system.h (TRAMPOLINE_TEMPLATE, [...]): Poison.
[gcc.git] / gcc / fwprop.c
1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
3 Contributed by Paolo Bonzini and Steven Bosscher.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "toplev.h"
26
27 #include "timevar.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "emit-rtl.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "flags.h"
34 #include "obstack.h"
35 #include "basic-block.h"
36 #include "output.h"
37 #include "df.h"
38 #include "target.h"
39 #include "cfgloop.h"
40 #include "tree-pass.h"
41 #include "domwalk.h"
42
43
44 /* This pass does simple forward propagation and simplification when an
45 operand of an insn can only come from a single def. This pass uses
46 df.c, so it is global. However, we only do limited analysis of
47 available expressions.
48
49 1) The pass tries to propagate the source of the def into the use,
50 and checks if the result is independent of the substituted value.
51 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
52 zero, independent of the source register.
53
54 In particular, we propagate constants into the use site. Sometimes
55 RTL expansion did not put the constant in the same insn on purpose,
56 to satisfy a predicate, and the result will fail to be recognized;
57 but this happens rarely and in this case we can still create a
58 REG_EQUAL note. For multi-word operations, this
59
60 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
61 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
62 (set (subreg:SI (reg:DI 122) 0)
63 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
64 (set (subreg:SI (reg:DI 122) 4)
65 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
66
67 can be simplified to the much simpler
68
69 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
70 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
71
72 This particular propagation is also effective at putting together
73 complex addressing modes. We are more aggressive inside MEMs, in
74 that all definitions are propagated if the use is in a MEM; if the
75 result is a valid memory address we check address_cost to decide
76 whether the substitution is worthwhile.
77
78 2) The pass propagates register copies. This is not as effective as
79 the copy propagation done by CSE's canon_reg, which works by walking
80 the instruction chain, it can help the other transformations.
81
82 We should consider removing this optimization, and instead reorder the
83 RTL passes, because GCSE does this transformation too. With some luck,
84 the CSE pass at the end of rest_of_handle_gcse could also go away.
85
86 3) The pass looks for paradoxical subregs that are actually unnecessary.
87 Things like this:
88
89 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
90 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
91 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
92 (subreg:SI (reg:QI 121) 0)))
93
94 are very common on machines that can only do word-sized operations.
95 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
96 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
97 we can replace the paradoxical subreg with simply (reg:WIDE M). The
98 above will simplify this to
99
100 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
101 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
102 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
103
104 where the first two insns are now dead.
105
106 We used to use reaching definitions to find which uses have a
107 single reaching definition (sounds obvious...), but this is too
108 complex a problem in nasty testcases like PR33928. Now we use the
109 multiple definitions problem in df-problems.c. The similarity
110 between that problem and SSA form creation is taken further, in
111 that fwprop does a dominator walk to create its chains; however,
112 instead of creating a PHI function where multiple definitions meet
113 I just punt and record only singleton use-def chains, which is
114 all that is needed by fwprop. */
115
116
117 static int num_changes;
118
119 DEF_VEC_P(df_ref);
120 DEF_VEC_ALLOC_P(df_ref,heap);
121 VEC(df_ref,heap) *use_def_ref;
122 VEC(df_ref,heap) *reg_defs;
123 VEC(df_ref,heap) *reg_defs_stack;
124
125
126 /* Return the only def in USE's use-def chain, or NULL if there is
127 more than one def in the chain. */
128
129 static inline df_ref
130 get_def_for_use (df_ref use)
131 {
132 return VEC_index (df_ref, use_def_ref, DF_REF_ID (use));
133 }
134
135
136 /* Update the reg_defs vector with non-partial definitions in DEF_REC.
137 TOP_FLAG says which artificials uses should be used, when DEF_REC
138 is an artificial def vector. LOCAL_MD is modified as after a
139 df_md_simulate_* function; we do more or less the same processing
140 done there, so we do not use those functions. */
141
142 #define DF_MD_GEN_FLAGS \
143 (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
144
145 static void
146 process_defs (bitmap local_md, df_ref *def_rec, int top_flag)
147 {
148 df_ref def;
149 while ((def = *def_rec++) != NULL)
150 {
151 df_ref curr_def = VEC_index (df_ref, reg_defs, DF_REF_REGNO (def));
152 unsigned int dregno;
153
154 if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) != top_flag)
155 continue;
156
157 dregno = DF_REF_REGNO (def);
158 if (curr_def)
159 VEC_safe_push (df_ref, heap, reg_defs_stack, curr_def);
160 else
161 {
162 /* Do not store anything if "transitioning" from NULL to NULL. But
163 otherwise, push a special entry on the stack to tell the
164 leave_block callback that the entry in reg_defs was NULL. */
165 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
166 ;
167 else
168 VEC_safe_push (df_ref, heap, reg_defs_stack, def);
169 }
170
171 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
172 {
173 bitmap_set_bit (local_md, dregno);
174 VEC_replace (df_ref, reg_defs, dregno, NULL);
175 }
176 else
177 {
178 bitmap_clear_bit (local_md, dregno);
179 VEC_replace (df_ref, reg_defs, dregno, def);
180 }
181 }
182 }
183
184
185 /* Fill the use_def_ref vector with values for the uses in USE_REC,
186 taking reaching definitions info from LOCAL_MD and REG_DEFS.
187 TOP_FLAG says which artificials uses should be used, when USE_REC
188 is an artificial use vector. */
189
190 static void
191 process_uses (bitmap local_md, df_ref *use_rec, int top_flag)
192 {
193 df_ref use;
194 while ((use = *use_rec++) != NULL)
195 if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == top_flag)
196 {
197 unsigned int uregno = DF_REF_REGNO (use);
198 if (VEC_index (df_ref, reg_defs, uregno)
199 && !bitmap_bit_p (local_md, uregno))
200 VEC_replace (df_ref, use_def_ref, DF_REF_ID (use),
201 VEC_index (df_ref, reg_defs, uregno));
202 }
203 }
204
205
206 static void
207 single_def_use_enter_block (struct dom_walk_data *walk_data, basic_block bb)
208 {
209 bitmap local_md = (bitmap) walk_data->global_data;
210 int bb_index = bb->index;
211 struct df_md_bb_info *bb_info = df_md_get_bb_info (bb_index);
212 rtx insn;
213
214 bitmap_copy (local_md, bb_info->in);
215
216 /* Push a marker for the leave_block callback. */
217 VEC_safe_push (df_ref, heap, reg_defs_stack, NULL);
218
219 process_uses (local_md, df_get_artificial_uses (bb_index), DF_REF_AT_TOP);
220 process_defs (local_md, df_get_artificial_defs (bb_index), DF_REF_AT_TOP);
221
222 FOR_BB_INSNS (bb, insn)
223 if (INSN_P (insn))
224 {
225 unsigned int uid = INSN_UID (insn);
226 process_uses (local_md, DF_INSN_UID_USES (uid), 0);
227 process_uses (local_md, DF_INSN_UID_EQ_USES (uid), 0);
228 process_defs (local_md, DF_INSN_UID_DEFS (uid), 0);
229 }
230
231 process_uses (local_md, df_get_artificial_uses (bb_index), 0);
232 process_defs (local_md, df_get_artificial_defs (bb_index), 0);
233 }
234
235 /* Pop the definitions created in this basic block when leaving its
236 dominated parts. */
237
238 static void
239 single_def_use_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
240 basic_block bb ATTRIBUTE_UNUSED)
241 {
242 df_ref saved_def;
243 while ((saved_def = VEC_pop (df_ref, reg_defs_stack)) != NULL)
244 {
245 unsigned int dregno = DF_REF_REGNO (saved_def);
246
247 /* See also process_defs. */
248 if (saved_def == VEC_index (df_ref, reg_defs, dregno))
249 VEC_replace (df_ref, reg_defs, dregno, NULL);
250 else
251 VEC_replace (df_ref, reg_defs, dregno, saved_def);
252 }
253 }
254
255
256 /* Build a vector holding the reaching definitions of uses reached by a
257 single dominating definition. */
258
259 static void
260 build_single_def_use_links (void)
261 {
262 struct dom_walk_data walk_data;
263 bitmap local_md;
264
265 /* We use the multiple definitions problem to compute our restricted
266 use-def chains. */
267 df_set_flags (DF_EQ_NOTES);
268 df_md_add_problem ();
269 df_analyze ();
270 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES);
271
272 use_def_ref = VEC_alloc (df_ref, heap, DF_USES_TABLE_SIZE ());
273 VEC_safe_grow_cleared (df_ref, heap, use_def_ref, DF_USES_TABLE_SIZE ());
274
275 reg_defs = VEC_alloc (df_ref, heap, max_reg_num ());
276 VEC_safe_grow_cleared (df_ref, heap, reg_defs, max_reg_num ());
277
278 reg_defs_stack = VEC_alloc (df_ref, heap, n_basic_blocks * 10);
279 local_md = BITMAP_ALLOC (NULL);
280
281 /* Walk the dominator tree looking for single reaching definitions
282 dominating the uses. This is similar to how SSA form is built. */
283 walk_data.dom_direction = CDI_DOMINATORS;
284 walk_data.initialize_block_local_data = NULL;
285 walk_data.before_dom_children = single_def_use_enter_block;
286 walk_data.after_dom_children = single_def_use_leave_block;
287 walk_data.global_data = local_md;
288
289 init_walk_dominator_tree (&walk_data);
290 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
291 fini_walk_dominator_tree (&walk_data);
292
293 BITMAP_FREE (local_md);
294 VEC_free (df_ref, heap, reg_defs);
295 VEC_free (df_ref, heap, reg_defs_stack);
296 }
297
298 \f
299 /* Do not try to replace constant addresses or addresses of local and
300 argument slots. These MEM expressions are made only once and inserted
301 in many instructions, as well as being used to control symbol table
302 output. It is not safe to clobber them.
303
304 There are some uncommon cases where the address is already in a register
305 for some reason, but we cannot take advantage of that because we have
306 no easy way to unshare the MEM. In addition, looking up all stack
307 addresses is costly. */
308
309 static bool
310 can_simplify_addr (rtx addr)
311 {
312 rtx reg;
313
314 if (CONSTANT_ADDRESS_P (addr))
315 return false;
316
317 if (GET_CODE (addr) == PLUS)
318 reg = XEXP (addr, 0);
319 else
320 reg = addr;
321
322 return (!REG_P (reg)
323 || (REGNO (reg) != FRAME_POINTER_REGNUM
324 && REGNO (reg) != HARD_FRAME_POINTER_REGNUM
325 && REGNO (reg) != ARG_POINTER_REGNUM));
326 }
327
328 /* Returns a canonical version of X for the address, from the point of view,
329 that all multiplications are represented as MULT instead of the multiply
330 by a power of 2 being represented as ASHIFT.
331
332 Every ASHIFT we find has been made by simplify_gen_binary and was not
333 there before, so it is not shared. So we can do this in place. */
334
335 static void
336 canonicalize_address (rtx x)
337 {
338 for (;;)
339 switch (GET_CODE (x))
340 {
341 case ASHIFT:
342 if (CONST_INT_P (XEXP (x, 1))
343 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x))
344 && INTVAL (XEXP (x, 1)) >= 0)
345 {
346 HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
347 PUT_CODE (x, MULT);
348 XEXP (x, 1) = gen_int_mode ((HOST_WIDE_INT) 1 << shift,
349 GET_MODE (x));
350 }
351
352 x = XEXP (x, 0);
353 break;
354
355 case PLUS:
356 if (GET_CODE (XEXP (x, 0)) == PLUS
357 || GET_CODE (XEXP (x, 0)) == ASHIFT
358 || GET_CODE (XEXP (x, 0)) == CONST)
359 canonicalize_address (XEXP (x, 0));
360
361 x = XEXP (x, 1);
362 break;
363
364 case CONST:
365 x = XEXP (x, 0);
366 break;
367
368 default:
369 return;
370 }
371 }
372
373 /* OLD is a memory address. Return whether it is good to use NEW instead,
374 for a memory access in the given MODE. */
375
376 static bool
377 should_replace_address (rtx old_rtx, rtx new_rtx, enum machine_mode mode,
378 bool speed)
379 {
380 int gain;
381
382 if (rtx_equal_p (old_rtx, new_rtx) || !memory_address_p (mode, new_rtx))
383 return false;
384
385 /* Copy propagation is always ok. */
386 if (REG_P (old_rtx) && REG_P (new_rtx))
387 return true;
388
389 /* Prefer the new address if it is less expensive. */
390 gain = address_cost (old_rtx, mode, speed) - address_cost (new_rtx, mode, speed);
391
392 /* If the addresses have equivalent cost, prefer the new address
393 if it has the highest `rtx_cost'. That has the potential of
394 eliminating the most insns without additional costs, and it
395 is the same that cse.c used to do. */
396 if (gain == 0)
397 gain = rtx_cost (new_rtx, SET, speed) - rtx_cost (old_rtx, SET, speed);
398
399 return (gain > 0);
400 }
401
402
403 /* Flags for the last parameter of propagate_rtx_1. */
404
405 enum {
406 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
407 if it is false, propagate_rtx_1 returns false if, for at least
408 one occurrence OLD, it failed to collapse the result to a constant.
409 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
410 collapse to zero if replacing (reg:M B) with (reg:M A).
411
412 PR_CAN_APPEAR is disregarded inside MEMs: in that case,
413 propagate_rtx_1 just tries to make cheaper and valid memory
414 addresses. */
415 PR_CAN_APPEAR = 1,
416
417 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
418 outside memory addresses. This is needed because propagate_rtx_1 does
419 not do any analysis on memory; thus it is very conservative and in general
420 it will fail if non-read-only MEMs are found in the source expression.
421
422 PR_HANDLE_MEM is set when the source of the propagation was not
423 another MEM. Then, it is safe not to treat non-read-only MEMs as
424 ``opaque'' objects. */
425 PR_HANDLE_MEM = 2,
426
427 /* Set when costs should be optimized for speed. */
428 PR_OPTIMIZE_FOR_SPEED = 4
429 };
430
431
432 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
433 resulting expression. Replace *PX with a new RTL expression if an
434 occurrence of OLD was found.
435
436 This is only a wrapper around simplify-rtx.c: do not add any pattern
437 matching code here. (The sole exception is the handling of LO_SUM, but
438 that is because there is no simplify_gen_* function for LO_SUM). */
439
440 static bool
441 propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags)
442 {
443 rtx x = *px, tem = NULL_RTX, op0, op1, op2;
444 enum rtx_code code = GET_CODE (x);
445 enum machine_mode mode = GET_MODE (x);
446 enum machine_mode op_mode;
447 bool can_appear = (flags & PR_CAN_APPEAR) != 0;
448 bool valid_ops = true;
449
450 if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x))
451 {
452 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
453 they have side effects or not). */
454 *px = (side_effects_p (x)
455 ? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx)
456 : gen_rtx_SCRATCH (GET_MODE (x)));
457 return false;
458 }
459
460 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
461 address, and we are *not* inside one. */
462 if (x == old_rtx)
463 {
464 *px = new_rtx;
465 return can_appear;
466 }
467
468 /* If this is an expression, try recursive substitution. */
469 switch (GET_RTX_CLASS (code))
470 {
471 case RTX_UNARY:
472 op0 = XEXP (x, 0);
473 op_mode = GET_MODE (op0);
474 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
475 if (op0 == XEXP (x, 0))
476 return true;
477 tem = simplify_gen_unary (code, mode, op0, op_mode);
478 break;
479
480 case RTX_BIN_ARITH:
481 case RTX_COMM_ARITH:
482 op0 = XEXP (x, 0);
483 op1 = XEXP (x, 1);
484 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
485 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
486 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
487 return true;
488 tem = simplify_gen_binary (code, mode, op0, op1);
489 break;
490
491 case RTX_COMPARE:
492 case RTX_COMM_COMPARE:
493 op0 = XEXP (x, 0);
494 op1 = XEXP (x, 1);
495 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
496 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
497 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
498 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
499 return true;
500 tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
501 break;
502
503 case RTX_TERNARY:
504 case RTX_BITFIELD_OPS:
505 op0 = XEXP (x, 0);
506 op1 = XEXP (x, 1);
507 op2 = XEXP (x, 2);
508 op_mode = GET_MODE (op0);
509 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
510 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
511 valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags);
512 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
513 return true;
514 if (op_mode == VOIDmode)
515 op_mode = GET_MODE (op0);
516 tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
517 break;
518
519 case RTX_EXTRA:
520 /* The only case we try to handle is a SUBREG. */
521 if (code == SUBREG)
522 {
523 op0 = XEXP (x, 0);
524 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
525 if (op0 == XEXP (x, 0))
526 return true;
527 tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
528 SUBREG_BYTE (x));
529 }
530 break;
531
532 case RTX_OBJ:
533 if (code == MEM && x != new_rtx)
534 {
535 rtx new_op0;
536 op0 = XEXP (x, 0);
537
538 /* There are some addresses that we cannot work on. */
539 if (!can_simplify_addr (op0))
540 return true;
541
542 op0 = new_op0 = targetm.delegitimize_address (op0);
543 valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx,
544 flags | PR_CAN_APPEAR);
545
546 /* Dismiss transformation that we do not want to carry on. */
547 if (!valid_ops
548 || new_op0 == op0
549 || !(GET_MODE (new_op0) == GET_MODE (op0)
550 || GET_MODE (new_op0) == VOIDmode))
551 return true;
552
553 canonicalize_address (new_op0);
554
555 /* Copy propagations are always ok. Otherwise check the costs. */
556 if (!(REG_P (old_rtx) && REG_P (new_rtx))
557 && !should_replace_address (op0, new_op0, GET_MODE (x),
558 flags & PR_OPTIMIZE_FOR_SPEED))
559 return true;
560
561 tem = replace_equiv_address_nv (x, new_op0);
562 }
563
564 else if (code == LO_SUM)
565 {
566 op0 = XEXP (x, 0);
567 op1 = XEXP (x, 1);
568
569 /* The only simplification we do attempts to remove references to op0
570 or make it constant -- in both cases, op0's invalidity will not
571 make the result invalid. */
572 propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR);
573 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
574 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
575 return true;
576
577 /* (lo_sum (high x) x) -> x */
578 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
579 tem = op1;
580 else
581 tem = gen_rtx_LO_SUM (mode, op0, op1);
582
583 /* OP1 is likely not a legitimate address, otherwise there would have
584 been no LO_SUM. We want it to disappear if it is invalid, return
585 false in that case. */
586 return memory_address_p (mode, tem);
587 }
588
589 else if (code == REG)
590 {
591 if (rtx_equal_p (x, old_rtx))
592 {
593 *px = new_rtx;
594 return can_appear;
595 }
596 }
597 break;
598
599 default:
600 break;
601 }
602
603 /* No change, no trouble. */
604 if (tem == NULL_RTX)
605 return true;
606
607 *px = tem;
608
609 /* The replacement we made so far is valid, if all of the recursive
610 replacements were valid, or we could simplify everything to
611 a constant. */
612 return valid_ops || can_appear || CONSTANT_P (tem);
613 }
614
615
616 /* for_each_rtx traversal function that returns 1 if BODY points to
617 a non-constant mem. */
618
619 static int
620 varying_mem_p (rtx *body, void *data ATTRIBUTE_UNUSED)
621 {
622 rtx x = *body;
623 return MEM_P (x) && !MEM_READONLY_P (x);
624 }
625
626
627 /* Replace all occurrences of OLD in X with NEW and try to simplify the
628 resulting expression (in mode MODE). Return a new expression if it is
629 a constant, otherwise X.
630
631 Simplifications where occurrences of NEW collapse to a constant are always
632 accepted. All simplifications are accepted if NEW is a pseudo too.
633 Otherwise, we accept simplifications that have a lower or equal cost. */
634
635 static rtx
636 propagate_rtx (rtx x, enum machine_mode mode, rtx old_rtx, rtx new_rtx,
637 bool speed)
638 {
639 rtx tem;
640 bool collapsed;
641 int flags;
642
643 if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER)
644 return NULL_RTX;
645
646 flags = 0;
647 if (REG_P (new_rtx) || CONSTANT_P (new_rtx))
648 flags |= PR_CAN_APPEAR;
649 if (!for_each_rtx (&new_rtx, varying_mem_p, NULL))
650 flags |= PR_HANDLE_MEM;
651
652 if (speed)
653 flags |= PR_OPTIMIZE_FOR_SPEED;
654
655 tem = x;
656 collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags);
657 if (tem == x || !collapsed)
658 return NULL_RTX;
659
660 /* gen_lowpart_common will not be able to process VOIDmode entities other
661 than CONST_INTs. */
662 if (GET_MODE (tem) == VOIDmode && !CONST_INT_P (tem))
663 return NULL_RTX;
664
665 if (GET_MODE (tem) == VOIDmode)
666 tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
667 else
668 gcc_assert (GET_MODE (tem) == mode);
669
670 return tem;
671 }
672
673
674 \f
675
676 /* Return true if the register from reference REF is killed
677 between FROM to (but not including) TO. */
678
679 static bool
680 local_ref_killed_between_p (df_ref ref, rtx from, rtx to)
681 {
682 rtx insn;
683
684 for (insn = from; insn != to; insn = NEXT_INSN (insn))
685 {
686 df_ref *def_rec;
687 if (!INSN_P (insn))
688 continue;
689
690 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
691 {
692 df_ref def = *def_rec;
693 if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
694 return true;
695 }
696 }
697 return false;
698 }
699
700
701 /* Check if the given DEF is available in INSN. This would require full
702 computation of available expressions; we check only restricted conditions:
703 - if DEF is the sole definition of its register, go ahead;
704 - in the same basic block, we check for no definitions killing the
705 definition of DEF_INSN;
706 - if USE's basic block has DEF's basic block as the sole predecessor,
707 we check if the definition is killed after DEF_INSN or before
708 TARGET_INSN insn, in their respective basic blocks. */
709 static bool
710 use_killed_between (df_ref use, rtx def_insn, rtx target_insn)
711 {
712 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
713 basic_block target_bb = BLOCK_FOR_INSN (target_insn);
714 int regno;
715 df_ref def;
716
717 /* We used to have a def reaching a use that is _before_ the def,
718 with the def not dominating the use even though the use and def
719 are in the same basic block, when a register may be used
720 uninitialized in a loop. This should not happen anymore since
721 we do not use reaching definitions, but still we test for such
722 cases and assume that DEF is not available. */
723 if (def_bb == target_bb
724 ? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn)
725 : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
726 return true;
727
728 /* Check if the reg in USE has only one definition. We already
729 know that this definition reaches use, or we wouldn't be here.
730 However, this is invalid for hard registers because if they are
731 live at the beginning of the function it does not mean that we
732 have an uninitialized access. */
733 regno = DF_REF_REGNO (use);
734 def = DF_REG_DEF_CHAIN (regno);
735 if (def
736 && DF_REF_NEXT_REG (def) == NULL
737 && regno >= FIRST_PSEUDO_REGISTER)
738 return false;
739
740 /* Check locally if we are in the same basic block. */
741 if (def_bb == target_bb)
742 return local_ref_killed_between_p (use, def_insn, target_insn);
743
744 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
745 if (single_pred_p (target_bb)
746 && single_pred (target_bb) == def_bb)
747 {
748 df_ref x;
749
750 /* See if USE is killed between DEF_INSN and the last insn in the
751 basic block containing DEF_INSN. */
752 x = df_bb_regno_last_def_find (def_bb, regno);
753 if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn))
754 return true;
755
756 /* See if USE is killed between TARGET_INSN and the first insn in the
757 basic block containing TARGET_INSN. */
758 x = df_bb_regno_first_def_find (target_bb, regno);
759 if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn))
760 return true;
761
762 return false;
763 }
764
765 /* Otherwise assume the worst case. */
766 return true;
767 }
768
769
770 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
771 would require full computation of available expressions;
772 we check only restricted conditions, see use_killed_between. */
773 static bool
774 all_uses_available_at (rtx def_insn, rtx target_insn)
775 {
776 df_ref *use_rec;
777 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
778 rtx def_set = single_set (def_insn);
779
780 gcc_assert (def_set);
781
782 /* If target_insn comes right after def_insn, which is very common
783 for addresses, we can use a quicker test. */
784 if (NEXT_INSN (def_insn) == target_insn
785 && REG_P (SET_DEST (def_set)))
786 {
787 rtx def_reg = SET_DEST (def_set);
788
789 /* If the insn uses the reg that it defines, the substitution is
790 invalid. */
791 for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++)
792 {
793 df_ref use = *use_rec;
794 if (rtx_equal_p (DF_REF_REG (use), def_reg))
795 return false;
796 }
797 for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++)
798 {
799 df_ref use = *use_rec;
800 if (rtx_equal_p (DF_REF_REG (use), def_reg))
801 return false;
802 }
803 }
804 else
805 {
806 /* Look at all the uses of DEF_INSN, and see if they are not
807 killed between DEF_INSN and TARGET_INSN. */
808 for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++)
809 {
810 df_ref use = *use_rec;
811 if (use_killed_between (use, def_insn, target_insn))
812 return false;
813 }
814 for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++)
815 {
816 df_ref use = *use_rec;
817 if (use_killed_between (use, def_insn, target_insn))
818 return false;
819 }
820 }
821
822 return true;
823 }
824
825 \f
826 struct find_occurrence_data
827 {
828 rtx find;
829 rtx *retval;
830 };
831
832 /* Callback for for_each_rtx, used in find_occurrence.
833 See if PX is the rtx we have to find. Return 1 to stop for_each_rtx
834 if successful, or 0 to continue traversing otherwise. */
835
836 static int
837 find_occurrence_callback (rtx *px, void *data)
838 {
839 struct find_occurrence_data *fod = (struct find_occurrence_data *) data;
840 rtx x = *px;
841 rtx find = fod->find;
842
843 if (x == find)
844 {
845 fod->retval = px;
846 return 1;
847 }
848
849 return 0;
850 }
851
852 /* Return a pointer to one of the occurrences of register FIND in *PX. */
853
854 static rtx *
855 find_occurrence (rtx *px, rtx find)
856 {
857 struct find_occurrence_data data;
858
859 gcc_assert (REG_P (find)
860 || (GET_CODE (find) == SUBREG
861 && REG_P (SUBREG_REG (find))));
862
863 data.find = find;
864 data.retval = NULL;
865 for_each_rtx (px, find_occurrence_callback, &data);
866 return data.retval;
867 }
868
869 \f
870 /* Inside INSN, the expression rooted at *LOC has been changed, moving some
871 uses from USE_VEC. Find those that are present, and create new items
872 in the data flow object of the pass. Mark any new uses as having the
873 given TYPE. */
874 static void
875 update_df (rtx insn, rtx *loc, df_ref *use_rec, enum df_ref_type type,
876 int new_flags)
877 {
878 bool changed = false;
879
880 /* Add a use for the registers that were propagated. */
881 while (*use_rec)
882 {
883 df_ref use = *use_rec;
884 df_ref orig_use = use, new_use;
885 int width = -1;
886 int offset = -1;
887 enum machine_mode mode = VOIDmode;
888 rtx *new_loc = find_occurrence (loc, DF_REF_REG (orig_use));
889 use_rec++;
890
891 if (!new_loc)
892 continue;
893
894 if (DF_REF_FLAGS_IS_SET (orig_use, DF_REF_SIGN_EXTRACT | DF_REF_ZERO_EXTRACT))
895 {
896 width = DF_REF_EXTRACT_WIDTH (orig_use);
897 offset = DF_REF_EXTRACT_OFFSET (orig_use);
898 mode = DF_REF_EXTRACT_MODE (orig_use);
899 }
900
901 /* Add a new insn use. Use the original type, because it says if the
902 use was within a MEM. */
903 new_use = df_ref_create (DF_REF_REG (orig_use), new_loc,
904 insn, BLOCK_FOR_INSN (insn),
905 type, DF_REF_FLAGS (orig_use) | new_flags,
906 width, offset, mode);
907
908 /* Set up the use-def chain. */
909 gcc_assert (DF_REF_ID (new_use) == (int) VEC_length (df_ref, use_def_ref));
910 VEC_safe_push (df_ref, heap, use_def_ref, get_def_for_use (orig_use));
911 changed = true;
912 }
913 if (changed)
914 df_insn_rescan (insn);
915 }
916
917
918 /* Try substituting NEW into LOC, which originated from forward propagation
919 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
920 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
921 new insn is not recognized. Return whether the substitution was
922 performed. */
923
924 static bool
925 try_fwprop_subst (df_ref use, rtx *loc, rtx new_rtx, rtx def_insn, bool set_reg_equal)
926 {
927 rtx insn = DF_REF_INSN (use);
928 enum df_ref_type type = DF_REF_TYPE (use);
929 int flags = DF_REF_FLAGS (use);
930 rtx set = single_set (insn);
931 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
932 int old_cost = 0;
933 bool ok;
934
935 /* forward_propagate_subreg may be operating on an instruction with
936 multiple sets. If so, assume the cost of the new instruction is
937 not greater than the old one. */
938 if (set)
939 old_cost = rtx_cost (SET_SRC (set), SET, speed);
940 if (dump_file)
941 {
942 fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
943 print_inline_rtx (dump_file, *loc, 2);
944 fprintf (dump_file, "\n with ");
945 print_inline_rtx (dump_file, new_rtx, 2);
946 fprintf (dump_file, "\n");
947 }
948
949 validate_unshare_change (insn, loc, new_rtx, true);
950 if (!verify_changes (0))
951 {
952 if (dump_file)
953 fprintf (dump_file, "Changes to insn %d not recognized\n",
954 INSN_UID (insn));
955 ok = false;
956 }
957
958 else if (DF_REF_TYPE (use) == DF_REF_REG_USE
959 && set
960 && rtx_cost (SET_SRC (set), SET, speed) > old_cost)
961 {
962 if (dump_file)
963 fprintf (dump_file, "Changes to insn %d not profitable\n",
964 INSN_UID (insn));
965 ok = false;
966 }
967
968 else
969 {
970 if (dump_file)
971 fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
972 ok = true;
973 }
974
975 if (ok)
976 {
977 confirm_change_group ();
978 num_changes++;
979
980 df_ref_remove (use);
981 if (!CONSTANT_P (new_rtx))
982 {
983 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
984 update_df (insn, loc, DF_INSN_INFO_USES (insn_info), type, flags);
985 update_df (insn, loc, DF_INSN_INFO_EQ_USES (insn_info), type, flags);
986 }
987 }
988 else
989 {
990 cancel_changes (0);
991
992 /* Can also record a simplified value in a REG_EQUAL note,
993 making a new one if one does not already exist. */
994 if (set_reg_equal)
995 {
996 if (dump_file)
997 fprintf (dump_file, " Setting REG_EQUAL note\n");
998
999 set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx));
1000
1001 /* ??? Is this still necessary if we add the note through
1002 set_unique_reg_note? */
1003 if (!CONSTANT_P (new_rtx))
1004 {
1005 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
1006 update_df (insn, loc, DF_INSN_INFO_USES (insn_info),
1007 type, DF_REF_IN_NOTE);
1008 update_df (insn, loc, DF_INSN_INFO_EQ_USES (insn_info),
1009 type, DF_REF_IN_NOTE);
1010 }
1011 }
1012 }
1013
1014 return ok;
1015 }
1016
1017 /* For the given single_set INSN, containing SRC known to be a
1018 ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1019 is redundant due to the register being set by a LOAD_EXTEND_OP
1020 load from memory. */
1021
1022 static bool
1023 free_load_extend (rtx src, rtx insn)
1024 {
1025 rtx reg;
1026 df_ref *use_vec;
1027 df_ref use, def;
1028
1029 reg = XEXP (src, 0);
1030 #ifdef LOAD_EXTEND_OP
1031 if (LOAD_EXTEND_OP (GET_MODE (reg)) != GET_CODE (src))
1032 #endif
1033 return false;
1034
1035 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1036 {
1037 use = *use_vec;
1038
1039 if (!DF_REF_IS_ARTIFICIAL (use)
1040 && DF_REF_TYPE (use) == DF_REF_REG_USE
1041 && DF_REF_REG (use) == reg)
1042 break;
1043 }
1044 if (!use)
1045 return false;
1046
1047 def = get_def_for_use (use);
1048 if (!def)
1049 return false;
1050
1051 if (DF_REF_IS_ARTIFICIAL (def))
1052 return false;
1053
1054 if (NONJUMP_INSN_P (DF_REF_INSN (def)))
1055 {
1056 rtx patt = PATTERN (DF_REF_INSN (def));
1057
1058 if (GET_CODE (patt) == SET
1059 && GET_CODE (SET_SRC (patt)) == MEM
1060 && rtx_equal_p (SET_DEST (patt), reg))
1061 return true;
1062 }
1063 return false;
1064 }
1065
1066 /* If USE is a subreg, see if it can be replaced by a pseudo. */
1067
1068 static bool
1069 forward_propagate_subreg (df_ref use, rtx def_insn, rtx def_set)
1070 {
1071 rtx use_reg = DF_REF_REG (use);
1072 rtx use_insn, src;
1073
1074 /* Only consider subregs... */
1075 enum machine_mode use_mode = GET_MODE (use_reg);
1076 if (GET_CODE (use_reg) != SUBREG
1077 || !REG_P (SET_DEST (def_set)))
1078 return false;
1079
1080 /* If this is a paradoxical SUBREG... */
1081 if (GET_MODE_SIZE (use_mode)
1082 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg))))
1083 {
1084 /* If this is a paradoxical SUBREG, we have no idea what value the
1085 extra bits would have. However, if the operand is equivalent to
1086 a SUBREG whose operand is the same as our mode, and all the modes
1087 are within a word, we can just use the inner operand because
1088 these SUBREGs just say how to treat the register. */
1089 use_insn = DF_REF_INSN (use);
1090 src = SET_SRC (def_set);
1091 if (GET_CODE (src) == SUBREG
1092 && REG_P (SUBREG_REG (src))
1093 && GET_MODE (SUBREG_REG (src)) == use_mode
1094 && subreg_lowpart_p (src)
1095 && all_uses_available_at (def_insn, use_insn))
1096 return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
1097 def_insn, false);
1098 }
1099
1100 /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1101 is the low part of the reg being extended then just use the inner
1102 operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1103 be removed due to it matching a LOAD_EXTEND_OP load from memory. */
1104 else if (subreg_lowpart_p (use_reg))
1105 {
1106 use_insn = DF_REF_INSN (use);
1107 src = SET_SRC (def_set);
1108 if ((GET_CODE (src) == ZERO_EXTEND
1109 || GET_CODE (src) == SIGN_EXTEND)
1110 && REG_P (XEXP (src, 0))
1111 && GET_MODE (XEXP (src, 0)) == use_mode
1112 && !free_load_extend (src, def_insn)
1113 && all_uses_available_at (def_insn, use_insn))
1114 return try_fwprop_subst (use, DF_REF_LOC (use), XEXP (src, 0),
1115 def_insn, false);
1116 }
1117
1118 return false;
1119 }
1120
1121 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */
1122
1123 static bool
1124 forward_propagate_asm (df_ref use, rtx def_insn, rtx def_set, rtx reg)
1125 {
1126 rtx use_insn = DF_REF_INSN (use), src, use_pat, asm_operands, new_rtx, *loc;
1127 int speed_p, i;
1128 df_ref *use_vec;
1129
1130 gcc_assert ((DF_REF_FLAGS (use) & DF_REF_IN_NOTE) == 0);
1131
1132 src = SET_SRC (def_set);
1133 use_pat = PATTERN (use_insn);
1134
1135 /* In __asm don't replace if src might need more registers than
1136 reg, as that could increase register pressure on the __asm. */
1137 use_vec = DF_INSN_USES (def_insn);
1138 if (use_vec[0] && use_vec[1])
1139 return false;
1140
1141 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
1142 asm_operands = NULL_RTX;
1143 switch (GET_CODE (use_pat))
1144 {
1145 case ASM_OPERANDS:
1146 asm_operands = use_pat;
1147 break;
1148 case SET:
1149 if (MEM_P (SET_DEST (use_pat)))
1150 {
1151 loc = &SET_DEST (use_pat);
1152 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1153 if (new_rtx)
1154 validate_unshare_change (use_insn, loc, new_rtx, true);
1155 }
1156 asm_operands = SET_SRC (use_pat);
1157 break;
1158 case PARALLEL:
1159 for (i = 0; i < XVECLEN (use_pat, 0); i++)
1160 if (GET_CODE (XVECEXP (use_pat, 0, i)) == SET)
1161 {
1162 if (MEM_P (SET_DEST (XVECEXP (use_pat, 0, i))))
1163 {
1164 loc = &SET_DEST (XVECEXP (use_pat, 0, i));
1165 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg,
1166 src, speed_p);
1167 if (new_rtx)
1168 validate_unshare_change (use_insn, loc, new_rtx, true);
1169 }
1170 asm_operands = SET_SRC (XVECEXP (use_pat, 0, i));
1171 }
1172 else if (GET_CODE (XVECEXP (use_pat, 0, i)) == ASM_OPERANDS)
1173 asm_operands = XVECEXP (use_pat, 0, i);
1174 break;
1175 default:
1176 gcc_unreachable ();
1177 }
1178
1179 gcc_assert (asm_operands && GET_CODE (asm_operands) == ASM_OPERANDS);
1180 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (asm_operands); i++)
1181 {
1182 loc = &ASM_OPERANDS_INPUT (asm_operands, i);
1183 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1184 if (new_rtx)
1185 validate_unshare_change (use_insn, loc, new_rtx, true);
1186 }
1187
1188 if (num_changes_pending () == 0 || !apply_change_group ())
1189 return false;
1190
1191 num_changes++;
1192 return true;
1193 }
1194
1195 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1196 result. */
1197
1198 static bool
1199 forward_propagate_and_simplify (df_ref use, rtx def_insn, rtx def_set)
1200 {
1201 rtx use_insn = DF_REF_INSN (use);
1202 rtx use_set = single_set (use_insn);
1203 rtx src, reg, new_rtx, *loc;
1204 bool set_reg_equal;
1205 enum machine_mode mode;
1206 int asm_use = -1;
1207
1208 if (INSN_CODE (use_insn) < 0)
1209 asm_use = asm_noperands (PATTERN (use_insn));
1210
1211 if (!use_set && asm_use < 0 && !DEBUG_INSN_P (use_insn))
1212 return false;
1213
1214 /* Do not propagate into PC, CC0, etc. */
1215 if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode)
1216 return false;
1217
1218 /* If def and use are subreg, check if they match. */
1219 reg = DF_REF_REG (use);
1220 if (GET_CODE (reg) == SUBREG
1221 && GET_CODE (SET_DEST (def_set)) == SUBREG
1222 && (SUBREG_BYTE (SET_DEST (def_set)) != SUBREG_BYTE (reg)
1223 || GET_MODE (SET_DEST (def_set)) != GET_MODE (reg)))
1224 return false;
1225
1226 /* Check if the def had a subreg, but the use has the whole reg. */
1227 if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
1228 return false;
1229
1230 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
1231 previous case, the optimization is possible and often useful indeed. */
1232 if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
1233 reg = SUBREG_REG (reg);
1234
1235 /* Check if the substitution is valid (last, because it's the most
1236 expensive check!). */
1237 src = SET_SRC (def_set);
1238 if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
1239 return false;
1240
1241 /* Check if the def is loading something from the constant pool; in this
1242 case we would undo optimization such as compress_float_constant.
1243 Still, we can set a REG_EQUAL note. */
1244 if (MEM_P (src) && MEM_READONLY_P (src))
1245 {
1246 rtx x = avoid_constant_pool_reference (src);
1247 if (x != src && use_set)
1248 {
1249 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1250 rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set);
1251 rtx new_rtx = simplify_replace_rtx (old_rtx, src, x);
1252 if (old_rtx != new_rtx)
1253 set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx));
1254 }
1255 return false;
1256 }
1257
1258 if (asm_use >= 0)
1259 return forward_propagate_asm (use, def_insn, def_set, reg);
1260
1261 /* Else try simplifying. */
1262
1263 if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
1264 {
1265 loc = &SET_DEST (use_set);
1266 set_reg_equal = false;
1267 }
1268 else if (!use_set)
1269 {
1270 loc = &INSN_VAR_LOCATION_LOC (use_insn);
1271 set_reg_equal = false;
1272 }
1273 else
1274 {
1275 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1276 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1277 loc = &XEXP (note, 0);
1278 else
1279 loc = &SET_SRC (use_set);
1280
1281 /* Do not replace an existing REG_EQUAL note if the insn is not
1282 recognized. Either we're already replacing in the note, or
1283 we'll separately try plugging the definition in the note and
1284 simplifying. */
1285 set_reg_equal = (note == NULL_RTX);
1286 }
1287
1288 if (GET_MODE (*loc) == VOIDmode)
1289 mode = GET_MODE (SET_DEST (use_set));
1290 else
1291 mode = GET_MODE (*loc);
1292
1293 new_rtx = propagate_rtx (*loc, mode, reg, src,
1294 optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn)));
1295
1296 if (!new_rtx)
1297 return false;
1298
1299 return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal);
1300 }
1301
1302
1303 /* Given a use USE of an insn, if it has a single reaching
1304 definition, try to forward propagate it into that insn. */
1305
1306 static void
1307 forward_propagate_into (df_ref use)
1308 {
1309 df_ref def;
1310 rtx def_insn, def_set, use_insn;
1311 rtx parent;
1312
1313 if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
1314 return;
1315 if (DF_REF_IS_ARTIFICIAL (use))
1316 return;
1317
1318 /* Only consider uses that have a single definition. */
1319 def = get_def_for_use (use);
1320 if (!def)
1321 return;
1322 if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
1323 return;
1324 if (DF_REF_IS_ARTIFICIAL (def))
1325 return;
1326
1327 /* Do not propagate loop invariant definitions inside the loop. */
1328 if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
1329 return;
1330
1331 /* Check if the use is still present in the insn! */
1332 use_insn = DF_REF_INSN (use);
1333 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1334 parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1335 else
1336 parent = PATTERN (use_insn);
1337
1338 if (!reg_mentioned_p (DF_REF_REG (use), parent))
1339 return;
1340
1341 def_insn = DF_REF_INSN (def);
1342 if (multiple_sets (def_insn))
1343 return;
1344 def_set = single_set (def_insn);
1345 if (!def_set)
1346 return;
1347
1348 /* Only try one kind of propagation. If two are possible, we'll
1349 do it on the following iterations. */
1350 if (!forward_propagate_and_simplify (use, def_insn, def_set))
1351 forward_propagate_subreg (use, def_insn, def_set);
1352 }
1353
1354 \f
1355 static void
1356 fwprop_init (void)
1357 {
1358 num_changes = 0;
1359 calculate_dominance_info (CDI_DOMINATORS);
1360
1361 /* We do not always want to propagate into loops, so we have to find
1362 loops and be careful about them. But we have to call flow_loops_find
1363 before df_analyze, because flow_loops_find may introduce new jump
1364 insns (sadly) if we are not working in cfglayout mode. */
1365 loop_optimizer_init (0);
1366
1367 build_single_def_use_links ();
1368 df_set_flags (DF_DEFER_INSN_RESCAN);
1369 }
1370
1371 static void
1372 fwprop_done (void)
1373 {
1374 loop_optimizer_finalize ();
1375
1376 VEC_free (df_ref, heap, use_def_ref);
1377 free_dominance_info (CDI_DOMINATORS);
1378 cleanup_cfg (0);
1379 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1380
1381 if (dump_file)
1382 fprintf (dump_file,
1383 "\nNumber of successful forward propagations: %d\n\n",
1384 num_changes);
1385 df_remove_problem (df_chain);
1386 }
1387
1388
1389
1390 /* Main entry point. */
1391
1392 static bool
1393 gate_fwprop (void)
1394 {
1395 return optimize > 0 && flag_forward_propagate;
1396 }
1397
1398 static unsigned int
1399 fwprop (void)
1400 {
1401 unsigned i;
1402
1403 fwprop_init ();
1404
1405 /* Go through all the uses. update_df will create new ones at the
1406 end, and we'll go through them as well.
1407
1408 Do not forward propagate addresses into loops until after unrolling.
1409 CSE did so because it was able to fix its own mess, but we are not. */
1410
1411 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1412 {
1413 df_ref use = DF_USES_GET (i);
1414 if (use)
1415 if (DF_REF_TYPE (use) == DF_REF_REG_USE
1416 || DF_REF_BB (use)->loop_father == NULL
1417 /* The outer most loop is not really a loop. */
1418 || loop_outer (DF_REF_BB (use)->loop_father) == NULL)
1419 forward_propagate_into (use);
1420 }
1421
1422 fwprop_done ();
1423 return 0;
1424 }
1425
1426 struct rtl_opt_pass pass_rtl_fwprop =
1427 {
1428 {
1429 RTL_PASS,
1430 "fwprop1", /* name */
1431 gate_fwprop, /* gate */
1432 fwprop, /* execute */
1433 NULL, /* sub */
1434 NULL, /* next */
1435 0, /* static_pass_number */
1436 TV_FWPROP, /* tv_id */
1437 0, /* properties_required */
1438 0, /* properties_provided */
1439 0, /* properties_destroyed */
1440 0, /* todo_flags_start */
1441 TODO_df_finish | TODO_verify_rtl_sharing |
1442 TODO_dump_func /* todo_flags_finish */
1443 }
1444 };
1445
1446 static unsigned int
1447 fwprop_addr (void)
1448 {
1449 unsigned i;
1450 fwprop_init ();
1451
1452 /* Go through all the uses. update_df will create new ones at the
1453 end, and we'll go through them as well. */
1454 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1455 {
1456 df_ref use = DF_USES_GET (i);
1457 if (use)
1458 if (DF_REF_TYPE (use) != DF_REF_REG_USE
1459 && DF_REF_BB (use)->loop_father != NULL
1460 /* The outer most loop is not really a loop. */
1461 && loop_outer (DF_REF_BB (use)->loop_father) != NULL)
1462 forward_propagate_into (use);
1463 }
1464
1465 fwprop_done ();
1466
1467 return 0;
1468 }
1469
1470 struct rtl_opt_pass pass_rtl_fwprop_addr =
1471 {
1472 {
1473 RTL_PASS,
1474 "fwprop2", /* name */
1475 gate_fwprop, /* gate */
1476 fwprop_addr, /* execute */
1477 NULL, /* sub */
1478 NULL, /* next */
1479 0, /* static_pass_number */
1480 TV_FWPROP, /* tv_id */
1481 0, /* properties_required */
1482 0, /* properties_provided */
1483 0, /* properties_destroyed */
1484 0, /* todo_flags_start */
1485 TODO_df_finish | TODO_verify_rtl_sharing |
1486 TODO_dump_func /* todo_flags_finish */
1487 }
1488 };