i386.c (enum pta_flags): Move out of struct scope...
[gcc.git] / gcc / fwprop.c
1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Paolo Bonzini and Steven Bosscher.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "toplev.h"
27
28 #include "timevar.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "emit-rtl.h"
32 #include "insn-config.h"
33 #include "recog.h"
34 #include "flags.h"
35 #include "obstack.h"
36 #include "basic-block.h"
37 #include "output.h"
38 #include "df.h"
39 #include "target.h"
40 #include "cfgloop.h"
41 #include "tree-pass.h"
42
43
44 /* This pass does simple forward propagation and simplification when an
45 operand of an insn can only come from a single def. This pass uses
46 df.c, so it is global. However, we only do limited analysis of
47 available expressions.
48
49 1) The pass tries to propagate the source of the def into the use,
50 and checks if the result is independent of the substituted value.
51 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
52 zero, independent of the source register.
53
54 In particular, we propagate constants into the use site. Sometimes
55 RTL expansion did not put the constant in the same insn on purpose,
56 to satisfy a predicate, and the result will fail to be recognized;
57 but this happens rarely and in this case we can still create a
58 REG_EQUAL note. For multi-word operations, this
59
60 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
61 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
62 (set (subreg:SI (reg:DI 122) 0)
63 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
64 (set (subreg:SI (reg:DI 122) 4)
65 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
66
67 can be simplified to the much simpler
68
69 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
70 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
71
72 This particular propagation is also effective at putting together
73 complex addressing modes. We are more aggressive inside MEMs, in
74 that all definitions are propagated if the use is in a MEM; if the
75 result is a valid memory address we check address_cost to decide
76 whether the substitution is worthwhile.
77
78 2) The pass propagates register copies. This is not as effective as
79 the copy propagation done by CSE's canon_reg, which works by walking
80 the instruction chain, it can help the other transformations.
81
82 We should consider removing this optimization, and instead reorder the
83 RTL passes, because GCSE does this transformation too. With some luck,
84 the CSE pass at the end of rest_of_handle_gcse could also go away.
85
86 3) The pass looks for paradoxical subregs that are actually unnecessary.
87 Things like this:
88
89 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
90 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
91 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
92 (subreg:SI (reg:QI 121) 0)))
93
94 are very common on machines that can only do word-sized operations.
95 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
96 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
97 we can replace the paradoxical subreg with simply (reg:WIDE M). The
98 above will simplify this to
99
100 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
101 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
102 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
103
104 where the first two insns are now dead. */
105
106
107 static struct df *df;
108 static int num_changes;
109
110 \f
111 /* Do not try to replace constant addresses or addresses of local and
112 argument slots. These MEM expressions are made only once and inserted
113 in many instructions, as well as being used to control symbol table
114 output. It is not safe to clobber them.
115
116 There are some uncommon cases where the address is already in a register
117 for some reason, but we cannot take advantage of that because we have
118 no easy way to unshare the MEM. In addition, looking up all stack
119 addresses is costly. */
120
121 static bool
122 can_simplify_addr (rtx addr)
123 {
124 rtx reg;
125
126 if (CONSTANT_ADDRESS_P (addr))
127 return false;
128
129 if (GET_CODE (addr) == PLUS)
130 reg = XEXP (addr, 0);
131 else
132 reg = addr;
133
134 return (!REG_P (reg)
135 || (REGNO (reg) != FRAME_POINTER_REGNUM
136 && REGNO (reg) != HARD_FRAME_POINTER_REGNUM
137 && REGNO (reg) != ARG_POINTER_REGNUM));
138 }
139
140 /* Returns a canonical version of X for the address, from the point of view,
141 that all multiplications are represented as MULT instead of the multiply
142 by a power of 2 being represented as ASHIFT.
143
144 Every ASHIFT we find has been made by simplify_gen_binary and was not
145 there before, so it is not shared. So we can do this in place. */
146
147 static void
148 canonicalize_address (rtx x)
149 {
150 for (;;)
151 switch (GET_CODE (x))
152 {
153 case ASHIFT:
154 if (GET_CODE (XEXP (x, 1)) == CONST_INT
155 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x))
156 && INTVAL (XEXP (x, 1)) >= 0)
157 {
158 HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
159 PUT_CODE (x, MULT);
160 XEXP (x, 1) = gen_int_mode ((HOST_WIDE_INT) 1 << shift,
161 GET_MODE (x));
162 }
163
164 x = XEXP (x, 0);
165 break;
166
167 case PLUS:
168 if (GET_CODE (XEXP (x, 0)) == PLUS
169 || GET_CODE (XEXP (x, 0)) == ASHIFT
170 || GET_CODE (XEXP (x, 0)) == CONST)
171 canonicalize_address (XEXP (x, 0));
172
173 x = XEXP (x, 1);
174 break;
175
176 case CONST:
177 x = XEXP (x, 0);
178 break;
179
180 default:
181 return;
182 }
183 }
184
185 /* OLD is a memory address. Return whether it is good to use NEW instead,
186 for a memory access in the given MODE. */
187
188 static bool
189 should_replace_address (rtx old, rtx new, enum machine_mode mode)
190 {
191 int gain;
192
193 if (rtx_equal_p (old, new) || !memory_address_p (mode, new))
194 return false;
195
196 /* Copy propagation is always ok. */
197 if (REG_P (old) && REG_P (new))
198 return true;
199
200 /* Prefer the new address if it is less expensive. */
201 gain = address_cost (old, mode) - address_cost (new, mode);
202
203 /* If the addresses have equivalent cost, prefer the new address
204 if it has the highest `rtx_cost'. That has the potential of
205 eliminating the most insns without additional costs, and it
206 is the same that cse.c used to do. */
207 if (gain == 0)
208 gain = rtx_cost (new, SET) - rtx_cost (old, SET);
209
210 return (gain > 0);
211 }
212
213 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
214 resulting expression. Replace *PX with a new RTL expression if an
215 occurrence of OLD was found.
216
217 If CAN_APPEAR is true, we always return true; if it is false, we
218 can return false if, for at least one occurrence OLD, we failed to
219 collapse the result to a constant. For example, (mult:M (reg:M A)
220 (minus:M (reg:M B) (reg:M A))) may collapse to zero if replacing
221 (reg:M B) with (reg:M A).
222
223 CAN_APPEAR is disregarded inside MEMs: in that case, we always return
224 true if the simplification is a cheaper and valid memory address.
225
226 This is only a wrapper around simplify-rtx.c: do not add any pattern
227 matching code here. (The sole exception is the handling of LO_SUM, but
228 that is because there is no simplify_gen_* function for LO_SUM). */
229
230 static bool
231 propagate_rtx_1 (rtx *px, rtx old, rtx new, bool can_appear)
232 {
233 rtx x = *px, tem = NULL_RTX, op0, op1, op2;
234 enum rtx_code code = GET_CODE (x);
235 enum machine_mode mode = GET_MODE (x);
236 enum machine_mode op_mode;
237 bool valid_ops = true;
238
239 /* If X is OLD_RTX, return NEW_RTX. Otherwise, if this is an expression,
240 try to build a new expression from recursive substitution. */
241
242 if (x == old)
243 {
244 *px = new;
245 return can_appear;
246 }
247
248 switch (GET_RTX_CLASS (code))
249 {
250 case RTX_UNARY:
251 op0 = XEXP (x, 0);
252 op_mode = GET_MODE (op0);
253 valid_ops &= propagate_rtx_1 (&op0, old, new, can_appear);
254 if (op0 == XEXP (x, 0))
255 return true;
256 tem = simplify_gen_unary (code, mode, op0, op_mode);
257 break;
258
259 case RTX_BIN_ARITH:
260 case RTX_COMM_ARITH:
261 op0 = XEXP (x, 0);
262 op1 = XEXP (x, 1);
263 valid_ops &= propagate_rtx_1 (&op0, old, new, can_appear);
264 valid_ops &= propagate_rtx_1 (&op1, old, new, can_appear);
265 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
266 return true;
267 tem = simplify_gen_binary (code, mode, op0, op1);
268 break;
269
270 case RTX_COMPARE:
271 case RTX_COMM_COMPARE:
272 op0 = XEXP (x, 0);
273 op1 = XEXP (x, 1);
274 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
275 valid_ops &= propagate_rtx_1 (&op0, old, new, can_appear);
276 valid_ops &= propagate_rtx_1 (&op1, old, new, can_appear);
277 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
278 return true;
279 tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
280 break;
281
282 case RTX_TERNARY:
283 case RTX_BITFIELD_OPS:
284 op0 = XEXP (x, 0);
285 op1 = XEXP (x, 1);
286 op2 = XEXP (x, 2);
287 op_mode = GET_MODE (op0);
288 valid_ops &= propagate_rtx_1 (&op0, old, new, can_appear);
289 valid_ops &= propagate_rtx_1 (&op1, old, new, can_appear);
290 valid_ops &= propagate_rtx_1 (&op2, old, new, can_appear);
291 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
292 return true;
293 if (op_mode == VOIDmode)
294 op_mode = GET_MODE (op0);
295 tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
296 break;
297
298 case RTX_EXTRA:
299 /* The only case we try to handle is a SUBREG. */
300 if (code == SUBREG)
301 {
302 op0 = XEXP (x, 0);
303 valid_ops &= propagate_rtx_1 (&op0, old, new, can_appear);
304 if (op0 == XEXP (x, 0))
305 return true;
306 tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
307 SUBREG_BYTE (x));
308 }
309 break;
310
311 case RTX_OBJ:
312 if (code == MEM && x != new)
313 {
314 rtx new_op0;
315 op0 = XEXP (x, 0);
316
317 /* There are some addresses that we cannot work on. */
318 if (!can_simplify_addr (op0))
319 return true;
320
321 op0 = new_op0 = targetm.delegitimize_address (op0);
322 valid_ops &= propagate_rtx_1 (&new_op0, old, new, true);
323
324 /* Dismiss transformation that we do not want to carry on. */
325 if (!valid_ops
326 || new_op0 == op0
327 || !(GET_MODE (new_op0) == GET_MODE (op0)
328 || GET_MODE (new_op0) == VOIDmode))
329 return true;
330
331 canonicalize_address (new_op0);
332
333 /* Copy propagations are always ok. Otherwise check the costs. */
334 if (!(REG_P (old) && REG_P (new))
335 && !should_replace_address (op0, new_op0, GET_MODE (x)))
336 return true;
337
338 tem = replace_equiv_address_nv (x, new_op0);
339 }
340
341 else if (code == LO_SUM)
342 {
343 op0 = XEXP (x, 0);
344 op1 = XEXP (x, 1);
345
346 /* The only simplification we do attempts to remove references to op0
347 or make it constant -- in both cases, op0's invalidity will not
348 make the result invalid. */
349 propagate_rtx_1 (&op0, old, new, true);
350 valid_ops &= propagate_rtx_1 (&op1, old, new, can_appear);
351 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
352 return true;
353
354 /* (lo_sum (high x) x) -> x */
355 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
356 tem = op1;
357 else
358 tem = gen_rtx_LO_SUM (mode, op0, op1);
359
360 /* OP1 is likely not a legitimate address, otherwise there would have
361 been no LO_SUM. We want it to disappear if it is invalid, return
362 false in that case. */
363 return memory_address_p (mode, tem);
364 }
365
366 else if (code == REG)
367 {
368 if (rtx_equal_p (x, old))
369 {
370 *px = new;
371 return can_appear;
372 }
373 }
374 break;
375
376 default:
377 break;
378 }
379
380 /* No change, no trouble. */
381 if (tem == NULL_RTX)
382 return true;
383
384 *px = tem;
385
386 /* The replacement we made so far is valid, if all of the recursive
387 replacements were valid, or we could simplify everything to
388 a constant. */
389 return valid_ops || can_appear || CONSTANT_P (tem);
390 }
391
392 /* Replace all occurrences of OLD in X with NEW and try to simplify the
393 resulting expression (in mode MODE). Return a new expression if it is
394 a constant, otherwise X.
395
396 Simplifications where occurrences of NEW collapse to a constant are always
397 accepted. All simplifications are accepted if NEW is a pseudo too.
398 Otherwise, we accept simplifications that have a lower or equal cost. */
399
400 static rtx
401 propagate_rtx (rtx x, enum machine_mode mode, rtx old, rtx new)
402 {
403 rtx tem;
404 bool collapsed;
405
406 if (REG_P (new) && REGNO (new) < FIRST_PSEUDO_REGISTER)
407 return NULL_RTX;
408
409 new = copy_rtx (new);
410
411 tem = x;
412 collapsed = propagate_rtx_1 (&tem, old, new, REG_P (new) || CONSTANT_P (new));
413 if (tem == x || !collapsed)
414 return NULL_RTX;
415
416 /* gen_lowpart_common will not be able to process VOIDmode entities other
417 than CONST_INTs. */
418 if (GET_MODE (tem) == VOIDmode && GET_CODE (tem) != CONST_INT)
419 return NULL_RTX;
420
421 if (GET_MODE (tem) == VOIDmode)
422 tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
423 else
424 gcc_assert (GET_MODE (tem) == mode);
425
426 return tem;
427 }
428
429
430 \f
431
432 /* Return true if the register from reference REF is killed
433 between FROM to (but not including) TO. */
434
435 static bool
436 local_ref_killed_between_p (struct df_ref * ref, rtx from, rtx to)
437 {
438 rtx insn;
439 struct df_ref *def;
440
441 for (insn = from; insn != to; insn = NEXT_INSN (insn))
442 {
443 if (!INSN_P (insn))
444 continue;
445
446 def = DF_INSN_DEFS (df, insn);
447 while (def)
448 {
449 if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
450 return true;
451 def = def->next_ref;
452 }
453 }
454 return false;
455 }
456
457
458 /* Check if the given DEF is available in INSN. This would require full
459 computation of available expressions; we check only restricted conditions:
460 - if DEF is the sole definition of its register, go ahead;
461 - in the same basic block, we check for no definitions killing the
462 definition of DEF_INSN;
463 - if USE's basic block has DEF's basic block as the sole predecessor,
464 we check if the definition is killed after DEF_INSN or before
465 TARGET_INSN insn, in their respective basic blocks. */
466 static bool
467 use_killed_between (struct df_ref *use, rtx def_insn, rtx target_insn)
468 {
469 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
470 basic_block target_bb = BLOCK_FOR_INSN (target_insn);
471 int regno;
472 struct df_ref * def;
473
474 /* In some obscure situations we can have a def reaching a use
475 that is _before_ the def. In other words the def does not
476 dominate the use even though the use and def are in the same
477 basic block. This can happen when a register may be used
478 uninitialized in a loop. In such cases, we must assume that
479 DEF is not available. */
480 if (def_bb == target_bb
481 ? DF_INSN_LUID (df, def_insn) >= DF_INSN_LUID (df, target_insn)
482 : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
483 return true;
484
485 /* Check if the reg in USE has only one definition. We already
486 know that this definition reaches use, or we wouldn't be here. */
487 regno = DF_REF_REGNO (use);
488 def = DF_REG_DEF_GET (df, regno)->reg_chain;
489 if (def && (def->next_reg == NULL))
490 return false;
491
492 /* Check locally if we are in the same basic block. */
493 if (def_bb == target_bb)
494 return local_ref_killed_between_p (use, def_insn, target_insn);
495
496 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
497 if (single_pred_p (target_bb)
498 && single_pred (target_bb) == def_bb)
499 {
500 struct df_ref *x;
501
502 /* See if USE is killed between DEF_INSN and the last insn in the
503 basic block containing DEF_INSN. */
504 x = df_bb_regno_last_def_find (df, def_bb, regno);
505 if (x && DF_INSN_LUID (df, x->insn) >= DF_INSN_LUID (df, def_insn))
506 return true;
507
508 /* See if USE is killed between TARGET_INSN and the first insn in the
509 basic block containing TARGET_INSN. */
510 x = df_bb_regno_first_def_find (df, target_bb, regno);
511 if (x && DF_INSN_LUID (df, x->insn) < DF_INSN_LUID (df, target_insn))
512 return true;
513
514 return false;
515 }
516
517 /* Otherwise assume the worst case. */
518 return true;
519 }
520
521
522 /* for_each_rtx traversal function that returns 1 if BODY points to
523 a non-constant mem. */
524
525 static int
526 varying_mem_p (rtx *body, void *data ATTRIBUTE_UNUSED)
527 {
528 rtx x = *body;
529 return MEM_P (x) && !MEM_READONLY_P (x);
530 }
531
532 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
533 would require full computation of available expressions;
534 we check only restricted conditions, see use_killed_between. */
535 static bool
536 all_uses_available_at (rtx def_insn, rtx target_insn)
537 {
538 struct df_ref * use;
539 rtx def_set = single_set (def_insn);
540
541 gcc_assert (def_set);
542
543 /* If target_insn comes right after def_insn, which is very common
544 for addresses, we can use a quicker test. */
545 if (NEXT_INSN (def_insn) == target_insn
546 && REG_P (SET_DEST (def_set)))
547 {
548 rtx def_reg = SET_DEST (def_set);
549
550 /* If the insn uses the reg that it defines, the substitution is
551 invalid. */
552 for (use = DF_INSN_USES (df, def_insn); use; use = use->next_ref)
553 if (rtx_equal_p (use->reg, def_reg))
554 return false;
555 }
556 else
557 {
558 /* Look at all the uses of DEF_INSN, and see if they are not
559 killed between DEF_INSN and TARGET_INSN. */
560 for (use = DF_INSN_USES (df, def_insn); use; use = use->next_ref)
561 if (use_killed_between (use, def_insn, target_insn))
562 return false;
563 }
564
565 /* We don't do any analysis of memories or aliasing. Reject any
566 instruction that involves references to non-constant memory. */
567 return !for_each_rtx (&SET_SRC (def_set), varying_mem_p, NULL);
568 }
569
570 \f
571 struct find_occurrence_data
572 {
573 rtx find;
574 rtx *retval;
575 };
576
577 /* Callback for for_each_rtx, used in find_occurrence.
578 See if PX is the rtx we have to find. Return 1 to stop for_each_rtx
579 if successful, or 0 to continue traversing otherwise. */
580
581 static int
582 find_occurrence_callback (rtx *px, void *data)
583 {
584 struct find_occurrence_data *fod = (struct find_occurrence_data *) data;
585 rtx x = *px;
586 rtx find = fod->find;
587
588 if (x == find)
589 {
590 fod->retval = px;
591 return 1;
592 }
593
594 return 0;
595 }
596
597 /* Return a pointer to one of the occurrences of register FIND in *PX. */
598
599 static rtx *
600 find_occurrence (rtx *px, rtx find)
601 {
602 struct find_occurrence_data data;
603
604 gcc_assert (REG_P (find)
605 || (GET_CODE (find) == SUBREG
606 && REG_P (SUBREG_REG (find))));
607
608 data.find = find;
609 data.retval = NULL;
610 for_each_rtx (px, find_occurrence_callback, &data);
611 return data.retval;
612 }
613
614 \f
615 /* Inside INSN, the expression rooted at *LOC has been changed, moving some
616 uses from ORIG_USES. Find those that are present, and create new items
617 in the data flow object of the pass. Mark any new uses as having the
618 given TYPE. */
619 static void
620 update_df (rtx insn, rtx *loc, struct df_ref *orig_uses, enum df_ref_type type,
621 int new_flags)
622 {
623 struct df_ref *use;
624
625 /* Add a use for the registers that were propagated. */
626 for (use = orig_uses; use; use = use->next_ref)
627 {
628 struct df_ref *orig_use = use, *new_use;
629 rtx *new_loc = find_occurrence (loc, DF_REF_REG (orig_use));
630
631 if (!new_loc)
632 continue;
633
634 /* Add a new insn use. Use the original type, because it says if the
635 use was within a MEM. */
636 new_use = df_ref_create (df, DF_REF_REG (orig_use), new_loc,
637 insn, BLOCK_FOR_INSN (insn),
638 type, DF_REF_FLAGS (orig_use) | new_flags);
639
640 /* Set up the use-def chain. */
641 df_chain_copy (df->problems_by_index[DF_CHAIN],
642 new_use, DF_REF_CHAIN (orig_use));
643 }
644 }
645
646
647 /* Try substituting NEW into LOC, which originated from forward propagation
648 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
649 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
650 new insn is not recognized. Return whether the substitution was
651 performed. */
652
653 static bool
654 try_fwprop_subst (struct df_ref *use, rtx *loc, rtx new, rtx def_insn, bool set_reg_equal)
655 {
656 rtx insn = DF_REF_INSN (use);
657 enum df_ref_type type = DF_REF_TYPE (use);
658 int flags = DF_REF_FLAGS (use);
659
660 if (dump_file)
661 {
662 fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
663 print_inline_rtx (dump_file, *loc, 2);
664 fprintf (dump_file, "\n with ");
665 print_inline_rtx (dump_file, new, 2);
666 fprintf (dump_file, "\n");
667 }
668
669 if (validate_change (insn, loc, new, false))
670 {
671 num_changes++;
672 if (dump_file)
673 fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
674
675 /* Unlink the use that we changed. */
676 df_ref_remove (df, use);
677 if (!CONSTANT_P (new))
678 update_df (insn, loc, DF_INSN_USES (df, def_insn), type, flags);
679
680 return true;
681 }
682 else
683 {
684 if (dump_file)
685 fprintf (dump_file, "Changes to insn %d not recognized\n",
686 INSN_UID (insn));
687
688 /* Can also record a simplified value in a REG_EQUAL note, making a
689 new one if one does not already exist. */
690 if (set_reg_equal)
691 {
692 if (dump_file)
693 fprintf (dump_file, " Setting REG_EQUAL note\n");
694
695 set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new));
696
697 /* ??? Is this still necessary if we add the note through
698 set_unique_reg_note? */
699 if (!CONSTANT_P (new))
700 update_df (insn, loc, DF_INSN_USES (df, def_insn),
701 type, DF_REF_IN_NOTE);
702 }
703
704 return false;
705 }
706 }
707
708
709 /* If USE is a paradoxical subreg, see if it can be replaced by a pseudo. */
710
711 static bool
712 forward_propagate_subreg (struct df_ref *use, rtx def_insn, rtx def_set)
713 {
714 rtx use_reg = DF_REF_REG (use);
715 rtx use_insn, src;
716
717 /* Only consider paradoxical subregs... */
718 enum machine_mode use_mode = GET_MODE (use_reg);
719 if (GET_CODE (use_reg) != SUBREG
720 || !REG_P (SET_DEST (def_set))
721 || GET_MODE_SIZE (use_mode)
722 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg))))
723 return false;
724
725 /* If this is a paradoxical SUBREG, we have no idea what value the
726 extra bits would have. However, if the operand is equivalent to
727 a SUBREG whose operand is the same as our mode, and all the modes
728 are within a word, we can just use the inner operand because
729 these SUBREGs just say how to treat the register. */
730 use_insn = DF_REF_INSN (use);
731 src = SET_SRC (def_set);
732 if (GET_CODE (src) == SUBREG
733 && REG_P (SUBREG_REG (src))
734 && GET_MODE (SUBREG_REG (src)) == use_mode
735 && subreg_lowpart_p (src)
736 && all_uses_available_at (def_insn, use_insn))
737 return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
738 def_insn, false);
739 else
740 return false;
741 }
742
743 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
744 result. */
745
746 static bool
747 forward_propagate_and_simplify (struct df_ref *use, rtx def_insn, rtx def_set)
748 {
749 rtx use_insn = DF_REF_INSN (use);
750 rtx use_set = single_set (use_insn);
751 rtx src, reg, new, *loc;
752 bool set_reg_equal;
753 enum machine_mode mode;
754
755 if (!use_set)
756 return false;
757
758 /* Do not propagate into PC, CC0, etc. */
759 if (GET_MODE (SET_DEST (use_set)) == VOIDmode)
760 return false;
761
762 /* If def and use are subreg, check if they match. */
763 reg = DF_REF_REG (use);
764 if (GET_CODE (reg) == SUBREG
765 && GET_CODE (SET_DEST (def_set)) == SUBREG
766 && (SUBREG_BYTE (SET_DEST (def_set)) != SUBREG_BYTE (reg)
767 || GET_MODE (SET_DEST (def_set)) != GET_MODE (reg)))
768 return false;
769
770 /* Check if the def had a subreg, but the use has the whole reg. */
771 if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
772 return false;
773
774 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
775 previous case, the optimization is possible and often useful indeed. */
776 if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
777 reg = SUBREG_REG (reg);
778
779 /* Check if the substitution is valid (last, because it's the most
780 expensive check!). */
781 src = SET_SRC (def_set);
782 if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
783 return false;
784
785 /* Check if the def is loading something from the constant pool; in this
786 case we would undo optimization such as compress_float_constant.
787 Still, we can set a REG_EQUAL note. */
788 if (MEM_P (src) && MEM_READONLY_P (src))
789 {
790 rtx x = avoid_constant_pool_reference (src);
791 if (x != src)
792 {
793 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
794 rtx old = note ? XEXP (note, 0) : SET_SRC (use_set);
795 rtx new = simplify_replace_rtx (old, src, x);
796 if (old != new)
797 set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new));
798 }
799 return false;
800 }
801
802 /* Else try simplifying. */
803
804 if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
805 {
806 loc = &SET_DEST (use_set);
807 set_reg_equal = false;
808 }
809 else
810 {
811 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
812 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
813 loc = &XEXP (note, 0);
814 else
815 loc = &SET_SRC (use_set);
816
817 /* Do not replace an existing REG_EQUAL note if the insn is not
818 recognized. Either we're already replacing in the note, or
819 we'll separately try plugging the definition in the note and
820 simplifying. */
821 set_reg_equal = (note == NULL_RTX);
822 }
823
824 if (GET_MODE (*loc) == VOIDmode)
825 mode = GET_MODE (SET_DEST (use_set));
826 else
827 mode = GET_MODE (*loc);
828
829 new = propagate_rtx (*loc, mode, reg, src);
830
831 if (!new)
832 return false;
833
834 return try_fwprop_subst (use, loc, new, def_insn, set_reg_equal);
835 }
836
837
838 /* Given a use USE of an insn, if it has a single reaching
839 definition, try to forward propagate it into that insn. */
840
841 static void
842 forward_propagate_into (struct df_ref *use)
843 {
844 struct df_link *defs;
845 struct df_ref *def;
846 rtx def_insn, def_set, use_insn;
847 rtx parent;
848
849 if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
850 return;
851 if (DF_REF_FLAGS (use) & DF_REF_ARTIFICIAL)
852 return;
853
854 /* Only consider uses that have a single definition. */
855 defs = DF_REF_CHAIN (use);
856 if (!defs || defs->next)
857 return;
858
859 def = defs->ref;
860 if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
861 return;
862 if (DF_REF_FLAGS (def) & DF_REF_ARTIFICIAL)
863 return;
864
865 /* Do not propagate loop invariant definitions inside the loop. */
866 if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
867 return;
868
869 /* Check if the use is still present in the insn! */
870 use_insn = DF_REF_INSN (use);
871 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
872 parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
873 else
874 parent = PATTERN (use_insn);
875
876 if (!loc_mentioned_in_p (DF_REF_LOC (use), parent))
877 return;
878
879 def_insn = DF_REF_INSN (def);
880 def_set = single_set (def_insn);
881 if (!def_set)
882 return;
883
884 /* Only try one kind of propagation. If two are possible, we'll
885 do it on the following iterations. */
886 if (!forward_propagate_and_simplify (use, def_insn, def_set))
887 forward_propagate_subreg (use, def_insn, def_set);
888 }
889
890 \f
891 static void
892 fwprop_init (void)
893 {
894 num_changes = 0;
895 calculate_dominance_info (CDI_DOMINATORS);
896
897 /* We do not always want to propagate into loops, so we have to find
898 loops and be careful about them. But we have to call flow_loops_find
899 before df_analyze, because flow_loops_find may introduce new jump
900 insns (sadly) if we are not working in cfglayout mode. */
901 loop_optimizer_init (0);
902
903 /* Now set up the dataflow problem (we only want use-def chains) and
904 put the dataflow solver to work. */
905 df = df_init (DF_HARD_REGS | DF_SUBREGS | DF_EQUIV_NOTES);
906 df_chain_add_problem (df, DF_UD_CHAIN);
907 df_analyze (df);
908 df_dump (df, dump_file);
909 }
910
911 static void
912 fwprop_done (void)
913 {
914 df_finish (df);
915 loop_optimizer_finalize ();
916 free_dominance_info (CDI_DOMINATORS);
917 cleanup_cfg (0);
918 delete_trivially_dead_insns (get_insns (), max_reg_num ());
919
920 if (dump_file)
921 fprintf (dump_file,
922 "\nNumber of successful forward propagations: %d\n\n",
923 num_changes);
924 }
925
926
927
928 /* Main entry point. */
929
930 static bool
931 gate_fwprop (void)
932 {
933 return optimize > 0 && flag_forward_propagate;
934 }
935
936 static unsigned int
937 fwprop (void)
938 {
939 unsigned i;
940
941 fwprop_init ();
942
943 /* Go through all the uses. update_df will create new ones at the
944 end, and we'll go through them as well.
945
946 Do not forward propagate addresses into loops until after unrolling.
947 CSE did so because it was able to fix its own mess, but we are not. */
948
949 df_reorganize_refs (&df->use_info);
950 for (i = 0; i < DF_USES_SIZE (df); i++)
951 {
952 struct df_ref *use = DF_USES_GET (df, i);
953 if (use)
954 if (DF_REF_TYPE (use) == DF_REF_REG_USE
955 || DF_REF_BB (use)->loop_father == NULL)
956 forward_propagate_into (use);
957 }
958
959 fwprop_done ();
960
961 return 0;
962 }
963
964 struct tree_opt_pass pass_rtl_fwprop =
965 {
966 "fwprop1", /* name */
967 gate_fwprop, /* gate */
968 fwprop, /* execute */
969 NULL, /* sub */
970 NULL, /* next */
971 0, /* static_pass_number */
972 TV_FWPROP, /* tv_id */
973 0, /* properties_required */
974 0, /* properties_provided */
975 0, /* properties_destroyed */
976 0, /* todo_flags_start */
977 TODO_dump_func, /* todo_flags_finish */
978 0 /* letter */
979 };
980
981 static unsigned int
982 fwprop_addr (void)
983 {
984 unsigned i;
985 fwprop_init ();
986
987 /* Go through all the uses. update_df will create new ones at the
988 end, and we'll go through them as well. */
989 df_reorganize_refs (&df->use_info);
990 for (i = 0; i < DF_USES_SIZE (df); i++)
991 {
992 struct df_ref *use = DF_USES_GET (df, i);
993 if (use)
994 if (DF_REF_TYPE (use) != DF_REF_REG_USE
995 && DF_REF_BB (use)->loop_father != NULL)
996 forward_propagate_into (use);
997 }
998
999 fwprop_done ();
1000
1001 return 0;
1002 }
1003
1004 struct tree_opt_pass pass_rtl_fwprop_addr =
1005 {
1006 "fwprop2", /* name */
1007 gate_fwprop, /* gate */
1008 fwprop_addr, /* execute */
1009 NULL, /* sub */
1010 NULL, /* next */
1011 0, /* static_pass_number */
1012 TV_FWPROP, /* tv_id */
1013 0, /* properties_required */
1014 0, /* properties_provided */
1015 0, /* properties_destroyed */
1016 0, /* todo_flags_start */
1017 TODO_dump_func, /* todo_flags_finish */
1018 0 /* letter */
1019 };