prj-nmsc.adb, [...] (Expand_Subdirectory_Pattern): New subprogram.
[gcc.git] / gcc / gcse.c
1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
4 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* TODO
23 - reordering of memory allocation and freeing to be more space efficient
24 - do rough calc of how many regs are needed in each block, and a rough
25 calc of how many regs are available in each class and use that to
26 throttle back the code in cases where RTX_COST is minimal.
27 - a store to the same address as a load does not kill the load if the
28 source of the store is also the destination of the load. Handling this
29 allows more load motion, particularly out of loops.
30
31 */
32
33 /* References searched while implementing this.
34
35 Compilers Principles, Techniques and Tools
36 Aho, Sethi, Ullman
37 Addison-Wesley, 1988
38
39 Global Optimization by Suppression of Partial Redundancies
40 E. Morel, C. Renvoise
41 communications of the acm, Vol. 22, Num. 2, Feb. 1979
42
43 A Portable Machine-Independent Global Optimizer - Design and Measurements
44 Frederick Chow
45 Stanford Ph.D. thesis, Dec. 1983
46
47 A Fast Algorithm for Code Movement Optimization
48 D.M. Dhamdhere
49 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
50
51 A Solution to a Problem with Morel and Renvoise's
52 Global Optimization by Suppression of Partial Redundancies
53 K-H Drechsler, M.P. Stadel
54 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
55
56 Practical Adaptation of the Global Optimization
57 Algorithm of Morel and Renvoise
58 D.M. Dhamdhere
59 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
60
61 Efficiently Computing Static Single Assignment Form and the Control
62 Dependence Graph
63 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
64 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
65
66 Lazy Code Motion
67 J. Knoop, O. Ruthing, B. Steffen
68 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
69
70 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
71 Time for Reducible Flow Control
72 Thomas Ball
73 ACM Letters on Programming Languages and Systems,
74 Vol. 2, Num. 1-4, Mar-Dec 1993
75
76 An Efficient Representation for Sparse Sets
77 Preston Briggs, Linda Torczon
78 ACM Letters on Programming Languages and Systems,
79 Vol. 2, Num. 1-4, Mar-Dec 1993
80
81 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
82 K-H Drechsler, M.P. Stadel
83 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
84
85 Partial Dead Code Elimination
86 J. Knoop, O. Ruthing, B. Steffen
87 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
88
89 Effective Partial Redundancy Elimination
90 P. Briggs, K.D. Cooper
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
92
93 The Program Structure Tree: Computing Control Regions in Linear Time
94 R. Johnson, D. Pearson, K. Pingali
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
96
97 Optimal Code Motion: Theory and Practice
98 J. Knoop, O. Ruthing, B. Steffen
99 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
100
101 The power of assignment motion
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
104
105 Global code motion / global value numbering
106 C. Click
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
108
109 Value Driven Redundancy Elimination
110 L.T. Simpson
111 Rice University Ph.D. thesis, Apr. 1996
112
113 Value Numbering
114 L.T. Simpson
115 Massively Scalar Compiler Project, Rice University, Sep. 1996
116
117 High Performance Compilers for Parallel Computing
118 Michael Wolfe
119 Addison-Wesley, 1996
120
121 Advanced Compiler Design and Implementation
122 Steven Muchnick
123 Morgan Kaufmann, 1997
124
125 Building an Optimizing Compiler
126 Robert Morgan
127 Digital Press, 1998
128
129 People wishing to speed up the code here should read:
130 Elimination Algorithms for Data Flow Analysis
131 B.G. Ryder, M.C. Paull
132 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
133
134 How to Analyze Large Programs Efficiently and Informatively
135 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
136 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
137
138 People wishing to do something different can find various possibilities
139 in the above papers and elsewhere.
140 */
141
142 #include "config.h"
143 #include "system.h"
144 #include "coretypes.h"
145 #include "tm.h"
146 #include "diagnostic-core.h"
147 #include "toplev.h"
148
149 #include "rtl.h"
150 #include "tree.h"
151 #include "tm_p.h"
152 #include "regs.h"
153 #include "hard-reg-set.h"
154 #include "flags.h"
155 #include "insn-config.h"
156 #include "recog.h"
157 #include "basic-block.h"
158 #include "output.h"
159 #include "function.h"
160 #include "expr.h"
161 #include "except.h"
162 #include "ggc.h"
163 #include "params.h"
164 #include "cselib.h"
165 #include "intl.h"
166 #include "obstack.h"
167 #include "timevar.h"
168 #include "tree-pass.h"
169 #include "hashtab.h"
170 #include "df.h"
171 #include "dbgcnt.h"
172 #include "target.h"
173 #include "gcse.h"
174
175 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
176 are a superset of those done by classic GCSE.
177
178 We perform the following steps:
179
180 1) Compute table of places where registers are set.
181
182 2) Perform copy/constant propagation.
183
184 3) Perform global cse using lazy code motion if not optimizing
185 for size, or code hoisting if we are.
186
187 4) Perform another pass of copy/constant propagation. Try to bypass
188 conditional jumps if the condition can be computed from a value of
189 an incoming edge.
190
191 Two passes of copy/constant propagation are done because the first one
192 enables more GCSE and the second one helps to clean up the copies that
193 GCSE creates. This is needed more for PRE than for Classic because Classic
194 GCSE will try to use an existing register containing the common
195 subexpression rather than create a new one. This is harder to do for PRE
196 because of the code motion (which Classic GCSE doesn't do).
197
198 Expressions we are interested in GCSE-ing are of the form
199 (set (pseudo-reg) (expression)).
200 Function want_to_gcse_p says what these are.
201
202 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
203 This allows PRE to hoist expressions that are expressed in multiple insns,
204 such as complex address calculations (e.g. for PIC code, or loads with a
205 high part and a low part).
206
207 PRE handles moving invariant expressions out of loops (by treating them as
208 partially redundant).
209
210 **********************
211
212 We used to support multiple passes but there are diminishing returns in
213 doing so. The first pass usually makes 90% of the changes that are doable.
214 A second pass can make a few more changes made possible by the first pass.
215 Experiments show any further passes don't make enough changes to justify
216 the expense.
217
218 A study of spec92 using an unlimited number of passes:
219 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
220 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
221 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
222
223 It was found doing copy propagation between each pass enables further
224 substitutions.
225
226 This study was done before expressions in REG_EQUAL notes were added as
227 candidate expressions for optimization, and before the GIMPLE optimizers
228 were added. Probably, multiple passes is even less efficient now than
229 at the time when the study was conducted.
230
231 PRE is quite expensive in complicated functions because the DFA can take
232 a while to converge. Hence we only perform one pass.
233
234 **********************
235
236 The steps for PRE are:
237
238 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
239
240 2) Perform the data flow analysis for PRE.
241
242 3) Delete the redundant instructions
243
244 4) Insert the required copies [if any] that make the partially
245 redundant instructions fully redundant.
246
247 5) For other reaching expressions, insert an instruction to copy the value
248 to a newly created pseudo that will reach the redundant instruction.
249
250 The deletion is done first so that when we do insertions we
251 know which pseudo reg to use.
252
253 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
254 argue it is not. The number of iterations for the algorithm to converge
255 is typically 2-4 so I don't view it as that expensive (relatively speaking).
256
257 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
258 we create. To make an expression reach the place where it's redundant,
259 the result of the expression is copied to a new register, and the redundant
260 expression is deleted by replacing it with this new register. Classic GCSE
261 doesn't have this problem as much as it computes the reaching defs of
262 each register in each block and thus can try to use an existing
263 register. */
264 \f
265 /* GCSE global vars. */
266
267 struct target_gcse default_target_gcse;
268 #if SWITCHABLE_TARGET
269 struct target_gcse *this_target_gcse = &default_target_gcse;
270 #endif
271
272 /* Set to non-zero if CSE should run after all GCSE optimizations are done. */
273 int flag_rerun_cse_after_global_opts;
274
275 /* An obstack for our working variables. */
276 static struct obstack gcse_obstack;
277
278 struct reg_use {rtx reg_rtx; };
279
280 /* Hash table of expressions. */
281
282 struct expr
283 {
284 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
285 rtx expr;
286 /* Index in the available expression bitmaps. */
287 int bitmap_index;
288 /* Next entry with the same hash. */
289 struct expr *next_same_hash;
290 /* List of anticipatable occurrences in basic blocks in the function.
291 An "anticipatable occurrence" is one that is the first occurrence in the
292 basic block, the operands are not modified in the basic block prior
293 to the occurrence and the output is not used between the start of
294 the block and the occurrence. */
295 struct occr *antic_occr;
296 /* List of available occurrence in basic blocks in the function.
297 An "available occurrence" is one that is the last occurrence in the
298 basic block and the operands are not modified by following statements in
299 the basic block [including this insn]. */
300 struct occr *avail_occr;
301 /* Non-null if the computation is PRE redundant.
302 The value is the newly created pseudo-reg to record a copy of the
303 expression in all the places that reach the redundant copy. */
304 rtx reaching_reg;
305 /* Maximum distance in instructions this expression can travel.
306 We avoid moving simple expressions for more than a few instructions
307 to keep register pressure under control.
308 A value of "0" removes restrictions on how far the expression can
309 travel. */
310 int max_distance;
311 };
312
313 /* Occurrence of an expression.
314 There is one per basic block. If a pattern appears more than once the
315 last appearance is used [or first for anticipatable expressions]. */
316
317 struct occr
318 {
319 /* Next occurrence of this expression. */
320 struct occr *next;
321 /* The insn that computes the expression. */
322 rtx insn;
323 /* Nonzero if this [anticipatable] occurrence has been deleted. */
324 char deleted_p;
325 /* Nonzero if this [available] occurrence has been copied to
326 reaching_reg. */
327 /* ??? This is mutually exclusive with deleted_p, so they could share
328 the same byte. */
329 char copied_p;
330 };
331
332 typedef struct occr *occr_t;
333 DEF_VEC_P (occr_t);
334 DEF_VEC_ALLOC_P (occr_t, heap);
335
336 /* Expression and copy propagation hash tables.
337 Each hash table is an array of buckets.
338 ??? It is known that if it were an array of entries, structure elements
339 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
340 not clear whether in the final analysis a sufficient amount of memory would
341 be saved as the size of the available expression bitmaps would be larger
342 [one could build a mapping table without holes afterwards though].
343 Someday I'll perform the computation and figure it out. */
344
345 struct hash_table_d
346 {
347 /* The table itself.
348 This is an array of `expr_hash_table_size' elements. */
349 struct expr **table;
350
351 /* Size of the hash table, in elements. */
352 unsigned int size;
353
354 /* Number of hash table elements. */
355 unsigned int n_elems;
356
357 /* Whether the table is expression of copy propagation one. */
358 int set_p;
359 };
360
361 /* Expression hash table. */
362 static struct hash_table_d expr_hash_table;
363
364 /* Copy propagation hash table. */
365 static struct hash_table_d set_hash_table;
366
367 /* This is a list of expressions which are MEMs and will be used by load
368 or store motion.
369 Load motion tracks MEMs which aren't killed by
370 anything except itself. (i.e., loads and stores to a single location).
371 We can then allow movement of these MEM refs with a little special
372 allowance. (all stores copy the same value to the reaching reg used
373 for the loads). This means all values used to store into memory must have
374 no side effects so we can re-issue the setter value.
375 Store Motion uses this structure as an expression table to track stores
376 which look interesting, and might be moveable towards the exit block. */
377
378 struct ls_expr
379 {
380 struct expr * expr; /* Gcse expression reference for LM. */
381 rtx pattern; /* Pattern of this mem. */
382 rtx pattern_regs; /* List of registers mentioned by the mem. */
383 rtx loads; /* INSN list of loads seen. */
384 rtx stores; /* INSN list of stores seen. */
385 struct ls_expr * next; /* Next in the list. */
386 int invalid; /* Invalid for some reason. */
387 int index; /* If it maps to a bitmap index. */
388 unsigned int hash_index; /* Index when in a hash table. */
389 rtx reaching_reg; /* Register to use when re-writing. */
390 };
391
392 /* Array of implicit set patterns indexed by basic block index. */
393 static rtx *implicit_sets;
394
395 /* Head of the list of load/store memory refs. */
396 static struct ls_expr * pre_ldst_mems = NULL;
397
398 /* Hashtable for the load/store memory refs. */
399 static htab_t pre_ldst_table = NULL;
400
401 /* Bitmap containing one bit for each register in the program.
402 Used when performing GCSE to track which registers have been set since
403 the start of the basic block. */
404 static regset reg_set_bitmap;
405
406 /* Array, indexed by basic block number for a list of insns which modify
407 memory within that block. */
408 static rtx * modify_mem_list;
409 static bitmap modify_mem_list_set;
410
411 /* This array parallels modify_mem_list, but is kept canonicalized. */
412 static rtx * canon_modify_mem_list;
413
414 /* Bitmap indexed by block numbers to record which blocks contain
415 function calls. */
416 static bitmap blocks_with_calls;
417
418 /* Various variables for statistics gathering. */
419
420 /* Memory used in a pass.
421 This isn't intended to be absolutely precise. Its intent is only
422 to keep an eye on memory usage. */
423 static int bytes_used;
424
425 /* GCSE substitutions made. */
426 static int gcse_subst_count;
427 /* Number of copy instructions created. */
428 static int gcse_create_count;
429 /* Number of local constants propagated. */
430 static int local_const_prop_count;
431 /* Number of local copies propagated. */
432 static int local_copy_prop_count;
433 /* Number of global constants propagated. */
434 static int global_const_prop_count;
435 /* Number of global copies propagated. */
436 static int global_copy_prop_count;
437 \f
438 /* Doing code hoisting. */
439 static bool doing_code_hoisting_p = false;
440 \f
441 /* For available exprs */
442 static sbitmap *ae_kill;
443 \f
444 static void compute_can_copy (void);
445 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
446 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
447 static void *gcse_alloc (unsigned long);
448 static void alloc_gcse_mem (void);
449 static void free_gcse_mem (void);
450 static void hash_scan_insn (rtx, struct hash_table_d *);
451 static void hash_scan_set (rtx, rtx, struct hash_table_d *);
452 static void hash_scan_clobber (rtx, rtx, struct hash_table_d *);
453 static void hash_scan_call (rtx, rtx, struct hash_table_d *);
454 static int want_to_gcse_p (rtx, int *);
455 static bool gcse_constant_p (const_rtx);
456 static int oprs_unchanged_p (const_rtx, const_rtx, int);
457 static int oprs_anticipatable_p (const_rtx, const_rtx);
458 static int oprs_available_p (const_rtx, const_rtx);
459 static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int, int,
460 struct hash_table_d *);
461 static void insert_set_in_table (rtx, rtx, struct hash_table_d *);
462 static unsigned int hash_expr (const_rtx, enum machine_mode, int *, int);
463 static unsigned int hash_set (int, int);
464 static int expr_equiv_p (const_rtx, const_rtx);
465 static void record_last_reg_set_info (rtx, int);
466 static void record_last_mem_set_info (rtx);
467 static void record_last_set_info (rtx, const_rtx, void *);
468 static void compute_hash_table (struct hash_table_d *);
469 static void alloc_hash_table (struct hash_table_d *, int);
470 static void free_hash_table (struct hash_table_d *);
471 static void compute_hash_table_work (struct hash_table_d *);
472 static void dump_hash_table (FILE *, const char *, struct hash_table_d *);
473 static struct expr *lookup_set (unsigned int, struct hash_table_d *);
474 static struct expr *next_set (unsigned int, struct expr *);
475 static void reset_opr_set_tables (void);
476 static int oprs_not_set_p (const_rtx, const_rtx);
477 static void mark_call (rtx);
478 static void mark_set (rtx, rtx);
479 static void mark_clobber (rtx, rtx);
480 static void mark_oprs_set (rtx);
481 static void alloc_cprop_mem (int, int);
482 static void free_cprop_mem (void);
483 static void compute_transp (const_rtx, int, sbitmap *, int);
484 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
485 struct hash_table_d *);
486 static void compute_cprop_data (void);
487 static void find_used_regs (rtx *, void *);
488 static int try_replace_reg (rtx, rtx, rtx);
489 static struct expr *find_avail_set (int, rtx);
490 static int cprop_jump (basic_block, rtx, rtx, rtx, rtx);
491 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
492 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
493 static void canon_list_insert (rtx, const_rtx, void *);
494 static int cprop_insn (rtx);
495 static void find_implicit_sets (void);
496 static int one_cprop_pass (void);
497 static bool constprop_register (rtx, rtx, rtx);
498 static struct expr *find_bypass_set (int, int);
499 static bool reg_killed_on_edge (const_rtx, const_edge);
500 static int bypass_block (basic_block, rtx, rtx);
501 static int bypass_conditional_jumps (void);
502 static void alloc_pre_mem (int, int);
503 static void free_pre_mem (void);
504 static void compute_pre_data (void);
505 static int pre_expr_reaches_here_p (basic_block, struct expr *,
506 basic_block);
507 static void insert_insn_end_basic_block (struct expr *, basic_block);
508 static void pre_insert_copy_insn (struct expr *, rtx);
509 static void pre_insert_copies (void);
510 static int pre_delete (void);
511 static int pre_gcse (void);
512 static int one_pre_gcse_pass (void);
513 static void add_label_notes (rtx, rtx);
514 static void alloc_code_hoist_mem (int, int);
515 static void free_code_hoist_mem (void);
516 static void compute_code_hoist_vbeinout (void);
517 static void compute_code_hoist_data (void);
518 static int hoist_expr_reaches_here_p (basic_block, int, basic_block, char *,
519 int, int *);
520 static int hoist_code (void);
521 static int one_code_hoisting_pass (void);
522 static rtx process_insert_insn (struct expr *);
523 static int pre_edge_insert (struct edge_list *, struct expr **);
524 static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
525 basic_block, char *);
526 static struct ls_expr * ldst_entry (rtx);
527 static void free_ldst_entry (struct ls_expr *);
528 static void free_ldst_mems (void);
529 static void print_ldst_list (FILE *);
530 static struct ls_expr * find_rtx_in_ldst (rtx);
531 static inline struct ls_expr * first_ls_expr (void);
532 static inline struct ls_expr * next_ls_expr (struct ls_expr *);
533 static int simple_mem (const_rtx);
534 static void invalidate_any_buried_refs (rtx);
535 static void compute_ld_motion_mems (void);
536 static void trim_ld_motion_mems (void);
537 static void update_ld_motion_stores (struct expr *);
538 static void free_insn_expr_list_list (rtx *);
539 static void clear_modify_mem_tables (void);
540 static void free_modify_mem_tables (void);
541 static rtx gcse_emit_move_after (rtx, rtx, rtx);
542 static void local_cprop_find_used_regs (rtx *, void *);
543 static bool do_local_cprop (rtx, rtx);
544 static int local_cprop_pass (void);
545 static bool is_too_expensive (const char *);
546
547 #define GNEW(T) ((T *) gmalloc (sizeof (T)))
548 #define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
549
550 #define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
551 #define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
552
553 #define GNEWVAR(T, S) ((T *) gmalloc ((S)))
554 #define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
555
556 #define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
557 #define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
558 \f
559 /* Misc. utilities. */
560
561 #define can_copy \
562 (this_target_gcse->x_can_copy)
563 #define can_copy_init_p \
564 (this_target_gcse->x_can_copy_init_p)
565
566 /* Compute which modes support reg/reg copy operations. */
567
568 static void
569 compute_can_copy (void)
570 {
571 int i;
572 #ifndef AVOID_CCMODE_COPIES
573 rtx reg, insn;
574 #endif
575 memset (can_copy, 0, NUM_MACHINE_MODES);
576
577 start_sequence ();
578 for (i = 0; i < NUM_MACHINE_MODES; i++)
579 if (GET_MODE_CLASS (i) == MODE_CC)
580 {
581 #ifdef AVOID_CCMODE_COPIES
582 can_copy[i] = 0;
583 #else
584 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
585 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
586 if (recog (PATTERN (insn), insn, NULL) >= 0)
587 can_copy[i] = 1;
588 #endif
589 }
590 else
591 can_copy[i] = 1;
592
593 end_sequence ();
594 }
595
596 /* Returns whether the mode supports reg/reg copy operations. */
597
598 bool
599 can_copy_p (enum machine_mode mode)
600 {
601 if (! can_copy_init_p)
602 {
603 compute_can_copy ();
604 can_copy_init_p = true;
605 }
606
607 return can_copy[mode] != 0;
608 }
609
610 \f
611 /* Cover function to xmalloc to record bytes allocated. */
612
613 static void *
614 gmalloc (size_t size)
615 {
616 bytes_used += size;
617 return xmalloc (size);
618 }
619
620 /* Cover function to xcalloc to record bytes allocated. */
621
622 static void *
623 gcalloc (size_t nelem, size_t elsize)
624 {
625 bytes_used += nelem * elsize;
626 return xcalloc (nelem, elsize);
627 }
628
629 /* Cover function to obstack_alloc. */
630
631 static void *
632 gcse_alloc (unsigned long size)
633 {
634 bytes_used += size;
635 return obstack_alloc (&gcse_obstack, size);
636 }
637
638 /* Allocate memory for the reg/memory set tracking tables.
639 This is called at the start of each pass. */
640
641 static void
642 alloc_gcse_mem (void)
643 {
644 /* Allocate vars to track sets of regs. */
645 reg_set_bitmap = ALLOC_REG_SET (NULL);
646
647 /* Allocate array to keep a list of insns which modify memory in each
648 basic block. */
649 modify_mem_list = GCNEWVEC (rtx, last_basic_block);
650 canon_modify_mem_list = GCNEWVEC (rtx, last_basic_block);
651 modify_mem_list_set = BITMAP_ALLOC (NULL);
652 blocks_with_calls = BITMAP_ALLOC (NULL);
653 }
654
655 /* Free memory allocated by alloc_gcse_mem. */
656
657 static void
658 free_gcse_mem (void)
659 {
660 free_modify_mem_tables ();
661 BITMAP_FREE (modify_mem_list_set);
662 BITMAP_FREE (blocks_with_calls);
663 }
664 \f
665 /* Compute the local properties of each recorded expression.
666
667 Local properties are those that are defined by the block, irrespective of
668 other blocks.
669
670 An expression is transparent in a block if its operands are not modified
671 in the block.
672
673 An expression is computed (locally available) in a block if it is computed
674 at least once and expression would contain the same value if the
675 computation was moved to the end of the block.
676
677 An expression is locally anticipatable in a block if it is computed at
678 least once and expression would contain the same value if the computation
679 was moved to the beginning of the block.
680
681 We call this routine for cprop, pre and code hoisting. They all compute
682 basically the same information and thus can easily share this code.
683
684 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
685 properties. If NULL, then it is not necessary to compute or record that
686 particular property.
687
688 TABLE controls which hash table to look at. If it is set hash table,
689 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
690 ABSALTERED. */
691
692 static void
693 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
694 struct hash_table_d *table)
695 {
696 unsigned int i;
697
698 /* Initialize any bitmaps that were passed in. */
699 if (transp)
700 {
701 if (table->set_p)
702 sbitmap_vector_zero (transp, last_basic_block);
703 else
704 sbitmap_vector_ones (transp, last_basic_block);
705 }
706
707 if (comp)
708 sbitmap_vector_zero (comp, last_basic_block);
709 if (antloc)
710 sbitmap_vector_zero (antloc, last_basic_block);
711
712 for (i = 0; i < table->size; i++)
713 {
714 struct expr *expr;
715
716 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
717 {
718 int indx = expr->bitmap_index;
719 struct occr *occr;
720
721 /* The expression is transparent in this block if it is not killed.
722 We start by assuming all are transparent [none are killed], and
723 then reset the bits for those that are. */
724 if (transp)
725 compute_transp (expr->expr, indx, transp, table->set_p);
726
727 /* The occurrences recorded in antic_occr are exactly those that
728 we want to set to nonzero in ANTLOC. */
729 if (antloc)
730 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
731 {
732 SET_BIT (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
733
734 /* While we're scanning the table, this is a good place to
735 initialize this. */
736 occr->deleted_p = 0;
737 }
738
739 /* The occurrences recorded in avail_occr are exactly those that
740 we want to set to nonzero in COMP. */
741 if (comp)
742 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
743 {
744 SET_BIT (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
745
746 /* While we're scanning the table, this is a good place to
747 initialize this. */
748 occr->copied_p = 0;
749 }
750
751 /* While we're scanning the table, this is a good place to
752 initialize this. */
753 expr->reaching_reg = 0;
754 }
755 }
756 }
757 \f
758 /* Hash table support. */
759
760 struct reg_avail_info
761 {
762 basic_block last_bb;
763 int first_set;
764 int last_set;
765 };
766
767 static struct reg_avail_info *reg_avail_info;
768 static basic_block current_bb;
769
770
771 /* See whether X, the source of a set, is something we want to consider for
772 GCSE. */
773
774 static int
775 want_to_gcse_p (rtx x, int *max_distance_ptr)
776 {
777 #ifdef STACK_REGS
778 /* On register stack architectures, don't GCSE constants from the
779 constant pool, as the benefits are often swamped by the overhead
780 of shuffling the register stack between basic blocks. */
781 if (IS_STACK_MODE (GET_MODE (x)))
782 x = avoid_constant_pool_reference (x);
783 #endif
784
785 /* GCSE'ing constants:
786
787 We do not specifically distinguish between constant and non-constant
788 expressions in PRE and Hoist. We use rtx_cost below to limit
789 the maximum distance simple expressions can travel.
790
791 Nevertheless, constants are much easier to GCSE, and, hence,
792 it is easy to overdo the optimizations. Usually, excessive PRE and
793 Hoisting of constant leads to increased register pressure.
794
795 RA can deal with this by rematerialing some of the constants.
796 Therefore, it is important that the back-end generates sets of constants
797 in a way that allows reload rematerialize them under high register
798 pressure, i.e., a pseudo register with REG_EQUAL to constant
799 is set only once. Failing to do so will result in IRA/reload
800 spilling such constants under high register pressure instead of
801 rematerializing them. */
802
803 switch (GET_CODE (x))
804 {
805 case REG:
806 case SUBREG:
807 case CALL:
808 return 0;
809
810 case CONST_INT:
811 case CONST_DOUBLE:
812 case CONST_FIXED:
813 case CONST_VECTOR:
814 if (!doing_code_hoisting_p)
815 /* Do not PRE constants. */
816 return 0;
817
818 /* FALLTHRU */
819
820 default:
821 if (doing_code_hoisting_p)
822 /* PRE doesn't implement max_distance restriction. */
823 {
824 int cost;
825 int max_distance;
826
827 gcc_assert (!optimize_function_for_speed_p (cfun)
828 && optimize_function_for_size_p (cfun));
829 cost = rtx_cost (x, SET, 0);
830
831 if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
832 {
833 max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
834 if (max_distance == 0)
835 return 0;
836
837 gcc_assert (max_distance > 0);
838 }
839 else
840 max_distance = 0;
841
842 if (max_distance_ptr)
843 *max_distance_ptr = max_distance;
844 }
845
846 return can_assign_to_reg_without_clobbers_p (x);
847 }
848 }
849
850 /* Used internally by can_assign_to_reg_without_clobbers_p. */
851
852 static GTY(()) rtx test_insn;
853
854 /* Return true if we can assign X to a pseudo register such that the
855 resulting insn does not result in clobbering a hard register as a
856 side-effect.
857
858 Additionally, if the target requires it, check that the resulting insn
859 can be copied. If it cannot, this means that X is special and probably
860 has hidden side-effects we don't want to mess with.
861
862 This function is typically used by code motion passes, to verify
863 that it is safe to insert an insn without worrying about clobbering
864 maybe live hard regs. */
865
866 bool
867 can_assign_to_reg_without_clobbers_p (rtx x)
868 {
869 int num_clobbers = 0;
870 int icode;
871
872 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
873 if (general_operand (x, GET_MODE (x)))
874 return 1;
875 else if (GET_MODE (x) == VOIDmode)
876 return 0;
877
878 /* Otherwise, check if we can make a valid insn from it. First initialize
879 our test insn if we haven't already. */
880 if (test_insn == 0)
881 {
882 test_insn
883 = make_insn_raw (gen_rtx_SET (VOIDmode,
884 gen_rtx_REG (word_mode,
885 FIRST_PSEUDO_REGISTER * 2),
886 const0_rtx));
887 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
888 }
889
890 /* Now make an insn like the one we would make when GCSE'ing and see if
891 valid. */
892 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
893 SET_SRC (PATTERN (test_insn)) = x;
894
895 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
896 if (icode < 0)
897 return false;
898
899 if (num_clobbers > 0 && added_clobbers_hard_reg_p (icode))
900 return false;
901
902 if (targetm.cannot_copy_insn_p && targetm.cannot_copy_insn_p (test_insn))
903 return false;
904
905 return true;
906 }
907
908 /* Return nonzero if the operands of expression X are unchanged from the
909 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
910 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
911
912 static int
913 oprs_unchanged_p (const_rtx x, const_rtx insn, int avail_p)
914 {
915 int i, j;
916 enum rtx_code code;
917 const char *fmt;
918
919 if (x == 0)
920 return 1;
921
922 code = GET_CODE (x);
923 switch (code)
924 {
925 case REG:
926 {
927 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
928
929 if (info->last_bb != current_bb)
930 return 1;
931 if (avail_p)
932 return info->last_set < DF_INSN_LUID (insn);
933 else
934 return info->first_set >= DF_INSN_LUID (insn);
935 }
936
937 case MEM:
938 if (load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
939 x, avail_p))
940 return 0;
941 else
942 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
943
944 case PRE_DEC:
945 case PRE_INC:
946 case POST_DEC:
947 case POST_INC:
948 case PRE_MODIFY:
949 case POST_MODIFY:
950 return 0;
951
952 case PC:
953 case CC0: /*FIXME*/
954 case CONST:
955 case CONST_INT:
956 case CONST_DOUBLE:
957 case CONST_FIXED:
958 case CONST_VECTOR:
959 case SYMBOL_REF:
960 case LABEL_REF:
961 case ADDR_VEC:
962 case ADDR_DIFF_VEC:
963 return 1;
964
965 default:
966 break;
967 }
968
969 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
970 {
971 if (fmt[i] == 'e')
972 {
973 /* If we are about to do the last recursive call needed at this
974 level, change it into iteration. This function is called enough
975 to be worth it. */
976 if (i == 0)
977 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
978
979 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
980 return 0;
981 }
982 else if (fmt[i] == 'E')
983 for (j = 0; j < XVECLEN (x, i); j++)
984 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
985 return 0;
986 }
987
988 return 1;
989 }
990
991 /* Used for communication between mems_conflict_for_gcse_p and
992 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
993 conflict between two memory references. */
994 static int gcse_mems_conflict_p;
995
996 /* Used for communication between mems_conflict_for_gcse_p and
997 load_killed_in_block_p. A memory reference for a load instruction,
998 mems_conflict_for_gcse_p will see if a memory store conflicts with
999 this memory load. */
1000 static const_rtx gcse_mem_operand;
1001
1002 /* DEST is the output of an instruction. If it is a memory reference, and
1003 possibly conflicts with the load found in gcse_mem_operand, then set
1004 gcse_mems_conflict_p to a nonzero value. */
1005
1006 static void
1007 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
1008 void *data ATTRIBUTE_UNUSED)
1009 {
1010 while (GET_CODE (dest) == SUBREG
1011 || GET_CODE (dest) == ZERO_EXTRACT
1012 || GET_CODE (dest) == STRICT_LOW_PART)
1013 dest = XEXP (dest, 0);
1014
1015 /* If DEST is not a MEM, then it will not conflict with the load. Note
1016 that function calls are assumed to clobber memory, but are handled
1017 elsewhere. */
1018 if (! MEM_P (dest))
1019 return;
1020
1021 /* If we are setting a MEM in our list of specially recognized MEMs,
1022 don't mark as killed this time. */
1023
1024 if (expr_equiv_p (dest, gcse_mem_operand) && pre_ldst_mems != NULL)
1025 {
1026 if (!find_rtx_in_ldst (dest))
1027 gcse_mems_conflict_p = 1;
1028 return;
1029 }
1030
1031 if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
1032 rtx_addr_varies_p))
1033 gcse_mems_conflict_p = 1;
1034 }
1035
1036 /* Return nonzero if the expression in X (a memory reference) is killed
1037 in block BB before or after the insn with the LUID in UID_LIMIT.
1038 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1039 before UID_LIMIT.
1040
1041 To check the entire block, set UID_LIMIT to max_uid + 1 and
1042 AVAIL_P to 0. */
1043
1044 static int
1045 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x, int avail_p)
1046 {
1047 rtx list_entry = modify_mem_list[bb->index];
1048
1049 /* If this is a readonly then we aren't going to be changing it. */
1050 if (MEM_READONLY_P (x))
1051 return 0;
1052
1053 while (list_entry)
1054 {
1055 rtx setter;
1056 /* Ignore entries in the list that do not apply. */
1057 if ((avail_p
1058 && DF_INSN_LUID (XEXP (list_entry, 0)) < uid_limit)
1059 || (! avail_p
1060 && DF_INSN_LUID (XEXP (list_entry, 0)) > uid_limit))
1061 {
1062 list_entry = XEXP (list_entry, 1);
1063 continue;
1064 }
1065
1066 setter = XEXP (list_entry, 0);
1067
1068 /* If SETTER is a call everything is clobbered. Note that calls
1069 to pure functions are never put on the list, so we need not
1070 worry about them. */
1071 if (CALL_P (setter))
1072 return 1;
1073
1074 /* SETTER must be an INSN of some kind that sets memory. Call
1075 note_stores to examine each hunk of memory that is modified.
1076
1077 The note_stores interface is pretty limited, so we have to
1078 communicate via global variables. Yuk. */
1079 gcse_mem_operand = x;
1080 gcse_mems_conflict_p = 0;
1081 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1082 if (gcse_mems_conflict_p)
1083 return 1;
1084 list_entry = XEXP (list_entry, 1);
1085 }
1086 return 0;
1087 }
1088
1089 /* Return nonzero if the operands of expression X are unchanged from
1090 the start of INSN's basic block up to but not including INSN. */
1091
1092 static int
1093 oprs_anticipatable_p (const_rtx x, const_rtx insn)
1094 {
1095 return oprs_unchanged_p (x, insn, 0);
1096 }
1097
1098 /* Return nonzero if the operands of expression X are unchanged from
1099 INSN to the end of INSN's basic block. */
1100
1101 static int
1102 oprs_available_p (const_rtx x, const_rtx insn)
1103 {
1104 return oprs_unchanged_p (x, insn, 1);
1105 }
1106
1107 /* Hash expression X.
1108
1109 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1110 indicating if a volatile operand is found or if the expression contains
1111 something we don't want to insert in the table. HASH_TABLE_SIZE is
1112 the current size of the hash table to be probed. */
1113
1114 static unsigned int
1115 hash_expr (const_rtx x, enum machine_mode mode, int *do_not_record_p,
1116 int hash_table_size)
1117 {
1118 unsigned int hash;
1119
1120 *do_not_record_p = 0;
1121
1122 hash = hash_rtx (x, mode, do_not_record_p,
1123 NULL, /*have_reg_qty=*/false);
1124 return hash % hash_table_size;
1125 }
1126
1127 /* Hash a set of register REGNO.
1128
1129 Sets are hashed on the register that is set. This simplifies the PRE copy
1130 propagation code.
1131
1132 ??? May need to make things more elaborate. Later, as necessary. */
1133
1134 static unsigned int
1135 hash_set (int regno, int hash_table_size)
1136 {
1137 unsigned int hash;
1138
1139 hash = regno;
1140 return hash % hash_table_size;
1141 }
1142
1143 /* Return nonzero if exp1 is equivalent to exp2. */
1144
1145 static int
1146 expr_equiv_p (const_rtx x, const_rtx y)
1147 {
1148 return exp_equiv_p (x, y, 0, true);
1149 }
1150
1151 /* Insert expression X in INSN in the hash TABLE.
1152 If it is already present, record it as the last occurrence in INSN's
1153 basic block.
1154
1155 MODE is the mode of the value X is being stored into.
1156 It is only used if X is a CONST_INT.
1157
1158 ANTIC_P is nonzero if X is an anticipatable expression.
1159 AVAIL_P is nonzero if X is an available expression.
1160
1161 MAX_DISTANCE is the maximum distance in instructions this expression can
1162 be moved. */
1163
1164 static void
1165 insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
1166 int avail_p, int max_distance, struct hash_table_d *table)
1167 {
1168 int found, do_not_record_p;
1169 unsigned int hash;
1170 struct expr *cur_expr, *last_expr = NULL;
1171 struct occr *antic_occr, *avail_occr;
1172
1173 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1174
1175 /* Do not insert expression in table if it contains volatile operands,
1176 or if hash_expr determines the expression is something we don't want
1177 to or can't handle. */
1178 if (do_not_record_p)
1179 return;
1180
1181 cur_expr = table->table[hash];
1182 found = 0;
1183
1184 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1185 {
1186 /* If the expression isn't found, save a pointer to the end of
1187 the list. */
1188 last_expr = cur_expr;
1189 cur_expr = cur_expr->next_same_hash;
1190 }
1191
1192 if (! found)
1193 {
1194 cur_expr = GOBNEW (struct expr);
1195 bytes_used += sizeof (struct expr);
1196 if (table->table[hash] == NULL)
1197 /* This is the first pattern that hashed to this index. */
1198 table->table[hash] = cur_expr;
1199 else
1200 /* Add EXPR to end of this hash chain. */
1201 last_expr->next_same_hash = cur_expr;
1202
1203 /* Set the fields of the expr element. */
1204 cur_expr->expr = x;
1205 cur_expr->bitmap_index = table->n_elems++;
1206 cur_expr->next_same_hash = NULL;
1207 cur_expr->antic_occr = NULL;
1208 cur_expr->avail_occr = NULL;
1209 gcc_assert (max_distance >= 0);
1210 cur_expr->max_distance = max_distance;
1211 }
1212 else
1213 gcc_assert (cur_expr->max_distance == max_distance);
1214
1215 /* Now record the occurrence(s). */
1216 if (antic_p)
1217 {
1218 antic_occr = cur_expr->antic_occr;
1219
1220 if (antic_occr
1221 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
1222 antic_occr = NULL;
1223
1224 if (antic_occr)
1225 /* Found another instance of the expression in the same basic block.
1226 Prefer the currently recorded one. We want the first one in the
1227 block and the block is scanned from start to end. */
1228 ; /* nothing to do */
1229 else
1230 {
1231 /* First occurrence of this expression in this basic block. */
1232 antic_occr = GOBNEW (struct occr);
1233 bytes_used += sizeof (struct occr);
1234 antic_occr->insn = insn;
1235 antic_occr->next = cur_expr->antic_occr;
1236 antic_occr->deleted_p = 0;
1237 cur_expr->antic_occr = antic_occr;
1238 }
1239 }
1240
1241 if (avail_p)
1242 {
1243 avail_occr = cur_expr->avail_occr;
1244
1245 if (avail_occr
1246 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
1247 {
1248 /* Found another instance of the expression in the same basic block.
1249 Prefer this occurrence to the currently recorded one. We want
1250 the last one in the block and the block is scanned from start
1251 to end. */
1252 avail_occr->insn = insn;
1253 }
1254 else
1255 {
1256 /* First occurrence of this expression in this basic block. */
1257 avail_occr = GOBNEW (struct occr);
1258 bytes_used += sizeof (struct occr);
1259 avail_occr->insn = insn;
1260 avail_occr->next = cur_expr->avail_occr;
1261 avail_occr->deleted_p = 0;
1262 cur_expr->avail_occr = avail_occr;
1263 }
1264 }
1265 }
1266
1267 /* Insert pattern X in INSN in the hash table.
1268 X is a SET of a reg to either another reg or a constant.
1269 If it is already present, record it as the last occurrence in INSN's
1270 basic block. */
1271
1272 static void
1273 insert_set_in_table (rtx x, rtx insn, struct hash_table_d *table)
1274 {
1275 int found;
1276 unsigned int hash;
1277 struct expr *cur_expr, *last_expr = NULL;
1278 struct occr *cur_occr;
1279
1280 gcc_assert (GET_CODE (x) == SET && REG_P (SET_DEST (x)));
1281
1282 hash = hash_set (REGNO (SET_DEST (x)), table->size);
1283
1284 cur_expr = table->table[hash];
1285 found = 0;
1286
1287 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1288 {
1289 /* If the expression isn't found, save a pointer to the end of
1290 the list. */
1291 last_expr = cur_expr;
1292 cur_expr = cur_expr->next_same_hash;
1293 }
1294
1295 if (! found)
1296 {
1297 cur_expr = GOBNEW (struct expr);
1298 bytes_used += sizeof (struct expr);
1299 if (table->table[hash] == NULL)
1300 /* This is the first pattern that hashed to this index. */
1301 table->table[hash] = cur_expr;
1302 else
1303 /* Add EXPR to end of this hash chain. */
1304 last_expr->next_same_hash = cur_expr;
1305
1306 /* Set the fields of the expr element.
1307 We must copy X because it can be modified when copy propagation is
1308 performed on its operands. */
1309 cur_expr->expr = copy_rtx (x);
1310 cur_expr->bitmap_index = table->n_elems++;
1311 cur_expr->next_same_hash = NULL;
1312 cur_expr->antic_occr = NULL;
1313 cur_expr->avail_occr = NULL;
1314 /* Not used for set_p tables. */
1315 cur_expr->max_distance = 0;
1316 }
1317
1318 /* Now record the occurrence. */
1319 cur_occr = cur_expr->avail_occr;
1320
1321 if (cur_occr
1322 && BLOCK_FOR_INSN (cur_occr->insn) == BLOCK_FOR_INSN (insn))
1323 {
1324 /* Found another instance of the expression in the same basic block.
1325 Prefer this occurrence to the currently recorded one. We want
1326 the last one in the block and the block is scanned from start
1327 to end. */
1328 cur_occr->insn = insn;
1329 }
1330 else
1331 {
1332 /* First occurrence of this expression in this basic block. */
1333 cur_occr = GOBNEW (struct occr);
1334 bytes_used += sizeof (struct occr);
1335 cur_occr->insn = insn;
1336 cur_occr->next = cur_expr->avail_occr;
1337 cur_occr->deleted_p = 0;
1338 cur_expr->avail_occr = cur_occr;
1339 }
1340 }
1341
1342 /* Determine whether the rtx X should be treated as a constant for
1343 the purposes of GCSE's constant propagation. */
1344
1345 static bool
1346 gcse_constant_p (const_rtx x)
1347 {
1348 /* Consider a COMPARE of two integers constant. */
1349 if (GET_CODE (x) == COMPARE
1350 && CONST_INT_P (XEXP (x, 0))
1351 && CONST_INT_P (XEXP (x, 1)))
1352 return true;
1353
1354 /* Consider a COMPARE of the same registers is a constant
1355 if they are not floating point registers. */
1356 if (GET_CODE(x) == COMPARE
1357 && REG_P (XEXP (x, 0)) && REG_P (XEXP (x, 1))
1358 && REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 1))
1359 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
1360 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 1))))
1361 return true;
1362
1363 /* Since X might be inserted more than once we have to take care that it
1364 is sharable. */
1365 return CONSTANT_P (x) && (GET_CODE (x) != CONST || shared_const_p (x));
1366 }
1367
1368 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
1369 expression one). */
1370
1371 static void
1372 hash_scan_set (rtx pat, rtx insn, struct hash_table_d *table)
1373 {
1374 rtx src = SET_SRC (pat);
1375 rtx dest = SET_DEST (pat);
1376 rtx note;
1377
1378 if (GET_CODE (src) == CALL)
1379 hash_scan_call (src, insn, table);
1380
1381 else if (REG_P (dest))
1382 {
1383 unsigned int regno = REGNO (dest);
1384 rtx tmp;
1385 int max_distance = 0;
1386
1387 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1388
1389 This allows us to do a single GCSE pass and still eliminate
1390 redundant constants, addresses or other expressions that are
1391 constructed with multiple instructions.
1392
1393 However, keep the original SRC if INSN is a simple reg-reg move. In
1394 In this case, there will almost always be a REG_EQUAL note on the
1395 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1396 for INSN, we miss copy propagation opportunities and we perform the
1397 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1398 do more than one PRE GCSE pass.
1399
1400 Note that this does not impede profitable constant propagations. We
1401 "look through" reg-reg sets in lookup_avail_set. */
1402 note = find_reg_equal_equiv_note (insn);
1403 if (note != 0
1404 && REG_NOTE_KIND (note) == REG_EQUAL
1405 && !REG_P (src)
1406 && (table->set_p
1407 ? gcse_constant_p (XEXP (note, 0))
1408 : want_to_gcse_p (XEXP (note, 0), NULL)))
1409 src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
1410
1411 /* Only record sets of pseudo-regs in the hash table. */
1412 if (! table->set_p
1413 && regno >= FIRST_PSEUDO_REGISTER
1414 /* Don't GCSE something if we can't do a reg/reg copy. */
1415 && can_copy_p (GET_MODE (dest))
1416 /* GCSE commonly inserts instruction after the insn. We can't
1417 do that easily for EH edges so disable GCSE on these for now. */
1418 /* ??? We can now easily create new EH landing pads at the
1419 gimple level, for splitting edges; there's no reason we
1420 can't do the same thing at the rtl level. */
1421 && !can_throw_internal (insn)
1422 /* Is SET_SRC something we want to gcse? */
1423 && want_to_gcse_p (src, &max_distance)
1424 /* Don't CSE a nop. */
1425 && ! set_noop_p (pat)
1426 /* Don't GCSE if it has attached REG_EQUIV note.
1427 At this point this only function parameters should have
1428 REG_EQUIV notes and if the argument slot is used somewhere
1429 explicitly, it means address of parameter has been taken,
1430 so we should not extend the lifetime of the pseudo. */
1431 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1432 {
1433 /* An expression is not anticipatable if its operands are
1434 modified before this insn or if this is not the only SET in
1435 this insn. The latter condition does not have to mean that
1436 SRC itself is not anticipatable, but we just will not be
1437 able to handle code motion of insns with multiple sets. */
1438 int antic_p = oprs_anticipatable_p (src, insn)
1439 && !multiple_sets (insn);
1440 /* An expression is not available if its operands are
1441 subsequently modified, including this insn. It's also not
1442 available if this is a branch, because we can't insert
1443 a set after the branch. */
1444 int avail_p = (oprs_available_p (src, insn)
1445 && ! JUMP_P (insn));
1446
1447 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1448 max_distance, table);
1449 }
1450
1451 /* Record sets for constant/copy propagation. */
1452 else if (table->set_p
1453 && regno >= FIRST_PSEUDO_REGISTER
1454 && ((REG_P (src)
1455 && REGNO (src) >= FIRST_PSEUDO_REGISTER
1456 && can_copy_p (GET_MODE (dest))
1457 && REGNO (src) != regno)
1458 || gcse_constant_p (src))
1459 /* A copy is not available if its src or dest is subsequently
1460 modified. Here we want to search from INSN+1 on, but
1461 oprs_available_p searches from INSN on. */
1462 && (insn == BB_END (BLOCK_FOR_INSN (insn))
1463 || (tmp = next_nonnote_insn (insn)) == NULL_RTX
1464 || BLOCK_FOR_INSN (tmp) != BLOCK_FOR_INSN (insn)
1465 || oprs_available_p (pat, tmp)))
1466 insert_set_in_table (pat, insn, table);
1467 }
1468 /* In case of store we want to consider the memory value as available in
1469 the REG stored in that memory. This makes it possible to remove
1470 redundant loads from due to stores to the same location. */
1471 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1472 {
1473 unsigned int regno = REGNO (src);
1474 int max_distance = 0;
1475
1476 /* Do not do this for constant/copy propagation. */
1477 if (! table->set_p
1478 /* Only record sets of pseudo-regs in the hash table. */
1479 && regno >= FIRST_PSEUDO_REGISTER
1480 /* Don't GCSE something if we can't do a reg/reg copy. */
1481 && can_copy_p (GET_MODE (src))
1482 /* GCSE commonly inserts instruction after the insn. We can't
1483 do that easily for EH edges so disable GCSE on these for now. */
1484 && !can_throw_internal (insn)
1485 /* Is SET_DEST something we want to gcse? */
1486 && want_to_gcse_p (dest, &max_distance)
1487 /* Don't CSE a nop. */
1488 && ! set_noop_p (pat)
1489 /* Don't GCSE if it has attached REG_EQUIV note.
1490 At this point this only function parameters should have
1491 REG_EQUIV notes and if the argument slot is used somewhere
1492 explicitly, it means address of parameter has been taken,
1493 so we should not extend the lifetime of the pseudo. */
1494 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1495 || ! MEM_P (XEXP (note, 0))))
1496 {
1497 /* Stores are never anticipatable. */
1498 int antic_p = 0;
1499 /* An expression is not available if its operands are
1500 subsequently modified, including this insn. It's also not
1501 available if this is a branch, because we can't insert
1502 a set after the branch. */
1503 int avail_p = oprs_available_p (dest, insn)
1504 && ! JUMP_P (insn);
1505
1506 /* Record the memory expression (DEST) in the hash table. */
1507 insert_expr_in_table (dest, GET_MODE (dest), insn,
1508 antic_p, avail_p, max_distance, table);
1509 }
1510 }
1511 }
1512
1513 static void
1514 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1515 struct hash_table_d *table ATTRIBUTE_UNUSED)
1516 {
1517 /* Currently nothing to do. */
1518 }
1519
1520 static void
1521 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1522 struct hash_table_d *table ATTRIBUTE_UNUSED)
1523 {
1524 /* Currently nothing to do. */
1525 }
1526
1527 /* Process INSN and add hash table entries as appropriate.
1528
1529 Only available expressions that set a single pseudo-reg are recorded.
1530
1531 Single sets in a PARALLEL could be handled, but it's an extra complication
1532 that isn't dealt with right now. The trick is handling the CLOBBERs that
1533 are also in the PARALLEL. Later.
1534
1535 If SET_P is nonzero, this is for the assignment hash table,
1536 otherwise it is for the expression hash table. */
1537
1538 static void
1539 hash_scan_insn (rtx insn, struct hash_table_d *table)
1540 {
1541 rtx pat = PATTERN (insn);
1542 int i;
1543
1544 /* Pick out the sets of INSN and for other forms of instructions record
1545 what's been modified. */
1546
1547 if (GET_CODE (pat) == SET)
1548 hash_scan_set (pat, insn, table);
1549 else if (GET_CODE (pat) == PARALLEL)
1550 for (i = 0; i < XVECLEN (pat, 0); i++)
1551 {
1552 rtx x = XVECEXP (pat, 0, i);
1553
1554 if (GET_CODE (x) == SET)
1555 hash_scan_set (x, insn, table);
1556 else if (GET_CODE (x) == CLOBBER)
1557 hash_scan_clobber (x, insn, table);
1558 else if (GET_CODE (x) == CALL)
1559 hash_scan_call (x, insn, table);
1560 }
1561
1562 else if (GET_CODE (pat) == CLOBBER)
1563 hash_scan_clobber (pat, insn, table);
1564 else if (GET_CODE (pat) == CALL)
1565 hash_scan_call (pat, insn, table);
1566 }
1567
1568 static void
1569 dump_hash_table (FILE *file, const char *name, struct hash_table_d *table)
1570 {
1571 int i;
1572 /* Flattened out table, so it's printed in proper order. */
1573 struct expr **flat_table;
1574 unsigned int *hash_val;
1575 struct expr *expr;
1576
1577 flat_table = XCNEWVEC (struct expr *, table->n_elems);
1578 hash_val = XNEWVEC (unsigned int, table->n_elems);
1579
1580 for (i = 0; i < (int) table->size; i++)
1581 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1582 {
1583 flat_table[expr->bitmap_index] = expr;
1584 hash_val[expr->bitmap_index] = i;
1585 }
1586
1587 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1588 name, table->size, table->n_elems);
1589
1590 for (i = 0; i < (int) table->n_elems; i++)
1591 if (flat_table[i] != 0)
1592 {
1593 expr = flat_table[i];
1594 fprintf (file, "Index %d (hash value %d; max distance %d)\n ",
1595 expr->bitmap_index, hash_val[i], expr->max_distance);
1596 print_rtl (file, expr->expr);
1597 fprintf (file, "\n");
1598 }
1599
1600 fprintf (file, "\n");
1601
1602 free (flat_table);
1603 free (hash_val);
1604 }
1605
1606 /* Record register first/last/block set information for REGNO in INSN.
1607
1608 first_set records the first place in the block where the register
1609 is set and is used to compute "anticipatability".
1610
1611 last_set records the last place in the block where the register
1612 is set and is used to compute "availability".
1613
1614 last_bb records the block for which first_set and last_set are
1615 valid, as a quick test to invalidate them. */
1616
1617 static void
1618 record_last_reg_set_info (rtx insn, int regno)
1619 {
1620 struct reg_avail_info *info = &reg_avail_info[regno];
1621 int luid = DF_INSN_LUID (insn);
1622
1623 info->last_set = luid;
1624 if (info->last_bb != current_bb)
1625 {
1626 info->last_bb = current_bb;
1627 info->first_set = luid;
1628 }
1629 }
1630
1631
1632 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1633 Note we store a pair of elements in the list, so they have to be
1634 taken off pairwise. */
1635
1636 static void
1637 canon_list_insert (rtx dest ATTRIBUTE_UNUSED, const_rtx unused1 ATTRIBUTE_UNUSED,
1638 void * v_insn)
1639 {
1640 rtx dest_addr, insn;
1641 int bb;
1642
1643 while (GET_CODE (dest) == SUBREG
1644 || GET_CODE (dest) == ZERO_EXTRACT
1645 || GET_CODE (dest) == STRICT_LOW_PART)
1646 dest = XEXP (dest, 0);
1647
1648 /* If DEST is not a MEM, then it will not conflict with a load. Note
1649 that function calls are assumed to clobber memory, but are handled
1650 elsewhere. */
1651
1652 if (! MEM_P (dest))
1653 return;
1654
1655 dest_addr = get_addr (XEXP (dest, 0));
1656 dest_addr = canon_rtx (dest_addr);
1657 insn = (rtx) v_insn;
1658 bb = BLOCK_FOR_INSN (insn)->index;
1659
1660 canon_modify_mem_list[bb] =
1661 alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
1662 canon_modify_mem_list[bb] =
1663 alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
1664 }
1665
1666 /* Record memory modification information for INSN. We do not actually care
1667 about the memory location(s) that are set, or even how they are set (consider
1668 a CALL_INSN). We merely need to record which insns modify memory. */
1669
1670 static void
1671 record_last_mem_set_info (rtx insn)
1672 {
1673 int bb = BLOCK_FOR_INSN (insn)->index;
1674
1675 /* load_killed_in_block_p will handle the case of calls clobbering
1676 everything. */
1677 modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
1678 bitmap_set_bit (modify_mem_list_set, bb);
1679
1680 if (CALL_P (insn))
1681 {
1682 /* Note that traversals of this loop (other than for free-ing)
1683 will break after encountering a CALL_INSN. So, there's no
1684 need to insert a pair of items, as canon_list_insert does. */
1685 canon_modify_mem_list[bb] =
1686 alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
1687 bitmap_set_bit (blocks_with_calls, bb);
1688 }
1689 else
1690 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
1691 }
1692
1693 /* Called from compute_hash_table via note_stores to handle one
1694 SET or CLOBBER in an insn. DATA is really the instruction in which
1695 the SET is taking place. */
1696
1697 static void
1698 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1699 {
1700 rtx last_set_insn = (rtx) data;
1701
1702 if (GET_CODE (dest) == SUBREG)
1703 dest = SUBREG_REG (dest);
1704
1705 if (REG_P (dest))
1706 record_last_reg_set_info (last_set_insn, REGNO (dest));
1707 else if (MEM_P (dest)
1708 /* Ignore pushes, they clobber nothing. */
1709 && ! push_operand (dest, GET_MODE (dest)))
1710 record_last_mem_set_info (last_set_insn);
1711 }
1712
1713 /* Top level function to create an expression or assignment hash table.
1714
1715 Expression entries are placed in the hash table if
1716 - they are of the form (set (pseudo-reg) src),
1717 - src is something we want to perform GCSE on,
1718 - none of the operands are subsequently modified in the block
1719
1720 Assignment entries are placed in the hash table if
1721 - they are of the form (set (pseudo-reg) src),
1722 - src is something we want to perform const/copy propagation on,
1723 - none of the operands or target are subsequently modified in the block
1724
1725 Currently src must be a pseudo-reg or a const_int.
1726
1727 TABLE is the table computed. */
1728
1729 static void
1730 compute_hash_table_work (struct hash_table_d *table)
1731 {
1732 int i;
1733
1734 /* re-Cache any INSN_LIST nodes we have allocated. */
1735 clear_modify_mem_tables ();
1736 /* Some working arrays used to track first and last set in each block. */
1737 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
1738
1739 for (i = 0; i < max_reg_num (); ++i)
1740 reg_avail_info[i].last_bb = NULL;
1741
1742 FOR_EACH_BB (current_bb)
1743 {
1744 rtx insn;
1745 unsigned int regno;
1746
1747 /* First pass over the instructions records information used to
1748 determine when registers and memory are first and last set. */
1749 FOR_BB_INSNS (current_bb, insn)
1750 {
1751 if (! INSN_P (insn))
1752 continue;
1753
1754 if (CALL_P (insn))
1755 {
1756 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1757 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
1758 record_last_reg_set_info (insn, regno);
1759
1760 mark_call (insn);
1761 }
1762
1763 note_stores (PATTERN (insn), record_last_set_info, insn);
1764 }
1765
1766 /* Insert implicit sets in the hash table. */
1767 if (table->set_p
1768 && implicit_sets[current_bb->index] != NULL_RTX)
1769 hash_scan_set (implicit_sets[current_bb->index],
1770 BB_HEAD (current_bb), table);
1771
1772 /* The next pass builds the hash table. */
1773 FOR_BB_INSNS (current_bb, insn)
1774 if (INSN_P (insn))
1775 hash_scan_insn (insn, table);
1776 }
1777
1778 free (reg_avail_info);
1779 reg_avail_info = NULL;
1780 }
1781
1782 /* Allocate space for the set/expr hash TABLE.
1783 It is used to determine the number of buckets to use.
1784 SET_P determines whether set or expression table will
1785 be created. */
1786
1787 static void
1788 alloc_hash_table (struct hash_table_d *table, int set_p)
1789 {
1790 int n;
1791
1792 n = get_max_insn_count ();
1793
1794 table->size = n / 4;
1795 if (table->size < 11)
1796 table->size = 11;
1797
1798 /* Attempt to maintain efficient use of hash table.
1799 Making it an odd number is simplest for now.
1800 ??? Later take some measurements. */
1801 table->size |= 1;
1802 n = table->size * sizeof (struct expr *);
1803 table->table = GNEWVAR (struct expr *, n);
1804 table->set_p = set_p;
1805 }
1806
1807 /* Free things allocated by alloc_hash_table. */
1808
1809 static void
1810 free_hash_table (struct hash_table_d *table)
1811 {
1812 free (table->table);
1813 }
1814
1815 /* Compute the hash TABLE for doing copy/const propagation or
1816 expression hash table. */
1817
1818 static void
1819 compute_hash_table (struct hash_table_d *table)
1820 {
1821 /* Initialize count of number of entries in hash table. */
1822 table->n_elems = 0;
1823 memset (table->table, 0, table->size * sizeof (struct expr *));
1824
1825 compute_hash_table_work (table);
1826 }
1827 \f
1828 /* Expression tracking support. */
1829
1830 /* Lookup REGNO in the set TABLE. The result is a pointer to the
1831 table entry, or NULL if not found. */
1832
1833 static struct expr *
1834 lookup_set (unsigned int regno, struct hash_table_d *table)
1835 {
1836 unsigned int hash = hash_set (regno, table->size);
1837 struct expr *expr;
1838
1839 expr = table->table[hash];
1840
1841 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
1842 expr = expr->next_same_hash;
1843
1844 return expr;
1845 }
1846
1847 /* Return the next entry for REGNO in list EXPR. */
1848
1849 static struct expr *
1850 next_set (unsigned int regno, struct expr *expr)
1851 {
1852 do
1853 expr = expr->next_same_hash;
1854 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
1855
1856 return expr;
1857 }
1858
1859 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
1860 types may be mixed. */
1861
1862 static void
1863 free_insn_expr_list_list (rtx *listp)
1864 {
1865 rtx list, next;
1866
1867 for (list = *listp; list ; list = next)
1868 {
1869 next = XEXP (list, 1);
1870 if (GET_CODE (list) == EXPR_LIST)
1871 free_EXPR_LIST_node (list);
1872 else
1873 free_INSN_LIST_node (list);
1874 }
1875
1876 *listp = NULL;
1877 }
1878
1879 /* Clear canon_modify_mem_list and modify_mem_list tables. */
1880 static void
1881 clear_modify_mem_tables (void)
1882 {
1883 unsigned i;
1884 bitmap_iterator bi;
1885
1886 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
1887 {
1888 free_INSN_LIST_list (modify_mem_list + i);
1889 free_insn_expr_list_list (canon_modify_mem_list + i);
1890 }
1891 bitmap_clear (modify_mem_list_set);
1892 bitmap_clear (blocks_with_calls);
1893 }
1894
1895 /* Release memory used by modify_mem_list_set. */
1896
1897 static void
1898 free_modify_mem_tables (void)
1899 {
1900 clear_modify_mem_tables ();
1901 free (modify_mem_list);
1902 free (canon_modify_mem_list);
1903 modify_mem_list = 0;
1904 canon_modify_mem_list = 0;
1905 }
1906
1907 /* Reset tables used to keep track of what's still available [since the
1908 start of the block]. */
1909
1910 static void
1911 reset_opr_set_tables (void)
1912 {
1913 /* Maintain a bitmap of which regs have been set since beginning of
1914 the block. */
1915 CLEAR_REG_SET (reg_set_bitmap);
1916
1917 /* Also keep a record of the last instruction to modify memory.
1918 For now this is very trivial, we only record whether any memory
1919 location has been modified. */
1920 clear_modify_mem_tables ();
1921 }
1922
1923 /* Return nonzero if the operands of X are not set before INSN in
1924 INSN's basic block. */
1925
1926 static int
1927 oprs_not_set_p (const_rtx x, const_rtx insn)
1928 {
1929 int i, j;
1930 enum rtx_code code;
1931 const char *fmt;
1932
1933 if (x == 0)
1934 return 1;
1935
1936 code = GET_CODE (x);
1937 switch (code)
1938 {
1939 case PC:
1940 case CC0:
1941 case CONST:
1942 case CONST_INT:
1943 case CONST_DOUBLE:
1944 case CONST_FIXED:
1945 case CONST_VECTOR:
1946 case SYMBOL_REF:
1947 case LABEL_REF:
1948 case ADDR_VEC:
1949 case ADDR_DIFF_VEC:
1950 return 1;
1951
1952 case MEM:
1953 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
1954 DF_INSN_LUID (insn), x, 0))
1955 return 0;
1956 else
1957 return oprs_not_set_p (XEXP (x, 0), insn);
1958
1959 case REG:
1960 return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
1961
1962 default:
1963 break;
1964 }
1965
1966 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1967 {
1968 if (fmt[i] == 'e')
1969 {
1970 /* If we are about to do the last recursive call
1971 needed at this level, change it into iteration.
1972 This function is called enough to be worth it. */
1973 if (i == 0)
1974 return oprs_not_set_p (XEXP (x, i), insn);
1975
1976 if (! oprs_not_set_p (XEXP (x, i), insn))
1977 return 0;
1978 }
1979 else if (fmt[i] == 'E')
1980 for (j = 0; j < XVECLEN (x, i); j++)
1981 if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
1982 return 0;
1983 }
1984
1985 return 1;
1986 }
1987
1988 /* Mark things set by a CALL. */
1989
1990 static void
1991 mark_call (rtx insn)
1992 {
1993 if (! RTL_CONST_OR_PURE_CALL_P (insn))
1994 record_last_mem_set_info (insn);
1995 }
1996
1997 /* Mark things set by a SET. */
1998
1999 static void
2000 mark_set (rtx pat, rtx insn)
2001 {
2002 rtx dest = SET_DEST (pat);
2003
2004 while (GET_CODE (dest) == SUBREG
2005 || GET_CODE (dest) == ZERO_EXTRACT
2006 || GET_CODE (dest) == STRICT_LOW_PART)
2007 dest = XEXP (dest, 0);
2008
2009 if (REG_P (dest))
2010 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
2011 else if (MEM_P (dest))
2012 record_last_mem_set_info (insn);
2013
2014 if (GET_CODE (SET_SRC (pat)) == CALL)
2015 mark_call (insn);
2016 }
2017
2018 /* Record things set by a CLOBBER. */
2019
2020 static void
2021 mark_clobber (rtx pat, rtx insn)
2022 {
2023 rtx clob = XEXP (pat, 0);
2024
2025 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2026 clob = XEXP (clob, 0);
2027
2028 if (REG_P (clob))
2029 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
2030 else
2031 record_last_mem_set_info (insn);
2032 }
2033
2034 /* Record things set by INSN.
2035 This data is used by oprs_not_set_p. */
2036
2037 static void
2038 mark_oprs_set (rtx insn)
2039 {
2040 rtx pat = PATTERN (insn);
2041 int i;
2042
2043 if (GET_CODE (pat) == SET)
2044 mark_set (pat, insn);
2045 else if (GET_CODE (pat) == PARALLEL)
2046 for (i = 0; i < XVECLEN (pat, 0); i++)
2047 {
2048 rtx x = XVECEXP (pat, 0, i);
2049
2050 if (GET_CODE (x) == SET)
2051 mark_set (x, insn);
2052 else if (GET_CODE (x) == CLOBBER)
2053 mark_clobber (x, insn);
2054 else if (GET_CODE (x) == CALL)
2055 mark_call (insn);
2056 }
2057
2058 else if (GET_CODE (pat) == CLOBBER)
2059 mark_clobber (pat, insn);
2060 else if (GET_CODE (pat) == CALL)
2061 mark_call (insn);
2062 }
2063
2064 \f
2065 /* Compute copy/constant propagation working variables. */
2066
2067 /* Local properties of assignments. */
2068 static sbitmap *cprop_pavloc;
2069 static sbitmap *cprop_absaltered;
2070
2071 /* Global properties of assignments (computed from the local properties). */
2072 static sbitmap *cprop_avin;
2073 static sbitmap *cprop_avout;
2074
2075 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
2076 basic blocks. N_SETS is the number of sets. */
2077
2078 static void
2079 alloc_cprop_mem (int n_blocks, int n_sets)
2080 {
2081 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
2082 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
2083
2084 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
2085 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
2086 }
2087
2088 /* Free vars used by copy/const propagation. */
2089
2090 static void
2091 free_cprop_mem (void)
2092 {
2093 sbitmap_vector_free (cprop_pavloc);
2094 sbitmap_vector_free (cprop_absaltered);
2095 sbitmap_vector_free (cprop_avin);
2096 sbitmap_vector_free (cprop_avout);
2097 }
2098
2099 /* For each block, compute whether X is transparent. X is either an
2100 expression or an assignment [though we don't care which, for this context
2101 an assignment is treated as an expression]. For each block where an
2102 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
2103 bit in BMAP. */
2104
2105 static void
2106 compute_transp (const_rtx x, int indx, sbitmap *bmap, int set_p)
2107 {
2108 int i, j;
2109 enum rtx_code code;
2110 const char *fmt;
2111
2112 /* repeat is used to turn tail-recursion into iteration since GCC
2113 can't do it when there's no return value. */
2114 repeat:
2115
2116 if (x == 0)
2117 return;
2118
2119 code = GET_CODE (x);
2120 switch (code)
2121 {
2122 case REG:
2123 if (set_p)
2124 {
2125 df_ref def;
2126 for (def = DF_REG_DEF_CHAIN (REGNO (x));
2127 def;
2128 def = DF_REF_NEXT_REG (def))
2129 SET_BIT (bmap[DF_REF_BB (def)->index], indx);
2130 }
2131 else
2132 {
2133 df_ref def;
2134 for (def = DF_REG_DEF_CHAIN (REGNO (x));
2135 def;
2136 def = DF_REF_NEXT_REG (def))
2137 RESET_BIT (bmap[DF_REF_BB (def)->index], indx);
2138 }
2139
2140 return;
2141
2142 case MEM:
2143 if (! MEM_READONLY_P (x))
2144 {
2145 bitmap_iterator bi;
2146 unsigned bb_index;
2147
2148 /* First handle all the blocks with calls. We don't need to
2149 do any list walking for them. */
2150 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
2151 {
2152 if (set_p)
2153 SET_BIT (bmap[bb_index], indx);
2154 else
2155 RESET_BIT (bmap[bb_index], indx);
2156 }
2157
2158 /* Now iterate over the blocks which have memory modifications
2159 but which do not have any calls. */
2160 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set,
2161 blocks_with_calls,
2162 0, bb_index, bi)
2163 {
2164 rtx list_entry = canon_modify_mem_list[bb_index];
2165
2166 while (list_entry)
2167 {
2168 rtx dest, dest_addr;
2169
2170 /* LIST_ENTRY must be an INSN of some kind that sets memory.
2171 Examine each hunk of memory that is modified. */
2172
2173 dest = XEXP (list_entry, 0);
2174 list_entry = XEXP (list_entry, 1);
2175 dest_addr = XEXP (list_entry, 0);
2176
2177 if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
2178 x, NULL_RTX, rtx_addr_varies_p))
2179 {
2180 if (set_p)
2181 SET_BIT (bmap[bb_index], indx);
2182 else
2183 RESET_BIT (bmap[bb_index], indx);
2184 break;
2185 }
2186 list_entry = XEXP (list_entry, 1);
2187 }
2188 }
2189 }
2190
2191 x = XEXP (x, 0);
2192 goto repeat;
2193
2194 case PC:
2195 case CC0: /*FIXME*/
2196 case CONST:
2197 case CONST_INT:
2198 case CONST_DOUBLE:
2199 case CONST_FIXED:
2200 case CONST_VECTOR:
2201 case SYMBOL_REF:
2202 case LABEL_REF:
2203 case ADDR_VEC:
2204 case ADDR_DIFF_VEC:
2205 return;
2206
2207 default:
2208 break;
2209 }
2210
2211 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2212 {
2213 if (fmt[i] == 'e')
2214 {
2215 /* If we are about to do the last recursive call
2216 needed at this level, change it into iteration.
2217 This function is called enough to be worth it. */
2218 if (i == 0)
2219 {
2220 x = XEXP (x, i);
2221 goto repeat;
2222 }
2223
2224 compute_transp (XEXP (x, i), indx, bmap, set_p);
2225 }
2226 else if (fmt[i] == 'E')
2227 for (j = 0; j < XVECLEN (x, i); j++)
2228 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
2229 }
2230 }
2231
2232 /* Top level routine to do the dataflow analysis needed by copy/const
2233 propagation. */
2234
2235 static void
2236 compute_cprop_data (void)
2237 {
2238 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, &set_hash_table);
2239 compute_available (cprop_pavloc, cprop_absaltered,
2240 cprop_avout, cprop_avin);
2241 }
2242 \f
2243 /* Copy/constant propagation. */
2244
2245 /* Maximum number of register uses in an insn that we handle. */
2246 #define MAX_USES 8
2247
2248 /* Table of uses found in an insn.
2249 Allocated statically to avoid alloc/free complexity and overhead. */
2250 static struct reg_use reg_use_table[MAX_USES];
2251
2252 /* Index into `reg_use_table' while building it. */
2253 static int reg_use_count;
2254
2255 /* Set up a list of register numbers used in INSN. The found uses are stored
2256 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
2257 and contains the number of uses in the table upon exit.
2258
2259 ??? If a register appears multiple times we will record it multiple times.
2260 This doesn't hurt anything but it will slow things down. */
2261
2262 static void
2263 find_used_regs (rtx *xptr, void *data ATTRIBUTE_UNUSED)
2264 {
2265 int i, j;
2266 enum rtx_code code;
2267 const char *fmt;
2268 rtx x = *xptr;
2269
2270 /* repeat is used to turn tail-recursion into iteration since GCC
2271 can't do it when there's no return value. */
2272 repeat:
2273 if (x == 0)
2274 return;
2275
2276 code = GET_CODE (x);
2277 if (REG_P (x))
2278 {
2279 if (reg_use_count == MAX_USES)
2280 return;
2281
2282 reg_use_table[reg_use_count].reg_rtx = x;
2283 reg_use_count++;
2284 }
2285
2286 /* Recursively scan the operands of this expression. */
2287
2288 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2289 {
2290 if (fmt[i] == 'e')
2291 {
2292 /* If we are about to do the last recursive call
2293 needed at this level, change it into iteration.
2294 This function is called enough to be worth it. */
2295 if (i == 0)
2296 {
2297 x = XEXP (x, 0);
2298 goto repeat;
2299 }
2300
2301 find_used_regs (&XEXP (x, i), data);
2302 }
2303 else if (fmt[i] == 'E')
2304 for (j = 0; j < XVECLEN (x, i); j++)
2305 find_used_regs (&XVECEXP (x, i, j), data);
2306 }
2307 }
2308
2309 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
2310 Returns nonzero is successful. */
2311
2312 static int
2313 try_replace_reg (rtx from, rtx to, rtx insn)
2314 {
2315 rtx note = find_reg_equal_equiv_note (insn);
2316 rtx src = 0;
2317 int success = 0;
2318 rtx set = single_set (insn);
2319
2320 /* Usually we substitute easy stuff, so we won't copy everything.
2321 We however need to take care to not duplicate non-trivial CONST
2322 expressions. */
2323 to = copy_rtx (to);
2324
2325 validate_replace_src_group (from, to, insn);
2326 if (num_changes_pending () && apply_change_group ())
2327 success = 1;
2328
2329 /* Try to simplify SET_SRC if we have substituted a constant. */
2330 if (success && set && CONSTANT_P (to))
2331 {
2332 src = simplify_rtx (SET_SRC (set));
2333
2334 if (src)
2335 validate_change (insn, &SET_SRC (set), src, 0);
2336 }
2337
2338 /* If there is already a REG_EQUAL note, update the expression in it
2339 with our replacement. */
2340 if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL)
2341 set_unique_reg_note (insn, REG_EQUAL,
2342 simplify_replace_rtx (XEXP (note, 0), from, to));
2343 if (!success && set && reg_mentioned_p (from, SET_SRC (set)))
2344 {
2345 /* If above failed and this is a single set, try to simplify the source of
2346 the set given our substitution. We could perhaps try this for multiple
2347 SETs, but it probably won't buy us anything. */
2348 src = simplify_replace_rtx (SET_SRC (set), from, to);
2349
2350 if (!rtx_equal_p (src, SET_SRC (set))
2351 && validate_change (insn, &SET_SRC (set), src, 0))
2352 success = 1;
2353
2354 /* If we've failed perform the replacement, have a single SET to
2355 a REG destination and don't yet have a note, add a REG_EQUAL note
2356 to not lose information. */
2357 if (!success && note == 0 && set != 0 && REG_P (SET_DEST (set)))
2358 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2359 }
2360
2361 /* REG_EQUAL may get simplified into register.
2362 We don't allow that. Remove that note. This code ought
2363 not to happen, because previous code ought to synthesize
2364 reg-reg move, but be on the safe side. */
2365 if (note && REG_NOTE_KIND (note) == REG_EQUAL && REG_P (XEXP (note, 0)))
2366 remove_note (insn, note);
2367
2368 return success;
2369 }
2370
2371 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
2372 NULL no such set is found. */
2373
2374 static struct expr *
2375 find_avail_set (int regno, rtx insn)
2376 {
2377 /* SET1 contains the last set found that can be returned to the caller for
2378 use in a substitution. */
2379 struct expr *set1 = 0;
2380
2381 /* Loops are not possible here. To get a loop we would need two sets
2382 available at the start of the block containing INSN. i.e. we would
2383 need two sets like this available at the start of the block:
2384
2385 (set (reg X) (reg Y))
2386 (set (reg Y) (reg X))
2387
2388 This can not happen since the set of (reg Y) would have killed the
2389 set of (reg X) making it unavailable at the start of this block. */
2390 while (1)
2391 {
2392 rtx src;
2393 struct expr *set = lookup_set (regno, &set_hash_table);
2394
2395 /* Find a set that is available at the start of the block
2396 which contains INSN. */
2397 while (set)
2398 {
2399 if (TEST_BIT (cprop_avin[BLOCK_FOR_INSN (insn)->index],
2400 set->bitmap_index))
2401 break;
2402 set = next_set (regno, set);
2403 }
2404
2405 /* If no available set was found we've reached the end of the
2406 (possibly empty) copy chain. */
2407 if (set == 0)
2408 break;
2409
2410 gcc_assert (GET_CODE (set->expr) == SET);
2411
2412 src = SET_SRC (set->expr);
2413
2414 /* We know the set is available.
2415 Now check that SRC is ANTLOC (i.e. none of the source operands
2416 have changed since the start of the block).
2417
2418 If the source operand changed, we may still use it for the next
2419 iteration of this loop, but we may not use it for substitutions. */
2420
2421 if (gcse_constant_p (src) || oprs_not_set_p (src, insn))
2422 set1 = set;
2423
2424 /* If the source of the set is anything except a register, then
2425 we have reached the end of the copy chain. */
2426 if (! REG_P (src))
2427 break;
2428
2429 /* Follow the copy chain, i.e. start another iteration of the loop
2430 and see if we have an available copy into SRC. */
2431 regno = REGNO (src);
2432 }
2433
2434 /* SET1 holds the last set that was available and anticipatable at
2435 INSN. */
2436 return set1;
2437 }
2438
2439 /* Subroutine of cprop_insn that tries to propagate constants into
2440 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
2441 it is the instruction that immediately precedes JUMP, and must be a
2442 single SET of a register. FROM is what we will try to replace,
2443 SRC is the constant we will try to substitute for it. Returns nonzero
2444 if a change was made. */
2445
2446 static int
2447 cprop_jump (basic_block bb, rtx setcc, rtx jump, rtx from, rtx src)
2448 {
2449 rtx new_rtx, set_src, note_src;
2450 rtx set = pc_set (jump);
2451 rtx note = find_reg_equal_equiv_note (jump);
2452
2453 if (note)
2454 {
2455 note_src = XEXP (note, 0);
2456 if (GET_CODE (note_src) == EXPR_LIST)
2457 note_src = NULL_RTX;
2458 }
2459 else note_src = NULL_RTX;
2460
2461 /* Prefer REG_EQUAL notes except those containing EXPR_LISTs. */
2462 set_src = note_src ? note_src : SET_SRC (set);
2463
2464 /* First substitute the SETCC condition into the JUMP instruction,
2465 then substitute that given values into this expanded JUMP. */
2466 if (setcc != NULL_RTX
2467 && !modified_between_p (from, setcc, jump)
2468 && !modified_between_p (src, setcc, jump))
2469 {
2470 rtx setcc_src;
2471 rtx setcc_set = single_set (setcc);
2472 rtx setcc_note = find_reg_equal_equiv_note (setcc);
2473 setcc_src = (setcc_note && GET_CODE (XEXP (setcc_note, 0)) != EXPR_LIST)
2474 ? XEXP (setcc_note, 0) : SET_SRC (setcc_set);
2475 set_src = simplify_replace_rtx (set_src, SET_DEST (setcc_set),
2476 setcc_src);
2477 }
2478 else
2479 setcc = NULL_RTX;
2480
2481 new_rtx = simplify_replace_rtx (set_src, from, src);
2482
2483 /* If no simplification can be made, then try the next register. */
2484 if (rtx_equal_p (new_rtx, SET_SRC (set)))
2485 return 0;
2486
2487 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
2488 if (new_rtx == pc_rtx)
2489 delete_insn (jump);
2490 else
2491 {
2492 /* Ensure the value computed inside the jump insn to be equivalent
2493 to one computed by setcc. */
2494 if (setcc && modified_in_p (new_rtx, setcc))
2495 return 0;
2496 if (! validate_unshare_change (jump, &SET_SRC (set), new_rtx, 0))
2497 {
2498 /* When (some) constants are not valid in a comparison, and there
2499 are two registers to be replaced by constants before the entire
2500 comparison can be folded into a constant, we need to keep
2501 intermediate information in REG_EQUAL notes. For targets with
2502 separate compare insns, such notes are added by try_replace_reg.
2503 When we have a combined compare-and-branch instruction, however,
2504 we need to attach a note to the branch itself to make this
2505 optimization work. */
2506
2507 if (!rtx_equal_p (new_rtx, note_src))
2508 set_unique_reg_note (jump, REG_EQUAL, copy_rtx (new_rtx));
2509 return 0;
2510 }
2511
2512 /* Remove REG_EQUAL note after simplification. */
2513 if (note_src)
2514 remove_note (jump, note);
2515 }
2516
2517 #ifdef HAVE_cc0
2518 /* Delete the cc0 setter. */
2519 if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc))))
2520 delete_insn (setcc);
2521 #endif
2522
2523 global_const_prop_count++;
2524 if (dump_file != NULL)
2525 {
2526 fprintf (dump_file,
2527 "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
2528 REGNO (from), INSN_UID (jump));
2529 print_rtl (dump_file, src);
2530 fprintf (dump_file, "\n");
2531 }
2532 purge_dead_edges (bb);
2533
2534 /* If a conditional jump has been changed into unconditional jump, remove
2535 the jump and make the edge fallthru - this is always called in
2536 cfglayout mode. */
2537 if (new_rtx != pc_rtx && simplejump_p (jump))
2538 {
2539 edge e;
2540 edge_iterator ei;
2541
2542 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); ei_next (&ei))
2543 if (e->dest != EXIT_BLOCK_PTR
2544 && BB_HEAD (e->dest) == JUMP_LABEL (jump))
2545 {
2546 e->flags |= EDGE_FALLTHRU;
2547 break;
2548 }
2549 delete_insn (jump);
2550 }
2551
2552 return 1;
2553 }
2554
2555 static bool
2556 constprop_register (rtx insn, rtx from, rtx to)
2557 {
2558 rtx sset;
2559
2560 /* Check for reg or cc0 setting instructions followed by
2561 conditional branch instructions first. */
2562 if ((sset = single_set (insn)) != NULL
2563 && NEXT_INSN (insn)
2564 && any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn)))
2565 {
2566 rtx dest = SET_DEST (sset);
2567 if ((REG_P (dest) || CC0_P (dest))
2568 && cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), from, to))
2569 return 1;
2570 }
2571
2572 /* Handle normal insns next. */
2573 if (NONJUMP_INSN_P (insn)
2574 && try_replace_reg (from, to, insn))
2575 return 1;
2576
2577 /* Try to propagate a CONST_INT into a conditional jump.
2578 We're pretty specific about what we will handle in this
2579 code, we can extend this as necessary over time.
2580
2581 Right now the insn in question must look like
2582 (set (pc) (if_then_else ...)) */
2583 else if (any_condjump_p (insn) && onlyjump_p (insn))
2584 return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, to);
2585 return 0;
2586 }
2587
2588 /* Perform constant and copy propagation on INSN.
2589 The result is nonzero if a change was made. */
2590
2591 static int
2592 cprop_insn (rtx insn)
2593 {
2594 struct reg_use *reg_used;
2595 int changed = 0;
2596 rtx note;
2597
2598 if (!INSN_P (insn))
2599 return 0;
2600
2601 reg_use_count = 0;
2602 note_uses (&PATTERN (insn), find_used_regs, NULL);
2603
2604 note = find_reg_equal_equiv_note (insn);
2605
2606 /* We may win even when propagating constants into notes. */
2607 if (note)
2608 find_used_regs (&XEXP (note, 0), NULL);
2609
2610 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
2611 reg_used++, reg_use_count--)
2612 {
2613 unsigned int regno = REGNO (reg_used->reg_rtx);
2614 rtx pat, src;
2615 struct expr *set;
2616
2617 /* If the register has already been set in this block, there's
2618 nothing we can do. */
2619 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
2620 continue;
2621
2622 /* Find an assignment that sets reg_used and is available
2623 at the start of the block. */
2624 set = find_avail_set (regno, insn);
2625 if (! set)
2626 continue;
2627
2628 pat = set->expr;
2629 /* ??? We might be able to handle PARALLELs. Later. */
2630 gcc_assert (GET_CODE (pat) == SET);
2631
2632 src = SET_SRC (pat);
2633
2634 /* Constant propagation. */
2635 if (gcse_constant_p (src))
2636 {
2637 if (constprop_register (insn, reg_used->reg_rtx, src))
2638 {
2639 changed = 1;
2640 global_const_prop_count++;
2641 if (dump_file != NULL)
2642 {
2643 fprintf (dump_file, "GLOBAL CONST-PROP: Replacing reg %d in ", regno);
2644 fprintf (dump_file, "insn %d with constant ", INSN_UID (insn));
2645 print_rtl (dump_file, src);
2646 fprintf (dump_file, "\n");
2647 }
2648 if (INSN_DELETED_P (insn))
2649 return 1;
2650 }
2651 }
2652 else if (REG_P (src)
2653 && REGNO (src) >= FIRST_PSEUDO_REGISTER
2654 && REGNO (src) != regno)
2655 {
2656 if (try_replace_reg (reg_used->reg_rtx, src, insn))
2657 {
2658 changed = 1;
2659 global_copy_prop_count++;
2660 if (dump_file != NULL)
2661 {
2662 fprintf (dump_file, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
2663 regno, INSN_UID (insn));
2664 fprintf (dump_file, " with reg %d\n", REGNO (src));
2665 }
2666
2667 /* The original insn setting reg_used may or may not now be
2668 deletable. We leave the deletion to flow. */
2669 /* FIXME: If it turns out that the insn isn't deletable,
2670 then we may have unnecessarily extended register lifetimes
2671 and made things worse. */
2672 }
2673 }
2674 }
2675
2676 if (changed && DEBUG_INSN_P (insn))
2677 return 0;
2678
2679 return changed;
2680 }
2681
2682 /* Like find_used_regs, but avoid recording uses that appear in
2683 input-output contexts such as zero_extract or pre_dec. This
2684 restricts the cases we consider to those for which local cprop
2685 can legitimately make replacements. */
2686
2687 static void
2688 local_cprop_find_used_regs (rtx *xptr, void *data)
2689 {
2690 rtx x = *xptr;
2691
2692 if (x == 0)
2693 return;
2694
2695 switch (GET_CODE (x))
2696 {
2697 case ZERO_EXTRACT:
2698 case SIGN_EXTRACT:
2699 case STRICT_LOW_PART:
2700 return;
2701
2702 case PRE_DEC:
2703 case PRE_INC:
2704 case POST_DEC:
2705 case POST_INC:
2706 case PRE_MODIFY:
2707 case POST_MODIFY:
2708 /* Can only legitimately appear this early in the context of
2709 stack pushes for function arguments, but handle all of the
2710 codes nonetheless. */
2711 return;
2712
2713 case SUBREG:
2714 /* Setting a subreg of a register larger than word_mode leaves
2715 the non-written words unchanged. */
2716 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) > BITS_PER_WORD)
2717 return;
2718 break;
2719
2720 default:
2721 break;
2722 }
2723
2724 find_used_regs (xptr, data);
2725 }
2726
2727 /* Try to perform local const/copy propagation on X in INSN. */
2728
2729 static bool
2730 do_local_cprop (rtx x, rtx insn)
2731 {
2732 rtx newreg = NULL, newcnst = NULL;
2733
2734 /* Rule out USE instructions and ASM statements as we don't want to
2735 change the hard registers mentioned. */
2736 if (REG_P (x)
2737 && (REGNO (x) >= FIRST_PSEUDO_REGISTER
2738 || (GET_CODE (PATTERN (insn)) != USE
2739 && asm_noperands (PATTERN (insn)) < 0)))
2740 {
2741 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0);
2742 struct elt_loc_list *l;
2743
2744 if (!val)
2745 return false;
2746 for (l = val->locs; l; l = l->next)
2747 {
2748 rtx this_rtx = l->loc;
2749 rtx note;
2750
2751 if (gcse_constant_p (this_rtx))
2752 newcnst = this_rtx;
2753 if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER
2754 /* Don't copy propagate if it has attached REG_EQUIV note.
2755 At this point this only function parameters should have
2756 REG_EQUIV notes and if the argument slot is used somewhere
2757 explicitly, it means address of parameter has been taken,
2758 so we should not extend the lifetime of the pseudo. */
2759 && (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX))
2760 || ! MEM_P (XEXP (note, 0))))
2761 newreg = this_rtx;
2762 }
2763 if (newcnst && constprop_register (insn, x, newcnst))
2764 {
2765 if (dump_file != NULL)
2766 {
2767 fprintf (dump_file, "LOCAL CONST-PROP: Replacing reg %d in ",
2768 REGNO (x));
2769 fprintf (dump_file, "insn %d with constant ",
2770 INSN_UID (insn));
2771 print_rtl (dump_file, newcnst);
2772 fprintf (dump_file, "\n");
2773 }
2774 local_const_prop_count++;
2775 return true;
2776 }
2777 else if (newreg && newreg != x && try_replace_reg (x, newreg, insn))
2778 {
2779 if (dump_file != NULL)
2780 {
2781 fprintf (dump_file,
2782 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
2783 REGNO (x), INSN_UID (insn));
2784 fprintf (dump_file, " with reg %d\n", REGNO (newreg));
2785 }
2786 local_copy_prop_count++;
2787 return true;
2788 }
2789 }
2790 return false;
2791 }
2792
2793 /* Do local const/copy propagation (i.e. within each basic block). */
2794
2795 static int
2796 local_cprop_pass (void)
2797 {
2798 basic_block bb;
2799 rtx insn;
2800 struct reg_use *reg_used;
2801 bool changed = false;
2802
2803 cselib_init (0);
2804 FOR_EACH_BB (bb)
2805 {
2806 FOR_BB_INSNS (bb, insn)
2807 {
2808 if (INSN_P (insn))
2809 {
2810 rtx note = find_reg_equal_equiv_note (insn);
2811 do
2812 {
2813 reg_use_count = 0;
2814 note_uses (&PATTERN (insn), local_cprop_find_used_regs,
2815 NULL);
2816 if (note)
2817 local_cprop_find_used_regs (&XEXP (note, 0), NULL);
2818
2819 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
2820 reg_used++, reg_use_count--)
2821 {
2822 if (do_local_cprop (reg_used->reg_rtx, insn))
2823 {
2824 changed = true;
2825 break;
2826 }
2827 }
2828 if (INSN_DELETED_P (insn))
2829 break;
2830 }
2831 while (reg_use_count);
2832 }
2833 cselib_process_insn (insn);
2834 }
2835
2836 /* Forget everything at the end of a basic block. */
2837 cselib_clear_table ();
2838 }
2839
2840 cselib_finish ();
2841
2842 return changed;
2843 }
2844
2845 /* Similar to get_condition, only the resulting condition must be
2846 valid at JUMP, instead of at EARLIEST.
2847
2848 This differs from noce_get_condition in ifcvt.c in that we prefer not to
2849 settle for the condition variable in the jump instruction being integral.
2850 We prefer to be able to record the value of a user variable, rather than
2851 the value of a temporary used in a condition. This could be solved by
2852 recording the value of *every* register scanned by canonicalize_condition,
2853 but this would require some code reorganization. */
2854
2855 rtx
2856 fis_get_condition (rtx jump)
2857 {
2858 return get_condition (jump, NULL, false, true);
2859 }
2860
2861 /* Check the comparison COND to see if we can safely form an implicit set from
2862 it. COND is either an EQ or NE comparison. */
2863
2864 static bool
2865 implicit_set_cond_p (const_rtx cond)
2866 {
2867 const enum machine_mode mode = GET_MODE (XEXP (cond, 0));
2868 const_rtx cst = XEXP (cond, 1);
2869
2870 /* We can't perform this optimization if either operand might be or might
2871 contain a signed zero. */
2872 if (HONOR_SIGNED_ZEROS (mode))
2873 {
2874 /* It is sufficient to check if CST is or contains a zero. We must
2875 handle float, complex, and vector. If any subpart is a zero, then
2876 the optimization can't be performed. */
2877 /* ??? The complex and vector checks are not implemented yet. We just
2878 always return zero for them. */
2879 if (GET_CODE (cst) == CONST_DOUBLE)
2880 {
2881 REAL_VALUE_TYPE d;
2882 REAL_VALUE_FROM_CONST_DOUBLE (d, cst);
2883 if (REAL_VALUES_EQUAL (d, dconst0))
2884 return 0;
2885 }
2886 else
2887 return 0;
2888 }
2889
2890 return gcse_constant_p (cst);
2891 }
2892
2893 /* Find the implicit sets of a function. An "implicit set" is a constraint
2894 on the value of a variable, implied by a conditional jump. For example,
2895 following "if (x == 2)", the then branch may be optimized as though the
2896 conditional performed an "explicit set", in this example, "x = 2". This
2897 function records the set patterns that are implicit at the start of each
2898 basic block.
2899
2900 FIXME: This would be more effective if critical edges are pre-split. As
2901 it is now, we can't record implicit sets for blocks that have
2902 critical successor edges. This results in missed optimizations
2903 and in more (unnecessary) work in cfgcleanup.c:thread_jump(). */
2904
2905 static void
2906 find_implicit_sets (void)
2907 {
2908 basic_block bb, dest;
2909 unsigned int count;
2910 rtx cond, new_rtx;
2911
2912 count = 0;
2913 FOR_EACH_BB (bb)
2914 /* Check for more than one successor. */
2915 if (EDGE_COUNT (bb->succs) > 1)
2916 {
2917 cond = fis_get_condition (BB_END (bb));
2918
2919 if (cond
2920 && (GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
2921 && REG_P (XEXP (cond, 0))
2922 && REGNO (XEXP (cond, 0)) >= FIRST_PSEUDO_REGISTER
2923 && implicit_set_cond_p (cond))
2924 {
2925 dest = GET_CODE (cond) == EQ ? BRANCH_EDGE (bb)->dest
2926 : FALLTHRU_EDGE (bb)->dest;
2927
2928 if (dest
2929 /* Record nothing for a critical edge. */
2930 && single_pred_p (dest)
2931 && dest != EXIT_BLOCK_PTR)
2932 {
2933 new_rtx = gen_rtx_SET (VOIDmode, XEXP (cond, 0),
2934 XEXP (cond, 1));
2935 implicit_sets[dest->index] = new_rtx;
2936 if (dump_file)
2937 {
2938 fprintf(dump_file, "Implicit set of reg %d in ",
2939 REGNO (XEXP (cond, 0)));
2940 fprintf(dump_file, "basic block %d\n", dest->index);
2941 }
2942 count++;
2943 }
2944 }
2945 }
2946
2947 if (dump_file)
2948 fprintf (dump_file, "Found %d implicit sets\n", count);
2949 }
2950
2951 /* Bypass conditional jumps. */
2952
2953 /* The value of last_basic_block at the beginning of the jump_bypass
2954 pass. The use of redirect_edge_and_branch_force may introduce new
2955 basic blocks, but the data flow analysis is only valid for basic
2956 block indices less than bypass_last_basic_block. */
2957
2958 static int bypass_last_basic_block;
2959
2960 /* Find a set of REGNO to a constant that is available at the end of basic
2961 block BB. Returns NULL if no such set is found. Based heavily upon
2962 find_avail_set. */
2963
2964 static struct expr *
2965 find_bypass_set (int regno, int bb)
2966 {
2967 struct expr *result = 0;
2968
2969 for (;;)
2970 {
2971 rtx src;
2972 struct expr *set = lookup_set (regno, &set_hash_table);
2973
2974 while (set)
2975 {
2976 if (TEST_BIT (cprop_avout[bb], set->bitmap_index))
2977 break;
2978 set = next_set (regno, set);
2979 }
2980
2981 if (set == 0)
2982 break;
2983
2984 gcc_assert (GET_CODE (set->expr) == SET);
2985
2986 src = SET_SRC (set->expr);
2987 if (gcse_constant_p (src))
2988 result = set;
2989
2990 if (! REG_P (src))
2991 break;
2992
2993 regno = REGNO (src);
2994 }
2995 return result;
2996 }
2997
2998
2999 /* Subroutine of bypass_block that checks whether a pseudo is killed by
3000 any of the instructions inserted on an edge. Jump bypassing places
3001 condition code setters on CFG edges using insert_insn_on_edge. This
3002 function is required to check that our data flow analysis is still
3003 valid prior to commit_edge_insertions. */
3004
3005 static bool
3006 reg_killed_on_edge (const_rtx reg, const_edge e)
3007 {
3008 rtx insn;
3009
3010 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
3011 if (INSN_P (insn) && reg_set_p (reg, insn))
3012 return true;
3013
3014 return false;
3015 }
3016
3017 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
3018 basic block BB which has more than one predecessor. If not NULL, SETCC
3019 is the first instruction of BB, which is immediately followed by JUMP_INSN
3020 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
3021 Returns nonzero if a change was made.
3022
3023 During the jump bypassing pass, we may place copies of SETCC instructions
3024 on CFG edges. The following routine must be careful to pay attention to
3025 these inserted insns when performing its transformations. */
3026
3027 static int
3028 bypass_block (basic_block bb, rtx setcc, rtx jump)
3029 {
3030 rtx insn, note;
3031 edge e, edest;
3032 int i, change;
3033 int may_be_loop_header;
3034 unsigned removed_p;
3035 edge_iterator ei;
3036
3037 insn = (setcc != NULL) ? setcc : jump;
3038
3039 /* Determine set of register uses in INSN. */
3040 reg_use_count = 0;
3041 note_uses (&PATTERN (insn), find_used_regs, NULL);
3042 note = find_reg_equal_equiv_note (insn);
3043 if (note)
3044 find_used_regs (&XEXP (note, 0), NULL);
3045
3046 may_be_loop_header = false;
3047 FOR_EACH_EDGE (e, ei, bb->preds)
3048 if (e->flags & EDGE_DFS_BACK)
3049 {
3050 may_be_loop_header = true;
3051 break;
3052 }
3053
3054 change = 0;
3055 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3056 {
3057 removed_p = 0;
3058
3059 if (e->flags & EDGE_COMPLEX)
3060 {
3061 ei_next (&ei);
3062 continue;
3063 }
3064
3065 /* We can't redirect edges from new basic blocks. */
3066 if (e->src->index >= bypass_last_basic_block)
3067 {
3068 ei_next (&ei);
3069 continue;
3070 }
3071
3072 /* The irreducible loops created by redirecting of edges entering the
3073 loop from outside would decrease effectiveness of some of the following
3074 optimizations, so prevent this. */
3075 if (may_be_loop_header
3076 && !(e->flags & EDGE_DFS_BACK))
3077 {
3078 ei_next (&ei);
3079 continue;
3080 }
3081
3082 for (i = 0; i < reg_use_count; i++)
3083 {
3084 struct reg_use *reg_used = &reg_use_table[i];
3085 unsigned int regno = REGNO (reg_used->reg_rtx);
3086 basic_block dest, old_dest;
3087 struct expr *set;
3088 rtx src, new_rtx;
3089
3090 set = find_bypass_set (regno, e->src->index);
3091
3092 if (! set)
3093 continue;
3094
3095 /* Check the data flow is valid after edge insertions. */
3096 if (e->insns.r && reg_killed_on_edge (reg_used->reg_rtx, e))
3097 continue;
3098
3099 src = SET_SRC (pc_set (jump));
3100
3101 if (setcc != NULL)
3102 src = simplify_replace_rtx (src,
3103 SET_DEST (PATTERN (setcc)),
3104 SET_SRC (PATTERN (setcc)));
3105
3106 new_rtx = simplify_replace_rtx (src, reg_used->reg_rtx,
3107 SET_SRC (set->expr));
3108
3109 /* Jump bypassing may have already placed instructions on
3110 edges of the CFG. We can't bypass an outgoing edge that
3111 has instructions associated with it, as these insns won't
3112 get executed if the incoming edge is redirected. */
3113
3114 if (new_rtx == pc_rtx)
3115 {
3116 edest = FALLTHRU_EDGE (bb);
3117 dest = edest->insns.r ? NULL : edest->dest;
3118 }
3119 else if (GET_CODE (new_rtx) == LABEL_REF)
3120 {
3121 dest = BLOCK_FOR_INSN (XEXP (new_rtx, 0));
3122 /* Don't bypass edges containing instructions. */
3123 edest = find_edge (bb, dest);
3124 if (edest && edest->insns.r)
3125 dest = NULL;
3126 }
3127 else
3128 dest = NULL;
3129
3130 /* Avoid unification of the edge with other edges from original
3131 branch. We would end up emitting the instruction on "both"
3132 edges. */
3133
3134 if (dest && setcc && !CC0_P (SET_DEST (PATTERN (setcc)))
3135 && find_edge (e->src, dest))
3136 dest = NULL;
3137
3138 old_dest = e->dest;
3139 if (dest != NULL
3140 && dest != old_dest
3141 && dest != EXIT_BLOCK_PTR)
3142 {
3143 redirect_edge_and_branch_force (e, dest);
3144
3145 /* Copy the register setter to the redirected edge.
3146 Don't copy CC0 setters, as CC0 is dead after jump. */
3147 if (setcc)
3148 {
3149 rtx pat = PATTERN (setcc);
3150 if (!CC0_P (SET_DEST (pat)))
3151 insert_insn_on_edge (copy_insn (pat), e);
3152 }
3153
3154 if (dump_file != NULL)
3155 {
3156 fprintf (dump_file, "JUMP-BYPASS: Proved reg %d "
3157 "in jump_insn %d equals constant ",
3158 regno, INSN_UID (jump));
3159 print_rtl (dump_file, SET_SRC (set->expr));
3160 fprintf (dump_file, "\nBypass edge from %d->%d to %d\n",
3161 e->src->index, old_dest->index, dest->index);
3162 }
3163 change = 1;
3164 removed_p = 1;
3165 break;
3166 }
3167 }
3168 if (!removed_p)
3169 ei_next (&ei);
3170 }
3171 return change;
3172 }
3173
3174 /* Find basic blocks with more than one predecessor that only contain a
3175 single conditional jump. If the result of the comparison is known at
3176 compile-time from any incoming edge, redirect that edge to the
3177 appropriate target. Returns nonzero if a change was made.
3178
3179 This function is now mis-named, because we also handle indirect jumps. */
3180
3181 static int
3182 bypass_conditional_jumps (void)
3183 {
3184 basic_block bb;
3185 int changed;
3186 rtx setcc;
3187 rtx insn;
3188 rtx dest;
3189
3190 /* Note we start at block 1. */
3191 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3192 return 0;
3193
3194 bypass_last_basic_block = last_basic_block;
3195 mark_dfs_back_edges ();
3196
3197 changed = 0;
3198 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb,
3199 EXIT_BLOCK_PTR, next_bb)
3200 {
3201 /* Check for more than one predecessor. */
3202 if (!single_pred_p (bb))
3203 {
3204 setcc = NULL_RTX;
3205 FOR_BB_INSNS (bb, insn)
3206 if (DEBUG_INSN_P (insn))
3207 continue;
3208 else if (NONJUMP_INSN_P (insn))
3209 {
3210 if (setcc)
3211 break;
3212 if (GET_CODE (PATTERN (insn)) != SET)
3213 break;
3214
3215 dest = SET_DEST (PATTERN (insn));
3216 if (REG_P (dest) || CC0_P (dest))
3217 setcc = insn;
3218 else
3219 break;
3220 }
3221 else if (JUMP_P (insn))
3222 {
3223 if ((any_condjump_p (insn) || computed_jump_p (insn))
3224 && onlyjump_p (insn))
3225 changed |= bypass_block (bb, setcc, insn);
3226 break;
3227 }
3228 else if (INSN_P (insn))
3229 break;
3230 }
3231 }
3232
3233 /* If we bypassed any register setting insns, we inserted a
3234 copy on the redirected edge. These need to be committed. */
3235 if (changed)
3236 commit_edge_insertions ();
3237
3238 return changed;
3239 }
3240 \f
3241 /* Compute PRE+LCM working variables. */
3242
3243 /* Local properties of expressions. */
3244 /* Nonzero for expressions that are transparent in the block. */
3245 static sbitmap *transp;
3246
3247 /* Nonzero for expressions that are computed (available) in the block. */
3248 static sbitmap *comp;
3249
3250 /* Nonzero for expressions that are locally anticipatable in the block. */
3251 static sbitmap *antloc;
3252
3253 /* Nonzero for expressions where this block is an optimal computation
3254 point. */
3255 static sbitmap *pre_optimal;
3256
3257 /* Nonzero for expressions which are redundant in a particular block. */
3258 static sbitmap *pre_redundant;
3259
3260 /* Nonzero for expressions which should be inserted on a specific edge. */
3261 static sbitmap *pre_insert_map;
3262
3263 /* Nonzero for expressions which should be deleted in a specific block. */
3264 static sbitmap *pre_delete_map;
3265
3266 /* Contains the edge_list returned by pre_edge_lcm. */
3267 static struct edge_list *edge_list;
3268
3269 /* Allocate vars used for PRE analysis. */
3270
3271 static void
3272 alloc_pre_mem (int n_blocks, int n_exprs)
3273 {
3274 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
3275 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
3276 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
3277
3278 pre_optimal = NULL;
3279 pre_redundant = NULL;
3280 pre_insert_map = NULL;
3281 pre_delete_map = NULL;
3282 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
3283
3284 /* pre_insert and pre_delete are allocated later. */
3285 }
3286
3287 /* Free vars used for PRE analysis. */
3288
3289 static void
3290 free_pre_mem (void)
3291 {
3292 sbitmap_vector_free (transp);
3293 sbitmap_vector_free (comp);
3294
3295 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
3296
3297 if (pre_optimal)
3298 sbitmap_vector_free (pre_optimal);
3299 if (pre_redundant)
3300 sbitmap_vector_free (pre_redundant);
3301 if (pre_insert_map)
3302 sbitmap_vector_free (pre_insert_map);
3303 if (pre_delete_map)
3304 sbitmap_vector_free (pre_delete_map);
3305
3306 transp = comp = NULL;
3307 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
3308 }
3309
3310 /* Remove certain expressions from anticipatable and transparent
3311 sets of basic blocks that have incoming abnormal edge.
3312 For PRE remove potentially trapping expressions to avoid placing
3313 them on abnormal edges. For hoisting remove memory references that
3314 can be clobbered by calls. */
3315
3316 static void
3317 prune_expressions (bool pre_p)
3318 {
3319 sbitmap prune_exprs;
3320 unsigned int ui;
3321 basic_block bb;
3322
3323 prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
3324 sbitmap_zero (prune_exprs);
3325 for (ui = 0; ui < expr_hash_table.size; ui++)
3326 {
3327 struct expr *e;
3328 for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash)
3329 {
3330 /* Note potentially trapping expressions. */
3331 if (may_trap_p (e->expr))
3332 {
3333 SET_BIT (prune_exprs, e->bitmap_index);
3334 continue;
3335 }
3336
3337 if (!pre_p && MEM_P (e->expr))
3338 /* Note memory references that can be clobbered by a call.
3339 We do not split abnormal edges in hoisting, so would
3340 a memory reference get hoisted along an abnormal edge,
3341 it would be placed /before/ the call. Therefore, only
3342 constant memory references can be hoisted along abnormal
3343 edges. */
3344 {
3345 if (GET_CODE (XEXP (e->expr, 0)) == SYMBOL_REF
3346 && CONSTANT_POOL_ADDRESS_P (XEXP (e->expr, 0)))
3347 continue;
3348
3349 if (MEM_READONLY_P (e->expr)
3350 && !MEM_VOLATILE_P (e->expr)
3351 && MEM_NOTRAP_P (e->expr))
3352 /* Constant memory reference, e.g., a PIC address. */
3353 continue;
3354
3355 /* ??? Optimally, we would use interprocedural alias
3356 analysis to determine if this mem is actually killed
3357 by this call. */
3358
3359 SET_BIT (prune_exprs, e->bitmap_index);
3360 }
3361 }
3362 }
3363
3364 FOR_EACH_BB (bb)
3365 {
3366 edge e;
3367 edge_iterator ei;
3368
3369 /* If the current block is the destination of an abnormal edge, we
3370 kill all trapping (for PRE) and memory (for hoist) expressions
3371 because we won't be able to properly place the instruction on
3372 the edge. So make them neither anticipatable nor transparent.
3373 This is fairly conservative.
3374
3375 ??? For hoisting it may be necessary to check for set-and-jump
3376 instructions here, not just for abnormal edges. The general problem
3377 is that when an expression cannot not be placed right at the end of
3378 a basic block we should account for any side-effects of a subsequent
3379 jump instructions that could clobber the expression. It would
3380 be best to implement this check along the lines of
3381 hoist_expr_reaches_here_p where the target block is already known
3382 and, hence, there's no need to conservatively prune expressions on
3383 "intermediate" set-and-jump instructions. */
3384 FOR_EACH_EDGE (e, ei, bb->preds)
3385 if ((e->flags & EDGE_ABNORMAL)
3386 && (pre_p || CALL_P (BB_END (e->src))))
3387 {
3388 sbitmap_difference (antloc[bb->index],
3389 antloc[bb->index], prune_exprs);
3390 sbitmap_difference (transp[bb->index],
3391 transp[bb->index], prune_exprs);
3392 break;
3393 }
3394 }
3395
3396 sbitmap_free (prune_exprs);
3397 }
3398
3399 /* Top level routine to do the dataflow analysis needed by PRE. */
3400
3401 static void
3402 compute_pre_data (void)
3403 {
3404 basic_block bb;
3405
3406 compute_local_properties (transp, comp, antloc, &expr_hash_table);
3407 prune_expressions (true);
3408 sbitmap_vector_zero (ae_kill, last_basic_block);
3409
3410 /* Compute ae_kill for each basic block using:
3411
3412 ~(TRANSP | COMP)
3413 */
3414
3415 FOR_EACH_BB (bb)
3416 {
3417 sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
3418 sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
3419 }
3420
3421 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
3422 ae_kill, &pre_insert_map, &pre_delete_map);
3423 sbitmap_vector_free (antloc);
3424 antloc = NULL;
3425 sbitmap_vector_free (ae_kill);
3426 ae_kill = NULL;
3427 }
3428 \f
3429 /* PRE utilities */
3430
3431 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
3432 block BB.
3433
3434 VISITED is a pointer to a working buffer for tracking which BB's have
3435 been visited. It is NULL for the top-level call.
3436
3437 We treat reaching expressions that go through blocks containing the same
3438 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3439 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3440 2 as not reaching. The intent is to improve the probability of finding
3441 only one reaching expression and to reduce register lifetimes by picking
3442 the closest such expression. */
3443
3444 static int
3445 pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr, basic_block bb, char *visited)
3446 {
3447 edge pred;
3448 edge_iterator ei;
3449
3450 FOR_EACH_EDGE (pred, ei, bb->preds)
3451 {
3452 basic_block pred_bb = pred->src;
3453
3454 if (pred->src == ENTRY_BLOCK_PTR
3455 /* Has predecessor has already been visited? */
3456 || visited[pred_bb->index])
3457 ;/* Nothing to do. */
3458
3459 /* Does this predecessor generate this expression? */
3460 else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
3461 {
3462 /* Is this the occurrence we're looking for?
3463 Note that there's only one generating occurrence per block
3464 so we just need to check the block number. */
3465 if (occr_bb == pred_bb)
3466 return 1;
3467
3468 visited[pred_bb->index] = 1;
3469 }
3470 /* Ignore this predecessor if it kills the expression. */
3471 else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
3472 visited[pred_bb->index] = 1;
3473
3474 /* Neither gen nor kill. */
3475 else
3476 {
3477 visited[pred_bb->index] = 1;
3478 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
3479 return 1;
3480 }
3481 }
3482
3483 /* All paths have been checked. */
3484 return 0;
3485 }
3486
3487 /* The wrapper for pre_expr_reaches_here_work that ensures that any
3488 memory allocated for that function is returned. */
3489
3490 static int
3491 pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
3492 {
3493 int rval;
3494 char *visited = XCNEWVEC (char, last_basic_block);
3495
3496 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
3497
3498 free (visited);
3499 return rval;
3500 }
3501 \f
3502
3503 /* Given an expr, generate RTL which we can insert at the end of a BB,
3504 or on an edge. Set the block number of any insns generated to
3505 the value of BB. */
3506
3507 static rtx
3508 process_insert_insn (struct expr *expr)
3509 {
3510 rtx reg = expr->reaching_reg;
3511 rtx exp = copy_rtx (expr->expr);
3512 rtx pat;
3513
3514 start_sequence ();
3515
3516 /* If the expression is something that's an operand, like a constant,
3517 just copy it to a register. */
3518 if (general_operand (exp, GET_MODE (reg)))
3519 emit_move_insn (reg, exp);
3520
3521 /* Otherwise, make a new insn to compute this expression and make sure the
3522 insn will be recognized (this also adds any needed CLOBBERs). Copy the
3523 expression to make sure we don't have any sharing issues. */
3524 else
3525 {
3526 rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
3527
3528 if (insn_invalid_p (insn))
3529 gcc_unreachable ();
3530 }
3531
3532
3533 pat = get_insns ();
3534 end_sequence ();
3535
3536 return pat;
3537 }
3538
3539 /* Add EXPR to the end of basic block BB.
3540
3541 This is used by both the PRE and code hoisting. */
3542
3543 static void
3544 insert_insn_end_basic_block (struct expr *expr, basic_block bb)
3545 {
3546 rtx insn = BB_END (bb);
3547 rtx new_insn;
3548 rtx reg = expr->reaching_reg;
3549 int regno = REGNO (reg);
3550 rtx pat, pat_end;
3551
3552 pat = process_insert_insn (expr);
3553 gcc_assert (pat && INSN_P (pat));
3554
3555 pat_end = pat;
3556 while (NEXT_INSN (pat_end) != NULL_RTX)
3557 pat_end = NEXT_INSN (pat_end);
3558
3559 /* If the last insn is a jump, insert EXPR in front [taking care to
3560 handle cc0, etc. properly]. Similarly we need to care trapping
3561 instructions in presence of non-call exceptions. */
3562
3563 if (JUMP_P (insn)
3564 || (NONJUMP_INSN_P (insn)
3565 && (!single_succ_p (bb)
3566 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
3567 {
3568 #ifdef HAVE_cc0
3569 rtx note;
3570 #endif
3571
3572 /* If this is a jump table, then we can't insert stuff here. Since
3573 we know the previous real insn must be the tablejump, we insert
3574 the new instruction just before the tablejump. */
3575 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
3576 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
3577 insn = prev_real_insn (insn);
3578
3579 #ifdef HAVE_cc0
3580 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
3581 if cc0 isn't set. */
3582 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3583 if (note)
3584 insn = XEXP (note, 0);
3585 else
3586 {
3587 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
3588 if (maybe_cc0_setter
3589 && INSN_P (maybe_cc0_setter)
3590 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
3591 insn = maybe_cc0_setter;
3592 }
3593 #endif
3594 /* FIXME: What if something in cc0/jump uses value set in new insn? */
3595 new_insn = emit_insn_before_noloc (pat, insn, bb);
3596 }
3597
3598 /* Likewise if the last insn is a call, as will happen in the presence
3599 of exception handling. */
3600 else if (CALL_P (insn)
3601 && (!single_succ_p (bb)
3602 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
3603 {
3604 /* Keeping in mind targets with small register classes and parameters
3605 in registers, we search backward and place the instructions before
3606 the first parameter is loaded. Do this for everyone for consistency
3607 and a presumption that we'll get better code elsewhere as well. */
3608
3609 /* Since different machines initialize their parameter registers
3610 in different orders, assume nothing. Collect the set of all
3611 parameter registers. */
3612 insn = find_first_parameter_load (insn, BB_HEAD (bb));
3613
3614 /* If we found all the parameter loads, then we want to insert
3615 before the first parameter load.
3616
3617 If we did not find all the parameter loads, then we might have
3618 stopped on the head of the block, which could be a CODE_LABEL.
3619 If we inserted before the CODE_LABEL, then we would be putting
3620 the insn in the wrong basic block. In that case, put the insn
3621 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
3622 while (LABEL_P (insn)
3623 || NOTE_INSN_BASIC_BLOCK_P (insn))
3624 insn = NEXT_INSN (insn);
3625
3626 new_insn = emit_insn_before_noloc (pat, insn, bb);
3627 }
3628 else
3629 new_insn = emit_insn_after_noloc (pat, insn, bb);
3630
3631 while (1)
3632 {
3633 if (INSN_P (pat))
3634 add_label_notes (PATTERN (pat), new_insn);
3635 if (pat == pat_end)
3636 break;
3637 pat = NEXT_INSN (pat);
3638 }
3639
3640 gcse_create_count++;
3641
3642 if (dump_file)
3643 {
3644 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
3645 bb->index, INSN_UID (new_insn));
3646 fprintf (dump_file, "copying expression %d to reg %d\n",
3647 expr->bitmap_index, regno);
3648 }
3649 }
3650
3651 /* Insert partially redundant expressions on edges in the CFG to make
3652 the expressions fully redundant. */
3653
3654 static int
3655 pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
3656 {
3657 int e, i, j, num_edges, set_size, did_insert = 0;
3658 sbitmap *inserted;
3659
3660 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
3661 if it reaches any of the deleted expressions. */
3662
3663 set_size = pre_insert_map[0]->size;
3664 num_edges = NUM_EDGES (edge_list);
3665 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
3666 sbitmap_vector_zero (inserted, num_edges);
3667
3668 for (e = 0; e < num_edges; e++)
3669 {
3670 int indx;
3671 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
3672
3673 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
3674 {
3675 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
3676
3677 for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1)
3678 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
3679 {
3680 struct expr *expr = index_map[j];
3681 struct occr *occr;
3682
3683 /* Now look at each deleted occurrence of this expression. */
3684 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
3685 {
3686 if (! occr->deleted_p)
3687 continue;
3688
3689 /* Insert this expression on this edge if it would
3690 reach the deleted occurrence in BB. */
3691 if (!TEST_BIT (inserted[e], j))
3692 {
3693 rtx insn;
3694 edge eg = INDEX_EDGE (edge_list, e);
3695
3696 /* We can't insert anything on an abnormal and
3697 critical edge, so we insert the insn at the end of
3698 the previous block. There are several alternatives
3699 detailed in Morgans book P277 (sec 10.5) for
3700 handling this situation. This one is easiest for
3701 now. */
3702
3703 if (eg->flags & EDGE_ABNORMAL)
3704 insert_insn_end_basic_block (index_map[j], bb);
3705 else
3706 {
3707 insn = process_insert_insn (index_map[j]);
3708 insert_insn_on_edge (insn, eg);
3709 }
3710
3711 if (dump_file)
3712 {
3713 fprintf (dump_file, "PRE: edge (%d,%d), ",
3714 bb->index,
3715 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
3716 fprintf (dump_file, "copy expression %d\n",
3717 expr->bitmap_index);
3718 }
3719
3720 update_ld_motion_stores (expr);
3721 SET_BIT (inserted[e], j);
3722 did_insert = 1;
3723 gcse_create_count++;
3724 }
3725 }
3726 }
3727 }
3728 }
3729
3730 sbitmap_vector_free (inserted);
3731 return did_insert;
3732 }
3733
3734 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
3735 Given "old_reg <- expr" (INSN), instead of adding after it
3736 reaching_reg <- old_reg
3737 it's better to do the following:
3738 reaching_reg <- expr
3739 old_reg <- reaching_reg
3740 because this way copy propagation can discover additional PRE
3741 opportunities. But if this fails, we try the old way.
3742 When "expr" is a store, i.e.
3743 given "MEM <- old_reg", instead of adding after it
3744 reaching_reg <- old_reg
3745 it's better to add it before as follows:
3746 reaching_reg <- old_reg
3747 MEM <- reaching_reg. */
3748
3749 static void
3750 pre_insert_copy_insn (struct expr *expr, rtx insn)
3751 {
3752 rtx reg = expr->reaching_reg;
3753 int regno = REGNO (reg);
3754 int indx = expr->bitmap_index;
3755 rtx pat = PATTERN (insn);
3756 rtx set, first_set, new_insn;
3757 rtx old_reg;
3758 int i;
3759
3760 /* This block matches the logic in hash_scan_insn. */
3761 switch (GET_CODE (pat))
3762 {
3763 case SET:
3764 set = pat;
3765 break;
3766
3767 case PARALLEL:
3768 /* Search through the parallel looking for the set whose
3769 source was the expression that we're interested in. */
3770 first_set = NULL_RTX;
3771 set = NULL_RTX;
3772 for (i = 0; i < XVECLEN (pat, 0); i++)
3773 {
3774 rtx x = XVECEXP (pat, 0, i);
3775 if (GET_CODE (x) == SET)
3776 {
3777 /* If the source was a REG_EQUAL or REG_EQUIV note, we
3778 may not find an equivalent expression, but in this
3779 case the PARALLEL will have a single set. */
3780 if (first_set == NULL_RTX)
3781 first_set = x;
3782 if (expr_equiv_p (SET_SRC (x), expr->expr))
3783 {
3784 set = x;
3785 break;
3786 }
3787 }
3788 }
3789
3790 gcc_assert (first_set);
3791 if (set == NULL_RTX)
3792 set = first_set;
3793 break;
3794
3795 default:
3796 gcc_unreachable ();
3797 }
3798
3799 if (REG_P (SET_DEST (set)))
3800 {
3801 old_reg = SET_DEST (set);
3802 /* Check if we can modify the set destination in the original insn. */
3803 if (validate_change (insn, &SET_DEST (set), reg, 0))
3804 {
3805 new_insn = gen_move_insn (old_reg, reg);
3806 new_insn = emit_insn_after (new_insn, insn);
3807 }
3808 else
3809 {
3810 new_insn = gen_move_insn (reg, old_reg);
3811 new_insn = emit_insn_after (new_insn, insn);
3812 }
3813 }
3814 else /* This is possible only in case of a store to memory. */
3815 {
3816 old_reg = SET_SRC (set);
3817 new_insn = gen_move_insn (reg, old_reg);
3818
3819 /* Check if we can modify the set source in the original insn. */
3820 if (validate_change (insn, &SET_SRC (set), reg, 0))
3821 new_insn = emit_insn_before (new_insn, insn);
3822 else
3823 new_insn = emit_insn_after (new_insn, insn);
3824 }
3825
3826 gcse_create_count++;
3827
3828 if (dump_file)
3829 fprintf (dump_file,
3830 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
3831 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
3832 INSN_UID (insn), regno);
3833 }
3834
3835 /* Copy available expressions that reach the redundant expression
3836 to `reaching_reg'. */
3837
3838 static void
3839 pre_insert_copies (void)
3840 {
3841 unsigned int i, added_copy;
3842 struct expr *expr;
3843 struct occr *occr;
3844 struct occr *avail;
3845
3846 /* For each available expression in the table, copy the result to
3847 `reaching_reg' if the expression reaches a deleted one.
3848
3849 ??? The current algorithm is rather brute force.
3850 Need to do some profiling. */
3851
3852 for (i = 0; i < expr_hash_table.size; i++)
3853 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
3854 {
3855 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
3856 we don't want to insert a copy here because the expression may not
3857 really be redundant. So only insert an insn if the expression was
3858 deleted. This test also avoids further processing if the
3859 expression wasn't deleted anywhere. */
3860 if (expr->reaching_reg == NULL)
3861 continue;
3862
3863 /* Set when we add a copy for that expression. */
3864 added_copy = 0;
3865
3866 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
3867 {
3868 if (! occr->deleted_p)
3869 continue;
3870
3871 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
3872 {
3873 rtx insn = avail->insn;
3874
3875 /* No need to handle this one if handled already. */
3876 if (avail->copied_p)
3877 continue;
3878
3879 /* Don't handle this one if it's a redundant one. */
3880 if (INSN_DELETED_P (insn))
3881 continue;
3882
3883 /* Or if the expression doesn't reach the deleted one. */
3884 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
3885 expr,
3886 BLOCK_FOR_INSN (occr->insn)))
3887 continue;
3888
3889 added_copy = 1;
3890
3891 /* Copy the result of avail to reaching_reg. */
3892 pre_insert_copy_insn (expr, insn);
3893 avail->copied_p = 1;
3894 }
3895 }
3896
3897 if (added_copy)
3898 update_ld_motion_stores (expr);
3899 }
3900 }
3901
3902 /* Emit move from SRC to DEST noting the equivalence with expression computed
3903 in INSN. */
3904 static rtx
3905 gcse_emit_move_after (rtx src, rtx dest, rtx insn)
3906 {
3907 rtx new_rtx;
3908 rtx set = single_set (insn), set2;
3909 rtx note;
3910 rtx eqv;
3911
3912 /* This should never fail since we're creating a reg->reg copy
3913 we've verified to be valid. */
3914
3915 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
3916
3917 /* Note the equivalence for local CSE pass. */
3918 set2 = single_set (new_rtx);
3919 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
3920 return new_rtx;
3921 if ((note = find_reg_equal_equiv_note (insn)))
3922 eqv = XEXP (note, 0);
3923 else
3924 eqv = SET_SRC (set);
3925
3926 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
3927
3928 return new_rtx;
3929 }
3930
3931 /* Delete redundant computations.
3932 Deletion is done by changing the insn to copy the `reaching_reg' of
3933 the expression into the result of the SET. It is left to later passes
3934 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
3935
3936 Returns nonzero if a change is made. */
3937
3938 static int
3939 pre_delete (void)
3940 {
3941 unsigned int i;
3942 int changed;
3943 struct expr *expr;
3944 struct occr *occr;
3945
3946 changed = 0;
3947 for (i = 0; i < expr_hash_table.size; i++)
3948 for (expr = expr_hash_table.table[i];
3949 expr != NULL;
3950 expr = expr->next_same_hash)
3951 {
3952 int indx = expr->bitmap_index;
3953
3954 /* We only need to search antic_occr since we require
3955 ANTLOC != 0. */
3956
3957 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
3958 {
3959 rtx insn = occr->insn;
3960 rtx set;
3961 basic_block bb = BLOCK_FOR_INSN (insn);
3962
3963 /* We only delete insns that have a single_set. */
3964 if (TEST_BIT (pre_delete_map[bb->index], indx)
3965 && (set = single_set (insn)) != 0
3966 && dbg_cnt (pre_insn))
3967 {
3968 /* Create a pseudo-reg to store the result of reaching
3969 expressions into. Get the mode for the new pseudo from
3970 the mode of the original destination pseudo. */
3971 if (expr->reaching_reg == NULL)
3972 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
3973
3974 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
3975 delete_insn (insn);
3976 occr->deleted_p = 1;
3977 changed = 1;
3978 gcse_subst_count++;
3979
3980 if (dump_file)
3981 {
3982 fprintf (dump_file,
3983 "PRE: redundant insn %d (expression %d) in ",
3984 INSN_UID (insn), indx);
3985 fprintf (dump_file, "bb %d, reaching reg is %d\n",
3986 bb->index, REGNO (expr->reaching_reg));
3987 }
3988 }
3989 }
3990 }
3991
3992 return changed;
3993 }
3994
3995 /* Perform GCSE optimizations using PRE.
3996 This is called by one_pre_gcse_pass after all the dataflow analysis
3997 has been done.
3998
3999 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
4000 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
4001 Compiler Design and Implementation.
4002
4003 ??? A new pseudo reg is created to hold the reaching expression. The nice
4004 thing about the classical approach is that it would try to use an existing
4005 reg. If the register can't be adequately optimized [i.e. we introduce
4006 reload problems], one could add a pass here to propagate the new register
4007 through the block.
4008
4009 ??? We don't handle single sets in PARALLELs because we're [currently] not
4010 able to copy the rest of the parallel when we insert copies to create full
4011 redundancies from partial redundancies. However, there's no reason why we
4012 can't handle PARALLELs in the cases where there are no partial
4013 redundancies. */
4014
4015 static int
4016 pre_gcse (void)
4017 {
4018 unsigned int i;
4019 int did_insert, changed;
4020 struct expr **index_map;
4021 struct expr *expr;
4022
4023 /* Compute a mapping from expression number (`bitmap_index') to
4024 hash table entry. */
4025
4026 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
4027 for (i = 0; i < expr_hash_table.size; i++)
4028 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4029 index_map[expr->bitmap_index] = expr;
4030
4031 /* Delete the redundant insns first so that
4032 - we know what register to use for the new insns and for the other
4033 ones with reaching expressions
4034 - we know which insns are redundant when we go to create copies */
4035
4036 changed = pre_delete ();
4037 did_insert = pre_edge_insert (edge_list, index_map);
4038
4039 /* In other places with reaching expressions, copy the expression to the
4040 specially allocated pseudo-reg that reaches the redundant expr. */
4041 pre_insert_copies ();
4042 if (did_insert)
4043 {
4044 commit_edge_insertions ();
4045 changed = 1;
4046 }
4047
4048 free (index_map);
4049 return changed;
4050 }
4051
4052 /* Top level routine to perform one PRE GCSE pass.
4053
4054 Return nonzero if a change was made. */
4055
4056 static int
4057 one_pre_gcse_pass (void)
4058 {
4059 int changed = 0;
4060
4061 gcse_subst_count = 0;
4062 gcse_create_count = 0;
4063
4064 /* Return if there's nothing to do, or it is too expensive. */
4065 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
4066 || is_too_expensive (_("PRE disabled")))
4067 return 0;
4068
4069 /* We need alias. */
4070 init_alias_analysis ();
4071
4072 bytes_used = 0;
4073 gcc_obstack_init (&gcse_obstack);
4074 alloc_gcse_mem ();
4075
4076 alloc_hash_table (&expr_hash_table, 0);
4077 add_noreturn_fake_exit_edges ();
4078 if (flag_gcse_lm)
4079 compute_ld_motion_mems ();
4080
4081 compute_hash_table (&expr_hash_table);
4082 trim_ld_motion_mems ();
4083 if (dump_file)
4084 dump_hash_table (dump_file, "Expression", &expr_hash_table);
4085
4086 if (expr_hash_table.n_elems > 0)
4087 {
4088 alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
4089 compute_pre_data ();
4090 changed |= pre_gcse ();
4091 free_edge_list (edge_list);
4092 free_pre_mem ();
4093 }
4094
4095 free_ldst_mems ();
4096 remove_fake_exit_edges ();
4097 free_hash_table (&expr_hash_table);
4098
4099 free_gcse_mem ();
4100 obstack_free (&gcse_obstack, NULL);
4101
4102 /* We are finished with alias. */
4103 end_alias_analysis ();
4104
4105 if (dump_file)
4106 {
4107 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
4108 current_function_name (), n_basic_blocks, bytes_used);
4109 fprintf (dump_file, "%d substs, %d insns created\n",
4110 gcse_subst_count, gcse_create_count);
4111 }
4112
4113 return changed;
4114 }
4115 \f
4116 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
4117 to INSN. If such notes are added to an insn which references a
4118 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
4119 that note, because the following loop optimization pass requires
4120 them. */
4121
4122 /* ??? If there was a jump optimization pass after gcse and before loop,
4123 then we would not need to do this here, because jump would add the
4124 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
4125
4126 static void
4127 add_label_notes (rtx x, rtx insn)
4128 {
4129 enum rtx_code code = GET_CODE (x);
4130 int i, j;
4131 const char *fmt;
4132
4133 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
4134 {
4135 /* This code used to ignore labels that referred to dispatch tables to
4136 avoid flow generating (slightly) worse code.
4137
4138 We no longer ignore such label references (see LABEL_REF handling in
4139 mark_jump_label for additional information). */
4140
4141 /* There's no reason for current users to emit jump-insns with
4142 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
4143 notes. */
4144 gcc_assert (!JUMP_P (insn));
4145 add_reg_note (insn, REG_LABEL_OPERAND, XEXP (x, 0));
4146
4147 if (LABEL_P (XEXP (x, 0)))
4148 LABEL_NUSES (XEXP (x, 0))++;
4149
4150 return;
4151 }
4152
4153 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
4154 {
4155 if (fmt[i] == 'e')
4156 add_label_notes (XEXP (x, i), insn);
4157 else if (fmt[i] == 'E')
4158 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4159 add_label_notes (XVECEXP (x, i, j), insn);
4160 }
4161 }
4162
4163 /* Code Hoisting variables and subroutines. */
4164
4165 /* Very busy expressions. */
4166 static sbitmap *hoist_vbein;
4167 static sbitmap *hoist_vbeout;
4168
4169 /* ??? We could compute post dominators and run this algorithm in
4170 reverse to perform tail merging, doing so would probably be
4171 more effective than the tail merging code in jump.c.
4172
4173 It's unclear if tail merging could be run in parallel with
4174 code hoisting. It would be nice. */
4175
4176 /* Allocate vars used for code hoisting analysis. */
4177
4178 static void
4179 alloc_code_hoist_mem (int n_blocks, int n_exprs)
4180 {
4181 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
4182 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4183 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4184
4185 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
4186 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
4187 }
4188
4189 /* Free vars used for code hoisting analysis. */
4190
4191 static void
4192 free_code_hoist_mem (void)
4193 {
4194 sbitmap_vector_free (antloc);
4195 sbitmap_vector_free (transp);
4196 sbitmap_vector_free (comp);
4197
4198 sbitmap_vector_free (hoist_vbein);
4199 sbitmap_vector_free (hoist_vbeout);
4200
4201 free_dominance_info (CDI_DOMINATORS);
4202 }
4203
4204 /* Compute the very busy expressions at entry/exit from each block.
4205
4206 An expression is very busy if all paths from a given point
4207 compute the expression. */
4208
4209 static void
4210 compute_code_hoist_vbeinout (void)
4211 {
4212 int changed, passes;
4213 basic_block bb;
4214
4215 sbitmap_vector_zero (hoist_vbeout, last_basic_block);
4216 sbitmap_vector_zero (hoist_vbein, last_basic_block);
4217
4218 passes = 0;
4219 changed = 1;
4220
4221 while (changed)
4222 {
4223 changed = 0;
4224
4225 /* We scan the blocks in the reverse order to speed up
4226 the convergence. */
4227 FOR_EACH_BB_REVERSE (bb)
4228 {
4229 if (bb->next_bb != EXIT_BLOCK_PTR)
4230 {
4231 sbitmap_intersection_of_succs (hoist_vbeout[bb->index],
4232 hoist_vbein, bb->index);
4233
4234 /* Include expressions in VBEout that are calculated
4235 in BB and available at its end. */
4236 sbitmap_a_or_b (hoist_vbeout[bb->index],
4237 hoist_vbeout[bb->index], comp[bb->index]);
4238 }
4239
4240 changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index],
4241 antloc[bb->index],
4242 hoist_vbeout[bb->index],
4243 transp[bb->index]);
4244 }
4245
4246 passes++;
4247 }
4248
4249 if (dump_file)
4250 {
4251 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
4252
4253 FOR_EACH_BB (bb)
4254 {
4255 fprintf (dump_file, "vbein (%d): ", bb->index);
4256 dump_sbitmap_file (dump_file, hoist_vbein[bb->index]);
4257 fprintf (dump_file, "vbeout(%d): ", bb->index);
4258 dump_sbitmap_file (dump_file, hoist_vbeout[bb->index]);
4259 }
4260 }
4261 }
4262
4263 /* Top level routine to do the dataflow analysis needed by code hoisting. */
4264
4265 static void
4266 compute_code_hoist_data (void)
4267 {
4268 compute_local_properties (transp, comp, antloc, &expr_hash_table);
4269 prune_expressions (false);
4270 compute_code_hoist_vbeinout ();
4271 calculate_dominance_info (CDI_DOMINATORS);
4272 if (dump_file)
4273 fprintf (dump_file, "\n");
4274 }
4275
4276 /* Determine if the expression identified by EXPR_INDEX would
4277 reach BB unimpared if it was placed at the end of EXPR_BB.
4278 Stop the search if the expression would need to be moved more
4279 than DISTANCE instructions.
4280
4281 It's unclear exactly what Muchnick meant by "unimpared". It seems
4282 to me that the expression must either be computed or transparent in
4283 *every* block in the path(s) from EXPR_BB to BB. Any other definition
4284 would allow the expression to be hoisted out of loops, even if
4285 the expression wasn't a loop invariant.
4286
4287 Contrast this to reachability for PRE where an expression is
4288 considered reachable if *any* path reaches instead of *all*
4289 paths. */
4290
4291 static int
4292 hoist_expr_reaches_here_p (basic_block expr_bb, int expr_index, basic_block bb,
4293 char *visited, int distance, int *bb_size)
4294 {
4295 edge pred;
4296 edge_iterator ei;
4297 int visited_allocated_locally = 0;
4298
4299 /* Terminate the search if distance, for which EXPR is allowed to move,
4300 is exhausted. */
4301 if (distance > 0)
4302 {
4303 distance -= bb_size[bb->index];
4304
4305 if (distance <= 0)
4306 return 0;
4307 }
4308 else
4309 gcc_assert (distance == 0);
4310
4311 if (visited == NULL)
4312 {
4313 visited_allocated_locally = 1;
4314 visited = XCNEWVEC (char, last_basic_block);
4315 }
4316
4317 FOR_EACH_EDGE (pred, ei, bb->preds)
4318 {
4319 basic_block pred_bb = pred->src;
4320
4321 if (pred->src == ENTRY_BLOCK_PTR)
4322 break;
4323 else if (pred_bb == expr_bb)
4324 continue;
4325 else if (visited[pred_bb->index])
4326 continue;
4327
4328 else if (! TEST_BIT (transp[pred_bb->index], expr_index))
4329 break;
4330
4331 /* Not killed. */
4332 else
4333 {
4334 visited[pred_bb->index] = 1;
4335 if (! hoist_expr_reaches_here_p (expr_bb, expr_index, pred_bb,
4336 visited, distance, bb_size))
4337 break;
4338 }
4339 }
4340 if (visited_allocated_locally)
4341 free (visited);
4342
4343 return (pred == NULL);
4344 }
4345 \f
4346 /* Find occurence in BB. */
4347 static struct occr *
4348 find_occr_in_bb (struct occr *occr, basic_block bb)
4349 {
4350 /* Find the right occurrence of this expression. */
4351 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
4352 occr = occr->next;
4353
4354 return occr;
4355 }
4356
4357 /* Actually perform code hoisting. */
4358
4359 static int
4360 hoist_code (void)
4361 {
4362 basic_block bb, dominated;
4363 VEC (basic_block, heap) *dom_tree_walk;
4364 unsigned int dom_tree_walk_index;
4365 VEC (basic_block, heap) *domby;
4366 unsigned int i,j;
4367 struct expr **index_map;
4368 struct expr *expr;
4369 int *to_bb_head;
4370 int *bb_size;
4371 int changed = 0;
4372
4373 /* Compute a mapping from expression number (`bitmap_index') to
4374 hash table entry. */
4375
4376 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
4377 for (i = 0; i < expr_hash_table.size; i++)
4378 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4379 index_map[expr->bitmap_index] = expr;
4380
4381 /* Calculate sizes of basic blocks and note how far
4382 each instruction is from the start of its block. We then use this
4383 data to restrict distance an expression can travel. */
4384
4385 to_bb_head = XCNEWVEC (int, get_max_uid ());
4386 bb_size = XCNEWVEC (int, last_basic_block);
4387
4388 FOR_EACH_BB (bb)
4389 {
4390 rtx insn;
4391 int to_head;
4392
4393 to_head = 0;
4394 FOR_BB_INSNS (bb, insn)
4395 {
4396 /* Don't count debug instructions to avoid them affecting
4397 decision choices. */
4398 if (NONDEBUG_INSN_P (insn))
4399 to_bb_head[INSN_UID (insn)] = to_head++;
4400 }
4401
4402 bb_size[bb->index] = to_head;
4403 }
4404
4405 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR->succs) == 1
4406 && (EDGE_SUCC (ENTRY_BLOCK_PTR, 0)->dest
4407 == ENTRY_BLOCK_PTR->next_bb));
4408
4409 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
4410 ENTRY_BLOCK_PTR->next_bb);
4411
4412 /* Walk over each basic block looking for potentially hoistable
4413 expressions, nothing gets hoisted from the entry block. */
4414 FOR_EACH_VEC_ELT (basic_block, dom_tree_walk, dom_tree_walk_index, bb)
4415 {
4416 domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
4417
4418 if (VEC_length (basic_block, domby) == 0)
4419 continue;
4420
4421 /* Examine each expression that is very busy at the exit of this
4422 block. These are the potentially hoistable expressions. */
4423 for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
4424 {
4425 if (TEST_BIT (hoist_vbeout[bb->index], i))
4426 {
4427 /* Current expression. */
4428 struct expr *expr = index_map[i];
4429 /* Number of occurences of EXPR that can be hoisted to BB. */
4430 int hoistable = 0;
4431 /* Basic blocks that have occurences reachable from BB. */
4432 bitmap_head _from_bbs, *from_bbs = &_from_bbs;
4433 /* Occurences reachable from BB. */
4434 VEC (occr_t, heap) *occrs_to_hoist = NULL;
4435 /* We want to insert the expression into BB only once, so
4436 note when we've inserted it. */
4437 int insn_inserted_p;
4438 occr_t occr;
4439
4440 bitmap_initialize (from_bbs, 0);
4441
4442 /* If an expression is computed in BB and is available at end of
4443 BB, hoist all occurences dominated by BB to BB. */
4444 if (TEST_BIT (comp[bb->index], i))
4445 {
4446 occr = find_occr_in_bb (expr->antic_occr, bb);
4447
4448 if (occr)
4449 {
4450 /* An occurence might've been already deleted
4451 while processing a dominator of BB. */
4452 if (occr->deleted_p)
4453 gcc_assert (MAX_HOIST_DEPTH > 1);
4454 else
4455 {
4456 gcc_assert (NONDEBUG_INSN_P (occr->insn));
4457 hoistable++;
4458 }
4459 }
4460 else
4461 hoistable++;
4462 }
4463
4464 /* We've found a potentially hoistable expression, now
4465 we look at every block BB dominates to see if it
4466 computes the expression. */
4467 FOR_EACH_VEC_ELT (basic_block, domby, j, dominated)
4468 {
4469 int max_distance;
4470
4471 /* Ignore self dominance. */
4472 if (bb == dominated)
4473 continue;
4474 /* We've found a dominated block, now see if it computes
4475 the busy expression and whether or not moving that
4476 expression to the "beginning" of that block is safe. */
4477 if (!TEST_BIT (antloc[dominated->index], i))
4478 continue;
4479
4480 occr = find_occr_in_bb (expr->antic_occr, dominated);
4481 gcc_assert (occr);
4482
4483 /* An occurence might've been already deleted
4484 while processing a dominator of BB. */
4485 if (occr->deleted_p)
4486 {
4487 gcc_assert (MAX_HOIST_DEPTH > 1);
4488 continue;
4489 }
4490 gcc_assert (NONDEBUG_INSN_P (occr->insn));
4491
4492 max_distance = expr->max_distance;
4493 if (max_distance > 0)
4494 /* Adjust MAX_DISTANCE to account for the fact that
4495 OCCR won't have to travel all of DOMINATED, but
4496 only part of it. */
4497 max_distance += (bb_size[dominated->index]
4498 - to_bb_head[INSN_UID (occr->insn)]);
4499
4500 /* Note if the expression would reach the dominated block
4501 unimpared if it was placed at the end of BB.
4502
4503 Keep track of how many times this expression is hoistable
4504 from a dominated block into BB. */
4505 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL,
4506 max_distance, bb_size))
4507 {
4508 hoistable++;
4509 VEC_safe_push (occr_t, heap,
4510 occrs_to_hoist, occr);
4511 bitmap_set_bit (from_bbs, dominated->index);
4512 }
4513 }
4514
4515 /* If we found more than one hoistable occurrence of this
4516 expression, then note it in the vector of expressions to
4517 hoist. It makes no sense to hoist things which are computed
4518 in only one BB, and doing so tends to pessimize register
4519 allocation. One could increase this value to try harder
4520 to avoid any possible code expansion due to register
4521 allocation issues; however experiments have shown that
4522 the vast majority of hoistable expressions are only movable
4523 from two successors, so raising this threshold is likely
4524 to nullify any benefit we get from code hoisting. */
4525 if (hoistable > 1 && dbg_cnt (hoist_insn))
4526 {
4527 /* If (hoistable != VEC_length), then there is
4528 an occurence of EXPR in BB itself. Don't waste
4529 time looking for LCA in this case. */
4530 if ((unsigned) hoistable
4531 == VEC_length (occr_t, occrs_to_hoist))
4532 {
4533 basic_block lca;
4534
4535 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
4536 from_bbs);
4537 if (lca != bb)
4538 /* Punt, it's better to hoist these occurences to
4539 LCA. */
4540 VEC_free (occr_t, heap, occrs_to_hoist);
4541 }
4542 }
4543 else
4544 /* Punt, no point hoisting a single occurence. */
4545 VEC_free (occr_t, heap, occrs_to_hoist);
4546
4547 insn_inserted_p = 0;
4548
4549 /* Walk through occurences of I'th expressions we want
4550 to hoist to BB and make the transformations. */
4551 FOR_EACH_VEC_ELT (occr_t, occrs_to_hoist, j, occr)
4552 {
4553 rtx insn;
4554 rtx set;
4555
4556 gcc_assert (!occr->deleted_p);
4557
4558 insn = occr->insn;
4559 set = single_set (insn);
4560 gcc_assert (set);
4561
4562 /* Create a pseudo-reg to store the result of reaching
4563 expressions into. Get the mode for the new pseudo
4564 from the mode of the original destination pseudo.
4565
4566 It is important to use new pseudos whenever we
4567 emit a set. This will allow reload to use
4568 rematerialization for such registers. */
4569 if (!insn_inserted_p)
4570 expr->reaching_reg
4571 = gen_reg_rtx_and_attrs (SET_DEST (set));
4572
4573 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set),
4574 insn);
4575 delete_insn (insn);
4576 occr->deleted_p = 1;
4577 changed = 1;
4578 gcse_subst_count++;
4579
4580 if (!insn_inserted_p)
4581 {
4582 insert_insn_end_basic_block (expr, bb);
4583 insn_inserted_p = 1;
4584 }
4585 }
4586
4587 VEC_free (occr_t, heap, occrs_to_hoist);
4588 bitmap_clear (from_bbs);
4589 }
4590 }
4591 VEC_free (basic_block, heap, domby);
4592 }
4593
4594 VEC_free (basic_block, heap, dom_tree_walk);
4595 free (bb_size);
4596 free (to_bb_head);
4597 free (index_map);
4598
4599 return changed;
4600 }
4601
4602 /* Top level routine to perform one code hoisting (aka unification) pass
4603
4604 Return nonzero if a change was made. */
4605
4606 static int
4607 one_code_hoisting_pass (void)
4608 {
4609 int changed = 0;
4610
4611 gcse_subst_count = 0;
4612 gcse_create_count = 0;
4613
4614 /* Return if there's nothing to do, or it is too expensive. */
4615 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
4616 || is_too_expensive (_("GCSE disabled")))
4617 return 0;
4618
4619 doing_code_hoisting_p = true;
4620
4621 /* We need alias. */
4622 init_alias_analysis ();
4623
4624 bytes_used = 0;
4625 gcc_obstack_init (&gcse_obstack);
4626 alloc_gcse_mem ();
4627
4628 alloc_hash_table (&expr_hash_table, 0);
4629 compute_hash_table (&expr_hash_table);
4630 if (dump_file)
4631 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
4632
4633 if (expr_hash_table.n_elems > 0)
4634 {
4635 alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
4636 compute_code_hoist_data ();
4637 changed = hoist_code ();
4638 free_code_hoist_mem ();
4639 }
4640
4641 free_hash_table (&expr_hash_table);
4642 free_gcse_mem ();
4643 obstack_free (&gcse_obstack, NULL);
4644
4645 /* We are finished with alias. */
4646 end_alias_analysis ();
4647
4648 if (dump_file)
4649 {
4650 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
4651 current_function_name (), n_basic_blocks, bytes_used);
4652 fprintf (dump_file, "%d substs, %d insns created\n",
4653 gcse_subst_count, gcse_create_count);
4654 }
4655
4656 doing_code_hoisting_p = false;
4657
4658 return changed;
4659 }
4660 \f
4661 /* Here we provide the things required to do store motion towards
4662 the exit. In order for this to be effective, gcse also needed to
4663 be taught how to move a load when it is kill only by a store to itself.
4664
4665 int i;
4666 float a[10];
4667
4668 void foo(float scale)
4669 {
4670 for (i=0; i<10; i++)
4671 a[i] *= scale;
4672 }
4673
4674 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
4675 the load out since its live around the loop, and stored at the bottom
4676 of the loop.
4677
4678 The 'Load Motion' referred to and implemented in this file is
4679 an enhancement to gcse which when using edge based lcm, recognizes
4680 this situation and allows gcse to move the load out of the loop.
4681
4682 Once gcse has hoisted the load, store motion can then push this
4683 load towards the exit, and we end up with no loads or stores of 'i'
4684 in the loop. */
4685
4686 static hashval_t
4687 pre_ldst_expr_hash (const void *p)
4688 {
4689 int do_not_record_p = 0;
4690 const struct ls_expr *const x = (const struct ls_expr *) p;
4691 return hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
4692 }
4693
4694 static int
4695 pre_ldst_expr_eq (const void *p1, const void *p2)
4696 {
4697 const struct ls_expr *const ptr1 = (const struct ls_expr *) p1,
4698 *const ptr2 = (const struct ls_expr *) p2;
4699 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
4700 }
4701
4702 /* This will search the ldst list for a matching expression. If it
4703 doesn't find one, we create one and initialize it. */
4704
4705 static struct ls_expr *
4706 ldst_entry (rtx x)
4707 {
4708 int do_not_record_p = 0;
4709 struct ls_expr * ptr;
4710 unsigned int hash;
4711 void **slot;
4712 struct ls_expr e;
4713
4714 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
4715 NULL, /*have_reg_qty=*/false);
4716
4717 e.pattern = x;
4718 slot = htab_find_slot_with_hash (pre_ldst_table, &e, hash, INSERT);
4719 if (*slot)
4720 return (struct ls_expr *)*slot;
4721
4722 ptr = XNEW (struct ls_expr);
4723
4724 ptr->next = pre_ldst_mems;
4725 ptr->expr = NULL;
4726 ptr->pattern = x;
4727 ptr->pattern_regs = NULL_RTX;
4728 ptr->loads = NULL_RTX;
4729 ptr->stores = NULL_RTX;
4730 ptr->reaching_reg = NULL_RTX;
4731 ptr->invalid = 0;
4732 ptr->index = 0;
4733 ptr->hash_index = hash;
4734 pre_ldst_mems = ptr;
4735 *slot = ptr;
4736
4737 return ptr;
4738 }
4739
4740 /* Free up an individual ldst entry. */
4741
4742 static void
4743 free_ldst_entry (struct ls_expr * ptr)
4744 {
4745 free_INSN_LIST_list (& ptr->loads);
4746 free_INSN_LIST_list (& ptr->stores);
4747
4748 free (ptr);
4749 }
4750
4751 /* Free up all memory associated with the ldst list. */
4752
4753 static void
4754 free_ldst_mems (void)
4755 {
4756 if (pre_ldst_table)
4757 htab_delete (pre_ldst_table);
4758 pre_ldst_table = NULL;
4759
4760 while (pre_ldst_mems)
4761 {
4762 struct ls_expr * tmp = pre_ldst_mems;
4763
4764 pre_ldst_mems = pre_ldst_mems->next;
4765
4766 free_ldst_entry (tmp);
4767 }
4768
4769 pre_ldst_mems = NULL;
4770 }
4771
4772 /* Dump debugging info about the ldst list. */
4773
4774 static void
4775 print_ldst_list (FILE * file)
4776 {
4777 struct ls_expr * ptr;
4778
4779 fprintf (file, "LDST list: \n");
4780
4781 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
4782 {
4783 fprintf (file, " Pattern (%3d): ", ptr->index);
4784
4785 print_rtl (file, ptr->pattern);
4786
4787 fprintf (file, "\n Loads : ");
4788
4789 if (ptr->loads)
4790 print_rtl (file, ptr->loads);
4791 else
4792 fprintf (file, "(nil)");
4793
4794 fprintf (file, "\n Stores : ");
4795
4796 if (ptr->stores)
4797 print_rtl (file, ptr->stores);
4798 else
4799 fprintf (file, "(nil)");
4800
4801 fprintf (file, "\n\n");
4802 }
4803
4804 fprintf (file, "\n");
4805 }
4806
4807 /* Returns 1 if X is in the list of ldst only expressions. */
4808
4809 static struct ls_expr *
4810 find_rtx_in_ldst (rtx x)
4811 {
4812 struct ls_expr e;
4813 void **slot;
4814 if (!pre_ldst_table)
4815 return NULL;
4816 e.pattern = x;
4817 slot = htab_find_slot (pre_ldst_table, &e, NO_INSERT);
4818 if (!slot || ((struct ls_expr *)*slot)->invalid)
4819 return NULL;
4820 return (struct ls_expr *) *slot;
4821 }
4822
4823 /* Return first item in the list. */
4824
4825 static inline struct ls_expr *
4826 first_ls_expr (void)
4827 {
4828 return pre_ldst_mems;
4829 }
4830
4831 /* Return the next item in the list after the specified one. */
4832
4833 static inline struct ls_expr *
4834 next_ls_expr (struct ls_expr * ptr)
4835 {
4836 return ptr->next;
4837 }
4838 \f
4839 /* Load Motion for loads which only kill themselves. */
4840
4841 /* Return true if x is a simple MEM operation, with no registers or
4842 side effects. These are the types of loads we consider for the
4843 ld_motion list, otherwise we let the usual aliasing take care of it. */
4844
4845 static int
4846 simple_mem (const_rtx x)
4847 {
4848 if (! MEM_P (x))
4849 return 0;
4850
4851 if (MEM_VOLATILE_P (x))
4852 return 0;
4853
4854 if (GET_MODE (x) == BLKmode)
4855 return 0;
4856
4857 /* If we are handling exceptions, we must be careful with memory references
4858 that may trap. If we are not, the behavior is undefined, so we may just
4859 continue. */
4860 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
4861 return 0;
4862
4863 if (side_effects_p (x))
4864 return 0;
4865
4866 /* Do not consider function arguments passed on stack. */
4867 if (reg_mentioned_p (stack_pointer_rtx, x))
4868 return 0;
4869
4870 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
4871 return 0;
4872
4873 return 1;
4874 }
4875
4876 /* Make sure there isn't a buried reference in this pattern anywhere.
4877 If there is, invalidate the entry for it since we're not capable
4878 of fixing it up just yet.. We have to be sure we know about ALL
4879 loads since the aliasing code will allow all entries in the
4880 ld_motion list to not-alias itself. If we miss a load, we will get
4881 the wrong value since gcse might common it and we won't know to
4882 fix it up. */
4883
4884 static void
4885 invalidate_any_buried_refs (rtx x)
4886 {
4887 const char * fmt;
4888 int i, j;
4889 struct ls_expr * ptr;
4890
4891 /* Invalidate it in the list. */
4892 if (MEM_P (x) && simple_mem (x))
4893 {
4894 ptr = ldst_entry (x);
4895 ptr->invalid = 1;
4896 }
4897
4898 /* Recursively process the insn. */
4899 fmt = GET_RTX_FORMAT (GET_CODE (x));
4900
4901 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
4902 {
4903 if (fmt[i] == 'e')
4904 invalidate_any_buried_refs (XEXP (x, i));
4905 else if (fmt[i] == 'E')
4906 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4907 invalidate_any_buried_refs (XVECEXP (x, i, j));
4908 }
4909 }
4910
4911 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
4912 being defined as MEM loads and stores to symbols, with no side effects
4913 and no registers in the expression. For a MEM destination, we also
4914 check that the insn is still valid if we replace the destination with a
4915 REG, as is done in update_ld_motion_stores. If there are any uses/defs
4916 which don't match this criteria, they are invalidated and trimmed out
4917 later. */
4918
4919 static void
4920 compute_ld_motion_mems (void)
4921 {
4922 struct ls_expr * ptr;
4923 basic_block bb;
4924 rtx insn;
4925
4926 pre_ldst_mems = NULL;
4927 pre_ldst_table = htab_create (13, pre_ldst_expr_hash,
4928 pre_ldst_expr_eq, NULL);
4929
4930 FOR_EACH_BB (bb)
4931 {
4932 FOR_BB_INSNS (bb, insn)
4933 {
4934 if (NONDEBUG_INSN_P (insn))
4935 {
4936 if (GET_CODE (PATTERN (insn)) == SET)
4937 {
4938 rtx src = SET_SRC (PATTERN (insn));
4939 rtx dest = SET_DEST (PATTERN (insn));
4940
4941 /* Check for a simple LOAD... */
4942 if (MEM_P (src) && simple_mem (src))
4943 {
4944 ptr = ldst_entry (src);
4945 if (REG_P (dest))
4946 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
4947 else
4948 ptr->invalid = 1;
4949 }
4950 else
4951 {
4952 /* Make sure there isn't a buried load somewhere. */
4953 invalidate_any_buried_refs (src);
4954 }
4955
4956 /* Check for stores. Don't worry about aliased ones, they
4957 will block any movement we might do later. We only care
4958 about this exact pattern since those are the only
4959 circumstance that we will ignore the aliasing info. */
4960 if (MEM_P (dest) && simple_mem (dest))
4961 {
4962 ptr = ldst_entry (dest);
4963
4964 if (! MEM_P (src)
4965 && GET_CODE (src) != ASM_OPERANDS
4966 /* Check for REG manually since want_to_gcse_p
4967 returns 0 for all REGs. */
4968 && can_assign_to_reg_without_clobbers_p (src))
4969 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
4970 else
4971 ptr->invalid = 1;
4972 }
4973 }
4974 else
4975 invalidate_any_buried_refs (PATTERN (insn));
4976 }
4977 }
4978 }
4979 }
4980
4981 /* Remove any references that have been either invalidated or are not in the
4982 expression list for pre gcse. */
4983
4984 static void
4985 trim_ld_motion_mems (void)
4986 {
4987 struct ls_expr * * last = & pre_ldst_mems;
4988 struct ls_expr * ptr = pre_ldst_mems;
4989
4990 while (ptr != NULL)
4991 {
4992 struct expr * expr;
4993
4994 /* Delete if entry has been made invalid. */
4995 if (! ptr->invalid)
4996 {
4997 /* Delete if we cannot find this mem in the expression list. */
4998 unsigned int hash = ptr->hash_index % expr_hash_table.size;
4999
5000 for (expr = expr_hash_table.table[hash];
5001 expr != NULL;
5002 expr = expr->next_same_hash)
5003 if (expr_equiv_p (expr->expr, ptr->pattern))
5004 break;
5005 }
5006 else
5007 expr = (struct expr *) 0;
5008
5009 if (expr)
5010 {
5011 /* Set the expression field if we are keeping it. */
5012 ptr->expr = expr;
5013 last = & ptr->next;
5014 ptr = ptr->next;
5015 }
5016 else
5017 {
5018 *last = ptr->next;
5019 htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
5020 free_ldst_entry (ptr);
5021 ptr = * last;
5022 }
5023 }
5024
5025 /* Show the world what we've found. */
5026 if (dump_file && pre_ldst_mems != NULL)
5027 print_ldst_list (dump_file);
5028 }
5029
5030 /* This routine will take an expression which we are replacing with
5031 a reaching register, and update any stores that are needed if
5032 that expression is in the ld_motion list. Stores are updated by
5033 copying their SRC to the reaching register, and then storing
5034 the reaching register into the store location. These keeps the
5035 correct value in the reaching register for the loads. */
5036
5037 static void
5038 update_ld_motion_stores (struct expr * expr)
5039 {
5040 struct ls_expr * mem_ptr;
5041
5042 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
5043 {
5044 /* We can try to find just the REACHED stores, but is shouldn't
5045 matter to set the reaching reg everywhere... some might be
5046 dead and should be eliminated later. */
5047
5048 /* We replace (set mem expr) with (set reg expr) (set mem reg)
5049 where reg is the reaching reg used in the load. We checked in
5050 compute_ld_motion_mems that we can replace (set mem expr) with
5051 (set reg expr) in that insn. */
5052 rtx list = mem_ptr->stores;
5053
5054 for ( ; list != NULL_RTX; list = XEXP (list, 1))
5055 {
5056 rtx insn = XEXP (list, 0);
5057 rtx pat = PATTERN (insn);
5058 rtx src = SET_SRC (pat);
5059 rtx reg = expr->reaching_reg;
5060 rtx copy;
5061
5062 /* If we've already copied it, continue. */
5063 if (expr->reaching_reg == src)
5064 continue;
5065
5066 if (dump_file)
5067 {
5068 fprintf (dump_file, "PRE: store updated with reaching reg ");
5069 print_rtl (dump_file, expr->reaching_reg);
5070 fprintf (dump_file, ":\n ");
5071 print_inline_rtx (dump_file, insn, 8);
5072 fprintf (dump_file, "\n");
5073 }
5074
5075 copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
5076 emit_insn_before (copy, insn);
5077 SET_SRC (pat) = reg;
5078 df_insn_rescan (insn);
5079
5080 /* un-recognize this pattern since it's probably different now. */
5081 INSN_CODE (insn) = -1;
5082 gcse_create_count++;
5083 }
5084 }
5085 }
5086 \f
5087 /* Return true if the graph is too expensive to optimize. PASS is the
5088 optimization about to be performed. */
5089
5090 static bool
5091 is_too_expensive (const char *pass)
5092 {
5093 /* Trying to perform global optimizations on flow graphs which have
5094 a high connectivity will take a long time and is unlikely to be
5095 particularly useful.
5096
5097 In normal circumstances a cfg should have about twice as many
5098 edges as blocks. But we do not want to punish small functions
5099 which have a couple switch statements. Rather than simply
5100 threshold the number of blocks, uses something with a more
5101 graceful degradation. */
5102 if (n_edges > 20000 + n_basic_blocks * 4)
5103 {
5104 warning (OPT_Wdisabled_optimization,
5105 "%s: %d basic blocks and %d edges/basic block",
5106 pass, n_basic_blocks, n_edges / n_basic_blocks);
5107
5108 return true;
5109 }
5110
5111 /* If allocating memory for the cprop bitmap would take up too much
5112 storage it's better just to disable the optimization. */
5113 if ((n_basic_blocks
5114 * SBITMAP_SET_SIZE (max_reg_num ())
5115 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
5116 {
5117 warning (OPT_Wdisabled_optimization,
5118 "%s: %d basic blocks and %d registers",
5119 pass, n_basic_blocks, max_reg_num ());
5120
5121 return true;
5122 }
5123
5124 return false;
5125 }
5126
5127 \f
5128 /* Main function for the CPROP pass. */
5129
5130 static int
5131 one_cprop_pass (void)
5132 {
5133 int changed = 0;
5134
5135 /* Return if there's nothing to do, or it is too expensive. */
5136 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
5137 || is_too_expensive (_ ("const/copy propagation disabled")))
5138 return 0;
5139
5140 global_const_prop_count = local_const_prop_count = 0;
5141 global_copy_prop_count = local_copy_prop_count = 0;
5142
5143 bytes_used = 0;
5144 gcc_obstack_init (&gcse_obstack);
5145 alloc_gcse_mem ();
5146
5147 /* Do a local const/copy propagation pass first. The global pass
5148 only handles global opportunities.
5149 If the local pass changes something, remove any unreachable blocks
5150 because the CPROP global dataflow analysis may get into infinite
5151 loops for CFGs with unreachable blocks.
5152
5153 FIXME: This local pass should not be necessary after CSE (but for
5154 some reason it still is). It is also (proven) not necessary
5155 to run the local pass right after FWPWOP.
5156
5157 FIXME: The global analysis would not get into infinite loops if it
5158 would use the DF solver (via df_simple_dataflow) instead of
5159 the solver implemented in this file. */
5160 if (local_cprop_pass ())
5161 {
5162 delete_unreachable_blocks ();
5163 df_analyze ();
5164 }
5165
5166 /* Determine implicit sets. */
5167 implicit_sets = XCNEWVEC (rtx, last_basic_block);
5168 find_implicit_sets ();
5169
5170 alloc_hash_table (&set_hash_table, 1);
5171 compute_hash_table (&set_hash_table);
5172
5173 /* Free implicit_sets before peak usage. */
5174 free (implicit_sets);
5175 implicit_sets = NULL;
5176
5177 if (dump_file)
5178 dump_hash_table (dump_file, "SET", &set_hash_table);
5179 if (set_hash_table.n_elems > 0)
5180 {
5181 basic_block bb;
5182 rtx insn;
5183
5184 alloc_cprop_mem (last_basic_block, set_hash_table.n_elems);
5185 compute_cprop_data ();
5186
5187 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
5188 {
5189 /* Reset tables used to keep track of what's still valid [since
5190 the start of the block]. */
5191 reset_opr_set_tables ();
5192
5193 FOR_BB_INSNS (bb, insn)
5194 if (INSN_P (insn))
5195 {
5196 changed |= cprop_insn (insn);
5197
5198 /* Keep track of everything modified by this insn. */
5199 /* ??? Need to be careful w.r.t. mods done to INSN.
5200 Don't call mark_oprs_set if we turned the
5201 insn into a NOTE. */
5202 if (! NOTE_P (insn))
5203 mark_oprs_set (insn);
5204 }
5205 }
5206
5207 changed |= bypass_conditional_jumps ();
5208 free_cprop_mem ();
5209 }
5210
5211 free_hash_table (&set_hash_table);
5212 free_gcse_mem ();
5213 obstack_free (&gcse_obstack, NULL);
5214
5215 if (dump_file)
5216 {
5217 fprintf (dump_file, "CPROP of %s, %d basic blocks, %d bytes needed, ",
5218 current_function_name (), n_basic_blocks, bytes_used);
5219 fprintf (dump_file, "%d local const props, %d local copy props, ",
5220 local_const_prop_count, local_copy_prop_count);
5221 fprintf (dump_file, "%d global const props, %d global copy props\n\n",
5222 global_const_prop_count, global_copy_prop_count);
5223 }
5224
5225 return changed;
5226 }
5227
5228 \f
5229 /* All the passes implemented in this file. Each pass has its
5230 own gate and execute function, and at the end of the file a
5231 pass definition for passes.c.
5232
5233 We do not construct an accurate cfg in functions which call
5234 setjmp, so none of these passes runs if the function calls
5235 setjmp.
5236 FIXME: Should just handle setjmp via REG_SETJMP notes. */
5237
5238 static bool
5239 gate_rtl_cprop (void)
5240 {
5241 return optimize > 0 && flag_gcse
5242 && !cfun->calls_setjmp
5243 && dbg_cnt (cprop);
5244 }
5245
5246 static unsigned int
5247 execute_rtl_cprop (void)
5248 {
5249 delete_unreachable_blocks ();
5250 df_set_flags (DF_LR_RUN_DCE);
5251 df_analyze ();
5252 flag_rerun_cse_after_global_opts |= one_cprop_pass ();
5253 return 0;
5254 }
5255
5256 static bool
5257 gate_rtl_pre (void)
5258 {
5259 return optimize > 0 && flag_gcse
5260 && !cfun->calls_setjmp
5261 && optimize_function_for_speed_p (cfun)
5262 && dbg_cnt (pre);
5263 }
5264
5265 static unsigned int
5266 execute_rtl_pre (void)
5267 {
5268 delete_unreachable_blocks ();
5269 df_analyze ();
5270 flag_rerun_cse_after_global_opts |= one_pre_gcse_pass ();
5271 return 0;
5272 }
5273
5274 static bool
5275 gate_rtl_hoist (void)
5276 {
5277 return optimize > 0 && flag_gcse
5278 && !cfun->calls_setjmp
5279 /* It does not make sense to run code hoisting unless we are optimizing
5280 for code size -- it rarely makes programs faster, and can make then
5281 bigger if we did PRE (when optimizing for space, we don't run PRE). */
5282 && optimize_function_for_size_p (cfun)
5283 && dbg_cnt (hoist);
5284 }
5285
5286 static unsigned int
5287 execute_rtl_hoist (void)
5288 {
5289 delete_unreachable_blocks ();
5290 df_analyze ();
5291 flag_rerun_cse_after_global_opts |= one_code_hoisting_pass ();
5292 return 0;
5293 }
5294
5295 struct rtl_opt_pass pass_rtl_cprop =
5296 {
5297 {
5298 RTL_PASS,
5299 "cprop", /* name */
5300 gate_rtl_cprop, /* gate */
5301 execute_rtl_cprop, /* execute */
5302 NULL, /* sub */
5303 NULL, /* next */
5304 0, /* static_pass_number */
5305 TV_CPROP, /* tv_id */
5306 PROP_cfglayout, /* properties_required */
5307 0, /* properties_provided */
5308 0, /* properties_destroyed */
5309 0, /* todo_flags_start */
5310 TODO_df_finish | TODO_verify_rtl_sharing |
5311 TODO_dump_func |
5312 TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */
5313 }
5314 };
5315
5316 struct rtl_opt_pass pass_rtl_pre =
5317 {
5318 {
5319 RTL_PASS,
5320 "rtl pre", /* name */
5321 gate_rtl_pre, /* gate */
5322 execute_rtl_pre, /* execute */
5323 NULL, /* sub */
5324 NULL, /* next */
5325 0, /* static_pass_number */
5326 TV_PRE, /* tv_id */
5327 PROP_cfglayout, /* properties_required */
5328 0, /* properties_provided */
5329 0, /* properties_destroyed */
5330 0, /* todo_flags_start */
5331 TODO_df_finish | TODO_verify_rtl_sharing |
5332 TODO_dump_func |
5333 TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */
5334 }
5335 };
5336
5337 struct rtl_opt_pass pass_rtl_hoist =
5338 {
5339 {
5340 RTL_PASS,
5341 "hoist", /* name */
5342 gate_rtl_hoist, /* gate */
5343 execute_rtl_hoist, /* execute */
5344 NULL, /* sub */
5345 NULL, /* next */
5346 0, /* static_pass_number */
5347 TV_HOIST, /* tv_id */
5348 PROP_cfglayout, /* properties_required */
5349 0, /* properties_provided */
5350 0, /* properties_destroyed */
5351 0, /* todo_flags_start */
5352 TODO_df_finish | TODO_verify_rtl_sharing |
5353 TODO_dump_func |
5354 TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */
5355 }
5356 };
5357
5358 #include "gt-gcse.h"