In gcc/objc/: 2010-11-22 Nicola Pero <nicola.pero@meta-innovation.com>
[gcc.git] / gcc / fwprop.c
1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Paolo Bonzini and Steven Bosscher.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "diagnostic-core.h"
27 #include "toplev.h"
28
29 #include "sparseset.h"
30 #include "timevar.h"
31 #include "rtl.h"
32 #include "tm_p.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "flags.h"
36 #include "obstack.h"
37 #include "basic-block.h"
38 #include "output.h"
39 #include "df.h"
40 #include "target.h"
41 #include "cfgloop.h"
42 #include "tree-pass.h"
43 #include "domwalk.h"
44 #include "emit-rtl.h"
45
46
47 /* This pass does simple forward propagation and simplification when an
48 operand of an insn can only come from a single def. This pass uses
49 df.c, so it is global. However, we only do limited analysis of
50 available expressions.
51
52 1) The pass tries to propagate the source of the def into the use,
53 and checks if the result is independent of the substituted value.
54 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
55 zero, independent of the source register.
56
57 In particular, we propagate constants into the use site. Sometimes
58 RTL expansion did not put the constant in the same insn on purpose,
59 to satisfy a predicate, and the result will fail to be recognized;
60 but this happens rarely and in this case we can still create a
61 REG_EQUAL note. For multi-word operations, this
62
63 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
64 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
65 (set (subreg:SI (reg:DI 122) 0)
66 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
67 (set (subreg:SI (reg:DI 122) 4)
68 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
69
70 can be simplified to the much simpler
71
72 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
73 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
74
75 This particular propagation is also effective at putting together
76 complex addressing modes. We are more aggressive inside MEMs, in
77 that all definitions are propagated if the use is in a MEM; if the
78 result is a valid memory address we check address_cost to decide
79 whether the substitution is worthwhile.
80
81 2) The pass propagates register copies. This is not as effective as
82 the copy propagation done by CSE's canon_reg, which works by walking
83 the instruction chain, it can help the other transformations.
84
85 We should consider removing this optimization, and instead reorder the
86 RTL passes, because GCSE does this transformation too. With some luck,
87 the CSE pass at the end of rest_of_handle_gcse could also go away.
88
89 3) The pass looks for paradoxical subregs that are actually unnecessary.
90 Things like this:
91
92 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
93 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
94 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
95 (subreg:SI (reg:QI 121) 0)))
96
97 are very common on machines that can only do word-sized operations.
98 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
99 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
100 we can replace the paradoxical subreg with simply (reg:WIDE M). The
101 above will simplify this to
102
103 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
104 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
105 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
106
107 where the first two insns are now dead.
108
109 We used to use reaching definitions to find which uses have a
110 single reaching definition (sounds obvious...), but this is too
111 complex a problem in nasty testcases like PR33928. Now we use the
112 multiple definitions problem in df-problems.c. The similarity
113 between that problem and SSA form creation is taken further, in
114 that fwprop does a dominator walk to create its chains; however,
115 instead of creating a PHI function where multiple definitions meet
116 I just punt and record only singleton use-def chains, which is
117 all that is needed by fwprop. */
118
119
120 static int num_changes;
121
122 DEF_VEC_P(df_ref);
123 DEF_VEC_ALLOC_P(df_ref,heap);
124 static VEC(df_ref,heap) *use_def_ref;
125 static VEC(df_ref,heap) *reg_defs;
126 static VEC(df_ref,heap) *reg_defs_stack;
127
128 /* The MD bitmaps are trimmed to include only live registers to cut
129 memory usage on testcases like insn-recog.c. Track live registers
130 in the basic block and do not perform forward propagation if the
131 destination is a dead pseudo occurring in a note. */
132 static bitmap local_md;
133 static bitmap local_lr;
134
135 /* Return the only def in USE's use-def chain, or NULL if there is
136 more than one def in the chain. */
137
138 static inline df_ref
139 get_def_for_use (df_ref use)
140 {
141 return VEC_index (df_ref, use_def_ref, DF_REF_ID (use));
142 }
143
144
145 /* Update the reg_defs vector with non-partial definitions in DEF_REC.
146 TOP_FLAG says which artificials uses should be used, when DEF_REC
147 is an artificial def vector. LOCAL_MD is modified as after a
148 df_md_simulate_* function; we do more or less the same processing
149 done there, so we do not use those functions. */
150
151 #define DF_MD_GEN_FLAGS \
152 (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
153
154 static void
155 process_defs (df_ref *def_rec, int top_flag)
156 {
157 df_ref def;
158 while ((def = *def_rec++) != NULL)
159 {
160 df_ref curr_def = VEC_index (df_ref, reg_defs, DF_REF_REGNO (def));
161 unsigned int dregno;
162
163 if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) != top_flag)
164 continue;
165
166 dregno = DF_REF_REGNO (def);
167 if (curr_def)
168 VEC_safe_push (df_ref, heap, reg_defs_stack, curr_def);
169 else
170 {
171 /* Do not store anything if "transitioning" from NULL to NULL. But
172 otherwise, push a special entry on the stack to tell the
173 leave_block callback that the entry in reg_defs was NULL. */
174 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
175 ;
176 else
177 VEC_safe_push (df_ref, heap, reg_defs_stack, def);
178 }
179
180 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
181 {
182 bitmap_set_bit (local_md, dregno);
183 VEC_replace (df_ref, reg_defs, dregno, NULL);
184 }
185 else
186 {
187 bitmap_clear_bit (local_md, dregno);
188 VEC_replace (df_ref, reg_defs, dregno, def);
189 }
190 }
191 }
192
193
194 /* Fill the use_def_ref vector with values for the uses in USE_REC,
195 taking reaching definitions info from LOCAL_MD and REG_DEFS.
196 TOP_FLAG says which artificials uses should be used, when USE_REC
197 is an artificial use vector. */
198
199 static void
200 process_uses (df_ref *use_rec, int top_flag)
201 {
202 df_ref use;
203 while ((use = *use_rec++) != NULL)
204 if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == top_flag)
205 {
206 unsigned int uregno = DF_REF_REGNO (use);
207 if (VEC_index (df_ref, reg_defs, uregno)
208 && !bitmap_bit_p (local_md, uregno)
209 && bitmap_bit_p (local_lr, uregno))
210 VEC_replace (df_ref, use_def_ref, DF_REF_ID (use),
211 VEC_index (df_ref, reg_defs, uregno));
212 }
213 }
214
215
216 static void
217 single_def_use_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
218 basic_block bb)
219 {
220 int bb_index = bb->index;
221 struct df_md_bb_info *md_bb_info = df_md_get_bb_info (bb_index);
222 struct df_lr_bb_info *lr_bb_info = df_lr_get_bb_info (bb_index);
223 rtx insn;
224
225 bitmap_copy (local_md, &md_bb_info->in);
226 bitmap_copy (local_lr, &lr_bb_info->in);
227
228 /* Push a marker for the leave_block callback. */
229 VEC_safe_push (df_ref, heap, reg_defs_stack, NULL);
230
231 process_uses (df_get_artificial_uses (bb_index), DF_REF_AT_TOP);
232 process_defs (df_get_artificial_defs (bb_index), DF_REF_AT_TOP);
233
234 /* We don't call df_simulate_initialize_forwards, as it may overestimate
235 the live registers if there are unused artificial defs. We prefer
236 liveness to be underestimated. */
237
238 FOR_BB_INSNS (bb, insn)
239 if (INSN_P (insn))
240 {
241 unsigned int uid = INSN_UID (insn);
242 process_uses (DF_INSN_UID_USES (uid), 0);
243 process_uses (DF_INSN_UID_EQ_USES (uid), 0);
244 process_defs (DF_INSN_UID_DEFS (uid), 0);
245 df_simulate_one_insn_forwards (bb, insn, local_lr);
246 }
247
248 process_uses (df_get_artificial_uses (bb_index), 0);
249 process_defs (df_get_artificial_defs (bb_index), 0);
250 }
251
252 /* Pop the definitions created in this basic block when leaving its
253 dominated parts. */
254
255 static void
256 single_def_use_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
257 basic_block bb ATTRIBUTE_UNUSED)
258 {
259 df_ref saved_def;
260 while ((saved_def = VEC_pop (df_ref, reg_defs_stack)) != NULL)
261 {
262 unsigned int dregno = DF_REF_REGNO (saved_def);
263
264 /* See also process_defs. */
265 if (saved_def == VEC_index (df_ref, reg_defs, dregno))
266 VEC_replace (df_ref, reg_defs, dregno, NULL);
267 else
268 VEC_replace (df_ref, reg_defs, dregno, saved_def);
269 }
270 }
271
272
273 /* Build a vector holding the reaching definitions of uses reached by a
274 single dominating definition. */
275
276 static void
277 build_single_def_use_links (void)
278 {
279 struct dom_walk_data walk_data;
280
281 /* We use the multiple definitions problem to compute our restricted
282 use-def chains. */
283 df_set_flags (DF_EQ_NOTES);
284 df_md_add_problem ();
285 df_note_add_problem ();
286 df_analyze ();
287 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES);
288
289 use_def_ref = VEC_alloc (df_ref, heap, DF_USES_TABLE_SIZE ());
290 VEC_safe_grow_cleared (df_ref, heap, use_def_ref, DF_USES_TABLE_SIZE ());
291
292 reg_defs = VEC_alloc (df_ref, heap, max_reg_num ());
293 VEC_safe_grow_cleared (df_ref, heap, reg_defs, max_reg_num ());
294
295 reg_defs_stack = VEC_alloc (df_ref, heap, n_basic_blocks * 10);
296 local_md = BITMAP_ALLOC (NULL);
297 local_lr = BITMAP_ALLOC (NULL);
298
299 /* Walk the dominator tree looking for single reaching definitions
300 dominating the uses. This is similar to how SSA form is built. */
301 walk_data.dom_direction = CDI_DOMINATORS;
302 walk_data.initialize_block_local_data = NULL;
303 walk_data.before_dom_children = single_def_use_enter_block;
304 walk_data.after_dom_children = single_def_use_leave_block;
305
306 init_walk_dominator_tree (&walk_data);
307 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
308 fini_walk_dominator_tree (&walk_data);
309
310 BITMAP_FREE (local_lr);
311 BITMAP_FREE (local_md);
312 VEC_free (df_ref, heap, reg_defs);
313 VEC_free (df_ref, heap, reg_defs_stack);
314 }
315
316 \f
317 /* Do not try to replace constant addresses or addresses of local and
318 argument slots. These MEM expressions are made only once and inserted
319 in many instructions, as well as being used to control symbol table
320 output. It is not safe to clobber them.
321
322 There are some uncommon cases where the address is already in a register
323 for some reason, but we cannot take advantage of that because we have
324 no easy way to unshare the MEM. In addition, looking up all stack
325 addresses is costly. */
326
327 static bool
328 can_simplify_addr (rtx addr)
329 {
330 rtx reg;
331
332 if (CONSTANT_ADDRESS_P (addr))
333 return false;
334
335 if (GET_CODE (addr) == PLUS)
336 reg = XEXP (addr, 0);
337 else
338 reg = addr;
339
340 return (!REG_P (reg)
341 || (REGNO (reg) != FRAME_POINTER_REGNUM
342 && REGNO (reg) != HARD_FRAME_POINTER_REGNUM
343 && REGNO (reg) != ARG_POINTER_REGNUM));
344 }
345
346 /* Returns a canonical version of X for the address, from the point of view,
347 that all multiplications are represented as MULT instead of the multiply
348 by a power of 2 being represented as ASHIFT.
349
350 Every ASHIFT we find has been made by simplify_gen_binary and was not
351 there before, so it is not shared. So we can do this in place. */
352
353 static void
354 canonicalize_address (rtx x)
355 {
356 for (;;)
357 switch (GET_CODE (x))
358 {
359 case ASHIFT:
360 if (CONST_INT_P (XEXP (x, 1))
361 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x))
362 && INTVAL (XEXP (x, 1)) >= 0)
363 {
364 HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
365 PUT_CODE (x, MULT);
366 XEXP (x, 1) = gen_int_mode ((HOST_WIDE_INT) 1 << shift,
367 GET_MODE (x));
368 }
369
370 x = XEXP (x, 0);
371 break;
372
373 case PLUS:
374 if (GET_CODE (XEXP (x, 0)) == PLUS
375 || GET_CODE (XEXP (x, 0)) == ASHIFT
376 || GET_CODE (XEXP (x, 0)) == CONST)
377 canonicalize_address (XEXP (x, 0));
378
379 x = XEXP (x, 1);
380 break;
381
382 case CONST:
383 x = XEXP (x, 0);
384 break;
385
386 default:
387 return;
388 }
389 }
390
391 /* OLD is a memory address. Return whether it is good to use NEW instead,
392 for a memory access in the given MODE. */
393
394 static bool
395 should_replace_address (rtx old_rtx, rtx new_rtx, enum machine_mode mode,
396 addr_space_t as, bool speed)
397 {
398 int gain;
399
400 if (rtx_equal_p (old_rtx, new_rtx)
401 || !memory_address_addr_space_p (mode, new_rtx, as))
402 return false;
403
404 /* Copy propagation is always ok. */
405 if (REG_P (old_rtx) && REG_P (new_rtx))
406 return true;
407
408 /* Prefer the new address if it is less expensive. */
409 gain = (address_cost (old_rtx, mode, as, speed)
410 - address_cost (new_rtx, mode, as, speed));
411
412 /* If the addresses have equivalent cost, prefer the new address
413 if it has the highest `rtx_cost'. That has the potential of
414 eliminating the most insns without additional costs, and it
415 is the same that cse.c used to do. */
416 if (gain == 0)
417 gain = rtx_cost (new_rtx, SET, speed) - rtx_cost (old_rtx, SET, speed);
418
419 return (gain > 0);
420 }
421
422
423 /* Flags for the last parameter of propagate_rtx_1. */
424
425 enum {
426 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
427 if it is false, propagate_rtx_1 returns false if, for at least
428 one occurrence OLD, it failed to collapse the result to a constant.
429 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
430 collapse to zero if replacing (reg:M B) with (reg:M A).
431
432 PR_CAN_APPEAR is disregarded inside MEMs: in that case,
433 propagate_rtx_1 just tries to make cheaper and valid memory
434 addresses. */
435 PR_CAN_APPEAR = 1,
436
437 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
438 outside memory addresses. This is needed because propagate_rtx_1 does
439 not do any analysis on memory; thus it is very conservative and in general
440 it will fail if non-read-only MEMs are found in the source expression.
441
442 PR_HANDLE_MEM is set when the source of the propagation was not
443 another MEM. Then, it is safe not to treat non-read-only MEMs as
444 ``opaque'' objects. */
445 PR_HANDLE_MEM = 2,
446
447 /* Set when costs should be optimized for speed. */
448 PR_OPTIMIZE_FOR_SPEED = 4
449 };
450
451
452 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
453 resulting expression. Replace *PX with a new RTL expression if an
454 occurrence of OLD was found.
455
456 This is only a wrapper around simplify-rtx.c: do not add any pattern
457 matching code here. (The sole exception is the handling of LO_SUM, but
458 that is because there is no simplify_gen_* function for LO_SUM). */
459
460 static bool
461 propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags)
462 {
463 rtx x = *px, tem = NULL_RTX, op0, op1, op2;
464 enum rtx_code code = GET_CODE (x);
465 enum machine_mode mode = GET_MODE (x);
466 enum machine_mode op_mode;
467 bool can_appear = (flags & PR_CAN_APPEAR) != 0;
468 bool valid_ops = true;
469
470 if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x))
471 {
472 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
473 they have side effects or not). */
474 *px = (side_effects_p (x)
475 ? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx)
476 : gen_rtx_SCRATCH (GET_MODE (x)));
477 return false;
478 }
479
480 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
481 address, and we are *not* inside one. */
482 if (x == old_rtx)
483 {
484 *px = new_rtx;
485 return can_appear;
486 }
487
488 /* If this is an expression, try recursive substitution. */
489 switch (GET_RTX_CLASS (code))
490 {
491 case RTX_UNARY:
492 op0 = XEXP (x, 0);
493 op_mode = GET_MODE (op0);
494 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
495 if (op0 == XEXP (x, 0))
496 return true;
497 tem = simplify_gen_unary (code, mode, op0, op_mode);
498 break;
499
500 case RTX_BIN_ARITH:
501 case RTX_COMM_ARITH:
502 op0 = XEXP (x, 0);
503 op1 = XEXP (x, 1);
504 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
505 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
506 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
507 return true;
508 tem = simplify_gen_binary (code, mode, op0, op1);
509 break;
510
511 case RTX_COMPARE:
512 case RTX_COMM_COMPARE:
513 op0 = XEXP (x, 0);
514 op1 = XEXP (x, 1);
515 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
516 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
517 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
518 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
519 return true;
520 tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
521 break;
522
523 case RTX_TERNARY:
524 case RTX_BITFIELD_OPS:
525 op0 = XEXP (x, 0);
526 op1 = XEXP (x, 1);
527 op2 = XEXP (x, 2);
528 op_mode = GET_MODE (op0);
529 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
530 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
531 valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags);
532 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
533 return true;
534 if (op_mode == VOIDmode)
535 op_mode = GET_MODE (op0);
536 tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
537 break;
538
539 case RTX_EXTRA:
540 /* The only case we try to handle is a SUBREG. */
541 if (code == SUBREG)
542 {
543 op0 = XEXP (x, 0);
544 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
545 if (op0 == XEXP (x, 0))
546 return true;
547 tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
548 SUBREG_BYTE (x));
549 }
550 break;
551
552 case RTX_OBJ:
553 if (code == MEM && x != new_rtx)
554 {
555 rtx new_op0;
556 op0 = XEXP (x, 0);
557
558 /* There are some addresses that we cannot work on. */
559 if (!can_simplify_addr (op0))
560 return true;
561
562 op0 = new_op0 = targetm.delegitimize_address (op0);
563 valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx,
564 flags | PR_CAN_APPEAR);
565
566 /* Dismiss transformation that we do not want to carry on. */
567 if (!valid_ops
568 || new_op0 == op0
569 || !(GET_MODE (new_op0) == GET_MODE (op0)
570 || GET_MODE (new_op0) == VOIDmode))
571 return true;
572
573 canonicalize_address (new_op0);
574
575 /* Copy propagations are always ok. Otherwise check the costs. */
576 if (!(REG_P (old_rtx) && REG_P (new_rtx))
577 && !should_replace_address (op0, new_op0, GET_MODE (x),
578 MEM_ADDR_SPACE (x),
579 flags & PR_OPTIMIZE_FOR_SPEED))
580 return true;
581
582 tem = replace_equiv_address_nv (x, new_op0);
583 }
584
585 else if (code == LO_SUM)
586 {
587 op0 = XEXP (x, 0);
588 op1 = XEXP (x, 1);
589
590 /* The only simplification we do attempts to remove references to op0
591 or make it constant -- in both cases, op0's invalidity will not
592 make the result invalid. */
593 propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR);
594 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
595 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
596 return true;
597
598 /* (lo_sum (high x) x) -> x */
599 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
600 tem = op1;
601 else
602 tem = gen_rtx_LO_SUM (mode, op0, op1);
603
604 /* OP1 is likely not a legitimate address, otherwise there would have
605 been no LO_SUM. We want it to disappear if it is invalid, return
606 false in that case. */
607 return memory_address_p (mode, tem);
608 }
609
610 else if (code == REG)
611 {
612 if (rtx_equal_p (x, old_rtx))
613 {
614 *px = new_rtx;
615 return can_appear;
616 }
617 }
618 break;
619
620 default:
621 break;
622 }
623
624 /* No change, no trouble. */
625 if (tem == NULL_RTX)
626 return true;
627
628 *px = tem;
629
630 /* The replacement we made so far is valid, if all of the recursive
631 replacements were valid, or we could simplify everything to
632 a constant. */
633 return valid_ops || can_appear || CONSTANT_P (tem);
634 }
635
636
637 /* for_each_rtx traversal function that returns 1 if BODY points to
638 a non-constant mem. */
639
640 static int
641 varying_mem_p (rtx *body, void *data ATTRIBUTE_UNUSED)
642 {
643 rtx x = *body;
644 return MEM_P (x) && !MEM_READONLY_P (x);
645 }
646
647
648 /* Replace all occurrences of OLD in X with NEW and try to simplify the
649 resulting expression (in mode MODE). Return a new expression if it is
650 a constant, otherwise X.
651
652 Simplifications where occurrences of NEW collapse to a constant are always
653 accepted. All simplifications are accepted if NEW is a pseudo too.
654 Otherwise, we accept simplifications that have a lower or equal cost. */
655
656 static rtx
657 propagate_rtx (rtx x, enum machine_mode mode, rtx old_rtx, rtx new_rtx,
658 bool speed)
659 {
660 rtx tem;
661 bool collapsed;
662 int flags;
663
664 if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER)
665 return NULL_RTX;
666
667 flags = 0;
668 if (REG_P (new_rtx) || CONSTANT_P (new_rtx))
669 flags |= PR_CAN_APPEAR;
670 if (!for_each_rtx (&new_rtx, varying_mem_p, NULL))
671 flags |= PR_HANDLE_MEM;
672
673 if (speed)
674 flags |= PR_OPTIMIZE_FOR_SPEED;
675
676 tem = x;
677 collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags);
678 if (tem == x || !collapsed)
679 return NULL_RTX;
680
681 /* gen_lowpart_common will not be able to process VOIDmode entities other
682 than CONST_INTs. */
683 if (GET_MODE (tem) == VOIDmode && !CONST_INT_P (tem))
684 return NULL_RTX;
685
686 if (GET_MODE (tem) == VOIDmode)
687 tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
688 else
689 gcc_assert (GET_MODE (tem) == mode);
690
691 return tem;
692 }
693
694
695 \f
696
697 /* Return true if the register from reference REF is killed
698 between FROM to (but not including) TO. */
699
700 static bool
701 local_ref_killed_between_p (df_ref ref, rtx from, rtx to)
702 {
703 rtx insn;
704
705 for (insn = from; insn != to; insn = NEXT_INSN (insn))
706 {
707 df_ref *def_rec;
708 if (!INSN_P (insn))
709 continue;
710
711 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
712 {
713 df_ref def = *def_rec;
714 if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
715 return true;
716 }
717 }
718 return false;
719 }
720
721
722 /* Check if the given DEF is available in INSN. This would require full
723 computation of available expressions; we check only restricted conditions:
724 - if DEF is the sole definition of its register, go ahead;
725 - in the same basic block, we check for no definitions killing the
726 definition of DEF_INSN;
727 - if USE's basic block has DEF's basic block as the sole predecessor,
728 we check if the definition is killed after DEF_INSN or before
729 TARGET_INSN insn, in their respective basic blocks. */
730 static bool
731 use_killed_between (df_ref use, rtx def_insn, rtx target_insn)
732 {
733 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
734 basic_block target_bb = BLOCK_FOR_INSN (target_insn);
735 int regno;
736 df_ref def;
737
738 /* We used to have a def reaching a use that is _before_ the def,
739 with the def not dominating the use even though the use and def
740 are in the same basic block, when a register may be used
741 uninitialized in a loop. This should not happen anymore since
742 we do not use reaching definitions, but still we test for such
743 cases and assume that DEF is not available. */
744 if (def_bb == target_bb
745 ? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn)
746 : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
747 return true;
748
749 /* Check if the reg in USE has only one definition. We already
750 know that this definition reaches use, or we wouldn't be here.
751 However, this is invalid for hard registers because if they are
752 live at the beginning of the function it does not mean that we
753 have an uninitialized access. */
754 regno = DF_REF_REGNO (use);
755 def = DF_REG_DEF_CHAIN (regno);
756 if (def
757 && DF_REF_NEXT_REG (def) == NULL
758 && regno >= FIRST_PSEUDO_REGISTER)
759 return false;
760
761 /* Check locally if we are in the same basic block. */
762 if (def_bb == target_bb)
763 return local_ref_killed_between_p (use, def_insn, target_insn);
764
765 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
766 if (single_pred_p (target_bb)
767 && single_pred (target_bb) == def_bb)
768 {
769 df_ref x;
770
771 /* See if USE is killed between DEF_INSN and the last insn in the
772 basic block containing DEF_INSN. */
773 x = df_bb_regno_last_def_find (def_bb, regno);
774 if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn))
775 return true;
776
777 /* See if USE is killed between TARGET_INSN and the first insn in the
778 basic block containing TARGET_INSN. */
779 x = df_bb_regno_first_def_find (target_bb, regno);
780 if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn))
781 return true;
782
783 return false;
784 }
785
786 /* Otherwise assume the worst case. */
787 return true;
788 }
789
790
791 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
792 would require full computation of available expressions;
793 we check only restricted conditions, see use_killed_between. */
794 static bool
795 all_uses_available_at (rtx def_insn, rtx target_insn)
796 {
797 df_ref *use_rec;
798 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
799 rtx def_set = single_set (def_insn);
800
801 gcc_assert (def_set);
802
803 /* If target_insn comes right after def_insn, which is very common
804 for addresses, we can use a quicker test. */
805 if (NEXT_INSN (def_insn) == target_insn
806 && REG_P (SET_DEST (def_set)))
807 {
808 rtx def_reg = SET_DEST (def_set);
809
810 /* If the insn uses the reg that it defines, the substitution is
811 invalid. */
812 for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++)
813 {
814 df_ref use = *use_rec;
815 if (rtx_equal_p (DF_REF_REG (use), def_reg))
816 return false;
817 }
818 for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++)
819 {
820 df_ref use = *use_rec;
821 if (rtx_equal_p (DF_REF_REG (use), def_reg))
822 return false;
823 }
824 }
825 else
826 {
827 rtx def_reg = REG_P (SET_DEST (def_set)) ? SET_DEST (def_set) : NULL_RTX;
828
829 /* Look at all the uses of DEF_INSN, and see if they are not
830 killed between DEF_INSN and TARGET_INSN. */
831 for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++)
832 {
833 df_ref use = *use_rec;
834 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
835 return false;
836 if (use_killed_between (use, def_insn, target_insn))
837 return false;
838 }
839 for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++)
840 {
841 df_ref use = *use_rec;
842 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
843 return false;
844 if (use_killed_between (use, def_insn, target_insn))
845 return false;
846 }
847 }
848
849 return true;
850 }
851
852 \f
853 static df_ref *active_defs;
854 #ifdef ENABLE_CHECKING
855 static sparseset active_defs_check;
856 #endif
857
858 /* Fill the ACTIVE_DEFS array with the use->def link for the registers
859 mentioned in USE_REC. Register the valid entries in ACTIVE_DEFS_CHECK
860 too, for checking purposes. */
861
862 static void
863 register_active_defs (df_ref *use_rec)
864 {
865 while (*use_rec)
866 {
867 df_ref use = *use_rec++;
868 df_ref def = get_def_for_use (use);
869 int regno = DF_REF_REGNO (use);
870
871 #ifdef ENABLE_CHECKING
872 sparseset_set_bit (active_defs_check, regno);
873 #endif
874 active_defs[regno] = def;
875 }
876 }
877
878
879 /* Build the use->def links that we use to update the dataflow info
880 for new uses. Note that building the links is very cheap and if
881 it were done earlier, they could be used to rule out invalid
882 propagations (in addition to what is done in all_uses_available_at).
883 I'm not doing this yet, though. */
884
885 static void
886 update_df_init (rtx def_insn, rtx insn)
887 {
888 #ifdef ENABLE_CHECKING
889 sparseset_clear (active_defs_check);
890 #endif
891 register_active_defs (DF_INSN_USES (def_insn));
892 register_active_defs (DF_INSN_USES (insn));
893 register_active_defs (DF_INSN_EQ_USES (insn));
894 }
895
896
897 /* Update the USE_DEF_REF array for the given use, using the active definitions
898 in the ACTIVE_DEFS array to match pseudos to their def. */
899
900 static inline void
901 update_uses (df_ref *use_rec)
902 {
903 while (*use_rec)
904 {
905 df_ref use = *use_rec++;
906 int regno = DF_REF_REGNO (use);
907
908 /* Set up the use-def chain. */
909 if (DF_REF_ID (use) >= (int) VEC_length (df_ref, use_def_ref))
910 VEC_safe_grow_cleared (df_ref, heap, use_def_ref,
911 DF_REF_ID (use) + 1);
912
913 #ifdef ENABLE_CHECKING
914 gcc_assert (sparseset_bit_p (active_defs_check, regno));
915 #endif
916 VEC_replace (df_ref, use_def_ref, DF_REF_ID (use), active_defs[regno]);
917 }
918 }
919
920
921 /* Update the USE_DEF_REF array for the uses in INSN. Only update note
922 uses if NOTES_ONLY is true. */
923
924 static void
925 update_df (rtx insn, rtx note)
926 {
927 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
928
929 if (note)
930 {
931 df_uses_create (&XEXP (note, 0), insn, DF_REF_IN_NOTE);
932 df_notes_rescan (insn);
933 }
934 else
935 {
936 df_uses_create (&PATTERN (insn), insn, 0);
937 df_insn_rescan (insn);
938 update_uses (DF_INSN_INFO_USES (insn_info));
939 }
940
941 update_uses (DF_INSN_INFO_EQ_USES (insn_info));
942 }
943
944
945 /* Try substituting NEW into LOC, which originated from forward propagation
946 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
947 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
948 new insn is not recognized. Return whether the substitution was
949 performed. */
950
951 static bool
952 try_fwprop_subst (df_ref use, rtx *loc, rtx new_rtx, rtx def_insn, bool set_reg_equal)
953 {
954 rtx insn = DF_REF_INSN (use);
955 rtx set = single_set (insn);
956 rtx note = NULL_RTX;
957 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
958 int old_cost = 0;
959 bool ok;
960
961 update_df_init (def_insn, insn);
962
963 /* forward_propagate_subreg may be operating on an instruction with
964 multiple sets. If so, assume the cost of the new instruction is
965 not greater than the old one. */
966 if (set)
967 old_cost = rtx_cost (SET_SRC (set), SET, speed);
968 if (dump_file)
969 {
970 fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
971 print_inline_rtx (dump_file, *loc, 2);
972 fprintf (dump_file, "\n with ");
973 print_inline_rtx (dump_file, new_rtx, 2);
974 fprintf (dump_file, "\n");
975 }
976
977 validate_unshare_change (insn, loc, new_rtx, true);
978 if (!verify_changes (0))
979 {
980 if (dump_file)
981 fprintf (dump_file, "Changes to insn %d not recognized\n",
982 INSN_UID (insn));
983 ok = false;
984 }
985
986 else if (DF_REF_TYPE (use) == DF_REF_REG_USE
987 && set
988 && rtx_cost (SET_SRC (set), SET, speed) > old_cost)
989 {
990 if (dump_file)
991 fprintf (dump_file, "Changes to insn %d not profitable\n",
992 INSN_UID (insn));
993 ok = false;
994 }
995
996 else
997 {
998 if (dump_file)
999 fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
1000 ok = true;
1001 }
1002
1003 if (ok)
1004 {
1005 confirm_change_group ();
1006 num_changes++;
1007 }
1008 else
1009 {
1010 cancel_changes (0);
1011
1012 /* Can also record a simplified value in a REG_EQUAL note,
1013 making a new one if one does not already exist. */
1014 if (set_reg_equal)
1015 {
1016 if (dump_file)
1017 fprintf (dump_file, " Setting REG_EQUAL note\n");
1018
1019 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx));
1020 }
1021 }
1022
1023 if ((ok || note) && !CONSTANT_P (new_rtx))
1024 update_df (insn, note);
1025
1026 return ok;
1027 }
1028
1029 /* For the given single_set INSN, containing SRC known to be a
1030 ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1031 is redundant due to the register being set by a LOAD_EXTEND_OP
1032 load from memory. */
1033
1034 static bool
1035 free_load_extend (rtx src, rtx insn)
1036 {
1037 rtx reg;
1038 df_ref *use_vec;
1039 df_ref use = 0, def;
1040
1041 reg = XEXP (src, 0);
1042 #ifdef LOAD_EXTEND_OP
1043 if (LOAD_EXTEND_OP (GET_MODE (reg)) != GET_CODE (src))
1044 #endif
1045 return false;
1046
1047 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1048 {
1049 use = *use_vec;
1050
1051 if (!DF_REF_IS_ARTIFICIAL (use)
1052 && DF_REF_TYPE (use) == DF_REF_REG_USE
1053 && DF_REF_REG (use) == reg)
1054 break;
1055 }
1056 if (!use)
1057 return false;
1058
1059 def = get_def_for_use (use);
1060 if (!def)
1061 return false;
1062
1063 if (DF_REF_IS_ARTIFICIAL (def))
1064 return false;
1065
1066 if (NONJUMP_INSN_P (DF_REF_INSN (def)))
1067 {
1068 rtx patt = PATTERN (DF_REF_INSN (def));
1069
1070 if (GET_CODE (patt) == SET
1071 && GET_CODE (SET_SRC (patt)) == MEM
1072 && rtx_equal_p (SET_DEST (patt), reg))
1073 return true;
1074 }
1075 return false;
1076 }
1077
1078 /* If USE is a subreg, see if it can be replaced by a pseudo. */
1079
1080 static bool
1081 forward_propagate_subreg (df_ref use, rtx def_insn, rtx def_set)
1082 {
1083 rtx use_reg = DF_REF_REG (use);
1084 rtx use_insn, src;
1085
1086 /* Only consider subregs... */
1087 enum machine_mode use_mode = GET_MODE (use_reg);
1088 if (GET_CODE (use_reg) != SUBREG
1089 || !REG_P (SET_DEST (def_set)))
1090 return false;
1091
1092 /* If this is a paradoxical SUBREG... */
1093 if (GET_MODE_SIZE (use_mode)
1094 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg))))
1095 {
1096 /* If this is a paradoxical SUBREG, we have no idea what value the
1097 extra bits would have. However, if the operand is equivalent to
1098 a SUBREG whose operand is the same as our mode, and all the modes
1099 are within a word, we can just use the inner operand because
1100 these SUBREGs just say how to treat the register. */
1101 use_insn = DF_REF_INSN (use);
1102 src = SET_SRC (def_set);
1103 if (GET_CODE (src) == SUBREG
1104 && REG_P (SUBREG_REG (src))
1105 && GET_MODE (SUBREG_REG (src)) == use_mode
1106 && subreg_lowpart_p (src)
1107 && all_uses_available_at (def_insn, use_insn))
1108 return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
1109 def_insn, false);
1110 }
1111
1112 /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1113 is the low part of the reg being extended then just use the inner
1114 operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1115 be removed due to it matching a LOAD_EXTEND_OP load from memory. */
1116 else if (subreg_lowpart_p (use_reg))
1117 {
1118 use_insn = DF_REF_INSN (use);
1119 src = SET_SRC (def_set);
1120 if ((GET_CODE (src) == ZERO_EXTEND
1121 || GET_CODE (src) == SIGN_EXTEND)
1122 && REG_P (XEXP (src, 0))
1123 && GET_MODE (XEXP (src, 0)) == use_mode
1124 && !free_load_extend (src, def_insn)
1125 && all_uses_available_at (def_insn, use_insn))
1126 return try_fwprop_subst (use, DF_REF_LOC (use), XEXP (src, 0),
1127 def_insn, false);
1128 }
1129
1130 return false;
1131 }
1132
1133 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */
1134
1135 static bool
1136 forward_propagate_asm (df_ref use, rtx def_insn, rtx def_set, rtx reg)
1137 {
1138 rtx use_insn = DF_REF_INSN (use), src, use_pat, asm_operands, new_rtx, *loc;
1139 int speed_p, i;
1140 df_ref *use_vec;
1141
1142 gcc_assert ((DF_REF_FLAGS (use) & DF_REF_IN_NOTE) == 0);
1143
1144 src = SET_SRC (def_set);
1145 use_pat = PATTERN (use_insn);
1146
1147 /* In __asm don't replace if src might need more registers than
1148 reg, as that could increase register pressure on the __asm. */
1149 use_vec = DF_INSN_USES (def_insn);
1150 if (use_vec[0] && use_vec[1])
1151 return false;
1152
1153 update_df_init (def_insn, use_insn);
1154 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
1155 asm_operands = NULL_RTX;
1156 switch (GET_CODE (use_pat))
1157 {
1158 case ASM_OPERANDS:
1159 asm_operands = use_pat;
1160 break;
1161 case SET:
1162 if (MEM_P (SET_DEST (use_pat)))
1163 {
1164 loc = &SET_DEST (use_pat);
1165 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1166 if (new_rtx)
1167 validate_unshare_change (use_insn, loc, new_rtx, true);
1168 }
1169 asm_operands = SET_SRC (use_pat);
1170 break;
1171 case PARALLEL:
1172 for (i = 0; i < XVECLEN (use_pat, 0); i++)
1173 if (GET_CODE (XVECEXP (use_pat, 0, i)) == SET)
1174 {
1175 if (MEM_P (SET_DEST (XVECEXP (use_pat, 0, i))))
1176 {
1177 loc = &SET_DEST (XVECEXP (use_pat, 0, i));
1178 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg,
1179 src, speed_p);
1180 if (new_rtx)
1181 validate_unshare_change (use_insn, loc, new_rtx, true);
1182 }
1183 asm_operands = SET_SRC (XVECEXP (use_pat, 0, i));
1184 }
1185 else if (GET_CODE (XVECEXP (use_pat, 0, i)) == ASM_OPERANDS)
1186 asm_operands = XVECEXP (use_pat, 0, i);
1187 break;
1188 default:
1189 gcc_unreachable ();
1190 }
1191
1192 gcc_assert (asm_operands && GET_CODE (asm_operands) == ASM_OPERANDS);
1193 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (asm_operands); i++)
1194 {
1195 loc = &ASM_OPERANDS_INPUT (asm_operands, i);
1196 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1197 if (new_rtx)
1198 validate_unshare_change (use_insn, loc, new_rtx, true);
1199 }
1200
1201 if (num_changes_pending () == 0 || !apply_change_group ())
1202 return false;
1203
1204 update_df (use_insn, NULL);
1205 num_changes++;
1206 return true;
1207 }
1208
1209 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1210 result. */
1211
1212 static bool
1213 forward_propagate_and_simplify (df_ref use, rtx def_insn, rtx def_set)
1214 {
1215 rtx use_insn = DF_REF_INSN (use);
1216 rtx use_set = single_set (use_insn);
1217 rtx src, reg, new_rtx, *loc;
1218 bool set_reg_equal;
1219 enum machine_mode mode;
1220 int asm_use = -1;
1221
1222 if (INSN_CODE (use_insn) < 0)
1223 asm_use = asm_noperands (PATTERN (use_insn));
1224
1225 if (!use_set && asm_use < 0 && !DEBUG_INSN_P (use_insn))
1226 return false;
1227
1228 /* Do not propagate into PC, CC0, etc. */
1229 if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode)
1230 return false;
1231
1232 /* If def and use are subreg, check if they match. */
1233 reg = DF_REF_REG (use);
1234 if (GET_CODE (reg) == SUBREG
1235 && GET_CODE (SET_DEST (def_set)) == SUBREG
1236 && (SUBREG_BYTE (SET_DEST (def_set)) != SUBREG_BYTE (reg)
1237 || GET_MODE (SET_DEST (def_set)) != GET_MODE (reg)))
1238 return false;
1239
1240 /* Check if the def had a subreg, but the use has the whole reg. */
1241 if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
1242 return false;
1243
1244 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
1245 previous case, the optimization is possible and often useful indeed. */
1246 if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
1247 reg = SUBREG_REG (reg);
1248
1249 /* Check if the substitution is valid (last, because it's the most
1250 expensive check!). */
1251 src = SET_SRC (def_set);
1252 if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
1253 return false;
1254
1255 /* Check if the def is loading something from the constant pool; in this
1256 case we would undo optimization such as compress_float_constant.
1257 Still, we can set a REG_EQUAL note. */
1258 if (MEM_P (src) && MEM_READONLY_P (src))
1259 {
1260 rtx x = avoid_constant_pool_reference (src);
1261 if (x != src && use_set)
1262 {
1263 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1264 rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set);
1265 rtx new_rtx = simplify_replace_rtx (old_rtx, src, x);
1266 if (old_rtx != new_rtx)
1267 set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx));
1268 }
1269 return false;
1270 }
1271
1272 if (asm_use >= 0)
1273 return forward_propagate_asm (use, def_insn, def_set, reg);
1274
1275 /* Else try simplifying. */
1276
1277 if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
1278 {
1279 loc = &SET_DEST (use_set);
1280 set_reg_equal = false;
1281 }
1282 else if (!use_set)
1283 {
1284 loc = &INSN_VAR_LOCATION_LOC (use_insn);
1285 set_reg_equal = false;
1286 }
1287 else
1288 {
1289 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1290 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1291 loc = &XEXP (note, 0);
1292 else
1293 loc = &SET_SRC (use_set);
1294
1295 /* Do not replace an existing REG_EQUAL note if the insn is not
1296 recognized. Either we're already replacing in the note, or we'll
1297 separately try plugging the definition in the note and simplifying.
1298 And only install a REQ_EQUAL note when the destination is a REG,
1299 as the note would be invalid otherwise. */
1300 set_reg_equal = (note == NULL_RTX && REG_P (SET_DEST (use_set)));
1301 }
1302
1303 if (GET_MODE (*loc) == VOIDmode)
1304 mode = GET_MODE (SET_DEST (use_set));
1305 else
1306 mode = GET_MODE (*loc);
1307
1308 new_rtx = propagate_rtx (*loc, mode, reg, src,
1309 optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn)));
1310
1311 if (!new_rtx)
1312 return false;
1313
1314 return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal);
1315 }
1316
1317
1318 /* Given a use USE of an insn, if it has a single reaching
1319 definition, try to forward propagate it into that insn. */
1320
1321 static void
1322 forward_propagate_into (df_ref use)
1323 {
1324 df_ref def;
1325 rtx def_insn, def_set, use_insn;
1326 rtx parent;
1327
1328 if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
1329 return;
1330 if (DF_REF_IS_ARTIFICIAL (use))
1331 return;
1332
1333 /* Only consider uses that have a single definition. */
1334 def = get_def_for_use (use);
1335 if (!def)
1336 return;
1337 if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
1338 return;
1339 if (DF_REF_IS_ARTIFICIAL (def))
1340 return;
1341
1342 /* Do not propagate loop invariant definitions inside the loop. */
1343 if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
1344 return;
1345
1346 /* Check if the use is still present in the insn! */
1347 use_insn = DF_REF_INSN (use);
1348 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1349 parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1350 else
1351 parent = PATTERN (use_insn);
1352
1353 if (!reg_mentioned_p (DF_REF_REG (use), parent))
1354 return;
1355
1356 def_insn = DF_REF_INSN (def);
1357 if (multiple_sets (def_insn))
1358 return;
1359 def_set = single_set (def_insn);
1360 if (!def_set)
1361 return;
1362
1363 /* Only try one kind of propagation. If two are possible, we'll
1364 do it on the following iterations. */
1365 if (!forward_propagate_and_simplify (use, def_insn, def_set))
1366 forward_propagate_subreg (use, def_insn, def_set);
1367 }
1368
1369 \f
1370 static void
1371 fwprop_init (void)
1372 {
1373 num_changes = 0;
1374 calculate_dominance_info (CDI_DOMINATORS);
1375
1376 /* We do not always want to propagate into loops, so we have to find
1377 loops and be careful about them. But we have to call flow_loops_find
1378 before df_analyze, because flow_loops_find may introduce new jump
1379 insns (sadly) if we are not working in cfglayout mode. */
1380 loop_optimizer_init (0);
1381
1382 build_single_def_use_links ();
1383 df_set_flags (DF_DEFER_INSN_RESCAN);
1384
1385 active_defs = XNEWVEC (df_ref, max_reg_num ());
1386 #ifdef ENABLE_CHECKING
1387 active_defs_check = sparseset_alloc (max_reg_num ());
1388 #endif
1389 }
1390
1391 static void
1392 fwprop_done (void)
1393 {
1394 loop_optimizer_finalize ();
1395
1396 VEC_free (df_ref, heap, use_def_ref);
1397 free (active_defs);
1398 #ifdef ENABLE_CHECKING
1399 sparseset_free (active_defs_check);
1400 #endif
1401
1402 free_dominance_info (CDI_DOMINATORS);
1403 cleanup_cfg (0);
1404 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1405
1406 if (dump_file)
1407 fprintf (dump_file,
1408 "\nNumber of successful forward propagations: %d\n\n",
1409 num_changes);
1410 }
1411
1412
1413 /* Main entry point. */
1414
1415 static bool
1416 gate_fwprop (void)
1417 {
1418 return optimize > 0 && flag_forward_propagate;
1419 }
1420
1421 static unsigned int
1422 fwprop (void)
1423 {
1424 unsigned i;
1425
1426 fwprop_init ();
1427
1428 /* Go through all the uses. df_uses_create will create new ones at the
1429 end, and we'll go through them as well.
1430
1431 Do not forward propagate addresses into loops until after unrolling.
1432 CSE did so because it was able to fix its own mess, but we are not. */
1433
1434 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1435 {
1436 df_ref use = DF_USES_GET (i);
1437 if (use)
1438 if (DF_REF_TYPE (use) == DF_REF_REG_USE
1439 || DF_REF_BB (use)->loop_father == NULL
1440 /* The outer most loop is not really a loop. */
1441 || loop_outer (DF_REF_BB (use)->loop_father) == NULL)
1442 forward_propagate_into (use);
1443 }
1444
1445 fwprop_done ();
1446 return 0;
1447 }
1448
1449 struct rtl_opt_pass pass_rtl_fwprop =
1450 {
1451 {
1452 RTL_PASS,
1453 "fwprop1", /* name */
1454 gate_fwprop, /* gate */
1455 fwprop, /* execute */
1456 NULL, /* sub */
1457 NULL, /* next */
1458 0, /* static_pass_number */
1459 TV_FWPROP, /* tv_id */
1460 0, /* properties_required */
1461 0, /* properties_provided */
1462 0, /* properties_destroyed */
1463 0, /* todo_flags_start */
1464 TODO_df_finish | TODO_verify_rtl_sharing |
1465 TODO_dump_func /* todo_flags_finish */
1466 }
1467 };
1468
1469 static unsigned int
1470 fwprop_addr (void)
1471 {
1472 unsigned i;
1473 fwprop_init ();
1474
1475 /* Go through all the uses. df_uses_create will create new ones at the
1476 end, and we'll go through them as well. */
1477 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1478 {
1479 df_ref use = DF_USES_GET (i);
1480 if (use)
1481 if (DF_REF_TYPE (use) != DF_REF_REG_USE
1482 && DF_REF_BB (use)->loop_father != NULL
1483 /* The outer most loop is not really a loop. */
1484 && loop_outer (DF_REF_BB (use)->loop_father) != NULL)
1485 forward_propagate_into (use);
1486 }
1487
1488 fwprop_done ();
1489
1490 return 0;
1491 }
1492
1493 struct rtl_opt_pass pass_rtl_fwprop_addr =
1494 {
1495 {
1496 RTL_PASS,
1497 "fwprop2", /* name */
1498 gate_fwprop, /* gate */
1499 fwprop_addr, /* execute */
1500 NULL, /* sub */
1501 NULL, /* next */
1502 0, /* static_pass_number */
1503 TV_FWPROP, /* tv_id */
1504 0, /* properties_required */
1505 0, /* properties_provided */
1506 0, /* properties_destroyed */
1507 0, /* todo_flags_start */
1508 TODO_df_finish | TODO_verify_rtl_sharing |
1509 TODO_dump_func /* todo_flags_finish */
1510 }
1511 };