Don't allow latch with phi in try_transform_to_exit_first_loop_alt
[gcc.git] / gcc / fwprop.c
1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005-2016 Free Software Foundation, Inc.
3 Contributed by Paolo Bonzini and Steven Bosscher.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "tm_p.h"
30 #include "insn-config.h"
31 #include "emit-rtl.h"
32 #include "recog.h"
33
34 #include "sparseset.h"
35 #include "cfgrtl.h"
36 #include "cfgcleanup.h"
37 #include "cfgloop.h"
38 #include "tree-pass.h"
39 #include "domwalk.h"
40 #include "rtl-iter.h"
41
42
43 /* This pass does simple forward propagation and simplification when an
44 operand of an insn can only come from a single def. This pass uses
45 df.c, so it is global. However, we only do limited analysis of
46 available expressions.
47
48 1) The pass tries to propagate the source of the def into the use,
49 and checks if the result is independent of the substituted value.
50 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
51 zero, independent of the source register.
52
53 In particular, we propagate constants into the use site. Sometimes
54 RTL expansion did not put the constant in the same insn on purpose,
55 to satisfy a predicate, and the result will fail to be recognized;
56 but this happens rarely and in this case we can still create a
57 REG_EQUAL note. For multi-word operations, this
58
59 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
60 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
61 (set (subreg:SI (reg:DI 122) 0)
62 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
63 (set (subreg:SI (reg:DI 122) 4)
64 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
65
66 can be simplified to the much simpler
67
68 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
69 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
70
71 This particular propagation is also effective at putting together
72 complex addressing modes. We are more aggressive inside MEMs, in
73 that all definitions are propagated if the use is in a MEM; if the
74 result is a valid memory address we check address_cost to decide
75 whether the substitution is worthwhile.
76
77 2) The pass propagates register copies. This is not as effective as
78 the copy propagation done by CSE's canon_reg, which works by walking
79 the instruction chain, it can help the other transformations.
80
81 We should consider removing this optimization, and instead reorder the
82 RTL passes, because GCSE does this transformation too. With some luck,
83 the CSE pass at the end of rest_of_handle_gcse could also go away.
84
85 3) The pass looks for paradoxical subregs that are actually unnecessary.
86 Things like this:
87
88 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
89 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
90 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
91 (subreg:SI (reg:QI 121) 0)))
92
93 are very common on machines that can only do word-sized operations.
94 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
95 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
96 we can replace the paradoxical subreg with simply (reg:WIDE M). The
97 above will simplify this to
98
99 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
100 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
101 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
102
103 where the first two insns are now dead.
104
105 We used to use reaching definitions to find which uses have a
106 single reaching definition (sounds obvious...), but this is too
107 complex a problem in nasty testcases like PR33928. Now we use the
108 multiple definitions problem in df-problems.c. The similarity
109 between that problem and SSA form creation is taken further, in
110 that fwprop does a dominator walk to create its chains; however,
111 instead of creating a PHI function where multiple definitions meet
112 I just punt and record only singleton use-def chains, which is
113 all that is needed by fwprop. */
114
115
116 static int num_changes;
117
118 static vec<df_ref> use_def_ref;
119 static vec<df_ref> reg_defs;
120 static vec<df_ref> reg_defs_stack;
121
122 /* The MD bitmaps are trimmed to include only live registers to cut
123 memory usage on testcases like insn-recog.c. Track live registers
124 in the basic block and do not perform forward propagation if the
125 destination is a dead pseudo occurring in a note. */
126 static bitmap local_md;
127 static bitmap local_lr;
128
129 /* Return the only def in USE's use-def chain, or NULL if there is
130 more than one def in the chain. */
131
132 static inline df_ref
133 get_def_for_use (df_ref use)
134 {
135 return use_def_ref[DF_REF_ID (use)];
136 }
137
138
139 /* Update the reg_defs vector with non-partial definitions in DEF_REC.
140 TOP_FLAG says which artificials uses should be used, when DEF_REC
141 is an artificial def vector. LOCAL_MD is modified as after a
142 df_md_simulate_* function; we do more or less the same processing
143 done there, so we do not use those functions. */
144
145 #define DF_MD_GEN_FLAGS \
146 (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
147
148 static void
149 process_defs (df_ref def, int top_flag)
150 {
151 for (; def; def = DF_REF_NEXT_LOC (def))
152 {
153 df_ref curr_def = reg_defs[DF_REF_REGNO (def)];
154 unsigned int dregno;
155
156 if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) != top_flag)
157 continue;
158
159 dregno = DF_REF_REGNO (def);
160 if (curr_def)
161 reg_defs_stack.safe_push (curr_def);
162 else
163 {
164 /* Do not store anything if "transitioning" from NULL to NULL. But
165 otherwise, push a special entry on the stack to tell the
166 leave_block callback that the entry in reg_defs was NULL. */
167 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
168 ;
169 else
170 reg_defs_stack.safe_push (def);
171 }
172
173 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
174 {
175 bitmap_set_bit (local_md, dregno);
176 reg_defs[dregno] = NULL;
177 }
178 else
179 {
180 bitmap_clear_bit (local_md, dregno);
181 reg_defs[dregno] = def;
182 }
183 }
184 }
185
186
187 /* Fill the use_def_ref vector with values for the uses in USE_REC,
188 taking reaching definitions info from LOCAL_MD and REG_DEFS.
189 TOP_FLAG says which artificials uses should be used, when USE_REC
190 is an artificial use vector. */
191
192 static void
193 process_uses (df_ref use, int top_flag)
194 {
195 for (; use; use = DF_REF_NEXT_LOC (use))
196 if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == top_flag)
197 {
198 unsigned int uregno = DF_REF_REGNO (use);
199 if (reg_defs[uregno]
200 && !bitmap_bit_p (local_md, uregno)
201 && bitmap_bit_p (local_lr, uregno))
202 use_def_ref[DF_REF_ID (use)] = reg_defs[uregno];
203 }
204 }
205
206 class single_def_use_dom_walker : public dom_walker
207 {
208 public:
209 single_def_use_dom_walker (cdi_direction direction)
210 : dom_walker (direction) {}
211 virtual edge before_dom_children (basic_block);
212 virtual void after_dom_children (basic_block);
213 };
214
215 edge
216 single_def_use_dom_walker::before_dom_children (basic_block bb)
217 {
218 int bb_index = bb->index;
219 struct df_md_bb_info *md_bb_info = df_md_get_bb_info (bb_index);
220 struct df_lr_bb_info *lr_bb_info = df_lr_get_bb_info (bb_index);
221 rtx_insn *insn;
222
223 bitmap_copy (local_md, &md_bb_info->in);
224 bitmap_copy (local_lr, &lr_bb_info->in);
225
226 /* Push a marker for the leave_block callback. */
227 reg_defs_stack.safe_push (NULL);
228
229 process_uses (df_get_artificial_uses (bb_index), DF_REF_AT_TOP);
230 process_defs (df_get_artificial_defs (bb_index), DF_REF_AT_TOP);
231
232 /* We don't call df_simulate_initialize_forwards, as it may overestimate
233 the live registers if there are unused artificial defs. We prefer
234 liveness to be underestimated. */
235
236 FOR_BB_INSNS (bb, insn)
237 if (INSN_P (insn))
238 {
239 unsigned int uid = INSN_UID (insn);
240 process_uses (DF_INSN_UID_USES (uid), 0);
241 process_uses (DF_INSN_UID_EQ_USES (uid), 0);
242 process_defs (DF_INSN_UID_DEFS (uid), 0);
243 df_simulate_one_insn_forwards (bb, insn, local_lr);
244 }
245
246 process_uses (df_get_artificial_uses (bb_index), 0);
247 process_defs (df_get_artificial_defs (bb_index), 0);
248
249 return NULL;
250 }
251
252 /* Pop the definitions created in this basic block when leaving its
253 dominated parts. */
254
255 void
256 single_def_use_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
257 {
258 df_ref saved_def;
259 while ((saved_def = reg_defs_stack.pop ()) != NULL)
260 {
261 unsigned int dregno = DF_REF_REGNO (saved_def);
262
263 /* See also process_defs. */
264 if (saved_def == reg_defs[dregno])
265 reg_defs[dregno] = NULL;
266 else
267 reg_defs[dregno] = saved_def;
268 }
269 }
270
271
272 /* Build a vector holding the reaching definitions of uses reached by a
273 single dominating definition. */
274
275 static void
276 build_single_def_use_links (void)
277 {
278 /* We use the multiple definitions problem to compute our restricted
279 use-def chains. */
280 df_set_flags (DF_EQ_NOTES);
281 df_md_add_problem ();
282 df_note_add_problem ();
283 df_analyze ();
284 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES);
285
286 use_def_ref.create (DF_USES_TABLE_SIZE ());
287 use_def_ref.safe_grow_cleared (DF_USES_TABLE_SIZE ());
288
289 reg_defs.create (max_reg_num ());
290 reg_defs.safe_grow_cleared (max_reg_num ());
291
292 reg_defs_stack.create (n_basic_blocks_for_fn (cfun) * 10);
293 local_md = BITMAP_ALLOC (NULL);
294 local_lr = BITMAP_ALLOC (NULL);
295
296 /* Walk the dominator tree looking for single reaching definitions
297 dominating the uses. This is similar to how SSA form is built. */
298 single_def_use_dom_walker (CDI_DOMINATORS)
299 .walk (cfun->cfg->x_entry_block_ptr);
300
301 BITMAP_FREE (local_lr);
302 BITMAP_FREE (local_md);
303 reg_defs.release ();
304 reg_defs_stack.release ();
305 }
306
307 \f
308 /* Do not try to replace constant addresses or addresses of local and
309 argument slots. These MEM expressions are made only once and inserted
310 in many instructions, as well as being used to control symbol table
311 output. It is not safe to clobber them.
312
313 There are some uncommon cases where the address is already in a register
314 for some reason, but we cannot take advantage of that because we have
315 no easy way to unshare the MEM. In addition, looking up all stack
316 addresses is costly. */
317
318 static bool
319 can_simplify_addr (rtx addr)
320 {
321 rtx reg;
322
323 if (CONSTANT_ADDRESS_P (addr))
324 return false;
325
326 if (GET_CODE (addr) == PLUS)
327 reg = XEXP (addr, 0);
328 else
329 reg = addr;
330
331 return (!REG_P (reg)
332 || (REGNO (reg) != FRAME_POINTER_REGNUM
333 && REGNO (reg) != HARD_FRAME_POINTER_REGNUM
334 && REGNO (reg) != ARG_POINTER_REGNUM));
335 }
336
337 /* Returns a canonical version of X for the address, from the point of view,
338 that all multiplications are represented as MULT instead of the multiply
339 by a power of 2 being represented as ASHIFT.
340
341 Every ASHIFT we find has been made by simplify_gen_binary and was not
342 there before, so it is not shared. So we can do this in place. */
343
344 static void
345 canonicalize_address (rtx x)
346 {
347 for (;;)
348 switch (GET_CODE (x))
349 {
350 case ASHIFT:
351 if (CONST_INT_P (XEXP (x, 1))
352 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x))
353 && INTVAL (XEXP (x, 1)) >= 0)
354 {
355 HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
356 PUT_CODE (x, MULT);
357 XEXP (x, 1) = gen_int_mode ((HOST_WIDE_INT) 1 << shift,
358 GET_MODE (x));
359 }
360
361 x = XEXP (x, 0);
362 break;
363
364 case PLUS:
365 if (GET_CODE (XEXP (x, 0)) == PLUS
366 || GET_CODE (XEXP (x, 0)) == ASHIFT
367 || GET_CODE (XEXP (x, 0)) == CONST)
368 canonicalize_address (XEXP (x, 0));
369
370 x = XEXP (x, 1);
371 break;
372
373 case CONST:
374 x = XEXP (x, 0);
375 break;
376
377 default:
378 return;
379 }
380 }
381
382 /* OLD is a memory address. Return whether it is good to use NEW instead,
383 for a memory access in the given MODE. */
384
385 static bool
386 should_replace_address (rtx old_rtx, rtx new_rtx, machine_mode mode,
387 addr_space_t as, bool speed)
388 {
389 int gain;
390
391 if (rtx_equal_p (old_rtx, new_rtx)
392 || !memory_address_addr_space_p (mode, new_rtx, as))
393 return false;
394
395 /* Copy propagation is always ok. */
396 if (REG_P (old_rtx) && REG_P (new_rtx))
397 return true;
398
399 /* Prefer the new address if it is less expensive. */
400 gain = (address_cost (old_rtx, mode, as, speed)
401 - address_cost (new_rtx, mode, as, speed));
402
403 /* If the addresses have equivalent cost, prefer the new address
404 if it has the highest `set_src_cost'. That has the potential of
405 eliminating the most insns without additional costs, and it
406 is the same that cse.c used to do. */
407 if (gain == 0)
408 gain = (set_src_cost (new_rtx, VOIDmode, speed)
409 - set_src_cost (old_rtx, VOIDmode, speed));
410
411 return (gain > 0);
412 }
413
414
415 /* Flags for the last parameter of propagate_rtx_1. */
416
417 enum {
418 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
419 if it is false, propagate_rtx_1 returns false if, for at least
420 one occurrence OLD, it failed to collapse the result to a constant.
421 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
422 collapse to zero if replacing (reg:M B) with (reg:M A).
423
424 PR_CAN_APPEAR is disregarded inside MEMs: in that case,
425 propagate_rtx_1 just tries to make cheaper and valid memory
426 addresses. */
427 PR_CAN_APPEAR = 1,
428
429 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
430 outside memory addresses. This is needed because propagate_rtx_1 does
431 not do any analysis on memory; thus it is very conservative and in general
432 it will fail if non-read-only MEMs are found in the source expression.
433
434 PR_HANDLE_MEM is set when the source of the propagation was not
435 another MEM. Then, it is safe not to treat non-read-only MEMs as
436 ``opaque'' objects. */
437 PR_HANDLE_MEM = 2,
438
439 /* Set when costs should be optimized for speed. */
440 PR_OPTIMIZE_FOR_SPEED = 4
441 };
442
443
444 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
445 resulting expression. Replace *PX with a new RTL expression if an
446 occurrence of OLD was found.
447
448 This is only a wrapper around simplify-rtx.c: do not add any pattern
449 matching code here. (The sole exception is the handling of LO_SUM, but
450 that is because there is no simplify_gen_* function for LO_SUM). */
451
452 static bool
453 propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags)
454 {
455 rtx x = *px, tem = NULL_RTX, op0, op1, op2;
456 enum rtx_code code = GET_CODE (x);
457 machine_mode mode = GET_MODE (x);
458 machine_mode op_mode;
459 bool can_appear = (flags & PR_CAN_APPEAR) != 0;
460 bool valid_ops = true;
461
462 if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x))
463 {
464 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
465 they have side effects or not). */
466 *px = (side_effects_p (x)
467 ? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx)
468 : gen_rtx_SCRATCH (GET_MODE (x)));
469 return false;
470 }
471
472 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
473 address, and we are *not* inside one. */
474 if (x == old_rtx)
475 {
476 *px = new_rtx;
477 return can_appear;
478 }
479
480 /* If this is an expression, try recursive substitution. */
481 switch (GET_RTX_CLASS (code))
482 {
483 case RTX_UNARY:
484 op0 = XEXP (x, 0);
485 op_mode = GET_MODE (op0);
486 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
487 if (op0 == XEXP (x, 0))
488 return true;
489 tem = simplify_gen_unary (code, mode, op0, op_mode);
490 break;
491
492 case RTX_BIN_ARITH:
493 case RTX_COMM_ARITH:
494 op0 = XEXP (x, 0);
495 op1 = XEXP (x, 1);
496 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
497 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
498 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
499 return true;
500 tem = simplify_gen_binary (code, mode, op0, op1);
501 break;
502
503 case RTX_COMPARE:
504 case RTX_COMM_COMPARE:
505 op0 = XEXP (x, 0);
506 op1 = XEXP (x, 1);
507 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
508 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
509 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
510 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
511 return true;
512 tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
513 break;
514
515 case RTX_TERNARY:
516 case RTX_BITFIELD_OPS:
517 op0 = XEXP (x, 0);
518 op1 = XEXP (x, 1);
519 op2 = XEXP (x, 2);
520 op_mode = GET_MODE (op0);
521 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
522 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
523 valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags);
524 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
525 return true;
526 if (op_mode == VOIDmode)
527 op_mode = GET_MODE (op0);
528 tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
529 break;
530
531 case RTX_EXTRA:
532 /* The only case we try to handle is a SUBREG. */
533 if (code == SUBREG)
534 {
535 op0 = XEXP (x, 0);
536 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
537 if (op0 == XEXP (x, 0))
538 return true;
539 tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
540 SUBREG_BYTE (x));
541 }
542 break;
543
544 case RTX_OBJ:
545 if (code == MEM && x != new_rtx)
546 {
547 rtx new_op0;
548 op0 = XEXP (x, 0);
549
550 /* There are some addresses that we cannot work on. */
551 if (!can_simplify_addr (op0))
552 return true;
553
554 op0 = new_op0 = targetm.delegitimize_address (op0);
555 valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx,
556 flags | PR_CAN_APPEAR);
557
558 /* Dismiss transformation that we do not want to carry on. */
559 if (!valid_ops
560 || new_op0 == op0
561 || !(GET_MODE (new_op0) == GET_MODE (op0)
562 || GET_MODE (new_op0) == VOIDmode))
563 return true;
564
565 canonicalize_address (new_op0);
566
567 /* Copy propagations are always ok. Otherwise check the costs. */
568 if (!(REG_P (old_rtx) && REG_P (new_rtx))
569 && !should_replace_address (op0, new_op0, GET_MODE (x),
570 MEM_ADDR_SPACE (x),
571 flags & PR_OPTIMIZE_FOR_SPEED))
572 return true;
573
574 tem = replace_equiv_address_nv (x, new_op0);
575 }
576
577 else if (code == LO_SUM)
578 {
579 op0 = XEXP (x, 0);
580 op1 = XEXP (x, 1);
581
582 /* The only simplification we do attempts to remove references to op0
583 or make it constant -- in both cases, op0's invalidity will not
584 make the result invalid. */
585 propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR);
586 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
587 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
588 return true;
589
590 /* (lo_sum (high x) x) -> x */
591 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
592 tem = op1;
593 else
594 tem = gen_rtx_LO_SUM (mode, op0, op1);
595
596 /* OP1 is likely not a legitimate address, otherwise there would have
597 been no LO_SUM. We want it to disappear if it is invalid, return
598 false in that case. */
599 return memory_address_p (mode, tem);
600 }
601
602 else if (code == REG)
603 {
604 if (rtx_equal_p (x, old_rtx))
605 {
606 *px = new_rtx;
607 return can_appear;
608 }
609 }
610 break;
611
612 default:
613 break;
614 }
615
616 /* No change, no trouble. */
617 if (tem == NULL_RTX)
618 return true;
619
620 *px = tem;
621
622 /* The replacement we made so far is valid, if all of the recursive
623 replacements were valid, or we could simplify everything to
624 a constant. */
625 return valid_ops || can_appear || CONSTANT_P (tem);
626 }
627
628
629 /* Return true if X constains a non-constant mem. */
630
631 static bool
632 varying_mem_p (const_rtx x)
633 {
634 subrtx_iterator::array_type array;
635 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
636 if (MEM_P (*iter) && !MEM_READONLY_P (*iter))
637 return true;
638 return false;
639 }
640
641
642 /* Replace all occurrences of OLD in X with NEW and try to simplify the
643 resulting expression (in mode MODE). Return a new expression if it is
644 a constant, otherwise X.
645
646 Simplifications where occurrences of NEW collapse to a constant are always
647 accepted. All simplifications are accepted if NEW is a pseudo too.
648 Otherwise, we accept simplifications that have a lower or equal cost. */
649
650 static rtx
651 propagate_rtx (rtx x, machine_mode mode, rtx old_rtx, rtx new_rtx,
652 bool speed)
653 {
654 rtx tem;
655 bool collapsed;
656 int flags;
657
658 if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER)
659 return NULL_RTX;
660
661 flags = 0;
662 if (REG_P (new_rtx)
663 || CONSTANT_P (new_rtx)
664 || (GET_CODE (new_rtx) == SUBREG
665 && REG_P (SUBREG_REG (new_rtx))
666 && (GET_MODE_SIZE (mode)
667 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (new_rtx))))))
668 flags |= PR_CAN_APPEAR;
669 if (!varying_mem_p (new_rtx))
670 flags |= PR_HANDLE_MEM;
671
672 if (speed)
673 flags |= PR_OPTIMIZE_FOR_SPEED;
674
675 tem = x;
676 collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags);
677 if (tem == x || !collapsed)
678 return NULL_RTX;
679
680 /* gen_lowpart_common will not be able to process VOIDmode entities other
681 than CONST_INTs. */
682 if (GET_MODE (tem) == VOIDmode && !CONST_INT_P (tem))
683 return NULL_RTX;
684
685 if (GET_MODE (tem) == VOIDmode)
686 tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
687 else
688 gcc_assert (GET_MODE (tem) == mode);
689
690 return tem;
691 }
692
693
694 \f
695
696 /* Return true if the register from reference REF is killed
697 between FROM to (but not including) TO. */
698
699 static bool
700 local_ref_killed_between_p (df_ref ref, rtx_insn *from, rtx_insn *to)
701 {
702 rtx_insn *insn;
703
704 for (insn = from; insn != to; insn = NEXT_INSN (insn))
705 {
706 df_ref def;
707 if (!INSN_P (insn))
708 continue;
709
710 FOR_EACH_INSN_DEF (def, insn)
711 if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
712 return true;
713 }
714 return false;
715 }
716
717
718 /* Check if the given DEF is available in INSN. This would require full
719 computation of available expressions; we check only restricted conditions:
720 - if DEF is the sole definition of its register, go ahead;
721 - in the same basic block, we check for no definitions killing the
722 definition of DEF_INSN;
723 - if USE's basic block has DEF's basic block as the sole predecessor,
724 we check if the definition is killed after DEF_INSN or before
725 TARGET_INSN insn, in their respective basic blocks. */
726 static bool
727 use_killed_between (df_ref use, rtx_insn *def_insn, rtx_insn *target_insn)
728 {
729 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
730 basic_block target_bb = BLOCK_FOR_INSN (target_insn);
731 int regno;
732 df_ref def;
733
734 /* We used to have a def reaching a use that is _before_ the def,
735 with the def not dominating the use even though the use and def
736 are in the same basic block, when a register may be used
737 uninitialized in a loop. This should not happen anymore since
738 we do not use reaching definitions, but still we test for such
739 cases and assume that DEF is not available. */
740 if (def_bb == target_bb
741 ? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn)
742 : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
743 return true;
744
745 /* Check if the reg in USE has only one definition. We already
746 know that this definition reaches use, or we wouldn't be here.
747 However, this is invalid for hard registers because if they are
748 live at the beginning of the function it does not mean that we
749 have an uninitialized access. */
750 regno = DF_REF_REGNO (use);
751 def = DF_REG_DEF_CHAIN (regno);
752 if (def
753 && DF_REF_NEXT_REG (def) == NULL
754 && regno >= FIRST_PSEUDO_REGISTER)
755 return false;
756
757 /* Check locally if we are in the same basic block. */
758 if (def_bb == target_bb)
759 return local_ref_killed_between_p (use, def_insn, target_insn);
760
761 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
762 if (single_pred_p (target_bb)
763 && single_pred (target_bb) == def_bb)
764 {
765 df_ref x;
766
767 /* See if USE is killed between DEF_INSN and the last insn in the
768 basic block containing DEF_INSN. */
769 x = df_bb_regno_last_def_find (def_bb, regno);
770 if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn))
771 return true;
772
773 /* See if USE is killed between TARGET_INSN and the first insn in the
774 basic block containing TARGET_INSN. */
775 x = df_bb_regno_first_def_find (target_bb, regno);
776 if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn))
777 return true;
778
779 return false;
780 }
781
782 /* Otherwise assume the worst case. */
783 return true;
784 }
785
786
787 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
788 would require full computation of available expressions;
789 we check only restricted conditions, see use_killed_between. */
790 static bool
791 all_uses_available_at (rtx_insn *def_insn, rtx_insn *target_insn)
792 {
793 df_ref use;
794 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
795 rtx def_set = single_set (def_insn);
796 rtx_insn *next;
797
798 gcc_assert (def_set);
799
800 /* If target_insn comes right after def_insn, which is very common
801 for addresses, we can use a quicker test. Ignore debug insns
802 other than target insns for this. */
803 next = NEXT_INSN (def_insn);
804 while (next && next != target_insn && DEBUG_INSN_P (next))
805 next = NEXT_INSN (next);
806 if (next == target_insn && REG_P (SET_DEST (def_set)))
807 {
808 rtx def_reg = SET_DEST (def_set);
809
810 /* If the insn uses the reg that it defines, the substitution is
811 invalid. */
812 FOR_EACH_INSN_INFO_USE (use, insn_info)
813 if (rtx_equal_p (DF_REF_REG (use), def_reg))
814 return false;
815 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
816 if (rtx_equal_p (DF_REF_REG (use), def_reg))
817 return false;
818 }
819 else
820 {
821 rtx def_reg = REG_P (SET_DEST (def_set)) ? SET_DEST (def_set) : NULL_RTX;
822
823 /* Look at all the uses of DEF_INSN, and see if they are not
824 killed between DEF_INSN and TARGET_INSN. */
825 FOR_EACH_INSN_INFO_USE (use, insn_info)
826 {
827 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
828 return false;
829 if (use_killed_between (use, def_insn, target_insn))
830 return false;
831 }
832 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
833 {
834 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
835 return false;
836 if (use_killed_between (use, def_insn, target_insn))
837 return false;
838 }
839 }
840
841 return true;
842 }
843
844 \f
845 static df_ref *active_defs;
846 static sparseset active_defs_check;
847
848 /* Fill the ACTIVE_DEFS array with the use->def link for the registers
849 mentioned in USE_REC. Register the valid entries in ACTIVE_DEFS_CHECK
850 too, for checking purposes. */
851
852 static void
853 register_active_defs (df_ref use)
854 {
855 for (; use; use = DF_REF_NEXT_LOC (use))
856 {
857 df_ref def = get_def_for_use (use);
858 int regno = DF_REF_REGNO (use);
859
860 if (flag_checking)
861 sparseset_set_bit (active_defs_check, regno);
862 active_defs[regno] = def;
863 }
864 }
865
866
867 /* Build the use->def links that we use to update the dataflow info
868 for new uses. Note that building the links is very cheap and if
869 it were done earlier, they could be used to rule out invalid
870 propagations (in addition to what is done in all_uses_available_at).
871 I'm not doing this yet, though. */
872
873 static void
874 update_df_init (rtx_insn *def_insn, rtx_insn *insn)
875 {
876 if (flag_checking)
877 sparseset_clear (active_defs_check);
878 register_active_defs (DF_INSN_USES (def_insn));
879 register_active_defs (DF_INSN_USES (insn));
880 register_active_defs (DF_INSN_EQ_USES (insn));
881 }
882
883
884 /* Update the USE_DEF_REF array for the given use, using the active definitions
885 in the ACTIVE_DEFS array to match pseudos to their def. */
886
887 static inline void
888 update_uses (df_ref use)
889 {
890 for (; use; use = DF_REF_NEXT_LOC (use))
891 {
892 int regno = DF_REF_REGNO (use);
893
894 /* Set up the use-def chain. */
895 if (DF_REF_ID (use) >= (int) use_def_ref.length ())
896 use_def_ref.safe_grow_cleared (DF_REF_ID (use) + 1);
897
898 if (flag_checking)
899 gcc_assert (sparseset_bit_p (active_defs_check, regno));
900 use_def_ref[DF_REF_ID (use)] = active_defs[regno];
901 }
902 }
903
904
905 /* Update the USE_DEF_REF array for the uses in INSN. Only update note
906 uses if NOTES_ONLY is true. */
907
908 static void
909 update_df (rtx_insn *insn, rtx note)
910 {
911 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
912
913 if (note)
914 {
915 df_uses_create (&XEXP (note, 0), insn, DF_REF_IN_NOTE);
916 df_notes_rescan (insn);
917 }
918 else
919 {
920 df_uses_create (&PATTERN (insn), insn, 0);
921 df_insn_rescan (insn);
922 update_uses (DF_INSN_INFO_USES (insn_info));
923 }
924
925 update_uses (DF_INSN_INFO_EQ_USES (insn_info));
926 }
927
928
929 /* Try substituting NEW into LOC, which originated from forward propagation
930 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
931 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
932 new insn is not recognized. Return whether the substitution was
933 performed. */
934
935 static bool
936 try_fwprop_subst (df_ref use, rtx *loc, rtx new_rtx, rtx_insn *def_insn,
937 bool set_reg_equal)
938 {
939 rtx_insn *insn = DF_REF_INSN (use);
940 rtx set = single_set (insn);
941 rtx note = NULL_RTX;
942 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
943 int old_cost = 0;
944 bool ok;
945
946 update_df_init (def_insn, insn);
947
948 /* forward_propagate_subreg may be operating on an instruction with
949 multiple sets. If so, assume the cost of the new instruction is
950 not greater than the old one. */
951 if (set)
952 old_cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
953 if (dump_file)
954 {
955 fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
956 print_inline_rtx (dump_file, *loc, 2);
957 fprintf (dump_file, "\n with ");
958 print_inline_rtx (dump_file, new_rtx, 2);
959 fprintf (dump_file, "\n");
960 }
961
962 validate_unshare_change (insn, loc, new_rtx, true);
963 if (!verify_changes (0))
964 {
965 if (dump_file)
966 fprintf (dump_file, "Changes to insn %d not recognized\n",
967 INSN_UID (insn));
968 ok = false;
969 }
970
971 else if (DF_REF_TYPE (use) == DF_REF_REG_USE
972 && set
973 && (set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed)
974 > old_cost))
975 {
976 if (dump_file)
977 fprintf (dump_file, "Changes to insn %d not profitable\n",
978 INSN_UID (insn));
979 ok = false;
980 }
981
982 else
983 {
984 if (dump_file)
985 fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
986 ok = true;
987 }
988
989 if (ok)
990 {
991 confirm_change_group ();
992 num_changes++;
993 }
994 else
995 {
996 cancel_changes (0);
997
998 /* Can also record a simplified value in a REG_EQUAL note,
999 making a new one if one does not already exist. */
1000 if (set_reg_equal)
1001 {
1002 if (dump_file)
1003 fprintf (dump_file, " Setting REG_EQUAL note\n");
1004
1005 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx));
1006 }
1007 }
1008
1009 if ((ok || note) && !CONSTANT_P (new_rtx))
1010 update_df (insn, note);
1011
1012 return ok;
1013 }
1014
1015 /* For the given single_set INSN, containing SRC known to be a
1016 ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1017 is redundant due to the register being set by a LOAD_EXTEND_OP
1018 load from memory. */
1019
1020 static bool
1021 free_load_extend (rtx src, rtx_insn *insn)
1022 {
1023 rtx reg;
1024 df_ref def, use;
1025
1026 reg = XEXP (src, 0);
1027 #ifdef LOAD_EXTEND_OP
1028 if (LOAD_EXTEND_OP (GET_MODE (reg)) != GET_CODE (src))
1029 #endif
1030 return false;
1031
1032 FOR_EACH_INSN_USE (use, insn)
1033 if (!DF_REF_IS_ARTIFICIAL (use)
1034 && DF_REF_TYPE (use) == DF_REF_REG_USE
1035 && DF_REF_REG (use) == reg)
1036 break;
1037 if (!use)
1038 return false;
1039
1040 def = get_def_for_use (use);
1041 if (!def)
1042 return false;
1043
1044 if (DF_REF_IS_ARTIFICIAL (def))
1045 return false;
1046
1047 if (NONJUMP_INSN_P (DF_REF_INSN (def)))
1048 {
1049 rtx patt = PATTERN (DF_REF_INSN (def));
1050
1051 if (GET_CODE (patt) == SET
1052 && GET_CODE (SET_SRC (patt)) == MEM
1053 && rtx_equal_p (SET_DEST (patt), reg))
1054 return true;
1055 }
1056 return false;
1057 }
1058
1059 /* If USE is a subreg, see if it can be replaced by a pseudo. */
1060
1061 static bool
1062 forward_propagate_subreg (df_ref use, rtx_insn *def_insn, rtx def_set)
1063 {
1064 rtx use_reg = DF_REF_REG (use);
1065 rtx_insn *use_insn;
1066 rtx src;
1067
1068 /* Only consider subregs... */
1069 machine_mode use_mode = GET_MODE (use_reg);
1070 if (GET_CODE (use_reg) != SUBREG
1071 || !REG_P (SET_DEST (def_set)))
1072 return false;
1073
1074 /* If this is a paradoxical SUBREG... */
1075 if (GET_MODE_SIZE (use_mode)
1076 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg))))
1077 {
1078 /* If this is a paradoxical SUBREG, we have no idea what value the
1079 extra bits would have. However, if the operand is equivalent to
1080 a SUBREG whose operand is the same as our mode, and all the modes
1081 are within a word, we can just use the inner operand because
1082 these SUBREGs just say how to treat the register. */
1083 use_insn = DF_REF_INSN (use);
1084 src = SET_SRC (def_set);
1085 if (GET_CODE (src) == SUBREG
1086 && REG_P (SUBREG_REG (src))
1087 && REGNO (SUBREG_REG (src)) >= FIRST_PSEUDO_REGISTER
1088 && GET_MODE (SUBREG_REG (src)) == use_mode
1089 && subreg_lowpart_p (src)
1090 && all_uses_available_at (def_insn, use_insn))
1091 return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
1092 def_insn, false);
1093 }
1094
1095 /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1096 is the low part of the reg being extended then just use the inner
1097 operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1098 be removed due to it matching a LOAD_EXTEND_OP load from memory,
1099 or due to the operation being a no-op when applied to registers.
1100 For example, if we have:
1101
1102 A: (set (reg:DI X) (sign_extend:DI (reg:SI Y)))
1103 B: (... (subreg:SI (reg:DI X)) ...)
1104
1105 and mode_rep_extended says that Y is already sign-extended,
1106 the backend will typically allow A to be combined with the
1107 definition of Y or, failing that, allow A to be deleted after
1108 reload through register tying. Introducing more uses of Y
1109 prevents both optimisations. */
1110 else if (subreg_lowpart_p (use_reg))
1111 {
1112 use_insn = DF_REF_INSN (use);
1113 src = SET_SRC (def_set);
1114 if ((GET_CODE (src) == ZERO_EXTEND
1115 || GET_CODE (src) == SIGN_EXTEND)
1116 && REG_P (XEXP (src, 0))
1117 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
1118 && GET_MODE (XEXP (src, 0)) == use_mode
1119 && !free_load_extend (src, def_insn)
1120 && (targetm.mode_rep_extended (use_mode, GET_MODE (src))
1121 != (int) GET_CODE (src))
1122 && all_uses_available_at (def_insn, use_insn))
1123 return try_fwprop_subst (use, DF_REF_LOC (use), XEXP (src, 0),
1124 def_insn, false);
1125 }
1126
1127 return false;
1128 }
1129
1130 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */
1131
1132 static bool
1133 forward_propagate_asm (df_ref use, rtx_insn *def_insn, rtx def_set, rtx reg)
1134 {
1135 rtx_insn *use_insn = DF_REF_INSN (use);
1136 rtx src, use_pat, asm_operands, new_rtx, *loc;
1137 int speed_p, i;
1138 df_ref uses;
1139
1140 gcc_assert ((DF_REF_FLAGS (use) & DF_REF_IN_NOTE) == 0);
1141
1142 src = SET_SRC (def_set);
1143 use_pat = PATTERN (use_insn);
1144
1145 /* In __asm don't replace if src might need more registers than
1146 reg, as that could increase register pressure on the __asm. */
1147 uses = DF_INSN_USES (def_insn);
1148 if (uses && DF_REF_NEXT_LOC (uses))
1149 return false;
1150
1151 update_df_init (def_insn, use_insn);
1152 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
1153 asm_operands = NULL_RTX;
1154 switch (GET_CODE (use_pat))
1155 {
1156 case ASM_OPERANDS:
1157 asm_operands = use_pat;
1158 break;
1159 case SET:
1160 if (MEM_P (SET_DEST (use_pat)))
1161 {
1162 loc = &SET_DEST (use_pat);
1163 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1164 if (new_rtx)
1165 validate_unshare_change (use_insn, loc, new_rtx, true);
1166 }
1167 asm_operands = SET_SRC (use_pat);
1168 break;
1169 case PARALLEL:
1170 for (i = 0; i < XVECLEN (use_pat, 0); i++)
1171 if (GET_CODE (XVECEXP (use_pat, 0, i)) == SET)
1172 {
1173 if (MEM_P (SET_DEST (XVECEXP (use_pat, 0, i))))
1174 {
1175 loc = &SET_DEST (XVECEXP (use_pat, 0, i));
1176 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg,
1177 src, speed_p);
1178 if (new_rtx)
1179 validate_unshare_change (use_insn, loc, new_rtx, true);
1180 }
1181 asm_operands = SET_SRC (XVECEXP (use_pat, 0, i));
1182 }
1183 else if (GET_CODE (XVECEXP (use_pat, 0, i)) == ASM_OPERANDS)
1184 asm_operands = XVECEXP (use_pat, 0, i);
1185 break;
1186 default:
1187 gcc_unreachable ();
1188 }
1189
1190 gcc_assert (asm_operands && GET_CODE (asm_operands) == ASM_OPERANDS);
1191 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (asm_operands); i++)
1192 {
1193 loc = &ASM_OPERANDS_INPUT (asm_operands, i);
1194 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1195 if (new_rtx)
1196 validate_unshare_change (use_insn, loc, new_rtx, true);
1197 }
1198
1199 if (num_changes_pending () == 0 || !apply_change_group ())
1200 return false;
1201
1202 update_df (use_insn, NULL);
1203 num_changes++;
1204 return true;
1205 }
1206
1207 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1208 result. */
1209
1210 static bool
1211 forward_propagate_and_simplify (df_ref use, rtx_insn *def_insn, rtx def_set)
1212 {
1213 rtx_insn *use_insn = DF_REF_INSN (use);
1214 rtx use_set = single_set (use_insn);
1215 rtx src, reg, new_rtx, *loc;
1216 bool set_reg_equal;
1217 machine_mode mode;
1218 int asm_use = -1;
1219
1220 if (INSN_CODE (use_insn) < 0)
1221 asm_use = asm_noperands (PATTERN (use_insn));
1222
1223 if (!use_set && asm_use < 0 && !DEBUG_INSN_P (use_insn))
1224 return false;
1225
1226 /* Do not propagate into PC, CC0, etc. */
1227 if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode)
1228 return false;
1229
1230 /* If def and use are subreg, check if they match. */
1231 reg = DF_REF_REG (use);
1232 if (GET_CODE (reg) == SUBREG && GET_CODE (SET_DEST (def_set)) == SUBREG)
1233 {
1234 if (SUBREG_BYTE (SET_DEST (def_set)) != SUBREG_BYTE (reg))
1235 return false;
1236 }
1237 /* Check if the def had a subreg, but the use has the whole reg. */
1238 else if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
1239 return false;
1240 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
1241 previous case, the optimization is possible and often useful indeed. */
1242 else if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
1243 reg = SUBREG_REG (reg);
1244
1245 /* Make sure that we can treat REG as having the same mode as the
1246 source of DEF_SET. */
1247 if (GET_MODE (SET_DEST (def_set)) != GET_MODE (reg))
1248 return false;
1249
1250 /* Check if the substitution is valid (last, because it's the most
1251 expensive check!). */
1252 src = SET_SRC (def_set);
1253 if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
1254 return false;
1255
1256 /* Check if the def is loading something from the constant pool; in this
1257 case we would undo optimization such as compress_float_constant.
1258 Still, we can set a REG_EQUAL note. */
1259 if (MEM_P (src) && MEM_READONLY_P (src))
1260 {
1261 rtx x = avoid_constant_pool_reference (src);
1262 if (x != src && use_set)
1263 {
1264 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1265 rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set);
1266 rtx new_rtx = simplify_replace_rtx (old_rtx, src, x);
1267 if (old_rtx != new_rtx)
1268 set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx));
1269 }
1270 return false;
1271 }
1272
1273 if (asm_use >= 0)
1274 return forward_propagate_asm (use, def_insn, def_set, reg);
1275
1276 /* Else try simplifying. */
1277
1278 if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
1279 {
1280 loc = &SET_DEST (use_set);
1281 set_reg_equal = false;
1282 }
1283 else if (!use_set)
1284 {
1285 loc = &INSN_VAR_LOCATION_LOC (use_insn);
1286 set_reg_equal = false;
1287 }
1288 else
1289 {
1290 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1291 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1292 loc = &XEXP (note, 0);
1293 else
1294 loc = &SET_SRC (use_set);
1295
1296 /* Do not replace an existing REG_EQUAL note if the insn is not
1297 recognized. Either we're already replacing in the note, or we'll
1298 separately try plugging the definition in the note and simplifying.
1299 And only install a REQ_EQUAL note when the destination is a REG
1300 that isn't mentioned in USE_SET, as the note would be invalid
1301 otherwise. We also don't want to install a note if we are merely
1302 propagating a pseudo since verifying that this pseudo isn't dead
1303 is a pain; moreover such a note won't help anything. */
1304 set_reg_equal = (note == NULL_RTX
1305 && REG_P (SET_DEST (use_set))
1306 && !REG_P (src)
1307 && !(GET_CODE (src) == SUBREG
1308 && REG_P (SUBREG_REG (src)))
1309 && !reg_mentioned_p (SET_DEST (use_set),
1310 SET_SRC (use_set)));
1311 }
1312
1313 if (GET_MODE (*loc) == VOIDmode)
1314 mode = GET_MODE (SET_DEST (use_set));
1315 else
1316 mode = GET_MODE (*loc);
1317
1318 new_rtx = propagate_rtx (*loc, mode, reg, src,
1319 optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn)));
1320
1321 if (!new_rtx)
1322 return false;
1323
1324 return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal);
1325 }
1326
1327
1328 /* Given a use USE of an insn, if it has a single reaching
1329 definition, try to forward propagate it into that insn.
1330 Return true if cfg cleanup will be needed. */
1331
1332 static bool
1333 forward_propagate_into (df_ref use)
1334 {
1335 df_ref def;
1336 rtx_insn *def_insn, *use_insn;
1337 rtx def_set;
1338 rtx parent;
1339
1340 if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
1341 return false;
1342 if (DF_REF_IS_ARTIFICIAL (use))
1343 return false;
1344
1345 /* Only consider uses that have a single definition. */
1346 def = get_def_for_use (use);
1347 if (!def)
1348 return false;
1349 if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
1350 return false;
1351 if (DF_REF_IS_ARTIFICIAL (def))
1352 return false;
1353
1354 /* Do not propagate loop invariant definitions inside the loop. */
1355 if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
1356 return false;
1357
1358 /* Check if the use is still present in the insn! */
1359 use_insn = DF_REF_INSN (use);
1360 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1361 parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1362 else
1363 parent = PATTERN (use_insn);
1364
1365 if (!reg_mentioned_p (DF_REF_REG (use), parent))
1366 return false;
1367
1368 def_insn = DF_REF_INSN (def);
1369 if (multiple_sets (def_insn))
1370 return false;
1371 def_set = single_set (def_insn);
1372 if (!def_set)
1373 return false;
1374
1375 /* Only try one kind of propagation. If two are possible, we'll
1376 do it on the following iterations. */
1377 if (forward_propagate_and_simplify (use, def_insn, def_set)
1378 || forward_propagate_subreg (use, def_insn, def_set))
1379 {
1380 if (cfun->can_throw_non_call_exceptions
1381 && find_reg_note (use_insn, REG_EH_REGION, NULL_RTX)
1382 && purge_dead_edges (DF_REF_BB (use)))
1383 return true;
1384 }
1385 return false;
1386 }
1387
1388 \f
1389 static void
1390 fwprop_init (void)
1391 {
1392 num_changes = 0;
1393 calculate_dominance_info (CDI_DOMINATORS);
1394
1395 /* We do not always want to propagate into loops, so we have to find
1396 loops and be careful about them. Avoid CFG modifications so that
1397 we don't have to update dominance information afterwards for
1398 build_single_def_use_links. */
1399 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
1400
1401 build_single_def_use_links ();
1402 df_set_flags (DF_DEFER_INSN_RESCAN);
1403
1404 active_defs = XNEWVEC (df_ref, max_reg_num ());
1405 if (flag_checking)
1406 active_defs_check = sparseset_alloc (max_reg_num ());
1407 }
1408
1409 static void
1410 fwprop_done (void)
1411 {
1412 loop_optimizer_finalize ();
1413
1414 use_def_ref.release ();
1415 free (active_defs);
1416 if (flag_checking)
1417 sparseset_free (active_defs_check);
1418
1419 free_dominance_info (CDI_DOMINATORS);
1420 cleanup_cfg (0);
1421 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1422
1423 if (dump_file)
1424 fprintf (dump_file,
1425 "\nNumber of successful forward propagations: %d\n\n",
1426 num_changes);
1427 }
1428
1429
1430 /* Main entry point. */
1431
1432 static bool
1433 gate_fwprop (void)
1434 {
1435 return optimize > 0 && flag_forward_propagate;
1436 }
1437
1438 static unsigned int
1439 fwprop (void)
1440 {
1441 unsigned i;
1442 bool need_cleanup = false;
1443
1444 fwprop_init ();
1445
1446 /* Go through all the uses. df_uses_create will create new ones at the
1447 end, and we'll go through them as well.
1448
1449 Do not forward propagate addresses into loops until after unrolling.
1450 CSE did so because it was able to fix its own mess, but we are not. */
1451
1452 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1453 {
1454 df_ref use = DF_USES_GET (i);
1455 if (use)
1456 if (DF_REF_TYPE (use) == DF_REF_REG_USE
1457 || DF_REF_BB (use)->loop_father == NULL
1458 /* The outer most loop is not really a loop. */
1459 || loop_outer (DF_REF_BB (use)->loop_father) == NULL)
1460 need_cleanup |= forward_propagate_into (use);
1461 }
1462
1463 fwprop_done ();
1464 if (need_cleanup)
1465 cleanup_cfg (0);
1466 return 0;
1467 }
1468
1469 namespace {
1470
1471 const pass_data pass_data_rtl_fwprop =
1472 {
1473 RTL_PASS, /* type */
1474 "fwprop1", /* name */
1475 OPTGROUP_NONE, /* optinfo_flags */
1476 TV_FWPROP, /* tv_id */
1477 0, /* properties_required */
1478 0, /* properties_provided */
1479 0, /* properties_destroyed */
1480 0, /* todo_flags_start */
1481 TODO_df_finish, /* todo_flags_finish */
1482 };
1483
1484 class pass_rtl_fwprop : public rtl_opt_pass
1485 {
1486 public:
1487 pass_rtl_fwprop (gcc::context *ctxt)
1488 : rtl_opt_pass (pass_data_rtl_fwprop, ctxt)
1489 {}
1490
1491 /* opt_pass methods: */
1492 virtual bool gate (function *) { return gate_fwprop (); }
1493 virtual unsigned int execute (function *) { return fwprop (); }
1494
1495 }; // class pass_rtl_fwprop
1496
1497 } // anon namespace
1498
1499 rtl_opt_pass *
1500 make_pass_rtl_fwprop (gcc::context *ctxt)
1501 {
1502 return new pass_rtl_fwprop (ctxt);
1503 }
1504
1505 static unsigned int
1506 fwprop_addr (void)
1507 {
1508 unsigned i;
1509 bool need_cleanup = false;
1510
1511 fwprop_init ();
1512
1513 /* Go through all the uses. df_uses_create will create new ones at the
1514 end, and we'll go through them as well. */
1515 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1516 {
1517 df_ref use = DF_USES_GET (i);
1518 if (use)
1519 if (DF_REF_TYPE (use) != DF_REF_REG_USE
1520 && DF_REF_BB (use)->loop_father != NULL
1521 /* The outer most loop is not really a loop. */
1522 && loop_outer (DF_REF_BB (use)->loop_father) != NULL)
1523 need_cleanup |= forward_propagate_into (use);
1524 }
1525
1526 fwprop_done ();
1527
1528 if (need_cleanup)
1529 cleanup_cfg (0);
1530 return 0;
1531 }
1532
1533 namespace {
1534
1535 const pass_data pass_data_rtl_fwprop_addr =
1536 {
1537 RTL_PASS, /* type */
1538 "fwprop2", /* name */
1539 OPTGROUP_NONE, /* optinfo_flags */
1540 TV_FWPROP, /* tv_id */
1541 0, /* properties_required */
1542 0, /* properties_provided */
1543 0, /* properties_destroyed */
1544 0, /* todo_flags_start */
1545 TODO_df_finish, /* todo_flags_finish */
1546 };
1547
1548 class pass_rtl_fwprop_addr : public rtl_opt_pass
1549 {
1550 public:
1551 pass_rtl_fwprop_addr (gcc::context *ctxt)
1552 : rtl_opt_pass (pass_data_rtl_fwprop_addr, ctxt)
1553 {}
1554
1555 /* opt_pass methods: */
1556 virtual bool gate (function *) { return gate_fwprop (); }
1557 virtual unsigned int execute (function *) { return fwprop_addr (); }
1558
1559 }; // class pass_rtl_fwprop_addr
1560
1561 } // anon namespace
1562
1563 rtl_opt_pass *
1564 make_pass_rtl_fwprop_addr (gcc::context *ctxt)
1565 {
1566 return new pass_rtl_fwprop_addr (ctxt);
1567 }