function.c (assign_parm_setup_reg): For a parameter passed by pointer and which can...
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
24
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
28
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl-error.h"
39 #include "tree.h"
40 #include "flags.h"
41 #include "except.h"
42 #include "function.h"
43 #include "expr.h"
44 #include "optabs.h"
45 #include "libfuncs.h"
46 #include "regs.h"
47 #include "hard-reg-set.h"
48 #include "insn-config.h"
49 #include "recog.h"
50 #include "output.h"
51 #include "basic-block.h"
52 #include "hashtab.h"
53 #include "ggc.h"
54 #include "tm_p.h"
55 #include "langhooks.h"
56 #include "target.h"
57 #include "common/common-target.h"
58 #include "gimple.h"
59 #include "tree-pass.h"
60 #include "predict.h"
61 #include "df.h"
62 #include "params.h"
63 #include "bb-reorder.h"
64
65 /* So we can assign to cfun in this file. */
66 #undef cfun
67
68 #ifndef STACK_ALIGNMENT_NEEDED
69 #define STACK_ALIGNMENT_NEEDED 1
70 #endif
71
72 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
73
74 /* Some systems use __main in a way incompatible with its use in gcc, in these
75 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
76 give the same symbol without quotes for an alternative entry point. You
77 must define both, or neither. */
78 #ifndef NAME__MAIN
79 #define NAME__MAIN "__main"
80 #endif
81
82 /* Round a value to the lowest integer less than it that is a multiple of
83 the required alignment. Avoid using division in case the value is
84 negative. Assume the alignment is a power of two. */
85 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
86
87 /* Similar, but round to the next highest integer that meets the
88 alignment. */
89 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
90
91 /* Nonzero once virtual register instantiation has been done.
92 assign_stack_local uses frame_pointer_rtx when this is nonzero.
93 calls.c:emit_library_call_value_1 uses it to set up
94 post-instantiation libcalls. */
95 int virtuals_instantiated;
96
97 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
98 static GTY(()) int funcdef_no;
99
100 /* These variables hold pointers to functions to create and destroy
101 target specific, per-function data structures. */
102 struct machine_function * (*init_machine_status) (void);
103
104 /* The currently compiled function. */
105 struct function *cfun = 0;
106
107 /* These hashes record the prologue and epilogue insns. */
108 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
109 htab_t prologue_insn_hash;
110 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
111 htab_t epilogue_insn_hash;
112 \f
113
114 htab_t types_used_by_vars_hash = NULL;
115 vec<tree, va_gc> *types_used_by_cur_var_decl;
116
117 /* Forward declarations. */
118
119 static struct temp_slot *find_temp_slot_from_address (rtx);
120 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
121 static void pad_below (struct args_size *, enum machine_mode, tree);
122 static void reorder_blocks_1 (rtx, tree, vec<tree> *);
123 static int all_blocks (tree, tree *);
124 static tree *get_block_vector (tree, int *);
125 extern tree debug_find_var_in_block_tree (tree, tree);
126 /* We always define `record_insns' even if it's not used so that we
127 can always export `prologue_epilogue_contains'. */
128 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
129 static bool contains (const_rtx, htab_t);
130 static void prepare_function_start (void);
131 static void do_clobber_return_reg (rtx, void *);
132 static void do_use_return_reg (rtx, void *);
133 static void set_insn_locations (rtx, int) ATTRIBUTE_UNUSED;
134 \f
135 /* Stack of nested functions. */
136 /* Keep track of the cfun stack. */
137
138 typedef struct function *function_p;
139
140 static vec<function_p> function_context_stack;
141
142 /* Save the current context for compilation of a nested function.
143 This is called from language-specific code. */
144
145 void
146 push_function_context (void)
147 {
148 if (cfun == 0)
149 allocate_struct_function (NULL, false);
150
151 function_context_stack.safe_push (cfun);
152 set_cfun (NULL);
153 }
154
155 /* Restore the last saved context, at the end of a nested function.
156 This function is called from language-specific code. */
157
158 void
159 pop_function_context (void)
160 {
161 struct function *p = function_context_stack.pop ();
162 set_cfun (p);
163 current_function_decl = p->decl;
164
165 /* Reset variables that have known state during rtx generation. */
166 virtuals_instantiated = 0;
167 generating_concat_p = 1;
168 }
169
170 /* Clear out all parts of the state in F that can safely be discarded
171 after the function has been parsed, but not compiled, to let
172 garbage collection reclaim the memory. */
173
174 void
175 free_after_parsing (struct function *f)
176 {
177 f->language = 0;
178 }
179
180 /* Clear out all parts of the state in F that can safely be discarded
181 after the function has been compiled, to let garbage collection
182 reclaim the memory. */
183
184 void
185 free_after_compilation (struct function *f)
186 {
187 prologue_insn_hash = NULL;
188 epilogue_insn_hash = NULL;
189
190 free (crtl->emit.regno_pointer_align);
191
192 memset (crtl, 0, sizeof (struct rtl_data));
193 f->eh = NULL;
194 f->machine = NULL;
195 f->cfg = NULL;
196
197 regno_reg_rtx = NULL;
198 }
199 \f
200 /* Return size needed for stack frame based on slots so far allocated.
201 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
202 the caller may have to do that. */
203
204 HOST_WIDE_INT
205 get_frame_size (void)
206 {
207 if (FRAME_GROWS_DOWNWARD)
208 return -frame_offset;
209 else
210 return frame_offset;
211 }
212
213 /* Issue an error message and return TRUE if frame OFFSET overflows in
214 the signed target pointer arithmetics for function FUNC. Otherwise
215 return FALSE. */
216
217 bool
218 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
219 {
220 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
221
222 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
223 /* Leave room for the fixed part of the frame. */
224 - 64 * UNITS_PER_WORD)
225 {
226 error_at (DECL_SOURCE_LOCATION (func),
227 "total size of local objects too large");
228 return TRUE;
229 }
230
231 return FALSE;
232 }
233
234 /* Return stack slot alignment in bits for TYPE and MODE. */
235
236 static unsigned int
237 get_stack_local_alignment (tree type, enum machine_mode mode)
238 {
239 unsigned int alignment;
240
241 if (mode == BLKmode)
242 alignment = BIGGEST_ALIGNMENT;
243 else
244 alignment = GET_MODE_ALIGNMENT (mode);
245
246 /* Allow the frond-end to (possibly) increase the alignment of this
247 stack slot. */
248 if (! type)
249 type = lang_hooks.types.type_for_mode (mode, 0);
250
251 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
252 }
253
254 /* Determine whether it is possible to fit a stack slot of size SIZE and
255 alignment ALIGNMENT into an area in the stack frame that starts at
256 frame offset START and has a length of LENGTH. If so, store the frame
257 offset to be used for the stack slot in *POFFSET and return true;
258 return false otherwise. This function will extend the frame size when
259 given a start/length pair that lies at the end of the frame. */
260
261 static bool
262 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
263 HOST_WIDE_INT size, unsigned int alignment,
264 HOST_WIDE_INT *poffset)
265 {
266 HOST_WIDE_INT this_frame_offset;
267 int frame_off, frame_alignment, frame_phase;
268
269 /* Calculate how many bytes the start of local variables is off from
270 stack alignment. */
271 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
272 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
273 frame_phase = frame_off ? frame_alignment - frame_off : 0;
274
275 /* Round the frame offset to the specified alignment. */
276
277 /* We must be careful here, since FRAME_OFFSET might be negative and
278 division with a negative dividend isn't as well defined as we might
279 like. So we instead assume that ALIGNMENT is a power of two and
280 use logical operations which are unambiguous. */
281 if (FRAME_GROWS_DOWNWARD)
282 this_frame_offset
283 = (FLOOR_ROUND (start + length - size - frame_phase,
284 (unsigned HOST_WIDE_INT) alignment)
285 + frame_phase);
286 else
287 this_frame_offset
288 = (CEIL_ROUND (start - frame_phase,
289 (unsigned HOST_WIDE_INT) alignment)
290 + frame_phase);
291
292 /* See if it fits. If this space is at the edge of the frame,
293 consider extending the frame to make it fit. Our caller relies on
294 this when allocating a new slot. */
295 if (frame_offset == start && this_frame_offset < frame_offset)
296 frame_offset = this_frame_offset;
297 else if (this_frame_offset < start)
298 return false;
299 else if (start + length == frame_offset
300 && this_frame_offset + size > start + length)
301 frame_offset = this_frame_offset + size;
302 else if (this_frame_offset + size > start + length)
303 return false;
304
305 *poffset = this_frame_offset;
306 return true;
307 }
308
309 /* Create a new frame_space structure describing free space in the stack
310 frame beginning at START and ending at END, and chain it into the
311 function's frame_space_list. */
312
313 static void
314 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
315 {
316 struct frame_space *space = ggc_alloc_frame_space ();
317 space->next = crtl->frame_space_list;
318 crtl->frame_space_list = space;
319 space->start = start;
320 space->length = end - start;
321 }
322
323 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
324 with machine mode MODE.
325
326 ALIGN controls the amount of alignment for the address of the slot:
327 0 means according to MODE,
328 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
329 -2 means use BITS_PER_UNIT,
330 positive specifies alignment boundary in bits.
331
332 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
333 alignment and ASLK_RECORD_PAD bit set if we should remember
334 extra space we allocated for alignment purposes. When we are
335 called from assign_stack_temp_for_type, it is not set so we don't
336 track the same stack slot in two independent lists.
337
338 We do not round to stack_boundary here. */
339
340 rtx
341 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
342 int align, int kind)
343 {
344 rtx x, addr;
345 int bigend_correction = 0;
346 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
347 unsigned int alignment, alignment_in_bits;
348
349 if (align == 0)
350 {
351 alignment = get_stack_local_alignment (NULL, mode);
352 alignment /= BITS_PER_UNIT;
353 }
354 else if (align == -1)
355 {
356 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
357 size = CEIL_ROUND (size, alignment);
358 }
359 else if (align == -2)
360 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
361 else
362 alignment = align / BITS_PER_UNIT;
363
364 alignment_in_bits = alignment * BITS_PER_UNIT;
365
366 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
367 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
368 {
369 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
370 alignment = alignment_in_bits / BITS_PER_UNIT;
371 }
372
373 if (SUPPORTS_STACK_ALIGNMENT)
374 {
375 if (crtl->stack_alignment_estimated < alignment_in_bits)
376 {
377 if (!crtl->stack_realign_processed)
378 crtl->stack_alignment_estimated = alignment_in_bits;
379 else
380 {
381 /* If stack is realigned and stack alignment value
382 hasn't been finalized, it is OK not to increase
383 stack_alignment_estimated. The bigger alignment
384 requirement is recorded in stack_alignment_needed
385 below. */
386 gcc_assert (!crtl->stack_realign_finalized);
387 if (!crtl->stack_realign_needed)
388 {
389 /* It is OK to reduce the alignment as long as the
390 requested size is 0 or the estimated stack
391 alignment >= mode alignment. */
392 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
393 || size == 0
394 || (crtl->stack_alignment_estimated
395 >= GET_MODE_ALIGNMENT (mode)));
396 alignment_in_bits = crtl->stack_alignment_estimated;
397 alignment = alignment_in_bits / BITS_PER_UNIT;
398 }
399 }
400 }
401 }
402
403 if (crtl->stack_alignment_needed < alignment_in_bits)
404 crtl->stack_alignment_needed = alignment_in_bits;
405 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
406 crtl->max_used_stack_slot_alignment = alignment_in_bits;
407
408 if (mode != BLKmode || size != 0)
409 {
410 if (kind & ASLK_RECORD_PAD)
411 {
412 struct frame_space **psp;
413
414 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
415 {
416 struct frame_space *space = *psp;
417 if (!try_fit_stack_local (space->start, space->length, size,
418 alignment, &slot_offset))
419 continue;
420 *psp = space->next;
421 if (slot_offset > space->start)
422 add_frame_space (space->start, slot_offset);
423 if (slot_offset + size < space->start + space->length)
424 add_frame_space (slot_offset + size,
425 space->start + space->length);
426 goto found_space;
427 }
428 }
429 }
430 else if (!STACK_ALIGNMENT_NEEDED)
431 {
432 slot_offset = frame_offset;
433 goto found_space;
434 }
435
436 old_frame_offset = frame_offset;
437
438 if (FRAME_GROWS_DOWNWARD)
439 {
440 frame_offset -= size;
441 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
442
443 if (kind & ASLK_RECORD_PAD)
444 {
445 if (slot_offset > frame_offset)
446 add_frame_space (frame_offset, slot_offset);
447 if (slot_offset + size < old_frame_offset)
448 add_frame_space (slot_offset + size, old_frame_offset);
449 }
450 }
451 else
452 {
453 frame_offset += size;
454 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
455
456 if (kind & ASLK_RECORD_PAD)
457 {
458 if (slot_offset > old_frame_offset)
459 add_frame_space (old_frame_offset, slot_offset);
460 if (slot_offset + size < frame_offset)
461 add_frame_space (slot_offset + size, frame_offset);
462 }
463 }
464
465 found_space:
466 /* On a big-endian machine, if we are allocating more space than we will use,
467 use the least significant bytes of those that are allocated. */
468 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
469 bigend_correction = size - GET_MODE_SIZE (mode);
470
471 /* If we have already instantiated virtual registers, return the actual
472 address relative to the frame pointer. */
473 if (virtuals_instantiated)
474 addr = plus_constant (Pmode, frame_pointer_rtx,
475 trunc_int_for_mode
476 (slot_offset + bigend_correction
477 + STARTING_FRAME_OFFSET, Pmode));
478 else
479 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
480 trunc_int_for_mode
481 (slot_offset + bigend_correction,
482 Pmode));
483
484 x = gen_rtx_MEM (mode, addr);
485 set_mem_align (x, alignment_in_bits);
486 MEM_NOTRAP_P (x) = 1;
487
488 stack_slot_list
489 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
490
491 if (frame_offset_overflow (frame_offset, current_function_decl))
492 frame_offset = 0;
493
494 return x;
495 }
496
497 /* Wrap up assign_stack_local_1 with last parameter as false. */
498
499 rtx
500 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
501 {
502 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
503 }
504 \f
505 /* In order to evaluate some expressions, such as function calls returning
506 structures in memory, we need to temporarily allocate stack locations.
507 We record each allocated temporary in the following structure.
508
509 Associated with each temporary slot is a nesting level. When we pop up
510 one level, all temporaries associated with the previous level are freed.
511 Normally, all temporaries are freed after the execution of the statement
512 in which they were created. However, if we are inside a ({...}) grouping,
513 the result may be in a temporary and hence must be preserved. If the
514 result could be in a temporary, we preserve it if we can determine which
515 one it is in. If we cannot determine which temporary may contain the
516 result, all temporaries are preserved. A temporary is preserved by
517 pretending it was allocated at the previous nesting level. */
518
519 struct GTY(()) temp_slot {
520 /* Points to next temporary slot. */
521 struct temp_slot *next;
522 /* Points to previous temporary slot. */
523 struct temp_slot *prev;
524 /* The rtx to used to reference the slot. */
525 rtx slot;
526 /* The size, in units, of the slot. */
527 HOST_WIDE_INT size;
528 /* The type of the object in the slot, or zero if it doesn't correspond
529 to a type. We use this to determine whether a slot can be reused.
530 It can be reused if objects of the type of the new slot will always
531 conflict with objects of the type of the old slot. */
532 tree type;
533 /* The alignment (in bits) of the slot. */
534 unsigned int align;
535 /* Nonzero if this temporary is currently in use. */
536 char in_use;
537 /* Nesting level at which this slot is being used. */
538 int level;
539 /* The offset of the slot from the frame_pointer, including extra space
540 for alignment. This info is for combine_temp_slots. */
541 HOST_WIDE_INT base_offset;
542 /* The size of the slot, including extra space for alignment. This
543 info is for combine_temp_slots. */
544 HOST_WIDE_INT full_size;
545 };
546
547 /* A table of addresses that represent a stack slot. The table is a mapping
548 from address RTXen to a temp slot. */
549 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
550 static size_t n_temp_slots_in_use;
551
552 /* Entry for the above hash table. */
553 struct GTY(()) temp_slot_address_entry {
554 hashval_t hash;
555 rtx address;
556 struct temp_slot *temp_slot;
557 };
558
559 /* Removes temporary slot TEMP from LIST. */
560
561 static void
562 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
563 {
564 if (temp->next)
565 temp->next->prev = temp->prev;
566 if (temp->prev)
567 temp->prev->next = temp->next;
568 else
569 *list = temp->next;
570
571 temp->prev = temp->next = NULL;
572 }
573
574 /* Inserts temporary slot TEMP to LIST. */
575
576 static void
577 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
578 {
579 temp->next = *list;
580 if (*list)
581 (*list)->prev = temp;
582 temp->prev = NULL;
583 *list = temp;
584 }
585
586 /* Returns the list of used temp slots at LEVEL. */
587
588 static struct temp_slot **
589 temp_slots_at_level (int level)
590 {
591 if (level >= (int) vec_safe_length (used_temp_slots))
592 vec_safe_grow_cleared (used_temp_slots, level + 1);
593
594 return &(*used_temp_slots)[level];
595 }
596
597 /* Returns the maximal temporary slot level. */
598
599 static int
600 max_slot_level (void)
601 {
602 if (!used_temp_slots)
603 return -1;
604
605 return used_temp_slots->length () - 1;
606 }
607
608 /* Moves temporary slot TEMP to LEVEL. */
609
610 static void
611 move_slot_to_level (struct temp_slot *temp, int level)
612 {
613 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
614 insert_slot_to_list (temp, temp_slots_at_level (level));
615 temp->level = level;
616 }
617
618 /* Make temporary slot TEMP available. */
619
620 static void
621 make_slot_available (struct temp_slot *temp)
622 {
623 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
624 insert_slot_to_list (temp, &avail_temp_slots);
625 temp->in_use = 0;
626 temp->level = -1;
627 n_temp_slots_in_use--;
628 }
629
630 /* Compute the hash value for an address -> temp slot mapping.
631 The value is cached on the mapping entry. */
632 static hashval_t
633 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
634 {
635 int do_not_record = 0;
636 return hash_rtx (t->address, GET_MODE (t->address),
637 &do_not_record, NULL, false);
638 }
639
640 /* Return the hash value for an address -> temp slot mapping. */
641 static hashval_t
642 temp_slot_address_hash (const void *p)
643 {
644 const struct temp_slot_address_entry *t;
645 t = (const struct temp_slot_address_entry *) p;
646 return t->hash;
647 }
648
649 /* Compare two address -> temp slot mapping entries. */
650 static int
651 temp_slot_address_eq (const void *p1, const void *p2)
652 {
653 const struct temp_slot_address_entry *t1, *t2;
654 t1 = (const struct temp_slot_address_entry *) p1;
655 t2 = (const struct temp_slot_address_entry *) p2;
656 return exp_equiv_p (t1->address, t2->address, 0, true);
657 }
658
659 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
660 static void
661 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
662 {
663 void **slot;
664 struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
665 t->address = address;
666 t->temp_slot = temp_slot;
667 t->hash = temp_slot_address_compute_hash (t);
668 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
669 *slot = t;
670 }
671
672 /* Remove an address -> temp slot mapping entry if the temp slot is
673 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
674 static int
675 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
676 {
677 const struct temp_slot_address_entry *t;
678 t = (const struct temp_slot_address_entry *) *slot;
679 if (! t->temp_slot->in_use)
680 htab_clear_slot (temp_slot_address_table, slot);
681 return 1;
682 }
683
684 /* Remove all mappings of addresses to unused temp slots. */
685 static void
686 remove_unused_temp_slot_addresses (void)
687 {
688 /* Use quicker clearing if there aren't any active temp slots. */
689 if (n_temp_slots_in_use)
690 htab_traverse (temp_slot_address_table,
691 remove_unused_temp_slot_addresses_1,
692 NULL);
693 else
694 htab_empty (temp_slot_address_table);
695 }
696
697 /* Find the temp slot corresponding to the object at address X. */
698
699 static struct temp_slot *
700 find_temp_slot_from_address (rtx x)
701 {
702 struct temp_slot *p;
703 struct temp_slot_address_entry tmp, *t;
704
705 /* First try the easy way:
706 See if X exists in the address -> temp slot mapping. */
707 tmp.address = x;
708 tmp.temp_slot = NULL;
709 tmp.hash = temp_slot_address_compute_hash (&tmp);
710 t = (struct temp_slot_address_entry *)
711 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
712 if (t)
713 return t->temp_slot;
714
715 /* If we have a sum involving a register, see if it points to a temp
716 slot. */
717 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
718 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
719 return p;
720 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
721 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
722 return p;
723
724 /* Last resort: Address is a virtual stack var address. */
725 if (GET_CODE (x) == PLUS
726 && XEXP (x, 0) == virtual_stack_vars_rtx
727 && CONST_INT_P (XEXP (x, 1)))
728 {
729 int i;
730 for (i = max_slot_level (); i >= 0; i--)
731 for (p = *temp_slots_at_level (i); p; p = p->next)
732 {
733 if (INTVAL (XEXP (x, 1)) >= p->base_offset
734 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
735 return p;
736 }
737 }
738
739 return NULL;
740 }
741 \f
742 /* Allocate a temporary stack slot and record it for possible later
743 reuse.
744
745 MODE is the machine mode to be given to the returned rtx.
746
747 SIZE is the size in units of the space required. We do no rounding here
748 since assign_stack_local will do any required rounding.
749
750 TYPE is the type that will be used for the stack slot. */
751
752 rtx
753 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
754 tree type)
755 {
756 unsigned int align;
757 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
758 rtx slot;
759
760 /* If SIZE is -1 it means that somebody tried to allocate a temporary
761 of a variable size. */
762 gcc_assert (size != -1);
763
764 align = get_stack_local_alignment (type, mode);
765
766 /* Try to find an available, already-allocated temporary of the proper
767 mode which meets the size and alignment requirements. Choose the
768 smallest one with the closest alignment.
769
770 If assign_stack_temp is called outside of the tree->rtl expansion,
771 we cannot reuse the stack slots (that may still refer to
772 VIRTUAL_STACK_VARS_REGNUM). */
773 if (!virtuals_instantiated)
774 {
775 for (p = avail_temp_slots; p; p = p->next)
776 {
777 if (p->align >= align && p->size >= size
778 && GET_MODE (p->slot) == mode
779 && objects_must_conflict_p (p->type, type)
780 && (best_p == 0 || best_p->size > p->size
781 || (best_p->size == p->size && best_p->align > p->align)))
782 {
783 if (p->align == align && p->size == size)
784 {
785 selected = p;
786 cut_slot_from_list (selected, &avail_temp_slots);
787 best_p = 0;
788 break;
789 }
790 best_p = p;
791 }
792 }
793 }
794
795 /* Make our best, if any, the one to use. */
796 if (best_p)
797 {
798 selected = best_p;
799 cut_slot_from_list (selected, &avail_temp_slots);
800
801 /* If there are enough aligned bytes left over, make them into a new
802 temp_slot so that the extra bytes don't get wasted. Do this only
803 for BLKmode slots, so that we can be sure of the alignment. */
804 if (GET_MODE (best_p->slot) == BLKmode)
805 {
806 int alignment = best_p->align / BITS_PER_UNIT;
807 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
808
809 if (best_p->size - rounded_size >= alignment)
810 {
811 p = ggc_alloc_temp_slot ();
812 p->in_use = 0;
813 p->size = best_p->size - rounded_size;
814 p->base_offset = best_p->base_offset + rounded_size;
815 p->full_size = best_p->full_size - rounded_size;
816 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
817 p->align = best_p->align;
818 p->type = best_p->type;
819 insert_slot_to_list (p, &avail_temp_slots);
820
821 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
822 stack_slot_list);
823
824 best_p->size = rounded_size;
825 best_p->full_size = rounded_size;
826 }
827 }
828 }
829
830 /* If we still didn't find one, make a new temporary. */
831 if (selected == 0)
832 {
833 HOST_WIDE_INT frame_offset_old = frame_offset;
834
835 p = ggc_alloc_temp_slot ();
836
837 /* We are passing an explicit alignment request to assign_stack_local.
838 One side effect of that is assign_stack_local will not round SIZE
839 to ensure the frame offset remains suitably aligned.
840
841 So for requests which depended on the rounding of SIZE, we go ahead
842 and round it now. We also make sure ALIGNMENT is at least
843 BIGGEST_ALIGNMENT. */
844 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
845 p->slot = assign_stack_local_1 (mode,
846 (mode == BLKmode
847 ? CEIL_ROUND (size,
848 (int) align
849 / BITS_PER_UNIT)
850 : size),
851 align, 0);
852
853 p->align = align;
854
855 /* The following slot size computation is necessary because we don't
856 know the actual size of the temporary slot until assign_stack_local
857 has performed all the frame alignment and size rounding for the
858 requested temporary. Note that extra space added for alignment
859 can be either above or below this stack slot depending on which
860 way the frame grows. We include the extra space if and only if it
861 is above this slot. */
862 if (FRAME_GROWS_DOWNWARD)
863 p->size = frame_offset_old - frame_offset;
864 else
865 p->size = size;
866
867 /* Now define the fields used by combine_temp_slots. */
868 if (FRAME_GROWS_DOWNWARD)
869 {
870 p->base_offset = frame_offset;
871 p->full_size = frame_offset_old - frame_offset;
872 }
873 else
874 {
875 p->base_offset = frame_offset_old;
876 p->full_size = frame_offset - frame_offset_old;
877 }
878
879 selected = p;
880 }
881
882 p = selected;
883 p->in_use = 1;
884 p->type = type;
885 p->level = temp_slot_level;
886 n_temp_slots_in_use++;
887
888 pp = temp_slots_at_level (p->level);
889 insert_slot_to_list (p, pp);
890 insert_temp_slot_address (XEXP (p->slot, 0), p);
891
892 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
893 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
894 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
895
896 /* If we know the alias set for the memory that will be used, use
897 it. If there's no TYPE, then we don't know anything about the
898 alias set for the memory. */
899 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
900 set_mem_align (slot, align);
901
902 /* If a type is specified, set the relevant flags. */
903 if (type != 0)
904 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
905 MEM_NOTRAP_P (slot) = 1;
906
907 return slot;
908 }
909
910 /* Allocate a temporary stack slot and record it for possible later
911 reuse. First two arguments are same as in preceding function. */
912
913 rtx
914 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size)
915 {
916 return assign_stack_temp_for_type (mode, size, NULL_TREE);
917 }
918 \f
919 /* Assign a temporary.
920 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
921 and so that should be used in error messages. In either case, we
922 allocate of the given type.
923 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
924 it is 0 if a register is OK.
925 DONT_PROMOTE is 1 if we should not promote values in register
926 to wider modes. */
927
928 rtx
929 assign_temp (tree type_or_decl, int memory_required,
930 int dont_promote ATTRIBUTE_UNUSED)
931 {
932 tree type, decl;
933 enum machine_mode mode;
934 #ifdef PROMOTE_MODE
935 int unsignedp;
936 #endif
937
938 if (DECL_P (type_or_decl))
939 decl = type_or_decl, type = TREE_TYPE (decl);
940 else
941 decl = NULL, type = type_or_decl;
942
943 mode = TYPE_MODE (type);
944 #ifdef PROMOTE_MODE
945 unsignedp = TYPE_UNSIGNED (type);
946 #endif
947
948 if (mode == BLKmode || memory_required)
949 {
950 HOST_WIDE_INT size = int_size_in_bytes (type);
951 rtx tmp;
952
953 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
954 problems with allocating the stack space. */
955 if (size == 0)
956 size = 1;
957
958 /* Unfortunately, we don't yet know how to allocate variable-sized
959 temporaries. However, sometimes we can find a fixed upper limit on
960 the size, so try that instead. */
961 else if (size == -1)
962 size = max_int_size_in_bytes (type);
963
964 /* The size of the temporary may be too large to fit into an integer. */
965 /* ??? Not sure this should happen except for user silliness, so limit
966 this to things that aren't compiler-generated temporaries. The
967 rest of the time we'll die in assign_stack_temp_for_type. */
968 if (decl && size == -1
969 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
970 {
971 error ("size of variable %q+D is too large", decl);
972 size = 1;
973 }
974
975 tmp = assign_stack_temp_for_type (mode, size, type);
976 return tmp;
977 }
978
979 #ifdef PROMOTE_MODE
980 if (! dont_promote)
981 mode = promote_mode (type, mode, &unsignedp);
982 #endif
983
984 return gen_reg_rtx (mode);
985 }
986 \f
987 /* Combine temporary stack slots which are adjacent on the stack.
988
989 This allows for better use of already allocated stack space. This is only
990 done for BLKmode slots because we can be sure that we won't have alignment
991 problems in this case. */
992
993 static void
994 combine_temp_slots (void)
995 {
996 struct temp_slot *p, *q, *next, *next_q;
997 int num_slots;
998
999 /* We can't combine slots, because the information about which slot
1000 is in which alias set will be lost. */
1001 if (flag_strict_aliasing)
1002 return;
1003
1004 /* If there are a lot of temp slots, don't do anything unless
1005 high levels of optimization. */
1006 if (! flag_expensive_optimizations)
1007 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1008 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1009 return;
1010
1011 for (p = avail_temp_slots; p; p = next)
1012 {
1013 int delete_p = 0;
1014
1015 next = p->next;
1016
1017 if (GET_MODE (p->slot) != BLKmode)
1018 continue;
1019
1020 for (q = p->next; q; q = next_q)
1021 {
1022 int delete_q = 0;
1023
1024 next_q = q->next;
1025
1026 if (GET_MODE (q->slot) != BLKmode)
1027 continue;
1028
1029 if (p->base_offset + p->full_size == q->base_offset)
1030 {
1031 /* Q comes after P; combine Q into P. */
1032 p->size += q->size;
1033 p->full_size += q->full_size;
1034 delete_q = 1;
1035 }
1036 else if (q->base_offset + q->full_size == p->base_offset)
1037 {
1038 /* P comes after Q; combine P into Q. */
1039 q->size += p->size;
1040 q->full_size += p->full_size;
1041 delete_p = 1;
1042 break;
1043 }
1044 if (delete_q)
1045 cut_slot_from_list (q, &avail_temp_slots);
1046 }
1047
1048 /* Either delete P or advance past it. */
1049 if (delete_p)
1050 cut_slot_from_list (p, &avail_temp_slots);
1051 }
1052 }
1053 \f
1054 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1055 slot that previously was known by OLD_RTX. */
1056
1057 void
1058 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1059 {
1060 struct temp_slot *p;
1061
1062 if (rtx_equal_p (old_rtx, new_rtx))
1063 return;
1064
1065 p = find_temp_slot_from_address (old_rtx);
1066
1067 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1068 NEW_RTX is a register, see if one operand of the PLUS is a
1069 temporary location. If so, NEW_RTX points into it. Otherwise,
1070 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1071 in common between them. If so, try a recursive call on those
1072 values. */
1073 if (p == 0)
1074 {
1075 if (GET_CODE (old_rtx) != PLUS)
1076 return;
1077
1078 if (REG_P (new_rtx))
1079 {
1080 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1081 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1082 return;
1083 }
1084 else if (GET_CODE (new_rtx) != PLUS)
1085 return;
1086
1087 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1088 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1089 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1090 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1091 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1092 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1093 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1094 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1095
1096 return;
1097 }
1098
1099 /* Otherwise add an alias for the temp's address. */
1100 insert_temp_slot_address (new_rtx, p);
1101 }
1102
1103 /* If X could be a reference to a temporary slot, mark that slot as
1104 belonging to the to one level higher than the current level. If X
1105 matched one of our slots, just mark that one. Otherwise, we can't
1106 easily predict which it is, so upgrade all of them.
1107
1108 This is called when an ({...}) construct occurs and a statement
1109 returns a value in memory. */
1110
1111 void
1112 preserve_temp_slots (rtx x)
1113 {
1114 struct temp_slot *p = 0, *next;
1115
1116 if (x == 0)
1117 return;
1118
1119 /* If X is a register that is being used as a pointer, see if we have
1120 a temporary slot we know it points to. */
1121 if (REG_P (x) && REG_POINTER (x))
1122 p = find_temp_slot_from_address (x);
1123
1124 /* If X is not in memory or is at a constant address, it cannot be in
1125 a temporary slot. */
1126 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1127 return;
1128
1129 /* First see if we can find a match. */
1130 if (p == 0)
1131 p = find_temp_slot_from_address (XEXP (x, 0));
1132
1133 if (p != 0)
1134 {
1135 if (p->level == temp_slot_level)
1136 move_slot_to_level (p, temp_slot_level - 1);
1137 return;
1138 }
1139
1140 /* Otherwise, preserve all non-kept slots at this level. */
1141 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1142 {
1143 next = p->next;
1144 move_slot_to_level (p, temp_slot_level - 1);
1145 }
1146 }
1147
1148 /* Free all temporaries used so far. This is normally called at the
1149 end of generating code for a statement. */
1150
1151 void
1152 free_temp_slots (void)
1153 {
1154 struct temp_slot *p, *next;
1155 bool some_available = false;
1156
1157 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1158 {
1159 next = p->next;
1160 make_slot_available (p);
1161 some_available = true;
1162 }
1163
1164 if (some_available)
1165 {
1166 remove_unused_temp_slot_addresses ();
1167 combine_temp_slots ();
1168 }
1169 }
1170
1171 /* Push deeper into the nesting level for stack temporaries. */
1172
1173 void
1174 push_temp_slots (void)
1175 {
1176 temp_slot_level++;
1177 }
1178
1179 /* Pop a temporary nesting level. All slots in use in the current level
1180 are freed. */
1181
1182 void
1183 pop_temp_slots (void)
1184 {
1185 free_temp_slots ();
1186 temp_slot_level--;
1187 }
1188
1189 /* Initialize temporary slots. */
1190
1191 void
1192 init_temp_slots (void)
1193 {
1194 /* We have not allocated any temporaries yet. */
1195 avail_temp_slots = 0;
1196 vec_alloc (used_temp_slots, 0);
1197 temp_slot_level = 0;
1198 n_temp_slots_in_use = 0;
1199
1200 /* Set up the table to map addresses to temp slots. */
1201 if (! temp_slot_address_table)
1202 temp_slot_address_table = htab_create_ggc (32,
1203 temp_slot_address_hash,
1204 temp_slot_address_eq,
1205 NULL);
1206 else
1207 htab_empty (temp_slot_address_table);
1208 }
1209 \f
1210 /* Functions and data structures to keep track of the values hard regs
1211 had at the start of the function. */
1212
1213 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1214 and has_hard_reg_initial_val.. */
1215 typedef struct GTY(()) initial_value_pair {
1216 rtx hard_reg;
1217 rtx pseudo;
1218 } initial_value_pair;
1219 /* ??? This could be a VEC but there is currently no way to define an
1220 opaque VEC type. This could be worked around by defining struct
1221 initial_value_pair in function.h. */
1222 typedef struct GTY(()) initial_value_struct {
1223 int num_entries;
1224 int max_entries;
1225 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1226 } initial_value_struct;
1227
1228 /* If a pseudo represents an initial hard reg (or expression), return
1229 it, else return NULL_RTX. */
1230
1231 rtx
1232 get_hard_reg_initial_reg (rtx reg)
1233 {
1234 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1235 int i;
1236
1237 if (ivs == 0)
1238 return NULL_RTX;
1239
1240 for (i = 0; i < ivs->num_entries; i++)
1241 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1242 return ivs->entries[i].hard_reg;
1243
1244 return NULL_RTX;
1245 }
1246
1247 /* Make sure that there's a pseudo register of mode MODE that stores the
1248 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1249
1250 rtx
1251 get_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1252 {
1253 struct initial_value_struct *ivs;
1254 rtx rv;
1255
1256 rv = has_hard_reg_initial_val (mode, regno);
1257 if (rv)
1258 return rv;
1259
1260 ivs = crtl->hard_reg_initial_vals;
1261 if (ivs == 0)
1262 {
1263 ivs = ggc_alloc_initial_value_struct ();
1264 ivs->num_entries = 0;
1265 ivs->max_entries = 5;
1266 ivs->entries = ggc_alloc_vec_initial_value_pair (5);
1267 crtl->hard_reg_initial_vals = ivs;
1268 }
1269
1270 if (ivs->num_entries >= ivs->max_entries)
1271 {
1272 ivs->max_entries += 5;
1273 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1274 ivs->max_entries);
1275 }
1276
1277 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1278 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1279
1280 return ivs->entries[ivs->num_entries++].pseudo;
1281 }
1282
1283 /* See if get_hard_reg_initial_val has been used to create a pseudo
1284 for the initial value of hard register REGNO in mode MODE. Return
1285 the associated pseudo if so, otherwise return NULL. */
1286
1287 rtx
1288 has_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1289 {
1290 struct initial_value_struct *ivs;
1291 int i;
1292
1293 ivs = crtl->hard_reg_initial_vals;
1294 if (ivs != 0)
1295 for (i = 0; i < ivs->num_entries; i++)
1296 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1297 && REGNO (ivs->entries[i].hard_reg) == regno)
1298 return ivs->entries[i].pseudo;
1299
1300 return NULL_RTX;
1301 }
1302
1303 unsigned int
1304 emit_initial_value_sets (void)
1305 {
1306 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1307 int i;
1308 rtx seq;
1309
1310 if (ivs == 0)
1311 return 0;
1312
1313 start_sequence ();
1314 for (i = 0; i < ivs->num_entries; i++)
1315 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1316 seq = get_insns ();
1317 end_sequence ();
1318
1319 emit_insn_at_entry (seq);
1320 return 0;
1321 }
1322
1323 /* Return the hardreg-pseudoreg initial values pair entry I and
1324 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1325 bool
1326 initial_value_entry (int i, rtx *hreg, rtx *preg)
1327 {
1328 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1329 if (!ivs || i >= ivs->num_entries)
1330 return false;
1331
1332 *hreg = ivs->entries[i].hard_reg;
1333 *preg = ivs->entries[i].pseudo;
1334 return true;
1335 }
1336 \f
1337 /* These routines are responsible for converting virtual register references
1338 to the actual hard register references once RTL generation is complete.
1339
1340 The following four variables are used for communication between the
1341 routines. They contain the offsets of the virtual registers from their
1342 respective hard registers. */
1343
1344 static int in_arg_offset;
1345 static int var_offset;
1346 static int dynamic_offset;
1347 static int out_arg_offset;
1348 static int cfa_offset;
1349
1350 /* In most machines, the stack pointer register is equivalent to the bottom
1351 of the stack. */
1352
1353 #ifndef STACK_POINTER_OFFSET
1354 #define STACK_POINTER_OFFSET 0
1355 #endif
1356
1357 /* If not defined, pick an appropriate default for the offset of dynamically
1358 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1359 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1360
1361 #ifndef STACK_DYNAMIC_OFFSET
1362
1363 /* The bottom of the stack points to the actual arguments. If
1364 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1365 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1366 stack space for register parameters is not pushed by the caller, but
1367 rather part of the fixed stack areas and hence not included in
1368 `crtl->outgoing_args_size'. Nevertheless, we must allow
1369 for it when allocating stack dynamic objects. */
1370
1371 #if defined(REG_PARM_STACK_SPACE)
1372 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1373 ((ACCUMULATE_OUTGOING_ARGS \
1374 ? (crtl->outgoing_args_size \
1375 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1376 : REG_PARM_STACK_SPACE (FNDECL))) \
1377 : 0) + (STACK_POINTER_OFFSET))
1378 #else
1379 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1380 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1381 + (STACK_POINTER_OFFSET))
1382 #endif
1383 #endif
1384
1385 \f
1386 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1387 is a virtual register, return the equivalent hard register and set the
1388 offset indirectly through the pointer. Otherwise, return 0. */
1389
1390 static rtx
1391 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1392 {
1393 rtx new_rtx;
1394 HOST_WIDE_INT offset;
1395
1396 if (x == virtual_incoming_args_rtx)
1397 {
1398 if (stack_realign_drap)
1399 {
1400 /* Replace virtual_incoming_args_rtx with internal arg
1401 pointer if DRAP is used to realign stack. */
1402 new_rtx = crtl->args.internal_arg_pointer;
1403 offset = 0;
1404 }
1405 else
1406 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1407 }
1408 else if (x == virtual_stack_vars_rtx)
1409 new_rtx = frame_pointer_rtx, offset = var_offset;
1410 else if (x == virtual_stack_dynamic_rtx)
1411 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1412 else if (x == virtual_outgoing_args_rtx)
1413 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1414 else if (x == virtual_cfa_rtx)
1415 {
1416 #ifdef FRAME_POINTER_CFA_OFFSET
1417 new_rtx = frame_pointer_rtx;
1418 #else
1419 new_rtx = arg_pointer_rtx;
1420 #endif
1421 offset = cfa_offset;
1422 }
1423 else if (x == virtual_preferred_stack_boundary_rtx)
1424 {
1425 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1426 offset = 0;
1427 }
1428 else
1429 return NULL_RTX;
1430
1431 *poffset = offset;
1432 return new_rtx;
1433 }
1434
1435 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1436 Instantiate any virtual registers present inside of *LOC. The expression
1437 is simplified, as much as possible, but is not to be considered "valid"
1438 in any sense implied by the target. If any change is made, set CHANGED
1439 to true. */
1440
1441 static int
1442 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1443 {
1444 HOST_WIDE_INT offset;
1445 bool *changed = (bool *) data;
1446 rtx x, new_rtx;
1447
1448 x = *loc;
1449 if (x == 0)
1450 return 0;
1451
1452 switch (GET_CODE (x))
1453 {
1454 case REG:
1455 new_rtx = instantiate_new_reg (x, &offset);
1456 if (new_rtx)
1457 {
1458 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1459 if (changed)
1460 *changed = true;
1461 }
1462 return -1;
1463
1464 case PLUS:
1465 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1466 if (new_rtx)
1467 {
1468 new_rtx = plus_constant (GET_MODE (x), new_rtx, offset);
1469 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1470 if (changed)
1471 *changed = true;
1472 return -1;
1473 }
1474
1475 /* FIXME -- from old code */
1476 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1477 we can commute the PLUS and SUBREG because pointers into the
1478 frame are well-behaved. */
1479 break;
1480
1481 default:
1482 break;
1483 }
1484
1485 return 0;
1486 }
1487
1488 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1489 matches the predicate for insn CODE operand OPERAND. */
1490
1491 static int
1492 safe_insn_predicate (int code, int operand, rtx x)
1493 {
1494 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1495 }
1496
1497 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1498 registers present inside of insn. The result will be a valid insn. */
1499
1500 static void
1501 instantiate_virtual_regs_in_insn (rtx insn)
1502 {
1503 HOST_WIDE_INT offset;
1504 int insn_code, i;
1505 bool any_change = false;
1506 rtx set, new_rtx, x, seq;
1507
1508 /* There are some special cases to be handled first. */
1509 set = single_set (insn);
1510 if (set)
1511 {
1512 /* We're allowed to assign to a virtual register. This is interpreted
1513 to mean that the underlying register gets assigned the inverse
1514 transformation. This is used, for example, in the handling of
1515 non-local gotos. */
1516 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1517 if (new_rtx)
1518 {
1519 start_sequence ();
1520
1521 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1522 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1523 GEN_INT (-offset));
1524 x = force_operand (x, new_rtx);
1525 if (x != new_rtx)
1526 emit_move_insn (new_rtx, x);
1527
1528 seq = get_insns ();
1529 end_sequence ();
1530
1531 emit_insn_before (seq, insn);
1532 delete_insn (insn);
1533 return;
1534 }
1535
1536 /* Handle a straight copy from a virtual register by generating a
1537 new add insn. The difference between this and falling through
1538 to the generic case is avoiding a new pseudo and eliminating a
1539 move insn in the initial rtl stream. */
1540 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1541 if (new_rtx && offset != 0
1542 && REG_P (SET_DEST (set))
1543 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1544 {
1545 start_sequence ();
1546
1547 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1548 new_rtx, GEN_INT (offset), SET_DEST (set),
1549 1, OPTAB_LIB_WIDEN);
1550 if (x != SET_DEST (set))
1551 emit_move_insn (SET_DEST (set), x);
1552
1553 seq = get_insns ();
1554 end_sequence ();
1555
1556 emit_insn_before (seq, insn);
1557 delete_insn (insn);
1558 return;
1559 }
1560
1561 extract_insn (insn);
1562 insn_code = INSN_CODE (insn);
1563
1564 /* Handle a plus involving a virtual register by determining if the
1565 operands remain valid if they're modified in place. */
1566 if (GET_CODE (SET_SRC (set)) == PLUS
1567 && recog_data.n_operands >= 3
1568 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1569 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1570 && CONST_INT_P (recog_data.operand[2])
1571 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1572 {
1573 offset += INTVAL (recog_data.operand[2]);
1574
1575 /* If the sum is zero, then replace with a plain move. */
1576 if (offset == 0
1577 && REG_P (SET_DEST (set))
1578 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1579 {
1580 start_sequence ();
1581 emit_move_insn (SET_DEST (set), new_rtx);
1582 seq = get_insns ();
1583 end_sequence ();
1584
1585 emit_insn_before (seq, insn);
1586 delete_insn (insn);
1587 return;
1588 }
1589
1590 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1591
1592 /* Using validate_change and apply_change_group here leaves
1593 recog_data in an invalid state. Since we know exactly what
1594 we want to check, do those two by hand. */
1595 if (safe_insn_predicate (insn_code, 1, new_rtx)
1596 && safe_insn_predicate (insn_code, 2, x))
1597 {
1598 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1599 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1600 any_change = true;
1601
1602 /* Fall through into the regular operand fixup loop in
1603 order to take care of operands other than 1 and 2. */
1604 }
1605 }
1606 }
1607 else
1608 {
1609 extract_insn (insn);
1610 insn_code = INSN_CODE (insn);
1611 }
1612
1613 /* In the general case, we expect virtual registers to appear only in
1614 operands, and then only as either bare registers or inside memories. */
1615 for (i = 0; i < recog_data.n_operands; ++i)
1616 {
1617 x = recog_data.operand[i];
1618 switch (GET_CODE (x))
1619 {
1620 case MEM:
1621 {
1622 rtx addr = XEXP (x, 0);
1623 bool changed = false;
1624
1625 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1626 if (!changed)
1627 continue;
1628
1629 start_sequence ();
1630 x = replace_equiv_address (x, addr);
1631 /* It may happen that the address with the virtual reg
1632 was valid (e.g. based on the virtual stack reg, which might
1633 be acceptable to the predicates with all offsets), whereas
1634 the address now isn't anymore, for instance when the address
1635 is still offsetted, but the base reg isn't virtual-stack-reg
1636 anymore. Below we would do a force_reg on the whole operand,
1637 but this insn might actually only accept memory. Hence,
1638 before doing that last resort, try to reload the address into
1639 a register, so this operand stays a MEM. */
1640 if (!safe_insn_predicate (insn_code, i, x))
1641 {
1642 addr = force_reg (GET_MODE (addr), addr);
1643 x = replace_equiv_address (x, addr);
1644 }
1645 seq = get_insns ();
1646 end_sequence ();
1647 if (seq)
1648 emit_insn_before (seq, insn);
1649 }
1650 break;
1651
1652 case REG:
1653 new_rtx = instantiate_new_reg (x, &offset);
1654 if (new_rtx == NULL)
1655 continue;
1656 if (offset == 0)
1657 x = new_rtx;
1658 else
1659 {
1660 start_sequence ();
1661
1662 /* Careful, special mode predicates may have stuff in
1663 insn_data[insn_code].operand[i].mode that isn't useful
1664 to us for computing a new value. */
1665 /* ??? Recognize address_operand and/or "p" constraints
1666 to see if (plus new offset) is a valid before we put
1667 this through expand_simple_binop. */
1668 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1669 GEN_INT (offset), NULL_RTX,
1670 1, OPTAB_LIB_WIDEN);
1671 seq = get_insns ();
1672 end_sequence ();
1673 emit_insn_before (seq, insn);
1674 }
1675 break;
1676
1677 case SUBREG:
1678 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1679 if (new_rtx == NULL)
1680 continue;
1681 if (offset != 0)
1682 {
1683 start_sequence ();
1684 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1685 GEN_INT (offset), NULL_RTX,
1686 1, OPTAB_LIB_WIDEN);
1687 seq = get_insns ();
1688 end_sequence ();
1689 emit_insn_before (seq, insn);
1690 }
1691 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1692 GET_MODE (new_rtx), SUBREG_BYTE (x));
1693 gcc_assert (x);
1694 break;
1695
1696 default:
1697 continue;
1698 }
1699
1700 /* At this point, X contains the new value for the operand.
1701 Validate the new value vs the insn predicate. Note that
1702 asm insns will have insn_code -1 here. */
1703 if (!safe_insn_predicate (insn_code, i, x))
1704 {
1705 start_sequence ();
1706 if (REG_P (x))
1707 {
1708 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1709 x = copy_to_reg (x);
1710 }
1711 else
1712 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1713 seq = get_insns ();
1714 end_sequence ();
1715 if (seq)
1716 emit_insn_before (seq, insn);
1717 }
1718
1719 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1720 any_change = true;
1721 }
1722
1723 if (any_change)
1724 {
1725 /* Propagate operand changes into the duplicates. */
1726 for (i = 0; i < recog_data.n_dups; ++i)
1727 *recog_data.dup_loc[i]
1728 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1729
1730 /* Force re-recognition of the instruction for validation. */
1731 INSN_CODE (insn) = -1;
1732 }
1733
1734 if (asm_noperands (PATTERN (insn)) >= 0)
1735 {
1736 if (!check_asm_operands (PATTERN (insn)))
1737 {
1738 error_for_asm (insn, "impossible constraint in %<asm%>");
1739 /* For asm goto, instead of fixing up all the edges
1740 just clear the template and clear input operands
1741 (asm goto doesn't have any output operands). */
1742 if (JUMP_P (insn))
1743 {
1744 rtx asm_op = extract_asm_operands (PATTERN (insn));
1745 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1746 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1747 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1748 }
1749 else
1750 delete_insn (insn);
1751 }
1752 }
1753 else
1754 {
1755 if (recog_memoized (insn) < 0)
1756 fatal_insn_not_found (insn);
1757 }
1758 }
1759
1760 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1761 do any instantiation required. */
1762
1763 void
1764 instantiate_decl_rtl (rtx x)
1765 {
1766 rtx addr;
1767
1768 if (x == 0)
1769 return;
1770
1771 /* If this is a CONCAT, recurse for the pieces. */
1772 if (GET_CODE (x) == CONCAT)
1773 {
1774 instantiate_decl_rtl (XEXP (x, 0));
1775 instantiate_decl_rtl (XEXP (x, 1));
1776 return;
1777 }
1778
1779 /* If this is not a MEM, no need to do anything. Similarly if the
1780 address is a constant or a register that is not a virtual register. */
1781 if (!MEM_P (x))
1782 return;
1783
1784 addr = XEXP (x, 0);
1785 if (CONSTANT_P (addr)
1786 || (REG_P (addr)
1787 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1788 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1789 return;
1790
1791 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1792 }
1793
1794 /* Helper for instantiate_decls called via walk_tree: Process all decls
1795 in the given DECL_VALUE_EXPR. */
1796
1797 static tree
1798 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1799 {
1800 tree t = *tp;
1801 if (! EXPR_P (t))
1802 {
1803 *walk_subtrees = 0;
1804 if (DECL_P (t))
1805 {
1806 if (DECL_RTL_SET_P (t))
1807 instantiate_decl_rtl (DECL_RTL (t));
1808 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1809 && DECL_INCOMING_RTL (t))
1810 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1811 if ((TREE_CODE (t) == VAR_DECL
1812 || TREE_CODE (t) == RESULT_DECL)
1813 && DECL_HAS_VALUE_EXPR_P (t))
1814 {
1815 tree v = DECL_VALUE_EXPR (t);
1816 walk_tree (&v, instantiate_expr, NULL, NULL);
1817 }
1818 }
1819 }
1820 return NULL;
1821 }
1822
1823 /* Subroutine of instantiate_decls: Process all decls in the given
1824 BLOCK node and all its subblocks. */
1825
1826 static void
1827 instantiate_decls_1 (tree let)
1828 {
1829 tree t;
1830
1831 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1832 {
1833 if (DECL_RTL_SET_P (t))
1834 instantiate_decl_rtl (DECL_RTL (t));
1835 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1836 {
1837 tree v = DECL_VALUE_EXPR (t);
1838 walk_tree (&v, instantiate_expr, NULL, NULL);
1839 }
1840 }
1841
1842 /* Process all subblocks. */
1843 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1844 instantiate_decls_1 (t);
1845 }
1846
1847 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1848 all virtual registers in their DECL_RTL's. */
1849
1850 static void
1851 instantiate_decls (tree fndecl)
1852 {
1853 tree decl;
1854 unsigned ix;
1855
1856 /* Process all parameters of the function. */
1857 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1858 {
1859 instantiate_decl_rtl (DECL_RTL (decl));
1860 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1861 if (DECL_HAS_VALUE_EXPR_P (decl))
1862 {
1863 tree v = DECL_VALUE_EXPR (decl);
1864 walk_tree (&v, instantiate_expr, NULL, NULL);
1865 }
1866 }
1867
1868 if ((decl = DECL_RESULT (fndecl))
1869 && TREE_CODE (decl) == RESULT_DECL)
1870 {
1871 if (DECL_RTL_SET_P (decl))
1872 instantiate_decl_rtl (DECL_RTL (decl));
1873 if (DECL_HAS_VALUE_EXPR_P (decl))
1874 {
1875 tree v = DECL_VALUE_EXPR (decl);
1876 walk_tree (&v, instantiate_expr, NULL, NULL);
1877 }
1878 }
1879
1880 /* Now process all variables defined in the function or its subblocks. */
1881 instantiate_decls_1 (DECL_INITIAL (fndecl));
1882
1883 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1884 if (DECL_RTL_SET_P (decl))
1885 instantiate_decl_rtl (DECL_RTL (decl));
1886 vec_free (cfun->local_decls);
1887 }
1888
1889 /* Pass through the INSNS of function FNDECL and convert virtual register
1890 references to hard register references. */
1891
1892 static unsigned int
1893 instantiate_virtual_regs (void)
1894 {
1895 rtx insn;
1896
1897 /* Compute the offsets to use for this function. */
1898 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1899 var_offset = STARTING_FRAME_OFFSET;
1900 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1901 out_arg_offset = STACK_POINTER_OFFSET;
1902 #ifdef FRAME_POINTER_CFA_OFFSET
1903 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1904 #else
1905 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1906 #endif
1907
1908 /* Initialize recognition, indicating that volatile is OK. */
1909 init_recog ();
1910
1911 /* Scan through all the insns, instantiating every virtual register still
1912 present. */
1913 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1914 if (INSN_P (insn))
1915 {
1916 /* These patterns in the instruction stream can never be recognized.
1917 Fortunately, they shouldn't contain virtual registers either. */
1918 if (GET_CODE (PATTERN (insn)) == USE
1919 || GET_CODE (PATTERN (insn)) == CLOBBER
1920 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1921 continue;
1922 else if (DEBUG_INSN_P (insn))
1923 for_each_rtx (&INSN_VAR_LOCATION (insn),
1924 instantiate_virtual_regs_in_rtx, NULL);
1925 else
1926 instantiate_virtual_regs_in_insn (insn);
1927
1928 if (INSN_DELETED_P (insn))
1929 continue;
1930
1931 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1932
1933 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1934 if (CALL_P (insn))
1935 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1936 instantiate_virtual_regs_in_rtx, NULL);
1937 }
1938
1939 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1940 instantiate_decls (current_function_decl);
1941
1942 targetm.instantiate_decls ();
1943
1944 /* Indicate that, from now on, assign_stack_local should use
1945 frame_pointer_rtx. */
1946 virtuals_instantiated = 1;
1947
1948 return 0;
1949 }
1950
1951 namespace {
1952
1953 const pass_data pass_data_instantiate_virtual_regs =
1954 {
1955 RTL_PASS, /* type */
1956 "vregs", /* name */
1957 OPTGROUP_NONE, /* optinfo_flags */
1958 false, /* has_gate */
1959 true, /* has_execute */
1960 TV_NONE, /* tv_id */
1961 0, /* properties_required */
1962 0, /* properties_provided */
1963 0, /* properties_destroyed */
1964 0, /* todo_flags_start */
1965 0, /* todo_flags_finish */
1966 };
1967
1968 class pass_instantiate_virtual_regs : public rtl_opt_pass
1969 {
1970 public:
1971 pass_instantiate_virtual_regs(gcc::context *ctxt)
1972 : rtl_opt_pass(pass_data_instantiate_virtual_regs, ctxt)
1973 {}
1974
1975 /* opt_pass methods: */
1976 unsigned int execute () { return instantiate_virtual_regs (); }
1977
1978 }; // class pass_instantiate_virtual_regs
1979
1980 } // anon namespace
1981
1982 rtl_opt_pass *
1983 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
1984 {
1985 return new pass_instantiate_virtual_regs (ctxt);
1986 }
1987
1988 \f
1989 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1990 This means a type for which function calls must pass an address to the
1991 function or get an address back from the function.
1992 EXP may be a type node or an expression (whose type is tested). */
1993
1994 int
1995 aggregate_value_p (const_tree exp, const_tree fntype)
1996 {
1997 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1998 int i, regno, nregs;
1999 rtx reg;
2000
2001 if (fntype)
2002 switch (TREE_CODE (fntype))
2003 {
2004 case CALL_EXPR:
2005 {
2006 tree fndecl = get_callee_fndecl (fntype);
2007 fntype = (fndecl
2008 ? TREE_TYPE (fndecl)
2009 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
2010 }
2011 break;
2012 case FUNCTION_DECL:
2013 fntype = TREE_TYPE (fntype);
2014 break;
2015 case FUNCTION_TYPE:
2016 case METHOD_TYPE:
2017 break;
2018 case IDENTIFIER_NODE:
2019 fntype = NULL_TREE;
2020 break;
2021 default:
2022 /* We don't expect other tree types here. */
2023 gcc_unreachable ();
2024 }
2025
2026 if (VOID_TYPE_P (type))
2027 return 0;
2028
2029 /* If a record should be passed the same as its first (and only) member
2030 don't pass it as an aggregate. */
2031 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2032 return aggregate_value_p (first_field (type), fntype);
2033
2034 /* If the front end has decided that this needs to be passed by
2035 reference, do so. */
2036 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2037 && DECL_BY_REFERENCE (exp))
2038 return 1;
2039
2040 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2041 if (fntype && TREE_ADDRESSABLE (fntype))
2042 return 1;
2043
2044 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2045 and thus can't be returned in registers. */
2046 if (TREE_ADDRESSABLE (type))
2047 return 1;
2048
2049 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2050 return 1;
2051
2052 if (targetm.calls.return_in_memory (type, fntype))
2053 return 1;
2054
2055 /* Make sure we have suitable call-clobbered regs to return
2056 the value in; if not, we must return it in memory. */
2057 reg = hard_function_value (type, 0, fntype, 0);
2058
2059 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2060 it is OK. */
2061 if (!REG_P (reg))
2062 return 0;
2063
2064 regno = REGNO (reg);
2065 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2066 for (i = 0; i < nregs; i++)
2067 if (! call_used_regs[regno + i])
2068 return 1;
2069
2070 return 0;
2071 }
2072 \f
2073 /* Return true if we should assign DECL a pseudo register; false if it
2074 should live on the local stack. */
2075
2076 bool
2077 use_register_for_decl (const_tree decl)
2078 {
2079 if (!targetm.calls.allocate_stack_slots_for_args())
2080 return true;
2081
2082 /* Honor volatile. */
2083 if (TREE_SIDE_EFFECTS (decl))
2084 return false;
2085
2086 /* Honor addressability. */
2087 if (TREE_ADDRESSABLE (decl))
2088 return false;
2089
2090 /* Only register-like things go in registers. */
2091 if (DECL_MODE (decl) == BLKmode)
2092 return false;
2093
2094 /* If -ffloat-store specified, don't put explicit float variables
2095 into registers. */
2096 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2097 propagates values across these stores, and it probably shouldn't. */
2098 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2099 return false;
2100
2101 /* If we're not interested in tracking debugging information for
2102 this decl, then we can certainly put it in a register. */
2103 if (DECL_IGNORED_P (decl))
2104 return true;
2105
2106 if (optimize)
2107 return true;
2108
2109 if (!DECL_REGISTER (decl))
2110 return false;
2111
2112 switch (TREE_CODE (TREE_TYPE (decl)))
2113 {
2114 case RECORD_TYPE:
2115 case UNION_TYPE:
2116 case QUAL_UNION_TYPE:
2117 /* When not optimizing, disregard register keyword for variables with
2118 types containing methods, otherwise the methods won't be callable
2119 from the debugger. */
2120 if (TYPE_METHODS (TREE_TYPE (decl)))
2121 return false;
2122 break;
2123 default:
2124 break;
2125 }
2126
2127 return true;
2128 }
2129
2130 /* Return true if TYPE should be passed by invisible reference. */
2131
2132 bool
2133 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2134 tree type, bool named_arg)
2135 {
2136 if (type)
2137 {
2138 /* If this type contains non-trivial constructors, then it is
2139 forbidden for the middle-end to create any new copies. */
2140 if (TREE_ADDRESSABLE (type))
2141 return true;
2142
2143 /* GCC post 3.4 passes *all* variable sized types by reference. */
2144 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2145 return true;
2146
2147 /* If a record type should be passed the same as its first (and only)
2148 member, use the type and mode of that member. */
2149 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2150 {
2151 type = TREE_TYPE (first_field (type));
2152 mode = TYPE_MODE (type);
2153 }
2154 }
2155
2156 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2157 type, named_arg);
2158 }
2159
2160 /* Return true if TYPE, which is passed by reference, should be callee
2161 copied instead of caller copied. */
2162
2163 bool
2164 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2165 tree type, bool named_arg)
2166 {
2167 if (type && TREE_ADDRESSABLE (type))
2168 return false;
2169 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2170 named_arg);
2171 }
2172
2173 /* Structures to communicate between the subroutines of assign_parms.
2174 The first holds data persistent across all parameters, the second
2175 is cleared out for each parameter. */
2176
2177 struct assign_parm_data_all
2178 {
2179 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2180 should become a job of the target or otherwise encapsulated. */
2181 CUMULATIVE_ARGS args_so_far_v;
2182 cumulative_args_t args_so_far;
2183 struct args_size stack_args_size;
2184 tree function_result_decl;
2185 tree orig_fnargs;
2186 rtx first_conversion_insn;
2187 rtx last_conversion_insn;
2188 HOST_WIDE_INT pretend_args_size;
2189 HOST_WIDE_INT extra_pretend_bytes;
2190 int reg_parm_stack_space;
2191 };
2192
2193 struct assign_parm_data_one
2194 {
2195 tree nominal_type;
2196 tree passed_type;
2197 rtx entry_parm;
2198 rtx stack_parm;
2199 enum machine_mode nominal_mode;
2200 enum machine_mode passed_mode;
2201 enum machine_mode promoted_mode;
2202 struct locate_and_pad_arg_data locate;
2203 int partial;
2204 BOOL_BITFIELD named_arg : 1;
2205 BOOL_BITFIELD passed_pointer : 1;
2206 BOOL_BITFIELD on_stack : 1;
2207 BOOL_BITFIELD loaded_in_reg : 1;
2208 };
2209
2210 /* A subroutine of assign_parms. Initialize ALL. */
2211
2212 static void
2213 assign_parms_initialize_all (struct assign_parm_data_all *all)
2214 {
2215 tree fntype ATTRIBUTE_UNUSED;
2216
2217 memset (all, 0, sizeof (*all));
2218
2219 fntype = TREE_TYPE (current_function_decl);
2220
2221 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2222 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2223 #else
2224 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2225 current_function_decl, -1);
2226 #endif
2227 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2228
2229 #ifdef REG_PARM_STACK_SPACE
2230 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2231 #endif
2232 }
2233
2234 /* If ARGS contains entries with complex types, split the entry into two
2235 entries of the component type. Return a new list of substitutions are
2236 needed, else the old list. */
2237
2238 static void
2239 split_complex_args (vec<tree> *args)
2240 {
2241 unsigned i;
2242 tree p;
2243
2244 FOR_EACH_VEC_ELT (*args, i, p)
2245 {
2246 tree type = TREE_TYPE (p);
2247 if (TREE_CODE (type) == COMPLEX_TYPE
2248 && targetm.calls.split_complex_arg (type))
2249 {
2250 tree decl;
2251 tree subtype = TREE_TYPE (type);
2252 bool addressable = TREE_ADDRESSABLE (p);
2253
2254 /* Rewrite the PARM_DECL's type with its component. */
2255 p = copy_node (p);
2256 TREE_TYPE (p) = subtype;
2257 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2258 DECL_MODE (p) = VOIDmode;
2259 DECL_SIZE (p) = NULL;
2260 DECL_SIZE_UNIT (p) = NULL;
2261 /* If this arg must go in memory, put it in a pseudo here.
2262 We can't allow it to go in memory as per normal parms,
2263 because the usual place might not have the imag part
2264 adjacent to the real part. */
2265 DECL_ARTIFICIAL (p) = addressable;
2266 DECL_IGNORED_P (p) = addressable;
2267 TREE_ADDRESSABLE (p) = 0;
2268 layout_decl (p, 0);
2269 (*args)[i] = p;
2270
2271 /* Build a second synthetic decl. */
2272 decl = build_decl (EXPR_LOCATION (p),
2273 PARM_DECL, NULL_TREE, subtype);
2274 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2275 DECL_ARTIFICIAL (decl) = addressable;
2276 DECL_IGNORED_P (decl) = addressable;
2277 layout_decl (decl, 0);
2278 args->safe_insert (++i, decl);
2279 }
2280 }
2281 }
2282
2283 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2284 the hidden struct return argument, and (abi willing) complex args.
2285 Return the new parameter list. */
2286
2287 static vec<tree>
2288 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2289 {
2290 tree fndecl = current_function_decl;
2291 tree fntype = TREE_TYPE (fndecl);
2292 vec<tree> fnargs = vNULL;
2293 tree arg;
2294
2295 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2296 fnargs.safe_push (arg);
2297
2298 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2299
2300 /* If struct value address is treated as the first argument, make it so. */
2301 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2302 && ! cfun->returns_pcc_struct
2303 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2304 {
2305 tree type = build_pointer_type (TREE_TYPE (fntype));
2306 tree decl;
2307
2308 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2309 PARM_DECL, get_identifier (".result_ptr"), type);
2310 DECL_ARG_TYPE (decl) = type;
2311 DECL_ARTIFICIAL (decl) = 1;
2312 DECL_NAMELESS (decl) = 1;
2313 TREE_CONSTANT (decl) = 1;
2314
2315 DECL_CHAIN (decl) = all->orig_fnargs;
2316 all->orig_fnargs = decl;
2317 fnargs.safe_insert (0, decl);
2318
2319 all->function_result_decl = decl;
2320 }
2321
2322 /* If the target wants to split complex arguments into scalars, do so. */
2323 if (targetm.calls.split_complex_arg)
2324 split_complex_args (&fnargs);
2325
2326 return fnargs;
2327 }
2328
2329 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2330 data for the parameter. Incorporate ABI specifics such as pass-by-
2331 reference and type promotion. */
2332
2333 static void
2334 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2335 struct assign_parm_data_one *data)
2336 {
2337 tree nominal_type, passed_type;
2338 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2339 int unsignedp;
2340
2341 memset (data, 0, sizeof (*data));
2342
2343 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2344 if (!cfun->stdarg)
2345 data->named_arg = 1; /* No variadic parms. */
2346 else if (DECL_CHAIN (parm))
2347 data->named_arg = 1; /* Not the last non-variadic parm. */
2348 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2349 data->named_arg = 1; /* Only variadic ones are unnamed. */
2350 else
2351 data->named_arg = 0; /* Treat as variadic. */
2352
2353 nominal_type = TREE_TYPE (parm);
2354 passed_type = DECL_ARG_TYPE (parm);
2355
2356 /* Look out for errors propagating this far. Also, if the parameter's
2357 type is void then its value doesn't matter. */
2358 if (TREE_TYPE (parm) == error_mark_node
2359 /* This can happen after weird syntax errors
2360 or if an enum type is defined among the parms. */
2361 || TREE_CODE (parm) != PARM_DECL
2362 || passed_type == NULL
2363 || VOID_TYPE_P (nominal_type))
2364 {
2365 nominal_type = passed_type = void_type_node;
2366 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2367 goto egress;
2368 }
2369
2370 /* Find mode of arg as it is passed, and mode of arg as it should be
2371 during execution of this function. */
2372 passed_mode = TYPE_MODE (passed_type);
2373 nominal_mode = TYPE_MODE (nominal_type);
2374
2375 /* If the parm is to be passed as a transparent union or record, use the
2376 type of the first field for the tests below. We have already verified
2377 that the modes are the same. */
2378 if ((TREE_CODE (passed_type) == UNION_TYPE
2379 || TREE_CODE (passed_type) == RECORD_TYPE)
2380 && TYPE_TRANSPARENT_AGGR (passed_type))
2381 passed_type = TREE_TYPE (first_field (passed_type));
2382
2383 /* See if this arg was passed by invisible reference. */
2384 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2385 passed_type, data->named_arg))
2386 {
2387 passed_type = nominal_type = build_pointer_type (passed_type);
2388 data->passed_pointer = true;
2389 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
2390 }
2391
2392 /* Find mode as it is passed by the ABI. */
2393 unsignedp = TYPE_UNSIGNED (passed_type);
2394 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2395 TREE_TYPE (current_function_decl), 0);
2396
2397 egress:
2398 data->nominal_type = nominal_type;
2399 data->passed_type = passed_type;
2400 data->nominal_mode = nominal_mode;
2401 data->passed_mode = passed_mode;
2402 data->promoted_mode = promoted_mode;
2403 }
2404
2405 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2406
2407 static void
2408 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2409 struct assign_parm_data_one *data, bool no_rtl)
2410 {
2411 int varargs_pretend_bytes = 0;
2412
2413 targetm.calls.setup_incoming_varargs (all->args_so_far,
2414 data->promoted_mode,
2415 data->passed_type,
2416 &varargs_pretend_bytes, no_rtl);
2417
2418 /* If the back-end has requested extra stack space, record how much is
2419 needed. Do not change pretend_args_size otherwise since it may be
2420 nonzero from an earlier partial argument. */
2421 if (varargs_pretend_bytes > 0)
2422 all->pretend_args_size = varargs_pretend_bytes;
2423 }
2424
2425 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2426 the incoming location of the current parameter. */
2427
2428 static void
2429 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2430 struct assign_parm_data_one *data)
2431 {
2432 HOST_WIDE_INT pretend_bytes = 0;
2433 rtx entry_parm;
2434 bool in_regs;
2435
2436 if (data->promoted_mode == VOIDmode)
2437 {
2438 data->entry_parm = data->stack_parm = const0_rtx;
2439 return;
2440 }
2441
2442 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2443 data->promoted_mode,
2444 data->passed_type,
2445 data->named_arg);
2446
2447 if (entry_parm == 0)
2448 data->promoted_mode = data->passed_mode;
2449
2450 /* Determine parm's home in the stack, in case it arrives in the stack
2451 or we should pretend it did. Compute the stack position and rtx where
2452 the argument arrives and its size.
2453
2454 There is one complexity here: If this was a parameter that would
2455 have been passed in registers, but wasn't only because it is
2456 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2457 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2458 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2459 as it was the previous time. */
2460 in_regs = entry_parm != 0;
2461 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2462 in_regs = true;
2463 #endif
2464 if (!in_regs && !data->named_arg)
2465 {
2466 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2467 {
2468 rtx tem;
2469 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2470 data->promoted_mode,
2471 data->passed_type, true);
2472 in_regs = tem != NULL;
2473 }
2474 }
2475
2476 /* If this parameter was passed both in registers and in the stack, use
2477 the copy on the stack. */
2478 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2479 data->passed_type))
2480 entry_parm = 0;
2481
2482 if (entry_parm)
2483 {
2484 int partial;
2485
2486 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2487 data->promoted_mode,
2488 data->passed_type,
2489 data->named_arg);
2490 data->partial = partial;
2491
2492 /* The caller might already have allocated stack space for the
2493 register parameters. */
2494 if (partial != 0 && all->reg_parm_stack_space == 0)
2495 {
2496 /* Part of this argument is passed in registers and part
2497 is passed on the stack. Ask the prologue code to extend
2498 the stack part so that we can recreate the full value.
2499
2500 PRETEND_BYTES is the size of the registers we need to store.
2501 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2502 stack space that the prologue should allocate.
2503
2504 Internally, gcc assumes that the argument pointer is aligned
2505 to STACK_BOUNDARY bits. This is used both for alignment
2506 optimizations (see init_emit) and to locate arguments that are
2507 aligned to more than PARM_BOUNDARY bits. We must preserve this
2508 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2509 a stack boundary. */
2510
2511 /* We assume at most one partial arg, and it must be the first
2512 argument on the stack. */
2513 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2514
2515 pretend_bytes = partial;
2516 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2517
2518 /* We want to align relative to the actual stack pointer, so
2519 don't include this in the stack size until later. */
2520 all->extra_pretend_bytes = all->pretend_args_size;
2521 }
2522 }
2523
2524 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2525 entry_parm ? data->partial : 0, current_function_decl,
2526 &all->stack_args_size, &data->locate);
2527
2528 /* Update parm_stack_boundary if this parameter is passed in the
2529 stack. */
2530 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2531 crtl->parm_stack_boundary = data->locate.boundary;
2532
2533 /* Adjust offsets to include the pretend args. */
2534 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2535 data->locate.slot_offset.constant += pretend_bytes;
2536 data->locate.offset.constant += pretend_bytes;
2537
2538 data->entry_parm = entry_parm;
2539 }
2540
2541 /* A subroutine of assign_parms. If there is actually space on the stack
2542 for this parm, count it in stack_args_size and return true. */
2543
2544 static bool
2545 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2546 struct assign_parm_data_one *data)
2547 {
2548 /* Trivially true if we've no incoming register. */
2549 if (data->entry_parm == NULL)
2550 ;
2551 /* Also true if we're partially in registers and partially not,
2552 since we've arranged to drop the entire argument on the stack. */
2553 else if (data->partial != 0)
2554 ;
2555 /* Also true if the target says that it's passed in both registers
2556 and on the stack. */
2557 else if (GET_CODE (data->entry_parm) == PARALLEL
2558 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2559 ;
2560 /* Also true if the target says that there's stack allocated for
2561 all register parameters. */
2562 else if (all->reg_parm_stack_space > 0)
2563 ;
2564 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2565 else
2566 return false;
2567
2568 all->stack_args_size.constant += data->locate.size.constant;
2569 if (data->locate.size.var)
2570 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2571
2572 return true;
2573 }
2574
2575 /* A subroutine of assign_parms. Given that this parameter is allocated
2576 stack space by the ABI, find it. */
2577
2578 static void
2579 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2580 {
2581 rtx offset_rtx, stack_parm;
2582 unsigned int align, boundary;
2583
2584 /* If we're passing this arg using a reg, make its stack home the
2585 aligned stack slot. */
2586 if (data->entry_parm)
2587 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2588 else
2589 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2590
2591 stack_parm = crtl->args.internal_arg_pointer;
2592 if (offset_rtx != const0_rtx)
2593 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2594 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2595
2596 if (!data->passed_pointer)
2597 {
2598 set_mem_attributes (stack_parm, parm, 1);
2599 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2600 while promoted mode's size is needed. */
2601 if (data->promoted_mode != BLKmode
2602 && data->promoted_mode != DECL_MODE (parm))
2603 {
2604 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2605 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2606 {
2607 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2608 data->promoted_mode);
2609 if (offset)
2610 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2611 }
2612 }
2613 }
2614
2615 boundary = data->locate.boundary;
2616 align = BITS_PER_UNIT;
2617
2618 /* If we're padding upward, we know that the alignment of the slot
2619 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2620 intentionally forcing upward padding. Otherwise we have to come
2621 up with a guess at the alignment based on OFFSET_RTX. */
2622 if (data->locate.where_pad != downward || data->entry_parm)
2623 align = boundary;
2624 else if (CONST_INT_P (offset_rtx))
2625 {
2626 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2627 align = align & -align;
2628 }
2629 set_mem_align (stack_parm, align);
2630
2631 if (data->entry_parm)
2632 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2633
2634 data->stack_parm = stack_parm;
2635 }
2636
2637 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2638 always valid and contiguous. */
2639
2640 static void
2641 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2642 {
2643 rtx entry_parm = data->entry_parm;
2644 rtx stack_parm = data->stack_parm;
2645
2646 /* If this parm was passed part in regs and part in memory, pretend it
2647 arrived entirely in memory by pushing the register-part onto the stack.
2648 In the special case of a DImode or DFmode that is split, we could put
2649 it together in a pseudoreg directly, but for now that's not worth
2650 bothering with. */
2651 if (data->partial != 0)
2652 {
2653 /* Handle calls that pass values in multiple non-contiguous
2654 locations. The Irix 6 ABI has examples of this. */
2655 if (GET_CODE (entry_parm) == PARALLEL)
2656 emit_group_store (validize_mem (stack_parm), entry_parm,
2657 data->passed_type,
2658 int_size_in_bytes (data->passed_type));
2659 else
2660 {
2661 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2662 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2663 data->partial / UNITS_PER_WORD);
2664 }
2665
2666 entry_parm = stack_parm;
2667 }
2668
2669 /* If we didn't decide this parm came in a register, by default it came
2670 on the stack. */
2671 else if (entry_parm == NULL)
2672 entry_parm = stack_parm;
2673
2674 /* When an argument is passed in multiple locations, we can't make use
2675 of this information, but we can save some copying if the whole argument
2676 is passed in a single register. */
2677 else if (GET_CODE (entry_parm) == PARALLEL
2678 && data->nominal_mode != BLKmode
2679 && data->passed_mode != BLKmode)
2680 {
2681 size_t i, len = XVECLEN (entry_parm, 0);
2682
2683 for (i = 0; i < len; i++)
2684 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2685 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2686 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2687 == data->passed_mode)
2688 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2689 {
2690 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2691 break;
2692 }
2693 }
2694
2695 data->entry_parm = entry_parm;
2696 }
2697
2698 /* A subroutine of assign_parms. Reconstitute any values which were
2699 passed in multiple registers and would fit in a single register. */
2700
2701 static void
2702 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2703 {
2704 rtx entry_parm = data->entry_parm;
2705
2706 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2707 This can be done with register operations rather than on the
2708 stack, even if we will store the reconstituted parameter on the
2709 stack later. */
2710 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2711 {
2712 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2713 emit_group_store (parmreg, entry_parm, data->passed_type,
2714 GET_MODE_SIZE (GET_MODE (entry_parm)));
2715 entry_parm = parmreg;
2716 }
2717
2718 data->entry_parm = entry_parm;
2719 }
2720
2721 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2722 always valid and properly aligned. */
2723
2724 static void
2725 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2726 {
2727 rtx stack_parm = data->stack_parm;
2728
2729 /* If we can't trust the parm stack slot to be aligned enough for its
2730 ultimate type, don't use that slot after entry. We'll make another
2731 stack slot, if we need one. */
2732 if (stack_parm
2733 && ((STRICT_ALIGNMENT
2734 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2735 || (data->nominal_type
2736 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2737 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2738 stack_parm = NULL;
2739
2740 /* If parm was passed in memory, and we need to convert it on entry,
2741 don't store it back in that same slot. */
2742 else if (data->entry_parm == stack_parm
2743 && data->nominal_mode != BLKmode
2744 && data->nominal_mode != data->passed_mode)
2745 stack_parm = NULL;
2746
2747 /* If stack protection is in effect for this function, don't leave any
2748 pointers in their passed stack slots. */
2749 else if (crtl->stack_protect_guard
2750 && (flag_stack_protect == 2
2751 || data->passed_pointer
2752 || POINTER_TYPE_P (data->nominal_type)))
2753 stack_parm = NULL;
2754
2755 data->stack_parm = stack_parm;
2756 }
2757
2758 /* A subroutine of assign_parms. Return true if the current parameter
2759 should be stored as a BLKmode in the current frame. */
2760
2761 static bool
2762 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2763 {
2764 if (data->nominal_mode == BLKmode)
2765 return true;
2766 if (GET_MODE (data->entry_parm) == BLKmode)
2767 return true;
2768
2769 #ifdef BLOCK_REG_PADDING
2770 /* Only assign_parm_setup_block knows how to deal with register arguments
2771 that are padded at the least significant end. */
2772 if (REG_P (data->entry_parm)
2773 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2774 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2775 == (BYTES_BIG_ENDIAN ? upward : downward)))
2776 return true;
2777 #endif
2778
2779 return false;
2780 }
2781
2782 /* A subroutine of assign_parms. Arrange for the parameter to be
2783 present and valid in DATA->STACK_RTL. */
2784
2785 static void
2786 assign_parm_setup_block (struct assign_parm_data_all *all,
2787 tree parm, struct assign_parm_data_one *data)
2788 {
2789 rtx entry_parm = data->entry_parm;
2790 rtx stack_parm = data->stack_parm;
2791 HOST_WIDE_INT size;
2792 HOST_WIDE_INT size_stored;
2793
2794 if (GET_CODE (entry_parm) == PARALLEL)
2795 entry_parm = emit_group_move_into_temps (entry_parm);
2796
2797 size = int_size_in_bytes (data->passed_type);
2798 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2799 if (stack_parm == 0)
2800 {
2801 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2802 stack_parm = assign_stack_local (BLKmode, size_stored,
2803 DECL_ALIGN (parm));
2804 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2805 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2806 set_mem_attributes (stack_parm, parm, 1);
2807 }
2808
2809 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2810 calls that pass values in multiple non-contiguous locations. */
2811 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2812 {
2813 rtx mem;
2814
2815 /* Note that we will be storing an integral number of words.
2816 So we have to be careful to ensure that we allocate an
2817 integral number of words. We do this above when we call
2818 assign_stack_local if space was not allocated in the argument
2819 list. If it was, this will not work if PARM_BOUNDARY is not
2820 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2821 if it becomes a problem. Exception is when BLKmode arrives
2822 with arguments not conforming to word_mode. */
2823
2824 if (data->stack_parm == 0)
2825 ;
2826 else if (GET_CODE (entry_parm) == PARALLEL)
2827 ;
2828 else
2829 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2830
2831 mem = validize_mem (stack_parm);
2832
2833 /* Handle values in multiple non-contiguous locations. */
2834 if (GET_CODE (entry_parm) == PARALLEL)
2835 {
2836 push_to_sequence2 (all->first_conversion_insn,
2837 all->last_conversion_insn);
2838 emit_group_store (mem, entry_parm, data->passed_type, size);
2839 all->first_conversion_insn = get_insns ();
2840 all->last_conversion_insn = get_last_insn ();
2841 end_sequence ();
2842 }
2843
2844 else if (size == 0)
2845 ;
2846
2847 /* If SIZE is that of a mode no bigger than a word, just use
2848 that mode's store operation. */
2849 else if (size <= UNITS_PER_WORD)
2850 {
2851 enum machine_mode mode
2852 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2853
2854 if (mode != BLKmode
2855 #ifdef BLOCK_REG_PADDING
2856 && (size == UNITS_PER_WORD
2857 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2858 != (BYTES_BIG_ENDIAN ? upward : downward)))
2859 #endif
2860 )
2861 {
2862 rtx reg;
2863
2864 /* We are really truncating a word_mode value containing
2865 SIZE bytes into a value of mode MODE. If such an
2866 operation requires no actual instructions, we can refer
2867 to the value directly in mode MODE, otherwise we must
2868 start with the register in word_mode and explicitly
2869 convert it. */
2870 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2871 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2872 else
2873 {
2874 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2875 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2876 }
2877 emit_move_insn (change_address (mem, mode, 0), reg);
2878 }
2879
2880 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2881 machine must be aligned to the left before storing
2882 to memory. Note that the previous test doesn't
2883 handle all cases (e.g. SIZE == 3). */
2884 else if (size != UNITS_PER_WORD
2885 #ifdef BLOCK_REG_PADDING
2886 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2887 == downward)
2888 #else
2889 && BYTES_BIG_ENDIAN
2890 #endif
2891 )
2892 {
2893 rtx tem, x;
2894 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2895 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2896
2897 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2898 tem = change_address (mem, word_mode, 0);
2899 emit_move_insn (tem, x);
2900 }
2901 else
2902 move_block_from_reg (REGNO (entry_parm), mem,
2903 size_stored / UNITS_PER_WORD);
2904 }
2905 else
2906 move_block_from_reg (REGNO (entry_parm), mem,
2907 size_stored / UNITS_PER_WORD);
2908 }
2909 else if (data->stack_parm == 0)
2910 {
2911 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2912 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2913 BLOCK_OP_NORMAL);
2914 all->first_conversion_insn = get_insns ();
2915 all->last_conversion_insn = get_last_insn ();
2916 end_sequence ();
2917 }
2918
2919 data->stack_parm = stack_parm;
2920 SET_DECL_RTL (parm, stack_parm);
2921 }
2922
2923 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2924 parameter. Get it there. Perform all ABI specified conversions. */
2925
2926 static void
2927 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2928 struct assign_parm_data_one *data)
2929 {
2930 rtx parmreg, validated_mem;
2931 rtx equiv_stack_parm;
2932 enum machine_mode promoted_nominal_mode;
2933 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2934 bool did_conversion = false;
2935 bool need_conversion, moved;
2936
2937 /* Store the parm in a pseudoregister during the function, but we may
2938 need to do it in a wider mode. Using 2 here makes the result
2939 consistent with promote_decl_mode and thus expand_expr_real_1. */
2940 promoted_nominal_mode
2941 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2942 TREE_TYPE (current_function_decl), 2);
2943
2944 parmreg = gen_reg_rtx (promoted_nominal_mode);
2945
2946 if (!DECL_ARTIFICIAL (parm))
2947 mark_user_reg (parmreg);
2948
2949 /* If this was an item that we received a pointer to,
2950 set DECL_RTL appropriately. */
2951 if (data->passed_pointer)
2952 {
2953 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2954 set_mem_attributes (x, parm, 1);
2955 SET_DECL_RTL (parm, x);
2956 }
2957 else
2958 SET_DECL_RTL (parm, parmreg);
2959
2960 assign_parm_remove_parallels (data);
2961
2962 /* Copy the value into the register, thus bridging between
2963 assign_parm_find_data_types and expand_expr_real_1. */
2964
2965 equiv_stack_parm = data->stack_parm;
2966 validated_mem = validize_mem (data->entry_parm);
2967
2968 need_conversion = (data->nominal_mode != data->passed_mode
2969 || promoted_nominal_mode != data->promoted_mode);
2970 moved = false;
2971
2972 if (need_conversion
2973 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2974 && data->nominal_mode == data->passed_mode
2975 && data->nominal_mode == GET_MODE (data->entry_parm))
2976 {
2977 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2978 mode, by the caller. We now have to convert it to
2979 NOMINAL_MODE, if different. However, PARMREG may be in
2980 a different mode than NOMINAL_MODE if it is being stored
2981 promoted.
2982
2983 If ENTRY_PARM is a hard register, it might be in a register
2984 not valid for operating in its mode (e.g., an odd-numbered
2985 register for a DFmode). In that case, moves are the only
2986 thing valid, so we can't do a convert from there. This
2987 occurs when the calling sequence allow such misaligned
2988 usages.
2989
2990 In addition, the conversion may involve a call, which could
2991 clobber parameters which haven't been copied to pseudo
2992 registers yet.
2993
2994 First, we try to emit an insn which performs the necessary
2995 conversion. We verify that this insn does not clobber any
2996 hard registers. */
2997
2998 enum insn_code icode;
2999 rtx op0, op1;
3000
3001 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3002 unsignedp);
3003
3004 op0 = parmreg;
3005 op1 = validated_mem;
3006 if (icode != CODE_FOR_nothing
3007 && insn_operand_matches (icode, 0, op0)
3008 && insn_operand_matches (icode, 1, op1))
3009 {
3010 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3011 rtx insn, insns, t = op1;
3012 HARD_REG_SET hardregs;
3013
3014 start_sequence ();
3015 /* If op1 is a hard register that is likely spilled, first
3016 force it into a pseudo, otherwise combiner might extend
3017 its lifetime too much. */
3018 if (GET_CODE (t) == SUBREG)
3019 t = SUBREG_REG (t);
3020 if (REG_P (t)
3021 && HARD_REGISTER_P (t)
3022 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3023 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3024 {
3025 t = gen_reg_rtx (GET_MODE (op1));
3026 emit_move_insn (t, op1);
3027 }
3028 else
3029 t = op1;
3030 insn = gen_extend_insn (op0, t, promoted_nominal_mode,
3031 data->passed_mode, unsignedp);
3032 emit_insn (insn);
3033 insns = get_insns ();
3034
3035 moved = true;
3036 CLEAR_HARD_REG_SET (hardregs);
3037 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3038 {
3039 if (INSN_P (insn))
3040 note_stores (PATTERN (insn), record_hard_reg_sets,
3041 &hardregs);
3042 if (!hard_reg_set_empty_p (hardregs))
3043 moved = false;
3044 }
3045
3046 end_sequence ();
3047
3048 if (moved)
3049 {
3050 emit_insn (insns);
3051 if (equiv_stack_parm != NULL_RTX)
3052 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3053 equiv_stack_parm);
3054 }
3055 }
3056 }
3057
3058 if (moved)
3059 /* Nothing to do. */
3060 ;
3061 else if (need_conversion)
3062 {
3063 /* We did not have an insn to convert directly, or the sequence
3064 generated appeared unsafe. We must first copy the parm to a
3065 pseudo reg, and save the conversion until after all
3066 parameters have been moved. */
3067
3068 int save_tree_used;
3069 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3070
3071 emit_move_insn (tempreg, validated_mem);
3072
3073 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3074 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3075
3076 if (GET_CODE (tempreg) == SUBREG
3077 && GET_MODE (tempreg) == data->nominal_mode
3078 && REG_P (SUBREG_REG (tempreg))
3079 && data->nominal_mode == data->passed_mode
3080 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3081 && GET_MODE_SIZE (GET_MODE (tempreg))
3082 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3083 {
3084 /* The argument is already sign/zero extended, so note it
3085 into the subreg. */
3086 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3087 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
3088 }
3089
3090 /* TREE_USED gets set erroneously during expand_assignment. */
3091 save_tree_used = TREE_USED (parm);
3092 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3093 TREE_USED (parm) = save_tree_used;
3094 all->first_conversion_insn = get_insns ();
3095 all->last_conversion_insn = get_last_insn ();
3096 end_sequence ();
3097
3098 did_conversion = true;
3099 }
3100 else
3101 emit_move_insn (parmreg, validated_mem);
3102
3103 /* If we were passed a pointer but the actual value can safely live
3104 in a register, retrieve it and use it directly. */
3105 if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3106 {
3107 /* We can't use nominal_mode, because it will have been set to
3108 Pmode above. We must use the actual mode of the parm. */
3109 if (use_register_for_decl (parm))
3110 {
3111 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3112 mark_user_reg (parmreg);
3113 }
3114 else
3115 {
3116 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3117 TYPE_MODE (TREE_TYPE (parm)),
3118 TYPE_ALIGN (TREE_TYPE (parm)));
3119 parmreg
3120 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3121 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3122 align);
3123 set_mem_attributes (parmreg, parm, 1);
3124 }
3125
3126 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3127 {
3128 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3129 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3130
3131 push_to_sequence2 (all->first_conversion_insn,
3132 all->last_conversion_insn);
3133 emit_move_insn (tempreg, DECL_RTL (parm));
3134 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3135 emit_move_insn (parmreg, tempreg);
3136 all->first_conversion_insn = get_insns ();
3137 all->last_conversion_insn = get_last_insn ();
3138 end_sequence ();
3139
3140 did_conversion = true;
3141 }
3142 else
3143 emit_move_insn (parmreg, DECL_RTL (parm));
3144
3145 SET_DECL_RTL (parm, parmreg);
3146
3147 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3148 now the parm. */
3149 data->stack_parm = NULL;
3150 }
3151
3152 /* Mark the register as eliminable if we did no conversion and it was
3153 copied from memory at a fixed offset, and the arg pointer was not
3154 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3155 offset formed an invalid address, such memory-equivalences as we
3156 make here would screw up life analysis for it. */
3157 if (data->nominal_mode == data->passed_mode
3158 && !did_conversion
3159 && data->stack_parm != 0
3160 && MEM_P (data->stack_parm)
3161 && data->locate.offset.var == 0
3162 && reg_mentioned_p (virtual_incoming_args_rtx,
3163 XEXP (data->stack_parm, 0)))
3164 {
3165 rtx linsn = get_last_insn ();
3166 rtx sinsn, set;
3167
3168 /* Mark complex types separately. */
3169 if (GET_CODE (parmreg) == CONCAT)
3170 {
3171 enum machine_mode submode
3172 = GET_MODE_INNER (GET_MODE (parmreg));
3173 int regnor = REGNO (XEXP (parmreg, 0));
3174 int regnoi = REGNO (XEXP (parmreg, 1));
3175 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3176 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3177 GET_MODE_SIZE (submode));
3178
3179 /* Scan backwards for the set of the real and
3180 imaginary parts. */
3181 for (sinsn = linsn; sinsn != 0;
3182 sinsn = prev_nonnote_insn (sinsn))
3183 {
3184 set = single_set (sinsn);
3185 if (set == 0)
3186 continue;
3187
3188 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3189 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3190 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3191 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3192 }
3193 }
3194 else
3195 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3196 }
3197
3198 /* For pointer data type, suggest pointer register. */
3199 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3200 mark_reg_pointer (parmreg,
3201 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3202 }
3203
3204 /* A subroutine of assign_parms. Allocate stack space to hold the current
3205 parameter. Get it there. Perform all ABI specified conversions. */
3206
3207 static void
3208 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3209 struct assign_parm_data_one *data)
3210 {
3211 /* Value must be stored in the stack slot STACK_PARM during function
3212 execution. */
3213 bool to_conversion = false;
3214
3215 assign_parm_remove_parallels (data);
3216
3217 if (data->promoted_mode != data->nominal_mode)
3218 {
3219 /* Conversion is required. */
3220 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3221
3222 emit_move_insn (tempreg, validize_mem (data->entry_parm));
3223
3224 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3225 to_conversion = true;
3226
3227 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3228 TYPE_UNSIGNED (TREE_TYPE (parm)));
3229
3230 if (data->stack_parm)
3231 {
3232 int offset = subreg_lowpart_offset (data->nominal_mode,
3233 GET_MODE (data->stack_parm));
3234 /* ??? This may need a big-endian conversion on sparc64. */
3235 data->stack_parm
3236 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3237 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3238 set_mem_offset (data->stack_parm,
3239 MEM_OFFSET (data->stack_parm) + offset);
3240 }
3241 }
3242
3243 if (data->entry_parm != data->stack_parm)
3244 {
3245 rtx src, dest;
3246
3247 if (data->stack_parm == 0)
3248 {
3249 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3250 GET_MODE (data->entry_parm),
3251 TYPE_ALIGN (data->passed_type));
3252 data->stack_parm
3253 = assign_stack_local (GET_MODE (data->entry_parm),
3254 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3255 align);
3256 set_mem_attributes (data->stack_parm, parm, 1);
3257 }
3258
3259 dest = validize_mem (data->stack_parm);
3260 src = validize_mem (data->entry_parm);
3261
3262 if (MEM_P (src))
3263 {
3264 /* Use a block move to handle potentially misaligned entry_parm. */
3265 if (!to_conversion)
3266 push_to_sequence2 (all->first_conversion_insn,
3267 all->last_conversion_insn);
3268 to_conversion = true;
3269
3270 emit_block_move (dest, src,
3271 GEN_INT (int_size_in_bytes (data->passed_type)),
3272 BLOCK_OP_NORMAL);
3273 }
3274 else
3275 emit_move_insn (dest, src);
3276 }
3277
3278 if (to_conversion)
3279 {
3280 all->first_conversion_insn = get_insns ();
3281 all->last_conversion_insn = get_last_insn ();
3282 end_sequence ();
3283 }
3284
3285 SET_DECL_RTL (parm, data->stack_parm);
3286 }
3287
3288 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3289 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3290
3291 static void
3292 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3293 vec<tree> fnargs)
3294 {
3295 tree parm;
3296 tree orig_fnargs = all->orig_fnargs;
3297 unsigned i = 0;
3298
3299 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3300 {
3301 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3302 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3303 {
3304 rtx tmp, real, imag;
3305 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3306
3307 real = DECL_RTL (fnargs[i]);
3308 imag = DECL_RTL (fnargs[i + 1]);
3309 if (inner != GET_MODE (real))
3310 {
3311 real = gen_lowpart_SUBREG (inner, real);
3312 imag = gen_lowpart_SUBREG (inner, imag);
3313 }
3314
3315 if (TREE_ADDRESSABLE (parm))
3316 {
3317 rtx rmem, imem;
3318 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3319 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3320 DECL_MODE (parm),
3321 TYPE_ALIGN (TREE_TYPE (parm)));
3322
3323 /* split_complex_arg put the real and imag parts in
3324 pseudos. Move them to memory. */
3325 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3326 set_mem_attributes (tmp, parm, 1);
3327 rmem = adjust_address_nv (tmp, inner, 0);
3328 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3329 push_to_sequence2 (all->first_conversion_insn,
3330 all->last_conversion_insn);
3331 emit_move_insn (rmem, real);
3332 emit_move_insn (imem, imag);
3333 all->first_conversion_insn = get_insns ();
3334 all->last_conversion_insn = get_last_insn ();
3335 end_sequence ();
3336 }
3337 else
3338 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3339 SET_DECL_RTL (parm, tmp);
3340
3341 real = DECL_INCOMING_RTL (fnargs[i]);
3342 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3343 if (inner != GET_MODE (real))
3344 {
3345 real = gen_lowpart_SUBREG (inner, real);
3346 imag = gen_lowpart_SUBREG (inner, imag);
3347 }
3348 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3349 set_decl_incoming_rtl (parm, tmp, false);
3350 i++;
3351 }
3352 }
3353 }
3354
3355 /* Assign RTL expressions to the function's parameters. This may involve
3356 copying them into registers and using those registers as the DECL_RTL. */
3357
3358 static void
3359 assign_parms (tree fndecl)
3360 {
3361 struct assign_parm_data_all all;
3362 tree parm;
3363 vec<tree> fnargs;
3364 unsigned i;
3365
3366 crtl->args.internal_arg_pointer
3367 = targetm.calls.internal_arg_pointer ();
3368
3369 assign_parms_initialize_all (&all);
3370 fnargs = assign_parms_augmented_arg_list (&all);
3371
3372 FOR_EACH_VEC_ELT (fnargs, i, parm)
3373 {
3374 struct assign_parm_data_one data;
3375
3376 /* Extract the type of PARM; adjust it according to ABI. */
3377 assign_parm_find_data_types (&all, parm, &data);
3378
3379 /* Early out for errors and void parameters. */
3380 if (data.passed_mode == VOIDmode)
3381 {
3382 SET_DECL_RTL (parm, const0_rtx);
3383 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3384 continue;
3385 }
3386
3387 /* Estimate stack alignment from parameter alignment. */
3388 if (SUPPORTS_STACK_ALIGNMENT)
3389 {
3390 unsigned int align
3391 = targetm.calls.function_arg_boundary (data.promoted_mode,
3392 data.passed_type);
3393 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3394 align);
3395 if (TYPE_ALIGN (data.nominal_type) > align)
3396 align = MINIMUM_ALIGNMENT (data.nominal_type,
3397 TYPE_MODE (data.nominal_type),
3398 TYPE_ALIGN (data.nominal_type));
3399 if (crtl->stack_alignment_estimated < align)
3400 {
3401 gcc_assert (!crtl->stack_realign_processed);
3402 crtl->stack_alignment_estimated = align;
3403 }
3404 }
3405
3406 if (cfun->stdarg && !DECL_CHAIN (parm))
3407 assign_parms_setup_varargs (&all, &data, false);
3408
3409 /* Find out where the parameter arrives in this function. */
3410 assign_parm_find_entry_rtl (&all, &data);
3411
3412 /* Find out where stack space for this parameter might be. */
3413 if (assign_parm_is_stack_parm (&all, &data))
3414 {
3415 assign_parm_find_stack_rtl (parm, &data);
3416 assign_parm_adjust_entry_rtl (&data);
3417 }
3418
3419 /* Record permanently how this parm was passed. */
3420 if (data.passed_pointer)
3421 {
3422 rtx incoming_rtl
3423 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3424 data.entry_parm);
3425 set_decl_incoming_rtl (parm, incoming_rtl, true);
3426 }
3427 else
3428 set_decl_incoming_rtl (parm, data.entry_parm, false);
3429
3430 /* Update info on where next arg arrives in registers. */
3431 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3432 data.passed_type, data.named_arg);
3433
3434 assign_parm_adjust_stack_rtl (&data);
3435
3436 if (assign_parm_setup_block_p (&data))
3437 assign_parm_setup_block (&all, parm, &data);
3438 else if (data.passed_pointer || use_register_for_decl (parm))
3439 assign_parm_setup_reg (&all, parm, &data);
3440 else
3441 assign_parm_setup_stack (&all, parm, &data);
3442 }
3443
3444 if (targetm.calls.split_complex_arg)
3445 assign_parms_unsplit_complex (&all, fnargs);
3446
3447 fnargs.release ();
3448
3449 /* Output all parameter conversion instructions (possibly including calls)
3450 now that all parameters have been copied out of hard registers. */
3451 emit_insn (all.first_conversion_insn);
3452
3453 /* Estimate reload stack alignment from scalar return mode. */
3454 if (SUPPORTS_STACK_ALIGNMENT)
3455 {
3456 if (DECL_RESULT (fndecl))
3457 {
3458 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3459 enum machine_mode mode = TYPE_MODE (type);
3460
3461 if (mode != BLKmode
3462 && mode != VOIDmode
3463 && !AGGREGATE_TYPE_P (type))
3464 {
3465 unsigned int align = GET_MODE_ALIGNMENT (mode);
3466 if (crtl->stack_alignment_estimated < align)
3467 {
3468 gcc_assert (!crtl->stack_realign_processed);
3469 crtl->stack_alignment_estimated = align;
3470 }
3471 }
3472 }
3473 }
3474
3475 /* If we are receiving a struct value address as the first argument, set up
3476 the RTL for the function result. As this might require code to convert
3477 the transmitted address to Pmode, we do this here to ensure that possible
3478 preliminary conversions of the address have been emitted already. */
3479 if (all.function_result_decl)
3480 {
3481 tree result = DECL_RESULT (current_function_decl);
3482 rtx addr = DECL_RTL (all.function_result_decl);
3483 rtx x;
3484
3485 if (DECL_BY_REFERENCE (result))
3486 {
3487 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3488 x = addr;
3489 }
3490 else
3491 {
3492 SET_DECL_VALUE_EXPR (result,
3493 build1 (INDIRECT_REF, TREE_TYPE (result),
3494 all.function_result_decl));
3495 addr = convert_memory_address (Pmode, addr);
3496 x = gen_rtx_MEM (DECL_MODE (result), addr);
3497 set_mem_attributes (x, result, 1);
3498 }
3499
3500 DECL_HAS_VALUE_EXPR_P (result) = 1;
3501
3502 SET_DECL_RTL (result, x);
3503 }
3504
3505 /* We have aligned all the args, so add space for the pretend args. */
3506 crtl->args.pretend_args_size = all.pretend_args_size;
3507 all.stack_args_size.constant += all.extra_pretend_bytes;
3508 crtl->args.size = all.stack_args_size.constant;
3509
3510 /* Adjust function incoming argument size for alignment and
3511 minimum length. */
3512
3513 #ifdef REG_PARM_STACK_SPACE
3514 crtl->args.size = MAX (crtl->args.size,
3515 REG_PARM_STACK_SPACE (fndecl));
3516 #endif
3517
3518 crtl->args.size = CEIL_ROUND (crtl->args.size,
3519 PARM_BOUNDARY / BITS_PER_UNIT);
3520
3521 #ifdef ARGS_GROW_DOWNWARD
3522 crtl->args.arg_offset_rtx
3523 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3524 : expand_expr (size_diffop (all.stack_args_size.var,
3525 size_int (-all.stack_args_size.constant)),
3526 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3527 #else
3528 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3529 #endif
3530
3531 /* See how many bytes, if any, of its args a function should try to pop
3532 on return. */
3533
3534 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3535 TREE_TYPE (fndecl),
3536 crtl->args.size);
3537
3538 /* For stdarg.h function, save info about
3539 regs and stack space used by the named args. */
3540
3541 crtl->args.info = all.args_so_far_v;
3542
3543 /* Set the rtx used for the function return value. Put this in its
3544 own variable so any optimizers that need this information don't have
3545 to include tree.h. Do this here so it gets done when an inlined
3546 function gets output. */
3547
3548 crtl->return_rtx
3549 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3550 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3551
3552 /* If scalar return value was computed in a pseudo-reg, or was a named
3553 return value that got dumped to the stack, copy that to the hard
3554 return register. */
3555 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3556 {
3557 tree decl_result = DECL_RESULT (fndecl);
3558 rtx decl_rtl = DECL_RTL (decl_result);
3559
3560 if (REG_P (decl_rtl)
3561 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3562 : DECL_REGISTER (decl_result))
3563 {
3564 rtx real_decl_rtl;
3565
3566 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3567 fndecl, true);
3568 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3569 /* The delay slot scheduler assumes that crtl->return_rtx
3570 holds the hard register containing the return value, not a
3571 temporary pseudo. */
3572 crtl->return_rtx = real_decl_rtl;
3573 }
3574 }
3575 }
3576
3577 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3578 For all seen types, gimplify their sizes. */
3579
3580 static tree
3581 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3582 {
3583 tree t = *tp;
3584
3585 *walk_subtrees = 0;
3586 if (TYPE_P (t))
3587 {
3588 if (POINTER_TYPE_P (t))
3589 *walk_subtrees = 1;
3590 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3591 && !TYPE_SIZES_GIMPLIFIED (t))
3592 {
3593 gimplify_type_sizes (t, (gimple_seq *) data);
3594 *walk_subtrees = 1;
3595 }
3596 }
3597
3598 return NULL;
3599 }
3600
3601 /* Gimplify the parameter list for current_function_decl. This involves
3602 evaluating SAVE_EXPRs of variable sized parameters and generating code
3603 to implement callee-copies reference parameters. Returns a sequence of
3604 statements to add to the beginning of the function. */
3605
3606 gimple_seq
3607 gimplify_parameters (void)
3608 {
3609 struct assign_parm_data_all all;
3610 tree parm;
3611 gimple_seq stmts = NULL;
3612 vec<tree> fnargs;
3613 unsigned i;
3614
3615 assign_parms_initialize_all (&all);
3616 fnargs = assign_parms_augmented_arg_list (&all);
3617
3618 FOR_EACH_VEC_ELT (fnargs, i, parm)
3619 {
3620 struct assign_parm_data_one data;
3621
3622 /* Extract the type of PARM; adjust it according to ABI. */
3623 assign_parm_find_data_types (&all, parm, &data);
3624
3625 /* Early out for errors and void parameters. */
3626 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3627 continue;
3628
3629 /* Update info on where next arg arrives in registers. */
3630 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3631 data.passed_type, data.named_arg);
3632
3633 /* ??? Once upon a time variable_size stuffed parameter list
3634 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3635 turned out to be less than manageable in the gimple world.
3636 Now we have to hunt them down ourselves. */
3637 walk_tree_without_duplicates (&data.passed_type,
3638 gimplify_parm_type, &stmts);
3639
3640 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3641 {
3642 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3643 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3644 }
3645
3646 if (data.passed_pointer)
3647 {
3648 tree type = TREE_TYPE (data.passed_type);
3649 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3650 type, data.named_arg))
3651 {
3652 tree local, t;
3653
3654 /* For constant-sized objects, this is trivial; for
3655 variable-sized objects, we have to play games. */
3656 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3657 && !(flag_stack_check == GENERIC_STACK_CHECK
3658 && compare_tree_int (DECL_SIZE_UNIT (parm),
3659 STACK_CHECK_MAX_VAR_SIZE) > 0))
3660 {
3661 local = create_tmp_var (type, get_name (parm));
3662 DECL_IGNORED_P (local) = 0;
3663 /* If PARM was addressable, move that flag over
3664 to the local copy, as its address will be taken,
3665 not the PARMs. Keep the parms address taken
3666 as we'll query that flag during gimplification. */
3667 if (TREE_ADDRESSABLE (parm))
3668 TREE_ADDRESSABLE (local) = 1;
3669 else if (TREE_CODE (type) == COMPLEX_TYPE
3670 || TREE_CODE (type) == VECTOR_TYPE)
3671 DECL_GIMPLE_REG_P (local) = 1;
3672 }
3673 else
3674 {
3675 tree ptr_type, addr;
3676
3677 ptr_type = build_pointer_type (type);
3678 addr = create_tmp_reg (ptr_type, get_name (parm));
3679 DECL_IGNORED_P (addr) = 0;
3680 local = build_fold_indirect_ref (addr);
3681
3682 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3683 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3684 size_int (DECL_ALIGN (parm)));
3685
3686 /* The call has been built for a variable-sized object. */
3687 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3688 t = fold_convert (ptr_type, t);
3689 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3690 gimplify_and_add (t, &stmts);
3691 }
3692
3693 gimplify_assign (local, parm, &stmts);
3694
3695 SET_DECL_VALUE_EXPR (parm, local);
3696 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3697 }
3698 }
3699 }
3700
3701 fnargs.release ();
3702
3703 return stmts;
3704 }
3705 \f
3706 /* Compute the size and offset from the start of the stacked arguments for a
3707 parm passed in mode PASSED_MODE and with type TYPE.
3708
3709 INITIAL_OFFSET_PTR points to the current offset into the stacked
3710 arguments.
3711
3712 The starting offset and size for this parm are returned in
3713 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3714 nonzero, the offset is that of stack slot, which is returned in
3715 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3716 padding required from the initial offset ptr to the stack slot.
3717
3718 IN_REGS is nonzero if the argument will be passed in registers. It will
3719 never be set if REG_PARM_STACK_SPACE is not defined.
3720
3721 FNDECL is the function in which the argument was defined.
3722
3723 There are two types of rounding that are done. The first, controlled by
3724 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3725 argument list to be aligned to the specific boundary (in bits). This
3726 rounding affects the initial and starting offsets, but not the argument
3727 size.
3728
3729 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3730 optionally rounds the size of the parm to PARM_BOUNDARY. The
3731 initial offset is not affected by this rounding, while the size always
3732 is and the starting offset may be. */
3733
3734 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3735 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3736 callers pass in the total size of args so far as
3737 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3738
3739 void
3740 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3741 int partial, tree fndecl ATTRIBUTE_UNUSED,
3742 struct args_size *initial_offset_ptr,
3743 struct locate_and_pad_arg_data *locate)
3744 {
3745 tree sizetree;
3746 enum direction where_pad;
3747 unsigned int boundary, round_boundary;
3748 int reg_parm_stack_space = 0;
3749 int part_size_in_regs;
3750
3751 #ifdef REG_PARM_STACK_SPACE
3752 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3753
3754 /* If we have found a stack parm before we reach the end of the
3755 area reserved for registers, skip that area. */
3756 if (! in_regs)
3757 {
3758 if (reg_parm_stack_space > 0)
3759 {
3760 if (initial_offset_ptr->var)
3761 {
3762 initial_offset_ptr->var
3763 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3764 ssize_int (reg_parm_stack_space));
3765 initial_offset_ptr->constant = 0;
3766 }
3767 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3768 initial_offset_ptr->constant = reg_parm_stack_space;
3769 }
3770 }
3771 #endif /* REG_PARM_STACK_SPACE */
3772
3773 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3774
3775 sizetree
3776 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3777 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3778 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3779 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3780 type);
3781 locate->where_pad = where_pad;
3782
3783 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3784 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3785 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3786
3787 locate->boundary = boundary;
3788
3789 if (SUPPORTS_STACK_ALIGNMENT)
3790 {
3791 /* stack_alignment_estimated can't change after stack has been
3792 realigned. */
3793 if (crtl->stack_alignment_estimated < boundary)
3794 {
3795 if (!crtl->stack_realign_processed)
3796 crtl->stack_alignment_estimated = boundary;
3797 else
3798 {
3799 /* If stack is realigned and stack alignment value
3800 hasn't been finalized, it is OK not to increase
3801 stack_alignment_estimated. The bigger alignment
3802 requirement is recorded in stack_alignment_needed
3803 below. */
3804 gcc_assert (!crtl->stack_realign_finalized
3805 && crtl->stack_realign_needed);
3806 }
3807 }
3808 }
3809
3810 /* Remember if the outgoing parameter requires extra alignment on the
3811 calling function side. */
3812 if (crtl->stack_alignment_needed < boundary)
3813 crtl->stack_alignment_needed = boundary;
3814 if (crtl->preferred_stack_boundary < boundary)
3815 crtl->preferred_stack_boundary = boundary;
3816
3817 #ifdef ARGS_GROW_DOWNWARD
3818 locate->slot_offset.constant = -initial_offset_ptr->constant;
3819 if (initial_offset_ptr->var)
3820 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3821 initial_offset_ptr->var);
3822
3823 {
3824 tree s2 = sizetree;
3825 if (where_pad != none
3826 && (!host_integerp (sizetree, 1)
3827 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3828 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
3829 SUB_PARM_SIZE (locate->slot_offset, s2);
3830 }
3831
3832 locate->slot_offset.constant += part_size_in_regs;
3833
3834 if (!in_regs
3835 #ifdef REG_PARM_STACK_SPACE
3836 || REG_PARM_STACK_SPACE (fndecl) > 0
3837 #endif
3838 )
3839 pad_to_arg_alignment (&locate->slot_offset, boundary,
3840 &locate->alignment_pad);
3841
3842 locate->size.constant = (-initial_offset_ptr->constant
3843 - locate->slot_offset.constant);
3844 if (initial_offset_ptr->var)
3845 locate->size.var = size_binop (MINUS_EXPR,
3846 size_binop (MINUS_EXPR,
3847 ssize_int (0),
3848 initial_offset_ptr->var),
3849 locate->slot_offset.var);
3850
3851 /* Pad_below needs the pre-rounded size to know how much to pad
3852 below. */
3853 locate->offset = locate->slot_offset;
3854 if (where_pad == downward)
3855 pad_below (&locate->offset, passed_mode, sizetree);
3856
3857 #else /* !ARGS_GROW_DOWNWARD */
3858 if (!in_regs
3859 #ifdef REG_PARM_STACK_SPACE
3860 || REG_PARM_STACK_SPACE (fndecl) > 0
3861 #endif
3862 )
3863 pad_to_arg_alignment (initial_offset_ptr, boundary,
3864 &locate->alignment_pad);
3865 locate->slot_offset = *initial_offset_ptr;
3866
3867 #ifdef PUSH_ROUNDING
3868 if (passed_mode != BLKmode)
3869 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3870 #endif
3871
3872 /* Pad_below needs the pre-rounded size to know how much to pad below
3873 so this must be done before rounding up. */
3874 locate->offset = locate->slot_offset;
3875 if (where_pad == downward)
3876 pad_below (&locate->offset, passed_mode, sizetree);
3877
3878 if (where_pad != none
3879 && (!host_integerp (sizetree, 1)
3880 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3881 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
3882
3883 ADD_PARM_SIZE (locate->size, sizetree);
3884
3885 locate->size.constant -= part_size_in_regs;
3886 #endif /* ARGS_GROW_DOWNWARD */
3887
3888 #ifdef FUNCTION_ARG_OFFSET
3889 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3890 #endif
3891 }
3892
3893 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3894 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3895
3896 static void
3897 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3898 struct args_size *alignment_pad)
3899 {
3900 tree save_var = NULL_TREE;
3901 HOST_WIDE_INT save_constant = 0;
3902 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3903 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3904
3905 #ifdef SPARC_STACK_BOUNDARY_HACK
3906 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3907 the real alignment of %sp. However, when it does this, the
3908 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3909 if (SPARC_STACK_BOUNDARY_HACK)
3910 sp_offset = 0;
3911 #endif
3912
3913 if (boundary > PARM_BOUNDARY)
3914 {
3915 save_var = offset_ptr->var;
3916 save_constant = offset_ptr->constant;
3917 }
3918
3919 alignment_pad->var = NULL_TREE;
3920 alignment_pad->constant = 0;
3921
3922 if (boundary > BITS_PER_UNIT)
3923 {
3924 if (offset_ptr->var)
3925 {
3926 tree sp_offset_tree = ssize_int (sp_offset);
3927 tree offset = size_binop (PLUS_EXPR,
3928 ARGS_SIZE_TREE (*offset_ptr),
3929 sp_offset_tree);
3930 #ifdef ARGS_GROW_DOWNWARD
3931 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3932 #else
3933 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3934 #endif
3935
3936 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3937 /* ARGS_SIZE_TREE includes constant term. */
3938 offset_ptr->constant = 0;
3939 if (boundary > PARM_BOUNDARY)
3940 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3941 save_var);
3942 }
3943 else
3944 {
3945 offset_ptr->constant = -sp_offset +
3946 #ifdef ARGS_GROW_DOWNWARD
3947 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3948 #else
3949 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3950 #endif
3951 if (boundary > PARM_BOUNDARY)
3952 alignment_pad->constant = offset_ptr->constant - save_constant;
3953 }
3954 }
3955 }
3956
3957 static void
3958 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3959 {
3960 if (passed_mode != BLKmode)
3961 {
3962 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3963 offset_ptr->constant
3964 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3965 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3966 - GET_MODE_SIZE (passed_mode));
3967 }
3968 else
3969 {
3970 if (TREE_CODE (sizetree) != INTEGER_CST
3971 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3972 {
3973 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3974 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3975 /* Add it in. */
3976 ADD_PARM_SIZE (*offset_ptr, s2);
3977 SUB_PARM_SIZE (*offset_ptr, sizetree);
3978 }
3979 }
3980 }
3981 \f
3982
3983 /* True if register REGNO was alive at a place where `setjmp' was
3984 called and was set more than once or is an argument. Such regs may
3985 be clobbered by `longjmp'. */
3986
3987 static bool
3988 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3989 {
3990 /* There appear to be cases where some local vars never reach the
3991 backend but have bogus regnos. */
3992 if (regno >= max_reg_num ())
3993 return false;
3994
3995 return ((REG_N_SETS (regno) > 1
3996 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3997 && REGNO_REG_SET_P (setjmp_crosses, regno));
3998 }
3999
4000 /* Walk the tree of blocks describing the binding levels within a
4001 function and warn about variables the might be killed by setjmp or
4002 vfork. This is done after calling flow_analysis before register
4003 allocation since that will clobber the pseudo-regs to hard
4004 regs. */
4005
4006 static void
4007 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4008 {
4009 tree decl, sub;
4010
4011 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4012 {
4013 if (TREE_CODE (decl) == VAR_DECL
4014 && DECL_RTL_SET_P (decl)
4015 && REG_P (DECL_RTL (decl))
4016 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4017 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4018 " %<longjmp%> or %<vfork%>", decl);
4019 }
4020
4021 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4022 setjmp_vars_warning (setjmp_crosses, sub);
4023 }
4024
4025 /* Do the appropriate part of setjmp_vars_warning
4026 but for arguments instead of local variables. */
4027
4028 static void
4029 setjmp_args_warning (bitmap setjmp_crosses)
4030 {
4031 tree decl;
4032 for (decl = DECL_ARGUMENTS (current_function_decl);
4033 decl; decl = DECL_CHAIN (decl))
4034 if (DECL_RTL (decl) != 0
4035 && REG_P (DECL_RTL (decl))
4036 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4037 warning (OPT_Wclobbered,
4038 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4039 decl);
4040 }
4041
4042 /* Generate warning messages for variables live across setjmp. */
4043
4044 void
4045 generate_setjmp_warnings (void)
4046 {
4047 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4048
4049 if (n_basic_blocks == NUM_FIXED_BLOCKS
4050 || bitmap_empty_p (setjmp_crosses))
4051 return;
4052
4053 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4054 setjmp_args_warning (setjmp_crosses);
4055 }
4056
4057 \f
4058 /* Reverse the order of elements in the fragment chain T of blocks,
4059 and return the new head of the chain (old last element).
4060 In addition to that clear BLOCK_SAME_RANGE flags when needed
4061 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4062 its super fragment origin. */
4063
4064 static tree
4065 block_fragments_nreverse (tree t)
4066 {
4067 tree prev = 0, block, next, prev_super = 0;
4068 tree super = BLOCK_SUPERCONTEXT (t);
4069 if (BLOCK_FRAGMENT_ORIGIN (super))
4070 super = BLOCK_FRAGMENT_ORIGIN (super);
4071 for (block = t; block; block = next)
4072 {
4073 next = BLOCK_FRAGMENT_CHAIN (block);
4074 BLOCK_FRAGMENT_CHAIN (block) = prev;
4075 if ((prev && !BLOCK_SAME_RANGE (prev))
4076 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4077 != prev_super))
4078 BLOCK_SAME_RANGE (block) = 0;
4079 prev_super = BLOCK_SUPERCONTEXT (block);
4080 BLOCK_SUPERCONTEXT (block) = super;
4081 prev = block;
4082 }
4083 t = BLOCK_FRAGMENT_ORIGIN (t);
4084 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4085 != prev_super)
4086 BLOCK_SAME_RANGE (t) = 0;
4087 BLOCK_SUPERCONTEXT (t) = super;
4088 return prev;
4089 }
4090
4091 /* Reverse the order of elements in the chain T of blocks,
4092 and return the new head of the chain (old last element).
4093 Also do the same on subblocks and reverse the order of elements
4094 in BLOCK_FRAGMENT_CHAIN as well. */
4095
4096 static tree
4097 blocks_nreverse_all (tree t)
4098 {
4099 tree prev = 0, block, next;
4100 for (block = t; block; block = next)
4101 {
4102 next = BLOCK_CHAIN (block);
4103 BLOCK_CHAIN (block) = prev;
4104 if (BLOCK_FRAGMENT_CHAIN (block)
4105 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4106 {
4107 BLOCK_FRAGMENT_CHAIN (block)
4108 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4109 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4110 BLOCK_SAME_RANGE (block) = 0;
4111 }
4112 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4113 prev = block;
4114 }
4115 return prev;
4116 }
4117
4118
4119 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4120 and create duplicate blocks. */
4121 /* ??? Need an option to either create block fragments or to create
4122 abstract origin duplicates of a source block. It really depends
4123 on what optimization has been performed. */
4124
4125 void
4126 reorder_blocks (void)
4127 {
4128 tree block = DECL_INITIAL (current_function_decl);
4129 vec<tree> block_stack;
4130
4131 if (block == NULL_TREE)
4132 return;
4133
4134 block_stack.create (10);
4135
4136 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4137 clear_block_marks (block);
4138
4139 /* Prune the old trees away, so that they don't get in the way. */
4140 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4141 BLOCK_CHAIN (block) = NULL_TREE;
4142
4143 /* Recreate the block tree from the note nesting. */
4144 reorder_blocks_1 (get_insns (), block, &block_stack);
4145 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4146
4147 block_stack.release ();
4148 }
4149
4150 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4151
4152 void
4153 clear_block_marks (tree block)
4154 {
4155 while (block)
4156 {
4157 TREE_ASM_WRITTEN (block) = 0;
4158 clear_block_marks (BLOCK_SUBBLOCKS (block));
4159 block = BLOCK_CHAIN (block);
4160 }
4161 }
4162
4163 static void
4164 reorder_blocks_1 (rtx insns, tree current_block, vec<tree> *p_block_stack)
4165 {
4166 rtx insn;
4167 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4168
4169 for (insn = insns; insn; insn = NEXT_INSN (insn))
4170 {
4171 if (NOTE_P (insn))
4172 {
4173 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4174 {
4175 tree block = NOTE_BLOCK (insn);
4176 tree origin;
4177
4178 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4179 origin = block;
4180
4181 if (prev_end)
4182 BLOCK_SAME_RANGE (prev_end) = 0;
4183 prev_end = NULL_TREE;
4184
4185 /* If we have seen this block before, that means it now
4186 spans multiple address regions. Create a new fragment. */
4187 if (TREE_ASM_WRITTEN (block))
4188 {
4189 tree new_block = copy_node (block);
4190
4191 BLOCK_SAME_RANGE (new_block) = 0;
4192 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4193 BLOCK_FRAGMENT_CHAIN (new_block)
4194 = BLOCK_FRAGMENT_CHAIN (origin);
4195 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4196
4197 NOTE_BLOCK (insn) = new_block;
4198 block = new_block;
4199 }
4200
4201 if (prev_beg == current_block && prev_beg)
4202 BLOCK_SAME_RANGE (block) = 1;
4203
4204 prev_beg = origin;
4205
4206 BLOCK_SUBBLOCKS (block) = 0;
4207 TREE_ASM_WRITTEN (block) = 1;
4208 /* When there's only one block for the entire function,
4209 current_block == block and we mustn't do this, it
4210 will cause infinite recursion. */
4211 if (block != current_block)
4212 {
4213 tree super;
4214 if (block != origin)
4215 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4216 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4217 (origin))
4218 == current_block);
4219 if (p_block_stack->is_empty ())
4220 super = current_block;
4221 else
4222 {
4223 super = p_block_stack->last ();
4224 gcc_assert (super == current_block
4225 || BLOCK_FRAGMENT_ORIGIN (super)
4226 == current_block);
4227 }
4228 BLOCK_SUPERCONTEXT (block) = super;
4229 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4230 BLOCK_SUBBLOCKS (current_block) = block;
4231 current_block = origin;
4232 }
4233 p_block_stack->safe_push (block);
4234 }
4235 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4236 {
4237 NOTE_BLOCK (insn) = p_block_stack->pop ();
4238 current_block = BLOCK_SUPERCONTEXT (current_block);
4239 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4240 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4241 prev_beg = NULL_TREE;
4242 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4243 ? NOTE_BLOCK (insn) : NULL_TREE;
4244 }
4245 }
4246 else
4247 {
4248 prev_beg = NULL_TREE;
4249 if (prev_end)
4250 BLOCK_SAME_RANGE (prev_end) = 0;
4251 prev_end = NULL_TREE;
4252 }
4253 }
4254 }
4255
4256 /* Reverse the order of elements in the chain T of blocks,
4257 and return the new head of the chain (old last element). */
4258
4259 tree
4260 blocks_nreverse (tree t)
4261 {
4262 tree prev = 0, block, next;
4263 for (block = t; block; block = next)
4264 {
4265 next = BLOCK_CHAIN (block);
4266 BLOCK_CHAIN (block) = prev;
4267 prev = block;
4268 }
4269 return prev;
4270 }
4271
4272 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4273 by modifying the last node in chain 1 to point to chain 2. */
4274
4275 tree
4276 block_chainon (tree op1, tree op2)
4277 {
4278 tree t1;
4279
4280 if (!op1)
4281 return op2;
4282 if (!op2)
4283 return op1;
4284
4285 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4286 continue;
4287 BLOCK_CHAIN (t1) = op2;
4288
4289 #ifdef ENABLE_TREE_CHECKING
4290 {
4291 tree t2;
4292 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4293 gcc_assert (t2 != t1);
4294 }
4295 #endif
4296
4297 return op1;
4298 }
4299
4300 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4301 non-NULL, list them all into VECTOR, in a depth-first preorder
4302 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4303 blocks. */
4304
4305 static int
4306 all_blocks (tree block, tree *vector)
4307 {
4308 int n_blocks = 0;
4309
4310 while (block)
4311 {
4312 TREE_ASM_WRITTEN (block) = 0;
4313
4314 /* Record this block. */
4315 if (vector)
4316 vector[n_blocks] = block;
4317
4318 ++n_blocks;
4319
4320 /* Record the subblocks, and their subblocks... */
4321 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4322 vector ? vector + n_blocks : 0);
4323 block = BLOCK_CHAIN (block);
4324 }
4325
4326 return n_blocks;
4327 }
4328
4329 /* Return a vector containing all the blocks rooted at BLOCK. The
4330 number of elements in the vector is stored in N_BLOCKS_P. The
4331 vector is dynamically allocated; it is the caller's responsibility
4332 to call `free' on the pointer returned. */
4333
4334 static tree *
4335 get_block_vector (tree block, int *n_blocks_p)
4336 {
4337 tree *block_vector;
4338
4339 *n_blocks_p = all_blocks (block, NULL);
4340 block_vector = XNEWVEC (tree, *n_blocks_p);
4341 all_blocks (block, block_vector);
4342
4343 return block_vector;
4344 }
4345
4346 static GTY(()) int next_block_index = 2;
4347
4348 /* Set BLOCK_NUMBER for all the blocks in FN. */
4349
4350 void
4351 number_blocks (tree fn)
4352 {
4353 int i;
4354 int n_blocks;
4355 tree *block_vector;
4356
4357 /* For SDB and XCOFF debugging output, we start numbering the blocks
4358 from 1 within each function, rather than keeping a running
4359 count. */
4360 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4361 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4362 next_block_index = 1;
4363 #endif
4364
4365 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4366
4367 /* The top-level BLOCK isn't numbered at all. */
4368 for (i = 1; i < n_blocks; ++i)
4369 /* We number the blocks from two. */
4370 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4371
4372 free (block_vector);
4373
4374 return;
4375 }
4376
4377 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4378
4379 DEBUG_FUNCTION tree
4380 debug_find_var_in_block_tree (tree var, tree block)
4381 {
4382 tree t;
4383
4384 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4385 if (t == var)
4386 return block;
4387
4388 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4389 {
4390 tree ret = debug_find_var_in_block_tree (var, t);
4391 if (ret)
4392 return ret;
4393 }
4394
4395 return NULL_TREE;
4396 }
4397 \f
4398 /* Keep track of whether we're in a dummy function context. If we are,
4399 we don't want to invoke the set_current_function hook, because we'll
4400 get into trouble if the hook calls target_reinit () recursively or
4401 when the initial initialization is not yet complete. */
4402
4403 static bool in_dummy_function;
4404
4405 /* Invoke the target hook when setting cfun. Update the optimization options
4406 if the function uses different options than the default. */
4407
4408 static void
4409 invoke_set_current_function_hook (tree fndecl)
4410 {
4411 if (!in_dummy_function)
4412 {
4413 tree opts = ((fndecl)
4414 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4415 : optimization_default_node);
4416
4417 if (!opts)
4418 opts = optimization_default_node;
4419
4420 /* Change optimization options if needed. */
4421 if (optimization_current_node != opts)
4422 {
4423 optimization_current_node = opts;
4424 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4425 }
4426
4427 targetm.set_current_function (fndecl);
4428 this_fn_optabs = this_target_optabs;
4429
4430 if (opts != optimization_default_node)
4431 {
4432 init_tree_optimization_optabs (opts);
4433 if (TREE_OPTIMIZATION_OPTABS (opts))
4434 this_fn_optabs = (struct target_optabs *)
4435 TREE_OPTIMIZATION_OPTABS (opts);
4436 }
4437 }
4438 }
4439
4440 /* cfun should never be set directly; use this function. */
4441
4442 void
4443 set_cfun (struct function *new_cfun)
4444 {
4445 if (cfun != new_cfun)
4446 {
4447 cfun = new_cfun;
4448 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4449 }
4450 }
4451
4452 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4453
4454 static vec<function_p> cfun_stack;
4455
4456 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4457 current_function_decl accordingly. */
4458
4459 void
4460 push_cfun (struct function *new_cfun)
4461 {
4462 gcc_assert ((!cfun && !current_function_decl)
4463 || (cfun && current_function_decl == cfun->decl));
4464 cfun_stack.safe_push (cfun);
4465 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4466 set_cfun (new_cfun);
4467 }
4468
4469 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4470
4471 void
4472 pop_cfun (void)
4473 {
4474 struct function *new_cfun = cfun_stack.pop ();
4475 /* When in_dummy_function, we do have a cfun but current_function_decl is
4476 NULL. We also allow pushing NULL cfun and subsequently changing
4477 current_function_decl to something else and have both restored by
4478 pop_cfun. */
4479 gcc_checking_assert (in_dummy_function
4480 || !cfun
4481 || current_function_decl == cfun->decl);
4482 set_cfun (new_cfun);
4483 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4484 }
4485
4486 /* Return value of funcdef and increase it. */
4487 int
4488 get_next_funcdef_no (void)
4489 {
4490 return funcdef_no++;
4491 }
4492
4493 /* Return value of funcdef. */
4494 int
4495 get_last_funcdef_no (void)
4496 {
4497 return funcdef_no;
4498 }
4499
4500 /* Allocate a function structure for FNDECL and set its contents
4501 to the defaults. Set cfun to the newly-allocated object.
4502 Some of the helper functions invoked during initialization assume
4503 that cfun has already been set. Therefore, assign the new object
4504 directly into cfun and invoke the back end hook explicitly at the
4505 very end, rather than initializing a temporary and calling set_cfun
4506 on it.
4507
4508 ABSTRACT_P is true if this is a function that will never be seen by
4509 the middle-end. Such functions are front-end concepts (like C++
4510 function templates) that do not correspond directly to functions
4511 placed in object files. */
4512
4513 void
4514 allocate_struct_function (tree fndecl, bool abstract_p)
4515 {
4516 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4517
4518 cfun = ggc_alloc_cleared_function ();
4519
4520 init_eh_for_function ();
4521
4522 if (init_machine_status)
4523 cfun->machine = (*init_machine_status) ();
4524
4525 #ifdef OVERRIDE_ABI_FORMAT
4526 OVERRIDE_ABI_FORMAT (fndecl);
4527 #endif
4528
4529 if (fndecl != NULL_TREE)
4530 {
4531 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4532 cfun->decl = fndecl;
4533 current_function_funcdef_no = get_next_funcdef_no ();
4534 }
4535
4536 invoke_set_current_function_hook (fndecl);
4537
4538 if (fndecl != NULL_TREE)
4539 {
4540 tree result = DECL_RESULT (fndecl);
4541 if (!abstract_p && aggregate_value_p (result, fndecl))
4542 {
4543 #ifdef PCC_STATIC_STRUCT_RETURN
4544 cfun->returns_pcc_struct = 1;
4545 #endif
4546 cfun->returns_struct = 1;
4547 }
4548
4549 cfun->stdarg = stdarg_p (fntype);
4550
4551 /* Assume all registers in stdarg functions need to be saved. */
4552 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4553 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4554
4555 /* ??? This could be set on a per-function basis by the front-end
4556 but is this worth the hassle? */
4557 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4558 }
4559 }
4560
4561 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4562 instead of just setting it. */
4563
4564 void
4565 push_struct_function (tree fndecl)
4566 {
4567 /* When in_dummy_function we might be in the middle of a pop_cfun and
4568 current_function_decl and cfun may not match. */
4569 gcc_assert (in_dummy_function
4570 || (!cfun && !current_function_decl)
4571 || (cfun && current_function_decl == cfun->decl));
4572 cfun_stack.safe_push (cfun);
4573 current_function_decl = fndecl;
4574 allocate_struct_function (fndecl, false);
4575 }
4576
4577 /* Reset crtl and other non-struct-function variables to defaults as
4578 appropriate for emitting rtl at the start of a function. */
4579
4580 static void
4581 prepare_function_start (void)
4582 {
4583 gcc_assert (!crtl->emit.x_last_insn);
4584 init_temp_slots ();
4585 init_emit ();
4586 init_varasm_status ();
4587 init_expr ();
4588 default_rtl_profile ();
4589
4590 if (flag_stack_usage_info)
4591 {
4592 cfun->su = ggc_alloc_cleared_stack_usage ();
4593 cfun->su->static_stack_size = -1;
4594 }
4595
4596 cse_not_expected = ! optimize;
4597
4598 /* Caller save not needed yet. */
4599 caller_save_needed = 0;
4600
4601 /* We haven't done register allocation yet. */
4602 reg_renumber = 0;
4603
4604 /* Indicate that we have not instantiated virtual registers yet. */
4605 virtuals_instantiated = 0;
4606
4607 /* Indicate that we want CONCATs now. */
4608 generating_concat_p = 1;
4609
4610 /* Indicate we have no need of a frame pointer yet. */
4611 frame_pointer_needed = 0;
4612 }
4613
4614 /* Initialize the rtl expansion mechanism so that we can do simple things
4615 like generate sequences. This is used to provide a context during global
4616 initialization of some passes. You must call expand_dummy_function_end
4617 to exit this context. */
4618
4619 void
4620 init_dummy_function_start (void)
4621 {
4622 gcc_assert (!in_dummy_function);
4623 in_dummy_function = true;
4624 push_struct_function (NULL_TREE);
4625 prepare_function_start ();
4626 }
4627
4628 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4629 and initialize static variables for generating RTL for the statements
4630 of the function. */
4631
4632 void
4633 init_function_start (tree subr)
4634 {
4635 if (subr && DECL_STRUCT_FUNCTION (subr))
4636 set_cfun (DECL_STRUCT_FUNCTION (subr));
4637 else
4638 allocate_struct_function (subr, false);
4639 prepare_function_start ();
4640 decide_function_section (subr);
4641
4642 /* Warn if this value is an aggregate type,
4643 regardless of which calling convention we are using for it. */
4644 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4645 warning (OPT_Waggregate_return, "function returns an aggregate");
4646 }
4647
4648
4649 void
4650 expand_main_function (void)
4651 {
4652 #if (defined(INVOKE__main) \
4653 || (!defined(HAS_INIT_SECTION) \
4654 && !defined(INIT_SECTION_ASM_OP) \
4655 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4656 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4657 #endif
4658 }
4659 \f
4660 /* Expand code to initialize the stack_protect_guard. This is invoked at
4661 the beginning of a function to be protected. */
4662
4663 #ifndef HAVE_stack_protect_set
4664 # define HAVE_stack_protect_set 0
4665 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4666 #endif
4667
4668 void
4669 stack_protect_prologue (void)
4670 {
4671 tree guard_decl = targetm.stack_protect_guard ();
4672 rtx x, y;
4673
4674 x = expand_normal (crtl->stack_protect_guard);
4675 y = expand_normal (guard_decl);
4676
4677 /* Allow the target to copy from Y to X without leaking Y into a
4678 register. */
4679 if (HAVE_stack_protect_set)
4680 {
4681 rtx insn = gen_stack_protect_set (x, y);
4682 if (insn)
4683 {
4684 emit_insn (insn);
4685 return;
4686 }
4687 }
4688
4689 /* Otherwise do a straight move. */
4690 emit_move_insn (x, y);
4691 }
4692
4693 /* Expand code to verify the stack_protect_guard. This is invoked at
4694 the end of a function to be protected. */
4695
4696 #ifndef HAVE_stack_protect_test
4697 # define HAVE_stack_protect_test 0
4698 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4699 #endif
4700
4701 void
4702 stack_protect_epilogue (void)
4703 {
4704 tree guard_decl = targetm.stack_protect_guard ();
4705 rtx label = gen_label_rtx ();
4706 rtx x, y, tmp;
4707
4708 x = expand_normal (crtl->stack_protect_guard);
4709 y = expand_normal (guard_decl);
4710
4711 /* Allow the target to compare Y with X without leaking either into
4712 a register. */
4713 switch (HAVE_stack_protect_test != 0)
4714 {
4715 case 1:
4716 tmp = gen_stack_protect_test (x, y, label);
4717 if (tmp)
4718 {
4719 emit_insn (tmp);
4720 break;
4721 }
4722 /* FALLTHRU */
4723
4724 default:
4725 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4726 break;
4727 }
4728
4729 /* The noreturn predictor has been moved to the tree level. The rtl-level
4730 predictors estimate this branch about 20%, which isn't enough to get
4731 things moved out of line. Since this is the only extant case of adding
4732 a noreturn function at the rtl level, it doesn't seem worth doing ought
4733 except adding the prediction by hand. */
4734 tmp = get_last_insn ();
4735 if (JUMP_P (tmp))
4736 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4737
4738 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4739 free_temp_slots ();
4740 emit_label (label);
4741 }
4742 \f
4743 /* Start the RTL for a new function, and set variables used for
4744 emitting RTL.
4745 SUBR is the FUNCTION_DECL node.
4746 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4747 the function's parameters, which must be run at any return statement. */
4748
4749 void
4750 expand_function_start (tree subr)
4751 {
4752 /* Make sure volatile mem refs aren't considered
4753 valid operands of arithmetic insns. */
4754 init_recog_no_volatile ();
4755
4756 crtl->profile
4757 = (profile_flag
4758 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4759
4760 crtl->limit_stack
4761 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4762
4763 /* Make the label for return statements to jump to. Do not special
4764 case machines with special return instructions -- they will be
4765 handled later during jump, ifcvt, or epilogue creation. */
4766 return_label = gen_label_rtx ();
4767
4768 /* Initialize rtx used to return the value. */
4769 /* Do this before assign_parms so that we copy the struct value address
4770 before any library calls that assign parms might generate. */
4771
4772 /* Decide whether to return the value in memory or in a register. */
4773 if (aggregate_value_p (DECL_RESULT (subr), subr))
4774 {
4775 /* Returning something that won't go in a register. */
4776 rtx value_address = 0;
4777
4778 #ifdef PCC_STATIC_STRUCT_RETURN
4779 if (cfun->returns_pcc_struct)
4780 {
4781 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4782 value_address = assemble_static_space (size);
4783 }
4784 else
4785 #endif
4786 {
4787 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4788 /* Expect to be passed the address of a place to store the value.
4789 If it is passed as an argument, assign_parms will take care of
4790 it. */
4791 if (sv)
4792 {
4793 value_address = gen_reg_rtx (Pmode);
4794 emit_move_insn (value_address, sv);
4795 }
4796 }
4797 if (value_address)
4798 {
4799 rtx x = value_address;
4800 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4801 {
4802 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4803 set_mem_attributes (x, DECL_RESULT (subr), 1);
4804 }
4805 SET_DECL_RTL (DECL_RESULT (subr), x);
4806 }
4807 }
4808 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4809 /* If return mode is void, this decl rtl should not be used. */
4810 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4811 else
4812 {
4813 /* Compute the return values into a pseudo reg, which we will copy
4814 into the true return register after the cleanups are done. */
4815 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4816 if (TYPE_MODE (return_type) != BLKmode
4817 && targetm.calls.return_in_msb (return_type))
4818 /* expand_function_end will insert the appropriate padding in
4819 this case. Use the return value's natural (unpadded) mode
4820 within the function proper. */
4821 SET_DECL_RTL (DECL_RESULT (subr),
4822 gen_reg_rtx (TYPE_MODE (return_type)));
4823 else
4824 {
4825 /* In order to figure out what mode to use for the pseudo, we
4826 figure out what the mode of the eventual return register will
4827 actually be, and use that. */
4828 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4829
4830 /* Structures that are returned in registers are not
4831 aggregate_value_p, so we may see a PARALLEL or a REG. */
4832 if (REG_P (hard_reg))
4833 SET_DECL_RTL (DECL_RESULT (subr),
4834 gen_reg_rtx (GET_MODE (hard_reg)));
4835 else
4836 {
4837 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4838 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4839 }
4840 }
4841
4842 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4843 result to the real return register(s). */
4844 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4845 }
4846
4847 /* Initialize rtx for parameters and local variables.
4848 In some cases this requires emitting insns. */
4849 assign_parms (subr);
4850
4851 /* If function gets a static chain arg, store it. */
4852 if (cfun->static_chain_decl)
4853 {
4854 tree parm = cfun->static_chain_decl;
4855 rtx local, chain, insn;
4856
4857 local = gen_reg_rtx (Pmode);
4858 chain = targetm.calls.static_chain (current_function_decl, true);
4859
4860 set_decl_incoming_rtl (parm, chain, false);
4861 SET_DECL_RTL (parm, local);
4862 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4863
4864 insn = emit_move_insn (local, chain);
4865
4866 /* Mark the register as eliminable, similar to parameters. */
4867 if (MEM_P (chain)
4868 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4869 set_dst_reg_note (insn, REG_EQUIV, chain, local);
4870 }
4871
4872 /* If the function receives a non-local goto, then store the
4873 bits we need to restore the frame pointer. */
4874 if (cfun->nonlocal_goto_save_area)
4875 {
4876 tree t_save;
4877 rtx r_save;
4878
4879 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4880 gcc_assert (DECL_RTL_SET_P (var));
4881
4882 t_save = build4 (ARRAY_REF,
4883 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
4884 cfun->nonlocal_goto_save_area,
4885 integer_zero_node, NULL_TREE, NULL_TREE);
4886 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4887 gcc_assert (GET_MODE (r_save) == Pmode);
4888
4889 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4890 update_nonlocal_goto_save_area ();
4891 }
4892
4893 /* The following was moved from init_function_start.
4894 The move is supposed to make sdb output more accurate. */
4895 /* Indicate the beginning of the function body,
4896 as opposed to parm setup. */
4897 emit_note (NOTE_INSN_FUNCTION_BEG);
4898
4899 gcc_assert (NOTE_P (get_last_insn ()));
4900
4901 parm_birth_insn = get_last_insn ();
4902
4903 if (crtl->profile)
4904 {
4905 #ifdef PROFILE_HOOK
4906 PROFILE_HOOK (current_function_funcdef_no);
4907 #endif
4908 }
4909
4910 /* If we are doing generic stack checking, the probe should go here. */
4911 if (flag_stack_check == GENERIC_STACK_CHECK)
4912 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4913 }
4914 \f
4915 /* Undo the effects of init_dummy_function_start. */
4916 void
4917 expand_dummy_function_end (void)
4918 {
4919 gcc_assert (in_dummy_function);
4920
4921 /* End any sequences that failed to be closed due to syntax errors. */
4922 while (in_sequence_p ())
4923 end_sequence ();
4924
4925 /* Outside function body, can't compute type's actual size
4926 until next function's body starts. */
4927
4928 free_after_parsing (cfun);
4929 free_after_compilation (cfun);
4930 pop_cfun ();
4931 in_dummy_function = false;
4932 }
4933
4934 /* Call DOIT for each hard register used as a return value from
4935 the current function. */
4936
4937 void
4938 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4939 {
4940 rtx outgoing = crtl->return_rtx;
4941
4942 if (! outgoing)
4943 return;
4944
4945 if (REG_P (outgoing))
4946 (*doit) (outgoing, arg);
4947 else if (GET_CODE (outgoing) == PARALLEL)
4948 {
4949 int i;
4950
4951 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4952 {
4953 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4954
4955 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4956 (*doit) (x, arg);
4957 }
4958 }
4959 }
4960
4961 static void
4962 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4963 {
4964 emit_clobber (reg);
4965 }
4966
4967 void
4968 clobber_return_register (void)
4969 {
4970 diddle_return_value (do_clobber_return_reg, NULL);
4971
4972 /* In case we do use pseudo to return value, clobber it too. */
4973 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4974 {
4975 tree decl_result = DECL_RESULT (current_function_decl);
4976 rtx decl_rtl = DECL_RTL (decl_result);
4977 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4978 {
4979 do_clobber_return_reg (decl_rtl, NULL);
4980 }
4981 }
4982 }
4983
4984 static void
4985 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4986 {
4987 emit_use (reg);
4988 }
4989
4990 static void
4991 use_return_register (void)
4992 {
4993 diddle_return_value (do_use_return_reg, NULL);
4994 }
4995
4996 /* Possibly warn about unused parameters. */
4997 void
4998 do_warn_unused_parameter (tree fn)
4999 {
5000 tree decl;
5001
5002 for (decl = DECL_ARGUMENTS (fn);
5003 decl; decl = DECL_CHAIN (decl))
5004 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
5005 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
5006 && !TREE_NO_WARNING (decl))
5007 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
5008 }
5009
5010 /* Generate RTL for the end of the current function. */
5011
5012 void
5013 expand_function_end (void)
5014 {
5015 rtx clobber_after;
5016
5017 /* If arg_pointer_save_area was referenced only from a nested
5018 function, we will not have initialized it yet. Do that now. */
5019 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5020 get_arg_pointer_save_area ();
5021
5022 /* If we are doing generic stack checking and this function makes calls,
5023 do a stack probe at the start of the function to ensure we have enough
5024 space for another stack frame. */
5025 if (flag_stack_check == GENERIC_STACK_CHECK)
5026 {
5027 rtx insn, seq;
5028
5029 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5030 if (CALL_P (insn))
5031 {
5032 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5033 start_sequence ();
5034 if (STACK_CHECK_MOVING_SP)
5035 anti_adjust_stack_and_probe (max_frame_size, true);
5036 else
5037 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5038 seq = get_insns ();
5039 end_sequence ();
5040 set_insn_locations (seq, prologue_location);
5041 emit_insn_before (seq, stack_check_probe_note);
5042 break;
5043 }
5044 }
5045
5046 /* End any sequences that failed to be closed due to syntax errors. */
5047 while (in_sequence_p ())
5048 end_sequence ();
5049
5050 clear_pending_stack_adjust ();
5051 do_pending_stack_adjust ();
5052
5053 /* Output a linenumber for the end of the function.
5054 SDB depends on this. */
5055 set_curr_insn_location (input_location);
5056
5057 /* Before the return label (if any), clobber the return
5058 registers so that they are not propagated live to the rest of
5059 the function. This can only happen with functions that drop
5060 through; if there had been a return statement, there would
5061 have either been a return rtx, or a jump to the return label.
5062
5063 We delay actual code generation after the current_function_value_rtx
5064 is computed. */
5065 clobber_after = get_last_insn ();
5066
5067 /* Output the label for the actual return from the function. */
5068 emit_label (return_label);
5069
5070 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5071 {
5072 /* Let except.c know where it should emit the call to unregister
5073 the function context for sjlj exceptions. */
5074 if (flag_exceptions)
5075 sjlj_emit_function_exit_after (get_last_insn ());
5076 }
5077 else
5078 {
5079 /* We want to ensure that instructions that may trap are not
5080 moved into the epilogue by scheduling, because we don't
5081 always emit unwind information for the epilogue. */
5082 if (cfun->can_throw_non_call_exceptions)
5083 emit_insn (gen_blockage ());
5084 }
5085
5086 /* If this is an implementation of throw, do what's necessary to
5087 communicate between __builtin_eh_return and the epilogue. */
5088 expand_eh_return ();
5089
5090 /* If scalar return value was computed in a pseudo-reg, or was a named
5091 return value that got dumped to the stack, copy that to the hard
5092 return register. */
5093 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5094 {
5095 tree decl_result = DECL_RESULT (current_function_decl);
5096 rtx decl_rtl = DECL_RTL (decl_result);
5097
5098 if (REG_P (decl_rtl)
5099 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5100 : DECL_REGISTER (decl_result))
5101 {
5102 rtx real_decl_rtl = crtl->return_rtx;
5103
5104 /* This should be set in assign_parms. */
5105 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5106
5107 /* If this is a BLKmode structure being returned in registers,
5108 then use the mode computed in expand_return. Note that if
5109 decl_rtl is memory, then its mode may have been changed,
5110 but that crtl->return_rtx has not. */
5111 if (GET_MODE (real_decl_rtl) == BLKmode)
5112 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5113
5114 /* If a non-BLKmode return value should be padded at the least
5115 significant end of the register, shift it left by the appropriate
5116 amount. BLKmode results are handled using the group load/store
5117 machinery. */
5118 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5119 && REG_P (real_decl_rtl)
5120 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5121 {
5122 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5123 REGNO (real_decl_rtl)),
5124 decl_rtl);
5125 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5126 }
5127 /* If a named return value dumped decl_return to memory, then
5128 we may need to re-do the PROMOTE_MODE signed/unsigned
5129 extension. */
5130 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5131 {
5132 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5133 promote_function_mode (TREE_TYPE (decl_result),
5134 GET_MODE (decl_rtl), &unsignedp,
5135 TREE_TYPE (current_function_decl), 1);
5136
5137 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5138 }
5139 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5140 {
5141 /* If expand_function_start has created a PARALLEL for decl_rtl,
5142 move the result to the real return registers. Otherwise, do
5143 a group load from decl_rtl for a named return. */
5144 if (GET_CODE (decl_rtl) == PARALLEL)
5145 emit_group_move (real_decl_rtl, decl_rtl);
5146 else
5147 emit_group_load (real_decl_rtl, decl_rtl,
5148 TREE_TYPE (decl_result),
5149 int_size_in_bytes (TREE_TYPE (decl_result)));
5150 }
5151 /* In the case of complex integer modes smaller than a word, we'll
5152 need to generate some non-trivial bitfield insertions. Do that
5153 on a pseudo and not the hard register. */
5154 else if (GET_CODE (decl_rtl) == CONCAT
5155 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5156 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5157 {
5158 int old_generating_concat_p;
5159 rtx tmp;
5160
5161 old_generating_concat_p = generating_concat_p;
5162 generating_concat_p = 0;
5163 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5164 generating_concat_p = old_generating_concat_p;
5165
5166 emit_move_insn (tmp, decl_rtl);
5167 emit_move_insn (real_decl_rtl, tmp);
5168 }
5169 else
5170 emit_move_insn (real_decl_rtl, decl_rtl);
5171 }
5172 }
5173
5174 /* If returning a structure, arrange to return the address of the value
5175 in a place where debuggers expect to find it.
5176
5177 If returning a structure PCC style,
5178 the caller also depends on this value.
5179 And cfun->returns_pcc_struct is not necessarily set. */
5180 if (cfun->returns_struct
5181 || cfun->returns_pcc_struct)
5182 {
5183 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5184 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5185 rtx outgoing;
5186
5187 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5188 type = TREE_TYPE (type);
5189 else
5190 value_address = XEXP (value_address, 0);
5191
5192 outgoing = targetm.calls.function_value (build_pointer_type (type),
5193 current_function_decl, true);
5194
5195 /* Mark this as a function return value so integrate will delete the
5196 assignment and USE below when inlining this function. */
5197 REG_FUNCTION_VALUE_P (outgoing) = 1;
5198
5199 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5200 value_address = convert_memory_address (GET_MODE (outgoing),
5201 value_address);
5202
5203 emit_move_insn (outgoing, value_address);
5204
5205 /* Show return register used to hold result (in this case the address
5206 of the result. */
5207 crtl->return_rtx = outgoing;
5208 }
5209
5210 /* Emit the actual code to clobber return register. */
5211 {
5212 rtx seq;
5213
5214 start_sequence ();
5215 clobber_return_register ();
5216 seq = get_insns ();
5217 end_sequence ();
5218
5219 emit_insn_after (seq, clobber_after);
5220 }
5221
5222 /* Output the label for the naked return from the function. */
5223 if (naked_return_label)
5224 emit_label (naked_return_label);
5225
5226 /* @@@ This is a kludge. We want to ensure that instructions that
5227 may trap are not moved into the epilogue by scheduling, because
5228 we don't always emit unwind information for the epilogue. */
5229 if (cfun->can_throw_non_call_exceptions
5230 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5231 emit_insn (gen_blockage ());
5232
5233 /* If stack protection is enabled for this function, check the guard. */
5234 if (crtl->stack_protect_guard)
5235 stack_protect_epilogue ();
5236
5237 /* If we had calls to alloca, and this machine needs
5238 an accurate stack pointer to exit the function,
5239 insert some code to save and restore the stack pointer. */
5240 if (! EXIT_IGNORE_STACK
5241 && cfun->calls_alloca)
5242 {
5243 rtx tem = 0, seq;
5244
5245 start_sequence ();
5246 emit_stack_save (SAVE_FUNCTION, &tem);
5247 seq = get_insns ();
5248 end_sequence ();
5249 emit_insn_before (seq, parm_birth_insn);
5250
5251 emit_stack_restore (SAVE_FUNCTION, tem);
5252 }
5253
5254 /* ??? This should no longer be necessary since stupid is no longer with
5255 us, but there are some parts of the compiler (eg reload_combine, and
5256 sh mach_dep_reorg) that still try and compute their own lifetime info
5257 instead of using the general framework. */
5258 use_return_register ();
5259 }
5260
5261 rtx
5262 get_arg_pointer_save_area (void)
5263 {
5264 rtx ret = arg_pointer_save_area;
5265
5266 if (! ret)
5267 {
5268 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5269 arg_pointer_save_area = ret;
5270 }
5271
5272 if (! crtl->arg_pointer_save_area_init)
5273 {
5274 rtx seq;
5275
5276 /* Save the arg pointer at the beginning of the function. The
5277 generated stack slot may not be a valid memory address, so we
5278 have to check it and fix it if necessary. */
5279 start_sequence ();
5280 emit_move_insn (validize_mem (ret),
5281 crtl->args.internal_arg_pointer);
5282 seq = get_insns ();
5283 end_sequence ();
5284
5285 push_topmost_sequence ();
5286 emit_insn_after (seq, entry_of_function ());
5287 pop_topmost_sequence ();
5288
5289 crtl->arg_pointer_save_area_init = true;
5290 }
5291
5292 return ret;
5293 }
5294 \f
5295 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5296 for the first time. */
5297
5298 static void
5299 record_insns (rtx insns, rtx end, htab_t *hashp)
5300 {
5301 rtx tmp;
5302 htab_t hash = *hashp;
5303
5304 if (hash == NULL)
5305 *hashp = hash
5306 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5307
5308 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5309 {
5310 void **slot = htab_find_slot (hash, tmp, INSERT);
5311 gcc_assert (*slot == NULL);
5312 *slot = tmp;
5313 }
5314 }
5315
5316 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5317 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5318 insn, then record COPY as well. */
5319
5320 void
5321 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5322 {
5323 htab_t hash;
5324 void **slot;
5325
5326 hash = epilogue_insn_hash;
5327 if (!hash || !htab_find (hash, insn))
5328 {
5329 hash = prologue_insn_hash;
5330 if (!hash || !htab_find (hash, insn))
5331 return;
5332 }
5333
5334 slot = htab_find_slot (hash, copy, INSERT);
5335 gcc_assert (*slot == NULL);
5336 *slot = copy;
5337 }
5338
5339 /* Set the location of the insn chain starting at INSN to LOC. */
5340 static void
5341 set_insn_locations (rtx insn, int loc)
5342 {
5343 while (insn != NULL_RTX)
5344 {
5345 if (INSN_P (insn))
5346 INSN_LOCATION (insn) = loc;
5347 insn = NEXT_INSN (insn);
5348 }
5349 }
5350
5351 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5352 we can be running after reorg, SEQUENCE rtl is possible. */
5353
5354 static bool
5355 contains (const_rtx insn, htab_t hash)
5356 {
5357 if (hash == NULL)
5358 return false;
5359
5360 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5361 {
5362 int i;
5363 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5364 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
5365 return true;
5366 return false;
5367 }
5368
5369 return htab_find (hash, insn) != NULL;
5370 }
5371
5372 int
5373 prologue_epilogue_contains (const_rtx insn)
5374 {
5375 if (contains (insn, prologue_insn_hash))
5376 return 1;
5377 if (contains (insn, epilogue_insn_hash))
5378 return 1;
5379 return 0;
5380 }
5381
5382 #ifdef HAVE_simple_return
5383
5384 /* Return true if INSN requires the stack frame to be set up.
5385 PROLOGUE_USED contains the hard registers used in the function
5386 prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
5387 prologue to set up for the function. */
5388 bool
5389 requires_stack_frame_p (rtx insn, HARD_REG_SET prologue_used,
5390 HARD_REG_SET set_up_by_prologue)
5391 {
5392 df_ref *df_rec;
5393 HARD_REG_SET hardregs;
5394 unsigned regno;
5395
5396 if (CALL_P (insn))
5397 return !SIBLING_CALL_P (insn);
5398
5399 /* We need a frame to get the unique CFA expected by the unwinder. */
5400 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
5401 return true;
5402
5403 CLEAR_HARD_REG_SET (hardregs);
5404 for (df_rec = DF_INSN_DEFS (insn); *df_rec; df_rec++)
5405 {
5406 rtx dreg = DF_REF_REG (*df_rec);
5407
5408 if (!REG_P (dreg))
5409 continue;
5410
5411 add_to_hard_reg_set (&hardregs, GET_MODE (dreg),
5412 REGNO (dreg));
5413 }
5414 if (hard_reg_set_intersect_p (hardregs, prologue_used))
5415 return true;
5416 AND_COMPL_HARD_REG_SET (hardregs, call_used_reg_set);
5417 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5418 if (TEST_HARD_REG_BIT (hardregs, regno)
5419 && df_regs_ever_live_p (regno))
5420 return true;
5421
5422 for (df_rec = DF_INSN_USES (insn); *df_rec; df_rec++)
5423 {
5424 rtx reg = DF_REF_REG (*df_rec);
5425
5426 if (!REG_P (reg))
5427 continue;
5428
5429 add_to_hard_reg_set (&hardregs, GET_MODE (reg),
5430 REGNO (reg));
5431 }
5432 if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
5433 return true;
5434
5435 return false;
5436 }
5437
5438 /* See whether BB has a single successor that uses [REGNO, END_REGNO),
5439 and if BB is its only predecessor. Return that block if so,
5440 otherwise return null. */
5441
5442 static basic_block
5443 next_block_for_reg (basic_block bb, int regno, int end_regno)
5444 {
5445 edge e, live_edge;
5446 edge_iterator ei;
5447 bitmap live;
5448 int i;
5449
5450 live_edge = NULL;
5451 FOR_EACH_EDGE (e, ei, bb->succs)
5452 {
5453 live = df_get_live_in (e->dest);
5454 for (i = regno; i < end_regno; i++)
5455 if (REGNO_REG_SET_P (live, i))
5456 {
5457 if (live_edge && live_edge != e)
5458 return NULL;
5459 live_edge = e;
5460 }
5461 }
5462
5463 /* We can sometimes encounter dead code. Don't try to move it
5464 into the exit block. */
5465 if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR)
5466 return NULL;
5467
5468 /* Reject targets of abnormal edges. This is needed for correctness
5469 on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
5470 exception edges even though it is generally treated as call-saved
5471 for the majority of the compilation. Moving across abnormal edges
5472 isn't going to be interesting for shrink-wrap usage anyway. */
5473 if (live_edge->flags & EDGE_ABNORMAL)
5474 return NULL;
5475
5476 if (EDGE_COUNT (live_edge->dest->preds) > 1)
5477 return NULL;
5478
5479 return live_edge->dest;
5480 }
5481
5482 /* Try to move INSN from BB to a successor. Return true on success.
5483 USES and DEFS are the set of registers that are used and defined
5484 after INSN in BB. */
5485
5486 static bool
5487 move_insn_for_shrink_wrap (basic_block bb, rtx insn,
5488 const HARD_REG_SET uses,
5489 const HARD_REG_SET defs)
5490 {
5491 rtx set, src, dest;
5492 bitmap live_out, live_in, bb_uses, bb_defs;
5493 unsigned int i, dregno, end_dregno, sregno, end_sregno;
5494 basic_block next_block;
5495
5496 /* Look for a simple register copy. */
5497 set = single_set (insn);
5498 if (!set)
5499 return false;
5500 src = SET_SRC (set);
5501 dest = SET_DEST (set);
5502 if (!REG_P (dest) || !REG_P (src))
5503 return false;
5504
5505 /* Make sure that the source register isn't defined later in BB. */
5506 sregno = REGNO (src);
5507 end_sregno = END_REGNO (src);
5508 if (overlaps_hard_reg_set_p (defs, GET_MODE (src), sregno))
5509 return false;
5510
5511 /* Make sure that the destination register isn't referenced later in BB. */
5512 dregno = REGNO (dest);
5513 end_dregno = END_REGNO (dest);
5514 if (overlaps_hard_reg_set_p (uses, GET_MODE (dest), dregno)
5515 || overlaps_hard_reg_set_p (defs, GET_MODE (dest), dregno))
5516 return false;
5517
5518 /* See whether there is a successor block to which we could move INSN. */
5519 next_block = next_block_for_reg (bb, dregno, end_dregno);
5520 if (!next_block)
5521 return false;
5522
5523 /* At this point we are committed to moving INSN, but let's try to
5524 move it as far as we can. */
5525 do
5526 {
5527 live_out = df_get_live_out (bb);
5528 live_in = df_get_live_in (next_block);
5529 bb = next_block;
5530
5531 /* Check whether BB uses DEST or clobbers DEST. We need to add
5532 INSN to BB if so. Either way, DEST is no longer live on entry,
5533 except for any part that overlaps SRC (next loop). */
5534 bb_uses = &DF_LR_BB_INFO (bb)->use;
5535 bb_defs = &DF_LR_BB_INFO (bb)->def;
5536 if (df_live)
5537 {
5538 for (i = dregno; i < end_dregno; i++)
5539 {
5540 if (REGNO_REG_SET_P (bb_uses, i) || REGNO_REG_SET_P (bb_defs, i)
5541 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
5542 next_block = NULL;
5543 CLEAR_REGNO_REG_SET (live_out, i);
5544 CLEAR_REGNO_REG_SET (live_in, i);
5545 }
5546
5547 /* Check whether BB clobbers SRC. We need to add INSN to BB if so.
5548 Either way, SRC is now live on entry. */
5549 for (i = sregno; i < end_sregno; i++)
5550 {
5551 if (REGNO_REG_SET_P (bb_defs, i)
5552 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
5553 next_block = NULL;
5554 SET_REGNO_REG_SET (live_out, i);
5555 SET_REGNO_REG_SET (live_in, i);
5556 }
5557 }
5558 else
5559 {
5560 /* DF_LR_BB_INFO (bb)->def does not comprise the DF_REF_PARTIAL and
5561 DF_REF_CONDITIONAL defs. So if DF_LIVE doesn't exist, i.e.
5562 at -O1, just give up searching NEXT_BLOCK. */
5563 next_block = NULL;
5564 for (i = dregno; i < end_dregno; i++)
5565 {
5566 CLEAR_REGNO_REG_SET (live_out, i);
5567 CLEAR_REGNO_REG_SET (live_in, i);
5568 }
5569
5570 for (i = sregno; i < end_sregno; i++)
5571 {
5572 SET_REGNO_REG_SET (live_out, i);
5573 SET_REGNO_REG_SET (live_in, i);
5574 }
5575 }
5576
5577 /* If we don't need to add the move to BB, look for a single
5578 successor block. */
5579 if (next_block)
5580 next_block = next_block_for_reg (next_block, dregno, end_dregno);
5581 }
5582 while (next_block);
5583
5584 /* BB now defines DEST. It only uses the parts of DEST that overlap SRC
5585 (next loop). */
5586 for (i = dregno; i < end_dregno; i++)
5587 {
5588 CLEAR_REGNO_REG_SET (bb_uses, i);
5589 SET_REGNO_REG_SET (bb_defs, i);
5590 }
5591
5592 /* BB now uses SRC. */
5593 for (i = sregno; i < end_sregno; i++)
5594 SET_REGNO_REG_SET (bb_uses, i);
5595
5596 emit_insn_after (PATTERN (insn), bb_note (bb));
5597 delete_insn (insn);
5598 return true;
5599 }
5600
5601 /* Look for register copies in the first block of the function, and move
5602 them down into successor blocks if the register is used only on one
5603 path. This exposes more opportunities for shrink-wrapping. These
5604 kinds of sets often occur when incoming argument registers are moved
5605 to call-saved registers because their values are live across one or
5606 more calls during the function. */
5607
5608 static void
5609 prepare_shrink_wrap (basic_block entry_block)
5610 {
5611 rtx insn, curr, x;
5612 HARD_REG_SET uses, defs;
5613 df_ref *ref;
5614
5615 CLEAR_HARD_REG_SET (uses);
5616 CLEAR_HARD_REG_SET (defs);
5617 FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
5618 if (NONDEBUG_INSN_P (insn)
5619 && !move_insn_for_shrink_wrap (entry_block, insn, uses, defs))
5620 {
5621 /* Add all defined registers to DEFs. */
5622 for (ref = DF_INSN_DEFS (insn); *ref; ref++)
5623 {
5624 x = DF_REF_REG (*ref);
5625 if (REG_P (x) && HARD_REGISTER_P (x))
5626 SET_HARD_REG_BIT (defs, REGNO (x));
5627 }
5628
5629 /* Add all used registers to USESs. */
5630 for (ref = DF_INSN_USES (insn); *ref; ref++)
5631 {
5632 x = DF_REF_REG (*ref);
5633 if (REG_P (x) && HARD_REGISTER_P (x))
5634 SET_HARD_REG_BIT (uses, REGNO (x));
5635 }
5636 }
5637 }
5638
5639 #endif
5640
5641 #ifdef HAVE_return
5642 /* Insert use of return register before the end of BB. */
5643
5644 static void
5645 emit_use_return_register_into_block (basic_block bb)
5646 {
5647 rtx seq, insn;
5648 start_sequence ();
5649 use_return_register ();
5650 seq = get_insns ();
5651 end_sequence ();
5652 insn = BB_END (bb);
5653 #ifdef HAVE_cc0
5654 if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
5655 insn = prev_cc0_setter (insn);
5656 #endif
5657 emit_insn_before (seq, insn);
5658 }
5659
5660
5661 /* Create a return pattern, either simple_return or return, depending on
5662 simple_p. */
5663
5664 static rtx
5665 gen_return_pattern (bool simple_p)
5666 {
5667 #ifdef HAVE_simple_return
5668 return simple_p ? gen_simple_return () : gen_return ();
5669 #else
5670 gcc_assert (!simple_p);
5671 return gen_return ();
5672 #endif
5673 }
5674
5675 /* Insert an appropriate return pattern at the end of block BB. This
5676 also means updating block_for_insn appropriately. SIMPLE_P is
5677 the same as in gen_return_pattern and passed to it. */
5678
5679 static void
5680 emit_return_into_block (bool simple_p, basic_block bb)
5681 {
5682 rtx jump, pat;
5683 jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5684 pat = PATTERN (jump);
5685 if (GET_CODE (pat) == PARALLEL)
5686 pat = XVECEXP (pat, 0, 0);
5687 gcc_assert (ANY_RETURN_P (pat));
5688 JUMP_LABEL (jump) = pat;
5689 }
5690 #endif
5691
5692 /* Set JUMP_LABEL for a return insn. */
5693
5694 void
5695 set_return_jump_label (rtx returnjump)
5696 {
5697 rtx pat = PATTERN (returnjump);
5698 if (GET_CODE (pat) == PARALLEL)
5699 pat = XVECEXP (pat, 0, 0);
5700 if (ANY_RETURN_P (pat))
5701 JUMP_LABEL (returnjump) = pat;
5702 else
5703 JUMP_LABEL (returnjump) = ret_rtx;
5704 }
5705
5706 #ifdef HAVE_simple_return
5707 /* Create a copy of BB instructions and insert at BEFORE. Redirect
5708 preds of BB to COPY_BB if they don't appear in NEED_PROLOGUE. */
5709 static void
5710 dup_block_and_redirect (basic_block bb, basic_block copy_bb, rtx before,
5711 bitmap_head *need_prologue)
5712 {
5713 edge_iterator ei;
5714 edge e;
5715 rtx insn = BB_END (bb);
5716
5717 /* We know BB has a single successor, so there is no need to copy a
5718 simple jump at the end of BB. */
5719 if (simplejump_p (insn))
5720 insn = PREV_INSN (insn);
5721
5722 start_sequence ();
5723 duplicate_insn_chain (BB_HEAD (bb), insn);
5724 if (dump_file)
5725 {
5726 unsigned count = 0;
5727 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5728 if (active_insn_p (insn))
5729 ++count;
5730 fprintf (dump_file, "Duplicating bb %d to bb %d, %u active insns.\n",
5731 bb->index, copy_bb->index, count);
5732 }
5733 insn = get_insns ();
5734 end_sequence ();
5735 emit_insn_before (insn, before);
5736
5737 /* Redirect all the paths that need no prologue into copy_bb. */
5738 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
5739 if (!bitmap_bit_p (need_prologue, e->src->index))
5740 {
5741 int freq = EDGE_FREQUENCY (e);
5742 copy_bb->count += e->count;
5743 copy_bb->frequency += EDGE_FREQUENCY (e);
5744 e->dest->count -= e->count;
5745 if (e->dest->count < 0)
5746 e->dest->count = 0;
5747 e->dest->frequency -= freq;
5748 if (e->dest->frequency < 0)
5749 e->dest->frequency = 0;
5750 redirect_edge_and_branch_force (e, copy_bb);
5751 continue;
5752 }
5753 else
5754 ei_next (&ei);
5755 }
5756 #endif
5757
5758 #if defined (HAVE_return) || defined (HAVE_simple_return)
5759 /* Return true if there are any active insns between HEAD and TAIL. */
5760 static bool
5761 active_insn_between (rtx head, rtx tail)
5762 {
5763 while (tail)
5764 {
5765 if (active_insn_p (tail))
5766 return true;
5767 if (tail == head)
5768 return false;
5769 tail = PREV_INSN (tail);
5770 }
5771 return false;
5772 }
5773
5774 /* LAST_BB is a block that exits, and empty of active instructions.
5775 Examine its predecessors for jumps that can be converted to
5776 (conditional) returns. */
5777 static vec<edge>
5778 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5779 vec<edge> unconverted ATTRIBUTE_UNUSED)
5780 {
5781 int i;
5782 basic_block bb;
5783 rtx label;
5784 edge_iterator ei;
5785 edge e;
5786 vec<basic_block> src_bbs;
5787
5788 src_bbs.create (EDGE_COUNT (last_bb->preds));
5789 FOR_EACH_EDGE (e, ei, last_bb->preds)
5790 if (e->src != ENTRY_BLOCK_PTR)
5791 src_bbs.quick_push (e->src);
5792
5793 label = BB_HEAD (last_bb);
5794
5795 FOR_EACH_VEC_ELT (src_bbs, i, bb)
5796 {
5797 rtx jump = BB_END (bb);
5798
5799 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5800 continue;
5801
5802 e = find_edge (bb, last_bb);
5803
5804 /* If we have an unconditional jump, we can replace that
5805 with a simple return instruction. */
5806 if (simplejump_p (jump))
5807 {
5808 /* The use of the return register might be present in the exit
5809 fallthru block. Either:
5810 - removing the use is safe, and we should remove the use in
5811 the exit fallthru block, or
5812 - removing the use is not safe, and we should add it here.
5813 For now, we conservatively choose the latter. Either of the
5814 2 helps in crossjumping. */
5815 emit_use_return_register_into_block (bb);
5816
5817 emit_return_into_block (simple_p, bb);
5818 delete_insn (jump);
5819 }
5820
5821 /* If we have a conditional jump branching to the last
5822 block, we can try to replace that with a conditional
5823 return instruction. */
5824 else if (condjump_p (jump))
5825 {
5826 rtx dest;
5827
5828 if (simple_p)
5829 dest = simple_return_rtx;
5830 else
5831 dest = ret_rtx;
5832 if (!redirect_jump (jump, dest, 0))
5833 {
5834 #ifdef HAVE_simple_return
5835 if (simple_p)
5836 {
5837 if (dump_file)
5838 fprintf (dump_file,
5839 "Failed to redirect bb %d branch.\n", bb->index);
5840 unconverted.safe_push (e);
5841 }
5842 #endif
5843 continue;
5844 }
5845
5846 /* See comment in simplejump_p case above. */
5847 emit_use_return_register_into_block (bb);
5848
5849 /* If this block has only one successor, it both jumps
5850 and falls through to the fallthru block, so we can't
5851 delete the edge. */
5852 if (single_succ_p (bb))
5853 continue;
5854 }
5855 else
5856 {
5857 #ifdef HAVE_simple_return
5858 if (simple_p)
5859 {
5860 if (dump_file)
5861 fprintf (dump_file,
5862 "Failed to redirect bb %d branch.\n", bb->index);
5863 unconverted.safe_push (e);
5864 }
5865 #endif
5866 continue;
5867 }
5868
5869 /* Fix up the CFG for the successful change we just made. */
5870 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5871 e->flags &= ~EDGE_CROSSING;
5872 }
5873 src_bbs.release ();
5874 return unconverted;
5875 }
5876
5877 /* Emit a return insn for the exit fallthru block. */
5878 static basic_block
5879 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5880 {
5881 basic_block last_bb = exit_fallthru_edge->src;
5882
5883 if (JUMP_P (BB_END (last_bb)))
5884 {
5885 last_bb = split_edge (exit_fallthru_edge);
5886 exit_fallthru_edge = single_succ_edge (last_bb);
5887 }
5888 emit_barrier_after (BB_END (last_bb));
5889 emit_return_into_block (simple_p, last_bb);
5890 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5891 return last_bb;
5892 }
5893 #endif
5894
5895
5896 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5897 this into place with notes indicating where the prologue ends and where
5898 the epilogue begins. Update the basic block information when possible.
5899
5900 Notes on epilogue placement:
5901 There are several kinds of edges to the exit block:
5902 * a single fallthru edge from LAST_BB
5903 * possibly, edges from blocks containing sibcalls
5904 * possibly, fake edges from infinite loops
5905
5906 The epilogue is always emitted on the fallthru edge from the last basic
5907 block in the function, LAST_BB, into the exit block.
5908
5909 If LAST_BB is empty except for a label, it is the target of every
5910 other basic block in the function that ends in a return. If a
5911 target has a return or simple_return pattern (possibly with
5912 conditional variants), these basic blocks can be changed so that a
5913 return insn is emitted into them, and their target is adjusted to
5914 the real exit block.
5915
5916 Notes on shrink wrapping: We implement a fairly conservative
5917 version of shrink-wrapping rather than the textbook one. We only
5918 generate a single prologue and a single epilogue. This is
5919 sufficient to catch a number of interesting cases involving early
5920 exits.
5921
5922 First, we identify the blocks that require the prologue to occur before
5923 them. These are the ones that modify a call-saved register, or reference
5924 any of the stack or frame pointer registers. To simplify things, we then
5925 mark everything reachable from these blocks as also requiring a prologue.
5926 This takes care of loops automatically, and avoids the need to examine
5927 whether MEMs reference the frame, since it is sufficient to check for
5928 occurrences of the stack or frame pointer.
5929
5930 We then compute the set of blocks for which the need for a prologue
5931 is anticipatable (borrowing terminology from the shrink-wrapping
5932 description in Muchnick's book). These are the blocks which either
5933 require a prologue themselves, or those that have only successors
5934 where the prologue is anticipatable. The prologue needs to be
5935 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5936 is not. For the moment, we ensure that only one such edge exists.
5937
5938 The epilogue is placed as described above, but we make a
5939 distinction between inserting return and simple_return patterns
5940 when modifying other blocks that end in a return. Blocks that end
5941 in a sibcall omit the sibcall_epilogue if the block is not in
5942 ANTIC. */
5943
5944 static void
5945 thread_prologue_and_epilogue_insns (void)
5946 {
5947 bool inserted;
5948 #ifdef HAVE_simple_return
5949 vec<edge> unconverted_simple_returns = vNULL;
5950 bool nonempty_prologue;
5951 bitmap_head bb_flags;
5952 unsigned max_grow_size;
5953 #endif
5954 rtx returnjump;
5955 rtx seq ATTRIBUTE_UNUSED, epilogue_end ATTRIBUTE_UNUSED;
5956 rtx prologue_seq ATTRIBUTE_UNUSED, split_prologue_seq ATTRIBUTE_UNUSED;
5957 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5958 edge_iterator ei;
5959
5960 df_analyze ();
5961
5962 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
5963
5964 inserted = false;
5965 seq = NULL_RTX;
5966 epilogue_end = NULL_RTX;
5967 returnjump = NULL_RTX;
5968
5969 /* Can't deal with multiple successors of the entry block at the
5970 moment. Function should always have at least one entry
5971 point. */
5972 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5973 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
5974 orig_entry_edge = entry_edge;
5975
5976 split_prologue_seq = NULL_RTX;
5977 if (flag_split_stack
5978 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5979 == NULL))
5980 {
5981 #ifndef HAVE_split_stack_prologue
5982 gcc_unreachable ();
5983 #else
5984 gcc_assert (HAVE_split_stack_prologue);
5985
5986 start_sequence ();
5987 emit_insn (gen_split_stack_prologue ());
5988 split_prologue_seq = get_insns ();
5989 end_sequence ();
5990
5991 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5992 set_insn_locations (split_prologue_seq, prologue_location);
5993 #endif
5994 }
5995
5996 prologue_seq = NULL_RTX;
5997 #ifdef HAVE_prologue
5998 if (HAVE_prologue)
5999 {
6000 start_sequence ();
6001 seq = gen_prologue ();
6002 emit_insn (seq);
6003
6004 /* Insert an explicit USE for the frame pointer
6005 if the profiling is on and the frame pointer is required. */
6006 if (crtl->profile && frame_pointer_needed)
6007 emit_use (hard_frame_pointer_rtx);
6008
6009 /* Retain a map of the prologue insns. */
6010 record_insns (seq, NULL, &prologue_insn_hash);
6011 emit_note (NOTE_INSN_PROLOGUE_END);
6012
6013 /* Ensure that instructions are not moved into the prologue when
6014 profiling is on. The call to the profiling routine can be
6015 emitted within the live range of a call-clobbered register. */
6016 if (!targetm.profile_before_prologue () && crtl->profile)
6017 emit_insn (gen_blockage ());
6018
6019 prologue_seq = get_insns ();
6020 end_sequence ();
6021 set_insn_locations (prologue_seq, prologue_location);
6022 }
6023 #endif
6024
6025 #ifdef HAVE_simple_return
6026 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
6027
6028 /* Try to perform a kind of shrink-wrapping, making sure the
6029 prologue/epilogue is emitted only around those parts of the
6030 function that require it. */
6031
6032 nonempty_prologue = false;
6033 for (seq = prologue_seq; seq; seq = NEXT_INSN (seq))
6034 if (!NOTE_P (seq) || NOTE_KIND (seq) != NOTE_INSN_PROLOGUE_END)
6035 {
6036 nonempty_prologue = true;
6037 break;
6038 }
6039
6040 if (flag_shrink_wrap && HAVE_simple_return
6041 && (targetm.profile_before_prologue () || !crtl->profile)
6042 && nonempty_prologue && !crtl->calls_eh_return)
6043 {
6044 HARD_REG_SET prologue_clobbered, prologue_used, live_on_edge;
6045 struct hard_reg_set_container set_up_by_prologue;
6046 rtx p_insn;
6047 vec<basic_block> vec;
6048 basic_block bb;
6049 bitmap_head bb_antic_flags;
6050 bitmap_head bb_on_list;
6051 bitmap_head bb_tail;
6052
6053 if (dump_file)
6054 fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");
6055
6056 /* Compute the registers set and used in the prologue. */
6057 CLEAR_HARD_REG_SET (prologue_clobbered);
6058 CLEAR_HARD_REG_SET (prologue_used);
6059 for (p_insn = prologue_seq; p_insn; p_insn = NEXT_INSN (p_insn))
6060 {
6061 HARD_REG_SET this_used;
6062 if (!NONDEBUG_INSN_P (p_insn))
6063 continue;
6064
6065 CLEAR_HARD_REG_SET (this_used);
6066 note_uses (&PATTERN (p_insn), record_hard_reg_uses,
6067 &this_used);
6068 AND_COMPL_HARD_REG_SET (this_used, prologue_clobbered);
6069 IOR_HARD_REG_SET (prologue_used, this_used);
6070 note_stores (PATTERN (p_insn), record_hard_reg_sets,
6071 &prologue_clobbered);
6072 }
6073
6074 prepare_shrink_wrap (entry_edge->dest);
6075
6076 bitmap_initialize (&bb_antic_flags, &bitmap_default_obstack);
6077 bitmap_initialize (&bb_on_list, &bitmap_default_obstack);
6078 bitmap_initialize (&bb_tail, &bitmap_default_obstack);
6079
6080 /* Find the set of basic blocks that require a stack frame,
6081 and blocks that are too big to be duplicated. */
6082
6083 vec.create (n_basic_blocks);
6084
6085 CLEAR_HARD_REG_SET (set_up_by_prologue.set);
6086 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6087 STACK_POINTER_REGNUM);
6088 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
6089 if (frame_pointer_needed)
6090 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6091 HARD_FRAME_POINTER_REGNUM);
6092 if (pic_offset_table_rtx)
6093 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6094 PIC_OFFSET_TABLE_REGNUM);
6095 if (crtl->drap_reg)
6096 add_to_hard_reg_set (&set_up_by_prologue.set,
6097 GET_MODE (crtl->drap_reg),
6098 REGNO (crtl->drap_reg));
6099 if (targetm.set_up_by_prologue)
6100 targetm.set_up_by_prologue (&set_up_by_prologue);
6101
6102 /* We don't use a different max size depending on
6103 optimize_bb_for_speed_p because increasing shrink-wrapping
6104 opportunities by duplicating tail blocks can actually result
6105 in an overall decrease in code size. */
6106 max_grow_size = get_uncond_jump_length ();
6107 max_grow_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
6108
6109 FOR_EACH_BB (bb)
6110 {
6111 rtx insn;
6112 unsigned size = 0;
6113
6114 FOR_BB_INSNS (bb, insn)
6115 if (NONDEBUG_INSN_P (insn))
6116 {
6117 if (requires_stack_frame_p (insn, prologue_used,
6118 set_up_by_prologue.set))
6119 {
6120 if (bb == entry_edge->dest)
6121 goto fail_shrinkwrap;
6122 bitmap_set_bit (&bb_flags, bb->index);
6123 vec.quick_push (bb);
6124 break;
6125 }
6126 else if (size <= max_grow_size)
6127 {
6128 size += get_attr_min_length (insn);
6129 if (size > max_grow_size)
6130 bitmap_set_bit (&bb_on_list, bb->index);
6131 }
6132 }
6133 }
6134
6135 /* Blocks that really need a prologue, or are too big for tails. */
6136 bitmap_ior_into (&bb_on_list, &bb_flags);
6137
6138 /* For every basic block that needs a prologue, mark all blocks
6139 reachable from it, so as to ensure they are also seen as
6140 requiring a prologue. */
6141 while (!vec.is_empty ())
6142 {
6143 basic_block tmp_bb = vec.pop ();
6144
6145 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6146 if (e->dest != EXIT_BLOCK_PTR
6147 && bitmap_set_bit (&bb_flags, e->dest->index))
6148 vec.quick_push (e->dest);
6149 }
6150
6151 /* Find the set of basic blocks that need no prologue, have a
6152 single successor, can be duplicated, meet a max size
6153 requirement, and go to the exit via like blocks. */
6154 vec.quick_push (EXIT_BLOCK_PTR);
6155 while (!vec.is_empty ())
6156 {
6157 basic_block tmp_bb = vec.pop ();
6158
6159 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6160 if (single_succ_p (e->src)
6161 && !bitmap_bit_p (&bb_on_list, e->src->index)
6162 && can_duplicate_block_p (e->src))
6163 {
6164 edge pe;
6165 edge_iterator pei;
6166
6167 /* If there is predecessor of e->src which doesn't
6168 need prologue and the edge is complex,
6169 we might not be able to redirect the branch
6170 to a copy of e->src. */
6171 FOR_EACH_EDGE (pe, pei, e->src->preds)
6172 if ((pe->flags & EDGE_COMPLEX) != 0
6173 && !bitmap_bit_p (&bb_flags, pe->src->index))
6174 break;
6175 if (pe == NULL && bitmap_set_bit (&bb_tail, e->src->index))
6176 vec.quick_push (e->src);
6177 }
6178 }
6179
6180 /* Now walk backwards from every block that is marked as needing
6181 a prologue to compute the bb_antic_flags bitmap. Exclude
6182 tail blocks; They can be duplicated to be used on paths not
6183 needing a prologue. */
6184 bitmap_clear (&bb_on_list);
6185 bitmap_and_compl (&bb_antic_flags, &bb_flags, &bb_tail);
6186 FOR_EACH_BB (bb)
6187 {
6188 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6189 continue;
6190 FOR_EACH_EDGE (e, ei, bb->preds)
6191 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6192 && bitmap_set_bit (&bb_on_list, e->src->index))
6193 vec.quick_push (e->src);
6194 }
6195 while (!vec.is_empty ())
6196 {
6197 basic_block tmp_bb = vec.pop ();
6198 bool all_set = true;
6199
6200 bitmap_clear_bit (&bb_on_list, tmp_bb->index);
6201 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6202 if (!bitmap_bit_p (&bb_antic_flags, e->dest->index))
6203 {
6204 all_set = false;
6205 break;
6206 }
6207
6208 if (all_set)
6209 {
6210 bitmap_set_bit (&bb_antic_flags, tmp_bb->index);
6211 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6212 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6213 && bitmap_set_bit (&bb_on_list, e->src->index))
6214 vec.quick_push (e->src);
6215 }
6216 }
6217 /* Find exactly one edge that leads to a block in ANTIC from
6218 a block that isn't. */
6219 if (!bitmap_bit_p (&bb_antic_flags, entry_edge->dest->index))
6220 FOR_EACH_BB (bb)
6221 {
6222 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6223 continue;
6224 FOR_EACH_EDGE (e, ei, bb->preds)
6225 if (!bitmap_bit_p (&bb_antic_flags, e->src->index))
6226 {
6227 if (entry_edge != orig_entry_edge)
6228 {
6229 entry_edge = orig_entry_edge;
6230 if (dump_file)
6231 fprintf (dump_file, "More than one candidate edge.\n");
6232 goto fail_shrinkwrap;
6233 }
6234 if (dump_file)
6235 fprintf (dump_file, "Found candidate edge for "
6236 "shrink-wrapping, %d->%d.\n", e->src->index,
6237 e->dest->index);
6238 entry_edge = e;
6239 }
6240 }
6241
6242 if (entry_edge != orig_entry_edge)
6243 {
6244 /* Test whether the prologue is known to clobber any register
6245 (other than FP or SP) which are live on the edge. */
6246 CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
6247 if (frame_pointer_needed)
6248 CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);
6249 REG_SET_TO_HARD_REG_SET (live_on_edge,
6250 df_get_live_in (entry_edge->dest));
6251 if (hard_reg_set_intersect_p (live_on_edge, prologue_clobbered))
6252 {
6253 entry_edge = orig_entry_edge;
6254 if (dump_file)
6255 fprintf (dump_file,
6256 "Shrink-wrapping aborted due to clobber.\n");
6257 }
6258 }
6259 if (entry_edge != orig_entry_edge)
6260 {
6261 crtl->shrink_wrapped = true;
6262 if (dump_file)
6263 fprintf (dump_file, "Performing shrink-wrapping.\n");
6264
6265 /* Find tail blocks reachable from both blocks needing a
6266 prologue and blocks not needing a prologue. */
6267 if (!bitmap_empty_p (&bb_tail))
6268 FOR_EACH_BB (bb)
6269 {
6270 bool some_pro, some_no_pro;
6271 if (!bitmap_bit_p (&bb_tail, bb->index))
6272 continue;
6273 some_pro = some_no_pro = false;
6274 FOR_EACH_EDGE (e, ei, bb->preds)
6275 {
6276 if (bitmap_bit_p (&bb_flags, e->src->index))
6277 some_pro = true;
6278 else
6279 some_no_pro = true;
6280 }
6281 if (some_pro && some_no_pro)
6282 vec.quick_push (bb);
6283 else
6284 bitmap_clear_bit (&bb_tail, bb->index);
6285 }
6286 /* Find the head of each tail. */
6287 while (!vec.is_empty ())
6288 {
6289 basic_block tbb = vec.pop ();
6290
6291 if (!bitmap_bit_p (&bb_tail, tbb->index))
6292 continue;
6293
6294 while (single_succ_p (tbb))
6295 {
6296 tbb = single_succ (tbb);
6297 bitmap_clear_bit (&bb_tail, tbb->index);
6298 }
6299 }
6300 /* Now duplicate the tails. */
6301 if (!bitmap_empty_p (&bb_tail))
6302 FOR_EACH_BB_REVERSE (bb)
6303 {
6304 basic_block copy_bb, tbb;
6305 rtx insert_point;
6306 int eflags;
6307
6308 if (!bitmap_clear_bit (&bb_tail, bb->index))
6309 continue;
6310
6311 /* Create a copy of BB, instructions and all, for
6312 use on paths that don't need a prologue.
6313 Ideal placement of the copy is on a fall-thru edge
6314 or after a block that would jump to the copy. */
6315 FOR_EACH_EDGE (e, ei, bb->preds)
6316 if (!bitmap_bit_p (&bb_flags, e->src->index)
6317 && single_succ_p (e->src))
6318 break;
6319 if (e)
6320 {
6321 /* Make sure we insert after any barriers. */
6322 rtx end = get_last_bb_insn (e->src);
6323 copy_bb = create_basic_block (NEXT_INSN (end),
6324 NULL_RTX, e->src);
6325 BB_COPY_PARTITION (copy_bb, e->src);
6326 }
6327 else
6328 {
6329 /* Otherwise put the copy at the end of the function. */
6330 copy_bb = create_basic_block (NULL_RTX, NULL_RTX,
6331 EXIT_BLOCK_PTR->prev_bb);
6332 BB_COPY_PARTITION (copy_bb, bb);
6333 }
6334
6335 insert_point = emit_note_after (NOTE_INSN_DELETED,
6336 BB_END (copy_bb));
6337 emit_barrier_after (BB_END (copy_bb));
6338
6339 tbb = bb;
6340 while (1)
6341 {
6342 dup_block_and_redirect (tbb, copy_bb, insert_point,
6343 &bb_flags);
6344 tbb = single_succ (tbb);
6345 if (tbb == EXIT_BLOCK_PTR)
6346 break;
6347 e = split_block (copy_bb, PREV_INSN (insert_point));
6348 copy_bb = e->dest;
6349 }
6350
6351 /* Quiet verify_flow_info by (ab)using EDGE_FAKE.
6352 We have yet to add a simple_return to the tails,
6353 as we'd like to first convert_jumps_to_returns in
6354 case the block is no longer used after that. */
6355 eflags = EDGE_FAKE;
6356 if (CALL_P (PREV_INSN (insert_point))
6357 && SIBLING_CALL_P (PREV_INSN (insert_point)))
6358 eflags = EDGE_SIBCALL | EDGE_ABNORMAL;
6359 make_single_succ_edge (copy_bb, EXIT_BLOCK_PTR, eflags);
6360
6361 /* verify_flow_info doesn't like a note after a
6362 sibling call. */
6363 delete_insn (insert_point);
6364 if (bitmap_empty_p (&bb_tail))
6365 break;
6366 }
6367 }
6368
6369 fail_shrinkwrap:
6370 bitmap_clear (&bb_tail);
6371 bitmap_clear (&bb_antic_flags);
6372 bitmap_clear (&bb_on_list);
6373 vec.release ();
6374 }
6375 #endif
6376
6377 if (split_prologue_seq != NULL_RTX)
6378 {
6379 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6380 inserted = true;
6381 }
6382 if (prologue_seq != NULL_RTX)
6383 {
6384 insert_insn_on_edge (prologue_seq, entry_edge);
6385 inserted = true;
6386 }
6387
6388 /* If the exit block has no non-fake predecessors, we don't need
6389 an epilogue. */
6390 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6391 if ((e->flags & EDGE_FAKE) == 0)
6392 break;
6393 if (e == NULL)
6394 goto epilogue_done;
6395
6396 rtl_profile_for_bb (EXIT_BLOCK_PTR);
6397
6398 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR->preds);
6399
6400 /* If we're allowed to generate a simple return instruction, then by
6401 definition we don't need a full epilogue. If the last basic
6402 block before the exit block does not contain active instructions,
6403 examine its predecessors and try to emit (conditional) return
6404 instructions. */
6405 #ifdef HAVE_simple_return
6406 if (entry_edge != orig_entry_edge)
6407 {
6408 if (optimize)
6409 {
6410 unsigned i, last;
6411
6412 /* convert_jumps_to_returns may add to EXIT_BLOCK_PTR->preds
6413 (but won't remove). Stop at end of current preds. */
6414 last = EDGE_COUNT (EXIT_BLOCK_PTR->preds);
6415 for (i = 0; i < last; i++)
6416 {
6417 e = EDGE_I (EXIT_BLOCK_PTR->preds, i);
6418 if (LABEL_P (BB_HEAD (e->src))
6419 && !bitmap_bit_p (&bb_flags, e->src->index)
6420 && !active_insn_between (BB_HEAD (e->src), BB_END (e->src)))
6421 unconverted_simple_returns
6422 = convert_jumps_to_returns (e->src, true,
6423 unconverted_simple_returns);
6424 }
6425 }
6426
6427 if (exit_fallthru_edge != NULL
6428 && EDGE_COUNT (exit_fallthru_edge->src->preds) != 0
6429 && !bitmap_bit_p (&bb_flags, exit_fallthru_edge->src->index))
6430 {
6431 basic_block last_bb;
6432
6433 last_bb = emit_return_for_exit (exit_fallthru_edge, true);
6434 returnjump = BB_END (last_bb);
6435 exit_fallthru_edge = NULL;
6436 }
6437 }
6438 #endif
6439 #ifdef HAVE_return
6440 if (HAVE_return)
6441 {
6442 if (exit_fallthru_edge == NULL)
6443 goto epilogue_done;
6444
6445 if (optimize)
6446 {
6447 basic_block last_bb = exit_fallthru_edge->src;
6448
6449 if (LABEL_P (BB_HEAD (last_bb))
6450 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
6451 convert_jumps_to_returns (last_bb, false, vNULL);
6452
6453 if (EDGE_COUNT (last_bb->preds) != 0
6454 && single_succ_p (last_bb))
6455 {
6456 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
6457 epilogue_end = returnjump = BB_END (last_bb);
6458 #ifdef HAVE_simple_return
6459 /* Emitting the return may add a basic block.
6460 Fix bb_flags for the added block. */
6461 if (last_bb != exit_fallthru_edge->src)
6462 bitmap_set_bit (&bb_flags, last_bb->index);
6463 #endif
6464 goto epilogue_done;
6465 }
6466 }
6467 }
6468 #endif
6469
6470 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6471 this marker for the splits of EH_RETURN patterns, and nothing else
6472 uses the flag in the meantime. */
6473 epilogue_completed = 1;
6474
6475 #ifdef HAVE_eh_return
6476 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6477 some targets, these get split to a special version of the epilogue
6478 code. In order to be able to properly annotate these with unwind
6479 info, try to split them now. If we get a valid split, drop an
6480 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6481 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6482 {
6483 rtx prev, last, trial;
6484
6485 if (e->flags & EDGE_FALLTHRU)
6486 continue;
6487 last = BB_END (e->src);
6488 if (!eh_returnjump_p (last))
6489 continue;
6490
6491 prev = PREV_INSN (last);
6492 trial = try_split (PATTERN (last), last, 1);
6493 if (trial == last)
6494 continue;
6495
6496 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6497 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6498 }
6499 #endif
6500
6501 /* If nothing falls through into the exit block, we don't need an
6502 epilogue. */
6503
6504 if (exit_fallthru_edge == NULL)
6505 goto epilogue_done;
6506
6507 #ifdef HAVE_epilogue
6508 if (HAVE_epilogue)
6509 {
6510 start_sequence ();
6511 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
6512 seq = gen_epilogue ();
6513 if (seq)
6514 emit_jump_insn (seq);
6515
6516 /* Retain a map of the epilogue insns. */
6517 record_insns (seq, NULL, &epilogue_insn_hash);
6518 set_insn_locations (seq, epilogue_location);
6519
6520 seq = get_insns ();
6521 returnjump = get_last_insn ();
6522 end_sequence ();
6523
6524 insert_insn_on_edge (seq, exit_fallthru_edge);
6525 inserted = true;
6526
6527 if (JUMP_P (returnjump))
6528 set_return_jump_label (returnjump);
6529 }
6530 else
6531 #endif
6532 {
6533 basic_block cur_bb;
6534
6535 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
6536 goto epilogue_done;
6537 /* We have a fall-through edge to the exit block, the source is not
6538 at the end of the function, and there will be an assembler epilogue
6539 at the end of the function.
6540 We can't use force_nonfallthru here, because that would try to
6541 use return. Inserting a jump 'by hand' is extremely messy, so
6542 we take advantage of cfg_layout_finalize using
6543 fixup_fallthru_exit_predecessor. */
6544 cfg_layout_initialize (0);
6545 FOR_EACH_BB (cur_bb)
6546 if (cur_bb->index >= NUM_FIXED_BLOCKS
6547 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6548 cur_bb->aux = cur_bb->next_bb;
6549 cfg_layout_finalize ();
6550 }
6551
6552 epilogue_done:
6553
6554 default_rtl_profile ();
6555
6556 if (inserted)
6557 {
6558 sbitmap blocks;
6559
6560 commit_edge_insertions ();
6561
6562 /* Look for basic blocks within the prologue insns. */
6563 blocks = sbitmap_alloc (last_basic_block);
6564 bitmap_clear (blocks);
6565 bitmap_set_bit (blocks, entry_edge->dest->index);
6566 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
6567 find_many_sub_basic_blocks (blocks);
6568 sbitmap_free (blocks);
6569
6570 /* The epilogue insns we inserted may cause the exit edge to no longer
6571 be fallthru. */
6572 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6573 {
6574 if (((e->flags & EDGE_FALLTHRU) != 0)
6575 && returnjump_p (BB_END (e->src)))
6576 e->flags &= ~EDGE_FALLTHRU;
6577 }
6578 }
6579
6580 #ifdef HAVE_simple_return
6581 /* If there were branches to an empty LAST_BB which we tried to
6582 convert to conditional simple_returns, but couldn't for some
6583 reason, create a block to hold a simple_return insn and redirect
6584 those remaining edges. */
6585 if (!unconverted_simple_returns.is_empty ())
6586 {
6587 basic_block simple_return_block_hot = NULL;
6588 basic_block simple_return_block_cold = NULL;
6589 edge pending_edge_hot = NULL;
6590 edge pending_edge_cold = NULL;
6591 basic_block exit_pred;
6592 int i;
6593
6594 gcc_assert (entry_edge != orig_entry_edge);
6595
6596 /* See if we can reuse the last insn that was emitted for the
6597 epilogue. */
6598 if (returnjump != NULL_RTX
6599 && JUMP_LABEL (returnjump) == simple_return_rtx)
6600 {
6601 e = split_block (BLOCK_FOR_INSN (returnjump), PREV_INSN (returnjump));
6602 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6603 simple_return_block_hot = e->dest;
6604 else
6605 simple_return_block_cold = e->dest;
6606 }
6607
6608 /* Also check returns we might need to add to tail blocks. */
6609 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6610 if (EDGE_COUNT (e->src->preds) != 0
6611 && (e->flags & EDGE_FAKE) != 0
6612 && !bitmap_bit_p (&bb_flags, e->src->index))
6613 {
6614 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6615 pending_edge_hot = e;
6616 else
6617 pending_edge_cold = e;
6618 }
6619
6620 /* Save a pointer to the exit's predecessor BB for use in
6621 inserting new BBs at the end of the function. Do this
6622 after the call to split_block above which may split
6623 the original exit pred. */
6624 exit_pred = EXIT_BLOCK_PTR->prev_bb;
6625
6626 FOR_EACH_VEC_ELT (unconverted_simple_returns, i, e)
6627 {
6628 basic_block *pdest_bb;
6629 edge pending;
6630
6631 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6632 {
6633 pdest_bb = &simple_return_block_hot;
6634 pending = pending_edge_hot;
6635 }
6636 else
6637 {
6638 pdest_bb = &simple_return_block_cold;
6639 pending = pending_edge_cold;
6640 }
6641
6642 if (*pdest_bb == NULL && pending != NULL)
6643 {
6644 emit_return_into_block (true, pending->src);
6645 pending->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6646 *pdest_bb = pending->src;
6647 }
6648 else if (*pdest_bb == NULL)
6649 {
6650 basic_block bb;
6651 rtx start;
6652
6653 bb = create_basic_block (NULL, NULL, exit_pred);
6654 BB_COPY_PARTITION (bb, e->src);
6655 start = emit_jump_insn_after (gen_simple_return (),
6656 BB_END (bb));
6657 JUMP_LABEL (start) = simple_return_rtx;
6658 emit_barrier_after (start);
6659
6660 *pdest_bb = bb;
6661 make_edge (bb, EXIT_BLOCK_PTR, 0);
6662 }
6663 redirect_edge_and_branch_force (e, *pdest_bb);
6664 }
6665 unconverted_simple_returns.release ();
6666 }
6667
6668 if (entry_edge != orig_entry_edge)
6669 {
6670 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6671 if (EDGE_COUNT (e->src->preds) != 0
6672 && (e->flags & EDGE_FAKE) != 0
6673 && !bitmap_bit_p (&bb_flags, e->src->index))
6674 {
6675 emit_return_into_block (true, e->src);
6676 e->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6677 }
6678 }
6679 #endif
6680
6681 #ifdef HAVE_sibcall_epilogue
6682 /* Emit sibling epilogues before any sibling call sites. */
6683 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
6684 {
6685 basic_block bb = e->src;
6686 rtx insn = BB_END (bb);
6687 rtx ep_seq;
6688
6689 if (!CALL_P (insn)
6690 || ! SIBLING_CALL_P (insn)
6691 #ifdef HAVE_simple_return
6692 || (entry_edge != orig_entry_edge
6693 && !bitmap_bit_p (&bb_flags, bb->index))
6694 #endif
6695 )
6696 {
6697 ei_next (&ei);
6698 continue;
6699 }
6700
6701 ep_seq = gen_sibcall_epilogue ();
6702 if (ep_seq)
6703 {
6704 start_sequence ();
6705 emit_note (NOTE_INSN_EPILOGUE_BEG);
6706 emit_insn (ep_seq);
6707 seq = get_insns ();
6708 end_sequence ();
6709
6710 /* Retain a map of the epilogue insns. Used in life analysis to
6711 avoid getting rid of sibcall epilogue insns. Do this before we
6712 actually emit the sequence. */
6713 record_insns (seq, NULL, &epilogue_insn_hash);
6714 set_insn_locations (seq, epilogue_location);
6715
6716 emit_insn_before (seq, insn);
6717 }
6718 ei_next (&ei);
6719 }
6720 #endif
6721
6722 #ifdef HAVE_epilogue
6723 if (epilogue_end)
6724 {
6725 rtx insn, next;
6726
6727 /* Similarly, move any line notes that appear after the epilogue.
6728 There is no need, however, to be quite so anal about the existence
6729 of such a note. Also possibly move
6730 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6731 info generation. */
6732 for (insn = epilogue_end; insn; insn = next)
6733 {
6734 next = NEXT_INSN (insn);
6735 if (NOTE_P (insn)
6736 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6737 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
6738 }
6739 }
6740 #endif
6741
6742 #ifdef HAVE_simple_return
6743 bitmap_clear (&bb_flags);
6744 #endif
6745
6746 /* Threading the prologue and epilogue changes the artificial refs
6747 in the entry and exit blocks. */
6748 epilogue_completed = 1;
6749 df_update_entry_exit_and_calls ();
6750 }
6751
6752 /* Reposition the prologue-end and epilogue-begin notes after
6753 instruction scheduling. */
6754
6755 void
6756 reposition_prologue_and_epilogue_notes (void)
6757 {
6758 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
6759 || defined (HAVE_sibcall_epilogue)
6760 /* Since the hash table is created on demand, the fact that it is
6761 non-null is a signal that it is non-empty. */
6762 if (prologue_insn_hash != NULL)
6763 {
6764 size_t len = htab_elements (prologue_insn_hash);
6765 rtx insn, last = NULL, note = NULL;
6766
6767 /* Scan from the beginning until we reach the last prologue insn. */
6768 /* ??? While we do have the CFG intact, there are two problems:
6769 (1) The prologue can contain loops (typically probing the stack),
6770 which means that the end of the prologue isn't in the first bb.
6771 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6772 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6773 {
6774 if (NOTE_P (insn))
6775 {
6776 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6777 note = insn;
6778 }
6779 else if (contains (insn, prologue_insn_hash))
6780 {
6781 last = insn;
6782 if (--len == 0)
6783 break;
6784 }
6785 }
6786
6787 if (last)
6788 {
6789 if (note == NULL)
6790 {
6791 /* Scan forward looking for the PROLOGUE_END note. It should
6792 be right at the beginning of the block, possibly with other
6793 insn notes that got moved there. */
6794 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6795 {
6796 if (NOTE_P (note)
6797 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6798 break;
6799 }
6800 }
6801
6802 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6803 if (LABEL_P (last))
6804 last = NEXT_INSN (last);
6805 reorder_insns (note, note, last);
6806 }
6807 }
6808
6809 if (epilogue_insn_hash != NULL)
6810 {
6811 edge_iterator ei;
6812 edge e;
6813
6814 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6815 {
6816 rtx insn, first = NULL, note = NULL;
6817 basic_block bb = e->src;
6818
6819 /* Scan from the beginning until we reach the first epilogue insn. */
6820 FOR_BB_INSNS (bb, insn)
6821 {
6822 if (NOTE_P (insn))
6823 {
6824 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6825 {
6826 note = insn;
6827 if (first != NULL)
6828 break;
6829 }
6830 }
6831 else if (first == NULL && contains (insn, epilogue_insn_hash))
6832 {
6833 first = insn;
6834 if (note != NULL)
6835 break;
6836 }
6837 }
6838
6839 if (note)
6840 {
6841 /* If the function has a single basic block, and no real
6842 epilogue insns (e.g. sibcall with no cleanup), the
6843 epilogue note can get scheduled before the prologue
6844 note. If we have frame related prologue insns, having
6845 them scanned during the epilogue will result in a crash.
6846 In this case re-order the epilogue note to just before
6847 the last insn in the block. */
6848 if (first == NULL)
6849 first = BB_END (bb);
6850
6851 if (PREV_INSN (first) != note)
6852 reorder_insns (note, note, PREV_INSN (first));
6853 }
6854 }
6855 }
6856 #endif /* HAVE_prologue or HAVE_epilogue */
6857 }
6858
6859 /* Returns the name of function declared by FNDECL. */
6860 const char *
6861 fndecl_name (tree fndecl)
6862 {
6863 if (fndecl == NULL)
6864 return "(nofn)";
6865 return lang_hooks.decl_printable_name (fndecl, 2);
6866 }
6867
6868 /* Returns the name of function FN. */
6869 const char *
6870 function_name (struct function *fn)
6871 {
6872 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6873 return fndecl_name (fndecl);
6874 }
6875
6876 /* Returns the name of the current function. */
6877 const char *
6878 current_function_name (void)
6879 {
6880 return function_name (cfun);
6881 }
6882 \f
6883
6884 static unsigned int
6885 rest_of_handle_check_leaf_regs (void)
6886 {
6887 #ifdef LEAF_REGISTERS
6888 crtl->uses_only_leaf_regs
6889 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6890 #endif
6891 return 0;
6892 }
6893
6894 /* Insert a TYPE into the used types hash table of CFUN. */
6895
6896 static void
6897 used_types_insert_helper (tree type, struct function *func)
6898 {
6899 if (type != NULL && func != NULL)
6900 {
6901 void **slot;
6902
6903 if (func->used_types_hash == NULL)
6904 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
6905 htab_eq_pointer, NULL);
6906 slot = htab_find_slot (func->used_types_hash, type, INSERT);
6907 if (*slot == NULL)
6908 *slot = type;
6909 }
6910 }
6911
6912 /* Given a type, insert it into the used hash table in cfun. */
6913 void
6914 used_types_insert (tree t)
6915 {
6916 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6917 if (TYPE_NAME (t))
6918 break;
6919 else
6920 t = TREE_TYPE (t);
6921 if (TREE_CODE (t) == ERROR_MARK)
6922 return;
6923 if (TYPE_NAME (t) == NULL_TREE
6924 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6925 t = TYPE_MAIN_VARIANT (t);
6926 if (debug_info_level > DINFO_LEVEL_NONE)
6927 {
6928 if (cfun)
6929 used_types_insert_helper (t, cfun);
6930 else
6931 {
6932 /* So this might be a type referenced by a global variable.
6933 Record that type so that we can later decide to emit its
6934 debug information. */
6935 vec_safe_push (types_used_by_cur_var_decl, t);
6936 }
6937 }
6938 }
6939
6940 /* Helper to Hash a struct types_used_by_vars_entry. */
6941
6942 static hashval_t
6943 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6944 {
6945 gcc_assert (entry && entry->var_decl && entry->type);
6946
6947 return iterative_hash_object (entry->type,
6948 iterative_hash_object (entry->var_decl, 0));
6949 }
6950
6951 /* Hash function of the types_used_by_vars_entry hash table. */
6952
6953 hashval_t
6954 types_used_by_vars_do_hash (const void *x)
6955 {
6956 const struct types_used_by_vars_entry *entry =
6957 (const struct types_used_by_vars_entry *) x;
6958
6959 return hash_types_used_by_vars_entry (entry);
6960 }
6961
6962 /*Equality function of the types_used_by_vars_entry hash table. */
6963
6964 int
6965 types_used_by_vars_eq (const void *x1, const void *x2)
6966 {
6967 const struct types_used_by_vars_entry *e1 =
6968 (const struct types_used_by_vars_entry *) x1;
6969 const struct types_used_by_vars_entry *e2 =
6970 (const struct types_used_by_vars_entry *)x2;
6971
6972 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6973 }
6974
6975 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6976
6977 void
6978 types_used_by_var_decl_insert (tree type, tree var_decl)
6979 {
6980 if (type != NULL && var_decl != NULL)
6981 {
6982 void **slot;
6983 struct types_used_by_vars_entry e;
6984 e.var_decl = var_decl;
6985 e.type = type;
6986 if (types_used_by_vars_hash == NULL)
6987 types_used_by_vars_hash =
6988 htab_create_ggc (37, types_used_by_vars_do_hash,
6989 types_used_by_vars_eq, NULL);
6990 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
6991 hash_types_used_by_vars_entry (&e), INSERT);
6992 if (*slot == NULL)
6993 {
6994 struct types_used_by_vars_entry *entry;
6995 entry = ggc_alloc_types_used_by_vars_entry ();
6996 entry->type = type;
6997 entry->var_decl = var_decl;
6998 *slot = entry;
6999 }
7000 }
7001 }
7002
7003 namespace {
7004
7005 const pass_data pass_data_leaf_regs =
7006 {
7007 RTL_PASS, /* type */
7008 "*leaf_regs", /* name */
7009 OPTGROUP_NONE, /* optinfo_flags */
7010 false, /* has_gate */
7011 true, /* has_execute */
7012 TV_NONE, /* tv_id */
7013 0, /* properties_required */
7014 0, /* properties_provided */
7015 0, /* properties_destroyed */
7016 0, /* todo_flags_start */
7017 0, /* todo_flags_finish */
7018 };
7019
7020 class pass_leaf_regs : public rtl_opt_pass
7021 {
7022 public:
7023 pass_leaf_regs(gcc::context *ctxt)
7024 : rtl_opt_pass(pass_data_leaf_regs, ctxt)
7025 {}
7026
7027 /* opt_pass methods: */
7028 unsigned int execute () { return rest_of_handle_check_leaf_regs (); }
7029
7030 }; // class pass_leaf_regs
7031
7032 } // anon namespace
7033
7034 rtl_opt_pass *
7035 make_pass_leaf_regs (gcc::context *ctxt)
7036 {
7037 return new pass_leaf_regs (ctxt);
7038 }
7039
7040 static unsigned int
7041 rest_of_handle_thread_prologue_and_epilogue (void)
7042 {
7043 if (optimize)
7044 cleanup_cfg (CLEANUP_EXPENSIVE);
7045
7046 /* On some machines, the prologue and epilogue code, or parts thereof,
7047 can be represented as RTL. Doing so lets us schedule insns between
7048 it and the rest of the code and also allows delayed branch
7049 scheduling to operate in the epilogue. */
7050 thread_prologue_and_epilogue_insns ();
7051
7052 /* The stack usage info is finalized during prologue expansion. */
7053 if (flag_stack_usage_info)
7054 output_stack_usage ();
7055
7056 return 0;
7057 }
7058
7059 namespace {
7060
7061 const pass_data pass_data_thread_prologue_and_epilogue =
7062 {
7063 RTL_PASS, /* type */
7064 "pro_and_epilogue", /* name */
7065 OPTGROUP_NONE, /* optinfo_flags */
7066 false, /* has_gate */
7067 true, /* has_execute */
7068 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
7069 0, /* properties_required */
7070 0, /* properties_provided */
7071 0, /* properties_destroyed */
7072 TODO_verify_flow, /* todo_flags_start */
7073 ( TODO_df_verify | TODO_df_finish
7074 | TODO_verify_rtl_sharing ), /* todo_flags_finish */
7075 };
7076
7077 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
7078 {
7079 public:
7080 pass_thread_prologue_and_epilogue(gcc::context *ctxt)
7081 : rtl_opt_pass(pass_data_thread_prologue_and_epilogue, ctxt)
7082 {}
7083
7084 /* opt_pass methods: */
7085 unsigned int execute () {
7086 return rest_of_handle_thread_prologue_and_epilogue ();
7087 }
7088
7089 }; // class pass_thread_prologue_and_epilogue
7090
7091 } // anon namespace
7092
7093 rtl_opt_pass *
7094 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
7095 {
7096 return new pass_thread_prologue_and_epilogue (ctxt);
7097 }
7098 \f
7099
7100 /* This mini-pass fixes fall-out from SSA in asm statements that have
7101 in-out constraints. Say you start with
7102
7103 orig = inout;
7104 asm ("": "+mr" (inout));
7105 use (orig);
7106
7107 which is transformed very early to use explicit output and match operands:
7108
7109 orig = inout;
7110 asm ("": "=mr" (inout) : "0" (inout));
7111 use (orig);
7112
7113 Or, after SSA and copyprop,
7114
7115 asm ("": "=mr" (inout_2) : "0" (inout_1));
7116 use (inout_1);
7117
7118 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
7119 they represent two separate values, so they will get different pseudo
7120 registers during expansion. Then, since the two operands need to match
7121 per the constraints, but use different pseudo registers, reload can
7122 only register a reload for these operands. But reloads can only be
7123 satisfied by hardregs, not by memory, so we need a register for this
7124 reload, just because we are presented with non-matching operands.
7125 So, even though we allow memory for this operand, no memory can be
7126 used for it, just because the two operands don't match. This can
7127 cause reload failures on register-starved targets.
7128
7129 So it's a symptom of reload not being able to use memory for reloads
7130 or, alternatively it's also a symptom of both operands not coming into
7131 reload as matching (in which case the pseudo could go to memory just
7132 fine, as the alternative allows it, and no reload would be necessary).
7133 We fix the latter problem here, by transforming
7134
7135 asm ("": "=mr" (inout_2) : "0" (inout_1));
7136
7137 back to
7138
7139 inout_2 = inout_1;
7140 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
7141
7142 static void
7143 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
7144 {
7145 int i;
7146 bool changed = false;
7147 rtx op = SET_SRC (p_sets[0]);
7148 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
7149 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
7150 bool *output_matched = XALLOCAVEC (bool, noutputs);
7151
7152 memset (output_matched, 0, noutputs * sizeof (bool));
7153 for (i = 0; i < ninputs; i++)
7154 {
7155 rtx input, output, insns;
7156 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
7157 char *end;
7158 int match, j;
7159
7160 if (*constraint == '%')
7161 constraint++;
7162
7163 match = strtoul (constraint, &end, 10);
7164 if (end == constraint)
7165 continue;
7166
7167 gcc_assert (match < noutputs);
7168 output = SET_DEST (p_sets[match]);
7169 input = RTVEC_ELT (inputs, i);
7170 /* Only do the transformation for pseudos. */
7171 if (! REG_P (output)
7172 || rtx_equal_p (output, input)
7173 || (GET_MODE (input) != VOIDmode
7174 && GET_MODE (input) != GET_MODE (output)))
7175 continue;
7176
7177 /* We can't do anything if the output is also used as input,
7178 as we're going to overwrite it. */
7179 for (j = 0; j < ninputs; j++)
7180 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
7181 break;
7182 if (j != ninputs)
7183 continue;
7184
7185 /* Avoid changing the same input several times. For
7186 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
7187 only change in once (to out1), rather than changing it
7188 first to out1 and afterwards to out2. */
7189 if (i > 0)
7190 {
7191 for (j = 0; j < noutputs; j++)
7192 if (output_matched[j] && input == SET_DEST (p_sets[j]))
7193 break;
7194 if (j != noutputs)
7195 continue;
7196 }
7197 output_matched[match] = true;
7198
7199 start_sequence ();
7200 emit_move_insn (output, input);
7201 insns = get_insns ();
7202 end_sequence ();
7203 emit_insn_before (insns, insn);
7204
7205 /* Now replace all mentions of the input with output. We can't
7206 just replace the occurrence in inputs[i], as the register might
7207 also be used in some other input (or even in an address of an
7208 output), which would mean possibly increasing the number of
7209 inputs by one (namely 'output' in addition), which might pose
7210 a too complicated problem for reload to solve. E.g. this situation:
7211
7212 asm ("" : "=r" (output), "=m" (input) : "0" (input))
7213
7214 Here 'input' is used in two occurrences as input (once for the
7215 input operand, once for the address in the second output operand).
7216 If we would replace only the occurrence of the input operand (to
7217 make the matching) we would be left with this:
7218
7219 output = input
7220 asm ("" : "=r" (output), "=m" (input) : "0" (output))
7221
7222 Now we suddenly have two different input values (containing the same
7223 value, but different pseudos) where we formerly had only one.
7224 With more complicated asms this might lead to reload failures
7225 which wouldn't have happen without this pass. So, iterate over
7226 all operands and replace all occurrences of the register used. */
7227 for (j = 0; j < noutputs; j++)
7228 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
7229 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
7230 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
7231 input, output);
7232 for (j = 0; j < ninputs; j++)
7233 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
7234 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
7235 input, output);
7236
7237 changed = true;
7238 }
7239
7240 if (changed)
7241 df_insn_rescan (insn);
7242 }
7243
7244 static unsigned
7245 rest_of_match_asm_constraints (void)
7246 {
7247 basic_block bb;
7248 rtx insn, pat, *p_sets;
7249 int noutputs;
7250
7251 if (!crtl->has_asm_statement)
7252 return 0;
7253
7254 df_set_flags (DF_DEFER_INSN_RESCAN);
7255 FOR_EACH_BB (bb)
7256 {
7257 FOR_BB_INSNS (bb, insn)
7258 {
7259 if (!INSN_P (insn))
7260 continue;
7261
7262 pat = PATTERN (insn);
7263 if (GET_CODE (pat) == PARALLEL)
7264 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
7265 else if (GET_CODE (pat) == SET)
7266 p_sets = &PATTERN (insn), noutputs = 1;
7267 else
7268 continue;
7269
7270 if (GET_CODE (*p_sets) == SET
7271 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
7272 match_asm_constraints_1 (insn, p_sets, noutputs);
7273 }
7274 }
7275
7276 return TODO_df_finish;
7277 }
7278
7279 namespace {
7280
7281 const pass_data pass_data_match_asm_constraints =
7282 {
7283 RTL_PASS, /* type */
7284 "asmcons", /* name */
7285 OPTGROUP_NONE, /* optinfo_flags */
7286 false, /* has_gate */
7287 true, /* has_execute */
7288 TV_NONE, /* tv_id */
7289 0, /* properties_required */
7290 0, /* properties_provided */
7291 0, /* properties_destroyed */
7292 0, /* todo_flags_start */
7293 0, /* todo_flags_finish */
7294 };
7295
7296 class pass_match_asm_constraints : public rtl_opt_pass
7297 {
7298 public:
7299 pass_match_asm_constraints(gcc::context *ctxt)
7300 : rtl_opt_pass(pass_data_match_asm_constraints, ctxt)
7301 {}
7302
7303 /* opt_pass methods: */
7304 unsigned int execute () { return rest_of_match_asm_constraints (); }
7305
7306 }; // class pass_match_asm_constraints
7307
7308 } // anon namespace
7309
7310 rtl_opt_pass *
7311 make_pass_match_asm_constraints (gcc::context *ctxt)
7312 {
7313 return new pass_match_asm_constraints (ctxt);
7314 }
7315
7316
7317 #include "gt-function.h"