remove has_execute
[gcc.git] / gcc / fwprop.c
1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
3 Contributed by Paolo Bonzini and Steven Bosscher.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26
27 #include "sparseset.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "flags.h"
33 #include "obstack.h"
34 #include "basic-block.h"
35 #include "df.h"
36 #include "target.h"
37 #include "cfgloop.h"
38 #include "tree-pass.h"
39 #include "domwalk.h"
40 #include "emit-rtl.h"
41
42
43 /* This pass does simple forward propagation and simplification when an
44 operand of an insn can only come from a single def. This pass uses
45 df.c, so it is global. However, we only do limited analysis of
46 available expressions.
47
48 1) The pass tries to propagate the source of the def into the use,
49 and checks if the result is independent of the substituted value.
50 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
51 zero, independent of the source register.
52
53 In particular, we propagate constants into the use site. Sometimes
54 RTL expansion did not put the constant in the same insn on purpose,
55 to satisfy a predicate, and the result will fail to be recognized;
56 but this happens rarely and in this case we can still create a
57 REG_EQUAL note. For multi-word operations, this
58
59 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
60 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
61 (set (subreg:SI (reg:DI 122) 0)
62 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
63 (set (subreg:SI (reg:DI 122) 4)
64 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
65
66 can be simplified to the much simpler
67
68 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
69 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
70
71 This particular propagation is also effective at putting together
72 complex addressing modes. We are more aggressive inside MEMs, in
73 that all definitions are propagated if the use is in a MEM; if the
74 result is a valid memory address we check address_cost to decide
75 whether the substitution is worthwhile.
76
77 2) The pass propagates register copies. This is not as effective as
78 the copy propagation done by CSE's canon_reg, which works by walking
79 the instruction chain, it can help the other transformations.
80
81 We should consider removing this optimization, and instead reorder the
82 RTL passes, because GCSE does this transformation too. With some luck,
83 the CSE pass at the end of rest_of_handle_gcse could also go away.
84
85 3) The pass looks for paradoxical subregs that are actually unnecessary.
86 Things like this:
87
88 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
89 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
90 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
91 (subreg:SI (reg:QI 121) 0)))
92
93 are very common on machines that can only do word-sized operations.
94 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
95 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
96 we can replace the paradoxical subreg with simply (reg:WIDE M). The
97 above will simplify this to
98
99 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
100 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
101 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
102
103 where the first two insns are now dead.
104
105 We used to use reaching definitions to find which uses have a
106 single reaching definition (sounds obvious...), but this is too
107 complex a problem in nasty testcases like PR33928. Now we use the
108 multiple definitions problem in df-problems.c. The similarity
109 between that problem and SSA form creation is taken further, in
110 that fwprop does a dominator walk to create its chains; however,
111 instead of creating a PHI function where multiple definitions meet
112 I just punt and record only singleton use-def chains, which is
113 all that is needed by fwprop. */
114
115
116 static int num_changes;
117
118 static vec<df_ref> use_def_ref;
119 static vec<df_ref> reg_defs;
120 static vec<df_ref> reg_defs_stack;
121
122 /* The MD bitmaps are trimmed to include only live registers to cut
123 memory usage on testcases like insn-recog.c. Track live registers
124 in the basic block and do not perform forward propagation if the
125 destination is a dead pseudo occurring in a note. */
126 static bitmap local_md;
127 static bitmap local_lr;
128
129 /* Return the only def in USE's use-def chain, or NULL if there is
130 more than one def in the chain. */
131
132 static inline df_ref
133 get_def_for_use (df_ref use)
134 {
135 return use_def_ref[DF_REF_ID (use)];
136 }
137
138
139 /* Update the reg_defs vector with non-partial definitions in DEF_REC.
140 TOP_FLAG says which artificials uses should be used, when DEF_REC
141 is an artificial def vector. LOCAL_MD is modified as after a
142 df_md_simulate_* function; we do more or less the same processing
143 done there, so we do not use those functions. */
144
145 #define DF_MD_GEN_FLAGS \
146 (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
147
148 static void
149 process_defs (df_ref def, int top_flag)
150 {
151 for (; def; def = DF_REF_NEXT_LOC (def))
152 {
153 df_ref curr_def = reg_defs[DF_REF_REGNO (def)];
154 unsigned int dregno;
155
156 if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) != top_flag)
157 continue;
158
159 dregno = DF_REF_REGNO (def);
160 if (curr_def)
161 reg_defs_stack.safe_push (curr_def);
162 else
163 {
164 /* Do not store anything if "transitioning" from NULL to NULL. But
165 otherwise, push a special entry on the stack to tell the
166 leave_block callback that the entry in reg_defs was NULL. */
167 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
168 ;
169 else
170 reg_defs_stack.safe_push (def);
171 }
172
173 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
174 {
175 bitmap_set_bit (local_md, dregno);
176 reg_defs[dregno] = NULL;
177 }
178 else
179 {
180 bitmap_clear_bit (local_md, dregno);
181 reg_defs[dregno] = def;
182 }
183 }
184 }
185
186
187 /* Fill the use_def_ref vector with values for the uses in USE_REC,
188 taking reaching definitions info from LOCAL_MD and REG_DEFS.
189 TOP_FLAG says which artificials uses should be used, when USE_REC
190 is an artificial use vector. */
191
192 static void
193 process_uses (df_ref use, int top_flag)
194 {
195 for (; use; use = DF_REF_NEXT_LOC (use))
196 if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == top_flag)
197 {
198 unsigned int uregno = DF_REF_REGNO (use);
199 if (reg_defs[uregno]
200 && !bitmap_bit_p (local_md, uregno)
201 && bitmap_bit_p (local_lr, uregno))
202 use_def_ref[DF_REF_ID (use)] = reg_defs[uregno];
203 }
204 }
205
206 class single_def_use_dom_walker : public dom_walker
207 {
208 public:
209 single_def_use_dom_walker (cdi_direction direction)
210 : dom_walker (direction) {}
211 virtual void before_dom_children (basic_block);
212 virtual void after_dom_children (basic_block);
213 };
214
215 void
216 single_def_use_dom_walker::before_dom_children (basic_block bb)
217 {
218 int bb_index = bb->index;
219 struct df_md_bb_info *md_bb_info = df_md_get_bb_info (bb_index);
220 struct df_lr_bb_info *lr_bb_info = df_lr_get_bb_info (bb_index);
221 rtx insn;
222
223 bitmap_copy (local_md, &md_bb_info->in);
224 bitmap_copy (local_lr, &lr_bb_info->in);
225
226 /* Push a marker for the leave_block callback. */
227 reg_defs_stack.safe_push (NULL);
228
229 process_uses (df_get_artificial_uses (bb_index), DF_REF_AT_TOP);
230 process_defs (df_get_artificial_defs (bb_index), DF_REF_AT_TOP);
231
232 /* We don't call df_simulate_initialize_forwards, as it may overestimate
233 the live registers if there are unused artificial defs. We prefer
234 liveness to be underestimated. */
235
236 FOR_BB_INSNS (bb, insn)
237 if (INSN_P (insn))
238 {
239 unsigned int uid = INSN_UID (insn);
240 process_uses (DF_INSN_UID_USES (uid), 0);
241 process_uses (DF_INSN_UID_EQ_USES (uid), 0);
242 process_defs (DF_INSN_UID_DEFS (uid), 0);
243 df_simulate_one_insn_forwards (bb, insn, local_lr);
244 }
245
246 process_uses (df_get_artificial_uses (bb_index), 0);
247 process_defs (df_get_artificial_defs (bb_index), 0);
248 }
249
250 /* Pop the definitions created in this basic block when leaving its
251 dominated parts. */
252
253 void
254 single_def_use_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
255 {
256 df_ref saved_def;
257 while ((saved_def = reg_defs_stack.pop ()) != NULL)
258 {
259 unsigned int dregno = DF_REF_REGNO (saved_def);
260
261 /* See also process_defs. */
262 if (saved_def == reg_defs[dregno])
263 reg_defs[dregno] = NULL;
264 else
265 reg_defs[dregno] = saved_def;
266 }
267 }
268
269
270 /* Build a vector holding the reaching definitions of uses reached by a
271 single dominating definition. */
272
273 static void
274 build_single_def_use_links (void)
275 {
276 /* We use the multiple definitions problem to compute our restricted
277 use-def chains. */
278 df_set_flags (DF_EQ_NOTES);
279 df_md_add_problem ();
280 df_note_add_problem ();
281 df_analyze ();
282 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES);
283
284 use_def_ref.create (DF_USES_TABLE_SIZE ());
285 use_def_ref.safe_grow_cleared (DF_USES_TABLE_SIZE ());
286
287 reg_defs.create (max_reg_num ());
288 reg_defs.safe_grow_cleared (max_reg_num ());
289
290 reg_defs_stack.create (n_basic_blocks_for_fn (cfun) * 10);
291 local_md = BITMAP_ALLOC (NULL);
292 local_lr = BITMAP_ALLOC (NULL);
293
294 /* Walk the dominator tree looking for single reaching definitions
295 dominating the uses. This is similar to how SSA form is built. */
296 single_def_use_dom_walker (CDI_DOMINATORS)
297 .walk (cfun->cfg->x_entry_block_ptr);
298
299 BITMAP_FREE (local_lr);
300 BITMAP_FREE (local_md);
301 reg_defs.release ();
302 reg_defs_stack.release ();
303 }
304
305 \f
306 /* Do not try to replace constant addresses or addresses of local and
307 argument slots. These MEM expressions are made only once and inserted
308 in many instructions, as well as being used to control symbol table
309 output. It is not safe to clobber them.
310
311 There are some uncommon cases where the address is already in a register
312 for some reason, but we cannot take advantage of that because we have
313 no easy way to unshare the MEM. In addition, looking up all stack
314 addresses is costly. */
315
316 static bool
317 can_simplify_addr (rtx addr)
318 {
319 rtx reg;
320
321 if (CONSTANT_ADDRESS_P (addr))
322 return false;
323
324 if (GET_CODE (addr) == PLUS)
325 reg = XEXP (addr, 0);
326 else
327 reg = addr;
328
329 return (!REG_P (reg)
330 || (REGNO (reg) != FRAME_POINTER_REGNUM
331 && REGNO (reg) != HARD_FRAME_POINTER_REGNUM
332 && REGNO (reg) != ARG_POINTER_REGNUM));
333 }
334
335 /* Returns a canonical version of X for the address, from the point of view,
336 that all multiplications are represented as MULT instead of the multiply
337 by a power of 2 being represented as ASHIFT.
338
339 Every ASHIFT we find has been made by simplify_gen_binary and was not
340 there before, so it is not shared. So we can do this in place. */
341
342 static void
343 canonicalize_address (rtx x)
344 {
345 for (;;)
346 switch (GET_CODE (x))
347 {
348 case ASHIFT:
349 if (CONST_INT_P (XEXP (x, 1))
350 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x))
351 && INTVAL (XEXP (x, 1)) >= 0)
352 {
353 HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
354 PUT_CODE (x, MULT);
355 XEXP (x, 1) = gen_int_mode ((HOST_WIDE_INT) 1 << shift,
356 GET_MODE (x));
357 }
358
359 x = XEXP (x, 0);
360 break;
361
362 case PLUS:
363 if (GET_CODE (XEXP (x, 0)) == PLUS
364 || GET_CODE (XEXP (x, 0)) == ASHIFT
365 || GET_CODE (XEXP (x, 0)) == CONST)
366 canonicalize_address (XEXP (x, 0));
367
368 x = XEXP (x, 1);
369 break;
370
371 case CONST:
372 x = XEXP (x, 0);
373 break;
374
375 default:
376 return;
377 }
378 }
379
380 /* OLD is a memory address. Return whether it is good to use NEW instead,
381 for a memory access in the given MODE. */
382
383 static bool
384 should_replace_address (rtx old_rtx, rtx new_rtx, enum machine_mode mode,
385 addr_space_t as, bool speed)
386 {
387 int gain;
388
389 if (rtx_equal_p (old_rtx, new_rtx)
390 || !memory_address_addr_space_p (mode, new_rtx, as))
391 return false;
392
393 /* Copy propagation is always ok. */
394 if (REG_P (old_rtx) && REG_P (new_rtx))
395 return true;
396
397 /* Prefer the new address if it is less expensive. */
398 gain = (address_cost (old_rtx, mode, as, speed)
399 - address_cost (new_rtx, mode, as, speed));
400
401 /* If the addresses have equivalent cost, prefer the new address
402 if it has the highest `set_src_cost'. That has the potential of
403 eliminating the most insns without additional costs, and it
404 is the same that cse.c used to do. */
405 if (gain == 0)
406 gain = set_src_cost (new_rtx, speed) - set_src_cost (old_rtx, speed);
407
408 return (gain > 0);
409 }
410
411
412 /* Flags for the last parameter of propagate_rtx_1. */
413
414 enum {
415 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
416 if it is false, propagate_rtx_1 returns false if, for at least
417 one occurrence OLD, it failed to collapse the result to a constant.
418 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
419 collapse to zero if replacing (reg:M B) with (reg:M A).
420
421 PR_CAN_APPEAR is disregarded inside MEMs: in that case,
422 propagate_rtx_1 just tries to make cheaper and valid memory
423 addresses. */
424 PR_CAN_APPEAR = 1,
425
426 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
427 outside memory addresses. This is needed because propagate_rtx_1 does
428 not do any analysis on memory; thus it is very conservative and in general
429 it will fail if non-read-only MEMs are found in the source expression.
430
431 PR_HANDLE_MEM is set when the source of the propagation was not
432 another MEM. Then, it is safe not to treat non-read-only MEMs as
433 ``opaque'' objects. */
434 PR_HANDLE_MEM = 2,
435
436 /* Set when costs should be optimized for speed. */
437 PR_OPTIMIZE_FOR_SPEED = 4
438 };
439
440
441 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
442 resulting expression. Replace *PX with a new RTL expression if an
443 occurrence of OLD was found.
444
445 This is only a wrapper around simplify-rtx.c: do not add any pattern
446 matching code here. (The sole exception is the handling of LO_SUM, but
447 that is because there is no simplify_gen_* function for LO_SUM). */
448
449 static bool
450 propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags)
451 {
452 rtx x = *px, tem = NULL_RTX, op0, op1, op2;
453 enum rtx_code code = GET_CODE (x);
454 enum machine_mode mode = GET_MODE (x);
455 enum machine_mode op_mode;
456 bool can_appear = (flags & PR_CAN_APPEAR) != 0;
457 bool valid_ops = true;
458
459 if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x))
460 {
461 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
462 they have side effects or not). */
463 *px = (side_effects_p (x)
464 ? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx)
465 : gen_rtx_SCRATCH (GET_MODE (x)));
466 return false;
467 }
468
469 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
470 address, and we are *not* inside one. */
471 if (x == old_rtx)
472 {
473 *px = new_rtx;
474 return can_appear;
475 }
476
477 /* If this is an expression, try recursive substitution. */
478 switch (GET_RTX_CLASS (code))
479 {
480 case RTX_UNARY:
481 op0 = XEXP (x, 0);
482 op_mode = GET_MODE (op0);
483 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
484 if (op0 == XEXP (x, 0))
485 return true;
486 tem = simplify_gen_unary (code, mode, op0, op_mode);
487 break;
488
489 case RTX_BIN_ARITH:
490 case RTX_COMM_ARITH:
491 op0 = XEXP (x, 0);
492 op1 = XEXP (x, 1);
493 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
494 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
495 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
496 return true;
497 tem = simplify_gen_binary (code, mode, op0, op1);
498 break;
499
500 case RTX_COMPARE:
501 case RTX_COMM_COMPARE:
502 op0 = XEXP (x, 0);
503 op1 = XEXP (x, 1);
504 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
505 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
506 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
507 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
508 return true;
509 tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
510 break;
511
512 case RTX_TERNARY:
513 case RTX_BITFIELD_OPS:
514 op0 = XEXP (x, 0);
515 op1 = XEXP (x, 1);
516 op2 = XEXP (x, 2);
517 op_mode = GET_MODE (op0);
518 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
519 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
520 valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags);
521 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
522 return true;
523 if (op_mode == VOIDmode)
524 op_mode = GET_MODE (op0);
525 tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
526 break;
527
528 case RTX_EXTRA:
529 /* The only case we try to handle is a SUBREG. */
530 if (code == SUBREG)
531 {
532 op0 = XEXP (x, 0);
533 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
534 if (op0 == XEXP (x, 0))
535 return true;
536 tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
537 SUBREG_BYTE (x));
538 }
539 break;
540
541 case RTX_OBJ:
542 if (code == MEM && x != new_rtx)
543 {
544 rtx new_op0;
545 op0 = XEXP (x, 0);
546
547 /* There are some addresses that we cannot work on. */
548 if (!can_simplify_addr (op0))
549 return true;
550
551 op0 = new_op0 = targetm.delegitimize_address (op0);
552 valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx,
553 flags | PR_CAN_APPEAR);
554
555 /* Dismiss transformation that we do not want to carry on. */
556 if (!valid_ops
557 || new_op0 == op0
558 || !(GET_MODE (new_op0) == GET_MODE (op0)
559 || GET_MODE (new_op0) == VOIDmode))
560 return true;
561
562 canonicalize_address (new_op0);
563
564 /* Copy propagations are always ok. Otherwise check the costs. */
565 if (!(REG_P (old_rtx) && REG_P (new_rtx))
566 && !should_replace_address (op0, new_op0, GET_MODE (x),
567 MEM_ADDR_SPACE (x),
568 flags & PR_OPTIMIZE_FOR_SPEED))
569 return true;
570
571 tem = replace_equiv_address_nv (x, new_op0);
572 }
573
574 else if (code == LO_SUM)
575 {
576 op0 = XEXP (x, 0);
577 op1 = XEXP (x, 1);
578
579 /* The only simplification we do attempts to remove references to op0
580 or make it constant -- in both cases, op0's invalidity will not
581 make the result invalid. */
582 propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR);
583 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
584 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
585 return true;
586
587 /* (lo_sum (high x) x) -> x */
588 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
589 tem = op1;
590 else
591 tem = gen_rtx_LO_SUM (mode, op0, op1);
592
593 /* OP1 is likely not a legitimate address, otherwise there would have
594 been no LO_SUM. We want it to disappear if it is invalid, return
595 false in that case. */
596 return memory_address_p (mode, tem);
597 }
598
599 else if (code == REG)
600 {
601 if (rtx_equal_p (x, old_rtx))
602 {
603 *px = new_rtx;
604 return can_appear;
605 }
606 }
607 break;
608
609 default:
610 break;
611 }
612
613 /* No change, no trouble. */
614 if (tem == NULL_RTX)
615 return true;
616
617 *px = tem;
618
619 /* The replacement we made so far is valid, if all of the recursive
620 replacements were valid, or we could simplify everything to
621 a constant. */
622 return valid_ops || can_appear || CONSTANT_P (tem);
623 }
624
625
626 /* for_each_rtx traversal function that returns 1 if BODY points to
627 a non-constant mem. */
628
629 static int
630 varying_mem_p (rtx *body, void *data ATTRIBUTE_UNUSED)
631 {
632 rtx x = *body;
633 return MEM_P (x) && !MEM_READONLY_P (x);
634 }
635
636
637 /* Replace all occurrences of OLD in X with NEW and try to simplify the
638 resulting expression (in mode MODE). Return a new expression if it is
639 a constant, otherwise X.
640
641 Simplifications where occurrences of NEW collapse to a constant are always
642 accepted. All simplifications are accepted if NEW is a pseudo too.
643 Otherwise, we accept simplifications that have a lower or equal cost. */
644
645 static rtx
646 propagate_rtx (rtx x, enum machine_mode mode, rtx old_rtx, rtx new_rtx,
647 bool speed)
648 {
649 rtx tem;
650 bool collapsed;
651 int flags;
652
653 if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER)
654 return NULL_RTX;
655
656 flags = 0;
657 if (REG_P (new_rtx)
658 || CONSTANT_P (new_rtx)
659 || (GET_CODE (new_rtx) == SUBREG
660 && REG_P (SUBREG_REG (new_rtx))
661 && (GET_MODE_SIZE (mode)
662 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (new_rtx))))))
663 flags |= PR_CAN_APPEAR;
664 if (!for_each_rtx (&new_rtx, varying_mem_p, NULL))
665 flags |= PR_HANDLE_MEM;
666
667 if (speed)
668 flags |= PR_OPTIMIZE_FOR_SPEED;
669
670 tem = x;
671 collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags);
672 if (tem == x || !collapsed)
673 return NULL_RTX;
674
675 /* gen_lowpart_common will not be able to process VOIDmode entities other
676 than CONST_INTs. */
677 if (GET_MODE (tem) == VOIDmode && !CONST_INT_P (tem))
678 return NULL_RTX;
679
680 if (GET_MODE (tem) == VOIDmode)
681 tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
682 else
683 gcc_assert (GET_MODE (tem) == mode);
684
685 return tem;
686 }
687
688
689 \f
690
691 /* Return true if the register from reference REF is killed
692 between FROM to (but not including) TO. */
693
694 static bool
695 local_ref_killed_between_p (df_ref ref, rtx from, rtx to)
696 {
697 rtx insn;
698
699 for (insn = from; insn != to; insn = NEXT_INSN (insn))
700 {
701 df_ref def;
702 if (!INSN_P (insn))
703 continue;
704
705 FOR_EACH_INSN_DEF (def, insn)
706 if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
707 return true;
708 }
709 return false;
710 }
711
712
713 /* Check if the given DEF is available in INSN. This would require full
714 computation of available expressions; we check only restricted conditions:
715 - if DEF is the sole definition of its register, go ahead;
716 - in the same basic block, we check for no definitions killing the
717 definition of DEF_INSN;
718 - if USE's basic block has DEF's basic block as the sole predecessor,
719 we check if the definition is killed after DEF_INSN or before
720 TARGET_INSN insn, in their respective basic blocks. */
721 static bool
722 use_killed_between (df_ref use, rtx def_insn, rtx target_insn)
723 {
724 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
725 basic_block target_bb = BLOCK_FOR_INSN (target_insn);
726 int regno;
727 df_ref def;
728
729 /* We used to have a def reaching a use that is _before_ the def,
730 with the def not dominating the use even though the use and def
731 are in the same basic block, when a register may be used
732 uninitialized in a loop. This should not happen anymore since
733 we do not use reaching definitions, but still we test for such
734 cases and assume that DEF is not available. */
735 if (def_bb == target_bb
736 ? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn)
737 : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
738 return true;
739
740 /* Check if the reg in USE has only one definition. We already
741 know that this definition reaches use, or we wouldn't be here.
742 However, this is invalid for hard registers because if they are
743 live at the beginning of the function it does not mean that we
744 have an uninitialized access. */
745 regno = DF_REF_REGNO (use);
746 def = DF_REG_DEF_CHAIN (regno);
747 if (def
748 && DF_REF_NEXT_REG (def) == NULL
749 && regno >= FIRST_PSEUDO_REGISTER)
750 return false;
751
752 /* Check locally if we are in the same basic block. */
753 if (def_bb == target_bb)
754 return local_ref_killed_between_p (use, def_insn, target_insn);
755
756 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
757 if (single_pred_p (target_bb)
758 && single_pred (target_bb) == def_bb)
759 {
760 df_ref x;
761
762 /* See if USE is killed between DEF_INSN and the last insn in the
763 basic block containing DEF_INSN. */
764 x = df_bb_regno_last_def_find (def_bb, regno);
765 if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn))
766 return true;
767
768 /* See if USE is killed between TARGET_INSN and the first insn in the
769 basic block containing TARGET_INSN. */
770 x = df_bb_regno_first_def_find (target_bb, regno);
771 if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn))
772 return true;
773
774 return false;
775 }
776
777 /* Otherwise assume the worst case. */
778 return true;
779 }
780
781
782 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
783 would require full computation of available expressions;
784 we check only restricted conditions, see use_killed_between. */
785 static bool
786 all_uses_available_at (rtx def_insn, rtx target_insn)
787 {
788 df_ref use;
789 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
790 rtx def_set = single_set (def_insn);
791 rtx next;
792
793 gcc_assert (def_set);
794
795 /* If target_insn comes right after def_insn, which is very common
796 for addresses, we can use a quicker test. Ignore debug insns
797 other than target insns for this. */
798 next = NEXT_INSN (def_insn);
799 while (next && next != target_insn && DEBUG_INSN_P (next))
800 next = NEXT_INSN (next);
801 if (next == target_insn && REG_P (SET_DEST (def_set)))
802 {
803 rtx def_reg = SET_DEST (def_set);
804
805 /* If the insn uses the reg that it defines, the substitution is
806 invalid. */
807 FOR_EACH_INSN_INFO_USE (use, insn_info)
808 if (rtx_equal_p (DF_REF_REG (use), def_reg))
809 return false;
810 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
811 if (rtx_equal_p (DF_REF_REG (use), def_reg))
812 return false;
813 }
814 else
815 {
816 rtx def_reg = REG_P (SET_DEST (def_set)) ? SET_DEST (def_set) : NULL_RTX;
817
818 /* Look at all the uses of DEF_INSN, and see if they are not
819 killed between DEF_INSN and TARGET_INSN. */
820 FOR_EACH_INSN_INFO_USE (use, insn_info)
821 {
822 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
823 return false;
824 if (use_killed_between (use, def_insn, target_insn))
825 return false;
826 }
827 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
828 {
829 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
830 return false;
831 if (use_killed_between (use, def_insn, target_insn))
832 return false;
833 }
834 }
835
836 return true;
837 }
838
839 \f
840 static df_ref *active_defs;
841 #ifdef ENABLE_CHECKING
842 static sparseset active_defs_check;
843 #endif
844
845 /* Fill the ACTIVE_DEFS array with the use->def link for the registers
846 mentioned in USE_REC. Register the valid entries in ACTIVE_DEFS_CHECK
847 too, for checking purposes. */
848
849 static void
850 register_active_defs (df_ref use)
851 {
852 for (; use; use = DF_REF_NEXT_LOC (use))
853 {
854 df_ref def = get_def_for_use (use);
855 int regno = DF_REF_REGNO (use);
856
857 #ifdef ENABLE_CHECKING
858 sparseset_set_bit (active_defs_check, regno);
859 #endif
860 active_defs[regno] = def;
861 }
862 }
863
864
865 /* Build the use->def links that we use to update the dataflow info
866 for new uses. Note that building the links is very cheap and if
867 it were done earlier, they could be used to rule out invalid
868 propagations (in addition to what is done in all_uses_available_at).
869 I'm not doing this yet, though. */
870
871 static void
872 update_df_init (rtx def_insn, rtx insn)
873 {
874 #ifdef ENABLE_CHECKING
875 sparseset_clear (active_defs_check);
876 #endif
877 register_active_defs (DF_INSN_USES (def_insn));
878 register_active_defs (DF_INSN_USES (insn));
879 register_active_defs (DF_INSN_EQ_USES (insn));
880 }
881
882
883 /* Update the USE_DEF_REF array for the given use, using the active definitions
884 in the ACTIVE_DEFS array to match pseudos to their def. */
885
886 static inline void
887 update_uses (df_ref use)
888 {
889 for (; use; use = DF_REF_NEXT_LOC (use))
890 {
891 int regno = DF_REF_REGNO (use);
892
893 /* Set up the use-def chain. */
894 if (DF_REF_ID (use) >= (int) use_def_ref.length ())
895 use_def_ref.safe_grow_cleared (DF_REF_ID (use) + 1);
896
897 #ifdef ENABLE_CHECKING
898 gcc_assert (sparseset_bit_p (active_defs_check, regno));
899 #endif
900 use_def_ref[DF_REF_ID (use)] = active_defs[regno];
901 }
902 }
903
904
905 /* Update the USE_DEF_REF array for the uses in INSN. Only update note
906 uses if NOTES_ONLY is true. */
907
908 static void
909 update_df (rtx insn, rtx note)
910 {
911 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
912
913 if (note)
914 {
915 df_uses_create (&XEXP (note, 0), insn, DF_REF_IN_NOTE);
916 df_notes_rescan (insn);
917 }
918 else
919 {
920 df_uses_create (&PATTERN (insn), insn, 0);
921 df_insn_rescan (insn);
922 update_uses (DF_INSN_INFO_USES (insn_info));
923 }
924
925 update_uses (DF_INSN_INFO_EQ_USES (insn_info));
926 }
927
928
929 /* Try substituting NEW into LOC, which originated from forward propagation
930 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
931 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
932 new insn is not recognized. Return whether the substitution was
933 performed. */
934
935 static bool
936 try_fwprop_subst (df_ref use, rtx *loc, rtx new_rtx, rtx def_insn, bool set_reg_equal)
937 {
938 rtx insn = DF_REF_INSN (use);
939 rtx set = single_set (insn);
940 rtx note = NULL_RTX;
941 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
942 int old_cost = 0;
943 bool ok;
944
945 update_df_init (def_insn, insn);
946
947 /* forward_propagate_subreg may be operating on an instruction with
948 multiple sets. If so, assume the cost of the new instruction is
949 not greater than the old one. */
950 if (set)
951 old_cost = set_src_cost (SET_SRC (set), speed);
952 if (dump_file)
953 {
954 fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
955 print_inline_rtx (dump_file, *loc, 2);
956 fprintf (dump_file, "\n with ");
957 print_inline_rtx (dump_file, new_rtx, 2);
958 fprintf (dump_file, "\n");
959 }
960
961 validate_unshare_change (insn, loc, new_rtx, true);
962 if (!verify_changes (0))
963 {
964 if (dump_file)
965 fprintf (dump_file, "Changes to insn %d not recognized\n",
966 INSN_UID (insn));
967 ok = false;
968 }
969
970 else if (DF_REF_TYPE (use) == DF_REF_REG_USE
971 && set
972 && set_src_cost (SET_SRC (set), speed) > old_cost)
973 {
974 if (dump_file)
975 fprintf (dump_file, "Changes to insn %d not profitable\n",
976 INSN_UID (insn));
977 ok = false;
978 }
979
980 else
981 {
982 if (dump_file)
983 fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
984 ok = true;
985 }
986
987 if (ok)
988 {
989 confirm_change_group ();
990 num_changes++;
991 }
992 else
993 {
994 cancel_changes (0);
995
996 /* Can also record a simplified value in a REG_EQUAL note,
997 making a new one if one does not already exist. */
998 if (set_reg_equal)
999 {
1000 if (dump_file)
1001 fprintf (dump_file, " Setting REG_EQUAL note\n");
1002
1003 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx));
1004 }
1005 }
1006
1007 if ((ok || note) && !CONSTANT_P (new_rtx))
1008 update_df (insn, note);
1009
1010 return ok;
1011 }
1012
1013 /* For the given single_set INSN, containing SRC known to be a
1014 ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1015 is redundant due to the register being set by a LOAD_EXTEND_OP
1016 load from memory. */
1017
1018 static bool
1019 free_load_extend (rtx src, rtx insn)
1020 {
1021 rtx reg;
1022 df_ref def, use;
1023
1024 reg = XEXP (src, 0);
1025 #ifdef LOAD_EXTEND_OP
1026 if (LOAD_EXTEND_OP (GET_MODE (reg)) != GET_CODE (src))
1027 #endif
1028 return false;
1029
1030 FOR_EACH_INSN_USE (use, insn)
1031 if (!DF_REF_IS_ARTIFICIAL (use)
1032 && DF_REF_TYPE (use) == DF_REF_REG_USE
1033 && DF_REF_REG (use) == reg)
1034 break;
1035 if (!use)
1036 return false;
1037
1038 def = get_def_for_use (use);
1039 if (!def)
1040 return false;
1041
1042 if (DF_REF_IS_ARTIFICIAL (def))
1043 return false;
1044
1045 if (NONJUMP_INSN_P (DF_REF_INSN (def)))
1046 {
1047 rtx patt = PATTERN (DF_REF_INSN (def));
1048
1049 if (GET_CODE (patt) == SET
1050 && GET_CODE (SET_SRC (patt)) == MEM
1051 && rtx_equal_p (SET_DEST (patt), reg))
1052 return true;
1053 }
1054 return false;
1055 }
1056
1057 /* If USE is a subreg, see if it can be replaced by a pseudo. */
1058
1059 static bool
1060 forward_propagate_subreg (df_ref use, rtx def_insn, rtx def_set)
1061 {
1062 rtx use_reg = DF_REF_REG (use);
1063 rtx use_insn, src;
1064
1065 /* Only consider subregs... */
1066 enum machine_mode use_mode = GET_MODE (use_reg);
1067 if (GET_CODE (use_reg) != SUBREG
1068 || !REG_P (SET_DEST (def_set)))
1069 return false;
1070
1071 /* If this is a paradoxical SUBREG... */
1072 if (GET_MODE_SIZE (use_mode)
1073 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg))))
1074 {
1075 /* If this is a paradoxical SUBREG, we have no idea what value the
1076 extra bits would have. However, if the operand is equivalent to
1077 a SUBREG whose operand is the same as our mode, and all the modes
1078 are within a word, we can just use the inner operand because
1079 these SUBREGs just say how to treat the register. */
1080 use_insn = DF_REF_INSN (use);
1081 src = SET_SRC (def_set);
1082 if (GET_CODE (src) == SUBREG
1083 && REG_P (SUBREG_REG (src))
1084 && REGNO (SUBREG_REG (src)) >= FIRST_PSEUDO_REGISTER
1085 && GET_MODE (SUBREG_REG (src)) == use_mode
1086 && subreg_lowpart_p (src)
1087 && all_uses_available_at (def_insn, use_insn))
1088 return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
1089 def_insn, false);
1090 }
1091
1092 /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1093 is the low part of the reg being extended then just use the inner
1094 operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1095 be removed due to it matching a LOAD_EXTEND_OP load from memory,
1096 or due to the operation being a no-op when applied to registers.
1097 For example, if we have:
1098
1099 A: (set (reg:DI X) (sign_extend:DI (reg:SI Y)))
1100 B: (... (subreg:SI (reg:DI X)) ...)
1101
1102 and mode_rep_extended says that Y is already sign-extended,
1103 the backend will typically allow A to be combined with the
1104 definition of Y or, failing that, allow A to be deleted after
1105 reload through register tying. Introducing more uses of Y
1106 prevents both optimisations. */
1107 else if (subreg_lowpart_p (use_reg))
1108 {
1109 use_insn = DF_REF_INSN (use);
1110 src = SET_SRC (def_set);
1111 if ((GET_CODE (src) == ZERO_EXTEND
1112 || GET_CODE (src) == SIGN_EXTEND)
1113 && REG_P (XEXP (src, 0))
1114 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
1115 && GET_MODE (XEXP (src, 0)) == use_mode
1116 && !free_load_extend (src, def_insn)
1117 && (targetm.mode_rep_extended (use_mode, GET_MODE (src))
1118 != (int) GET_CODE (src))
1119 && all_uses_available_at (def_insn, use_insn))
1120 return try_fwprop_subst (use, DF_REF_LOC (use), XEXP (src, 0),
1121 def_insn, false);
1122 }
1123
1124 return false;
1125 }
1126
1127 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */
1128
1129 static bool
1130 forward_propagate_asm (df_ref use, rtx def_insn, rtx def_set, rtx reg)
1131 {
1132 rtx use_insn = DF_REF_INSN (use), src, use_pat, asm_operands, new_rtx, *loc;
1133 int speed_p, i;
1134 df_ref uses;
1135
1136 gcc_assert ((DF_REF_FLAGS (use) & DF_REF_IN_NOTE) == 0);
1137
1138 src = SET_SRC (def_set);
1139 use_pat = PATTERN (use_insn);
1140
1141 /* In __asm don't replace if src might need more registers than
1142 reg, as that could increase register pressure on the __asm. */
1143 uses = DF_INSN_USES (def_insn);
1144 if (uses && DF_REF_NEXT_LOC (uses))
1145 return false;
1146
1147 update_df_init (def_insn, use_insn);
1148 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
1149 asm_operands = NULL_RTX;
1150 switch (GET_CODE (use_pat))
1151 {
1152 case ASM_OPERANDS:
1153 asm_operands = use_pat;
1154 break;
1155 case SET:
1156 if (MEM_P (SET_DEST (use_pat)))
1157 {
1158 loc = &SET_DEST (use_pat);
1159 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1160 if (new_rtx)
1161 validate_unshare_change (use_insn, loc, new_rtx, true);
1162 }
1163 asm_operands = SET_SRC (use_pat);
1164 break;
1165 case PARALLEL:
1166 for (i = 0; i < XVECLEN (use_pat, 0); i++)
1167 if (GET_CODE (XVECEXP (use_pat, 0, i)) == SET)
1168 {
1169 if (MEM_P (SET_DEST (XVECEXP (use_pat, 0, i))))
1170 {
1171 loc = &SET_DEST (XVECEXP (use_pat, 0, i));
1172 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg,
1173 src, speed_p);
1174 if (new_rtx)
1175 validate_unshare_change (use_insn, loc, new_rtx, true);
1176 }
1177 asm_operands = SET_SRC (XVECEXP (use_pat, 0, i));
1178 }
1179 else if (GET_CODE (XVECEXP (use_pat, 0, i)) == ASM_OPERANDS)
1180 asm_operands = XVECEXP (use_pat, 0, i);
1181 break;
1182 default:
1183 gcc_unreachable ();
1184 }
1185
1186 gcc_assert (asm_operands && GET_CODE (asm_operands) == ASM_OPERANDS);
1187 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (asm_operands); i++)
1188 {
1189 loc = &ASM_OPERANDS_INPUT (asm_operands, i);
1190 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1191 if (new_rtx)
1192 validate_unshare_change (use_insn, loc, new_rtx, true);
1193 }
1194
1195 if (num_changes_pending () == 0 || !apply_change_group ())
1196 return false;
1197
1198 update_df (use_insn, NULL);
1199 num_changes++;
1200 return true;
1201 }
1202
1203 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1204 result. */
1205
1206 static bool
1207 forward_propagate_and_simplify (df_ref use, rtx def_insn, rtx def_set)
1208 {
1209 rtx use_insn = DF_REF_INSN (use);
1210 rtx use_set = single_set (use_insn);
1211 rtx src, reg, new_rtx, *loc;
1212 bool set_reg_equal;
1213 enum machine_mode mode;
1214 int asm_use = -1;
1215
1216 if (INSN_CODE (use_insn) < 0)
1217 asm_use = asm_noperands (PATTERN (use_insn));
1218
1219 if (!use_set && asm_use < 0 && !DEBUG_INSN_P (use_insn))
1220 return false;
1221
1222 /* Do not propagate into PC, CC0, etc. */
1223 if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode)
1224 return false;
1225
1226 /* If def and use are subreg, check if they match. */
1227 reg = DF_REF_REG (use);
1228 if (GET_CODE (reg) == SUBREG && GET_CODE (SET_DEST (def_set)) == SUBREG)
1229 {
1230 if (SUBREG_BYTE (SET_DEST (def_set)) != SUBREG_BYTE (reg))
1231 return false;
1232 }
1233 /* Check if the def had a subreg, but the use has the whole reg. */
1234 else if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
1235 return false;
1236 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
1237 previous case, the optimization is possible and often useful indeed. */
1238 else if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
1239 reg = SUBREG_REG (reg);
1240
1241 /* Make sure that we can treat REG as having the same mode as the
1242 source of DEF_SET. */
1243 if (GET_MODE (SET_DEST (def_set)) != GET_MODE (reg))
1244 return false;
1245
1246 /* Check if the substitution is valid (last, because it's the most
1247 expensive check!). */
1248 src = SET_SRC (def_set);
1249 if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
1250 return false;
1251
1252 /* Check if the def is loading something from the constant pool; in this
1253 case we would undo optimization such as compress_float_constant.
1254 Still, we can set a REG_EQUAL note. */
1255 if (MEM_P (src) && MEM_READONLY_P (src))
1256 {
1257 rtx x = avoid_constant_pool_reference (src);
1258 if (x != src && use_set)
1259 {
1260 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1261 rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set);
1262 rtx new_rtx = simplify_replace_rtx (old_rtx, src, x);
1263 if (old_rtx != new_rtx)
1264 set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx));
1265 }
1266 return false;
1267 }
1268
1269 if (asm_use >= 0)
1270 return forward_propagate_asm (use, def_insn, def_set, reg);
1271
1272 /* Else try simplifying. */
1273
1274 if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
1275 {
1276 loc = &SET_DEST (use_set);
1277 set_reg_equal = false;
1278 }
1279 else if (!use_set)
1280 {
1281 loc = &INSN_VAR_LOCATION_LOC (use_insn);
1282 set_reg_equal = false;
1283 }
1284 else
1285 {
1286 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1287 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1288 loc = &XEXP (note, 0);
1289 else
1290 loc = &SET_SRC (use_set);
1291
1292 /* Do not replace an existing REG_EQUAL note if the insn is not
1293 recognized. Either we're already replacing in the note, or we'll
1294 separately try plugging the definition in the note and simplifying.
1295 And only install a REQ_EQUAL note when the destination is a REG
1296 that isn't mentioned in USE_SET, as the note would be invalid
1297 otherwise. We also don't want to install a note if we are merely
1298 propagating a pseudo since verifying that this pseudo isn't dead
1299 is a pain; moreover such a note won't help anything. */
1300 set_reg_equal = (note == NULL_RTX
1301 && REG_P (SET_DEST (use_set))
1302 && !REG_P (src)
1303 && !(GET_CODE (src) == SUBREG
1304 && REG_P (SUBREG_REG (src)))
1305 && !reg_mentioned_p (SET_DEST (use_set),
1306 SET_SRC (use_set)));
1307 }
1308
1309 if (GET_MODE (*loc) == VOIDmode)
1310 mode = GET_MODE (SET_DEST (use_set));
1311 else
1312 mode = GET_MODE (*loc);
1313
1314 new_rtx = propagate_rtx (*loc, mode, reg, src,
1315 optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn)));
1316
1317 if (!new_rtx)
1318 return false;
1319
1320 return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal);
1321 }
1322
1323
1324 /* Given a use USE of an insn, if it has a single reaching
1325 definition, try to forward propagate it into that insn.
1326 Return true if cfg cleanup will be needed. */
1327
1328 static bool
1329 forward_propagate_into (df_ref use)
1330 {
1331 df_ref def;
1332 rtx def_insn, def_set, use_insn;
1333 rtx parent;
1334
1335 if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
1336 return false;
1337 if (DF_REF_IS_ARTIFICIAL (use))
1338 return false;
1339
1340 /* Only consider uses that have a single definition. */
1341 def = get_def_for_use (use);
1342 if (!def)
1343 return false;
1344 if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
1345 return false;
1346 if (DF_REF_IS_ARTIFICIAL (def))
1347 return false;
1348
1349 /* Do not propagate loop invariant definitions inside the loop. */
1350 if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
1351 return false;
1352
1353 /* Check if the use is still present in the insn! */
1354 use_insn = DF_REF_INSN (use);
1355 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1356 parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1357 else
1358 parent = PATTERN (use_insn);
1359
1360 if (!reg_mentioned_p (DF_REF_REG (use), parent))
1361 return false;
1362
1363 def_insn = DF_REF_INSN (def);
1364 if (multiple_sets (def_insn))
1365 return false;
1366 def_set = single_set (def_insn);
1367 if (!def_set)
1368 return false;
1369
1370 /* Only try one kind of propagation. If two are possible, we'll
1371 do it on the following iterations. */
1372 if (forward_propagate_and_simplify (use, def_insn, def_set)
1373 || forward_propagate_subreg (use, def_insn, def_set))
1374 {
1375 if (cfun->can_throw_non_call_exceptions
1376 && find_reg_note (use_insn, REG_EH_REGION, NULL_RTX)
1377 && purge_dead_edges (DF_REF_BB (use)))
1378 return true;
1379 }
1380 return false;
1381 }
1382
1383 \f
1384 static void
1385 fwprop_init (void)
1386 {
1387 num_changes = 0;
1388 calculate_dominance_info (CDI_DOMINATORS);
1389
1390 /* We do not always want to propagate into loops, so we have to find
1391 loops and be careful about them. Avoid CFG modifications so that
1392 we don't have to update dominance information afterwards for
1393 build_single_def_use_links. */
1394 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
1395
1396 build_single_def_use_links ();
1397 df_set_flags (DF_DEFER_INSN_RESCAN);
1398
1399 active_defs = XNEWVEC (df_ref, max_reg_num ());
1400 #ifdef ENABLE_CHECKING
1401 active_defs_check = sparseset_alloc (max_reg_num ());
1402 #endif
1403 }
1404
1405 static void
1406 fwprop_done (void)
1407 {
1408 loop_optimizer_finalize ();
1409
1410 use_def_ref.release ();
1411 free (active_defs);
1412 #ifdef ENABLE_CHECKING
1413 sparseset_free (active_defs_check);
1414 #endif
1415
1416 free_dominance_info (CDI_DOMINATORS);
1417 cleanup_cfg (0);
1418 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1419
1420 if (dump_file)
1421 fprintf (dump_file,
1422 "\nNumber of successful forward propagations: %d\n\n",
1423 num_changes);
1424 }
1425
1426
1427 /* Main entry point. */
1428
1429 static bool
1430 gate_fwprop (void)
1431 {
1432 return optimize > 0 && flag_forward_propagate;
1433 }
1434
1435 static unsigned int
1436 fwprop (void)
1437 {
1438 unsigned i;
1439 bool need_cleanup = false;
1440
1441 fwprop_init ();
1442
1443 /* Go through all the uses. df_uses_create will create new ones at the
1444 end, and we'll go through them as well.
1445
1446 Do not forward propagate addresses into loops until after unrolling.
1447 CSE did so because it was able to fix its own mess, but we are not. */
1448
1449 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1450 {
1451 df_ref use = DF_USES_GET (i);
1452 if (use)
1453 if (DF_REF_TYPE (use) == DF_REF_REG_USE
1454 || DF_REF_BB (use)->loop_father == NULL
1455 /* The outer most loop is not really a loop. */
1456 || loop_outer (DF_REF_BB (use)->loop_father) == NULL)
1457 need_cleanup |= forward_propagate_into (use);
1458 }
1459
1460 fwprop_done ();
1461 if (need_cleanup)
1462 cleanup_cfg (0);
1463 return 0;
1464 }
1465
1466 namespace {
1467
1468 const pass_data pass_data_rtl_fwprop =
1469 {
1470 RTL_PASS, /* type */
1471 "fwprop1", /* name */
1472 OPTGROUP_NONE, /* optinfo_flags */
1473 TV_FWPROP, /* tv_id */
1474 0, /* properties_required */
1475 0, /* properties_provided */
1476 0, /* properties_destroyed */
1477 0, /* todo_flags_start */
1478 TODO_df_finish, /* todo_flags_finish */
1479 };
1480
1481 class pass_rtl_fwprop : public rtl_opt_pass
1482 {
1483 public:
1484 pass_rtl_fwprop (gcc::context *ctxt)
1485 : rtl_opt_pass (pass_data_rtl_fwprop, ctxt)
1486 {}
1487
1488 /* opt_pass methods: */
1489 virtual bool gate (function *) { return gate_fwprop (); }
1490 virtual unsigned int execute (function *) { return fwprop (); }
1491
1492 }; // class pass_rtl_fwprop
1493
1494 } // anon namespace
1495
1496 rtl_opt_pass *
1497 make_pass_rtl_fwprop (gcc::context *ctxt)
1498 {
1499 return new pass_rtl_fwprop (ctxt);
1500 }
1501
1502 static unsigned int
1503 fwprop_addr (void)
1504 {
1505 unsigned i;
1506 bool need_cleanup = false;
1507
1508 fwprop_init ();
1509
1510 /* Go through all the uses. df_uses_create will create new ones at the
1511 end, and we'll go through them as well. */
1512 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1513 {
1514 df_ref use = DF_USES_GET (i);
1515 if (use)
1516 if (DF_REF_TYPE (use) != DF_REF_REG_USE
1517 && DF_REF_BB (use)->loop_father != NULL
1518 /* The outer most loop is not really a loop. */
1519 && loop_outer (DF_REF_BB (use)->loop_father) != NULL)
1520 need_cleanup |= forward_propagate_into (use);
1521 }
1522
1523 fwprop_done ();
1524
1525 if (need_cleanup)
1526 cleanup_cfg (0);
1527 return 0;
1528 }
1529
1530 namespace {
1531
1532 const pass_data pass_data_rtl_fwprop_addr =
1533 {
1534 RTL_PASS, /* type */
1535 "fwprop2", /* name */
1536 OPTGROUP_NONE, /* optinfo_flags */
1537 TV_FWPROP, /* tv_id */
1538 0, /* properties_required */
1539 0, /* properties_provided */
1540 0, /* properties_destroyed */
1541 0, /* todo_flags_start */
1542 TODO_df_finish, /* todo_flags_finish */
1543 };
1544
1545 class pass_rtl_fwprop_addr : public rtl_opt_pass
1546 {
1547 public:
1548 pass_rtl_fwprop_addr (gcc::context *ctxt)
1549 : rtl_opt_pass (pass_data_rtl_fwprop_addr, ctxt)
1550 {}
1551
1552 /* opt_pass methods: */
1553 virtual bool gate (function *) { return gate_fwprop (); }
1554 virtual unsigned int execute (function *) { return fwprop_addr (); }
1555
1556 }; // class pass_rtl_fwprop_addr
1557
1558 } // anon namespace
1559
1560 rtl_opt_pass *
1561 make_pass_rtl_fwprop_addr (gcc::context *ctxt)
1562 {
1563 return new pass_rtl_fwprop_addr (ctxt);
1564 }