *slot;
614 if (! t->temp_slot->in_use)
615 *slot = NULL;
616 return 1;
617 }
618
619 /* Remove all mappings of addresses to unused temp slots. */
620 static void
621 remove_unused_temp_slot_addresses (void)
622 {
623 htab_traverse (temp_slot_address_table,
624 remove_unused_temp_slot_addresses_1,
625 NULL);
626 }
627
628 /* Find the temp slot corresponding to the object at address X. */
629
630 static struct temp_slot *
631 find_temp_slot_from_address (rtx x)
632 {
633 struct temp_slot *p;
634 struct temp_slot_address_entry tmp, *t;
635
636 /* First try the easy way:
637 See if X exists in the address -> temp slot mapping. */
638 tmp.address = x;
639 tmp.temp_slot = NULL;
640 tmp.hash = temp_slot_address_compute_hash (&tmp);
641 t = (struct temp_slot_address_entry *)
642 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
643 if (t)
644 return t->temp_slot;
645
646 /* If we have a sum involving a register, see if it points to a temp
647 slot. */
648 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
649 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
650 return p;
651 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
652 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
653 return p;
654
655 /* Last resort: Address is a virtual stack var address. */
656 if (GET_CODE (x) == PLUS
657 && XEXP (x, 0) == virtual_stack_vars_rtx
658 && CONST_INT_P (XEXP (x, 1)))
659 {
660 int i;
661 for (i = max_slot_level (); i >= 0; i--)
662 for (p = *temp_slots_at_level (i); p; p = p->next)
663 {
664 if (INTVAL (XEXP (x, 1)) >= p->base_offset
665 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
666 return p;
667 }
668 }
669
670 return NULL;
671 }
672 \f
673 /* Allocate a temporary stack slot and record it for possible later
674 reuse.
675
676 MODE is the machine mode to be given to the returned rtx.
677
678 SIZE is the size in units of the space required. We do no rounding here
679 since assign_stack_local will do any required rounding.
680
681 KEEP is 1 if this slot is to be retained after a call to
682 free_temp_slots. Automatic variables for a block are allocated
683 with this flag. KEEP values of 2 or 3 were needed respectively
684 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
685 or for SAVE_EXPRs, but they are now unused.
686
687 TYPE is the type that will be used for the stack slot. */
688
689 rtx
690 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
691 int keep, tree type)
692 {
693 unsigned int align;
694 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
695 rtx slot;
696
697 /* If SIZE is -1 it means that somebody tried to allocate a temporary
698 of a variable size. */
699 gcc_assert (size != -1);
700
701 /* These are now unused. */
702 gcc_assert (keep <= 1);
703
704 align = get_stack_local_alignment (type, mode);
705
706 /* Try to find an available, already-allocated temporary of the proper
707 mode which meets the size and alignment requirements. Choose the
708 smallest one with the closest alignment.
709
710 If assign_stack_temp is called outside of the tree->rtl expansion,
711 we cannot reuse the stack slots (that may still refer to
712 VIRTUAL_STACK_VARS_REGNUM). */
713 if (!virtuals_instantiated)
714 {
715 for (p = avail_temp_slots; p; p = p->next)
716 {
717 if (p->align >= align && p->size >= size
718 && GET_MODE (p->slot) == mode
719 && objects_must_conflict_p (p->type, type)
720 && (best_p == 0 || best_p->size > p->size
721 || (best_p->size == p->size && best_p->align > p->align)))
722 {
723 if (p->align == align && p->size == size)
724 {
725 selected = p;
726 cut_slot_from_list (selected, &avail_temp_slots);
727 best_p = 0;
728 break;
729 }
730 best_p = p;
731 }
732 }
733 }
734
735 /* Make our best, if any, the one to use. */
736 if (best_p)
737 {
738 selected = best_p;
739 cut_slot_from_list (selected, &avail_temp_slots);
740
741 /* If there are enough aligned bytes left over, make them into a new
742 temp_slot so that the extra bytes don't get wasted. Do this only
743 for BLKmode slots, so that we can be sure of the alignment. */
744 if (GET_MODE (best_p->slot) == BLKmode)
745 {
746 int alignment = best_p->align / BITS_PER_UNIT;
747 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
748
749 if (best_p->size - rounded_size >= alignment)
750 {
751 p = GGC_NEW (struct temp_slot);
752 p->in_use = p->addr_taken = 0;
753 p->size = best_p->size - rounded_size;
754 p->base_offset = best_p->base_offset + rounded_size;
755 p->full_size = best_p->full_size - rounded_size;
756 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
757 p->align = best_p->align;
758 p->type = best_p->type;
759 insert_slot_to_list (p, &avail_temp_slots);
760
761 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
762 stack_slot_list);
763
764 best_p->size = rounded_size;
765 best_p->full_size = rounded_size;
766 }
767 }
768 }
769
770 /* If we still didn't find one, make a new temporary. */
771 if (selected == 0)
772 {
773 HOST_WIDE_INT frame_offset_old = frame_offset;
774
775 p = GGC_NEW (struct temp_slot);
776
777 /* We are passing an explicit alignment request to assign_stack_local.
778 One side effect of that is assign_stack_local will not round SIZE
779 to ensure the frame offset remains suitably aligned.
780
781 So for requests which depended on the rounding of SIZE, we go ahead
782 and round it now. We also make sure ALIGNMENT is at least
783 BIGGEST_ALIGNMENT. */
784 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
785 p->slot = assign_stack_local (mode,
786 (mode == BLKmode
787 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
788 : size),
789 align);
790
791 p->align = align;
792
793 /* The following slot size computation is necessary because we don't
794 know the actual size of the temporary slot until assign_stack_local
795 has performed all the frame alignment and size rounding for the
796 requested temporary. Note that extra space added for alignment
797 can be either above or below this stack slot depending on which
798 way the frame grows. We include the extra space if and only if it
799 is above this slot. */
800 if (FRAME_GROWS_DOWNWARD)
801 p->size = frame_offset_old - frame_offset;
802 else
803 p->size = size;
804
805 /* Now define the fields used by combine_temp_slots. */
806 if (FRAME_GROWS_DOWNWARD)
807 {
808 p->base_offset = frame_offset;
809 p->full_size = frame_offset_old - frame_offset;
810 }
811 else
812 {
813 p->base_offset = frame_offset_old;
814 p->full_size = frame_offset - frame_offset_old;
815 }
816
817 selected = p;
818 }
819
820 p = selected;
821 p->in_use = 1;
822 p->addr_taken = 0;
823 p->type = type;
824 p->level = temp_slot_level;
825 p->keep = keep;
826
827 pp = temp_slots_at_level (p->level);
828 insert_slot_to_list (p, pp);
829 insert_temp_slot_address (XEXP (p->slot, 0), p);
830
831 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
832 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
833 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
834
835 /* If we know the alias set for the memory that will be used, use
836 it. If there's no TYPE, then we don't know anything about the
837 alias set for the memory. */
838 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
839 set_mem_align (slot, align);
840
841 /* If a type is specified, set the relevant flags. */
842 if (type != 0)
843 {
844 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
845 MEM_SET_IN_STRUCT_P (slot, (AGGREGATE_TYPE_P (type)
846 || TREE_CODE (type) == COMPLEX_TYPE));
847 }
848 MEM_NOTRAP_P (slot) = 1;
849
850 return slot;
851 }
852
853 /* Allocate a temporary stack slot and record it for possible later
854 reuse. First three arguments are same as in preceding function. */
855
856 rtx
857 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
858 {
859 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
860 }
861 \f
862 /* Assign a temporary.
863 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
864 and so that should be used in error messages. In either case, we
865 allocate of the given type.
866 KEEP is as for assign_stack_temp.
867 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
868 it is 0 if a register is OK.
869 DONT_PROMOTE is 1 if we should not promote values in register
870 to wider modes. */
871
872 rtx
873 assign_temp (tree type_or_decl, int keep, int memory_required,
874 int dont_promote ATTRIBUTE_UNUSED)
875 {
876 tree type, decl;
877 enum machine_mode mode;
878 #ifdef PROMOTE_MODE
879 int unsignedp;
880 #endif
881
882 if (DECL_P (type_or_decl))
883 decl = type_or_decl, type = TREE_TYPE (decl);
884 else
885 decl = NULL, type = type_or_decl;
886
887 mode = TYPE_MODE (type);
888 #ifdef PROMOTE_MODE
889 unsignedp = TYPE_UNSIGNED (type);
890 #endif
891
892 if (mode == BLKmode || memory_required)
893 {
894 HOST_WIDE_INT size = int_size_in_bytes (type);
895 rtx tmp;
896
897 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
898 problems with allocating the stack space. */
899 if (size == 0)
900 size = 1;
901
902 /* Unfortunately, we don't yet know how to allocate variable-sized
903 temporaries. However, sometimes we can find a fixed upper limit on
904 the size, so try that instead. */
905 else if (size == -1)
906 size = max_int_size_in_bytes (type);
907
908 /* The size of the temporary may be too large to fit into an integer. */
909 /* ??? Not sure this should happen except for user silliness, so limit
910 this to things that aren't compiler-generated temporaries. The
911 rest of the time we'll die in assign_stack_temp_for_type. */
912 if (decl && size == -1
913 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
914 {
915 error ("size of variable %q+D is too large", decl);
916 size = 1;
917 }
918
919 tmp = assign_stack_temp_for_type (mode, size, keep, type);
920 return tmp;
921 }
922
923 #ifdef PROMOTE_MODE
924 if (! dont_promote)
925 mode = promote_mode (type, mode, &unsignedp, 0);
926 #endif
927
928 return gen_reg_rtx (mode);
929 }
930 \f
931 /* Combine temporary stack slots which are adjacent on the stack.
932
933 This allows for better use of already allocated stack space. This is only
934 done for BLKmode slots because we can be sure that we won't have alignment
935 problems in this case. */
936
937 static void
938 combine_temp_slots (void)
939 {
940 struct temp_slot *p, *q, *next, *next_q;
941 int num_slots;
942
943 /* We can't combine slots, because the information about which slot
944 is in which alias set will be lost. */
945 if (flag_strict_aliasing)
946 return;
947
948 /* If there are a lot of temp slots, don't do anything unless
949 high levels of optimization. */
950 if (! flag_expensive_optimizations)
951 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
952 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
953 return;
954
955 for (p = avail_temp_slots; p; p = next)
956 {
957 int delete_p = 0;
958
959 next = p->next;
960
961 if (GET_MODE (p->slot) != BLKmode)
962 continue;
963
964 for (q = p->next; q; q = next_q)
965 {
966 int delete_q = 0;
967
968 next_q = q->next;
969
970 if (GET_MODE (q->slot) != BLKmode)
971 continue;
972
973 if (p->base_offset + p->full_size == q->base_offset)
974 {
975 /* Q comes after P; combine Q into P. */
976 p->size += q->size;
977 p->full_size += q->full_size;
978 delete_q = 1;
979 }
980 else if (q->base_offset + q->full_size == p->base_offset)
981 {
982 /* P comes after Q; combine P into Q. */
983 q->size += p->size;
984 q->full_size += p->full_size;
985 delete_p = 1;
986 break;
987 }
988 if (delete_q)
989 cut_slot_from_list (q, &avail_temp_slots);
990 }
991
992 /* Either delete P or advance past it. */
993 if (delete_p)
994 cut_slot_from_list (p, &avail_temp_slots);
995 }
996 }
997 \f
998 /* Indicate that NEW_RTX is an alternate way of referring to the temp
999 slot that previously was known by OLD_RTX. */
1000
1001 void
1002 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1003 {
1004 struct temp_slot *p;
1005
1006 if (rtx_equal_p (old_rtx, new_rtx))
1007 return;
1008
1009 p = find_temp_slot_from_address (old_rtx);
1010
1011 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1012 NEW_RTX is a register, see if one operand of the PLUS is a
1013 temporary location. If so, NEW_RTX points into it. Otherwise,
1014 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1015 in common between them. If so, try a recursive call on those
1016 values. */
1017 if (p == 0)
1018 {
1019 if (GET_CODE (old_rtx) != PLUS)
1020 return;
1021
1022 if (REG_P (new_rtx))
1023 {
1024 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1025 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1026 return;
1027 }
1028 else if (GET_CODE (new_rtx) != PLUS)
1029 return;
1030
1031 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1032 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1033 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1034 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1035 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1036 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1037 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1038 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1039
1040 return;
1041 }
1042
1043 /* Otherwise add an alias for the temp's address. */
1044 insert_temp_slot_address (new_rtx, p);
1045 }
1046
1047 /* If X could be a reference to a temporary slot, mark the fact that its
1048 address was taken. */
1049
1050 void
1051 mark_temp_addr_taken (rtx x)
1052 {
1053 struct temp_slot *p;
1054
1055 if (x == 0)
1056 return;
1057
1058 /* If X is not in memory or is at a constant address, it cannot be in
1059 a temporary slot. */
1060 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1061 return;
1062
1063 p = find_temp_slot_from_address (XEXP (x, 0));
1064 if (p != 0)
1065 p->addr_taken = 1;
1066 }
1067
1068 /* If X could be a reference to a temporary slot, mark that slot as
1069 belonging to the to one level higher than the current level. If X
1070 matched one of our slots, just mark that one. Otherwise, we can't
1071 easily predict which it is, so upgrade all of them. Kept slots
1072 need not be touched.
1073
1074 This is called when an ({...}) construct occurs and a statement
1075 returns a value in memory. */
1076
1077 void
1078 preserve_temp_slots (rtx x)
1079 {
1080 struct temp_slot *p = 0, *next;
1081
1082 /* If there is no result, we still might have some objects whose address
1083 were taken, so we need to make sure they stay around. */
1084 if (x == 0)
1085 {
1086 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1087 {
1088 next = p->next;
1089
1090 if (p->addr_taken)
1091 move_slot_to_level (p, temp_slot_level - 1);
1092 }
1093
1094 return;
1095 }
1096
1097 /* If X is a register that is being used as a pointer, see if we have
1098 a temporary slot we know it points to. To be consistent with
1099 the code below, we really should preserve all non-kept slots
1100 if we can't find a match, but that seems to be much too costly. */
1101 if (REG_P (x) && REG_POINTER (x))
1102 p = find_temp_slot_from_address (x);
1103
1104 /* If X is not in memory or is at a constant address, it cannot be in
1105 a temporary slot, but it can contain something whose address was
1106 taken. */
1107 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1108 {
1109 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1110 {
1111 next = p->next;
1112
1113 if (p->addr_taken)
1114 move_slot_to_level (p, temp_slot_level - 1);
1115 }
1116
1117 return;
1118 }
1119
1120 /* First see if we can find a match. */
1121 if (p == 0)
1122 p = find_temp_slot_from_address (XEXP (x, 0));
1123
1124 if (p != 0)
1125 {
1126 /* Move everything at our level whose address was taken to our new
1127 level in case we used its address. */
1128 struct temp_slot *q;
1129
1130 if (p->level == temp_slot_level)
1131 {
1132 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1133 {
1134 next = q->next;
1135
1136 if (p != q && q->addr_taken)
1137 move_slot_to_level (q, temp_slot_level - 1);
1138 }
1139
1140 move_slot_to_level (p, temp_slot_level - 1);
1141 p->addr_taken = 0;
1142 }
1143 return;
1144 }
1145
1146 /* Otherwise, preserve all non-kept slots at this level. */
1147 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1148 {
1149 next = p->next;
1150
1151 if (!p->keep)
1152 move_slot_to_level (p, temp_slot_level - 1);
1153 }
1154 }
1155
1156 /* Free all temporaries used so far. This is normally called at the
1157 end of generating code for a statement. */
1158
1159 void
1160 free_temp_slots (void)
1161 {
1162 struct temp_slot *p, *next;
1163
1164 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1165 {
1166 next = p->next;
1167
1168 if (!p->keep)
1169 make_slot_available (p);
1170 }
1171
1172 remove_unused_temp_slot_addresses ();
1173 combine_temp_slots ();
1174 }
1175
1176 /* Push deeper into the nesting level for stack temporaries. */
1177
1178 void
1179 push_temp_slots (void)
1180 {
1181 temp_slot_level++;
1182 }
1183
1184 /* Pop a temporary nesting level. All slots in use in the current level
1185 are freed. */
1186
1187 void
1188 pop_temp_slots (void)
1189 {
1190 struct temp_slot *p, *next;
1191
1192 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1193 {
1194 next = p->next;
1195 make_slot_available (p);
1196 }
1197
1198 remove_unused_temp_slot_addresses ();
1199 combine_temp_slots ();
1200
1201 temp_slot_level--;
1202 }
1203
1204 /* Initialize temporary slots. */
1205
1206 void
1207 init_temp_slots (void)
1208 {
1209 /* We have not allocated any temporaries yet. */
1210 avail_temp_slots = 0;
1211 used_temp_slots = 0;
1212 temp_slot_level = 0;
1213
1214 /* Set up the table to map addresses to temp slots. */
1215 if (! temp_slot_address_table)
1216 temp_slot_address_table = htab_create_ggc (32,
1217 temp_slot_address_hash,
1218 temp_slot_address_eq,
1219 NULL);
1220 else
1221 htab_empty (temp_slot_address_table);
1222 }
1223 \f
1224 /* These routines are responsible for converting virtual register references
1225 to the actual hard register references once RTL generation is complete.
1226
1227 The following four variables are used for communication between the
1228 routines. They contain the offsets of the virtual registers from their
1229 respective hard registers. */
1230
1231 static int in_arg_offset;
1232 static int var_offset;
1233 static int dynamic_offset;
1234 static int out_arg_offset;
1235 static int cfa_offset;
1236
1237 /* In most machines, the stack pointer register is equivalent to the bottom
1238 of the stack. */
1239
1240 #ifndef STACK_POINTER_OFFSET
1241 #define STACK_POINTER_OFFSET 0
1242 #endif
1243
1244 /* If not defined, pick an appropriate default for the offset of dynamically
1245 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1246 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1247
1248 #ifndef STACK_DYNAMIC_OFFSET
1249
1250 /* The bottom of the stack points to the actual arguments. If
1251 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1252 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1253 stack space for register parameters is not pushed by the caller, but
1254 rather part of the fixed stack areas and hence not included in
1255 `crtl->outgoing_args_size'. Nevertheless, we must allow
1256 for it when allocating stack dynamic objects. */
1257
1258 #if defined(REG_PARM_STACK_SPACE)
1259 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1260 ((ACCUMULATE_OUTGOING_ARGS \
1261 ? (crtl->outgoing_args_size \
1262 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1263 : REG_PARM_STACK_SPACE (FNDECL))) \
1264 : 0) + (STACK_POINTER_OFFSET))
1265 #else
1266 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1267 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1268 + (STACK_POINTER_OFFSET))
1269 #endif
1270 #endif
1271
1272 \f
1273 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1274 is a virtual register, return the equivalent hard register and set the
1275 offset indirectly through the pointer. Otherwise, return 0. */
1276
1277 static rtx
1278 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1279 {
1280 rtx new_rtx;
1281 HOST_WIDE_INT offset;
1282
1283 if (x == virtual_incoming_args_rtx)
1284 {
1285 if (stack_realign_drap)
1286 {
1287 /* Replace virtual_incoming_args_rtx with internal arg
1288 pointer if DRAP is used to realign stack. */
1289 new_rtx = crtl->args.internal_arg_pointer;
1290 offset = 0;
1291 }
1292 else
1293 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1294 }
1295 else if (x == virtual_stack_vars_rtx)
1296 new_rtx = frame_pointer_rtx, offset = var_offset;
1297 else if (x == virtual_stack_dynamic_rtx)
1298 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1299 else if (x == virtual_outgoing_args_rtx)
1300 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1301 else if (x == virtual_cfa_rtx)
1302 {
1303 #ifdef FRAME_POINTER_CFA_OFFSET
1304 new_rtx = frame_pointer_rtx;
1305 #else
1306 new_rtx = arg_pointer_rtx;
1307 #endif
1308 offset = cfa_offset;
1309 }
1310 else
1311 return NULL_RTX;
1312
1313 *poffset = offset;
1314 return new_rtx;
1315 }
1316
1317 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1318 Instantiate any virtual registers present inside of *LOC. The expression
1319 is simplified, as much as possible, but is not to be considered "valid"
1320 in any sense implied by the target. If any change is made, set CHANGED
1321 to true. */
1322
1323 static int
1324 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1325 {
1326 HOST_WIDE_INT offset;
1327 bool *changed = (bool *) data;
1328 rtx x, new_rtx;
1329
1330 x = *loc;
1331 if (x == 0)
1332 return 0;
1333
1334 switch (GET_CODE (x))
1335 {
1336 case REG:
1337 new_rtx = instantiate_new_reg (x, &offset);
1338 if (new_rtx)
1339 {
1340 *loc = plus_constant (new_rtx, offset);
1341 if (changed)
1342 *changed = true;
1343 }
1344 return -1;
1345
1346 case PLUS:
1347 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1348 if (new_rtx)
1349 {
1350 new_rtx = plus_constant (new_rtx, offset);
1351 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1352 if (changed)
1353 *changed = true;
1354 return -1;
1355 }
1356
1357 /* FIXME -- from old code */
1358 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1359 we can commute the PLUS and SUBREG because pointers into the
1360 frame are well-behaved. */
1361 break;
1362
1363 default:
1364 break;
1365 }
1366
1367 return 0;
1368 }
1369
1370 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1371 matches the predicate for insn CODE operand OPERAND. */
1372
1373 static int
1374 safe_insn_predicate (int code, int operand, rtx x)
1375 {
1376 const struct insn_operand_data *op_data;
1377
1378 if (code < 0)
1379 return true;
1380
1381 op_data = &insn_data[code].operand[operand];
1382 if (op_data->predicate == NULL)
1383 return true;
1384
1385 return op_data->predicate (x, op_data->mode);
1386 }
1387
1388 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1389 registers present inside of insn. The result will be a valid insn. */
1390
1391 static void
1392 instantiate_virtual_regs_in_insn (rtx insn)
1393 {
1394 HOST_WIDE_INT offset;
1395 int insn_code, i;
1396 bool any_change = false;
1397 rtx set, new_rtx, x, seq;
1398
1399 /* There are some special cases to be handled first. */
1400 set = single_set (insn);
1401 if (set)
1402 {
1403 /* We're allowed to assign to a virtual register. This is interpreted
1404 to mean that the underlying register gets assigned the inverse
1405 transformation. This is used, for example, in the handling of
1406 non-local gotos. */
1407 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1408 if (new_rtx)
1409 {
1410 start_sequence ();
1411
1412 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1413 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1414 GEN_INT (-offset));
1415 x = force_operand (x, new_rtx);
1416 if (x != new_rtx)
1417 emit_move_insn (new_rtx, x);
1418
1419 seq = get_insns ();
1420 end_sequence ();
1421
1422 emit_insn_before (seq, insn);
1423 delete_insn (insn);
1424 return;
1425 }
1426
1427 /* Handle a straight copy from a virtual register by generating a
1428 new add insn. The difference between this and falling through
1429 to the generic case is avoiding a new pseudo and eliminating a
1430 move insn in the initial rtl stream. */
1431 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1432 if (new_rtx && offset != 0
1433 && REG_P (SET_DEST (set))
1434 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1435 {
1436 start_sequence ();
1437
1438 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1439 new_rtx, GEN_INT (offset), SET_DEST (set),
1440 1, OPTAB_LIB_WIDEN);
1441 if (x != SET_DEST (set))
1442 emit_move_insn (SET_DEST (set), x);
1443
1444 seq = get_insns ();
1445 end_sequence ();
1446
1447 emit_insn_before (seq, insn);
1448 delete_insn (insn);
1449 return;
1450 }
1451
1452 extract_insn (insn);
1453 insn_code = INSN_CODE (insn);
1454
1455 /* Handle a plus involving a virtual register by determining if the
1456 operands remain valid if they're modified in place. */
1457 if (GET_CODE (SET_SRC (set)) == PLUS
1458 && recog_data.n_operands >= 3
1459 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1460 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1461 && CONST_INT_P (recog_data.operand[2])
1462 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1463 {
1464 offset += INTVAL (recog_data.operand[2]);
1465
1466 /* If the sum is zero, then replace with a plain move. */
1467 if (offset == 0
1468 && REG_P (SET_DEST (set))
1469 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1470 {
1471 start_sequence ();
1472 emit_move_insn (SET_DEST (set), new_rtx);
1473 seq = get_insns ();
1474 end_sequence ();
1475
1476 emit_insn_before (seq, insn);
1477 delete_insn (insn);
1478 return;
1479 }
1480
1481 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1482
1483 /* Using validate_change and apply_change_group here leaves
1484 recog_data in an invalid state. Since we know exactly what
1485 we want to check, do those two by hand. */
1486 if (safe_insn_predicate (insn_code, 1, new_rtx)
1487 && safe_insn_predicate (insn_code, 2, x))
1488 {
1489 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1490 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1491 any_change = true;
1492
1493 /* Fall through into the regular operand fixup loop in
1494 order to take care of operands other than 1 and 2. */
1495 }
1496 }
1497 }
1498 else
1499 {
1500 extract_insn (insn);
1501 insn_code = INSN_CODE (insn);
1502 }
1503
1504 /* In the general case, we expect virtual registers to appear only in
1505 operands, and then only as either bare registers or inside memories. */
1506 for (i = 0; i < recog_data.n_operands; ++i)
1507 {
1508 x = recog_data.operand[i];
1509 switch (GET_CODE (x))
1510 {
1511 case MEM:
1512 {
1513 rtx addr = XEXP (x, 0);
1514 bool changed = false;
1515
1516 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1517 if (!changed)
1518 continue;
1519
1520 start_sequence ();
1521 x = replace_equiv_address (x, addr);
1522 /* It may happen that the address with the virtual reg
1523 was valid (e.g. based on the virtual stack reg, which might
1524 be acceptable to the predicates with all offsets), whereas
1525 the address now isn't anymore, for instance when the address
1526 is still offsetted, but the base reg isn't virtual-stack-reg
1527 anymore. Below we would do a force_reg on the whole operand,
1528 but this insn might actually only accept memory. Hence,
1529 before doing that last resort, try to reload the address into
1530 a register, so this operand stays a MEM. */
1531 if (!safe_insn_predicate (insn_code, i, x))
1532 {
1533 addr = force_reg (GET_MODE (addr), addr);
1534 x = replace_equiv_address (x, addr);
1535 }
1536 seq = get_insns ();
1537 end_sequence ();
1538 if (seq)
1539 emit_insn_before (seq, insn);
1540 }
1541 break;
1542
1543 case REG:
1544 new_rtx = instantiate_new_reg (x, &offset);
1545 if (new_rtx == NULL)
1546 continue;
1547 if (offset == 0)
1548 x = new_rtx;
1549 else
1550 {
1551 start_sequence ();
1552
1553 /* Careful, special mode predicates may have stuff in
1554 insn_data[insn_code].operand[i].mode that isn't useful
1555 to us for computing a new value. */
1556 /* ??? Recognize address_operand and/or "p" constraints
1557 to see if (plus new offset) is a valid before we put
1558 this through expand_simple_binop. */
1559 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1560 GEN_INT (offset), NULL_RTX,
1561 1, OPTAB_LIB_WIDEN);
1562 seq = get_insns ();
1563 end_sequence ();
1564 emit_insn_before (seq, insn);
1565 }
1566 break;
1567
1568 case SUBREG:
1569 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1570 if (new_rtx == NULL)
1571 continue;
1572 if (offset != 0)
1573 {
1574 start_sequence ();
1575 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1576 GEN_INT (offset), NULL_RTX,
1577 1, OPTAB_LIB_WIDEN);
1578 seq = get_insns ();
1579 end_sequence ();
1580 emit_insn_before (seq, insn);
1581 }
1582 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1583 GET_MODE (new_rtx), SUBREG_BYTE (x));
1584 gcc_assert (x);
1585 break;
1586
1587 default:
1588 continue;
1589 }
1590
1591 /* At this point, X contains the new value for the operand.
1592 Validate the new value vs the insn predicate. Note that
1593 asm insns will have insn_code -1 here. */
1594 if (!safe_insn_predicate (insn_code, i, x))
1595 {
1596 start_sequence ();
1597 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1598 seq = get_insns ();
1599 end_sequence ();
1600 if (seq)
1601 emit_insn_before (seq, insn);
1602 }
1603
1604 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1605 any_change = true;
1606 }
1607
1608 if (any_change)
1609 {
1610 /* Propagate operand changes into the duplicates. */
1611 for (i = 0; i < recog_data.n_dups; ++i)
1612 *recog_data.dup_loc[i]
1613 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1614
1615 /* Force re-recognition of the instruction for validation. */
1616 INSN_CODE (insn) = -1;
1617 }
1618
1619 if (asm_noperands (PATTERN (insn)) >= 0)
1620 {
1621 if (!check_asm_operands (PATTERN (insn)))
1622 {
1623 error_for_asm (insn, "impossible constraint in %<asm%>");
1624 delete_insn (insn);
1625 }
1626 }
1627 else
1628 {
1629 if (recog_memoized (insn) < 0)
1630 fatal_insn_not_found (insn);
1631 }
1632 }
1633
1634 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1635 do any instantiation required. */
1636
1637 void
1638 instantiate_decl_rtl (rtx x)
1639 {
1640 rtx addr;
1641
1642 if (x == 0)
1643 return;
1644
1645 /* If this is a CONCAT, recurse for the pieces. */
1646 if (GET_CODE (x) == CONCAT)
1647 {
1648 instantiate_decl_rtl (XEXP (x, 0));
1649 instantiate_decl_rtl (XEXP (x, 1));
1650 return;
1651 }
1652
1653 /* If this is not a MEM, no need to do anything. Similarly if the
1654 address is a constant or a register that is not a virtual register. */
1655 if (!MEM_P (x))
1656 return;
1657
1658 addr = XEXP (x, 0);
1659 if (CONSTANT_P (addr)
1660 || (REG_P (addr)
1661 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1662 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1663 return;
1664
1665 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1666 }
1667
1668 /* Helper for instantiate_decls called via walk_tree: Process all decls
1669 in the given DECL_VALUE_EXPR. */
1670
1671 static tree
1672 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1673 {
1674 tree t = *tp;
1675 if (! EXPR_P (t))
1676 {
1677 *walk_subtrees = 0;
1678 if (DECL_P (t) && DECL_RTL_SET_P (t))
1679 instantiate_decl_rtl (DECL_RTL (t));
1680 }
1681 return NULL;
1682 }
1683
1684 /* Subroutine of instantiate_decls: Process all decls in the given
1685 BLOCK node and all its subblocks. */
1686
1687 static void
1688 instantiate_decls_1 (tree let)
1689 {
1690 tree t;
1691
1692 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1693 {
1694 if (DECL_RTL_SET_P (t))
1695 instantiate_decl_rtl (DECL_RTL (t));
1696 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1697 {
1698 tree v = DECL_VALUE_EXPR (t);
1699 walk_tree (&v, instantiate_expr, NULL, NULL);
1700 }
1701 }
1702
1703 /* Process all subblocks. */
1704 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1705 instantiate_decls_1 (t);
1706 }
1707
1708 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1709 all virtual registers in their DECL_RTL's. */
1710
1711 static void
1712 instantiate_decls (tree fndecl)
1713 {
1714 tree decl, t, next;
1715
1716 /* Process all parameters of the function. */
1717 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1718 {
1719 instantiate_decl_rtl (DECL_RTL (decl));
1720 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1721 if (DECL_HAS_VALUE_EXPR_P (decl))
1722 {
1723 tree v = DECL_VALUE_EXPR (decl);
1724 walk_tree (&v, instantiate_expr, NULL, NULL);
1725 }
1726 }
1727
1728 /* Now process all variables defined in the function or its subblocks. */
1729 instantiate_decls_1 (DECL_INITIAL (fndecl));
1730
1731 t = cfun->local_decls;
1732 cfun->local_decls = NULL_TREE;
1733 for (; t; t = next)
1734 {
1735 next = TREE_CHAIN (t);
1736 decl = TREE_VALUE (t);
1737 if (DECL_RTL_SET_P (decl))
1738 instantiate_decl_rtl (DECL_RTL (decl));
1739 ggc_free (t);
1740 }
1741 }
1742
1743 /* Pass through the INSNS of function FNDECL and convert virtual register
1744 references to hard register references. */
1745
1746 static unsigned int
1747 instantiate_virtual_regs (void)
1748 {
1749 rtx insn;
1750
1751 /* Compute the offsets to use for this function. */
1752 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1753 var_offset = STARTING_FRAME_OFFSET;
1754 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1755 out_arg_offset = STACK_POINTER_OFFSET;
1756 #ifdef FRAME_POINTER_CFA_OFFSET
1757 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1758 #else
1759 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1760 #endif
1761
1762 /* Initialize recognition, indicating that volatile is OK. */
1763 init_recog ();
1764
1765 /* Scan through all the insns, instantiating every virtual register still
1766 present. */
1767 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1768 if (INSN_P (insn))
1769 {
1770 /* These patterns in the instruction stream can never be recognized.
1771 Fortunately, they shouldn't contain virtual registers either. */
1772 if (GET_CODE (PATTERN (insn)) == USE
1773 || GET_CODE (PATTERN (insn)) == CLOBBER
1774 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1775 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1776 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1777 continue;
1778
1779 instantiate_virtual_regs_in_insn (insn);
1780
1781 if (INSN_DELETED_P (insn))
1782 continue;
1783
1784 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1785
1786 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1787 if (CALL_P (insn))
1788 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1789 instantiate_virtual_regs_in_rtx, NULL);
1790 }
1791
1792 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1793 instantiate_decls (current_function_decl);
1794
1795 targetm.instantiate_decls ();
1796
1797 /* Indicate that, from now on, assign_stack_local should use
1798 frame_pointer_rtx. */
1799 virtuals_instantiated = 1;
1800 return 0;
1801 }
1802
1803 struct rtl_opt_pass pass_instantiate_virtual_regs =
1804 {
1805 {
1806 RTL_PASS,
1807 "vregs", /* name */
1808 NULL, /* gate */
1809 instantiate_virtual_regs, /* execute */
1810 NULL, /* sub */
1811 NULL, /* next */
1812 0, /* static_pass_number */
1813 TV_NONE, /* tv_id */
1814 0, /* properties_required */
1815 0, /* properties_provided */
1816 0, /* properties_destroyed */
1817 0, /* todo_flags_start */
1818 TODO_dump_func /* todo_flags_finish */
1819 }
1820 };
1821
1822 \f
1823 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1824 This means a type for which function calls must pass an address to the
1825 function or get an address back from the function.
1826 EXP may be a type node or an expression (whose type is tested). */
1827
1828 int
1829 aggregate_value_p (const_tree exp, const_tree fntype)
1830 {
1831 int i, regno, nregs;
1832 rtx reg;
1833
1834 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1835
1836 /* DECL node associated with FNTYPE when relevant, which we might need to
1837 check for by-invisible-reference returns, typically for CALL_EXPR input
1838 EXPressions. */
1839 const_tree fndecl = NULL_TREE;
1840
1841 if (fntype)
1842 switch (TREE_CODE (fntype))
1843 {
1844 case CALL_EXPR:
1845 fndecl = get_callee_fndecl (fntype);
1846 fntype = (fndecl
1847 ? TREE_TYPE (fndecl)
1848 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1849 break;
1850 case FUNCTION_DECL:
1851 fndecl = fntype;
1852 fntype = TREE_TYPE (fndecl);
1853 break;
1854 case FUNCTION_TYPE:
1855 case METHOD_TYPE:
1856 break;
1857 case IDENTIFIER_NODE:
1858 fntype = 0;
1859 break;
1860 default:
1861 /* We don't expect other rtl types here. */
1862 gcc_unreachable ();
1863 }
1864
1865 if (TREE_CODE (type) == VOID_TYPE)
1866 return 0;
1867
1868 /* If the front end has decided that this needs to be passed by
1869 reference, do so. */
1870 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1871 && DECL_BY_REFERENCE (exp))
1872 return 1;
1873
1874 /* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the
1875 called function RESULT_DECL, meaning the function returns in memory by
1876 invisible reference. This check lets front-ends not set TREE_ADDRESSABLE
1877 on the function type, which used to be the way to request such a return
1878 mechanism but might now be causing troubles at gimplification time if
1879 temporaries with the function type need to be created. */
1880 if (TREE_CODE (exp) == CALL_EXPR && fndecl && DECL_RESULT (fndecl)
1881 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
1882 return 1;
1883
1884 if (targetm.calls.return_in_memory (type, fntype))
1885 return 1;
1886 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1887 and thus can't be returned in registers. */
1888 if (TREE_ADDRESSABLE (type))
1889 return 1;
1890 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1891 return 1;
1892 /* Make sure we have suitable call-clobbered regs to return
1893 the value in; if not, we must return it in memory. */
1894 reg = hard_function_value (type, 0, fntype, 0);
1895
1896 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1897 it is OK. */
1898 if (!REG_P (reg))
1899 return 0;
1900
1901 regno = REGNO (reg);
1902 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1903 for (i = 0; i < nregs; i++)
1904 if (! call_used_regs[regno + i])
1905 return 1;
1906 return 0;
1907 }
1908 \f
1909 /* Return true if we should assign DECL a pseudo register; false if it
1910 should live on the local stack. */
1911
1912 bool
1913 use_register_for_decl (const_tree decl)
1914 {
1915 if (!targetm.calls.allocate_stack_slots_for_args())
1916 return true;
1917
1918 /* Honor volatile. */
1919 if (TREE_SIDE_EFFECTS (decl))
1920 return false;
1921
1922 /* Honor addressability. */
1923 if (TREE_ADDRESSABLE (decl))
1924 return false;
1925
1926 /* Only register-like things go in registers. */
1927 if (DECL_MODE (decl) == BLKmode)
1928 return false;
1929
1930 /* If -ffloat-store specified, don't put explicit float variables
1931 into registers. */
1932 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1933 propagates values across these stores, and it probably shouldn't. */
1934 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1935 return false;
1936
1937 /* If we're not interested in tracking debugging information for
1938 this decl, then we can certainly put it in a register. */
1939 if (DECL_IGNORED_P (decl))
1940 return true;
1941
1942 if (optimize)
1943 return true;
1944
1945 if (!DECL_REGISTER (decl))
1946 return false;
1947
1948 switch (TREE_CODE (TREE_TYPE (decl)))
1949 {
1950 case RECORD_TYPE:
1951 case UNION_TYPE:
1952 case QUAL_UNION_TYPE:
1953 /* When not optimizing, disregard register keyword for variables with
1954 types containing methods, otherwise the methods won't be callable
1955 from the debugger. */
1956 if (TYPE_METHODS (TREE_TYPE (decl)))
1957 return false;
1958 break;
1959 default:
1960 break;
1961 }
1962
1963 return true;
1964 }
1965
1966 /* Return true if TYPE should be passed by invisible reference. */
1967
1968 bool
1969 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1970 tree type, bool named_arg)
1971 {
1972 if (type)
1973 {
1974 /* If this type contains non-trivial constructors, then it is
1975 forbidden for the middle-end to create any new copies. */
1976 if (TREE_ADDRESSABLE (type))
1977 return true;
1978
1979 /* GCC post 3.4 passes *all* variable sized types by reference. */
1980 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1981 return true;
1982 }
1983
1984 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1985 }
1986
1987 /* Return true if TYPE, which is passed by reference, should be callee
1988 copied instead of caller copied. */
1989
1990 bool
1991 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1992 tree type, bool named_arg)
1993 {
1994 if (type && TREE_ADDRESSABLE (type))
1995 return false;
1996 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1997 }
1998
1999 /* Structures to communicate between the subroutines of assign_parms.
2000 The first holds data persistent across all parameters, the second
2001 is cleared out for each parameter. */
2002
2003 struct assign_parm_data_all
2004 {
2005 CUMULATIVE_ARGS args_so_far;
2006 struct args_size stack_args_size;
2007 tree function_result_decl;
2008 tree orig_fnargs;
2009 rtx first_conversion_insn;
2010 rtx last_conversion_insn;
2011 HOST_WIDE_INT pretend_args_size;
2012 HOST_WIDE_INT extra_pretend_bytes;
2013 int reg_parm_stack_space;
2014 };
2015
2016 struct assign_parm_data_one
2017 {
2018 tree nominal_type;
2019 tree passed_type;
2020 rtx entry_parm;
2021 rtx stack_parm;
2022 enum machine_mode nominal_mode;
2023 enum machine_mode passed_mode;
2024 enum machine_mode promoted_mode;
2025 struct locate_and_pad_arg_data locate;
2026 int partial;
2027 BOOL_BITFIELD named_arg : 1;
2028 BOOL_BITFIELD passed_pointer : 1;
2029 BOOL_BITFIELD on_stack : 1;
2030 BOOL_BITFIELD loaded_in_reg : 1;
2031 };
2032
2033 /* A subroutine of assign_parms. Initialize ALL. */
2034
2035 static void
2036 assign_parms_initialize_all (struct assign_parm_data_all *all)
2037 {
2038 tree fntype;
2039
2040 memset (all, 0, sizeof (*all));
2041
2042 fntype = TREE_TYPE (current_function_decl);
2043
2044 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2045 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2046 #else
2047 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2048 current_function_decl, -1);
2049 #endif
2050
2051 #ifdef REG_PARM_STACK_SPACE
2052 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2053 #endif
2054 }
2055
2056 /* If ARGS contains entries with complex types, split the entry into two
2057 entries of the component type. Return a new list of substitutions are
2058 needed, else the old list. */
2059
2060 static tree
2061 split_complex_args (tree args)
2062 {
2063 tree p;
2064
2065 /* Before allocating memory, check for the common case of no complex. */
2066 for (p = args; p; p = TREE_CHAIN (p))
2067 {
2068 tree type = TREE_TYPE (p);
2069 if (TREE_CODE (type) == COMPLEX_TYPE
2070 && targetm.calls.split_complex_arg (type))
2071 goto found;
2072 }
2073 return args;
2074
2075 found:
2076 args = copy_list (args);
2077
2078 for (p = args; p; p = TREE_CHAIN (p))
2079 {
2080 tree type = TREE_TYPE (p);
2081 if (TREE_CODE (type) == COMPLEX_TYPE
2082 && targetm.calls.split_complex_arg (type))
2083 {
2084 tree decl;
2085 tree subtype = TREE_TYPE (type);
2086 bool addressable = TREE_ADDRESSABLE (p);
2087
2088 /* Rewrite the PARM_DECL's type with its component. */
2089 TREE_TYPE (p) = subtype;
2090 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2091 DECL_MODE (p) = VOIDmode;
2092 DECL_SIZE (p) = NULL;
2093 DECL_SIZE_UNIT (p) = NULL;
2094 /* If this arg must go in memory, put it in a pseudo here.
2095 We can't allow it to go in memory as per normal parms,
2096 because the usual place might not have the imag part
2097 adjacent to the real part. */
2098 DECL_ARTIFICIAL (p) = addressable;
2099 DECL_IGNORED_P (p) = addressable;
2100 TREE_ADDRESSABLE (p) = 0;
2101 layout_decl (p, 0);
2102
2103 /* Build a second synthetic decl. */
2104 decl = build_decl (EXPR_LOCATION (p),
2105 PARM_DECL, NULL_TREE, subtype);
2106 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2107 DECL_ARTIFICIAL (decl) = addressable;
2108 DECL_IGNORED_P (decl) = addressable;
2109 layout_decl (decl, 0);
2110
2111 /* Splice it in; skip the new decl. */
2112 TREE_CHAIN (decl) = TREE_CHAIN (p);
2113 TREE_CHAIN (p) = decl;
2114 p = decl;
2115 }
2116 }
2117
2118 return args;
2119 }
2120
2121 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2122 the hidden struct return argument, and (abi willing) complex args.
2123 Return the new parameter list. */
2124
2125 static tree
2126 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2127 {
2128 tree fndecl = current_function_decl;
2129 tree fntype = TREE_TYPE (fndecl);
2130 tree fnargs = DECL_ARGUMENTS (fndecl);
2131
2132 /* If struct value address is treated as the first argument, make it so. */
2133 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2134 && ! cfun->returns_pcc_struct
2135 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2136 {
2137 tree type = build_pointer_type (TREE_TYPE (fntype));
2138 tree decl;
2139
2140 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2141 PARM_DECL, NULL_TREE, type);
2142 DECL_ARG_TYPE (decl) = type;
2143 DECL_ARTIFICIAL (decl) = 1;
2144 DECL_IGNORED_P (decl) = 1;
2145
2146 TREE_CHAIN (decl) = fnargs;
2147 fnargs = decl;
2148 all->function_result_decl = decl;
2149 }
2150
2151 all->orig_fnargs = fnargs;
2152
2153 /* If the target wants to split complex arguments into scalars, do so. */
2154 if (targetm.calls.split_complex_arg)
2155 fnargs = split_complex_args (fnargs);
2156
2157 return fnargs;
2158 }
2159
2160 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2161 data for the parameter. Incorporate ABI specifics such as pass-by-
2162 reference and type promotion. */
2163
2164 static void
2165 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2166 struct assign_parm_data_one *data)
2167 {
2168 tree nominal_type, passed_type;
2169 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2170
2171 memset (data, 0, sizeof (*data));
2172
2173 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2174 if (!cfun->stdarg)
2175 data->named_arg = 1; /* No variadic parms. */
2176 else if (TREE_CHAIN (parm))
2177 data->named_arg = 1; /* Not the last non-variadic parm. */
2178 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2179 data->named_arg = 1; /* Only variadic ones are unnamed. */
2180 else
2181 data->named_arg = 0; /* Treat as variadic. */
2182
2183 nominal_type = TREE_TYPE (parm);
2184 passed_type = DECL_ARG_TYPE (parm);
2185
2186 /* Look out for errors propagating this far. Also, if the parameter's
2187 type is void then its value doesn't matter. */
2188 if (TREE_TYPE (parm) == error_mark_node
2189 /* This can happen after weird syntax errors
2190 or if an enum type is defined among the parms. */
2191 || TREE_CODE (parm) != PARM_DECL
2192 || passed_type == NULL
2193 || VOID_TYPE_P (nominal_type))
2194 {
2195 nominal_type = passed_type = void_type_node;
2196 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2197 goto egress;
2198 }
2199
2200 /* Find mode of arg as it is passed, and mode of arg as it should be
2201 during execution of this function. */
2202 passed_mode = TYPE_MODE (passed_type);
2203 nominal_mode = TYPE_MODE (nominal_type);
2204
2205 /* If the parm is to be passed as a transparent union, use the type of
2206 the first field for the tests below. We have already verified that
2207 the modes are the same. */
2208 if (TREE_CODE (passed_type) == UNION_TYPE
2209 && TYPE_TRANSPARENT_UNION (passed_type))
2210 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2211
2212 /* See if this arg was passed by invisible reference. */
2213 if (pass_by_reference (&all->args_so_far, passed_mode,
2214 passed_type, data->named_arg))
2215 {
2216 passed_type = nominal_type = build_pointer_type (passed_type);
2217 data->passed_pointer = true;
2218 passed_mode = nominal_mode = Pmode;
2219 }
2220
2221 /* Find mode as it is passed by the ABI. */
2222 promoted_mode = passed_mode;
2223 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2224 {
2225 int unsignedp = TYPE_UNSIGNED (passed_type);
2226 promoted_mode = promote_mode (passed_type, promoted_mode,
2227 &unsignedp, 1);
2228 }
2229
2230 egress:
2231 data->nominal_type = nominal_type;
2232 data->passed_type = passed_type;
2233 data->nominal_mode = nominal_mode;
2234 data->passed_mode = passed_mode;
2235 data->promoted_mode = promoted_mode;
2236 }
2237
2238 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2239
2240 static void
2241 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2242 struct assign_parm_data_one *data, bool no_rtl)
2243 {
2244 int varargs_pretend_bytes = 0;
2245
2246 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2247 data->promoted_mode,
2248 data->passed_type,
2249 &varargs_pretend_bytes, no_rtl);
2250
2251 /* If the back-end has requested extra stack space, record how much is
2252 needed. Do not change pretend_args_size otherwise since it may be
2253 nonzero from an earlier partial argument. */
2254 if (varargs_pretend_bytes > 0)
2255 all->pretend_args_size = varargs_pretend_bytes;
2256 }
2257
2258 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2259 the incoming location of the current parameter. */
2260
2261 static void
2262 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2263 struct assign_parm_data_one *data)
2264 {
2265 HOST_WIDE_INT pretend_bytes = 0;
2266 rtx entry_parm;
2267 bool in_regs;
2268
2269 if (data->promoted_mode == VOIDmode)
2270 {
2271 data->entry_parm = data->stack_parm = const0_rtx;
2272 return;
2273 }
2274
2275 #ifdef FUNCTION_INCOMING_ARG
2276 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2277 data->passed_type, data->named_arg);
2278 #else
2279 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2280 data->passed_type, data->named_arg);
2281 #endif
2282
2283 if (entry_parm == 0)
2284 data->promoted_mode = data->passed_mode;
2285
2286 /* Determine parm's home in the stack, in case it arrives in the stack
2287 or we should pretend it did. Compute the stack position and rtx where
2288 the argument arrives and its size.
2289
2290 There is one complexity here: If this was a parameter that would
2291 have been passed in registers, but wasn't only because it is
2292 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2293 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2294 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2295 as it was the previous time. */
2296 in_regs = entry_parm != 0;
2297 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2298 in_regs = true;
2299 #endif
2300 if (!in_regs && !data->named_arg)
2301 {
2302 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2303 {
2304 rtx tem;
2305 #ifdef FUNCTION_INCOMING_ARG
2306 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2307 data->passed_type, true);
2308 #else
2309 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2310 data->passed_type, true);
2311 #endif
2312 in_regs = tem != NULL;
2313 }
2314 }
2315
2316 /* If this parameter was passed both in registers and in the stack, use
2317 the copy on the stack. */
2318 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2319 data->passed_type))
2320 entry_parm = 0;
2321
2322 if (entry_parm)
2323 {
2324 int partial;
2325
2326 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2327 data->promoted_mode,
2328 data->passed_type,
2329 data->named_arg);
2330 data->partial = partial;
2331
2332 /* The caller might already have allocated stack space for the
2333 register parameters. */
2334 if (partial != 0 && all->reg_parm_stack_space == 0)
2335 {
2336 /* Part of this argument is passed in registers and part
2337 is passed on the stack. Ask the prologue code to extend
2338 the stack part so that we can recreate the full value.
2339
2340 PRETEND_BYTES is the size of the registers we need to store.
2341 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2342 stack space that the prologue should allocate.
2343
2344 Internally, gcc assumes that the argument pointer is aligned
2345 to STACK_BOUNDARY bits. This is used both for alignment
2346 optimizations (see init_emit) and to locate arguments that are
2347 aligned to more than PARM_BOUNDARY bits. We must preserve this
2348 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2349 a stack boundary. */
2350
2351 /* We assume at most one partial arg, and it must be the first
2352 argument on the stack. */
2353 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2354
2355 pretend_bytes = partial;
2356 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2357
2358 /* We want to align relative to the actual stack pointer, so
2359 don't include this in the stack size until later. */
2360 all->extra_pretend_bytes = all->pretend_args_size;
2361 }
2362 }
2363
2364 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2365 entry_parm ? data->partial : 0, current_function_decl,
2366 &all->stack_args_size, &data->locate);
2367
2368 /* Update parm_stack_boundary if this parameter is passed in the
2369 stack. */
2370 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2371 crtl->parm_stack_boundary = data->locate.boundary;
2372
2373 /* Adjust offsets to include the pretend args. */
2374 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2375 data->locate.slot_offset.constant += pretend_bytes;
2376 data->locate.offset.constant += pretend_bytes;
2377
2378 data->entry_parm = entry_parm;
2379 }
2380
2381 /* A subroutine of assign_parms. If there is actually space on the stack
2382 for this parm, count it in stack_args_size and return true. */
2383
2384 static bool
2385 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2386 struct assign_parm_data_one *data)
2387 {
2388 /* Trivially true if we've no incoming register. */
2389 if (data->entry_parm == NULL)
2390 ;
2391 /* Also true if we're partially in registers and partially not,
2392 since we've arranged to drop the entire argument on the stack. */
2393 else if (data->partial != 0)
2394 ;
2395 /* Also true if the target says that it's passed in both registers
2396 and on the stack. */
2397 else if (GET_CODE (data->entry_parm) == PARALLEL
2398 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2399 ;
2400 /* Also true if the target says that there's stack allocated for
2401 all register parameters. */
2402 else if (all->reg_parm_stack_space > 0)
2403 ;
2404 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2405 else
2406 return false;
2407
2408 all->stack_args_size.constant += data->locate.size.constant;
2409 if (data->locate.size.var)
2410 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2411
2412 return true;
2413 }
2414
2415 /* A subroutine of assign_parms. Given that this parameter is allocated
2416 stack space by the ABI, find it. */
2417
2418 static void
2419 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2420 {
2421 rtx offset_rtx, stack_parm;
2422 unsigned int align, boundary;
2423
2424 /* If we're passing this arg using a reg, make its stack home the
2425 aligned stack slot. */
2426 if (data->entry_parm)
2427 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2428 else
2429 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2430
2431 stack_parm = crtl->args.internal_arg_pointer;
2432 if (offset_rtx != const0_rtx)
2433 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2434 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2435
2436 set_mem_attributes (stack_parm, parm, 1);
2437 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2438 while promoted mode's size is needed. */
2439 if (data->promoted_mode != BLKmode
2440 && data->promoted_mode != DECL_MODE (parm))
2441 {
2442 set_mem_size (stack_parm, GEN_INT (GET_MODE_SIZE (data->promoted_mode)));
2443 if (MEM_EXPR (stack_parm) && MEM_OFFSET (stack_parm))
2444 {
2445 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2446 data->promoted_mode);
2447 if (offset)
2448 set_mem_offset (stack_parm,
2449 plus_constant (MEM_OFFSET (stack_parm), -offset));
2450 }
2451 }
2452
2453 boundary = data->locate.boundary;
2454 align = BITS_PER_UNIT;
2455
2456 /* If we're padding upward, we know that the alignment of the slot
2457 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2458 intentionally forcing upward padding. Otherwise we have to come
2459 up with a guess at the alignment based on OFFSET_RTX. */
2460 if (data->locate.where_pad != downward || data->entry_parm)
2461 align = boundary;
2462 else if (CONST_INT_P (offset_rtx))
2463 {
2464 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2465 align = align & -align;
2466 }
2467 set_mem_align (stack_parm, align);
2468
2469 if (data->entry_parm)
2470 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2471
2472 data->stack_parm = stack_parm;
2473 }
2474
2475 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2476 always valid and contiguous. */
2477
2478 static void
2479 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2480 {
2481 rtx entry_parm = data->entry_parm;
2482 rtx stack_parm = data->stack_parm;
2483
2484 /* If this parm was passed part in regs and part in memory, pretend it
2485 arrived entirely in memory by pushing the register-part onto the stack.
2486 In the special case of a DImode or DFmode that is split, we could put
2487 it together in a pseudoreg directly, but for now that's not worth
2488 bothering with. */
2489 if (data->partial != 0)
2490 {
2491 /* Handle calls that pass values in multiple non-contiguous
2492 locations. The Irix 6 ABI has examples of this. */
2493 if (GET_CODE (entry_parm) == PARALLEL)
2494 emit_group_store (validize_mem (stack_parm), entry_parm,
2495 data->passed_type,
2496 int_size_in_bytes (data->passed_type));
2497 else
2498 {
2499 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2500 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2501 data->partial / UNITS_PER_WORD);
2502 }
2503
2504 entry_parm = stack_parm;
2505 }
2506
2507 /* If we didn't decide this parm came in a register, by default it came
2508 on the stack. */
2509 else if (entry_parm == NULL)
2510 entry_parm = stack_parm;
2511
2512 /* When an argument is passed in multiple locations, we can't make use
2513 of this information, but we can save some copying if the whole argument
2514 is passed in a single register. */
2515 else if (GET_CODE (entry_parm) == PARALLEL
2516 && data->nominal_mode != BLKmode
2517 && data->passed_mode != BLKmode)
2518 {
2519 size_t i, len = XVECLEN (entry_parm, 0);
2520
2521 for (i = 0; i < len; i++)
2522 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2523 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2524 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2525 == data->passed_mode)
2526 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2527 {
2528 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2529 break;
2530 }
2531 }
2532
2533 data->entry_parm = entry_parm;
2534 }
2535
2536 /* A subroutine of assign_parms. Reconstitute any values which were
2537 passed in multiple registers and would fit in a single register. */
2538
2539 static void
2540 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2541 {
2542 rtx entry_parm = data->entry_parm;
2543
2544 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2545 This can be done with register operations rather than on the
2546 stack, even if we will store the reconstituted parameter on the
2547 stack later. */
2548 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2549 {
2550 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2551 emit_group_store (parmreg, entry_parm, data->passed_type,
2552 GET_MODE_SIZE (GET_MODE (entry_parm)));
2553 entry_parm = parmreg;
2554 }
2555
2556 data->entry_parm = entry_parm;
2557 }
2558
2559 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2560 always valid and properly aligned. */
2561
2562 static void
2563 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2564 {
2565 rtx stack_parm = data->stack_parm;
2566
2567 /* If we can't trust the parm stack slot to be aligned enough for its
2568 ultimate type, don't use that slot after entry. We'll make another
2569 stack slot, if we need one. */
2570 if (stack_parm
2571 && ((STRICT_ALIGNMENT
2572 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2573 || (data->nominal_type
2574 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2575 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2576 stack_parm = NULL;
2577
2578 /* If parm was passed in memory, and we need to convert it on entry,
2579 don't store it back in that same slot. */
2580 else if (data->entry_parm == stack_parm
2581 && data->nominal_mode != BLKmode
2582 && data->nominal_mode != data->passed_mode)
2583 stack_parm = NULL;
2584
2585 /* If stack protection is in effect for this function, don't leave any
2586 pointers in their passed stack slots. */
2587 else if (crtl->stack_protect_guard
2588 && (flag_stack_protect == 2
2589 || data->passed_pointer
2590 || POINTER_TYPE_P (data->nominal_type)))
2591 stack_parm = NULL;
2592
2593 data->stack_parm = stack_parm;
2594 }
2595
2596 /* A subroutine of assign_parms. Return true if the current parameter
2597 should be stored as a BLKmode in the current frame. */
2598
2599 static bool
2600 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2601 {
2602 if (data->nominal_mode == BLKmode)
2603 return true;
2604 if (GET_MODE (data->entry_parm) == BLKmode)
2605 return true;
2606
2607 #ifdef BLOCK_REG_PADDING
2608 /* Only assign_parm_setup_block knows how to deal with register arguments
2609 that are padded at the least significant end. */
2610 if (REG_P (data->entry_parm)
2611 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2612 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2613 == (BYTES_BIG_ENDIAN ? upward : downward)))
2614 return true;
2615 #endif
2616
2617 return false;
2618 }
2619
2620 /* A subroutine of assign_parms. Arrange for the parameter to be
2621 present and valid in DATA->STACK_RTL. */
2622
2623 static void
2624 assign_parm_setup_block (struct assign_parm_data_all *all,
2625 tree parm, struct assign_parm_data_one *data)
2626 {
2627 rtx entry_parm = data->entry_parm;
2628 rtx stack_parm = data->stack_parm;
2629 HOST_WIDE_INT size;
2630 HOST_WIDE_INT size_stored;
2631
2632 if (GET_CODE (entry_parm) == PARALLEL)
2633 entry_parm = emit_group_move_into_temps (entry_parm);
2634
2635 size = int_size_in_bytes (data->passed_type);
2636 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2637 if (stack_parm == 0)
2638 {
2639 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2640 stack_parm = assign_stack_local (BLKmode, size_stored,
2641 DECL_ALIGN (parm));
2642 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2643 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2644 set_mem_attributes (stack_parm, parm, 1);
2645 }
2646
2647 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2648 calls that pass values in multiple non-contiguous locations. */
2649 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2650 {
2651 rtx mem;
2652
2653 /* Note that we will be storing an integral number of words.
2654 So we have to be careful to ensure that we allocate an
2655 integral number of words. We do this above when we call
2656 assign_stack_local if space was not allocated in the argument
2657 list. If it was, this will not work if PARM_BOUNDARY is not
2658 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2659 if it becomes a problem. Exception is when BLKmode arrives
2660 with arguments not conforming to word_mode. */
2661
2662 if (data->stack_parm == 0)
2663 ;
2664 else if (GET_CODE (entry_parm) == PARALLEL)
2665 ;
2666 else
2667 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2668
2669 mem = validize_mem (stack_parm);
2670
2671 /* Handle values in multiple non-contiguous locations. */
2672 if (GET_CODE (entry_parm) == PARALLEL)
2673 {
2674 push_to_sequence2 (all->first_conversion_insn,
2675 all->last_conversion_insn);
2676 emit_group_store (mem, entry_parm, data->passed_type, size);
2677 all->first_conversion_insn = get_insns ();
2678 all->last_conversion_insn = get_last_insn ();
2679 end_sequence ();
2680 }
2681
2682 else if (size == 0)
2683 ;
2684
2685 /* If SIZE is that of a mode no bigger than a word, just use
2686 that mode's store operation. */
2687 else if (size <= UNITS_PER_WORD)
2688 {
2689 enum machine_mode mode
2690 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2691
2692 if (mode != BLKmode
2693 #ifdef BLOCK_REG_PADDING
2694 && (size == UNITS_PER_WORD
2695 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2696 != (BYTES_BIG_ENDIAN ? upward : downward)))
2697 #endif
2698 )
2699 {
2700 rtx reg;
2701
2702 /* We are really truncating a word_mode value containing
2703 SIZE bytes into a value of mode MODE. If such an
2704 operation requires no actual instructions, we can refer
2705 to the value directly in mode MODE, otherwise we must
2706 start with the register in word_mode and explicitly
2707 convert it. */
2708 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2709 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2710 else
2711 {
2712 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2713 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2714 }
2715 emit_move_insn (change_address (mem, mode, 0), reg);
2716 }
2717
2718 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2719 machine must be aligned to the left before storing
2720 to memory. Note that the previous test doesn't
2721 handle all cases (e.g. SIZE == 3). */
2722 else if (size != UNITS_PER_WORD
2723 #ifdef BLOCK_REG_PADDING
2724 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2725 == downward)
2726 #else
2727 && BYTES_BIG_ENDIAN
2728 #endif
2729 )
2730 {
2731 rtx tem, x;
2732 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2733 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2734
2735 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2736 build_int_cst (NULL_TREE, by),
2737 NULL_RTX, 1);
2738 tem = change_address (mem, word_mode, 0);
2739 emit_move_insn (tem, x);
2740 }
2741 else
2742 move_block_from_reg (REGNO (entry_parm), mem,
2743 size_stored / UNITS_PER_WORD);
2744 }
2745 else
2746 move_block_from_reg (REGNO (entry_parm), mem,
2747 size_stored / UNITS_PER_WORD);
2748 }
2749 else if (data->stack_parm == 0)
2750 {
2751 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2752 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2753 BLOCK_OP_NORMAL);
2754 all->first_conversion_insn = get_insns ();
2755 all->last_conversion_insn = get_last_insn ();
2756 end_sequence ();
2757 }
2758
2759 data->stack_parm = stack_parm;
2760 SET_DECL_RTL (parm, stack_parm);
2761 }
2762
2763 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2764 parameter. Get it there. Perform all ABI specified conversions. */
2765
2766 static void
2767 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2768 struct assign_parm_data_one *data)
2769 {
2770 rtx parmreg;
2771 enum machine_mode promoted_nominal_mode;
2772 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2773 bool did_conversion = false;
2774
2775 /* Store the parm in a pseudoregister during the function, but we may
2776 need to do it in a wider mode. */
2777
2778 /* This is not really promoting for a call. However we need to be
2779 consistent with assign_parm_find_data_types and expand_expr_real_1. */
2780 promoted_nominal_mode
2781 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 1);
2782
2783 parmreg = gen_reg_rtx (promoted_nominal_mode);
2784
2785 if (!DECL_ARTIFICIAL (parm))
2786 mark_user_reg (parmreg);
2787
2788 /* If this was an item that we received a pointer to,
2789 set DECL_RTL appropriately. */
2790 if (data->passed_pointer)
2791 {
2792 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2793 set_mem_attributes (x, parm, 1);
2794 SET_DECL_RTL (parm, x);
2795 }
2796 else
2797 SET_DECL_RTL (parm, parmreg);
2798
2799 assign_parm_remove_parallels (data);
2800
2801 /* Copy the value into the register. */
2802 if (data->nominal_mode != data->passed_mode
2803 || promoted_nominal_mode != data->promoted_mode)
2804 {
2805 int save_tree_used;
2806
2807 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2808 mode, by the caller. We now have to convert it to
2809 NOMINAL_MODE, if different. However, PARMREG may be in
2810 a different mode than NOMINAL_MODE if it is being stored
2811 promoted.
2812
2813 If ENTRY_PARM is a hard register, it might be in a register
2814 not valid for operating in its mode (e.g., an odd-numbered
2815 register for a DFmode). In that case, moves are the only
2816 thing valid, so we can't do a convert from there. This
2817 occurs when the calling sequence allow such misaligned
2818 usages.
2819
2820 In addition, the conversion may involve a call, which could
2821 clobber parameters which haven't been copied to pseudo
2822 registers yet. Therefore, we must first copy the parm to
2823 a pseudo reg here, and save the conversion until after all
2824 parameters have been moved. */
2825
2826 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2827
2828 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2829
2830 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2831 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2832
2833 if (GET_CODE (tempreg) == SUBREG
2834 && GET_MODE (tempreg) == data->nominal_mode
2835 && REG_P (SUBREG_REG (tempreg))
2836 && data->nominal_mode == data->passed_mode
2837 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2838 && GET_MODE_SIZE (GET_MODE (tempreg))
2839 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2840 {
2841 /* The argument is already sign/zero extended, so note it
2842 into the subreg. */
2843 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2844 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2845 }
2846
2847 /* TREE_USED gets set erroneously during expand_assignment. */
2848 save_tree_used = TREE_USED (parm);
2849 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
2850 TREE_USED (parm) = save_tree_used;
2851 all->first_conversion_insn = get_insns ();
2852 all->last_conversion_insn = get_last_insn ();
2853 end_sequence ();
2854
2855 did_conversion = true;
2856 }
2857 else
2858 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2859
2860 /* If we were passed a pointer but the actual value can safely live
2861 in a register, put it in one. */
2862 if (data->passed_pointer
2863 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2864 /* If by-reference argument was promoted, demote it. */
2865 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2866 || use_register_for_decl (parm)))
2867 {
2868 /* We can't use nominal_mode, because it will have been set to
2869 Pmode above. We must use the actual mode of the parm. */
2870 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2871 mark_user_reg (parmreg);
2872
2873 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2874 {
2875 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2876 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2877
2878 push_to_sequence2 (all->first_conversion_insn,
2879 all->last_conversion_insn);
2880 emit_move_insn (tempreg, DECL_RTL (parm));
2881 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2882 emit_move_insn (parmreg, tempreg);
2883 all->first_conversion_insn = get_insns ();
2884 all->last_conversion_insn = get_last_insn ();
2885 end_sequence ();
2886
2887 did_conversion = true;
2888 }
2889 else
2890 emit_move_insn (parmreg, DECL_RTL (parm));
2891
2892 SET_DECL_RTL (parm, parmreg);
2893
2894 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2895 now the parm. */
2896 data->stack_parm = NULL;
2897 }
2898
2899 /* Mark the register as eliminable if we did no conversion and it was
2900 copied from memory at a fixed offset, and the arg pointer was not
2901 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2902 offset formed an invalid address, such memory-equivalences as we
2903 make here would screw up life analysis for it. */
2904 if (data->nominal_mode == data->passed_mode
2905 && !did_conversion
2906 && data->stack_parm != 0
2907 && MEM_P (data->stack_parm)
2908 && data->locate.offset.var == 0
2909 && reg_mentioned_p (virtual_incoming_args_rtx,
2910 XEXP (data->stack_parm, 0)))
2911 {
2912 rtx linsn = get_last_insn ();
2913 rtx sinsn, set;
2914
2915 /* Mark complex types separately. */
2916 if (GET_CODE (parmreg) == CONCAT)
2917 {
2918 enum machine_mode submode
2919 = GET_MODE_INNER (GET_MODE (parmreg));
2920 int regnor = REGNO (XEXP (parmreg, 0));
2921 int regnoi = REGNO (XEXP (parmreg, 1));
2922 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2923 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2924 GET_MODE_SIZE (submode));
2925
2926 /* Scan backwards for the set of the real and
2927 imaginary parts. */
2928 for (sinsn = linsn; sinsn != 0;
2929 sinsn = prev_nonnote_insn (sinsn))
2930 {
2931 set = single_set (sinsn);
2932 if (set == 0)
2933 continue;
2934
2935 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2936 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
2937 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2938 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
2939 }
2940 }
2941 else if ((set = single_set (linsn)) != 0
2942 && SET_DEST (set) == parmreg)
2943 set_unique_reg_note (linsn, REG_EQUIV, data->stack_parm);
2944 }
2945
2946 /* For pointer data type, suggest pointer register. */
2947 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2948 mark_reg_pointer (parmreg,
2949 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2950 }
2951
2952 /* A subroutine of assign_parms. Allocate stack space to hold the current
2953 parameter. Get it there. Perform all ABI specified conversions. */
2954
2955 static void
2956 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2957 struct assign_parm_data_one *data)
2958 {
2959 /* Value must be stored in the stack slot STACK_PARM during function
2960 execution. */
2961 bool to_conversion = false;
2962
2963 assign_parm_remove_parallels (data);
2964
2965 if (data->promoted_mode != data->nominal_mode)
2966 {
2967 /* Conversion is required. */
2968 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2969
2970 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2971
2972 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2973 to_conversion = true;
2974
2975 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2976 TYPE_UNSIGNED (TREE_TYPE (parm)));
2977
2978 if (data->stack_parm)
2979 /* ??? This may need a big-endian conversion on sparc64. */
2980 data->stack_parm
2981 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2982 }
2983
2984 if (data->entry_parm != data->stack_parm)
2985 {
2986 rtx src, dest;
2987
2988 if (data->stack_parm == 0)
2989 {
2990 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
2991 GET_MODE (data->entry_parm),
2992 TYPE_ALIGN (data->passed_type));
2993 data->stack_parm
2994 = assign_stack_local (GET_MODE (data->entry_parm),
2995 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2996 align);
2997 set_mem_attributes (data->stack_parm, parm, 1);
2998 }
2999
3000 dest = validize_mem (data->stack_parm);
3001 src = validize_mem (data->entry_parm);
3002
3003 if (MEM_P (src))
3004 {
3005 /* Use a block move to handle potentially misaligned entry_parm. */
3006 if (!to_conversion)
3007 push_to_sequence2 (all->first_conversion_insn,
3008 all->last_conversion_insn);
3009 to_conversion = true;
3010
3011 emit_block_move (dest, src,
3012 GEN_INT (int_size_in_bytes (data->passed_type)),
3013 BLOCK_OP_NORMAL);
3014 }
3015 else
3016 emit_move_insn (dest, src);
3017 }
3018
3019 if (to_conversion)
3020 {
3021 all->first_conversion_insn = get_insns ();
3022 all->last_conversion_insn = get_last_insn ();
3023 end_sequence ();
3024 }
3025
3026 SET_DECL_RTL (parm, data->stack_parm);
3027 }
3028
3029 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3030 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3031
3032 static void
3033 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
3034 {
3035 tree parm;
3036 tree orig_fnargs = all->orig_fnargs;
3037
3038 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
3039 {
3040 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3041 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3042 {
3043 rtx tmp, real, imag;
3044 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3045
3046 real = DECL_RTL (fnargs);
3047 imag = DECL_RTL (TREE_CHAIN (fnargs));
3048 if (inner != GET_MODE (real))
3049 {
3050 real = gen_lowpart_SUBREG (inner, real);
3051 imag = gen_lowpart_SUBREG (inner, imag);
3052 }
3053
3054 if (TREE_ADDRESSABLE (parm))
3055 {
3056 rtx rmem, imem;
3057 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3058 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3059 DECL_MODE (parm),
3060 TYPE_ALIGN (TREE_TYPE (parm)));
3061
3062 /* split_complex_arg put the real and imag parts in
3063 pseudos. Move them to memory. */
3064 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3065 set_mem_attributes (tmp, parm, 1);
3066 rmem = adjust_address_nv (tmp, inner, 0);
3067 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3068 push_to_sequence2 (all->first_conversion_insn,
3069 all->last_conversion_insn);
3070 emit_move_insn (rmem, real);
3071 emit_move_insn (imem, imag);
3072 all->first_conversion_insn = get_insns ();
3073 all->last_conversion_insn = get_last_insn ();
3074 end_sequence ();
3075 }
3076 else
3077 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3078 SET_DECL_RTL (parm, tmp);
3079
3080 real = DECL_INCOMING_RTL (fnargs);
3081 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
3082 if (inner != GET_MODE (real))
3083 {
3084 real = gen_lowpart_SUBREG (inner, real);
3085 imag = gen_lowpart_SUBREG (inner, imag);
3086 }
3087 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3088 set_decl_incoming_rtl (parm, tmp, false);
3089 fnargs = TREE_CHAIN (fnargs);
3090 }
3091 else
3092 {
3093 SET_DECL_RTL (parm, DECL_RTL (fnargs));
3094 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs), false);
3095
3096 /* Set MEM_EXPR to the original decl, i.e. to PARM,
3097 instead of the copy of decl, i.e. FNARGS. */
3098 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
3099 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
3100 }
3101
3102 fnargs = TREE_CHAIN (fnargs);
3103 }
3104 }
3105
3106 /* Assign RTL expressions to the function's parameters. This may involve
3107 copying them into registers and using those registers as the DECL_RTL. */
3108
3109 static void
3110 assign_parms (tree fndecl)
3111 {
3112 struct assign_parm_data_all all;
3113 tree fnargs, parm;
3114
3115 crtl->args.internal_arg_pointer
3116 = targetm.calls.internal_arg_pointer ();
3117
3118 assign_parms_initialize_all (&all);
3119 fnargs = assign_parms_augmented_arg_list (&all);
3120
3121 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3122 {
3123 struct assign_parm_data_one data;
3124
3125 /* Extract the type of PARM; adjust it according to ABI. */
3126 assign_parm_find_data_types (&all, parm, &data);
3127
3128 /* Early out for errors and void parameters. */
3129 if (data.passed_mode == VOIDmode)
3130 {
3131 SET_DECL_RTL (parm, const0_rtx);
3132 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3133 continue;
3134 }
3135
3136 /* Estimate stack alignment from parameter alignment. */
3137 if (SUPPORTS_STACK_ALIGNMENT)
3138 {
3139 unsigned int align = FUNCTION_ARG_BOUNDARY (data.promoted_mode,
3140 data.passed_type);
3141 if (TYPE_ALIGN (data.nominal_type) > align)
3142 align = TYPE_ALIGN (data.passed_type);
3143 if (crtl->stack_alignment_estimated < align)
3144 {
3145 gcc_assert (!crtl->stack_realign_processed);
3146 crtl->stack_alignment_estimated = align;
3147 }
3148 }
3149
3150 if (cfun->stdarg && !TREE_CHAIN (parm))
3151 assign_parms_setup_varargs (&all, &data, false);
3152
3153 /* Find out where the parameter arrives in this function. */
3154 assign_parm_find_entry_rtl (&all, &data);
3155
3156 /* Find out where stack space for this parameter might be. */
3157 if (assign_parm_is_stack_parm (&all, &data))
3158 {
3159 assign_parm_find_stack_rtl (parm, &data);
3160 assign_parm_adjust_entry_rtl (&data);
3161 }
3162
3163 /* Record permanently how this parm was passed. */
3164 set_decl_incoming_rtl (parm, data.entry_parm, data.passed_pointer);
3165
3166 /* Update info on where next arg arrives in registers. */
3167 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3168 data.passed_type, data.named_arg);
3169
3170 assign_parm_adjust_stack_rtl (&data);
3171
3172 if (assign_parm_setup_block_p (&data))
3173 assign_parm_setup_block (&all, parm, &data);
3174 else if (data.passed_pointer || use_register_for_decl (parm))
3175 assign_parm_setup_reg (&all, parm, &data);
3176 else
3177 assign_parm_setup_stack (&all, parm, &data);
3178 }
3179
3180 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3181 assign_parms_unsplit_complex (&all, fnargs);
3182
3183 /* Output all parameter conversion instructions (possibly including calls)
3184 now that all parameters have been copied out of hard registers. */
3185 emit_insn (all.first_conversion_insn);
3186
3187 /* Estimate reload stack alignment from scalar return mode. */
3188 if (SUPPORTS_STACK_ALIGNMENT)
3189 {
3190 if (DECL_RESULT (fndecl))
3191 {
3192 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3193 enum machine_mode mode = TYPE_MODE (type);
3194
3195 if (mode != BLKmode
3196 && mode != VOIDmode
3197 && !AGGREGATE_TYPE_P (type))
3198 {
3199 unsigned int align = GET_MODE_ALIGNMENT (mode);
3200 if (crtl->stack_alignment_estimated < align)
3201 {
3202 gcc_assert (!crtl->stack_realign_processed);
3203 crtl->stack_alignment_estimated = align;
3204 }
3205 }
3206 }
3207 }
3208
3209 /* If we are receiving a struct value address as the first argument, set up
3210 the RTL for the function result. As this might require code to convert
3211 the transmitted address to Pmode, we do this here to ensure that possible
3212 preliminary conversions of the address have been emitted already. */
3213 if (all.function_result_decl)
3214 {
3215 tree result = DECL_RESULT (current_function_decl);
3216 rtx addr = DECL_RTL (all.function_result_decl);
3217 rtx x;
3218
3219 if (DECL_BY_REFERENCE (result))
3220 x = addr;
3221 else
3222 {
3223 addr = convert_memory_address (Pmode, addr);
3224 x = gen_rtx_MEM (DECL_MODE (result), addr);
3225 set_mem_attributes (x, result, 1);
3226 }
3227 SET_DECL_RTL (result, x);
3228 }
3229
3230 /* We have aligned all the args, so add space for the pretend args. */
3231 crtl->args.pretend_args_size = all.pretend_args_size;
3232 all.stack_args_size.constant += all.extra_pretend_bytes;
3233 crtl->args.size = all.stack_args_size.constant;
3234
3235 /* Adjust function incoming argument size for alignment and
3236 minimum length. */
3237
3238 #ifdef REG_PARM_STACK_SPACE
3239 crtl->args.size = MAX (crtl->args.size,
3240 REG_PARM_STACK_SPACE (fndecl));
3241 #endif
3242
3243 crtl->args.size = CEIL_ROUND (crtl->args.size,
3244 PARM_BOUNDARY / BITS_PER_UNIT);
3245
3246 #ifdef ARGS_GROW_DOWNWARD
3247 crtl->args.arg_offset_rtx
3248 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3249 : expand_expr (size_diffop (all.stack_args_size.var,
3250 size_int (-all.stack_args_size.constant)),
3251 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3252 #else
3253 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3254 #endif
3255
3256 /* See how many bytes, if any, of its args a function should try to pop
3257 on return. */
3258
3259 crtl->args.pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3260 crtl->args.size);
3261
3262 /* For stdarg.h function, save info about
3263 regs and stack space used by the named args. */
3264
3265 crtl->args.info = all.args_so_far;
3266
3267 /* Set the rtx used for the function return value. Put this in its
3268 own variable so any optimizers that need this information don't have
3269 to include tree.h. Do this here so it gets done when an inlined
3270 function gets output. */
3271
3272 crtl->return_rtx
3273 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3274 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3275
3276 /* If scalar return value was computed in a pseudo-reg, or was a named
3277 return value that got dumped to the stack, copy that to the hard
3278 return register. */
3279 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3280 {
3281 tree decl_result = DECL_RESULT (fndecl);
3282 rtx decl_rtl = DECL_RTL (decl_result);
3283
3284 if (REG_P (decl_rtl)
3285 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3286 : DECL_REGISTER (decl_result))
3287 {
3288 rtx real_decl_rtl;
3289
3290 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3291 fndecl, true);
3292 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3293 /* The delay slot scheduler assumes that crtl->return_rtx
3294 holds the hard register containing the return value, not a
3295 temporary pseudo. */
3296 crtl->return_rtx = real_decl_rtl;
3297 }
3298 }
3299 }
3300
3301 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3302 For all seen types, gimplify their sizes. */
3303
3304 static tree
3305 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3306 {
3307 tree t = *tp;
3308
3309 *walk_subtrees = 0;
3310 if (TYPE_P (t))
3311 {
3312 if (POINTER_TYPE_P (t))
3313 *walk_subtrees = 1;
3314 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3315 && !TYPE_SIZES_GIMPLIFIED (t))
3316 {
3317 gimplify_type_sizes (t, (gimple_seq *) data);
3318 *walk_subtrees = 1;
3319 }
3320 }
3321
3322 return NULL;
3323 }
3324
3325 /* Gimplify the parameter list for current_function_decl. This involves
3326 evaluating SAVE_EXPRs of variable sized parameters and generating code
3327 to implement callee-copies reference parameters. Returns a sequence of
3328 statements to add to the beginning of the function. */
3329
3330 gimple_seq
3331 gimplify_parameters (void)
3332 {
3333 struct assign_parm_data_all all;
3334 tree fnargs, parm;
3335 gimple_seq stmts = NULL;
3336
3337 assign_parms_initialize_all (&all);
3338 fnargs = assign_parms_augmented_arg_list (&all);
3339
3340 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3341 {
3342 struct assign_parm_data_one data;
3343
3344 /* Extract the type of PARM; adjust it according to ABI. */
3345 assign_parm_find_data_types (&all, parm, &data);
3346
3347 /* Early out for errors and void parameters. */
3348 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3349 continue;
3350
3351 /* Update info on where next arg arrives in registers. */
3352 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3353 data.passed_type, data.named_arg);
3354
3355 /* ??? Once upon a time variable_size stuffed parameter list
3356 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3357 turned out to be less than manageable in the gimple world.
3358 Now we have to hunt them down ourselves. */
3359 walk_tree_without_duplicates (&data.passed_type,
3360 gimplify_parm_type, &stmts);
3361
3362 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3363 {
3364 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3365 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3366 }
3367
3368 if (data.passed_pointer)
3369 {
3370 tree type = TREE_TYPE (data.passed_type);
3371 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3372 type, data.named_arg))
3373 {
3374 tree local, t;
3375
3376 /* For constant-sized objects, this is trivial; for
3377 variable-sized objects, we have to play games. */
3378 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3379 && !(flag_stack_check == GENERIC_STACK_CHECK
3380 && compare_tree_int (DECL_SIZE_UNIT (parm),
3381 STACK_CHECK_MAX_VAR_SIZE) > 0))
3382 {
3383 local = create_tmp_var (type, get_name (parm));
3384 DECL_IGNORED_P (local) = 0;
3385 /* If PARM was addressable, move that flag over
3386 to the local copy, as its address will be taken,
3387 not the PARMs. */
3388 if (TREE_ADDRESSABLE (parm))
3389 {
3390 TREE_ADDRESSABLE (parm) = 0;
3391 TREE_ADDRESSABLE (local) = 1;
3392 }
3393 }
3394 else
3395 {
3396 tree ptr_type, addr;
3397
3398 ptr_type = build_pointer_type (type);
3399 addr = create_tmp_var (ptr_type, get_name (parm));
3400 DECL_IGNORED_P (addr) = 0;
3401 local = build_fold_indirect_ref (addr);
3402
3403 t = built_in_decls[BUILT_IN_ALLOCA];
3404 t = build_call_expr (t, 1, DECL_SIZE_UNIT (parm));
3405 t = fold_convert (ptr_type, t);
3406 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3407 gimplify_and_add (t, &stmts);
3408 }
3409
3410 gimplify_assign (local, parm, &stmts);
3411
3412 SET_DECL_VALUE_EXPR (parm, local);
3413 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3414 }
3415 }
3416 }
3417
3418 return stmts;
3419 }
3420 \f
3421 /* Compute the size and offset from the start of the stacked arguments for a
3422 parm passed in mode PASSED_MODE and with type TYPE.
3423
3424 INITIAL_OFFSET_PTR points to the current offset into the stacked
3425 arguments.
3426
3427 The starting offset and size for this parm are returned in
3428 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3429 nonzero, the offset is that of stack slot, which is returned in
3430 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3431 padding required from the initial offset ptr to the stack slot.
3432
3433 IN_REGS is nonzero if the argument will be passed in registers. It will
3434 never be set if REG_PARM_STACK_SPACE is not defined.
3435
3436 FNDECL is the function in which the argument was defined.
3437
3438 There are two types of rounding that are done. The first, controlled by
3439 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3440 list to be aligned to the specific boundary (in bits). This rounding
3441 affects the initial and starting offsets, but not the argument size.
3442
3443 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3444 optionally rounds the size of the parm to PARM_BOUNDARY. The
3445 initial offset is not affected by this rounding, while the size always
3446 is and the starting offset may be. */
3447
3448 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3449 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3450 callers pass in the total size of args so far as
3451 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3452
3453 void
3454 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3455 int partial, tree fndecl ATTRIBUTE_UNUSED,
3456 struct args_size *initial_offset_ptr,
3457 struct locate_and_pad_arg_data *locate)
3458 {
3459 tree sizetree;
3460 enum direction where_pad;
3461 unsigned int boundary;
3462 int reg_parm_stack_space = 0;
3463 int part_size_in_regs;
3464
3465 #ifdef REG_PARM_STACK_SPACE
3466 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3467
3468 /* If we have found a stack parm before we reach the end of the
3469 area reserved for registers, skip that area. */
3470 if (! in_regs)
3471 {
3472 if (reg_parm_stack_space > 0)
3473 {
3474 if (initial_offset_ptr->var)
3475 {
3476 initial_offset_ptr->var
3477 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3478 ssize_int (reg_parm_stack_space));
3479 initial_offset_ptr->constant = 0;
3480 }
3481 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3482 initial_offset_ptr->constant = reg_parm_stack_space;
3483 }
3484 }
3485 #endif /* REG_PARM_STACK_SPACE */
3486
3487 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3488
3489 sizetree
3490 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3491 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3492 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3493 locate->where_pad = where_pad;
3494
3495 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3496 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3497 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3498
3499 locate->boundary = boundary;
3500
3501 if (SUPPORTS_STACK_ALIGNMENT)
3502 {
3503 /* stack_alignment_estimated can't change after stack has been
3504 realigned. */
3505 if (crtl->stack_alignment_estimated < boundary)
3506 {
3507 if (!crtl->stack_realign_processed)
3508 crtl->stack_alignment_estimated = boundary;
3509 else
3510 {
3511 /* If stack is realigned and stack alignment value
3512 hasn't been finalized, it is OK not to increase
3513 stack_alignment_estimated. The bigger alignment
3514 requirement is recorded in stack_alignment_needed
3515 below. */
3516 gcc_assert (!crtl->stack_realign_finalized
3517 && crtl->stack_realign_needed);
3518 }
3519 }
3520 }
3521
3522 /* Remember if the outgoing parameter requires extra alignment on the
3523 calling function side. */
3524 if (crtl->stack_alignment_needed < boundary)
3525 crtl->stack_alignment_needed = boundary;
3526 if (crtl->preferred_stack_boundary < boundary)
3527 crtl->preferred_stack_boundary = boundary;
3528
3529 #ifdef ARGS_GROW_DOWNWARD
3530 locate->slot_offset.constant = -initial_offset_ptr->constant;
3531 if (initial_offset_ptr->var)
3532 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3533 initial_offset_ptr->var);
3534
3535 {
3536 tree s2 = sizetree;
3537 if (where_pad != none
3538 && (!host_integerp (sizetree, 1)
3539 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3540 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3541 SUB_PARM_SIZE (locate->slot_offset, s2);
3542 }
3543
3544 locate->slot_offset.constant += part_size_in_regs;
3545
3546 if (!in_regs
3547 #ifdef REG_PARM_STACK_SPACE
3548 || REG_PARM_STACK_SPACE (fndecl) > 0
3549 #endif
3550 )
3551 pad_to_arg_alignment (&locate->slot_offset, boundary,
3552 &locate->alignment_pad);
3553
3554 locate->size.constant = (-initial_offset_ptr->constant
3555 - locate->slot_offset.constant);
3556 if (initial_offset_ptr->var)
3557 locate->size.var = size_binop (MINUS_EXPR,
3558 size_binop (MINUS_EXPR,
3559 ssize_int (0),
3560 initial_offset_ptr->var),
3561 locate->slot_offset.var);
3562
3563 /* Pad_below needs the pre-rounded size to know how much to pad
3564 below. */
3565 locate->offset = locate->slot_offset;
3566 if (where_pad == downward)
3567 pad_below (&locate->offset, passed_mode, sizetree);
3568
3569 #else /* !ARGS_GROW_DOWNWARD */
3570 if (!in_regs
3571 #ifdef REG_PARM_STACK_SPACE
3572 || REG_PARM_STACK_SPACE (fndecl) > 0
3573 #endif
3574 )
3575 pad_to_arg_alignment (initial_offset_ptr, boundary,
3576 &locate->alignment_pad);
3577 locate->slot_offset = *initial_offset_ptr;
3578
3579 #ifdef PUSH_ROUNDING
3580 if (passed_mode != BLKmode)
3581 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3582 #endif
3583
3584 /* Pad_below needs the pre-rounded size to know how much to pad below
3585 so this must be done before rounding up. */
3586 locate->offset = locate->slot_offset;
3587 if (where_pad == downward)
3588 pad_below (&locate->offset, passed_mode, sizetree);
3589
3590 if (where_pad != none
3591 && (!host_integerp (sizetree, 1)
3592 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3593 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3594
3595 ADD_PARM_SIZE (locate->size, sizetree);
3596
3597 locate->size.constant -= part_size_in_regs;
3598 #endif /* ARGS_GROW_DOWNWARD */
3599
3600 #ifdef FUNCTION_ARG_OFFSET
3601 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3602 #endif
3603 }
3604
3605 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3606 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3607
3608 static void
3609 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3610 struct args_size *alignment_pad)
3611 {
3612 tree save_var = NULL_TREE;
3613 HOST_WIDE_INT save_constant = 0;
3614 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3615 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3616
3617 #ifdef SPARC_STACK_BOUNDARY_HACK
3618 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3619 the real alignment of %sp. However, when it does this, the
3620 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3621 if (SPARC_STACK_BOUNDARY_HACK)
3622 sp_offset = 0;
3623 #endif
3624
3625 if (boundary > PARM_BOUNDARY)
3626 {
3627 save_var = offset_ptr->var;
3628 save_constant = offset_ptr->constant;
3629 }
3630
3631 alignment_pad->var = NULL_TREE;
3632 alignment_pad->constant = 0;
3633
3634 if (boundary > BITS_PER_UNIT)
3635 {
3636 if (offset_ptr->var)
3637 {
3638 tree sp_offset_tree = ssize_int (sp_offset);
3639 tree offset = size_binop (PLUS_EXPR,
3640 ARGS_SIZE_TREE (*offset_ptr),
3641 sp_offset_tree);
3642 #ifdef ARGS_GROW_DOWNWARD
3643 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3644 #else
3645 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3646 #endif
3647
3648 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3649 /* ARGS_SIZE_TREE includes constant term. */
3650 offset_ptr->constant = 0;
3651 if (boundary > PARM_BOUNDARY)
3652 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3653 save_var);
3654 }
3655 else
3656 {
3657 offset_ptr->constant = -sp_offset +
3658 #ifdef ARGS_GROW_DOWNWARD
3659 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3660 #else
3661 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3662 #endif
3663 if (boundary > PARM_BOUNDARY)
3664 alignment_pad->constant = offset_ptr->constant - save_constant;
3665 }
3666 }
3667 }
3668
3669 static void
3670 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3671 {
3672 if (passed_mode != BLKmode)
3673 {
3674 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3675 offset_ptr->constant
3676 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3677 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3678 - GET_MODE_SIZE (passed_mode));
3679 }
3680 else
3681 {
3682 if (TREE_CODE (sizetree) != INTEGER_CST
3683 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3684 {
3685 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3686 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3687 /* Add it in. */
3688 ADD_PARM_SIZE (*offset_ptr, s2);
3689 SUB_PARM_SIZE (*offset_ptr, sizetree);
3690 }
3691 }
3692 }
3693 \f
3694
3695 /* True if register REGNO was alive at a place where `setjmp' was
3696 called and was set more than once or is an argument. Such regs may
3697 be clobbered by `longjmp'. */
3698
3699 static bool
3700 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3701 {
3702 /* There appear to be cases where some local vars never reach the
3703 backend but have bogus regnos. */
3704 if (regno >= max_reg_num ())
3705 return false;
3706
3707 return ((REG_N_SETS (regno) > 1
3708 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3709 && REGNO_REG_SET_P (setjmp_crosses, regno));
3710 }
3711
3712 /* Walk the tree of blocks describing the binding levels within a
3713 function and warn about variables the might be killed by setjmp or
3714 vfork. This is done after calling flow_analysis before register
3715 allocation since that will clobber the pseudo-regs to hard
3716 regs. */
3717
3718 static void
3719 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3720 {
3721 tree decl, sub;
3722
3723 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3724 {
3725 if (TREE_CODE (decl) == VAR_DECL
3726 && DECL_RTL_SET_P (decl)
3727 && REG_P (DECL_RTL (decl))
3728 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3729 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3730 " %<longjmp%> or %<vfork%>", decl);
3731 }
3732
3733 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3734 setjmp_vars_warning (setjmp_crosses, sub);
3735 }
3736
3737 /* Do the appropriate part of setjmp_vars_warning
3738 but for arguments instead of local variables. */
3739
3740 static void
3741 setjmp_args_warning (bitmap setjmp_crosses)
3742 {
3743 tree decl;
3744 for (decl = DECL_ARGUMENTS (current_function_decl);
3745 decl; decl = TREE_CHAIN (decl))
3746 if (DECL_RTL (decl) != 0
3747 && REG_P (DECL_RTL (decl))
3748 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3749 warning (OPT_Wclobbered,
3750 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3751 decl);
3752 }
3753
3754 /* Generate warning messages for variables live across setjmp. */
3755
3756 void
3757 generate_setjmp_warnings (void)
3758 {
3759 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3760
3761 if (n_basic_blocks == NUM_FIXED_BLOCKS
3762 || bitmap_empty_p (setjmp_crosses))
3763 return;
3764
3765 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
3766 setjmp_args_warning (setjmp_crosses);
3767 }
3768
3769 \f
3770 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3771 and create duplicate blocks. */
3772 /* ??? Need an option to either create block fragments or to create
3773 abstract origin duplicates of a source block. It really depends
3774 on what optimization has been performed. */
3775
3776 void
3777 reorder_blocks (void)
3778 {
3779 tree block = DECL_INITIAL (current_function_decl);
3780 VEC(tree,heap) *block_stack;
3781
3782 if (block == NULL_TREE)
3783 return;
3784
3785 block_stack = VEC_alloc (tree, heap, 10);
3786
3787 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3788 clear_block_marks (block);
3789
3790 /* Prune the old trees away, so that they don't get in the way. */
3791 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3792 BLOCK_CHAIN (block) = NULL_TREE;
3793
3794 /* Recreate the block tree from the note nesting. */
3795 reorder_blocks_1 (get_insns (), block, &block_stack);
3796 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3797
3798 VEC_free (tree, heap, block_stack);
3799 }
3800
3801 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3802
3803 void
3804 clear_block_marks (tree block)
3805 {
3806 while (block)
3807 {
3808 TREE_ASM_WRITTEN (block) = 0;
3809 clear_block_marks (BLOCK_SUBBLOCKS (block));
3810 block = BLOCK_CHAIN (block);
3811 }
3812 }
3813
3814 static void
3815 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3816 {
3817 rtx insn;
3818
3819 for (insn = insns; insn; insn = NEXT_INSN (insn))
3820 {
3821 if (NOTE_P (insn))
3822 {
3823 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
3824 {
3825 tree block = NOTE_BLOCK (insn);
3826 tree origin;
3827
3828 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3829 ? BLOCK_FRAGMENT_ORIGIN (block)
3830 : block);
3831
3832 /* If we have seen this block before, that means it now
3833 spans multiple address regions. Create a new fragment. */
3834 if (TREE_ASM_WRITTEN (block))
3835 {
3836 tree new_block = copy_node (block);
3837
3838 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3839 BLOCK_FRAGMENT_CHAIN (new_block)
3840 = BLOCK_FRAGMENT_CHAIN (origin);
3841 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3842
3843 NOTE_BLOCK (insn) = new_block;
3844 block = new_block;
3845 }
3846
3847 BLOCK_SUBBLOCKS (block) = 0;
3848 TREE_ASM_WRITTEN (block) = 1;
3849 /* When there's only one block for the entire function,
3850 current_block == block and we mustn't do this, it
3851 will cause infinite recursion. */
3852 if (block != current_block)
3853 {
3854 if (block != origin)
3855 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
3856
3857 BLOCK_SUPERCONTEXT (block) = current_block;
3858 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3859 BLOCK_SUBBLOCKS (current_block) = block;
3860 current_block = origin;
3861 }
3862 VEC_safe_push (tree, heap, *p_block_stack, block);
3863 }
3864 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
3865 {
3866 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3867 BLOCK_SUBBLOCKS (current_block)
3868 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3869 current_block = BLOCK_SUPERCONTEXT (current_block);
3870 }
3871 }
3872 }
3873 }
3874
3875 /* Reverse the order of elements in the chain T of blocks,
3876 and return the new head of the chain (old last element). */
3877
3878 tree
3879 blocks_nreverse (tree t)
3880 {
3881 tree prev = 0, decl, next;
3882 for (decl = t; decl; decl = next)
3883 {
3884 next = BLOCK_CHAIN (decl);
3885 BLOCK_CHAIN (decl) = prev;
3886 prev = decl;
3887 }
3888 return prev;
3889 }
3890
3891 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3892 non-NULL, list them all into VECTOR, in a depth-first preorder
3893 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3894 blocks. */
3895
3896 static int
3897 all_blocks (tree block, tree *vector)
3898 {
3899 int n_blocks = 0;
3900
3901 while (block)
3902 {
3903 TREE_ASM_WRITTEN (block) = 0;
3904
3905 /* Record this block. */
3906 if (vector)
3907 vector[n_blocks] = block;
3908
3909 ++n_blocks;
3910
3911 /* Record the subblocks, and their subblocks... */
3912 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3913 vector ? vector + n_blocks : 0);
3914 block = BLOCK_CHAIN (block);
3915 }
3916
3917 return n_blocks;
3918 }
3919
3920 /* Return a vector containing all the blocks rooted at BLOCK. The
3921 number of elements in the vector is stored in N_BLOCKS_P. The
3922 vector is dynamically allocated; it is the caller's responsibility
3923 to call `free' on the pointer returned. */
3924
3925 static tree *
3926 get_block_vector (tree block, int *n_blocks_p)
3927 {
3928 tree *block_vector;
3929
3930 *n_blocks_p = all_blocks (block, NULL);
3931 block_vector = XNEWVEC (tree, *n_blocks_p);
3932 all_blocks (block, block_vector);
3933
3934 return block_vector;
3935 }
3936
3937 static GTY(()) int next_block_index = 2;
3938
3939 /* Set BLOCK_NUMBER for all the blocks in FN. */
3940
3941 void
3942 number_blocks (tree fn)
3943 {
3944 int i;
3945 int n_blocks;
3946 tree *block_vector;
3947
3948 /* For SDB and XCOFF debugging output, we start numbering the blocks
3949 from 1 within each function, rather than keeping a running
3950 count. */
3951 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3952 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3953 next_block_index = 1;
3954 #endif
3955
3956 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3957
3958 /* The top-level BLOCK isn't numbered at all. */
3959 for (i = 1; i < n_blocks; ++i)
3960 /* We number the blocks from two. */
3961 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3962
3963 free (block_vector);
3964
3965 return;
3966 }
3967
3968 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3969
3970 tree
3971 debug_find_var_in_block_tree (tree var, tree block)
3972 {
3973 tree t;
3974
3975 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3976 if (t == var)
3977 return block;
3978
3979 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3980 {
3981 tree ret = debug_find_var_in_block_tree (var, t);
3982 if (ret)
3983 return ret;
3984 }
3985
3986 return NULL_TREE;
3987 }
3988 \f
3989 /* Keep track of whether we're in a dummy function context. If we are,
3990 we don't want to invoke the set_current_function hook, because we'll
3991 get into trouble if the hook calls target_reinit () recursively or
3992 when the initial initialization is not yet complete. */
3993
3994 static bool in_dummy_function;
3995
3996 /* Invoke the target hook when setting cfun. Update the optimization options
3997 if the function uses different options than the default. */
3998
3999 static void
4000 invoke_set_current_function_hook (tree fndecl)
4001 {
4002 if (!in_dummy_function)
4003 {
4004 tree opts = ((fndecl)
4005 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4006 : optimization_default_node);
4007
4008 if (!opts)
4009 opts = optimization_default_node;
4010
4011 /* Change optimization options if needed. */
4012 if (optimization_current_node != opts)
4013 {
4014 optimization_current_node = opts;
4015 cl_optimization_restore (TREE_OPTIMIZATION (opts));
4016 }
4017
4018 targetm.set_current_function (fndecl);
4019 }
4020 }
4021
4022 /* cfun should never be set directly; use this function. */
4023
4024 void
4025 set_cfun (struct function *new_cfun)
4026 {
4027 if (cfun != new_cfun)
4028 {
4029 cfun = new_cfun;
4030 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4031 }
4032 }
4033
4034 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4035
4036 static VEC(function_p,heap) *cfun_stack;
4037
4038 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
4039
4040 void
4041 push_cfun (struct function *new_cfun)
4042 {
4043 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4044 set_cfun (new_cfun);
4045 }
4046
4047 /* Pop cfun from the stack. */
4048
4049 void
4050 pop_cfun (void)
4051 {
4052 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
4053 set_cfun (new_cfun);
4054 }
4055
4056 /* Return value of funcdef and increase it. */
4057 int
4058 get_next_funcdef_no (void)
4059 {
4060 return funcdef_no++;
4061 }
4062
4063 /* Allocate a function structure for FNDECL and set its contents
4064 to the defaults. Set cfun to the newly-allocated object.
4065 Some of the helper functions invoked during initialization assume
4066 that cfun has already been set. Therefore, assign the new object
4067 directly into cfun and invoke the back end hook explicitly at the
4068 very end, rather than initializing a temporary and calling set_cfun
4069 on it.
4070
4071 ABSTRACT_P is true if this is a function that will never be seen by
4072 the middle-end. Such functions are front-end concepts (like C++
4073 function templates) that do not correspond directly to functions
4074 placed in object files. */
4075
4076 void
4077 allocate_struct_function (tree fndecl, bool abstract_p)
4078 {
4079 tree result;
4080 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4081
4082 cfun = GGC_CNEW (struct function);
4083
4084 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
4085
4086 init_eh_for_function ();
4087
4088 if (init_machine_status)
4089 cfun->machine = (*init_machine_status) ();
4090
4091 #ifdef OVERRIDE_ABI_FORMAT
4092 OVERRIDE_ABI_FORMAT (fndecl);
4093 #endif
4094
4095 invoke_set_current_function_hook (fndecl);
4096
4097 if (fndecl != NULL_TREE)
4098 {
4099 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4100 cfun->decl = fndecl;
4101 current_function_funcdef_no = get_next_funcdef_no ();
4102
4103 result = DECL_RESULT (fndecl);
4104 if (!abstract_p && aggregate_value_p (result, fndecl))
4105 {
4106 #ifdef PCC_STATIC_STRUCT_RETURN
4107 cfun->returns_pcc_struct = 1;
4108 #endif
4109 cfun->returns_struct = 1;
4110 }
4111
4112 cfun->stdarg
4113 = (fntype
4114 && TYPE_ARG_TYPES (fntype) != 0
4115 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4116 != void_type_node));
4117
4118 /* Assume all registers in stdarg functions need to be saved. */
4119 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4120 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4121 }
4122 }
4123
4124 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4125 instead of just setting it. */
4126
4127 void
4128 push_struct_function (tree fndecl)
4129 {
4130 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4131 allocate_struct_function (fndecl, false);
4132 }
4133
4134 /* Reset cfun, and other non-struct-function variables to defaults as
4135 appropriate for emitting rtl at the start of a function. */
4136
4137 static void
4138 prepare_function_start (void)
4139 {
4140 gcc_assert (!crtl->emit.x_last_insn);
4141 init_temp_slots ();
4142 init_emit ();
4143 init_varasm_status ();
4144 init_expr ();
4145 default_rtl_profile ();
4146
4147 cse_not_expected = ! optimize;
4148
4149 /* Caller save not needed yet. */
4150 caller_save_needed = 0;
4151
4152 /* We haven't done register allocation yet. */
4153 reg_renumber = 0;
4154
4155 /* Indicate that we have not instantiated virtual registers yet. */
4156 virtuals_instantiated = 0;
4157
4158 /* Indicate that we want CONCATs now. */
4159 generating_concat_p = 1;
4160
4161 /* Indicate we have no need of a frame pointer yet. */
4162 frame_pointer_needed = 0;
4163 }
4164
4165 /* Initialize the rtl expansion mechanism so that we can do simple things
4166 like generate sequences. This is used to provide a context during global
4167 initialization of some passes. You must call expand_dummy_function_end
4168 to exit this context. */
4169
4170 void
4171 init_dummy_function_start (void)
4172 {
4173 gcc_assert (!in_dummy_function);
4174 in_dummy_function = true;
4175 push_struct_function (NULL_TREE);
4176 prepare_function_start ();
4177 }
4178
4179 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4180 and initialize static variables for generating RTL for the statements
4181 of the function. */
4182
4183 void
4184 init_function_start (tree subr)
4185 {
4186 if (subr && DECL_STRUCT_FUNCTION (subr))
4187 set_cfun (DECL_STRUCT_FUNCTION (subr));
4188 else
4189 allocate_struct_function (subr, false);
4190 prepare_function_start ();
4191
4192 /* Warn if this value is an aggregate type,
4193 regardless of which calling convention we are using for it. */
4194 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4195 warning (OPT_Waggregate_return, "function returns an aggregate");
4196 }
4197
4198 /* Make sure all values used by the optimization passes have sane defaults. */
4199 unsigned int
4200 init_function_for_compilation (void)
4201 {
4202 reg_renumber = 0;
4203 return 0;
4204 }
4205
4206 struct rtl_opt_pass pass_init_function =
4207 {
4208 {
4209 RTL_PASS,
4210 NULL, /* name */
4211 NULL, /* gate */
4212 init_function_for_compilation, /* execute */
4213 NULL, /* sub */
4214 NULL, /* next */
4215 0, /* static_pass_number */
4216 TV_NONE, /* tv_id */
4217 0, /* properties_required */
4218 0, /* properties_provided */
4219 0, /* properties_destroyed */
4220 0, /* todo_flags_start */
4221 0 /* todo_flags_finish */
4222 }
4223 };
4224
4225
4226 void
4227 expand_main_function (void)
4228 {
4229 #if (defined(INVOKE__main) \
4230 || (!defined(HAS_INIT_SECTION) \
4231 && !defined(INIT_SECTION_ASM_OP) \
4232 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4233 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4234 #endif
4235 }
4236 \f
4237 /* Expand code to initialize the stack_protect_guard. This is invoked at
4238 the beginning of a function to be protected. */
4239
4240 #ifndef HAVE_stack_protect_set
4241 # define HAVE_stack_protect_set 0
4242 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4243 #endif
4244
4245 void
4246 stack_protect_prologue (void)
4247 {
4248 tree guard_decl = targetm.stack_protect_guard ();
4249 rtx x, y;
4250
4251 /* Avoid expand_expr here, because we don't want guard_decl pulled
4252 into registers unless absolutely necessary. And we know that
4253 crtl->stack_protect_guard is a local stack slot, so this skips
4254 all the fluff. */
4255 x = validize_mem (DECL_RTL (crtl->stack_protect_guard));
4256 y = validize_mem (DECL_RTL (guard_decl));
4257
4258 /* Allow the target to copy from Y to X without leaking Y into a
4259 register. */
4260 if (HAVE_stack_protect_set)
4261 {
4262 rtx insn = gen_stack_protect_set (x, y);
4263 if (insn)
4264 {
4265 emit_insn (insn);
4266 return;
4267 }
4268 }
4269
4270 /* Otherwise do a straight move. */
4271 emit_move_insn (x, y);
4272 }
4273
4274 /* Expand code to verify the stack_protect_guard. This is invoked at
4275 the end of a function to be protected. */
4276
4277 #ifndef HAVE_stack_protect_test
4278 # define HAVE_stack_protect_test 0
4279 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4280 #endif
4281
4282 void
4283 stack_protect_epilogue (void)
4284 {
4285 tree guard_decl = targetm.stack_protect_guard ();
4286 rtx label = gen_label_rtx ();
4287 rtx x, y, tmp;
4288
4289 /* Avoid expand_expr here, because we don't want guard_decl pulled
4290 into registers unless absolutely necessary. And we know that
4291 crtl->stack_protect_guard is a local stack slot, so this skips
4292 all the fluff. */
4293 x = validize_mem (DECL_RTL (crtl->stack_protect_guard));
4294 y = validize_mem (DECL_RTL (guard_decl));
4295
4296 /* Allow the target to compare Y with X without leaking either into
4297 a register. */
4298 switch (HAVE_stack_protect_test != 0)
4299 {
4300 case 1:
4301 tmp = gen_stack_protect_test (x, y, label);
4302 if (tmp)
4303 {
4304 emit_insn (tmp);
4305 break;
4306 }
4307 /* FALLTHRU */
4308
4309 default:
4310 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4311 break;
4312 }
4313
4314 /* The noreturn predictor has been moved to the tree level. The rtl-level
4315 predictors estimate this branch about 20%, which isn't enough to get
4316 things moved out of line. Since this is the only extant case of adding
4317 a noreturn function at the rtl level, it doesn't seem worth doing ought
4318 except adding the prediction by hand. */
4319 tmp = get_last_insn ();
4320 if (JUMP_P (tmp))
4321 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4322
4323 expand_expr_stmt (targetm.stack_protect_fail ());
4324 emit_label (label);
4325 }
4326 \f
4327 /* Start the RTL for a new function, and set variables used for
4328 emitting RTL.
4329 SUBR is the FUNCTION_DECL node.
4330 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4331 the function's parameters, which must be run at any return statement. */
4332
4333 void
4334 expand_function_start (tree subr)
4335 {
4336 /* Make sure volatile mem refs aren't considered
4337 valid operands of arithmetic insns. */
4338 init_recog_no_volatile ();
4339
4340 crtl->profile
4341 = (profile_flag
4342 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4343
4344 crtl->limit_stack
4345 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4346
4347 /* Make the label for return statements to jump to. Do not special
4348 case machines with special return instructions -- they will be
4349 handled later during jump, ifcvt, or epilogue creation. */
4350 return_label = gen_label_rtx ();
4351
4352 /* Initialize rtx used to return the value. */
4353 /* Do this before assign_parms so that we copy the struct value address
4354 before any library calls that assign parms might generate. */
4355
4356 /* Decide whether to return the value in memory or in a register. */
4357 if (aggregate_value_p (DECL_RESULT (subr), subr))
4358 {
4359 /* Returning something that won't go in a register. */
4360 rtx value_address = 0;
4361
4362 #ifdef PCC_STATIC_STRUCT_RETURN
4363 if (cfun->returns_pcc_struct)
4364 {
4365 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4366 value_address = assemble_static_space (size);
4367 }
4368 else
4369 #endif
4370 {
4371 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4372 /* Expect to be passed the address of a place to store the value.
4373 If it is passed as an argument, assign_parms will take care of
4374 it. */
4375 if (sv)
4376 {
4377 value_address = gen_reg_rtx (Pmode);
4378 emit_move_insn (value_address, sv);
4379 }
4380 }
4381 if (value_address)
4382 {
4383 rtx x = value_address;
4384 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4385 {
4386 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4387 set_mem_attributes (x, DECL_RESULT (subr), 1);
4388 }
4389 SET_DECL_RTL (DECL_RESULT (subr), x);
4390 }
4391 }
4392 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4393 /* If return mode is void, this decl rtl should not be used. */
4394 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4395 else
4396 {
4397 /* Compute the return values into a pseudo reg, which we will copy
4398 into the true return register after the cleanups are done. */
4399 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4400 if (TYPE_MODE (return_type) != BLKmode
4401 && targetm.calls.return_in_msb (return_type))
4402 /* expand_function_end will insert the appropriate padding in
4403 this case. Use the return value's natural (unpadded) mode
4404 within the function proper. */
4405 SET_DECL_RTL (DECL_RESULT (subr),
4406 gen_reg_rtx (TYPE_MODE (return_type)));
4407 else
4408 {
4409 /* In order to figure out what mode to use for the pseudo, we
4410 figure out what the mode of the eventual return register will
4411 actually be, and use that. */
4412 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4413
4414 /* Structures that are returned in registers are not
4415 aggregate_value_p, so we may see a PARALLEL or a REG. */
4416 if (REG_P (hard_reg))
4417 SET_DECL_RTL (DECL_RESULT (subr),
4418 gen_reg_rtx (GET_MODE (hard_reg)));
4419 else
4420 {
4421 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4422 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4423 }
4424 }
4425
4426 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4427 result to the real return register(s). */
4428 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4429 }
4430
4431 /* Initialize rtx for parameters and local variables.
4432 In some cases this requires emitting insns. */
4433 assign_parms (subr);
4434
4435 /* If function gets a static chain arg, store it. */
4436 if (cfun->static_chain_decl)
4437 {
4438 tree parm = cfun->static_chain_decl;
4439 rtx local = gen_reg_rtx (Pmode);
4440
4441 set_decl_incoming_rtl (parm, static_chain_incoming_rtx, false);
4442 SET_DECL_RTL (parm, local);
4443 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4444
4445 emit_move_insn (local, static_chain_incoming_rtx);
4446 }
4447
4448 /* If the function receives a non-local goto, then store the
4449 bits we need to restore the frame pointer. */
4450 if (cfun->nonlocal_goto_save_area)
4451 {
4452 tree t_save;
4453 rtx r_save;
4454
4455 /* ??? We need to do this save early. Unfortunately here is
4456 before the frame variable gets declared. Help out... */
4457 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4458 if (!DECL_RTL_SET_P (var))
4459 expand_decl (var);
4460
4461 t_save = build4 (ARRAY_REF, ptr_type_node,
4462 cfun->nonlocal_goto_save_area,
4463 integer_zero_node, NULL_TREE, NULL_TREE);
4464 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4465 r_save = convert_memory_address (Pmode, r_save);
4466
4467 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4468 update_nonlocal_goto_save_area ();
4469 }
4470
4471 /* The following was moved from init_function_start.
4472 The move is supposed to make sdb output more accurate. */
4473 /* Indicate the beginning of the function body,
4474 as opposed to parm setup. */
4475 emit_note (NOTE_INSN_FUNCTION_BEG);
4476
4477 gcc_assert (NOTE_P (get_last_insn ()));
4478
4479 parm_birth_insn = get_last_insn ();
4480
4481 if (crtl->profile)
4482 {
4483 #ifdef PROFILE_HOOK
4484 PROFILE_HOOK (current_function_funcdef_no);
4485 #endif
4486 }
4487
4488 /* After the display initializations is where the stack checking
4489 probe should go. */
4490 if(flag_stack_check)
4491 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4492
4493 /* Make sure there is a line number after the function entry setup code. */
4494 force_next_line_note ();
4495 }
4496 \f
4497 /* Undo the effects of init_dummy_function_start. */
4498 void
4499 expand_dummy_function_end (void)
4500 {
4501 gcc_assert (in_dummy_function);
4502
4503 /* End any sequences that failed to be closed due to syntax errors. */
4504 while (in_sequence_p ())
4505 end_sequence ();
4506
4507 /* Outside function body, can't compute type's actual size
4508 until next function's body starts. */
4509
4510 free_after_parsing (cfun);
4511 free_after_compilation (cfun);
4512 pop_cfun ();
4513 in_dummy_function = false;
4514 }
4515
4516 /* Call DOIT for each hard register used as a return value from
4517 the current function. */
4518
4519 void
4520 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4521 {
4522 rtx outgoing = crtl->return_rtx;
4523
4524 if (! outgoing)
4525 return;
4526
4527 if (REG_P (outgoing))
4528 (*doit) (outgoing, arg);
4529 else if (GET_CODE (outgoing) == PARALLEL)
4530 {
4531 int i;
4532
4533 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4534 {
4535 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4536
4537 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4538 (*doit) (x, arg);
4539 }
4540 }
4541 }
4542
4543 static void
4544 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4545 {
4546 emit_clobber (reg);
4547 }
4548
4549 void
4550 clobber_return_register (void)
4551 {
4552 diddle_return_value (do_clobber_return_reg, NULL);
4553
4554 /* In case we do use pseudo to return value, clobber it too. */
4555 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4556 {
4557 tree decl_result = DECL_RESULT (current_function_decl);
4558 rtx decl_rtl = DECL_RTL (decl_result);
4559 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4560 {
4561 do_clobber_return_reg (decl_rtl, NULL);
4562 }
4563 }
4564 }
4565
4566 static void
4567 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4568 {
4569 emit_use (reg);
4570 }
4571
4572 static void
4573 use_return_register (void)
4574 {
4575 diddle_return_value (do_use_return_reg, NULL);
4576 }
4577
4578 /* Possibly warn about unused parameters. */
4579 void
4580 do_warn_unused_parameter (tree fn)
4581 {
4582 tree decl;
4583
4584 for (decl = DECL_ARGUMENTS (fn);
4585 decl; decl = TREE_CHAIN (decl))
4586 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4587 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4588 && !TREE_NO_WARNING (decl))
4589 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4590 }
4591
4592 static GTY(()) rtx initial_trampoline;
4593
4594 /* Generate RTL for the end of the current function. */
4595
4596 void
4597 expand_function_end (void)
4598 {
4599 rtx clobber_after;
4600
4601 /* If arg_pointer_save_area was referenced only from a nested
4602 function, we will not have initialized it yet. Do that now. */
4603 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4604 get_arg_pointer_save_area ();
4605
4606 /* If we are doing generic stack checking and this function makes calls,
4607 do a stack probe at the start of the function to ensure we have enough
4608 space for another stack frame. */
4609 if (flag_stack_check == GENERIC_STACK_CHECK)
4610 {
4611 rtx insn, seq;
4612
4613 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4614 if (CALL_P (insn))
4615 {
4616 start_sequence ();
4617 probe_stack_range (STACK_OLD_CHECK_PROTECT,
4618 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4619 seq = get_insns ();
4620 end_sequence ();
4621 emit_insn_before (seq, stack_check_probe_note);
4622 break;
4623 }
4624 }
4625
4626 /* End any sequences that failed to be closed due to syntax errors. */
4627 while (in_sequence_p ())
4628 end_sequence ();
4629
4630 clear_pending_stack_adjust ();
4631 do_pending_stack_adjust ();
4632
4633 /* Output a linenumber for the end of the function.
4634 SDB depends on this. */
4635 force_next_line_note ();
4636 set_curr_insn_source_location (input_location);
4637
4638 /* Before the return label (if any), clobber the return
4639 registers so that they are not propagated live to the rest of
4640 the function. This can only happen with functions that drop
4641 through; if there had been a return statement, there would
4642 have either been a return rtx, or a jump to the return label.
4643
4644 We delay actual code generation after the current_function_value_rtx
4645 is computed. */
4646 clobber_after = get_last_insn ();
4647
4648 /* Output the label for the actual return from the function. */
4649 emit_label (return_label);
4650
4651 if (USING_SJLJ_EXCEPTIONS)
4652 {
4653 /* Let except.c know where it should emit the call to unregister
4654 the function context for sjlj exceptions. */
4655 if (flag_exceptions)
4656 sjlj_emit_function_exit_after (get_last_insn ());
4657 }
4658 else
4659 {
4660 /* We want to ensure that instructions that may trap are not
4661 moved into the epilogue by scheduling, because we don't
4662 always emit unwind information for the epilogue. */
4663 if (flag_non_call_exceptions)
4664 emit_insn (gen_blockage ());
4665 }
4666
4667 /* If this is an implementation of throw, do what's necessary to
4668 communicate between __builtin_eh_return and the epilogue. */
4669 expand_eh_return ();
4670
4671 /* If scalar return value was computed in a pseudo-reg, or was a named
4672 return value that got dumped to the stack, copy that to the hard
4673 return register. */
4674 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4675 {
4676 tree decl_result = DECL_RESULT (current_function_decl);
4677 rtx decl_rtl = DECL_RTL (decl_result);
4678
4679 if (REG_P (decl_rtl)
4680 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4681 : DECL_REGISTER (decl_result))
4682 {
4683 rtx real_decl_rtl = crtl->return_rtx;
4684
4685 /* This should be set in assign_parms. */
4686 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4687
4688 /* If this is a BLKmode structure being returned in registers,
4689 then use the mode computed in expand_return. Note that if
4690 decl_rtl is memory, then its mode may have been changed,
4691 but that crtl->return_rtx has not. */
4692 if (GET_MODE (real_decl_rtl) == BLKmode)
4693 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4694
4695 /* If a non-BLKmode return value should be padded at the least
4696 significant end of the register, shift it left by the appropriate
4697 amount. BLKmode results are handled using the group load/store
4698 machinery. */
4699 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4700 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4701 {
4702 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4703 REGNO (real_decl_rtl)),
4704 decl_rtl);
4705 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4706 }
4707 /* If a named return value dumped decl_return to memory, then
4708 we may need to re-do the PROMOTE_MODE signed/unsigned
4709 extension. */
4710 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4711 {
4712 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4713
4714 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4715 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4716 &unsignedp, 1);
4717
4718 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4719 }
4720 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4721 {
4722 /* If expand_function_start has created a PARALLEL for decl_rtl,
4723 move the result to the real return registers. Otherwise, do
4724 a group load from decl_rtl for a named return. */
4725 if (GET_CODE (decl_rtl) == PARALLEL)
4726 emit_group_move (real_decl_rtl, decl_rtl);
4727 else
4728 emit_group_load (real_decl_rtl, decl_rtl,
4729 TREE_TYPE (decl_result),
4730 int_size_in_bytes (TREE_TYPE (decl_result)));
4731 }
4732 /* In the case of complex integer modes smaller than a word, we'll
4733 need to generate some non-trivial bitfield insertions. Do that
4734 on a pseudo and not the hard register. */
4735 else if (GET_CODE (decl_rtl) == CONCAT
4736 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4737 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4738 {
4739 int old_generating_concat_p;
4740 rtx tmp;
4741
4742 old_generating_concat_p = generating_concat_p;
4743 generating_concat_p = 0;
4744 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4745 generating_concat_p = old_generating_concat_p;
4746
4747 emit_move_insn (tmp, decl_rtl);
4748 emit_move_insn (real_decl_rtl, tmp);
4749 }
4750 else
4751 emit_move_insn (real_decl_rtl, decl_rtl);
4752 }
4753 }
4754
4755 /* If returning a structure, arrange to return the address of the value
4756 in a place where debuggers expect to find it.
4757
4758 If returning a structure PCC style,
4759 the caller also depends on this value.
4760 And cfun->returns_pcc_struct is not necessarily set. */
4761 if (cfun->returns_struct
4762 || cfun->returns_pcc_struct)
4763 {
4764 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4765 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4766 rtx outgoing;
4767
4768 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4769 type = TREE_TYPE (type);
4770 else
4771 value_address = XEXP (value_address, 0);
4772
4773 outgoing = targetm.calls.function_value (build_pointer_type (type),
4774 current_function_decl, true);
4775
4776 /* Mark this as a function return value so integrate will delete the
4777 assignment and USE below when inlining this function. */
4778 REG_FUNCTION_VALUE_P (outgoing) = 1;
4779
4780 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4781 value_address = convert_memory_address (GET_MODE (outgoing),
4782 value_address);
4783
4784 emit_move_insn (outgoing, value_address);
4785
4786 /* Show return register used to hold result (in this case the address
4787 of the result. */
4788 crtl->return_rtx = outgoing;
4789 }
4790
4791 /* Emit the actual code to clobber return register. */
4792 {
4793 rtx seq;
4794
4795 start_sequence ();
4796 clobber_return_register ();
4797 seq = get_insns ();
4798 end_sequence ();
4799
4800 emit_insn_after (seq, clobber_after);
4801 }
4802
4803 /* Output the label for the naked return from the function. */
4804 if (naked_return_label)
4805 emit_label (naked_return_label);
4806
4807 /* @@@ This is a kludge. We want to ensure that instructions that
4808 may trap are not moved into the epilogue by scheduling, because
4809 we don't always emit unwind information for the epilogue. */
4810 if (! USING_SJLJ_EXCEPTIONS && flag_non_call_exceptions)
4811 emit_insn (gen_blockage ());
4812
4813 /* If stack protection is enabled for this function, check the guard. */
4814 if (crtl->stack_protect_guard)
4815 stack_protect_epilogue ();
4816
4817 /* If we had calls to alloca, and this machine needs
4818 an accurate stack pointer to exit the function,
4819 insert some code to save and restore the stack pointer. */
4820 if (! EXIT_IGNORE_STACK
4821 && cfun->calls_alloca)
4822 {
4823 rtx tem = 0;
4824
4825 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4826 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4827 }
4828
4829 /* ??? This should no longer be necessary since stupid is no longer with
4830 us, but there are some parts of the compiler (eg reload_combine, and
4831 sh mach_dep_reorg) that still try and compute their own lifetime info
4832 instead of using the general framework. */
4833 use_return_register ();
4834 }
4835
4836 rtx
4837 get_arg_pointer_save_area (void)
4838 {
4839 rtx ret = arg_pointer_save_area;
4840
4841 if (! ret)
4842 {
4843 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
4844 arg_pointer_save_area = ret;
4845 }
4846
4847 if (! crtl->arg_pointer_save_area_init)
4848 {
4849 rtx seq;
4850
4851 /* Save the arg pointer at the beginning of the function. The
4852 generated stack slot may not be a valid memory address, so we
4853 have to check it and fix it if necessary. */
4854 start_sequence ();
4855 emit_move_insn (validize_mem (ret),
4856 crtl->args.internal_arg_pointer);
4857 seq = get_insns ();
4858 end_sequence ();
4859
4860 push_topmost_sequence ();
4861 emit_insn_after (seq, entry_of_function ());
4862 pop_topmost_sequence ();
4863 }
4864
4865 return ret;
4866 }
4867 \f
4868 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
4869 for the first time. */
4870
4871 static void
4872 record_insns (rtx insns, rtx end, htab_t *hashp)
4873 {
4874 rtx tmp;
4875 htab_t hash = *hashp;
4876
4877 if (hash == NULL)
4878 *hashp = hash
4879 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
4880
4881 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
4882 {
4883 void **slot = htab_find_slot (hash, tmp, INSERT);
4884 gcc_assert (*slot == NULL);
4885 *slot = tmp;
4886 }
4887 }
4888
4889 /* INSN has been duplicated as COPY, as part of duping a basic block.
4890 If INSN is an epilogue insn, then record COPY as epilogue as well. */
4891
4892 void
4893 maybe_copy_epilogue_insn (rtx insn, rtx copy)
4894 {
4895 void **slot;
4896
4897 if (epilogue_insn_hash == NULL
4898 || htab_find (epilogue_insn_hash, insn) == NULL)
4899 return;
4900
4901 slot = htab_find_slot (epilogue_insn_hash, copy, INSERT);
4902 gcc_assert (*slot == NULL);
4903 *slot = copy;
4904 }
4905
4906 /* Set the locator of the insn chain starting at INSN to LOC. */
4907 static void
4908 set_insn_locators (rtx insn, int loc)
4909 {
4910 while (insn != NULL_RTX)
4911 {
4912 if (INSN_P (insn))
4913 INSN_LOCATOR (insn) = loc;
4914 insn = NEXT_INSN (insn);
4915 }
4916 }
4917
4918 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
4919 we can be running after reorg, SEQUENCE rtl is possible. */
4920
4921 static bool
4922 contains (const_rtx insn, htab_t hash)
4923 {
4924 if (hash == NULL)
4925 return false;
4926
4927 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
4928 {
4929 int i;
4930 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4931 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
4932 return true;
4933 return false;
4934 }
4935
4936 return htab_find (hash, insn) != NULL;
4937 }
4938
4939 int
4940 prologue_epilogue_contains (const_rtx insn)
4941 {
4942 if (contains (insn, prologue_insn_hash))
4943 return 1;
4944 if (contains (insn, epilogue_insn_hash))
4945 return 1;
4946 return 0;
4947 }
4948
4949 #ifdef HAVE_return
4950 /* Insert gen_return at the end of block BB. This also means updating
4951 block_for_insn appropriately. */
4952
4953 static void
4954 emit_return_into_block (basic_block bb)
4955 {
4956 emit_jump_insn_after (gen_return (), BB_END (bb));
4957 }
4958 #endif /* HAVE_return */
4959
4960 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
4961 this into place with notes indicating where the prologue ends and where
4962 the epilogue begins. Update the basic block information when possible. */
4963
4964 static void
4965 thread_prologue_and_epilogue_insns (void)
4966 {
4967 int inserted = 0;
4968 edge e;
4969 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
4970 rtx seq;
4971 #endif
4972 #if defined (HAVE_epilogue) || defined(HAVE_return)
4973 rtx epilogue_end = NULL_RTX;
4974 #endif
4975 edge_iterator ei;
4976
4977 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
4978 #ifdef HAVE_prologue
4979 if (HAVE_prologue)
4980 {
4981 start_sequence ();
4982 seq = gen_prologue ();
4983 emit_insn (seq);
4984
4985 /* Insert an explicit USE for the frame pointer
4986 if the profiling is on and the frame pointer is required. */
4987 if (crtl->profile && frame_pointer_needed)
4988 emit_use (hard_frame_pointer_rtx);
4989
4990 /* Retain a map of the prologue insns. */
4991 record_insns (seq, NULL, &prologue_insn_hash);
4992 emit_note (NOTE_INSN_PROLOGUE_END);
4993
4994 #ifndef PROFILE_BEFORE_PROLOGUE
4995 /* Ensure that instructions are not moved into the prologue when
4996 profiling is on. The call to the profiling routine can be
4997 emitted within the live range of a call-clobbered register. */
4998 if (crtl->profile)
4999 emit_insn (gen_blockage ());
5000 #endif
5001
5002 seq = get_insns ();
5003 end_sequence ();
5004 set_insn_locators (seq, prologue_locator);
5005
5006 /* Can't deal with multiple successors of the entry block
5007 at the moment. Function should always have at least one
5008 entry point. */
5009 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5010
5011 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5012 inserted = 1;
5013 }
5014 #endif
5015
5016 /* If the exit block has no non-fake predecessors, we don't need
5017 an epilogue. */
5018 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5019 if ((e->flags & EDGE_FAKE) == 0)
5020 break;
5021 if (e == NULL)
5022 goto epilogue_done;
5023
5024 rtl_profile_for_bb (EXIT_BLOCK_PTR);
5025 #ifdef HAVE_return
5026 if (optimize && HAVE_return)
5027 {
5028 /* If we're allowed to generate a simple return instruction,
5029 then by definition we don't need a full epilogue. Examine
5030 the block that falls through to EXIT. If it does not
5031 contain any code, examine its predecessors and try to
5032 emit (conditional) return instructions. */
5033
5034 basic_block last;
5035 rtx label;
5036
5037 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5038 if (e->flags & EDGE_FALLTHRU)
5039 break;
5040 if (e == NULL)
5041 goto epilogue_done;
5042 last = e->src;
5043
5044 /* Verify that there are no active instructions in the last block. */
5045 label = BB_END (last);
5046 while (label && !LABEL_P (label))
5047 {
5048 if (active_insn_p (label))
5049 break;
5050 label = PREV_INSN (label);
5051 }
5052
5053 if (BB_HEAD (last) == label && LABEL_P (label))
5054 {
5055 edge_iterator ei2;
5056
5057 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5058 {
5059 basic_block bb = e->src;
5060 rtx jump;
5061
5062 if (bb == ENTRY_BLOCK_PTR)
5063 {
5064 ei_next (&ei2);
5065 continue;
5066 }
5067
5068 jump = BB_END (bb);
5069 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5070 {
5071 ei_next (&ei2);
5072 continue;
5073 }
5074
5075 /* If we have an unconditional jump, we can replace that
5076 with a simple return instruction. */
5077 if (simplejump_p (jump))
5078 {
5079 emit_return_into_block (bb);
5080 delete_insn (jump);
5081 }
5082
5083 /* If we have a conditional jump, we can try to replace
5084 that with a conditional return instruction. */
5085 else if (condjump_p (jump))
5086 {
5087 if (! redirect_jump (jump, 0, 0))
5088 {
5089 ei_next (&ei2);
5090 continue;
5091 }
5092
5093 /* If this block has only one successor, it both jumps
5094 and falls through to the fallthru block, so we can't
5095 delete the edge. */
5096 if (single_succ_p (bb))
5097 {
5098 ei_next (&ei2);
5099 continue;
5100 }
5101 }
5102 else
5103 {
5104 ei_next (&ei2);
5105 continue;
5106 }
5107
5108 /* Fix up the CFG for the successful change we just made. */
5109 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5110 }
5111
5112 /* Emit a return insn for the exit fallthru block. Whether
5113 this is still reachable will be determined later. */
5114
5115 emit_barrier_after (BB_END (last));
5116 emit_return_into_block (last);
5117 epilogue_end = BB_END (last);
5118 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5119 goto epilogue_done;
5120 }
5121 }
5122 #endif
5123
5124 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5125 this marker for the splits of EH_RETURN patterns, and nothing else
5126 uses the flag in the meantime. */
5127 epilogue_completed = 1;
5128
5129 #ifdef HAVE_eh_return
5130 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5131 some targets, these get split to a special version of the epilogue
5132 code. In order to be able to properly annotate these with unwind
5133 info, try to split them now. If we get a valid split, drop an
5134 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5135 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5136 {
5137 rtx prev, last, trial;
5138
5139 if (e->flags & EDGE_FALLTHRU)
5140 continue;
5141 last = BB_END (e->src);
5142 if (!eh_returnjump_p (last))
5143 continue;
5144
5145 prev = PREV_INSN (last);
5146 trial = try_split (PATTERN (last), last, 1);
5147 if (trial == last)
5148 continue;
5149
5150 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5151 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5152 }
5153 #endif
5154
5155 /* Find the edge that falls through to EXIT. Other edges may exist
5156 due to RETURN instructions, but those don't need epilogues.
5157 There really shouldn't be a mixture -- either all should have
5158 been converted or none, however... */
5159
5160 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5161 if (e->flags & EDGE_FALLTHRU)
5162 break;
5163 if (e == NULL)
5164 goto epilogue_done;
5165
5166 #ifdef HAVE_epilogue
5167 if (HAVE_epilogue)
5168 {
5169 start_sequence ();
5170 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5171 seq = gen_epilogue ();
5172 emit_jump_insn (seq);
5173
5174 /* Retain a map of the epilogue insns. */
5175 record_insns (seq, NULL, &epilogue_insn_hash);
5176 set_insn_locators (seq, epilogue_locator);
5177
5178 seq = get_insns ();
5179 end_sequence ();
5180
5181 insert_insn_on_edge (seq, e);
5182 inserted = 1;
5183 }
5184 else
5185 #endif
5186 {
5187 basic_block cur_bb;
5188
5189 if (! next_active_insn (BB_END (e->src)))
5190 goto epilogue_done;
5191 /* We have a fall-through edge to the exit block, the source is not
5192 at the end of the function, and there will be an assembler epilogue
5193 at the end of the function.
5194 We can't use force_nonfallthru here, because that would try to
5195 use return. Inserting a jump 'by hand' is extremely messy, so
5196 we take advantage of cfg_layout_finalize using
5197 fixup_fallthru_exit_predecessor. */
5198 cfg_layout_initialize (0);
5199 FOR_EACH_BB (cur_bb)
5200 if (cur_bb->index >= NUM_FIXED_BLOCKS
5201 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5202 cur_bb->aux = cur_bb->next_bb;
5203 cfg_layout_finalize ();
5204 }
5205 epilogue_done:
5206 default_rtl_profile ();
5207
5208 if (inserted)
5209 {
5210 commit_edge_insertions ();
5211
5212 /* The epilogue insns we inserted may cause the exit edge to no longer
5213 be fallthru. */
5214 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5215 {
5216 if (((e->flags & EDGE_FALLTHRU) != 0)
5217 && returnjump_p (BB_END (e->src)))
5218 e->flags &= ~EDGE_FALLTHRU;
5219 }
5220 }
5221
5222 #ifdef HAVE_sibcall_epilogue
5223 /* Emit sibling epilogues before any sibling call sites. */
5224 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5225 {
5226 basic_block bb = e->src;
5227 rtx insn = BB_END (bb);
5228
5229 if (!CALL_P (insn)
5230 || ! SIBLING_CALL_P (insn))
5231 {
5232 ei_next (&ei);
5233 continue;
5234 }
5235
5236 start_sequence ();
5237 emit_note (NOTE_INSN_EPILOGUE_BEG);
5238 emit_insn (gen_sibcall_epilogue ());
5239 seq = get_insns ();
5240 end_sequence ();
5241
5242 /* Retain a map of the epilogue insns. Used in life analysis to
5243 avoid getting rid of sibcall epilogue insns. Do this before we
5244 actually emit the sequence. */
5245 record_insns (seq, NULL, &epilogue_insn_hash);
5246 set_insn_locators (seq, epilogue_locator);
5247
5248 emit_insn_before (seq, insn);
5249 ei_next (&ei);
5250 }
5251 #endif
5252
5253 #ifdef HAVE_epilogue
5254 if (epilogue_end)
5255 {
5256 rtx insn, next;
5257
5258 /* Similarly, move any line notes that appear after the epilogue.
5259 There is no need, however, to be quite so anal about the existence
5260 of such a note. Also possibly move
5261 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5262 info generation. */
5263 for (insn = epilogue_end; insn; insn = next)
5264 {
5265 next = NEXT_INSN (insn);
5266 if (NOTE_P (insn)
5267 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5268 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5269 }
5270 }
5271 #endif
5272
5273 /* Threading the prologue and epilogue changes the artificial refs
5274 in the entry and exit blocks. */
5275 epilogue_completed = 1;
5276 df_update_entry_exit_and_calls ();
5277 }
5278
5279 /* Reposition the prologue-end and epilogue-begin notes after
5280 instruction scheduling. */
5281
5282 void
5283 reposition_prologue_and_epilogue_notes (void)
5284 {
5285 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
5286 || defined (HAVE_sibcall_epilogue)
5287 /* Since the hash table is created on demand, the fact that it is
5288 non-null is a signal that it is non-empty. */
5289 if (prologue_insn_hash != NULL)
5290 {
5291 size_t len = htab_elements (prologue_insn_hash);
5292 rtx insn, last = NULL, note = NULL;
5293
5294 /* Scan from the beginning until we reach the last prologue insn. */
5295 /* ??? While we do have the CFG intact, there are two problems:
5296 (1) The prologue can contain loops (typically probing the stack),
5297 which means that the end of the prologue isn't in the first bb.
5298 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
5299 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5300 {
5301 if (NOTE_P (insn))
5302 {
5303 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5304 note = insn;
5305 }
5306 else if (contains (insn, prologue_insn_hash))
5307 {
5308 last = insn;
5309 if (--len == 0)
5310 break;
5311 }
5312 }
5313
5314 if (last)
5315 {
5316 if (note == NULL)
5317 {
5318 /* Scan forward looking for the PROLOGUE_END note. It should
5319 be right at the beginning of the block, possibly with other
5320 insn notes that got moved there. */
5321 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
5322 {
5323 if (NOTE_P (note)
5324 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5325 break;
5326 }
5327 }
5328
5329 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5330 if (LABEL_P (last))
5331 last = NEXT_INSN (last);
5332 reorder_insns (note, note, last);
5333 }
5334 }
5335
5336 if (epilogue_insn_hash != NULL)
5337 {
5338 edge_iterator ei;
5339 edge e;
5340
5341 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5342 {
5343 rtx insn, first = NULL, note = NULL;
5344 basic_block bb = e->src;
5345
5346 /* Scan from the beginning until we reach the first epilogue insn. */
5347 FOR_BB_INSNS (bb, insn)
5348 {
5349 if (NOTE_P (insn))
5350 {
5351 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
5352 {
5353 note = insn;
5354 if (first != NULL)
5355 break;
5356 }
5357 }
5358 else if (first == NULL && contains (insn, epilogue_insn_hash))
5359 {
5360 first = insn;
5361 if (note != NULL)
5362 break;
5363 }
5364 }
5365
5366 if (note)
5367 {
5368 /* If the function has a single basic block, and no real
5369 epilogue insns (e.g. sibcall with no cleanup), the
5370 epilogue note can get scheduled before the prologue
5371 note. If we have frame related prologue insns, having
5372 them scanned during the epilogue will result in a crash.
5373 In this case re-order the epilogue note to just before
5374 the last insn in the block. */
5375 if (first == NULL)
5376 first = BB_END (bb);
5377
5378 if (PREV_INSN (first) != note)
5379 reorder_insns (note, note, PREV_INSN (first));
5380 }
5381 }
5382 }
5383 #endif /* HAVE_prologue or HAVE_epilogue */
5384 }
5385
5386 /* Returns the name of the current function. */
5387 const char *
5388 current_function_name (void)
5389 {
5390 return lang_hooks.decl_printable_name (cfun->decl, 2);
5391 }
5392 \f
5393
5394 static unsigned int
5395 rest_of_handle_check_leaf_regs (void)
5396 {
5397 #ifdef LEAF_REGISTERS
5398 current_function_uses_only_leaf_regs
5399 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5400 #endif
5401 return 0;
5402 }
5403
5404 /* Insert a TYPE into the used types hash table of CFUN. */
5405 static void
5406 used_types_insert_helper (tree type, struct function *func)
5407 {
5408 if (type != NULL && func != NULL)
5409 {
5410 void **slot;
5411
5412 if (func->used_types_hash == NULL)
5413 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5414 htab_eq_pointer, NULL);
5415 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5416 if (*slot == NULL)
5417 *slot = type;
5418 }
5419 }
5420
5421 /* Given a type, insert it into the used hash table in cfun. */
5422 void
5423 used_types_insert (tree t)
5424 {
5425 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5426 t = TREE_TYPE (t);
5427 t = TYPE_MAIN_VARIANT (t);
5428 if (debug_info_level > DINFO_LEVEL_NONE)
5429 used_types_insert_helper (t, cfun);
5430 }
5431
5432 struct rtl_opt_pass pass_leaf_regs =
5433 {
5434 {
5435 RTL_PASS,
5436 NULL, /* name */
5437 NULL, /* gate */
5438 rest_of_handle_check_leaf_regs, /* execute */
5439 NULL, /* sub */
5440 NULL, /* next */
5441 0, /* static_pass_number */
5442 TV_NONE, /* tv_id */
5443 0, /* properties_required */
5444 0, /* properties_provided */
5445 0, /* properties_destroyed */
5446 0, /* todo_flags_start */
5447 0 /* todo_flags_finish */
5448 }
5449 };
5450
5451 static unsigned int
5452 rest_of_handle_thread_prologue_and_epilogue (void)
5453 {
5454 if (optimize)
5455 cleanup_cfg (CLEANUP_EXPENSIVE);
5456 /* On some machines, the prologue and epilogue code, or parts thereof,
5457 can be represented as RTL. Doing so lets us schedule insns between
5458 it and the rest of the code and also allows delayed branch
5459 scheduling to operate in the epilogue. */
5460
5461 thread_prologue_and_epilogue_insns ();
5462 return 0;
5463 }
5464
5465 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
5466 {
5467 {
5468 RTL_PASS,
5469 "pro_and_epilogue", /* name */
5470 NULL, /* gate */
5471 rest_of_handle_thread_prologue_and_epilogue, /* execute */
5472 NULL, /* sub */
5473 NULL, /* next */
5474 0, /* static_pass_number */
5475 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
5476 0, /* properties_required */
5477 0, /* properties_provided */
5478 0, /* properties_destroyed */
5479 TODO_verify_flow, /* todo_flags_start */
5480 TODO_dump_func |
5481 TODO_df_verify |
5482 TODO_df_finish | TODO_verify_rtl_sharing |
5483 TODO_ggc_collect /* todo_flags_finish */
5484 }
5485 };
5486 \f
5487
5488 /* This mini-pass fixes fall-out from SSA in asm statements that have
5489 in-out constraints. Say you start with
5490
5491 orig = inout;
5492 asm ("": "+mr" (inout));
5493 use (orig);
5494
5495 which is transformed very early to use explicit output and match operands:
5496
5497 orig = inout;
5498 asm ("": "=mr" (inout) : "0" (inout));
5499 use (orig);
5500
5501 Or, after SSA and copyprop,
5502
5503 asm ("": "=mr" (inout_2) : "0" (inout_1));
5504 use (inout_1);
5505
5506 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
5507 they represent two separate values, so they will get different pseudo
5508 registers during expansion. Then, since the two operands need to match
5509 per the constraints, but use different pseudo registers, reload can
5510 only register a reload for these operands. But reloads can only be
5511 satisfied by hardregs, not by memory, so we need a register for this
5512 reload, just because we are presented with non-matching operands.
5513 So, even though we allow memory for this operand, no memory can be
5514 used for it, just because the two operands don't match. This can
5515 cause reload failures on register-starved targets.
5516
5517 So it's a symptom of reload not being able to use memory for reloads
5518 or, alternatively it's also a symptom of both operands not coming into
5519 reload as matching (in which case the pseudo could go to memory just
5520 fine, as the alternative allows it, and no reload would be necessary).
5521 We fix the latter problem here, by transforming
5522
5523 asm ("": "=mr" (inout_2) : "0" (inout_1));
5524
5525 back to
5526
5527 inout_2 = inout_1;
5528 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
5529
5530 static void
5531 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
5532 {
5533 int i;
5534 bool changed = false;
5535 rtx op = SET_SRC (p_sets[0]);
5536 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
5537 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
5538 bool *output_matched = XALLOCAVEC (bool, noutputs);
5539
5540 memset (output_matched, 0, noutputs * sizeof (bool));
5541 for (i = 0; i < ninputs; i++)
5542 {
5543 rtx input, output, insns;
5544 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
5545 char *end;
5546 int match, j;
5547
5548 if (*constraint == '%')
5549 constraint++;
5550
5551 match = strtoul (constraint, &end, 10);
5552 if (end == constraint)
5553 continue;
5554
5555 gcc_assert (match < noutputs);
5556 output = SET_DEST (p_sets[match]);
5557 input = RTVEC_ELT (inputs, i);
5558 /* Only do the transformation for pseudos. */
5559 if (! REG_P (output)
5560 || rtx_equal_p (output, input)
5561 || (GET_MODE (input) != VOIDmode
5562 && GET_MODE (input) != GET_MODE (output)))
5563 continue;
5564
5565 /* We can't do anything if the output is also used as input,
5566 as we're going to overwrite it. */
5567 for (j = 0; j < ninputs; j++)
5568 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
5569 break;
5570 if (j != ninputs)
5571 continue;
5572
5573 /* Avoid changing the same input several times. For
5574 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
5575 only change in once (to out1), rather than changing it
5576 first to out1 and afterwards to out2. */
5577 if (i > 0)
5578 {
5579 for (j = 0; j < noutputs; j++)
5580 if (output_matched[j] && input == SET_DEST (p_sets[j]))
5581 break;
5582 if (j != noutputs)
5583 continue;
5584 }
5585 output_matched[match] = true;
5586
5587 start_sequence ();
5588 emit_move_insn (output, input);
5589 insns = get_insns ();
5590 end_sequence ();
5591 emit_insn_before (insns, insn);
5592
5593 /* Now replace all mentions of the input with output. We can't
5594 just replace the occurrence in inputs[i], as the register might
5595 also be used in some other input (or even in an address of an
5596 output), which would mean possibly increasing the number of
5597 inputs by one (namely 'output' in addition), which might pose
5598 a too complicated problem for reload to solve. E.g. this situation:
5599
5600 asm ("" : "=r" (output), "=m" (input) : "0" (input))
5601
5602 Here 'input' is used in two occurrences as input (once for the
5603 input operand, once for the address in the second output operand).
5604 If we would replace only the occurrence of the input operand (to
5605 make the matching) we would be left with this:
5606
5607 output = input
5608 asm ("" : "=r" (output), "=m" (input) : "0" (output))
5609
5610 Now we suddenly have two different input values (containing the same
5611 value, but different pseudos) where we formerly had only one.
5612 With more complicated asms this might lead to reload failures
5613 which wouldn't have happen without this pass. So, iterate over
5614 all operands and replace all occurrences of the register used. */
5615 for (j = 0; j < noutputs; j++)
5616 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
5617 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
5618 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
5619 input, output);
5620 for (j = 0; j < ninputs; j++)
5621 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
5622 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
5623 input, output);
5624
5625 changed = true;
5626 }
5627
5628 if (changed)
5629 df_insn_rescan (insn);
5630 }
5631
5632 static unsigned
5633 rest_of_match_asm_constraints (void)
5634 {
5635 basic_block bb;
5636 rtx insn, pat, *p_sets;
5637 int noutputs;
5638
5639 if (!crtl->has_asm_statement)
5640 return 0;
5641
5642 df_set_flags (DF_DEFER_INSN_RESCAN);
5643 FOR_EACH_BB (bb)
5644 {
5645 FOR_BB_INSNS (bb, insn)
5646 {
5647 if (!INSN_P (insn))
5648 continue;
5649
5650 pat = PATTERN (insn);
5651 if (GET_CODE (pat) == PARALLEL)
5652 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
5653 else if (GET_CODE (pat) == SET)
5654 p_sets = &PATTERN (insn), noutputs = 1;
5655 else
5656 continue;
5657
5658 if (GET_CODE (*p_sets) == SET
5659 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
5660 match_asm_constraints_1 (insn, p_sets, noutputs);
5661 }
5662 }
5663
5664 return TODO_df_finish;
5665 }
5666
5667 struct rtl_opt_pass pass_match_asm_constraints =
5668 {
5669 {
5670 RTL_PASS,
5671 "asmcons", /* name */
5672 NULL, /* gate */
5673 rest_of_match_asm_constraints, /* execute */
5674 NULL, /* sub */
5675 NULL, /* next */
5676 0, /* static_pass_number */
5677 TV_NONE, /* tv_id */
5678 0, /* properties_required */
5679 0, /* properties_provided */
5680 0, /* properties_destroyed */
5681 0, /* todo_flags_start */
5682 TODO_dump_func /* todo_flags_finish */
5683 }
5684 };
5685
5686
5687 #include "gt-function.h"