cfgexpand.c (expand_stack_alignment): Assert that stack_realign_drap and drap_rtx...
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
62 #include "gimple.h"
63 #include "tree-pass.h"
64 #include "predict.h"
65 #include "df.h"
66 #include "timevar.h"
67 #include "vecprim.h"
68
69 /* So we can assign to cfun in this file. */
70 #undef cfun
71
72 #ifndef STACK_ALIGNMENT_NEEDED
73 #define STACK_ALIGNMENT_NEEDED 1
74 #endif
75
76 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
77
78 /* Some systems use __main in a way incompatible with its use in gcc, in these
79 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
80 give the same symbol without quotes for an alternative entry point. You
81 must define both, or neither. */
82 #ifndef NAME__MAIN
83 #define NAME__MAIN "__main"
84 #endif
85
86 /* Round a value to the lowest integer less than it that is a multiple of
87 the required alignment. Avoid using division in case the value is
88 negative. Assume the alignment is a power of two. */
89 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
90
91 /* Similar, but round to the next highest integer that meets the
92 alignment. */
93 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
94
95 /* Nonzero if function being compiled doesn't contain any calls
96 (ignoring the prologue and epilogue). This is set prior to
97 local register allocation and is valid for the remaining
98 compiler passes. */
99 int current_function_is_leaf;
100
101 /* Nonzero if function being compiled doesn't modify the stack pointer
102 (ignoring the prologue and epilogue). This is only valid after
103 pass_stack_ptr_mod has run. */
104 int current_function_sp_is_unchanging;
105
106 /* Nonzero if the function being compiled is a leaf function which only
107 uses leaf registers. This is valid after reload (specifically after
108 sched2) and is useful only if the port defines LEAF_REGISTERS. */
109 int current_function_uses_only_leaf_regs;
110
111 /* Nonzero once virtual register instantiation has been done.
112 assign_stack_local uses frame_pointer_rtx when this is nonzero.
113 calls.c:emit_library_call_value_1 uses it to set up
114 post-instantiation libcalls. */
115 int virtuals_instantiated;
116
117 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
118 static GTY(()) int funcdef_no;
119
120 /* These variables hold pointers to functions to create and destroy
121 target specific, per-function data structures. */
122 struct machine_function * (*init_machine_status) (void);
123
124 /* The currently compiled function. */
125 struct function *cfun = 0;
126
127 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
128 static VEC(int,heap) *prologue;
129 static VEC(int,heap) *epilogue;
130
131 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
132 in this function. */
133 static VEC(int,heap) *sibcall_epilogue;
134 \f
135 /* In order to evaluate some expressions, such as function calls returning
136 structures in memory, we need to temporarily allocate stack locations.
137 We record each allocated temporary in the following structure.
138
139 Associated with each temporary slot is a nesting level. When we pop up
140 one level, all temporaries associated with the previous level are freed.
141 Normally, all temporaries are freed after the execution of the statement
142 in which they were created. However, if we are inside a ({...}) grouping,
143 the result may be in a temporary and hence must be preserved. If the
144 result could be in a temporary, we preserve it if we can determine which
145 one it is in. If we cannot determine which temporary may contain the
146 result, all temporaries are preserved. A temporary is preserved by
147 pretending it was allocated at the previous nesting level.
148
149 Automatic variables are also assigned temporary slots, at the nesting
150 level where they are defined. They are marked a "kept" so that
151 free_temp_slots will not free them. */
152
153 struct temp_slot GTY(())
154 {
155 /* Points to next temporary slot. */
156 struct temp_slot *next;
157 /* Points to previous temporary slot. */
158 struct temp_slot *prev;
159
160 /* The rtx to used to reference the slot. */
161 rtx slot;
162 /* The rtx used to represent the address if not the address of the
163 slot above. May be an EXPR_LIST if multiple addresses exist. */
164 rtx address;
165 /* The alignment (in bits) of the slot. */
166 unsigned int align;
167 /* The size, in units, of the slot. */
168 HOST_WIDE_INT size;
169 /* The type of the object in the slot, or zero if it doesn't correspond
170 to a type. We use this to determine whether a slot can be reused.
171 It can be reused if objects of the type of the new slot will always
172 conflict with objects of the type of the old slot. */
173 tree type;
174 /* Nonzero if this temporary is currently in use. */
175 char in_use;
176 /* Nonzero if this temporary has its address taken. */
177 char addr_taken;
178 /* Nesting level at which this slot is being used. */
179 int level;
180 /* Nonzero if this should survive a call to free_temp_slots. */
181 int keep;
182 /* The offset of the slot from the frame_pointer, including extra space
183 for alignment. This info is for combine_temp_slots. */
184 HOST_WIDE_INT base_offset;
185 /* The size of the slot, including extra space for alignment. This
186 info is for combine_temp_slots. */
187 HOST_WIDE_INT full_size;
188 };
189 \f
190 /* Forward declarations. */
191
192 static struct temp_slot *find_temp_slot_from_address (rtx);
193 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
194 static void pad_below (struct args_size *, enum machine_mode, tree);
195 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
196 static int all_blocks (tree, tree *);
197 static tree *get_block_vector (tree, int *);
198 extern tree debug_find_var_in_block_tree (tree, tree);
199 /* We always define `record_insns' even if it's not used so that we
200 can always export `prologue_epilogue_contains'. */
201 static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED;
202 static int contains (const_rtx, VEC(int,heap) **);
203 #ifdef HAVE_return
204 static void emit_return_into_block (basic_block);
205 #endif
206 static void prepare_function_start (void);
207 static void do_clobber_return_reg (rtx, void *);
208 static void do_use_return_reg (rtx, void *);
209 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
210 \f
211 /* Pointer to chain of `struct function' for containing functions. */
212 struct function *outer_function_chain;
213
214 /* Given a function decl for a containing function,
215 return the `struct function' for it. */
216
217 struct function *
218 find_function_data (tree decl)
219 {
220 struct function *p;
221
222 for (p = outer_function_chain; p; p = p->outer)
223 if (p->decl == decl)
224 return p;
225
226 gcc_unreachable ();
227 }
228
229 /* Save the current context for compilation of a nested function.
230 This is called from language-specific code. */
231
232 void
233 push_function_context (void)
234 {
235 if (cfun == 0)
236 allocate_struct_function (NULL, false);
237
238 cfun->outer = outer_function_chain;
239 outer_function_chain = cfun;
240 set_cfun (NULL);
241 }
242
243 /* Restore the last saved context, at the end of a nested function.
244 This function is called from language-specific code. */
245
246 void
247 pop_function_context (void)
248 {
249 struct function *p = outer_function_chain;
250
251 set_cfun (p);
252 outer_function_chain = p->outer;
253 current_function_decl = p->decl;
254
255 /* Reset variables that have known state during rtx generation. */
256 virtuals_instantiated = 0;
257 generating_concat_p = 1;
258 }
259
260 /* Clear out all parts of the state in F that can safely be discarded
261 after the function has been parsed, but not compiled, to let
262 garbage collection reclaim the memory. */
263
264 void
265 free_after_parsing (struct function *f)
266 {
267 f->language = 0;
268 }
269
270 /* Clear out all parts of the state in F that can safely be discarded
271 after the function has been compiled, to let garbage collection
272 reclaim the memory. */
273
274 void
275 free_after_compilation (struct function *f)
276 {
277 VEC_free (int, heap, prologue);
278 VEC_free (int, heap, epilogue);
279 VEC_free (int, heap, sibcall_epilogue);
280 if (crtl->emit.regno_pointer_align)
281 free (crtl->emit.regno_pointer_align);
282
283 memset (crtl, 0, sizeof (struct rtl_data));
284 f->eh = NULL;
285 f->machine = NULL;
286 f->cfg = NULL;
287
288 regno_reg_rtx = NULL;
289 }
290 \f
291 /* Return size needed for stack frame based on slots so far allocated.
292 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
293 the caller may have to do that. */
294
295 HOST_WIDE_INT
296 get_frame_size (void)
297 {
298 if (FRAME_GROWS_DOWNWARD)
299 return -frame_offset;
300 else
301 return frame_offset;
302 }
303
304 /* Issue an error message and return TRUE if frame OFFSET overflows in
305 the signed target pointer arithmetics for function FUNC. Otherwise
306 return FALSE. */
307
308 bool
309 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
310 {
311 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
312
313 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
314 /* Leave room for the fixed part of the frame. */
315 - 64 * UNITS_PER_WORD)
316 {
317 error ("%Jtotal size of local objects too large", func);
318 return TRUE;
319 }
320
321 return FALSE;
322 }
323
324 /* Return stack slot alignment in bits for TYPE and MODE. */
325
326 static unsigned int
327 get_stack_local_alignment (tree type, enum machine_mode mode)
328 {
329 unsigned int alignment;
330
331 if (mode == BLKmode)
332 alignment = BIGGEST_ALIGNMENT;
333 else
334 alignment = GET_MODE_ALIGNMENT (mode);
335
336 /* Allow the frond-end to (possibly) increase the alignment of this
337 stack slot. */
338 if (! type)
339 type = lang_hooks.types.type_for_mode (mode, 0);
340
341 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
342 }
343
344 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
345 with machine mode MODE.
346
347 ALIGN controls the amount of alignment for the address of the slot:
348 0 means according to MODE,
349 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
350 -2 means use BITS_PER_UNIT,
351 positive specifies alignment boundary in bits.
352
353 If REDUCE_ALIGNMENT_OK is true, it is OK to reduce alignment.
354
355 We do not round to stack_boundary here. */
356
357 rtx
358 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
359 int align,
360 bool reduce_alignment_ok ATTRIBUTE_UNUSED)
361 {
362 rtx x, addr;
363 int bigend_correction = 0;
364 unsigned int alignment, alignment_in_bits;
365 int frame_off, frame_alignment, frame_phase;
366
367 if (align == 0)
368 {
369 alignment = get_stack_local_alignment (NULL, mode);
370 alignment /= BITS_PER_UNIT;
371 }
372 else if (align == -1)
373 {
374 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
375 size = CEIL_ROUND (size, alignment);
376 }
377 else if (align == -2)
378 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
379 else
380 alignment = align / BITS_PER_UNIT;
381
382 alignment_in_bits = alignment * BITS_PER_UNIT;
383
384 if (FRAME_GROWS_DOWNWARD)
385 frame_offset -= size;
386
387 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
388 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
389 {
390 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
391 alignment = alignment_in_bits / BITS_PER_UNIT;
392 }
393
394 if (SUPPORTS_STACK_ALIGNMENT)
395 {
396 if (crtl->stack_alignment_estimated < alignment_in_bits)
397 {
398 if (!crtl->stack_realign_processed)
399 crtl->stack_alignment_estimated = alignment_in_bits;
400 else
401 {
402 /* If stack is realigned and stack alignment value
403 hasn't been finalized, it is OK not to increase
404 stack_alignment_estimated. The bigger alignment
405 requirement is recorded in stack_alignment_needed
406 below. */
407 gcc_assert (!crtl->stack_realign_finalized);
408 if (!crtl->stack_realign_needed)
409 {
410 /* It is OK to reduce the alignment as long as the
411 requested size is 0 or the estimated stack
412 alignment >= mode alignment. */
413 gcc_assert (reduce_alignment_ok
414 || size == 0
415 || (crtl->stack_alignment_estimated
416 >= GET_MODE_ALIGNMENT (mode)));
417 alignment_in_bits = crtl->stack_alignment_estimated;
418 alignment = alignment_in_bits / BITS_PER_UNIT;
419 }
420 }
421 }
422 }
423
424 if (crtl->stack_alignment_needed < alignment_in_bits)
425 crtl->stack_alignment_needed = alignment_in_bits;
426 if (crtl->max_used_stack_slot_alignment < crtl->stack_alignment_needed)
427 crtl->max_used_stack_slot_alignment = crtl->stack_alignment_needed;
428
429 /* Calculate how many bytes the start of local variables is off from
430 stack alignment. */
431 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
432 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
433 frame_phase = frame_off ? frame_alignment - frame_off : 0;
434
435 /* Round the frame offset to the specified alignment. The default is
436 to always honor requests to align the stack but a port may choose to
437 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
438 if (STACK_ALIGNMENT_NEEDED
439 || mode != BLKmode
440 || size != 0)
441 {
442 /* We must be careful here, since FRAME_OFFSET might be negative and
443 division with a negative dividend isn't as well defined as we might
444 like. So we instead assume that ALIGNMENT is a power of two and
445 use logical operations which are unambiguous. */
446 if (FRAME_GROWS_DOWNWARD)
447 frame_offset
448 = (FLOOR_ROUND (frame_offset - frame_phase,
449 (unsigned HOST_WIDE_INT) alignment)
450 + frame_phase);
451 else
452 frame_offset
453 = (CEIL_ROUND (frame_offset - frame_phase,
454 (unsigned HOST_WIDE_INT) alignment)
455 + frame_phase);
456 }
457
458 /* On a big-endian machine, if we are allocating more space than we will use,
459 use the least significant bytes of those that are allocated. */
460 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
461 bigend_correction = size - GET_MODE_SIZE (mode);
462
463 /* If we have already instantiated virtual registers, return the actual
464 address relative to the frame pointer. */
465 if (virtuals_instantiated)
466 addr = plus_constant (frame_pointer_rtx,
467 trunc_int_for_mode
468 (frame_offset + bigend_correction
469 + STARTING_FRAME_OFFSET, Pmode));
470 else
471 addr = plus_constant (virtual_stack_vars_rtx,
472 trunc_int_for_mode
473 (frame_offset + bigend_correction,
474 Pmode));
475
476 if (!FRAME_GROWS_DOWNWARD)
477 frame_offset += size;
478
479 x = gen_rtx_MEM (mode, addr);
480 set_mem_align (x, alignment_in_bits);
481 MEM_NOTRAP_P (x) = 1;
482
483 stack_slot_list
484 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
485
486 if (frame_offset_overflow (frame_offset, current_function_decl))
487 frame_offset = 0;
488
489 return x;
490 }
491
492 /* Wrap up assign_stack_local_1 with last parameter as false. */
493
494 rtx
495 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
496 {
497 return assign_stack_local_1 (mode, size, align, false);
498 }
499 \f
500 /* Removes temporary slot TEMP from LIST. */
501
502 static void
503 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
504 {
505 if (temp->next)
506 temp->next->prev = temp->prev;
507 if (temp->prev)
508 temp->prev->next = temp->next;
509 else
510 *list = temp->next;
511
512 temp->prev = temp->next = NULL;
513 }
514
515 /* Inserts temporary slot TEMP to LIST. */
516
517 static void
518 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
519 {
520 temp->next = *list;
521 if (*list)
522 (*list)->prev = temp;
523 temp->prev = NULL;
524 *list = temp;
525 }
526
527 /* Returns the list of used temp slots at LEVEL. */
528
529 static struct temp_slot **
530 temp_slots_at_level (int level)
531 {
532 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
533 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
534
535 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
536 }
537
538 /* Returns the maximal temporary slot level. */
539
540 static int
541 max_slot_level (void)
542 {
543 if (!used_temp_slots)
544 return -1;
545
546 return VEC_length (temp_slot_p, used_temp_slots) - 1;
547 }
548
549 /* Moves temporary slot TEMP to LEVEL. */
550
551 static void
552 move_slot_to_level (struct temp_slot *temp, int level)
553 {
554 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
555 insert_slot_to_list (temp, temp_slots_at_level (level));
556 temp->level = level;
557 }
558
559 /* Make temporary slot TEMP available. */
560
561 static void
562 make_slot_available (struct temp_slot *temp)
563 {
564 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
565 insert_slot_to_list (temp, &avail_temp_slots);
566 temp->in_use = 0;
567 temp->level = -1;
568 }
569 \f
570 /* Allocate a temporary stack slot and record it for possible later
571 reuse.
572
573 MODE is the machine mode to be given to the returned rtx.
574
575 SIZE is the size in units of the space required. We do no rounding here
576 since assign_stack_local will do any required rounding.
577
578 KEEP is 1 if this slot is to be retained after a call to
579 free_temp_slots. Automatic variables for a block are allocated
580 with this flag. KEEP values of 2 or 3 were needed respectively
581 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
582 or for SAVE_EXPRs, but they are now unused.
583
584 TYPE is the type that will be used for the stack slot. */
585
586 rtx
587 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
588 int keep, tree type)
589 {
590 unsigned int align;
591 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
592 rtx slot;
593
594 /* If SIZE is -1 it means that somebody tried to allocate a temporary
595 of a variable size. */
596 gcc_assert (size != -1);
597
598 /* These are now unused. */
599 gcc_assert (keep <= 1);
600
601 align = get_stack_local_alignment (type, mode);
602
603 /* Try to find an available, already-allocated temporary of the proper
604 mode which meets the size and alignment requirements. Choose the
605 smallest one with the closest alignment.
606
607 If assign_stack_temp is called outside of the tree->rtl expansion,
608 we cannot reuse the stack slots (that may still refer to
609 VIRTUAL_STACK_VARS_REGNUM). */
610 if (!virtuals_instantiated)
611 {
612 for (p = avail_temp_slots; p; p = p->next)
613 {
614 if (p->align >= align && p->size >= size
615 && GET_MODE (p->slot) == mode
616 && objects_must_conflict_p (p->type, type)
617 && (best_p == 0 || best_p->size > p->size
618 || (best_p->size == p->size && best_p->align > p->align)))
619 {
620 if (p->align == align && p->size == size)
621 {
622 selected = p;
623 cut_slot_from_list (selected, &avail_temp_slots);
624 best_p = 0;
625 break;
626 }
627 best_p = p;
628 }
629 }
630 }
631
632 /* Make our best, if any, the one to use. */
633 if (best_p)
634 {
635 selected = best_p;
636 cut_slot_from_list (selected, &avail_temp_slots);
637
638 /* If there are enough aligned bytes left over, make them into a new
639 temp_slot so that the extra bytes don't get wasted. Do this only
640 for BLKmode slots, so that we can be sure of the alignment. */
641 if (GET_MODE (best_p->slot) == BLKmode)
642 {
643 int alignment = best_p->align / BITS_PER_UNIT;
644 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
645
646 if (best_p->size - rounded_size >= alignment)
647 {
648 p = GGC_NEW (struct temp_slot);
649 p->in_use = p->addr_taken = 0;
650 p->size = best_p->size - rounded_size;
651 p->base_offset = best_p->base_offset + rounded_size;
652 p->full_size = best_p->full_size - rounded_size;
653 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
654 p->align = best_p->align;
655 p->address = 0;
656 p->type = best_p->type;
657 insert_slot_to_list (p, &avail_temp_slots);
658
659 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
660 stack_slot_list);
661
662 best_p->size = rounded_size;
663 best_p->full_size = rounded_size;
664 }
665 }
666 }
667
668 /* If we still didn't find one, make a new temporary. */
669 if (selected == 0)
670 {
671 HOST_WIDE_INT frame_offset_old = frame_offset;
672
673 p = GGC_NEW (struct temp_slot);
674
675 /* We are passing an explicit alignment request to assign_stack_local.
676 One side effect of that is assign_stack_local will not round SIZE
677 to ensure the frame offset remains suitably aligned.
678
679 So for requests which depended on the rounding of SIZE, we go ahead
680 and round it now. We also make sure ALIGNMENT is at least
681 BIGGEST_ALIGNMENT. */
682 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
683 p->slot = assign_stack_local (mode,
684 (mode == BLKmode
685 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
686 : size),
687 align);
688
689 p->align = align;
690
691 /* The following slot size computation is necessary because we don't
692 know the actual size of the temporary slot until assign_stack_local
693 has performed all the frame alignment and size rounding for the
694 requested temporary. Note that extra space added for alignment
695 can be either above or below this stack slot depending on which
696 way the frame grows. We include the extra space if and only if it
697 is above this slot. */
698 if (FRAME_GROWS_DOWNWARD)
699 p->size = frame_offset_old - frame_offset;
700 else
701 p->size = size;
702
703 /* Now define the fields used by combine_temp_slots. */
704 if (FRAME_GROWS_DOWNWARD)
705 {
706 p->base_offset = frame_offset;
707 p->full_size = frame_offset_old - frame_offset;
708 }
709 else
710 {
711 p->base_offset = frame_offset_old;
712 p->full_size = frame_offset - frame_offset_old;
713 }
714 p->address = 0;
715
716 selected = p;
717 }
718
719 p = selected;
720 p->in_use = 1;
721 p->addr_taken = 0;
722 p->type = type;
723 p->level = temp_slot_level;
724 p->keep = keep;
725
726 pp = temp_slots_at_level (p->level);
727 insert_slot_to_list (p, pp);
728
729 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
730 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
731 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
732
733 /* If we know the alias set for the memory that will be used, use
734 it. If there's no TYPE, then we don't know anything about the
735 alias set for the memory. */
736 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
737 set_mem_align (slot, align);
738
739 /* If a type is specified, set the relevant flags. */
740 if (type != 0)
741 {
742 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
743 MEM_SET_IN_STRUCT_P (slot, (AGGREGATE_TYPE_P (type)
744 || TREE_CODE (type) == COMPLEX_TYPE));
745 }
746 MEM_NOTRAP_P (slot) = 1;
747
748 return slot;
749 }
750
751 /* Allocate a temporary stack slot and record it for possible later
752 reuse. First three arguments are same as in preceding function. */
753
754 rtx
755 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
756 {
757 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
758 }
759 \f
760 /* Assign a temporary.
761 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
762 and so that should be used in error messages. In either case, we
763 allocate of the given type.
764 KEEP is as for assign_stack_temp.
765 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
766 it is 0 if a register is OK.
767 DONT_PROMOTE is 1 if we should not promote values in register
768 to wider modes. */
769
770 rtx
771 assign_temp (tree type_or_decl, int keep, int memory_required,
772 int dont_promote ATTRIBUTE_UNUSED)
773 {
774 tree type, decl;
775 enum machine_mode mode;
776 #ifdef PROMOTE_MODE
777 int unsignedp;
778 #endif
779
780 if (DECL_P (type_or_decl))
781 decl = type_or_decl, type = TREE_TYPE (decl);
782 else
783 decl = NULL, type = type_or_decl;
784
785 mode = TYPE_MODE (type);
786 #ifdef PROMOTE_MODE
787 unsignedp = TYPE_UNSIGNED (type);
788 #endif
789
790 if (mode == BLKmode || memory_required)
791 {
792 HOST_WIDE_INT size = int_size_in_bytes (type);
793 rtx tmp;
794
795 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
796 problems with allocating the stack space. */
797 if (size == 0)
798 size = 1;
799
800 /* Unfortunately, we don't yet know how to allocate variable-sized
801 temporaries. However, sometimes we can find a fixed upper limit on
802 the size, so try that instead. */
803 else if (size == -1)
804 size = max_int_size_in_bytes (type);
805
806 /* The size of the temporary may be too large to fit into an integer. */
807 /* ??? Not sure this should happen except for user silliness, so limit
808 this to things that aren't compiler-generated temporaries. The
809 rest of the time we'll die in assign_stack_temp_for_type. */
810 if (decl && size == -1
811 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
812 {
813 error ("size of variable %q+D is too large", decl);
814 size = 1;
815 }
816
817 tmp = assign_stack_temp_for_type (mode, size, keep, type);
818 return tmp;
819 }
820
821 #ifdef PROMOTE_MODE
822 if (! dont_promote)
823 mode = promote_mode (type, mode, &unsignedp, 0);
824 #endif
825
826 return gen_reg_rtx (mode);
827 }
828 \f
829 /* Combine temporary stack slots which are adjacent on the stack.
830
831 This allows for better use of already allocated stack space. This is only
832 done for BLKmode slots because we can be sure that we won't have alignment
833 problems in this case. */
834
835 static void
836 combine_temp_slots (void)
837 {
838 struct temp_slot *p, *q, *next, *next_q;
839 int num_slots;
840
841 /* We can't combine slots, because the information about which slot
842 is in which alias set will be lost. */
843 if (flag_strict_aliasing)
844 return;
845
846 /* If there are a lot of temp slots, don't do anything unless
847 high levels of optimization. */
848 if (! flag_expensive_optimizations)
849 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
850 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
851 return;
852
853 for (p = avail_temp_slots; p; p = next)
854 {
855 int delete_p = 0;
856
857 next = p->next;
858
859 if (GET_MODE (p->slot) != BLKmode)
860 continue;
861
862 for (q = p->next; q; q = next_q)
863 {
864 int delete_q = 0;
865
866 next_q = q->next;
867
868 if (GET_MODE (q->slot) != BLKmode)
869 continue;
870
871 if (p->base_offset + p->full_size == q->base_offset)
872 {
873 /* Q comes after P; combine Q into P. */
874 p->size += q->size;
875 p->full_size += q->full_size;
876 delete_q = 1;
877 }
878 else if (q->base_offset + q->full_size == p->base_offset)
879 {
880 /* P comes after Q; combine P into Q. */
881 q->size += p->size;
882 q->full_size += p->full_size;
883 delete_p = 1;
884 break;
885 }
886 if (delete_q)
887 cut_slot_from_list (q, &avail_temp_slots);
888 }
889
890 /* Either delete P or advance past it. */
891 if (delete_p)
892 cut_slot_from_list (p, &avail_temp_slots);
893 }
894 }
895 \f
896 /* Find the temp slot corresponding to the object at address X. */
897
898 static struct temp_slot *
899 find_temp_slot_from_address (rtx x)
900 {
901 struct temp_slot *p;
902 rtx next;
903 int i;
904
905 for (i = max_slot_level (); i >= 0; i--)
906 for (p = *temp_slots_at_level (i); p; p = p->next)
907 {
908 if (XEXP (p->slot, 0) == x
909 || p->address == x
910 || (GET_CODE (x) == PLUS
911 && XEXP (x, 0) == virtual_stack_vars_rtx
912 && GET_CODE (XEXP (x, 1)) == CONST_INT
913 && INTVAL (XEXP (x, 1)) >= p->base_offset
914 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
915 return p;
916
917 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
918 for (next = p->address; next; next = XEXP (next, 1))
919 if (XEXP (next, 0) == x)
920 return p;
921 }
922
923 /* If we have a sum involving a register, see if it points to a temp
924 slot. */
925 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
926 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
927 return p;
928 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
929 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
930 return p;
931
932 return 0;
933 }
934
935 /* Indicate that NEW is an alternate way of referring to the temp slot
936 that previously was known by OLD. */
937
938 void
939 update_temp_slot_address (rtx old, rtx new)
940 {
941 struct temp_slot *p;
942
943 if (rtx_equal_p (old, new))
944 return;
945
946 p = find_temp_slot_from_address (old);
947
948 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
949 is a register, see if one operand of the PLUS is a temporary
950 location. If so, NEW points into it. Otherwise, if both OLD and
951 NEW are a PLUS and if there is a register in common between them.
952 If so, try a recursive call on those values. */
953 if (p == 0)
954 {
955 if (GET_CODE (old) != PLUS)
956 return;
957
958 if (REG_P (new))
959 {
960 update_temp_slot_address (XEXP (old, 0), new);
961 update_temp_slot_address (XEXP (old, 1), new);
962 return;
963 }
964 else if (GET_CODE (new) != PLUS)
965 return;
966
967 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
968 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
969 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
970 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
971 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
972 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
973 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
974 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
975
976 return;
977 }
978
979 /* Otherwise add an alias for the temp's address. */
980 else if (p->address == 0)
981 p->address = new;
982 else
983 {
984 if (GET_CODE (p->address) != EXPR_LIST)
985 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
986
987 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
988 }
989 }
990
991 /* If X could be a reference to a temporary slot, mark the fact that its
992 address was taken. */
993
994 void
995 mark_temp_addr_taken (rtx x)
996 {
997 struct temp_slot *p;
998
999 if (x == 0)
1000 return;
1001
1002 /* If X is not in memory or is at a constant address, it cannot be in
1003 a temporary slot. */
1004 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1005 return;
1006
1007 p = find_temp_slot_from_address (XEXP (x, 0));
1008 if (p != 0)
1009 p->addr_taken = 1;
1010 }
1011
1012 /* If X could be a reference to a temporary slot, mark that slot as
1013 belonging to the to one level higher than the current level. If X
1014 matched one of our slots, just mark that one. Otherwise, we can't
1015 easily predict which it is, so upgrade all of them. Kept slots
1016 need not be touched.
1017
1018 This is called when an ({...}) construct occurs and a statement
1019 returns a value in memory. */
1020
1021 void
1022 preserve_temp_slots (rtx x)
1023 {
1024 struct temp_slot *p = 0, *next;
1025
1026 /* If there is no result, we still might have some objects whose address
1027 were taken, so we need to make sure they stay around. */
1028 if (x == 0)
1029 {
1030 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1031 {
1032 next = p->next;
1033
1034 if (p->addr_taken)
1035 move_slot_to_level (p, temp_slot_level - 1);
1036 }
1037
1038 return;
1039 }
1040
1041 /* If X is a register that is being used as a pointer, see if we have
1042 a temporary slot we know it points to. To be consistent with
1043 the code below, we really should preserve all non-kept slots
1044 if we can't find a match, but that seems to be much too costly. */
1045 if (REG_P (x) && REG_POINTER (x))
1046 p = find_temp_slot_from_address (x);
1047
1048 /* If X is not in memory or is at a constant address, it cannot be in
1049 a temporary slot, but it can contain something whose address was
1050 taken. */
1051 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1052 {
1053 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1054 {
1055 next = p->next;
1056
1057 if (p->addr_taken)
1058 move_slot_to_level (p, temp_slot_level - 1);
1059 }
1060
1061 return;
1062 }
1063
1064 /* First see if we can find a match. */
1065 if (p == 0)
1066 p = find_temp_slot_from_address (XEXP (x, 0));
1067
1068 if (p != 0)
1069 {
1070 /* Move everything at our level whose address was taken to our new
1071 level in case we used its address. */
1072 struct temp_slot *q;
1073
1074 if (p->level == temp_slot_level)
1075 {
1076 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1077 {
1078 next = q->next;
1079
1080 if (p != q && q->addr_taken)
1081 move_slot_to_level (q, temp_slot_level - 1);
1082 }
1083
1084 move_slot_to_level (p, temp_slot_level - 1);
1085 p->addr_taken = 0;
1086 }
1087 return;
1088 }
1089
1090 /* Otherwise, preserve all non-kept slots at this level. */
1091 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1092 {
1093 next = p->next;
1094
1095 if (!p->keep)
1096 move_slot_to_level (p, temp_slot_level - 1);
1097 }
1098 }
1099
1100 /* Free all temporaries used so far. This is normally called at the
1101 end of generating code for a statement. */
1102
1103 void
1104 free_temp_slots (void)
1105 {
1106 struct temp_slot *p, *next;
1107
1108 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1109 {
1110 next = p->next;
1111
1112 if (!p->keep)
1113 make_slot_available (p);
1114 }
1115
1116 combine_temp_slots ();
1117 }
1118
1119 /* Push deeper into the nesting level for stack temporaries. */
1120
1121 void
1122 push_temp_slots (void)
1123 {
1124 temp_slot_level++;
1125 }
1126
1127 /* Pop a temporary nesting level. All slots in use in the current level
1128 are freed. */
1129
1130 void
1131 pop_temp_slots (void)
1132 {
1133 struct temp_slot *p, *next;
1134
1135 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1136 {
1137 next = p->next;
1138 make_slot_available (p);
1139 }
1140
1141 combine_temp_slots ();
1142
1143 temp_slot_level--;
1144 }
1145
1146 /* Initialize temporary slots. */
1147
1148 void
1149 init_temp_slots (void)
1150 {
1151 /* We have not allocated any temporaries yet. */
1152 avail_temp_slots = 0;
1153 used_temp_slots = 0;
1154 temp_slot_level = 0;
1155 }
1156 \f
1157 /* These routines are responsible for converting virtual register references
1158 to the actual hard register references once RTL generation is complete.
1159
1160 The following four variables are used for communication between the
1161 routines. They contain the offsets of the virtual registers from their
1162 respective hard registers. */
1163
1164 static int in_arg_offset;
1165 static int var_offset;
1166 static int dynamic_offset;
1167 static int out_arg_offset;
1168 static int cfa_offset;
1169
1170 /* In most machines, the stack pointer register is equivalent to the bottom
1171 of the stack. */
1172
1173 #ifndef STACK_POINTER_OFFSET
1174 #define STACK_POINTER_OFFSET 0
1175 #endif
1176
1177 /* If not defined, pick an appropriate default for the offset of dynamically
1178 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1179 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1180
1181 #ifndef STACK_DYNAMIC_OFFSET
1182
1183 /* The bottom of the stack points to the actual arguments. If
1184 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1185 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1186 stack space for register parameters is not pushed by the caller, but
1187 rather part of the fixed stack areas and hence not included in
1188 `crtl->outgoing_args_size'. Nevertheless, we must allow
1189 for it when allocating stack dynamic objects. */
1190
1191 #if defined(REG_PARM_STACK_SPACE)
1192 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1193 ((ACCUMULATE_OUTGOING_ARGS \
1194 ? (crtl->outgoing_args_size \
1195 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1196 : REG_PARM_STACK_SPACE (FNDECL))) \
1197 : 0) + (STACK_POINTER_OFFSET))
1198 #else
1199 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1200 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1201 + (STACK_POINTER_OFFSET))
1202 #endif
1203 #endif
1204
1205 \f
1206 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1207 is a virtual register, return the equivalent hard register and set the
1208 offset indirectly through the pointer. Otherwise, return 0. */
1209
1210 static rtx
1211 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1212 {
1213 rtx new;
1214 HOST_WIDE_INT offset;
1215
1216 if (x == virtual_incoming_args_rtx)
1217 {
1218 if (stack_realign_drap)
1219 {
1220 /* Replace virtual_incoming_args_rtx with internal arg
1221 pointer if DRAP is used to realign stack. */
1222 new = crtl->args.internal_arg_pointer;
1223 offset = 0;
1224 }
1225 else
1226 new = arg_pointer_rtx, offset = in_arg_offset;
1227 }
1228 else if (x == virtual_stack_vars_rtx)
1229 new = frame_pointer_rtx, offset = var_offset;
1230 else if (x == virtual_stack_dynamic_rtx)
1231 new = stack_pointer_rtx, offset = dynamic_offset;
1232 else if (x == virtual_outgoing_args_rtx)
1233 new = stack_pointer_rtx, offset = out_arg_offset;
1234 else if (x == virtual_cfa_rtx)
1235 {
1236 #ifdef FRAME_POINTER_CFA_OFFSET
1237 new = frame_pointer_rtx;
1238 #else
1239 new = arg_pointer_rtx;
1240 #endif
1241 offset = cfa_offset;
1242 }
1243 else
1244 return NULL_RTX;
1245
1246 *poffset = offset;
1247 return new;
1248 }
1249
1250 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1251 Instantiate any virtual registers present inside of *LOC. The expression
1252 is simplified, as much as possible, but is not to be considered "valid"
1253 in any sense implied by the target. If any change is made, set CHANGED
1254 to true. */
1255
1256 static int
1257 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1258 {
1259 HOST_WIDE_INT offset;
1260 bool *changed = (bool *) data;
1261 rtx x, new;
1262
1263 x = *loc;
1264 if (x == 0)
1265 return 0;
1266
1267 switch (GET_CODE (x))
1268 {
1269 case REG:
1270 new = instantiate_new_reg (x, &offset);
1271 if (new)
1272 {
1273 *loc = plus_constant (new, offset);
1274 if (changed)
1275 *changed = true;
1276 }
1277 return -1;
1278
1279 case PLUS:
1280 new = instantiate_new_reg (XEXP (x, 0), &offset);
1281 if (new)
1282 {
1283 new = plus_constant (new, offset);
1284 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new, XEXP (x, 1));
1285 if (changed)
1286 *changed = true;
1287 return -1;
1288 }
1289
1290 /* FIXME -- from old code */
1291 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1292 we can commute the PLUS and SUBREG because pointers into the
1293 frame are well-behaved. */
1294 break;
1295
1296 default:
1297 break;
1298 }
1299
1300 return 0;
1301 }
1302
1303 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1304 matches the predicate for insn CODE operand OPERAND. */
1305
1306 static int
1307 safe_insn_predicate (int code, int operand, rtx x)
1308 {
1309 const struct insn_operand_data *op_data;
1310
1311 if (code < 0)
1312 return true;
1313
1314 op_data = &insn_data[code].operand[operand];
1315 if (op_data->predicate == NULL)
1316 return true;
1317
1318 return op_data->predicate (x, op_data->mode);
1319 }
1320
1321 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1322 registers present inside of insn. The result will be a valid insn. */
1323
1324 static void
1325 instantiate_virtual_regs_in_insn (rtx insn)
1326 {
1327 HOST_WIDE_INT offset;
1328 int insn_code, i;
1329 bool any_change = false;
1330 rtx set, new, x, seq;
1331
1332 /* There are some special cases to be handled first. */
1333 set = single_set (insn);
1334 if (set)
1335 {
1336 /* We're allowed to assign to a virtual register. This is interpreted
1337 to mean that the underlying register gets assigned the inverse
1338 transformation. This is used, for example, in the handling of
1339 non-local gotos. */
1340 new = instantiate_new_reg (SET_DEST (set), &offset);
1341 if (new)
1342 {
1343 start_sequence ();
1344
1345 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1346 x = simplify_gen_binary (PLUS, GET_MODE (new), SET_SRC (set),
1347 GEN_INT (-offset));
1348 x = force_operand (x, new);
1349 if (x != new)
1350 emit_move_insn (new, x);
1351
1352 seq = get_insns ();
1353 end_sequence ();
1354
1355 emit_insn_before (seq, insn);
1356 delete_insn (insn);
1357 return;
1358 }
1359
1360 /* Handle a straight copy from a virtual register by generating a
1361 new add insn. The difference between this and falling through
1362 to the generic case is avoiding a new pseudo and eliminating a
1363 move insn in the initial rtl stream. */
1364 new = instantiate_new_reg (SET_SRC (set), &offset);
1365 if (new && offset != 0
1366 && REG_P (SET_DEST (set))
1367 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1368 {
1369 start_sequence ();
1370
1371 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1372 new, GEN_INT (offset), SET_DEST (set),
1373 1, OPTAB_LIB_WIDEN);
1374 if (x != SET_DEST (set))
1375 emit_move_insn (SET_DEST (set), x);
1376
1377 seq = get_insns ();
1378 end_sequence ();
1379
1380 emit_insn_before (seq, insn);
1381 delete_insn (insn);
1382 return;
1383 }
1384
1385 extract_insn (insn);
1386 insn_code = INSN_CODE (insn);
1387
1388 /* Handle a plus involving a virtual register by determining if the
1389 operands remain valid if they're modified in place. */
1390 if (GET_CODE (SET_SRC (set)) == PLUS
1391 && recog_data.n_operands >= 3
1392 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1393 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1394 && GET_CODE (recog_data.operand[2]) == CONST_INT
1395 && (new = instantiate_new_reg (recog_data.operand[1], &offset)))
1396 {
1397 offset += INTVAL (recog_data.operand[2]);
1398
1399 /* If the sum is zero, then replace with a plain move. */
1400 if (offset == 0
1401 && REG_P (SET_DEST (set))
1402 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1403 {
1404 start_sequence ();
1405 emit_move_insn (SET_DEST (set), new);
1406 seq = get_insns ();
1407 end_sequence ();
1408
1409 emit_insn_before (seq, insn);
1410 delete_insn (insn);
1411 return;
1412 }
1413
1414 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1415
1416 /* Using validate_change and apply_change_group here leaves
1417 recog_data in an invalid state. Since we know exactly what
1418 we want to check, do those two by hand. */
1419 if (safe_insn_predicate (insn_code, 1, new)
1420 && safe_insn_predicate (insn_code, 2, x))
1421 {
1422 *recog_data.operand_loc[1] = recog_data.operand[1] = new;
1423 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1424 any_change = true;
1425
1426 /* Fall through into the regular operand fixup loop in
1427 order to take care of operands other than 1 and 2. */
1428 }
1429 }
1430 }
1431 else
1432 {
1433 extract_insn (insn);
1434 insn_code = INSN_CODE (insn);
1435 }
1436
1437 /* In the general case, we expect virtual registers to appear only in
1438 operands, and then only as either bare registers or inside memories. */
1439 for (i = 0; i < recog_data.n_operands; ++i)
1440 {
1441 x = recog_data.operand[i];
1442 switch (GET_CODE (x))
1443 {
1444 case MEM:
1445 {
1446 rtx addr = XEXP (x, 0);
1447 bool changed = false;
1448
1449 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1450 if (!changed)
1451 continue;
1452
1453 start_sequence ();
1454 x = replace_equiv_address (x, addr);
1455 /* It may happen that the address with the virtual reg
1456 was valid (e.g. based on the virtual stack reg, which might
1457 be acceptable to the predicates with all offsets), whereas
1458 the address now isn't anymore, for instance when the address
1459 is still offsetted, but the base reg isn't virtual-stack-reg
1460 anymore. Below we would do a force_reg on the whole operand,
1461 but this insn might actually only accept memory. Hence,
1462 before doing that last resort, try to reload the address into
1463 a register, so this operand stays a MEM. */
1464 if (!safe_insn_predicate (insn_code, i, x))
1465 {
1466 addr = force_reg (GET_MODE (addr), addr);
1467 x = replace_equiv_address (x, addr);
1468 }
1469 seq = get_insns ();
1470 end_sequence ();
1471 if (seq)
1472 emit_insn_before (seq, insn);
1473 }
1474 break;
1475
1476 case REG:
1477 new = instantiate_new_reg (x, &offset);
1478 if (new == NULL)
1479 continue;
1480 if (offset == 0)
1481 x = new;
1482 else
1483 {
1484 start_sequence ();
1485
1486 /* Careful, special mode predicates may have stuff in
1487 insn_data[insn_code].operand[i].mode that isn't useful
1488 to us for computing a new value. */
1489 /* ??? Recognize address_operand and/or "p" constraints
1490 to see if (plus new offset) is a valid before we put
1491 this through expand_simple_binop. */
1492 x = expand_simple_binop (GET_MODE (x), PLUS, new,
1493 GEN_INT (offset), NULL_RTX,
1494 1, OPTAB_LIB_WIDEN);
1495 seq = get_insns ();
1496 end_sequence ();
1497 emit_insn_before (seq, insn);
1498 }
1499 break;
1500
1501 case SUBREG:
1502 new = instantiate_new_reg (SUBREG_REG (x), &offset);
1503 if (new == NULL)
1504 continue;
1505 if (offset != 0)
1506 {
1507 start_sequence ();
1508 new = expand_simple_binop (GET_MODE (new), PLUS, new,
1509 GEN_INT (offset), NULL_RTX,
1510 1, OPTAB_LIB_WIDEN);
1511 seq = get_insns ();
1512 end_sequence ();
1513 emit_insn_before (seq, insn);
1514 }
1515 x = simplify_gen_subreg (recog_data.operand_mode[i], new,
1516 GET_MODE (new), SUBREG_BYTE (x));
1517 break;
1518
1519 default:
1520 continue;
1521 }
1522
1523 /* At this point, X contains the new value for the operand.
1524 Validate the new value vs the insn predicate. Note that
1525 asm insns will have insn_code -1 here. */
1526 if (!safe_insn_predicate (insn_code, i, x))
1527 {
1528 start_sequence ();
1529 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1530 seq = get_insns ();
1531 end_sequence ();
1532 if (seq)
1533 emit_insn_before (seq, insn);
1534 }
1535
1536 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1537 any_change = true;
1538 }
1539
1540 if (any_change)
1541 {
1542 /* Propagate operand changes into the duplicates. */
1543 for (i = 0; i < recog_data.n_dups; ++i)
1544 *recog_data.dup_loc[i]
1545 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1546
1547 /* Force re-recognition of the instruction for validation. */
1548 INSN_CODE (insn) = -1;
1549 }
1550
1551 if (asm_noperands (PATTERN (insn)) >= 0)
1552 {
1553 if (!check_asm_operands (PATTERN (insn)))
1554 {
1555 error_for_asm (insn, "impossible constraint in %<asm%>");
1556 delete_insn (insn);
1557 }
1558 }
1559 else
1560 {
1561 if (recog_memoized (insn) < 0)
1562 fatal_insn_not_found (insn);
1563 }
1564 }
1565
1566 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1567 do any instantiation required. */
1568
1569 void
1570 instantiate_decl_rtl (rtx x)
1571 {
1572 rtx addr;
1573
1574 if (x == 0)
1575 return;
1576
1577 /* If this is a CONCAT, recurse for the pieces. */
1578 if (GET_CODE (x) == CONCAT)
1579 {
1580 instantiate_decl_rtl (XEXP (x, 0));
1581 instantiate_decl_rtl (XEXP (x, 1));
1582 return;
1583 }
1584
1585 /* If this is not a MEM, no need to do anything. Similarly if the
1586 address is a constant or a register that is not a virtual register. */
1587 if (!MEM_P (x))
1588 return;
1589
1590 addr = XEXP (x, 0);
1591 if (CONSTANT_P (addr)
1592 || (REG_P (addr)
1593 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1594 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1595 return;
1596
1597 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1598 }
1599
1600 /* Helper for instantiate_decls called via walk_tree: Process all decls
1601 in the given DECL_VALUE_EXPR. */
1602
1603 static tree
1604 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1605 {
1606 tree t = *tp;
1607 if (! EXPR_P (t))
1608 {
1609 *walk_subtrees = 0;
1610 if (DECL_P (t) && DECL_RTL_SET_P (t))
1611 instantiate_decl_rtl (DECL_RTL (t));
1612 }
1613 return NULL;
1614 }
1615
1616 /* Subroutine of instantiate_decls: Process all decls in the given
1617 BLOCK node and all its subblocks. */
1618
1619 static void
1620 instantiate_decls_1 (tree let)
1621 {
1622 tree t;
1623
1624 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1625 {
1626 if (DECL_RTL_SET_P (t))
1627 instantiate_decl_rtl (DECL_RTL (t));
1628 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1629 {
1630 tree v = DECL_VALUE_EXPR (t);
1631 walk_tree (&v, instantiate_expr, NULL, NULL);
1632 }
1633 }
1634
1635 /* Process all subblocks. */
1636 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1637 instantiate_decls_1 (t);
1638 }
1639
1640 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1641 all virtual registers in their DECL_RTL's. */
1642
1643 static void
1644 instantiate_decls (tree fndecl)
1645 {
1646 tree decl;
1647
1648 /* Process all parameters of the function. */
1649 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1650 {
1651 instantiate_decl_rtl (DECL_RTL (decl));
1652 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1653 if (DECL_HAS_VALUE_EXPR_P (decl))
1654 {
1655 tree v = DECL_VALUE_EXPR (decl);
1656 walk_tree (&v, instantiate_expr, NULL, NULL);
1657 }
1658 }
1659
1660 /* Now process all variables defined in the function or its subblocks. */
1661 instantiate_decls_1 (DECL_INITIAL (fndecl));
1662 }
1663
1664 /* Pass through the INSNS of function FNDECL and convert virtual register
1665 references to hard register references. */
1666
1667 static unsigned int
1668 instantiate_virtual_regs (void)
1669 {
1670 rtx insn;
1671
1672 /* Compute the offsets to use for this function. */
1673 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1674 var_offset = STARTING_FRAME_OFFSET;
1675 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1676 out_arg_offset = STACK_POINTER_OFFSET;
1677 #ifdef FRAME_POINTER_CFA_OFFSET
1678 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1679 #else
1680 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1681 #endif
1682
1683 /* Initialize recognition, indicating that volatile is OK. */
1684 init_recog ();
1685
1686 /* Scan through all the insns, instantiating every virtual register still
1687 present. */
1688 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1689 if (INSN_P (insn))
1690 {
1691 /* These patterns in the instruction stream can never be recognized.
1692 Fortunately, they shouldn't contain virtual registers either. */
1693 if (GET_CODE (PATTERN (insn)) == USE
1694 || GET_CODE (PATTERN (insn)) == CLOBBER
1695 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1696 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1697 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1698 continue;
1699
1700 instantiate_virtual_regs_in_insn (insn);
1701
1702 if (INSN_DELETED_P (insn))
1703 continue;
1704
1705 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1706
1707 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1708 if (GET_CODE (insn) == CALL_INSN)
1709 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1710 instantiate_virtual_regs_in_rtx, NULL);
1711 }
1712
1713 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1714 instantiate_decls (current_function_decl);
1715
1716 targetm.instantiate_decls ();
1717
1718 /* Indicate that, from now on, assign_stack_local should use
1719 frame_pointer_rtx. */
1720 virtuals_instantiated = 1;
1721 return 0;
1722 }
1723
1724 struct rtl_opt_pass pass_instantiate_virtual_regs =
1725 {
1726 {
1727 RTL_PASS,
1728 "vregs", /* name */
1729 NULL, /* gate */
1730 instantiate_virtual_regs, /* execute */
1731 NULL, /* sub */
1732 NULL, /* next */
1733 0, /* static_pass_number */
1734 0, /* tv_id */
1735 0, /* properties_required */
1736 0, /* properties_provided */
1737 0, /* properties_destroyed */
1738 0, /* todo_flags_start */
1739 TODO_dump_func /* todo_flags_finish */
1740 }
1741 };
1742
1743 \f
1744 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1745 This means a type for which function calls must pass an address to the
1746 function or get an address back from the function.
1747 EXP may be a type node or an expression (whose type is tested). */
1748
1749 int
1750 aggregate_value_p (const_tree exp, const_tree fntype)
1751 {
1752 int i, regno, nregs;
1753 rtx reg;
1754
1755 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1756
1757 /* DECL node associated with FNTYPE when relevant, which we might need to
1758 check for by-invisible-reference returns, typically for CALL_EXPR input
1759 EXPressions. */
1760 const_tree fndecl = NULL_TREE;
1761
1762 if (fntype)
1763 switch (TREE_CODE (fntype))
1764 {
1765 case CALL_EXPR:
1766 fndecl = get_callee_fndecl (fntype);
1767 fntype = fndecl ? TREE_TYPE (fndecl) : 0;
1768 break;
1769 case FUNCTION_DECL:
1770 fndecl = fntype;
1771 fntype = TREE_TYPE (fndecl);
1772 break;
1773 case FUNCTION_TYPE:
1774 case METHOD_TYPE:
1775 break;
1776 case IDENTIFIER_NODE:
1777 fntype = 0;
1778 break;
1779 default:
1780 /* We don't expect other rtl types here. */
1781 gcc_unreachable ();
1782 }
1783
1784 if (TREE_CODE (type) == VOID_TYPE)
1785 return 0;
1786
1787 /* If the front end has decided that this needs to be passed by
1788 reference, do so. */
1789 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1790 && DECL_BY_REFERENCE (exp))
1791 return 1;
1792
1793 /* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the
1794 called function RESULT_DECL, meaning the function returns in memory by
1795 invisible reference. This check lets front-ends not set TREE_ADDRESSABLE
1796 on the function type, which used to be the way to request such a return
1797 mechanism but might now be causing troubles at gimplification time if
1798 temporaries with the function type need to be created. */
1799 if (TREE_CODE (exp) == CALL_EXPR && fndecl && DECL_RESULT (fndecl)
1800 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
1801 return 1;
1802
1803 if (targetm.calls.return_in_memory (type, fntype))
1804 return 1;
1805 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1806 and thus can't be returned in registers. */
1807 if (TREE_ADDRESSABLE (type))
1808 return 1;
1809 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1810 return 1;
1811 /* Make sure we have suitable call-clobbered regs to return
1812 the value in; if not, we must return it in memory. */
1813 reg = hard_function_value (type, 0, fntype, 0);
1814
1815 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1816 it is OK. */
1817 if (!REG_P (reg))
1818 return 0;
1819
1820 regno = REGNO (reg);
1821 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1822 for (i = 0; i < nregs; i++)
1823 if (! call_used_regs[regno + i])
1824 return 1;
1825 return 0;
1826 }
1827 \f
1828 /* Return true if we should assign DECL a pseudo register; false if it
1829 should live on the local stack. */
1830
1831 bool
1832 use_register_for_decl (const_tree decl)
1833 {
1834 if (!targetm.calls.allocate_stack_slots_for_args())
1835 return true;
1836
1837 /* Honor volatile. */
1838 if (TREE_SIDE_EFFECTS (decl))
1839 return false;
1840
1841 /* Honor addressability. */
1842 if (TREE_ADDRESSABLE (decl))
1843 return false;
1844
1845 /* Only register-like things go in registers. */
1846 if (DECL_MODE (decl) == BLKmode)
1847 return false;
1848
1849 /* If -ffloat-store specified, don't put explicit float variables
1850 into registers. */
1851 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1852 propagates values across these stores, and it probably shouldn't. */
1853 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1854 return false;
1855
1856 /* If we're not interested in tracking debugging information for
1857 this decl, then we can certainly put it in a register. */
1858 if (DECL_IGNORED_P (decl))
1859 return true;
1860
1861 return (optimize || DECL_REGISTER (decl));
1862 }
1863
1864 /* Return true if TYPE should be passed by invisible reference. */
1865
1866 bool
1867 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1868 tree type, bool named_arg)
1869 {
1870 if (type)
1871 {
1872 /* If this type contains non-trivial constructors, then it is
1873 forbidden for the middle-end to create any new copies. */
1874 if (TREE_ADDRESSABLE (type))
1875 return true;
1876
1877 /* GCC post 3.4 passes *all* variable sized types by reference. */
1878 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1879 return true;
1880 }
1881
1882 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1883 }
1884
1885 /* Return true if TYPE, which is passed by reference, should be callee
1886 copied instead of caller copied. */
1887
1888 bool
1889 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1890 tree type, bool named_arg)
1891 {
1892 if (type && TREE_ADDRESSABLE (type))
1893 return false;
1894 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1895 }
1896
1897 /* Structures to communicate between the subroutines of assign_parms.
1898 The first holds data persistent across all parameters, the second
1899 is cleared out for each parameter. */
1900
1901 struct assign_parm_data_all
1902 {
1903 CUMULATIVE_ARGS args_so_far;
1904 struct args_size stack_args_size;
1905 tree function_result_decl;
1906 tree orig_fnargs;
1907 rtx first_conversion_insn;
1908 rtx last_conversion_insn;
1909 HOST_WIDE_INT pretend_args_size;
1910 HOST_WIDE_INT extra_pretend_bytes;
1911 int reg_parm_stack_space;
1912 };
1913
1914 struct assign_parm_data_one
1915 {
1916 tree nominal_type;
1917 tree passed_type;
1918 rtx entry_parm;
1919 rtx stack_parm;
1920 enum machine_mode nominal_mode;
1921 enum machine_mode passed_mode;
1922 enum machine_mode promoted_mode;
1923 struct locate_and_pad_arg_data locate;
1924 int partial;
1925 BOOL_BITFIELD named_arg : 1;
1926 BOOL_BITFIELD passed_pointer : 1;
1927 BOOL_BITFIELD on_stack : 1;
1928 BOOL_BITFIELD loaded_in_reg : 1;
1929 };
1930
1931 /* A subroutine of assign_parms. Initialize ALL. */
1932
1933 static void
1934 assign_parms_initialize_all (struct assign_parm_data_all *all)
1935 {
1936 tree fntype;
1937
1938 memset (all, 0, sizeof (*all));
1939
1940 fntype = TREE_TYPE (current_function_decl);
1941
1942 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
1943 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
1944 #else
1945 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
1946 current_function_decl, -1);
1947 #endif
1948
1949 #ifdef REG_PARM_STACK_SPACE
1950 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
1951 #endif
1952 }
1953
1954 /* If ARGS contains entries with complex types, split the entry into two
1955 entries of the component type. Return a new list of substitutions are
1956 needed, else the old list. */
1957
1958 static tree
1959 split_complex_args (tree args)
1960 {
1961 tree p;
1962
1963 /* Before allocating memory, check for the common case of no complex. */
1964 for (p = args; p; p = TREE_CHAIN (p))
1965 {
1966 tree type = TREE_TYPE (p);
1967 if (TREE_CODE (type) == COMPLEX_TYPE
1968 && targetm.calls.split_complex_arg (type))
1969 goto found;
1970 }
1971 return args;
1972
1973 found:
1974 args = copy_list (args);
1975
1976 for (p = args; p; p = TREE_CHAIN (p))
1977 {
1978 tree type = TREE_TYPE (p);
1979 if (TREE_CODE (type) == COMPLEX_TYPE
1980 && targetm.calls.split_complex_arg (type))
1981 {
1982 tree decl;
1983 tree subtype = TREE_TYPE (type);
1984 bool addressable = TREE_ADDRESSABLE (p);
1985
1986 /* Rewrite the PARM_DECL's type with its component. */
1987 TREE_TYPE (p) = subtype;
1988 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
1989 DECL_MODE (p) = VOIDmode;
1990 DECL_SIZE (p) = NULL;
1991 DECL_SIZE_UNIT (p) = NULL;
1992 /* If this arg must go in memory, put it in a pseudo here.
1993 We can't allow it to go in memory as per normal parms,
1994 because the usual place might not have the imag part
1995 adjacent to the real part. */
1996 DECL_ARTIFICIAL (p) = addressable;
1997 DECL_IGNORED_P (p) = addressable;
1998 TREE_ADDRESSABLE (p) = 0;
1999 layout_decl (p, 0);
2000
2001 /* Build a second synthetic decl. */
2002 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
2003 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2004 DECL_ARTIFICIAL (decl) = addressable;
2005 DECL_IGNORED_P (decl) = addressable;
2006 layout_decl (decl, 0);
2007
2008 /* Splice it in; skip the new decl. */
2009 TREE_CHAIN (decl) = TREE_CHAIN (p);
2010 TREE_CHAIN (p) = decl;
2011 p = decl;
2012 }
2013 }
2014
2015 return args;
2016 }
2017
2018 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2019 the hidden struct return argument, and (abi willing) complex args.
2020 Return the new parameter list. */
2021
2022 static tree
2023 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2024 {
2025 tree fndecl = current_function_decl;
2026 tree fntype = TREE_TYPE (fndecl);
2027 tree fnargs = DECL_ARGUMENTS (fndecl);
2028
2029 /* If struct value address is treated as the first argument, make it so. */
2030 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2031 && ! cfun->returns_pcc_struct
2032 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2033 {
2034 tree type = build_pointer_type (TREE_TYPE (fntype));
2035 tree decl;
2036
2037 decl = build_decl (PARM_DECL, NULL_TREE, type);
2038 DECL_ARG_TYPE (decl) = type;
2039 DECL_ARTIFICIAL (decl) = 1;
2040 DECL_IGNORED_P (decl) = 1;
2041
2042 TREE_CHAIN (decl) = fnargs;
2043 fnargs = decl;
2044 all->function_result_decl = decl;
2045 }
2046
2047 all->orig_fnargs = fnargs;
2048
2049 /* If the target wants to split complex arguments into scalars, do so. */
2050 if (targetm.calls.split_complex_arg)
2051 fnargs = split_complex_args (fnargs);
2052
2053 return fnargs;
2054 }
2055
2056 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2057 data for the parameter. Incorporate ABI specifics such as pass-by-
2058 reference and type promotion. */
2059
2060 static void
2061 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2062 struct assign_parm_data_one *data)
2063 {
2064 tree nominal_type, passed_type;
2065 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2066
2067 memset (data, 0, sizeof (*data));
2068
2069 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2070 if (!cfun->stdarg)
2071 data->named_arg = 1; /* No variadic parms. */
2072 else if (TREE_CHAIN (parm))
2073 data->named_arg = 1; /* Not the last non-variadic parm. */
2074 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2075 data->named_arg = 1; /* Only variadic ones are unnamed. */
2076 else
2077 data->named_arg = 0; /* Treat as variadic. */
2078
2079 nominal_type = TREE_TYPE (parm);
2080 passed_type = DECL_ARG_TYPE (parm);
2081
2082 /* Look out for errors propagating this far. Also, if the parameter's
2083 type is void then its value doesn't matter. */
2084 if (TREE_TYPE (parm) == error_mark_node
2085 /* This can happen after weird syntax errors
2086 or if an enum type is defined among the parms. */
2087 || TREE_CODE (parm) != PARM_DECL
2088 || passed_type == NULL
2089 || VOID_TYPE_P (nominal_type))
2090 {
2091 nominal_type = passed_type = void_type_node;
2092 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2093 goto egress;
2094 }
2095
2096 /* Find mode of arg as it is passed, and mode of arg as it should be
2097 during execution of this function. */
2098 passed_mode = TYPE_MODE (passed_type);
2099 nominal_mode = TYPE_MODE (nominal_type);
2100
2101 /* If the parm is to be passed as a transparent union, use the type of
2102 the first field for the tests below. We have already verified that
2103 the modes are the same. */
2104 if (TREE_CODE (passed_type) == UNION_TYPE
2105 && TYPE_TRANSPARENT_UNION (passed_type))
2106 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2107
2108 /* See if this arg was passed by invisible reference. */
2109 if (pass_by_reference (&all->args_so_far, passed_mode,
2110 passed_type, data->named_arg))
2111 {
2112 passed_type = nominal_type = build_pointer_type (passed_type);
2113 data->passed_pointer = true;
2114 passed_mode = nominal_mode = Pmode;
2115 }
2116
2117 /* Find mode as it is passed by the ABI. */
2118 promoted_mode = passed_mode;
2119 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2120 {
2121 int unsignedp = TYPE_UNSIGNED (passed_type);
2122 promoted_mode = promote_mode (passed_type, promoted_mode,
2123 &unsignedp, 1);
2124 }
2125
2126 egress:
2127 data->nominal_type = nominal_type;
2128 data->passed_type = passed_type;
2129 data->nominal_mode = nominal_mode;
2130 data->passed_mode = passed_mode;
2131 data->promoted_mode = promoted_mode;
2132 }
2133
2134 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2135
2136 static void
2137 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2138 struct assign_parm_data_one *data, bool no_rtl)
2139 {
2140 int varargs_pretend_bytes = 0;
2141
2142 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2143 data->promoted_mode,
2144 data->passed_type,
2145 &varargs_pretend_bytes, no_rtl);
2146
2147 /* If the back-end has requested extra stack space, record how much is
2148 needed. Do not change pretend_args_size otherwise since it may be
2149 nonzero from an earlier partial argument. */
2150 if (varargs_pretend_bytes > 0)
2151 all->pretend_args_size = varargs_pretend_bytes;
2152 }
2153
2154 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2155 the incoming location of the current parameter. */
2156
2157 static void
2158 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2159 struct assign_parm_data_one *data)
2160 {
2161 HOST_WIDE_INT pretend_bytes = 0;
2162 rtx entry_parm;
2163 bool in_regs;
2164
2165 if (data->promoted_mode == VOIDmode)
2166 {
2167 data->entry_parm = data->stack_parm = const0_rtx;
2168 return;
2169 }
2170
2171 #ifdef FUNCTION_INCOMING_ARG
2172 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2173 data->passed_type, data->named_arg);
2174 #else
2175 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2176 data->passed_type, data->named_arg);
2177 #endif
2178
2179 if (entry_parm == 0)
2180 data->promoted_mode = data->passed_mode;
2181
2182 /* Determine parm's home in the stack, in case it arrives in the stack
2183 or we should pretend it did. Compute the stack position and rtx where
2184 the argument arrives and its size.
2185
2186 There is one complexity here: If this was a parameter that would
2187 have been passed in registers, but wasn't only because it is
2188 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2189 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2190 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2191 as it was the previous time. */
2192 in_regs = entry_parm != 0;
2193 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2194 in_regs = true;
2195 #endif
2196 if (!in_regs && !data->named_arg)
2197 {
2198 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2199 {
2200 rtx tem;
2201 #ifdef FUNCTION_INCOMING_ARG
2202 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2203 data->passed_type, true);
2204 #else
2205 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2206 data->passed_type, true);
2207 #endif
2208 in_regs = tem != NULL;
2209 }
2210 }
2211
2212 /* If this parameter was passed both in registers and in the stack, use
2213 the copy on the stack. */
2214 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2215 data->passed_type))
2216 entry_parm = 0;
2217
2218 if (entry_parm)
2219 {
2220 int partial;
2221
2222 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2223 data->promoted_mode,
2224 data->passed_type,
2225 data->named_arg);
2226 data->partial = partial;
2227
2228 /* The caller might already have allocated stack space for the
2229 register parameters. */
2230 if (partial != 0 && all->reg_parm_stack_space == 0)
2231 {
2232 /* Part of this argument is passed in registers and part
2233 is passed on the stack. Ask the prologue code to extend
2234 the stack part so that we can recreate the full value.
2235
2236 PRETEND_BYTES is the size of the registers we need to store.
2237 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2238 stack space that the prologue should allocate.
2239
2240 Internally, gcc assumes that the argument pointer is aligned
2241 to STACK_BOUNDARY bits. This is used both for alignment
2242 optimizations (see init_emit) and to locate arguments that are
2243 aligned to more than PARM_BOUNDARY bits. We must preserve this
2244 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2245 a stack boundary. */
2246
2247 /* We assume at most one partial arg, and it must be the first
2248 argument on the stack. */
2249 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2250
2251 pretend_bytes = partial;
2252 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2253
2254 /* We want to align relative to the actual stack pointer, so
2255 don't include this in the stack size until later. */
2256 all->extra_pretend_bytes = all->pretend_args_size;
2257 }
2258 }
2259
2260 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2261 entry_parm ? data->partial : 0, current_function_decl,
2262 &all->stack_args_size, &data->locate);
2263
2264 /* Adjust offsets to include the pretend args. */
2265 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2266 data->locate.slot_offset.constant += pretend_bytes;
2267 data->locate.offset.constant += pretend_bytes;
2268
2269 data->entry_parm = entry_parm;
2270 }
2271
2272 /* A subroutine of assign_parms. If there is actually space on the stack
2273 for this parm, count it in stack_args_size and return true. */
2274
2275 static bool
2276 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2277 struct assign_parm_data_one *data)
2278 {
2279 /* Trivially true if we've no incoming register. */
2280 if (data->entry_parm == NULL)
2281 ;
2282 /* Also true if we're partially in registers and partially not,
2283 since we've arranged to drop the entire argument on the stack. */
2284 else if (data->partial != 0)
2285 ;
2286 /* Also true if the target says that it's passed in both registers
2287 and on the stack. */
2288 else if (GET_CODE (data->entry_parm) == PARALLEL
2289 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2290 ;
2291 /* Also true if the target says that there's stack allocated for
2292 all register parameters. */
2293 else if (all->reg_parm_stack_space > 0)
2294 ;
2295 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2296 else
2297 return false;
2298
2299 all->stack_args_size.constant += data->locate.size.constant;
2300 if (data->locate.size.var)
2301 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2302
2303 return true;
2304 }
2305
2306 /* A subroutine of assign_parms. Given that this parameter is allocated
2307 stack space by the ABI, find it. */
2308
2309 static void
2310 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2311 {
2312 rtx offset_rtx, stack_parm;
2313 unsigned int align, boundary;
2314
2315 /* If we're passing this arg using a reg, make its stack home the
2316 aligned stack slot. */
2317 if (data->entry_parm)
2318 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2319 else
2320 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2321
2322 stack_parm = crtl->args.internal_arg_pointer;
2323 if (offset_rtx != const0_rtx)
2324 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2325 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2326
2327 set_mem_attributes (stack_parm, parm, 1);
2328
2329 boundary = data->locate.boundary;
2330 align = BITS_PER_UNIT;
2331
2332 /* If we're padding upward, we know that the alignment of the slot
2333 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2334 intentionally forcing upward padding. Otherwise we have to come
2335 up with a guess at the alignment based on OFFSET_RTX. */
2336 if (data->locate.where_pad != downward || data->entry_parm)
2337 align = boundary;
2338 else if (GET_CODE (offset_rtx) == CONST_INT)
2339 {
2340 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2341 align = align & -align;
2342 }
2343 set_mem_align (stack_parm, align);
2344
2345 if (data->entry_parm)
2346 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2347
2348 data->stack_parm = stack_parm;
2349 }
2350
2351 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2352 always valid and contiguous. */
2353
2354 static void
2355 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2356 {
2357 rtx entry_parm = data->entry_parm;
2358 rtx stack_parm = data->stack_parm;
2359
2360 /* If this parm was passed part in regs and part in memory, pretend it
2361 arrived entirely in memory by pushing the register-part onto the stack.
2362 In the special case of a DImode or DFmode that is split, we could put
2363 it together in a pseudoreg directly, but for now that's not worth
2364 bothering with. */
2365 if (data->partial != 0)
2366 {
2367 /* Handle calls that pass values in multiple non-contiguous
2368 locations. The Irix 6 ABI has examples of this. */
2369 if (GET_CODE (entry_parm) == PARALLEL)
2370 emit_group_store (validize_mem (stack_parm), entry_parm,
2371 data->passed_type,
2372 int_size_in_bytes (data->passed_type));
2373 else
2374 {
2375 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2376 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2377 data->partial / UNITS_PER_WORD);
2378 }
2379
2380 entry_parm = stack_parm;
2381 }
2382
2383 /* If we didn't decide this parm came in a register, by default it came
2384 on the stack. */
2385 else if (entry_parm == NULL)
2386 entry_parm = stack_parm;
2387
2388 /* When an argument is passed in multiple locations, we can't make use
2389 of this information, but we can save some copying if the whole argument
2390 is passed in a single register. */
2391 else if (GET_CODE (entry_parm) == PARALLEL
2392 && data->nominal_mode != BLKmode
2393 && data->passed_mode != BLKmode)
2394 {
2395 size_t i, len = XVECLEN (entry_parm, 0);
2396
2397 for (i = 0; i < len; i++)
2398 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2399 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2400 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2401 == data->passed_mode)
2402 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2403 {
2404 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2405 break;
2406 }
2407 }
2408
2409 data->entry_parm = entry_parm;
2410 }
2411
2412 /* A subroutine of assign_parms. Reconstitute any values which were
2413 passed in multiple registers and would fit in a single register. */
2414
2415 static void
2416 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2417 {
2418 rtx entry_parm = data->entry_parm;
2419
2420 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2421 This can be done with register operations rather than on the
2422 stack, even if we will store the reconstituted parameter on the
2423 stack later. */
2424 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2425 {
2426 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2427 emit_group_store (parmreg, entry_parm, NULL_TREE,
2428 GET_MODE_SIZE (GET_MODE (entry_parm)));
2429 entry_parm = parmreg;
2430 }
2431
2432 data->entry_parm = entry_parm;
2433 }
2434
2435 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2436 always valid and properly aligned. */
2437
2438 static void
2439 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2440 {
2441 rtx stack_parm = data->stack_parm;
2442
2443 /* If we can't trust the parm stack slot to be aligned enough for its
2444 ultimate type, don't use that slot after entry. We'll make another
2445 stack slot, if we need one. */
2446 if (stack_parm
2447 && ((STRICT_ALIGNMENT
2448 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2449 || (data->nominal_type
2450 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2451 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2452 stack_parm = NULL;
2453
2454 /* If parm was passed in memory, and we need to convert it on entry,
2455 don't store it back in that same slot. */
2456 else if (data->entry_parm == stack_parm
2457 && data->nominal_mode != BLKmode
2458 && data->nominal_mode != data->passed_mode)
2459 stack_parm = NULL;
2460
2461 /* If stack protection is in effect for this function, don't leave any
2462 pointers in their passed stack slots. */
2463 else if (crtl->stack_protect_guard
2464 && (flag_stack_protect == 2
2465 || data->passed_pointer
2466 || POINTER_TYPE_P (data->nominal_type)))
2467 stack_parm = NULL;
2468
2469 data->stack_parm = stack_parm;
2470 }
2471
2472 /* A subroutine of assign_parms. Return true if the current parameter
2473 should be stored as a BLKmode in the current frame. */
2474
2475 static bool
2476 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2477 {
2478 if (data->nominal_mode == BLKmode)
2479 return true;
2480 if (GET_MODE (data->entry_parm) == BLKmode)
2481 return true;
2482
2483 #ifdef BLOCK_REG_PADDING
2484 /* Only assign_parm_setup_block knows how to deal with register arguments
2485 that are padded at the least significant end. */
2486 if (REG_P (data->entry_parm)
2487 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2488 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2489 == (BYTES_BIG_ENDIAN ? upward : downward)))
2490 return true;
2491 #endif
2492
2493 return false;
2494 }
2495
2496 /* A subroutine of assign_parms. Arrange for the parameter to be
2497 present and valid in DATA->STACK_RTL. */
2498
2499 static void
2500 assign_parm_setup_block (struct assign_parm_data_all *all,
2501 tree parm, struct assign_parm_data_one *data)
2502 {
2503 rtx entry_parm = data->entry_parm;
2504 rtx stack_parm = data->stack_parm;
2505 HOST_WIDE_INT size;
2506 HOST_WIDE_INT size_stored;
2507
2508 if (GET_CODE (entry_parm) == PARALLEL)
2509 entry_parm = emit_group_move_into_temps (entry_parm);
2510
2511 size = int_size_in_bytes (data->passed_type);
2512 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2513 if (stack_parm == 0)
2514 {
2515 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2516 stack_parm = assign_stack_local (BLKmode, size_stored,
2517 DECL_ALIGN (parm));
2518 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2519 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2520 set_mem_attributes (stack_parm, parm, 1);
2521 }
2522
2523 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2524 calls that pass values in multiple non-contiguous locations. */
2525 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2526 {
2527 rtx mem;
2528
2529 /* Note that we will be storing an integral number of words.
2530 So we have to be careful to ensure that we allocate an
2531 integral number of words. We do this above when we call
2532 assign_stack_local if space was not allocated in the argument
2533 list. If it was, this will not work if PARM_BOUNDARY is not
2534 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2535 if it becomes a problem. Exception is when BLKmode arrives
2536 with arguments not conforming to word_mode. */
2537
2538 if (data->stack_parm == 0)
2539 ;
2540 else if (GET_CODE (entry_parm) == PARALLEL)
2541 ;
2542 else
2543 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2544
2545 mem = validize_mem (stack_parm);
2546
2547 /* Handle values in multiple non-contiguous locations. */
2548 if (GET_CODE (entry_parm) == PARALLEL)
2549 {
2550 push_to_sequence2 (all->first_conversion_insn,
2551 all->last_conversion_insn);
2552 emit_group_store (mem, entry_parm, data->passed_type, size);
2553 all->first_conversion_insn = get_insns ();
2554 all->last_conversion_insn = get_last_insn ();
2555 end_sequence ();
2556 }
2557
2558 else if (size == 0)
2559 ;
2560
2561 /* If SIZE is that of a mode no bigger than a word, just use
2562 that mode's store operation. */
2563 else if (size <= UNITS_PER_WORD)
2564 {
2565 enum machine_mode mode
2566 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2567
2568 if (mode != BLKmode
2569 #ifdef BLOCK_REG_PADDING
2570 && (size == UNITS_PER_WORD
2571 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2572 != (BYTES_BIG_ENDIAN ? upward : downward)))
2573 #endif
2574 )
2575 {
2576 rtx reg;
2577
2578 /* We are really truncating a word_mode value containing
2579 SIZE bytes into a value of mode MODE. If such an
2580 operation requires no actual instructions, we can refer
2581 to the value directly in mode MODE, otherwise we must
2582 start with the register in word_mode and explicitly
2583 convert it. */
2584 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2585 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2586 else
2587 {
2588 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2589 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2590 }
2591 emit_move_insn (change_address (mem, mode, 0), reg);
2592 }
2593
2594 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2595 machine must be aligned to the left before storing
2596 to memory. Note that the previous test doesn't
2597 handle all cases (e.g. SIZE == 3). */
2598 else if (size != UNITS_PER_WORD
2599 #ifdef BLOCK_REG_PADDING
2600 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2601 == downward)
2602 #else
2603 && BYTES_BIG_ENDIAN
2604 #endif
2605 )
2606 {
2607 rtx tem, x;
2608 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2609 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2610
2611 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2612 build_int_cst (NULL_TREE, by),
2613 NULL_RTX, 1);
2614 tem = change_address (mem, word_mode, 0);
2615 emit_move_insn (tem, x);
2616 }
2617 else
2618 move_block_from_reg (REGNO (entry_parm), mem,
2619 size_stored / UNITS_PER_WORD);
2620 }
2621 else
2622 move_block_from_reg (REGNO (entry_parm), mem,
2623 size_stored / UNITS_PER_WORD);
2624 }
2625 else if (data->stack_parm == 0)
2626 {
2627 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2628 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2629 BLOCK_OP_NORMAL);
2630 all->first_conversion_insn = get_insns ();
2631 all->last_conversion_insn = get_last_insn ();
2632 end_sequence ();
2633 }
2634
2635 data->stack_parm = stack_parm;
2636 SET_DECL_RTL (parm, stack_parm);
2637 }
2638
2639 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2640 parameter. Get it there. Perform all ABI specified conversions. */
2641
2642 static void
2643 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2644 struct assign_parm_data_one *data)
2645 {
2646 rtx parmreg;
2647 enum machine_mode promoted_nominal_mode;
2648 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2649 bool did_conversion = false;
2650
2651 /* Store the parm in a pseudoregister during the function, but we may
2652 need to do it in a wider mode. */
2653
2654 /* This is not really promoting for a call. However we need to be
2655 consistent with assign_parm_find_data_types and expand_expr_real_1. */
2656 promoted_nominal_mode
2657 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 1);
2658
2659 parmreg = gen_reg_rtx (promoted_nominal_mode);
2660
2661 if (!DECL_ARTIFICIAL (parm))
2662 mark_user_reg (parmreg);
2663
2664 /* If this was an item that we received a pointer to,
2665 set DECL_RTL appropriately. */
2666 if (data->passed_pointer)
2667 {
2668 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2669 set_mem_attributes (x, parm, 1);
2670 SET_DECL_RTL (parm, x);
2671 }
2672 else
2673 SET_DECL_RTL (parm, parmreg);
2674
2675 assign_parm_remove_parallels (data);
2676
2677 /* Copy the value into the register. */
2678 if (data->nominal_mode != data->passed_mode
2679 || promoted_nominal_mode != data->promoted_mode)
2680 {
2681 int save_tree_used;
2682
2683 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2684 mode, by the caller. We now have to convert it to
2685 NOMINAL_MODE, if different. However, PARMREG may be in
2686 a different mode than NOMINAL_MODE if it is being stored
2687 promoted.
2688
2689 If ENTRY_PARM is a hard register, it might be in a register
2690 not valid for operating in its mode (e.g., an odd-numbered
2691 register for a DFmode). In that case, moves are the only
2692 thing valid, so we can't do a convert from there. This
2693 occurs when the calling sequence allow such misaligned
2694 usages.
2695
2696 In addition, the conversion may involve a call, which could
2697 clobber parameters which haven't been copied to pseudo
2698 registers yet. Therefore, we must first copy the parm to
2699 a pseudo reg here, and save the conversion until after all
2700 parameters have been moved. */
2701
2702 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2703
2704 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2705
2706 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2707 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2708
2709 if (GET_CODE (tempreg) == SUBREG
2710 && GET_MODE (tempreg) == data->nominal_mode
2711 && REG_P (SUBREG_REG (tempreg))
2712 && data->nominal_mode == data->passed_mode
2713 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2714 && GET_MODE_SIZE (GET_MODE (tempreg))
2715 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2716 {
2717 /* The argument is already sign/zero extended, so note it
2718 into the subreg. */
2719 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2720 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2721 }
2722
2723 /* TREE_USED gets set erroneously during expand_assignment. */
2724 save_tree_used = TREE_USED (parm);
2725 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
2726 TREE_USED (parm) = save_tree_used;
2727 all->first_conversion_insn = get_insns ();
2728 all->last_conversion_insn = get_last_insn ();
2729 end_sequence ();
2730
2731 did_conversion = true;
2732 }
2733 else
2734 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2735
2736 /* If we were passed a pointer but the actual value can safely live
2737 in a register, put it in one. */
2738 if (data->passed_pointer
2739 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2740 /* If by-reference argument was promoted, demote it. */
2741 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2742 || use_register_for_decl (parm)))
2743 {
2744 /* We can't use nominal_mode, because it will have been set to
2745 Pmode above. We must use the actual mode of the parm. */
2746 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2747 mark_user_reg (parmreg);
2748
2749 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2750 {
2751 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2752 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2753
2754 push_to_sequence2 (all->first_conversion_insn,
2755 all->last_conversion_insn);
2756 emit_move_insn (tempreg, DECL_RTL (parm));
2757 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2758 emit_move_insn (parmreg, tempreg);
2759 all->first_conversion_insn = get_insns ();
2760 all->last_conversion_insn = get_last_insn ();
2761 end_sequence ();
2762
2763 did_conversion = true;
2764 }
2765 else
2766 emit_move_insn (parmreg, DECL_RTL (parm));
2767
2768 SET_DECL_RTL (parm, parmreg);
2769
2770 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2771 now the parm. */
2772 data->stack_parm = NULL;
2773 }
2774
2775 /* Mark the register as eliminable if we did no conversion and it was
2776 copied from memory at a fixed offset, and the arg pointer was not
2777 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2778 offset formed an invalid address, such memory-equivalences as we
2779 make here would screw up life analysis for it. */
2780 if (data->nominal_mode == data->passed_mode
2781 && !did_conversion
2782 && data->stack_parm != 0
2783 && MEM_P (data->stack_parm)
2784 && data->locate.offset.var == 0
2785 && reg_mentioned_p (virtual_incoming_args_rtx,
2786 XEXP (data->stack_parm, 0)))
2787 {
2788 rtx linsn = get_last_insn ();
2789 rtx sinsn, set;
2790
2791 /* Mark complex types separately. */
2792 if (GET_CODE (parmreg) == CONCAT)
2793 {
2794 enum machine_mode submode
2795 = GET_MODE_INNER (GET_MODE (parmreg));
2796 int regnor = REGNO (XEXP (parmreg, 0));
2797 int regnoi = REGNO (XEXP (parmreg, 1));
2798 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2799 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2800 GET_MODE_SIZE (submode));
2801
2802 /* Scan backwards for the set of the real and
2803 imaginary parts. */
2804 for (sinsn = linsn; sinsn != 0;
2805 sinsn = prev_nonnote_insn (sinsn))
2806 {
2807 set = single_set (sinsn);
2808 if (set == 0)
2809 continue;
2810
2811 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2812 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
2813 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2814 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
2815 }
2816 }
2817 else if ((set = single_set (linsn)) != 0
2818 && SET_DEST (set) == parmreg)
2819 set_unique_reg_note (linsn, REG_EQUIV, data->stack_parm);
2820 }
2821
2822 /* For pointer data type, suggest pointer register. */
2823 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2824 mark_reg_pointer (parmreg,
2825 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2826 }
2827
2828 /* A subroutine of assign_parms. Allocate stack space to hold the current
2829 parameter. Get it there. Perform all ABI specified conversions. */
2830
2831 static void
2832 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2833 struct assign_parm_data_one *data)
2834 {
2835 /* Value must be stored in the stack slot STACK_PARM during function
2836 execution. */
2837 bool to_conversion = false;
2838
2839 assign_parm_remove_parallels (data);
2840
2841 if (data->promoted_mode != data->nominal_mode)
2842 {
2843 /* Conversion is required. */
2844 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2845
2846 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2847
2848 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2849 to_conversion = true;
2850
2851 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2852 TYPE_UNSIGNED (TREE_TYPE (parm)));
2853
2854 if (data->stack_parm)
2855 /* ??? This may need a big-endian conversion on sparc64. */
2856 data->stack_parm
2857 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2858 }
2859
2860 if (data->entry_parm != data->stack_parm)
2861 {
2862 rtx src, dest;
2863
2864 if (data->stack_parm == 0)
2865 {
2866 data->stack_parm
2867 = assign_stack_local (GET_MODE (data->entry_parm),
2868 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2869 TYPE_ALIGN (data->passed_type));
2870 set_mem_attributes (data->stack_parm, parm, 1);
2871 }
2872
2873 dest = validize_mem (data->stack_parm);
2874 src = validize_mem (data->entry_parm);
2875
2876 if (MEM_P (src))
2877 {
2878 /* Use a block move to handle potentially misaligned entry_parm. */
2879 if (!to_conversion)
2880 push_to_sequence2 (all->first_conversion_insn,
2881 all->last_conversion_insn);
2882 to_conversion = true;
2883
2884 emit_block_move (dest, src,
2885 GEN_INT (int_size_in_bytes (data->passed_type)),
2886 BLOCK_OP_NORMAL);
2887 }
2888 else
2889 emit_move_insn (dest, src);
2890 }
2891
2892 if (to_conversion)
2893 {
2894 all->first_conversion_insn = get_insns ();
2895 all->last_conversion_insn = get_last_insn ();
2896 end_sequence ();
2897 }
2898
2899 SET_DECL_RTL (parm, data->stack_parm);
2900 }
2901
2902 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2903 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2904
2905 static void
2906 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
2907 {
2908 tree parm;
2909 tree orig_fnargs = all->orig_fnargs;
2910
2911 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2912 {
2913 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2914 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2915 {
2916 rtx tmp, real, imag;
2917 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2918
2919 real = DECL_RTL (fnargs);
2920 imag = DECL_RTL (TREE_CHAIN (fnargs));
2921 if (inner != GET_MODE (real))
2922 {
2923 real = gen_lowpart_SUBREG (inner, real);
2924 imag = gen_lowpart_SUBREG (inner, imag);
2925 }
2926
2927 if (TREE_ADDRESSABLE (parm))
2928 {
2929 rtx rmem, imem;
2930 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
2931
2932 /* split_complex_arg put the real and imag parts in
2933 pseudos. Move them to memory. */
2934 tmp = assign_stack_local (DECL_MODE (parm), size,
2935 TYPE_ALIGN (TREE_TYPE (parm)));
2936 set_mem_attributes (tmp, parm, 1);
2937 rmem = adjust_address_nv (tmp, inner, 0);
2938 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
2939 push_to_sequence2 (all->first_conversion_insn,
2940 all->last_conversion_insn);
2941 emit_move_insn (rmem, real);
2942 emit_move_insn (imem, imag);
2943 all->first_conversion_insn = get_insns ();
2944 all->last_conversion_insn = get_last_insn ();
2945 end_sequence ();
2946 }
2947 else
2948 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2949 SET_DECL_RTL (parm, tmp);
2950
2951 real = DECL_INCOMING_RTL (fnargs);
2952 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2953 if (inner != GET_MODE (real))
2954 {
2955 real = gen_lowpart_SUBREG (inner, real);
2956 imag = gen_lowpart_SUBREG (inner, imag);
2957 }
2958 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2959 set_decl_incoming_rtl (parm, tmp, false);
2960 fnargs = TREE_CHAIN (fnargs);
2961 }
2962 else
2963 {
2964 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2965 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs), false);
2966
2967 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2968 instead of the copy of decl, i.e. FNARGS. */
2969 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2970 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
2971 }
2972
2973 fnargs = TREE_CHAIN (fnargs);
2974 }
2975 }
2976
2977 /* Assign RTL expressions to the function's parameters. This may involve
2978 copying them into registers and using those registers as the DECL_RTL. */
2979
2980 static void
2981 assign_parms (tree fndecl)
2982 {
2983 struct assign_parm_data_all all;
2984 tree fnargs, parm;
2985
2986 crtl->args.internal_arg_pointer
2987 = targetm.calls.internal_arg_pointer ();
2988
2989 assign_parms_initialize_all (&all);
2990 fnargs = assign_parms_augmented_arg_list (&all);
2991
2992 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
2993 {
2994 struct assign_parm_data_one data;
2995
2996 /* Extract the type of PARM; adjust it according to ABI. */
2997 assign_parm_find_data_types (&all, parm, &data);
2998
2999 /* Early out for errors and void parameters. */
3000 if (data.passed_mode == VOIDmode)
3001 {
3002 SET_DECL_RTL (parm, const0_rtx);
3003 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3004 continue;
3005 }
3006
3007 /* Estimate stack alignment from parameter alignment. */
3008 if (SUPPORTS_STACK_ALIGNMENT)
3009 {
3010 unsigned int align = FUNCTION_ARG_BOUNDARY (data.promoted_mode,
3011 data.passed_type);
3012 if (TYPE_ALIGN (data.nominal_type) > align)
3013 align = TYPE_ALIGN (data.passed_type);
3014 if (crtl->stack_alignment_estimated < align)
3015 {
3016 gcc_assert (!crtl->stack_realign_processed);
3017 crtl->stack_alignment_estimated = align;
3018 }
3019 }
3020
3021 if (cfun->stdarg && !TREE_CHAIN (parm))
3022 assign_parms_setup_varargs (&all, &data, false);
3023
3024 /* Find out where the parameter arrives in this function. */
3025 assign_parm_find_entry_rtl (&all, &data);
3026
3027 /* Find out where stack space for this parameter might be. */
3028 if (assign_parm_is_stack_parm (&all, &data))
3029 {
3030 assign_parm_find_stack_rtl (parm, &data);
3031 assign_parm_adjust_entry_rtl (&data);
3032 }
3033
3034 /* Record permanently how this parm was passed. */
3035 set_decl_incoming_rtl (parm, data.entry_parm, data.passed_pointer);
3036
3037 /* Update info on where next arg arrives in registers. */
3038 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3039 data.passed_type, data.named_arg);
3040
3041 assign_parm_adjust_stack_rtl (&data);
3042
3043 if (assign_parm_setup_block_p (&data))
3044 assign_parm_setup_block (&all, parm, &data);
3045 else if (data.passed_pointer || use_register_for_decl (parm))
3046 assign_parm_setup_reg (&all, parm, &data);
3047 else
3048 assign_parm_setup_stack (&all, parm, &data);
3049 }
3050
3051 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3052 assign_parms_unsplit_complex (&all, fnargs);
3053
3054 /* Output all parameter conversion instructions (possibly including calls)
3055 now that all parameters have been copied out of hard registers. */
3056 emit_insn (all.first_conversion_insn);
3057
3058 /* Estimate reload stack alignment from scalar return mode. */
3059 if (SUPPORTS_STACK_ALIGNMENT)
3060 {
3061 if (DECL_RESULT (fndecl))
3062 {
3063 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3064 enum machine_mode mode = TYPE_MODE (type);
3065
3066 if (mode != BLKmode
3067 && mode != VOIDmode
3068 && !AGGREGATE_TYPE_P (type))
3069 {
3070 unsigned int align = GET_MODE_ALIGNMENT (mode);
3071 if (crtl->stack_alignment_estimated < align)
3072 {
3073 gcc_assert (!crtl->stack_realign_processed);
3074 crtl->stack_alignment_estimated = align;
3075 }
3076 }
3077 }
3078 }
3079
3080 /* If we are receiving a struct value address as the first argument, set up
3081 the RTL for the function result. As this might require code to convert
3082 the transmitted address to Pmode, we do this here to ensure that possible
3083 preliminary conversions of the address have been emitted already. */
3084 if (all.function_result_decl)
3085 {
3086 tree result = DECL_RESULT (current_function_decl);
3087 rtx addr = DECL_RTL (all.function_result_decl);
3088 rtx x;
3089
3090 if (DECL_BY_REFERENCE (result))
3091 x = addr;
3092 else
3093 {
3094 addr = convert_memory_address (Pmode, addr);
3095 x = gen_rtx_MEM (DECL_MODE (result), addr);
3096 set_mem_attributes (x, result, 1);
3097 }
3098 SET_DECL_RTL (result, x);
3099 }
3100
3101 /* We have aligned all the args, so add space for the pretend args. */
3102 crtl->args.pretend_args_size = all.pretend_args_size;
3103 all.stack_args_size.constant += all.extra_pretend_bytes;
3104 crtl->args.size = all.stack_args_size.constant;
3105
3106 /* Adjust function incoming argument size for alignment and
3107 minimum length. */
3108
3109 #ifdef REG_PARM_STACK_SPACE
3110 crtl->args.size = MAX (crtl->args.size,
3111 REG_PARM_STACK_SPACE (fndecl));
3112 #endif
3113
3114 crtl->args.size = CEIL_ROUND (crtl->args.size,
3115 PARM_BOUNDARY / BITS_PER_UNIT);
3116
3117 #ifdef ARGS_GROW_DOWNWARD
3118 crtl->args.arg_offset_rtx
3119 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3120 : expand_expr (size_diffop (all.stack_args_size.var,
3121 size_int (-all.stack_args_size.constant)),
3122 NULL_RTX, VOIDmode, 0));
3123 #else
3124 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3125 #endif
3126
3127 /* See how many bytes, if any, of its args a function should try to pop
3128 on return. */
3129
3130 crtl->args.pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3131 crtl->args.size);
3132
3133 /* For stdarg.h function, save info about
3134 regs and stack space used by the named args. */
3135
3136 crtl->args.info = all.args_so_far;
3137
3138 /* Set the rtx used for the function return value. Put this in its
3139 own variable so any optimizers that need this information don't have
3140 to include tree.h. Do this here so it gets done when an inlined
3141 function gets output. */
3142
3143 crtl->return_rtx
3144 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3145 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3146
3147 /* If scalar return value was computed in a pseudo-reg, or was a named
3148 return value that got dumped to the stack, copy that to the hard
3149 return register. */
3150 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3151 {
3152 tree decl_result = DECL_RESULT (fndecl);
3153 rtx decl_rtl = DECL_RTL (decl_result);
3154
3155 if (REG_P (decl_rtl)
3156 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3157 : DECL_REGISTER (decl_result))
3158 {
3159 rtx real_decl_rtl;
3160
3161 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3162 fndecl, true);
3163 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3164 /* The delay slot scheduler assumes that crtl->return_rtx
3165 holds the hard register containing the return value, not a
3166 temporary pseudo. */
3167 crtl->return_rtx = real_decl_rtl;
3168 }
3169 }
3170 }
3171
3172 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3173 For all seen types, gimplify their sizes. */
3174
3175 static tree
3176 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3177 {
3178 tree t = *tp;
3179
3180 *walk_subtrees = 0;
3181 if (TYPE_P (t))
3182 {
3183 if (POINTER_TYPE_P (t))
3184 *walk_subtrees = 1;
3185 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3186 && !TYPE_SIZES_GIMPLIFIED (t))
3187 {
3188 gimplify_type_sizes (t, (gimple_seq *) data);
3189 *walk_subtrees = 1;
3190 }
3191 }
3192
3193 return NULL;
3194 }
3195
3196 /* Gimplify the parameter list for current_function_decl. This involves
3197 evaluating SAVE_EXPRs of variable sized parameters and generating code
3198 to implement callee-copies reference parameters. Returns a sequence of
3199 statements to add to the beginning of the function. */
3200
3201 gimple_seq
3202 gimplify_parameters (void)
3203 {
3204 struct assign_parm_data_all all;
3205 tree fnargs, parm;
3206 gimple_seq stmts = NULL;
3207
3208 assign_parms_initialize_all (&all);
3209 fnargs = assign_parms_augmented_arg_list (&all);
3210
3211 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3212 {
3213 struct assign_parm_data_one data;
3214
3215 /* Extract the type of PARM; adjust it according to ABI. */
3216 assign_parm_find_data_types (&all, parm, &data);
3217
3218 /* Early out for errors and void parameters. */
3219 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3220 continue;
3221
3222 /* Update info on where next arg arrives in registers. */
3223 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3224 data.passed_type, data.named_arg);
3225
3226 /* ??? Once upon a time variable_size stuffed parameter list
3227 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3228 turned out to be less than manageable in the gimple world.
3229 Now we have to hunt them down ourselves. */
3230 walk_tree_without_duplicates (&data.passed_type,
3231 gimplify_parm_type, &stmts);
3232
3233 if (!TREE_CONSTANT (DECL_SIZE (parm)))
3234 {
3235 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3236 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3237 }
3238
3239 if (data.passed_pointer)
3240 {
3241 tree type = TREE_TYPE (data.passed_type);
3242 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3243 type, data.named_arg))
3244 {
3245 tree local, t;
3246
3247 /* For constant sized objects, this is trivial; for
3248 variable-sized objects, we have to play games. */
3249 if (TREE_CONSTANT (DECL_SIZE (parm)))
3250 {
3251 local = create_tmp_var (type, get_name (parm));
3252 DECL_IGNORED_P (local) = 0;
3253 }
3254 else
3255 {
3256 tree ptr_type, addr;
3257
3258 ptr_type = build_pointer_type (type);
3259 addr = create_tmp_var (ptr_type, get_name (parm));
3260 DECL_IGNORED_P (addr) = 0;
3261 local = build_fold_indirect_ref (addr);
3262
3263 t = built_in_decls[BUILT_IN_ALLOCA];
3264 t = build_call_expr (t, 1, DECL_SIZE_UNIT (parm));
3265 t = fold_convert (ptr_type, t);
3266 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3267 gimplify_and_add (t, &stmts);
3268 }
3269
3270 gimplify_assign (local, parm, &stmts);
3271
3272 SET_DECL_VALUE_EXPR (parm, local);
3273 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3274 }
3275 }
3276 }
3277
3278 return stmts;
3279 }
3280 \f
3281 /* Compute the size and offset from the start of the stacked arguments for a
3282 parm passed in mode PASSED_MODE and with type TYPE.
3283
3284 INITIAL_OFFSET_PTR points to the current offset into the stacked
3285 arguments.
3286
3287 The starting offset and size for this parm are returned in
3288 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3289 nonzero, the offset is that of stack slot, which is returned in
3290 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3291 padding required from the initial offset ptr to the stack slot.
3292
3293 IN_REGS is nonzero if the argument will be passed in registers. It will
3294 never be set if REG_PARM_STACK_SPACE is not defined.
3295
3296 FNDECL is the function in which the argument was defined.
3297
3298 There are two types of rounding that are done. The first, controlled by
3299 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3300 list to be aligned to the specific boundary (in bits). This rounding
3301 affects the initial and starting offsets, but not the argument size.
3302
3303 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3304 optionally rounds the size of the parm to PARM_BOUNDARY. The
3305 initial offset is not affected by this rounding, while the size always
3306 is and the starting offset may be. */
3307
3308 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3309 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3310 callers pass in the total size of args so far as
3311 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3312
3313 void
3314 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3315 int partial, tree fndecl ATTRIBUTE_UNUSED,
3316 struct args_size *initial_offset_ptr,
3317 struct locate_and_pad_arg_data *locate)
3318 {
3319 tree sizetree;
3320 enum direction where_pad;
3321 unsigned int boundary;
3322 int reg_parm_stack_space = 0;
3323 int part_size_in_regs;
3324
3325 #ifdef REG_PARM_STACK_SPACE
3326 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3327
3328 /* If we have found a stack parm before we reach the end of the
3329 area reserved for registers, skip that area. */
3330 if (! in_regs)
3331 {
3332 if (reg_parm_stack_space > 0)
3333 {
3334 if (initial_offset_ptr->var)
3335 {
3336 initial_offset_ptr->var
3337 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3338 ssize_int (reg_parm_stack_space));
3339 initial_offset_ptr->constant = 0;
3340 }
3341 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3342 initial_offset_ptr->constant = reg_parm_stack_space;
3343 }
3344 }
3345 #endif /* REG_PARM_STACK_SPACE */
3346
3347 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3348
3349 sizetree
3350 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3351 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3352 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3353 locate->where_pad = where_pad;
3354
3355 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3356 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3357 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3358
3359 locate->boundary = boundary;
3360
3361 if (SUPPORTS_STACK_ALIGNMENT)
3362 {
3363 /* stack_alignment_estimated can't change after stack has been
3364 realigned. */
3365 if (crtl->stack_alignment_estimated < boundary)
3366 {
3367 if (!crtl->stack_realign_processed)
3368 crtl->stack_alignment_estimated = boundary;
3369 else
3370 {
3371 /* If stack is realigned and stack alignment value
3372 hasn't been finalized, it is OK not to increase
3373 stack_alignment_estimated. The bigger alignment
3374 requirement is recorded in stack_alignment_needed
3375 below. */
3376 gcc_assert (!crtl->stack_realign_finalized
3377 && crtl->stack_realign_needed);
3378 }
3379 }
3380 }
3381
3382 /* Remember if the outgoing parameter requires extra alignment on the
3383 calling function side. */
3384 if (crtl->stack_alignment_needed < boundary)
3385 crtl->stack_alignment_needed = boundary;
3386 if (crtl->max_used_stack_slot_alignment < crtl->stack_alignment_needed)
3387 crtl->max_used_stack_slot_alignment = crtl->stack_alignment_needed;
3388 if (crtl->preferred_stack_boundary < boundary)
3389 crtl->preferred_stack_boundary = boundary;
3390
3391 #ifdef ARGS_GROW_DOWNWARD
3392 locate->slot_offset.constant = -initial_offset_ptr->constant;
3393 if (initial_offset_ptr->var)
3394 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3395 initial_offset_ptr->var);
3396
3397 {
3398 tree s2 = sizetree;
3399 if (where_pad != none
3400 && (!host_integerp (sizetree, 1)
3401 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3402 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3403 SUB_PARM_SIZE (locate->slot_offset, s2);
3404 }
3405
3406 locate->slot_offset.constant += part_size_in_regs;
3407
3408 if (!in_regs
3409 #ifdef REG_PARM_STACK_SPACE
3410 || REG_PARM_STACK_SPACE (fndecl) > 0
3411 #endif
3412 )
3413 pad_to_arg_alignment (&locate->slot_offset, boundary,
3414 &locate->alignment_pad);
3415
3416 locate->size.constant = (-initial_offset_ptr->constant
3417 - locate->slot_offset.constant);
3418 if (initial_offset_ptr->var)
3419 locate->size.var = size_binop (MINUS_EXPR,
3420 size_binop (MINUS_EXPR,
3421 ssize_int (0),
3422 initial_offset_ptr->var),
3423 locate->slot_offset.var);
3424
3425 /* Pad_below needs the pre-rounded size to know how much to pad
3426 below. */
3427 locate->offset = locate->slot_offset;
3428 if (where_pad == downward)
3429 pad_below (&locate->offset, passed_mode, sizetree);
3430
3431 #else /* !ARGS_GROW_DOWNWARD */
3432 if (!in_regs
3433 #ifdef REG_PARM_STACK_SPACE
3434 || REG_PARM_STACK_SPACE (fndecl) > 0
3435 #endif
3436 )
3437 pad_to_arg_alignment (initial_offset_ptr, boundary,
3438 &locate->alignment_pad);
3439 locate->slot_offset = *initial_offset_ptr;
3440
3441 #ifdef PUSH_ROUNDING
3442 if (passed_mode != BLKmode)
3443 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3444 #endif
3445
3446 /* Pad_below needs the pre-rounded size to know how much to pad below
3447 so this must be done before rounding up. */
3448 locate->offset = locate->slot_offset;
3449 if (where_pad == downward)
3450 pad_below (&locate->offset, passed_mode, sizetree);
3451
3452 if (where_pad != none
3453 && (!host_integerp (sizetree, 1)
3454 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3455 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3456
3457 ADD_PARM_SIZE (locate->size, sizetree);
3458
3459 locate->size.constant -= part_size_in_regs;
3460 #endif /* ARGS_GROW_DOWNWARD */
3461 }
3462
3463 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3464 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3465
3466 static void
3467 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3468 struct args_size *alignment_pad)
3469 {
3470 tree save_var = NULL_TREE;
3471 HOST_WIDE_INT save_constant = 0;
3472 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3473 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3474
3475 #ifdef SPARC_STACK_BOUNDARY_HACK
3476 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3477 the real alignment of %sp. However, when it does this, the
3478 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3479 if (SPARC_STACK_BOUNDARY_HACK)
3480 sp_offset = 0;
3481 #endif
3482
3483 if (boundary > PARM_BOUNDARY)
3484 {
3485 save_var = offset_ptr->var;
3486 save_constant = offset_ptr->constant;
3487 }
3488
3489 alignment_pad->var = NULL_TREE;
3490 alignment_pad->constant = 0;
3491
3492 if (boundary > BITS_PER_UNIT)
3493 {
3494 if (offset_ptr->var)
3495 {
3496 tree sp_offset_tree = ssize_int (sp_offset);
3497 tree offset = size_binop (PLUS_EXPR,
3498 ARGS_SIZE_TREE (*offset_ptr),
3499 sp_offset_tree);
3500 #ifdef ARGS_GROW_DOWNWARD
3501 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3502 #else
3503 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3504 #endif
3505
3506 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3507 /* ARGS_SIZE_TREE includes constant term. */
3508 offset_ptr->constant = 0;
3509 if (boundary > PARM_BOUNDARY)
3510 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3511 save_var);
3512 }
3513 else
3514 {
3515 offset_ptr->constant = -sp_offset +
3516 #ifdef ARGS_GROW_DOWNWARD
3517 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3518 #else
3519 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3520 #endif
3521 if (boundary > PARM_BOUNDARY)
3522 alignment_pad->constant = offset_ptr->constant - save_constant;
3523 }
3524 }
3525 }
3526
3527 static void
3528 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3529 {
3530 if (passed_mode != BLKmode)
3531 {
3532 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3533 offset_ptr->constant
3534 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3535 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3536 - GET_MODE_SIZE (passed_mode));
3537 }
3538 else
3539 {
3540 if (TREE_CODE (sizetree) != INTEGER_CST
3541 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3542 {
3543 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3544 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3545 /* Add it in. */
3546 ADD_PARM_SIZE (*offset_ptr, s2);
3547 SUB_PARM_SIZE (*offset_ptr, sizetree);
3548 }
3549 }
3550 }
3551 \f
3552
3553 /* True if register REGNO was alive at a place where `setjmp' was
3554 called and was set more than once or is an argument. Such regs may
3555 be clobbered by `longjmp'. */
3556
3557 static bool
3558 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3559 {
3560 /* There appear to be cases where some local vars never reach the
3561 backend but have bogus regnos. */
3562 if (regno >= max_reg_num ())
3563 return false;
3564
3565 return ((REG_N_SETS (regno) > 1
3566 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3567 && REGNO_REG_SET_P (setjmp_crosses, regno));
3568 }
3569
3570 /* Walk the tree of blocks describing the binding levels within a
3571 function and warn about variables the might be killed by setjmp or
3572 vfork. This is done after calling flow_analysis before register
3573 allocation since that will clobber the pseudo-regs to hard
3574 regs. */
3575
3576 static void
3577 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3578 {
3579 tree decl, sub;
3580
3581 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3582 {
3583 if (TREE_CODE (decl) == VAR_DECL
3584 && DECL_RTL_SET_P (decl)
3585 && REG_P (DECL_RTL (decl))
3586 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3587 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3588 " %<longjmp%> or %<vfork%>", decl);
3589 }
3590
3591 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3592 setjmp_vars_warning (setjmp_crosses, sub);
3593 }
3594
3595 /* Do the appropriate part of setjmp_vars_warning
3596 but for arguments instead of local variables. */
3597
3598 static void
3599 setjmp_args_warning (bitmap setjmp_crosses)
3600 {
3601 tree decl;
3602 for (decl = DECL_ARGUMENTS (current_function_decl);
3603 decl; decl = TREE_CHAIN (decl))
3604 if (DECL_RTL (decl) != 0
3605 && REG_P (DECL_RTL (decl))
3606 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3607 warning (OPT_Wclobbered,
3608 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3609 decl);
3610 }
3611
3612 /* Generate warning messages for variables live across setjmp. */
3613
3614 void
3615 generate_setjmp_warnings (void)
3616 {
3617 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3618
3619 if (n_basic_blocks == NUM_FIXED_BLOCKS
3620 || bitmap_empty_p (setjmp_crosses))
3621 return;
3622
3623 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
3624 setjmp_args_warning (setjmp_crosses);
3625 }
3626
3627 \f
3628 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3629 and create duplicate blocks. */
3630 /* ??? Need an option to either create block fragments or to create
3631 abstract origin duplicates of a source block. It really depends
3632 on what optimization has been performed. */
3633
3634 void
3635 reorder_blocks (void)
3636 {
3637 tree block = DECL_INITIAL (current_function_decl);
3638 VEC(tree,heap) *block_stack;
3639
3640 if (block == NULL_TREE)
3641 return;
3642
3643 block_stack = VEC_alloc (tree, heap, 10);
3644
3645 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3646 clear_block_marks (block);
3647
3648 /* Prune the old trees away, so that they don't get in the way. */
3649 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3650 BLOCK_CHAIN (block) = NULL_TREE;
3651
3652 /* Recreate the block tree from the note nesting. */
3653 reorder_blocks_1 (get_insns (), block, &block_stack);
3654 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3655
3656 VEC_free (tree, heap, block_stack);
3657 }
3658
3659 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3660
3661 void
3662 clear_block_marks (tree block)
3663 {
3664 while (block)
3665 {
3666 TREE_ASM_WRITTEN (block) = 0;
3667 clear_block_marks (BLOCK_SUBBLOCKS (block));
3668 block = BLOCK_CHAIN (block);
3669 }
3670 }
3671
3672 static void
3673 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3674 {
3675 rtx insn;
3676
3677 for (insn = insns; insn; insn = NEXT_INSN (insn))
3678 {
3679 if (NOTE_P (insn))
3680 {
3681 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
3682 {
3683 tree block = NOTE_BLOCK (insn);
3684 tree origin;
3685
3686 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3687 ? BLOCK_FRAGMENT_ORIGIN (block)
3688 : block);
3689
3690 /* If we have seen this block before, that means it now
3691 spans multiple address regions. Create a new fragment. */
3692 if (TREE_ASM_WRITTEN (block))
3693 {
3694 tree new_block = copy_node (block);
3695
3696 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3697 BLOCK_FRAGMENT_CHAIN (new_block)
3698 = BLOCK_FRAGMENT_CHAIN (origin);
3699 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3700
3701 NOTE_BLOCK (insn) = new_block;
3702 block = new_block;
3703 }
3704
3705 BLOCK_SUBBLOCKS (block) = 0;
3706 TREE_ASM_WRITTEN (block) = 1;
3707 /* When there's only one block for the entire function,
3708 current_block == block and we mustn't do this, it
3709 will cause infinite recursion. */
3710 if (block != current_block)
3711 {
3712 if (block != origin)
3713 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
3714
3715 BLOCK_SUPERCONTEXT (block) = current_block;
3716 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3717 BLOCK_SUBBLOCKS (current_block) = block;
3718 current_block = origin;
3719 }
3720 VEC_safe_push (tree, heap, *p_block_stack, block);
3721 }
3722 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
3723 {
3724 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3725 BLOCK_SUBBLOCKS (current_block)
3726 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3727 current_block = BLOCK_SUPERCONTEXT (current_block);
3728 }
3729 }
3730 }
3731 }
3732
3733 /* Reverse the order of elements in the chain T of blocks,
3734 and return the new head of the chain (old last element). */
3735
3736 tree
3737 blocks_nreverse (tree t)
3738 {
3739 tree prev = 0, decl, next;
3740 for (decl = t; decl; decl = next)
3741 {
3742 next = BLOCK_CHAIN (decl);
3743 BLOCK_CHAIN (decl) = prev;
3744 prev = decl;
3745 }
3746 return prev;
3747 }
3748
3749 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3750 non-NULL, list them all into VECTOR, in a depth-first preorder
3751 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3752 blocks. */
3753
3754 static int
3755 all_blocks (tree block, tree *vector)
3756 {
3757 int n_blocks = 0;
3758
3759 while (block)
3760 {
3761 TREE_ASM_WRITTEN (block) = 0;
3762
3763 /* Record this block. */
3764 if (vector)
3765 vector[n_blocks] = block;
3766
3767 ++n_blocks;
3768
3769 /* Record the subblocks, and their subblocks... */
3770 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3771 vector ? vector + n_blocks : 0);
3772 block = BLOCK_CHAIN (block);
3773 }
3774
3775 return n_blocks;
3776 }
3777
3778 /* Return a vector containing all the blocks rooted at BLOCK. The
3779 number of elements in the vector is stored in N_BLOCKS_P. The
3780 vector is dynamically allocated; it is the caller's responsibility
3781 to call `free' on the pointer returned. */
3782
3783 static tree *
3784 get_block_vector (tree block, int *n_blocks_p)
3785 {
3786 tree *block_vector;
3787
3788 *n_blocks_p = all_blocks (block, NULL);
3789 block_vector = XNEWVEC (tree, *n_blocks_p);
3790 all_blocks (block, block_vector);
3791
3792 return block_vector;
3793 }
3794
3795 static GTY(()) int next_block_index = 2;
3796
3797 /* Set BLOCK_NUMBER for all the blocks in FN. */
3798
3799 void
3800 number_blocks (tree fn)
3801 {
3802 int i;
3803 int n_blocks;
3804 tree *block_vector;
3805
3806 /* For SDB and XCOFF debugging output, we start numbering the blocks
3807 from 1 within each function, rather than keeping a running
3808 count. */
3809 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3810 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3811 next_block_index = 1;
3812 #endif
3813
3814 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3815
3816 /* The top-level BLOCK isn't numbered at all. */
3817 for (i = 1; i < n_blocks; ++i)
3818 /* We number the blocks from two. */
3819 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3820
3821 free (block_vector);
3822
3823 return;
3824 }
3825
3826 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3827
3828 tree
3829 debug_find_var_in_block_tree (tree var, tree block)
3830 {
3831 tree t;
3832
3833 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3834 if (t == var)
3835 return block;
3836
3837 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3838 {
3839 tree ret = debug_find_var_in_block_tree (var, t);
3840 if (ret)
3841 return ret;
3842 }
3843
3844 return NULL_TREE;
3845 }
3846 \f
3847 /* Keep track of whether we're in a dummy function context. If we are,
3848 we don't want to invoke the set_current_function hook, because we'll
3849 get into trouble if the hook calls target_reinit () recursively or
3850 when the initial initialization is not yet complete. */
3851
3852 static bool in_dummy_function;
3853
3854 /* Invoke the target hook when setting cfun. Update the optimization options
3855 if the function uses different options than the default. */
3856
3857 static void
3858 invoke_set_current_function_hook (tree fndecl)
3859 {
3860 if (!in_dummy_function)
3861 {
3862 tree opts = ((fndecl)
3863 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
3864 : optimization_default_node);
3865
3866 if (!opts)
3867 opts = optimization_default_node;
3868
3869 /* Change optimization options if needed. */
3870 if (optimization_current_node != opts)
3871 {
3872 optimization_current_node = opts;
3873 cl_optimization_restore (TREE_OPTIMIZATION (opts));
3874 }
3875
3876 targetm.set_current_function (fndecl);
3877 }
3878 }
3879
3880 /* cfun should never be set directly; use this function. */
3881
3882 void
3883 set_cfun (struct function *new_cfun)
3884 {
3885 if (cfun != new_cfun)
3886 {
3887 cfun = new_cfun;
3888 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
3889 }
3890 }
3891
3892 /* Keep track of the cfun stack. */
3893
3894 typedef struct function *function_p;
3895
3896 DEF_VEC_P(function_p);
3897 DEF_VEC_ALLOC_P(function_p,heap);
3898
3899 /* Initialized with NOGC, making this poisonous to the garbage collector. */
3900
3901 static VEC(function_p,heap) *cfun_stack;
3902
3903 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
3904
3905 void
3906 push_cfun (struct function *new_cfun)
3907 {
3908 VEC_safe_push (function_p, heap, cfun_stack, cfun);
3909 set_cfun (new_cfun);
3910 }
3911
3912 /* Pop cfun from the stack. */
3913
3914 void
3915 pop_cfun (void)
3916 {
3917 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
3918 set_cfun (new_cfun);
3919 }
3920
3921 /* Return value of funcdef and increase it. */
3922 int
3923 get_next_funcdef_no (void)
3924 {
3925 return funcdef_no++;
3926 }
3927
3928 /* Allocate a function structure for FNDECL and set its contents
3929 to the defaults. Set cfun to the newly-allocated object.
3930 Some of the helper functions invoked during initialization assume
3931 that cfun has already been set. Therefore, assign the new object
3932 directly into cfun and invoke the back end hook explicitly at the
3933 very end, rather than initializing a temporary and calling set_cfun
3934 on it.
3935
3936 ABSTRACT_P is true if this is a function that will never be seen by
3937 the middle-end. Such functions are front-end concepts (like C++
3938 function templates) that do not correspond directly to functions
3939 placed in object files. */
3940
3941 void
3942 allocate_struct_function (tree fndecl, bool abstract_p)
3943 {
3944 tree result;
3945 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3946
3947 cfun = GGC_CNEW (struct function);
3948
3949 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3950
3951 init_eh_for_function ();
3952
3953 if (init_machine_status)
3954 cfun->machine = (*init_machine_status) ();
3955
3956 #ifdef OVERRIDE_ABI_FORMAT
3957 OVERRIDE_ABI_FORMAT (fndecl);
3958 #endif
3959
3960 if (fndecl != NULL_TREE)
3961 {
3962 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3963 cfun->decl = fndecl;
3964 current_function_funcdef_no = get_next_funcdef_no ();
3965
3966 result = DECL_RESULT (fndecl);
3967 if (!abstract_p && aggregate_value_p (result, fndecl))
3968 {
3969 #ifdef PCC_STATIC_STRUCT_RETURN
3970 cfun->returns_pcc_struct = 1;
3971 #endif
3972 cfun->returns_struct = 1;
3973 }
3974
3975 cfun->stdarg
3976 = (fntype
3977 && TYPE_ARG_TYPES (fntype) != 0
3978 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3979 != void_type_node));
3980
3981 /* Assume all registers in stdarg functions need to be saved. */
3982 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
3983 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
3984 }
3985
3986 invoke_set_current_function_hook (fndecl);
3987 }
3988
3989 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
3990 instead of just setting it. */
3991
3992 void
3993 push_struct_function (tree fndecl)
3994 {
3995 VEC_safe_push (function_p, heap, cfun_stack, cfun);
3996 allocate_struct_function (fndecl, false);
3997 }
3998
3999 /* Reset cfun, and other non-struct-function variables to defaults as
4000 appropriate for emitting rtl at the start of a function. */
4001
4002 static void
4003 prepare_function_start (void)
4004 {
4005 gcc_assert (!crtl->emit.x_last_insn);
4006 init_emit ();
4007 init_varasm_status ();
4008 init_expr ();
4009 default_rtl_profile ();
4010
4011 cse_not_expected = ! optimize;
4012
4013 /* Caller save not needed yet. */
4014 caller_save_needed = 0;
4015
4016 /* We haven't done register allocation yet. */
4017 reg_renumber = 0;
4018
4019 /* Indicate that we have not instantiated virtual registers yet. */
4020 virtuals_instantiated = 0;
4021
4022 /* Indicate that we want CONCATs now. */
4023 generating_concat_p = 1;
4024
4025 /* Indicate we have no need of a frame pointer yet. */
4026 frame_pointer_needed = 0;
4027 }
4028
4029 /* Initialize the rtl expansion mechanism so that we can do simple things
4030 like generate sequences. This is used to provide a context during global
4031 initialization of some passes. You must call expand_dummy_function_end
4032 to exit this context. */
4033
4034 void
4035 init_dummy_function_start (void)
4036 {
4037 gcc_assert (!in_dummy_function);
4038 in_dummy_function = true;
4039 push_struct_function (NULL_TREE);
4040 prepare_function_start ();
4041 }
4042
4043 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4044 and initialize static variables for generating RTL for the statements
4045 of the function. */
4046
4047 void
4048 init_function_start (tree subr)
4049 {
4050 if (subr && DECL_STRUCT_FUNCTION (subr))
4051 set_cfun (DECL_STRUCT_FUNCTION (subr));
4052 else
4053 allocate_struct_function (subr, false);
4054 prepare_function_start ();
4055
4056 /* Warn if this value is an aggregate type,
4057 regardless of which calling convention we are using for it. */
4058 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4059 warning (OPT_Waggregate_return, "function returns an aggregate");
4060 }
4061
4062 /* Make sure all values used by the optimization passes have sane
4063 defaults. */
4064 unsigned int
4065 init_function_for_compilation (void)
4066 {
4067 reg_renumber = 0;
4068
4069 /* No prologue/epilogue insns yet. Make sure that these vectors are
4070 empty. */
4071 gcc_assert (VEC_length (int, prologue) == 0);
4072 gcc_assert (VEC_length (int, epilogue) == 0);
4073 gcc_assert (VEC_length (int, sibcall_epilogue) == 0);
4074 return 0;
4075 }
4076
4077 struct rtl_opt_pass pass_init_function =
4078 {
4079 {
4080 RTL_PASS,
4081 NULL, /* name */
4082 NULL, /* gate */
4083 init_function_for_compilation, /* execute */
4084 NULL, /* sub */
4085 NULL, /* next */
4086 0, /* static_pass_number */
4087 0, /* tv_id */
4088 0, /* properties_required */
4089 0, /* properties_provided */
4090 0, /* properties_destroyed */
4091 0, /* todo_flags_start */
4092 0 /* todo_flags_finish */
4093 }
4094 };
4095
4096
4097 void
4098 expand_main_function (void)
4099 {
4100 #if (defined(INVOKE__main) \
4101 || (!defined(HAS_INIT_SECTION) \
4102 && !defined(INIT_SECTION_ASM_OP) \
4103 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4104 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4105 #endif
4106 }
4107 \f
4108 /* Expand code to initialize the stack_protect_guard. This is invoked at
4109 the beginning of a function to be protected. */
4110
4111 #ifndef HAVE_stack_protect_set
4112 # define HAVE_stack_protect_set 0
4113 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4114 #endif
4115
4116 void
4117 stack_protect_prologue (void)
4118 {
4119 tree guard_decl = targetm.stack_protect_guard ();
4120 rtx x, y;
4121
4122 /* Avoid expand_expr here, because we don't want guard_decl pulled
4123 into registers unless absolutely necessary. And we know that
4124 crtl->stack_protect_guard is a local stack slot, so this skips
4125 all the fluff. */
4126 x = validize_mem (DECL_RTL (crtl->stack_protect_guard));
4127 y = validize_mem (DECL_RTL (guard_decl));
4128
4129 /* Allow the target to copy from Y to X without leaking Y into a
4130 register. */
4131 if (HAVE_stack_protect_set)
4132 {
4133 rtx insn = gen_stack_protect_set (x, y);
4134 if (insn)
4135 {
4136 emit_insn (insn);
4137 return;
4138 }
4139 }
4140
4141 /* Otherwise do a straight move. */
4142 emit_move_insn (x, y);
4143 }
4144
4145 /* Expand code to verify the stack_protect_guard. This is invoked at
4146 the end of a function to be protected. */
4147
4148 #ifndef HAVE_stack_protect_test
4149 # define HAVE_stack_protect_test 0
4150 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4151 #endif
4152
4153 void
4154 stack_protect_epilogue (void)
4155 {
4156 tree guard_decl = targetm.stack_protect_guard ();
4157 rtx label = gen_label_rtx ();
4158 rtx x, y, tmp;
4159
4160 /* Avoid expand_expr here, because we don't want guard_decl pulled
4161 into registers unless absolutely necessary. And we know that
4162 crtl->stack_protect_guard is a local stack slot, so this skips
4163 all the fluff. */
4164 x = validize_mem (DECL_RTL (crtl->stack_protect_guard));
4165 y = validize_mem (DECL_RTL (guard_decl));
4166
4167 /* Allow the target to compare Y with X without leaking either into
4168 a register. */
4169 switch (HAVE_stack_protect_test != 0)
4170 {
4171 case 1:
4172 tmp = gen_stack_protect_test (x, y, label);
4173 if (tmp)
4174 {
4175 emit_insn (tmp);
4176 break;
4177 }
4178 /* FALLTHRU */
4179
4180 default:
4181 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4182 break;
4183 }
4184
4185 /* The noreturn predictor has been moved to the tree level. The rtl-level
4186 predictors estimate this branch about 20%, which isn't enough to get
4187 things moved out of line. Since this is the only extant case of adding
4188 a noreturn function at the rtl level, it doesn't seem worth doing ought
4189 except adding the prediction by hand. */
4190 tmp = get_last_insn ();
4191 if (JUMP_P (tmp))
4192 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4193
4194 expand_expr_stmt (targetm.stack_protect_fail ());
4195 emit_label (label);
4196 }
4197 \f
4198 /* Start the RTL for a new function, and set variables used for
4199 emitting RTL.
4200 SUBR is the FUNCTION_DECL node.
4201 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4202 the function's parameters, which must be run at any return statement. */
4203
4204 void
4205 expand_function_start (tree subr)
4206 {
4207 /* Make sure volatile mem refs aren't considered
4208 valid operands of arithmetic insns. */
4209 init_recog_no_volatile ();
4210
4211 crtl->profile
4212 = (profile_flag
4213 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4214
4215 crtl->limit_stack
4216 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4217
4218 /* Make the label for return statements to jump to. Do not special
4219 case machines with special return instructions -- they will be
4220 handled later during jump, ifcvt, or epilogue creation. */
4221 return_label = gen_label_rtx ();
4222
4223 /* Initialize rtx used to return the value. */
4224 /* Do this before assign_parms so that we copy the struct value address
4225 before any library calls that assign parms might generate. */
4226
4227 /* Decide whether to return the value in memory or in a register. */
4228 if (aggregate_value_p (DECL_RESULT (subr), subr))
4229 {
4230 /* Returning something that won't go in a register. */
4231 rtx value_address = 0;
4232
4233 #ifdef PCC_STATIC_STRUCT_RETURN
4234 if (cfun->returns_pcc_struct)
4235 {
4236 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4237 value_address = assemble_static_space (size);
4238 }
4239 else
4240 #endif
4241 {
4242 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4243 /* Expect to be passed the address of a place to store the value.
4244 If it is passed as an argument, assign_parms will take care of
4245 it. */
4246 if (sv)
4247 {
4248 value_address = gen_reg_rtx (Pmode);
4249 emit_move_insn (value_address, sv);
4250 }
4251 }
4252 if (value_address)
4253 {
4254 rtx x = value_address;
4255 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4256 {
4257 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4258 set_mem_attributes (x, DECL_RESULT (subr), 1);
4259 }
4260 SET_DECL_RTL (DECL_RESULT (subr), x);
4261 }
4262 }
4263 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4264 /* If return mode is void, this decl rtl should not be used. */
4265 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4266 else
4267 {
4268 /* Compute the return values into a pseudo reg, which we will copy
4269 into the true return register after the cleanups are done. */
4270 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4271 if (TYPE_MODE (return_type) != BLKmode
4272 && targetm.calls.return_in_msb (return_type))
4273 /* expand_function_end will insert the appropriate padding in
4274 this case. Use the return value's natural (unpadded) mode
4275 within the function proper. */
4276 SET_DECL_RTL (DECL_RESULT (subr),
4277 gen_reg_rtx (TYPE_MODE (return_type)));
4278 else
4279 {
4280 /* In order to figure out what mode to use for the pseudo, we
4281 figure out what the mode of the eventual return register will
4282 actually be, and use that. */
4283 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4284
4285 /* Structures that are returned in registers are not
4286 aggregate_value_p, so we may see a PARALLEL or a REG. */
4287 if (REG_P (hard_reg))
4288 SET_DECL_RTL (DECL_RESULT (subr),
4289 gen_reg_rtx (GET_MODE (hard_reg)));
4290 else
4291 {
4292 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4293 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4294 }
4295 }
4296
4297 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4298 result to the real return register(s). */
4299 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4300 }
4301
4302 /* Initialize rtx for parameters and local variables.
4303 In some cases this requires emitting insns. */
4304 assign_parms (subr);
4305
4306 /* If function gets a static chain arg, store it. */
4307 if (cfun->static_chain_decl)
4308 {
4309 tree parm = cfun->static_chain_decl;
4310 rtx local = gen_reg_rtx (Pmode);
4311
4312 set_decl_incoming_rtl (parm, static_chain_incoming_rtx, false);
4313 SET_DECL_RTL (parm, local);
4314 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4315
4316 emit_move_insn (local, static_chain_incoming_rtx);
4317 }
4318
4319 /* If the function receives a non-local goto, then store the
4320 bits we need to restore the frame pointer. */
4321 if (cfun->nonlocal_goto_save_area)
4322 {
4323 tree t_save;
4324 rtx r_save;
4325
4326 /* ??? We need to do this save early. Unfortunately here is
4327 before the frame variable gets declared. Help out... */
4328 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4329 if (!DECL_RTL_SET_P (var))
4330 expand_decl (var);
4331
4332 t_save = build4 (ARRAY_REF, ptr_type_node,
4333 cfun->nonlocal_goto_save_area,
4334 integer_zero_node, NULL_TREE, NULL_TREE);
4335 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4336 r_save = convert_memory_address (Pmode, r_save);
4337
4338 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4339 update_nonlocal_goto_save_area ();
4340 }
4341
4342 /* The following was moved from init_function_start.
4343 The move is supposed to make sdb output more accurate. */
4344 /* Indicate the beginning of the function body,
4345 as opposed to parm setup. */
4346 emit_note (NOTE_INSN_FUNCTION_BEG);
4347
4348 gcc_assert (NOTE_P (get_last_insn ()));
4349
4350 parm_birth_insn = get_last_insn ();
4351
4352 if (crtl->profile)
4353 {
4354 #ifdef PROFILE_HOOK
4355 PROFILE_HOOK (current_function_funcdef_no);
4356 #endif
4357 }
4358
4359 /* After the display initializations is where the stack checking
4360 probe should go. */
4361 if(flag_stack_check)
4362 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4363
4364 /* Make sure there is a line number after the function entry setup code. */
4365 force_next_line_note ();
4366 }
4367 \f
4368 /* Undo the effects of init_dummy_function_start. */
4369 void
4370 expand_dummy_function_end (void)
4371 {
4372 gcc_assert (in_dummy_function);
4373
4374 /* End any sequences that failed to be closed due to syntax errors. */
4375 while (in_sequence_p ())
4376 end_sequence ();
4377
4378 /* Outside function body, can't compute type's actual size
4379 until next function's body starts. */
4380
4381 free_after_parsing (cfun);
4382 free_after_compilation (cfun);
4383 pop_cfun ();
4384 in_dummy_function = false;
4385 }
4386
4387 /* Call DOIT for each hard register used as a return value from
4388 the current function. */
4389
4390 void
4391 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4392 {
4393 rtx outgoing = crtl->return_rtx;
4394
4395 if (! outgoing)
4396 return;
4397
4398 if (REG_P (outgoing))
4399 (*doit) (outgoing, arg);
4400 else if (GET_CODE (outgoing) == PARALLEL)
4401 {
4402 int i;
4403
4404 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4405 {
4406 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4407
4408 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4409 (*doit) (x, arg);
4410 }
4411 }
4412 }
4413
4414 static void
4415 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4416 {
4417 emit_clobber (reg);
4418 }
4419
4420 void
4421 clobber_return_register (void)
4422 {
4423 diddle_return_value (do_clobber_return_reg, NULL);
4424
4425 /* In case we do use pseudo to return value, clobber it too. */
4426 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4427 {
4428 tree decl_result = DECL_RESULT (current_function_decl);
4429 rtx decl_rtl = DECL_RTL (decl_result);
4430 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4431 {
4432 do_clobber_return_reg (decl_rtl, NULL);
4433 }
4434 }
4435 }
4436
4437 static void
4438 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4439 {
4440 emit_use (reg);
4441 }
4442
4443 static void
4444 use_return_register (void)
4445 {
4446 diddle_return_value (do_use_return_reg, NULL);
4447 }
4448
4449 /* Possibly warn about unused parameters. */
4450 void
4451 do_warn_unused_parameter (tree fn)
4452 {
4453 tree decl;
4454
4455 for (decl = DECL_ARGUMENTS (fn);
4456 decl; decl = TREE_CHAIN (decl))
4457 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4458 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4459 && !TREE_NO_WARNING (decl))
4460 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4461 }
4462
4463 static GTY(()) rtx initial_trampoline;
4464
4465 /* Generate RTL for the end of the current function. */
4466
4467 void
4468 expand_function_end (void)
4469 {
4470 rtx clobber_after;
4471
4472 /* If arg_pointer_save_area was referenced only from a nested
4473 function, we will not have initialized it yet. Do that now. */
4474 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4475 get_arg_pointer_save_area ();
4476
4477 /* If we are doing stack checking and this function makes calls,
4478 do a stack probe at the start of the function to ensure we have enough
4479 space for another stack frame. */
4480 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4481 {
4482 rtx insn, seq;
4483
4484 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4485 if (CALL_P (insn))
4486 {
4487 start_sequence ();
4488 probe_stack_range (STACK_CHECK_PROTECT,
4489 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4490 seq = get_insns ();
4491 end_sequence ();
4492 emit_insn_before (seq, stack_check_probe_note);
4493 break;
4494 }
4495 }
4496
4497 /* End any sequences that failed to be closed due to syntax errors. */
4498 while (in_sequence_p ())
4499 end_sequence ();
4500
4501 clear_pending_stack_adjust ();
4502 do_pending_stack_adjust ();
4503
4504 /* Output a linenumber for the end of the function.
4505 SDB depends on this. */
4506 force_next_line_note ();
4507 set_curr_insn_source_location (input_location);
4508
4509 /* Before the return label (if any), clobber the return
4510 registers so that they are not propagated live to the rest of
4511 the function. This can only happen with functions that drop
4512 through; if there had been a return statement, there would
4513 have either been a return rtx, or a jump to the return label.
4514
4515 We delay actual code generation after the current_function_value_rtx
4516 is computed. */
4517 clobber_after = get_last_insn ();
4518
4519 /* Output the label for the actual return from the function. */
4520 emit_label (return_label);
4521
4522 if (USING_SJLJ_EXCEPTIONS)
4523 {
4524 /* Let except.c know where it should emit the call to unregister
4525 the function context for sjlj exceptions. */
4526 if (flag_exceptions)
4527 sjlj_emit_function_exit_after (get_last_insn ());
4528 }
4529 else
4530 {
4531 /* We want to ensure that instructions that may trap are not
4532 moved into the epilogue by scheduling, because we don't
4533 always emit unwind information for the epilogue. */
4534 if (flag_non_call_exceptions)
4535 emit_insn (gen_blockage ());
4536 }
4537
4538 /* If this is an implementation of throw, do what's necessary to
4539 communicate between __builtin_eh_return and the epilogue. */
4540 expand_eh_return ();
4541
4542 /* If scalar return value was computed in a pseudo-reg, or was a named
4543 return value that got dumped to the stack, copy that to the hard
4544 return register. */
4545 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4546 {
4547 tree decl_result = DECL_RESULT (current_function_decl);
4548 rtx decl_rtl = DECL_RTL (decl_result);
4549
4550 if (REG_P (decl_rtl)
4551 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4552 : DECL_REGISTER (decl_result))
4553 {
4554 rtx real_decl_rtl = crtl->return_rtx;
4555
4556 /* This should be set in assign_parms. */
4557 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4558
4559 /* If this is a BLKmode structure being returned in registers,
4560 then use the mode computed in expand_return. Note that if
4561 decl_rtl is memory, then its mode may have been changed,
4562 but that crtl->return_rtx has not. */
4563 if (GET_MODE (real_decl_rtl) == BLKmode)
4564 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4565
4566 /* If a non-BLKmode return value should be padded at the least
4567 significant end of the register, shift it left by the appropriate
4568 amount. BLKmode results are handled using the group load/store
4569 machinery. */
4570 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4571 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4572 {
4573 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4574 REGNO (real_decl_rtl)),
4575 decl_rtl);
4576 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4577 }
4578 /* If a named return value dumped decl_return to memory, then
4579 we may need to re-do the PROMOTE_MODE signed/unsigned
4580 extension. */
4581 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4582 {
4583 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4584
4585 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4586 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4587 &unsignedp, 1);
4588
4589 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4590 }
4591 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4592 {
4593 /* If expand_function_start has created a PARALLEL for decl_rtl,
4594 move the result to the real return registers. Otherwise, do
4595 a group load from decl_rtl for a named return. */
4596 if (GET_CODE (decl_rtl) == PARALLEL)
4597 emit_group_move (real_decl_rtl, decl_rtl);
4598 else
4599 emit_group_load (real_decl_rtl, decl_rtl,
4600 TREE_TYPE (decl_result),
4601 int_size_in_bytes (TREE_TYPE (decl_result)));
4602 }
4603 /* In the case of complex integer modes smaller than a word, we'll
4604 need to generate some non-trivial bitfield insertions. Do that
4605 on a pseudo and not the hard register. */
4606 else if (GET_CODE (decl_rtl) == CONCAT
4607 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4608 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4609 {
4610 int old_generating_concat_p;
4611 rtx tmp;
4612
4613 old_generating_concat_p = generating_concat_p;
4614 generating_concat_p = 0;
4615 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4616 generating_concat_p = old_generating_concat_p;
4617
4618 emit_move_insn (tmp, decl_rtl);
4619 emit_move_insn (real_decl_rtl, tmp);
4620 }
4621 else
4622 emit_move_insn (real_decl_rtl, decl_rtl);
4623 }
4624 }
4625
4626 /* If returning a structure, arrange to return the address of the value
4627 in a place where debuggers expect to find it.
4628
4629 If returning a structure PCC style,
4630 the caller also depends on this value.
4631 And cfun->returns_pcc_struct is not necessarily set. */
4632 if (cfun->returns_struct
4633 || cfun->returns_pcc_struct)
4634 {
4635 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4636 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4637 rtx outgoing;
4638
4639 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4640 type = TREE_TYPE (type);
4641 else
4642 value_address = XEXP (value_address, 0);
4643
4644 outgoing = targetm.calls.function_value (build_pointer_type (type),
4645 current_function_decl, true);
4646
4647 /* Mark this as a function return value so integrate will delete the
4648 assignment and USE below when inlining this function. */
4649 REG_FUNCTION_VALUE_P (outgoing) = 1;
4650
4651 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4652 value_address = convert_memory_address (GET_MODE (outgoing),
4653 value_address);
4654
4655 emit_move_insn (outgoing, value_address);
4656
4657 /* Show return register used to hold result (in this case the address
4658 of the result. */
4659 crtl->return_rtx = outgoing;
4660 }
4661
4662 /* Emit the actual code to clobber return register. */
4663 {
4664 rtx seq;
4665
4666 start_sequence ();
4667 clobber_return_register ();
4668 expand_naked_return ();
4669 seq = get_insns ();
4670 end_sequence ();
4671
4672 emit_insn_after (seq, clobber_after);
4673 }
4674
4675 /* Output the label for the naked return from the function. */
4676 emit_label (naked_return_label);
4677
4678 /* @@@ This is a kludge. We want to ensure that instructions that
4679 may trap are not moved into the epilogue by scheduling, because
4680 we don't always emit unwind information for the epilogue. */
4681 if (! USING_SJLJ_EXCEPTIONS && flag_non_call_exceptions)
4682 emit_insn (gen_blockage ());
4683
4684 /* If stack protection is enabled for this function, check the guard. */
4685 if (crtl->stack_protect_guard)
4686 stack_protect_epilogue ();
4687
4688 /* If we had calls to alloca, and this machine needs
4689 an accurate stack pointer to exit the function,
4690 insert some code to save and restore the stack pointer. */
4691 if (! EXIT_IGNORE_STACK
4692 && cfun->calls_alloca)
4693 {
4694 rtx tem = 0;
4695
4696 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4697 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4698 }
4699
4700 /* ??? This should no longer be necessary since stupid is no longer with
4701 us, but there are some parts of the compiler (eg reload_combine, and
4702 sh mach_dep_reorg) that still try and compute their own lifetime info
4703 instead of using the general framework. */
4704 use_return_register ();
4705 }
4706
4707 rtx
4708 get_arg_pointer_save_area (void)
4709 {
4710 rtx ret = arg_pointer_save_area;
4711
4712 if (! ret)
4713 {
4714 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
4715 arg_pointer_save_area = ret;
4716 }
4717
4718 if (! crtl->arg_pointer_save_area_init)
4719 {
4720 rtx seq;
4721
4722 /* Save the arg pointer at the beginning of the function. The
4723 generated stack slot may not be a valid memory address, so we
4724 have to check it and fix it if necessary. */
4725 start_sequence ();
4726 emit_move_insn (validize_mem (ret),
4727 crtl->args.internal_arg_pointer);
4728 seq = get_insns ();
4729 end_sequence ();
4730
4731 push_topmost_sequence ();
4732 emit_insn_after (seq, entry_of_function ());
4733 pop_topmost_sequence ();
4734 }
4735
4736 return ret;
4737 }
4738 \f
4739 /* Extend a vector that records the INSN_UIDs of INSNS
4740 (a list of one or more insns). */
4741
4742 static void
4743 record_insns (rtx insns, VEC(int,heap) **vecp)
4744 {
4745 rtx tmp;
4746
4747 for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp))
4748 VEC_safe_push (int, heap, *vecp, INSN_UID (tmp));
4749 }
4750
4751 /* Set the locator of the insn chain starting at INSN to LOC. */
4752 static void
4753 set_insn_locators (rtx insn, int loc)
4754 {
4755 while (insn != NULL_RTX)
4756 {
4757 if (INSN_P (insn))
4758 INSN_LOCATOR (insn) = loc;
4759 insn = NEXT_INSN (insn);
4760 }
4761 }
4762
4763 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4764 be running after reorg, SEQUENCE rtl is possible. */
4765
4766 static int
4767 contains (const_rtx insn, VEC(int,heap) **vec)
4768 {
4769 int i, j;
4770
4771 if (NONJUMP_INSN_P (insn)
4772 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4773 {
4774 int count = 0;
4775 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4776 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4777 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i))
4778 == VEC_index (int, *vec, j))
4779 count++;
4780 return count;
4781 }
4782 else
4783 {
4784 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4785 if (INSN_UID (insn) == VEC_index (int, *vec, j))
4786 return 1;
4787 }
4788 return 0;
4789 }
4790
4791 int
4792 prologue_epilogue_contains (const_rtx insn)
4793 {
4794 if (contains (insn, &prologue))
4795 return 1;
4796 if (contains (insn, &epilogue))
4797 return 1;
4798 return 0;
4799 }
4800
4801 int
4802 sibcall_epilogue_contains (const_rtx insn)
4803 {
4804 if (sibcall_epilogue)
4805 return contains (insn, &sibcall_epilogue);
4806 return 0;
4807 }
4808
4809 #ifdef HAVE_return
4810 /* Insert gen_return at the end of block BB. This also means updating
4811 block_for_insn appropriately. */
4812
4813 static void
4814 emit_return_into_block (basic_block bb)
4815 {
4816 emit_jump_insn_after (gen_return (), BB_END (bb));
4817 }
4818 #endif /* HAVE_return */
4819
4820 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
4821 this into place with notes indicating where the prologue ends and where
4822 the epilogue begins. Update the basic block information when possible. */
4823
4824 static void
4825 thread_prologue_and_epilogue_insns (void)
4826 {
4827 int inserted = 0;
4828 edge e;
4829 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
4830 rtx seq;
4831 #endif
4832 #if defined (HAVE_epilogue) || defined(HAVE_return)
4833 rtx epilogue_end = NULL_RTX;
4834 #endif
4835 edge_iterator ei;
4836
4837 #ifdef HAVE_prologue
4838 if (HAVE_prologue)
4839 {
4840 start_sequence ();
4841 seq = gen_prologue ();
4842 emit_insn (seq);
4843
4844 /* Insert an explicit USE for the frame pointer
4845 if the profiling is on and the frame pointer is required. */
4846 if (crtl->profile && frame_pointer_needed)
4847 emit_use (hard_frame_pointer_rtx);
4848
4849 /* Retain a map of the prologue insns. */
4850 record_insns (seq, &prologue);
4851 emit_note (NOTE_INSN_PROLOGUE_END);
4852
4853 #ifndef PROFILE_BEFORE_PROLOGUE
4854 /* Ensure that instructions are not moved into the prologue when
4855 profiling is on. The call to the profiling routine can be
4856 emitted within the live range of a call-clobbered register. */
4857 if (crtl->profile)
4858 emit_insn (gen_blockage ());
4859 #endif
4860
4861 seq = get_insns ();
4862 end_sequence ();
4863 set_insn_locators (seq, prologue_locator);
4864
4865 /* Can't deal with multiple successors of the entry block
4866 at the moment. Function should always have at least one
4867 entry point. */
4868 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
4869
4870 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
4871 inserted = 1;
4872 }
4873 #endif
4874
4875 /* If the exit block has no non-fake predecessors, we don't need
4876 an epilogue. */
4877 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4878 if ((e->flags & EDGE_FAKE) == 0)
4879 break;
4880 if (e == NULL)
4881 goto epilogue_done;
4882
4883 #ifdef HAVE_return
4884 if (optimize && HAVE_return)
4885 {
4886 /* If we're allowed to generate a simple return instruction,
4887 then by definition we don't need a full epilogue. Examine
4888 the block that falls through to EXIT. If it does not
4889 contain any code, examine its predecessors and try to
4890 emit (conditional) return instructions. */
4891
4892 basic_block last;
4893 rtx label;
4894
4895 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4896 if (e->flags & EDGE_FALLTHRU)
4897 break;
4898 if (e == NULL)
4899 goto epilogue_done;
4900 last = e->src;
4901
4902 /* Verify that there are no active instructions in the last block. */
4903 label = BB_END (last);
4904 while (label && !LABEL_P (label))
4905 {
4906 if (active_insn_p (label))
4907 break;
4908 label = PREV_INSN (label);
4909 }
4910
4911 if (BB_HEAD (last) == label && LABEL_P (label))
4912 {
4913 edge_iterator ei2;
4914
4915 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
4916 {
4917 basic_block bb = e->src;
4918 rtx jump;
4919
4920 if (bb == ENTRY_BLOCK_PTR)
4921 {
4922 ei_next (&ei2);
4923 continue;
4924 }
4925
4926 jump = BB_END (bb);
4927 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
4928 {
4929 ei_next (&ei2);
4930 continue;
4931 }
4932
4933 /* If we have an unconditional jump, we can replace that
4934 with a simple return instruction. */
4935 if (simplejump_p (jump))
4936 {
4937 emit_return_into_block (bb);
4938 delete_insn (jump);
4939 }
4940
4941 /* If we have a conditional jump, we can try to replace
4942 that with a conditional return instruction. */
4943 else if (condjump_p (jump))
4944 {
4945 if (! redirect_jump (jump, 0, 0))
4946 {
4947 ei_next (&ei2);
4948 continue;
4949 }
4950
4951 /* If this block has only one successor, it both jumps
4952 and falls through to the fallthru block, so we can't
4953 delete the edge. */
4954 if (single_succ_p (bb))
4955 {
4956 ei_next (&ei2);
4957 continue;
4958 }
4959 }
4960 else
4961 {
4962 ei_next (&ei2);
4963 continue;
4964 }
4965
4966 /* Fix up the CFG for the successful change we just made. */
4967 redirect_edge_succ (e, EXIT_BLOCK_PTR);
4968 }
4969
4970 /* Emit a return insn for the exit fallthru block. Whether
4971 this is still reachable will be determined later. */
4972
4973 emit_barrier_after (BB_END (last));
4974 emit_return_into_block (last);
4975 epilogue_end = BB_END (last);
4976 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
4977 goto epilogue_done;
4978 }
4979 }
4980 #endif
4981 /* Find the edge that falls through to EXIT. Other edges may exist
4982 due to RETURN instructions, but those don't need epilogues.
4983 There really shouldn't be a mixture -- either all should have
4984 been converted or none, however... */
4985
4986 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4987 if (e->flags & EDGE_FALLTHRU)
4988 break;
4989 if (e == NULL)
4990 goto epilogue_done;
4991
4992 #ifdef HAVE_epilogue
4993 if (HAVE_epilogue)
4994 {
4995 start_sequence ();
4996 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
4997 seq = gen_epilogue ();
4998 emit_jump_insn (seq);
4999
5000 /* Retain a map of the epilogue insns. */
5001 record_insns (seq, &epilogue);
5002 set_insn_locators (seq, epilogue_locator);
5003
5004 seq = get_insns ();
5005 end_sequence ();
5006
5007 insert_insn_on_edge (seq, e);
5008 inserted = 1;
5009 }
5010 else
5011 #endif
5012 {
5013 basic_block cur_bb;
5014
5015 if (! next_active_insn (BB_END (e->src)))
5016 goto epilogue_done;
5017 /* We have a fall-through edge to the exit block, the source is not
5018 at the end of the function, and there will be an assembler epilogue
5019 at the end of the function.
5020 We can't use force_nonfallthru here, because that would try to
5021 use return. Inserting a jump 'by hand' is extremely messy, so
5022 we take advantage of cfg_layout_finalize using
5023 fixup_fallthru_exit_predecessor. */
5024 cfg_layout_initialize (0);
5025 FOR_EACH_BB (cur_bb)
5026 if (cur_bb->index >= NUM_FIXED_BLOCKS
5027 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5028 cur_bb->aux = cur_bb->next_bb;
5029 cfg_layout_finalize ();
5030 }
5031 epilogue_done:
5032
5033 if (inserted)
5034 {
5035 commit_edge_insertions ();
5036
5037 /* The epilogue insns we inserted may cause the exit edge to no longer
5038 be fallthru. */
5039 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5040 {
5041 if (((e->flags & EDGE_FALLTHRU) != 0)
5042 && returnjump_p (BB_END (e->src)))
5043 e->flags &= ~EDGE_FALLTHRU;
5044 }
5045 }
5046
5047 #ifdef HAVE_sibcall_epilogue
5048 /* Emit sibling epilogues before any sibling call sites. */
5049 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5050 {
5051 basic_block bb = e->src;
5052 rtx insn = BB_END (bb);
5053
5054 if (!CALL_P (insn)
5055 || ! SIBLING_CALL_P (insn))
5056 {
5057 ei_next (&ei);
5058 continue;
5059 }
5060
5061 start_sequence ();
5062 emit_insn (gen_sibcall_epilogue ());
5063 seq = get_insns ();
5064 end_sequence ();
5065
5066 /* Retain a map of the epilogue insns. Used in life analysis to
5067 avoid getting rid of sibcall epilogue insns. Do this before we
5068 actually emit the sequence. */
5069 record_insns (seq, &sibcall_epilogue);
5070 set_insn_locators (seq, epilogue_locator);
5071
5072 emit_insn_before (seq, insn);
5073 ei_next (&ei);
5074 }
5075 #endif
5076
5077 #ifdef HAVE_epilogue
5078 if (epilogue_end)
5079 {
5080 rtx insn, next;
5081
5082 /* Similarly, move any line notes that appear after the epilogue.
5083 There is no need, however, to be quite so anal about the existence
5084 of such a note. Also possibly move
5085 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5086 info generation. */
5087 for (insn = epilogue_end; insn; insn = next)
5088 {
5089 next = NEXT_INSN (insn);
5090 if (NOTE_P (insn)
5091 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5092 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5093 }
5094 }
5095 #endif
5096
5097 /* Threading the prologue and epilogue changes the artificial refs
5098 in the entry and exit blocks. */
5099 epilogue_completed = 1;
5100 df_update_entry_exit_and_calls ();
5101 }
5102
5103 /* Reposition the prologue-end and epilogue-begin notes after instruction
5104 scheduling and delayed branch scheduling. */
5105
5106 void
5107 reposition_prologue_and_epilogue_notes (void)
5108 {
5109 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5110 rtx insn, last, note;
5111 int len;
5112
5113 if ((len = VEC_length (int, prologue)) > 0)
5114 {
5115 last = 0, note = 0;
5116
5117 /* Scan from the beginning until we reach the last prologue insn.
5118 We apparently can't depend on basic_block_{head,end} after
5119 reorg has run. */
5120 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5121 {
5122 if (NOTE_P (insn))
5123 {
5124 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5125 note = insn;
5126 }
5127 else if (contains (insn, &prologue))
5128 {
5129 last = insn;
5130 if (--len == 0)
5131 break;
5132 }
5133 }
5134
5135 if (last)
5136 {
5137 /* Find the prologue-end note if we haven't already, and
5138 move it to just after the last prologue insn. */
5139 if (note == 0)
5140 {
5141 for (note = last; (note = NEXT_INSN (note));)
5142 if (NOTE_P (note)
5143 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5144 break;
5145 }
5146
5147 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5148 if (LABEL_P (last))
5149 last = NEXT_INSN (last);
5150 reorder_insns (note, note, last);
5151 }
5152 }
5153
5154 if ((len = VEC_length (int, epilogue)) > 0)
5155 {
5156 last = 0, note = 0;
5157
5158 /* Scan from the end until we reach the first epilogue insn.
5159 We apparently can't depend on basic_block_{head,end} after
5160 reorg has run. */
5161 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5162 {
5163 if (NOTE_P (insn))
5164 {
5165 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
5166 note = insn;
5167 }
5168 else if (contains (insn, &epilogue))
5169 {
5170 last = insn;
5171 if (--len == 0)
5172 break;
5173 }
5174 }
5175
5176 if (last)
5177 {
5178 /* Find the epilogue-begin note if we haven't already, and
5179 move it to just before the first epilogue insn. */
5180 if (note == 0)
5181 {
5182 for (note = insn; (note = PREV_INSN (note));)
5183 if (NOTE_P (note)
5184 && NOTE_KIND (note) == NOTE_INSN_EPILOGUE_BEG)
5185 break;
5186 }
5187
5188 if (PREV_INSN (last) != note)
5189 reorder_insns (note, note, PREV_INSN (last));
5190 }
5191 }
5192 #endif /* HAVE_prologue or HAVE_epilogue */
5193 }
5194
5195 /* Returns the name of the current function. */
5196 const char *
5197 current_function_name (void)
5198 {
5199 return lang_hooks.decl_printable_name (cfun->decl, 2);
5200 }
5201
5202 /* Returns the raw (mangled) name of the current function. */
5203 const char *
5204 current_function_assembler_name (void)
5205 {
5206 return IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (cfun->decl));
5207 }
5208 \f
5209
5210 static unsigned int
5211 rest_of_handle_check_leaf_regs (void)
5212 {
5213 #ifdef LEAF_REGISTERS
5214 current_function_uses_only_leaf_regs
5215 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5216 #endif
5217 return 0;
5218 }
5219
5220 /* Insert a TYPE into the used types hash table of CFUN. */
5221 static void
5222 used_types_insert_helper (tree type, struct function *func)
5223 {
5224 if (type != NULL && func != NULL)
5225 {
5226 void **slot;
5227
5228 if (func->used_types_hash == NULL)
5229 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5230 htab_eq_pointer, NULL);
5231 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5232 if (*slot == NULL)
5233 *slot = type;
5234 }
5235 }
5236
5237 /* Given a type, insert it into the used hash table in cfun. */
5238 void
5239 used_types_insert (tree t)
5240 {
5241 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5242 t = TREE_TYPE (t);
5243 t = TYPE_MAIN_VARIANT (t);
5244 if (debug_info_level > DINFO_LEVEL_NONE)
5245 used_types_insert_helper (t, cfun);
5246 }
5247
5248 struct rtl_opt_pass pass_leaf_regs =
5249 {
5250 {
5251 RTL_PASS,
5252 NULL, /* name */
5253 NULL, /* gate */
5254 rest_of_handle_check_leaf_regs, /* execute */
5255 NULL, /* sub */
5256 NULL, /* next */
5257 0, /* static_pass_number */
5258 0, /* tv_id */
5259 0, /* properties_required */
5260 0, /* properties_provided */
5261 0, /* properties_destroyed */
5262 0, /* todo_flags_start */
5263 0 /* todo_flags_finish */
5264 }
5265 };
5266
5267 static unsigned int
5268 rest_of_handle_thread_prologue_and_epilogue (void)
5269 {
5270 if (optimize)
5271 cleanup_cfg (CLEANUP_EXPENSIVE);
5272 /* On some machines, the prologue and epilogue code, or parts thereof,
5273 can be represented as RTL. Doing so lets us schedule insns between
5274 it and the rest of the code and also allows delayed branch
5275 scheduling to operate in the epilogue. */
5276
5277 thread_prologue_and_epilogue_insns ();
5278 return 0;
5279 }
5280
5281 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
5282 {
5283 {
5284 RTL_PASS,
5285 "pro_and_epilogue", /* name */
5286 NULL, /* gate */
5287 rest_of_handle_thread_prologue_and_epilogue, /* execute */
5288 NULL, /* sub */
5289 NULL, /* next */
5290 0, /* static_pass_number */
5291 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
5292 0, /* properties_required */
5293 0, /* properties_provided */
5294 0, /* properties_destroyed */
5295 TODO_verify_flow, /* todo_flags_start */
5296 TODO_dump_func |
5297 TODO_df_verify |
5298 TODO_df_finish | TODO_verify_rtl_sharing |
5299 TODO_ggc_collect /* todo_flags_finish */
5300 }
5301 };
5302 \f
5303
5304 /* This mini-pass fixes fall-out from SSA in asm statements that have
5305 in-out constraints. Say you start with
5306
5307 orig = inout;
5308 asm ("": "+mr" (inout));
5309 use (orig);
5310
5311 which is transformed very early to use explicit output and match operands:
5312
5313 orig = inout;
5314 asm ("": "=mr" (inout) : "0" (inout));
5315 use (orig);
5316
5317 Or, after SSA and copyprop,
5318
5319 asm ("": "=mr" (inout_2) : "0" (inout_1));
5320 use (inout_1);
5321
5322 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
5323 they represent two separate values, so they will get different pseudo
5324 registers during expansion. Then, since the two operands need to match
5325 per the constraints, but use different pseudo registers, reload can
5326 only register a reload for these operands. But reloads can only be
5327 satisfied by hardregs, not by memory, so we need a register for this
5328 reload, just because we are presented with non-matching operands.
5329 So, even though we allow memory for this operand, no memory can be
5330 used for it, just because the two operands don't match. This can
5331 cause reload failures on register-starved targets.
5332
5333 So it's a symptom of reload not being able to use memory for reloads
5334 or, alternatively it's also a symptom of both operands not coming into
5335 reload as matching (in which case the pseudo could go to memory just
5336 fine, as the alternative allows it, and no reload would be necessary).
5337 We fix the latter problem here, by transforming
5338
5339 asm ("": "=mr" (inout_2) : "0" (inout_1));
5340
5341 back to
5342
5343 inout_2 = inout_1;
5344 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
5345
5346 static void
5347 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
5348 {
5349 int i;
5350 bool changed = false;
5351 rtx op = SET_SRC (p_sets[0]);
5352 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
5353 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
5354 bool *output_matched = XALLOCAVEC (bool, noutputs);
5355
5356 memset (output_matched, 0, noutputs * sizeof (bool));
5357 for (i = 0; i < ninputs; i++)
5358 {
5359 rtx input, output, insns;
5360 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
5361 char *end;
5362 int match, j;
5363
5364 match = strtoul (constraint, &end, 10);
5365 if (end == constraint)
5366 continue;
5367
5368 gcc_assert (match < noutputs);
5369 output = SET_DEST (p_sets[match]);
5370 input = RTVEC_ELT (inputs, i);
5371 /* Only do the transformation for pseudos. */
5372 if (! REG_P (output)
5373 || rtx_equal_p (output, input)
5374 || (GET_MODE (input) != VOIDmode
5375 && GET_MODE (input) != GET_MODE (output)))
5376 continue;
5377
5378 /* We can't do anything if the output is also used as input,
5379 as we're going to overwrite it. */
5380 for (j = 0; j < ninputs; j++)
5381 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
5382 break;
5383 if (j != ninputs)
5384 continue;
5385
5386 /* Avoid changing the same input several times. For
5387 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
5388 only change in once (to out1), rather than changing it
5389 first to out1 and afterwards to out2. */
5390 if (i > 0)
5391 {
5392 for (j = 0; j < noutputs; j++)
5393 if (output_matched[j] && input == SET_DEST (p_sets[j]))
5394 break;
5395 if (j != noutputs)
5396 continue;
5397 }
5398 output_matched[match] = true;
5399
5400 start_sequence ();
5401 emit_move_insn (output, input);
5402 insns = get_insns ();
5403 end_sequence ();
5404 emit_insn_before (insns, insn);
5405
5406 /* Now replace all mentions of the input with output. We can't
5407 just replace the occurrence in inputs[i], as the register might
5408 also be used in some other input (or even in an address of an
5409 output), which would mean possibly increasing the number of
5410 inputs by one (namely 'output' in addition), which might pose
5411 a too complicated problem for reload to solve. E.g. this situation:
5412
5413 asm ("" : "=r" (output), "=m" (input) : "0" (input))
5414
5415 Here 'input' is used in two occurrences as input (once for the
5416 input operand, once for the address in the second output operand).
5417 If we would replace only the occurrence of the input operand (to
5418 make the matching) we would be left with this:
5419
5420 output = input
5421 asm ("" : "=r" (output), "=m" (input) : "0" (output))
5422
5423 Now we suddenly have two different input values (containing the same
5424 value, but different pseudos) where we formerly had only one.
5425 With more complicated asms this might lead to reload failures
5426 which wouldn't have happen without this pass. So, iterate over
5427 all operands and replace all occurrences of the register used. */
5428 for (j = 0; j < noutputs; j++)
5429 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
5430 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
5431 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
5432 input, output);
5433 for (j = 0; j < ninputs; j++)
5434 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
5435 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
5436 input, output);
5437
5438 changed = true;
5439 }
5440
5441 if (changed)
5442 df_insn_rescan (insn);
5443 }
5444
5445 static unsigned
5446 rest_of_match_asm_constraints (void)
5447 {
5448 basic_block bb;
5449 rtx insn, pat, *p_sets;
5450 int noutputs;
5451
5452 if (!crtl->has_asm_statement)
5453 return 0;
5454
5455 df_set_flags (DF_DEFER_INSN_RESCAN);
5456 FOR_EACH_BB (bb)
5457 {
5458 FOR_BB_INSNS (bb, insn)
5459 {
5460 if (!INSN_P (insn))
5461 continue;
5462
5463 pat = PATTERN (insn);
5464 if (GET_CODE (pat) == PARALLEL)
5465 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
5466 else if (GET_CODE (pat) == SET)
5467 p_sets = &PATTERN (insn), noutputs = 1;
5468 else
5469 continue;
5470
5471 if (GET_CODE (*p_sets) == SET
5472 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
5473 match_asm_constraints_1 (insn, p_sets, noutputs);
5474 }
5475 }
5476
5477 return TODO_df_finish;
5478 }
5479
5480 struct rtl_opt_pass pass_match_asm_constraints =
5481 {
5482 {
5483 RTL_PASS,
5484 "asmcons", /* name */
5485 NULL, /* gate */
5486 rest_of_match_asm_constraints, /* execute */
5487 NULL, /* sub */
5488 NULL, /* next */
5489 0, /* static_pass_number */
5490 0, /* tv_id */
5491 0, /* properties_required */
5492 0, /* properties_provided */
5493 0, /* properties_destroyed */
5494 0, /* todo_flags_start */
5495 TODO_dump_func /* todo_flags_finish */
5496 }
5497 };
5498
5499
5500 #include "gt-function.h"