acconfig.h: _GLIBCPP_USING_THREADS and some workaround types added.
[gcc.git] / gcc / gcse.c
1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* TODO
23 - reordering of memory allocation and freeing to be more space efficient
24 - do rough calc of how many regs are needed in each block, and a rough
25 calc of how many regs are available in each class and use that to
26 throttle back the code in cases where RTX_COST is minimal.
27 - dead store elimination
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
34
35 */
36
37 /* References searched while implementing this.
38
39 Compilers Principles, Techniques and Tools
40 Aho, Sethi, Ullman
41 Addison-Wesley, 1988
42
43 Global Optimization by Suppression of Partial Redundancies
44 E. Morel, C. Renvoise
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
46
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
48 Frederick Chow
49 Stanford Ph.D. thesis, Dec. 1983
50
51 A Fast Algorithm for Code Movement Optimization
52 D.M. Dhamdhere
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
54
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
59
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
62 D.M. Dhamdhere
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
64
65 Efficiently Computing Static Single Assignment Form and the Control
66 Dependence Graph
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
69
70 Lazy Code Motion
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
73
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
76 Thomas Ball
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
79
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
84
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
88
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
92
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
96
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
100
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
104
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
108
109 Global code motion / global value numbering
110 C. Click
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
112
113 Value Driven Redundancy Elimination
114 L.T. Simpson
115 Rice University Ph.D. thesis, Apr. 1996
116
117 Value Numbering
118 L.T. Simpson
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
120
121 High Performance Compilers for Parallel Computing
122 Michael Wolfe
123 Addison-Wesley, 1996
124
125 Advanced Compiler Design and Implementation
126 Steven Muchnick
127 Morgan Kaufmann, 1997
128
129 Building an Optimizing Compiler
130 Robert Morgan
131 Digital Press, 1998
132
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
137
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
141
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
144 */
145
146 #include "config.h"
147 #include "system.h"
148 #include "toplev.h"
149
150 #include "rtl.h"
151 #include "tm_p.h"
152 #include "regs.h"
153 #include "hard-reg-set.h"
154 #include "flags.h"
155 #include "real.h"
156 #include "insn-config.h"
157 #include "recog.h"
158 #include "basic-block.h"
159 #include "output.h"
160 #include "function.h"
161 #include "expr.h"
162
163 #include "obstack.h"
164 #define obstack_chunk_alloc gmalloc
165 #define obstack_chunk_free free
166
167 /* Maximum number of passes to perform. */
168 #define MAX_PASSES 1
169
170 /* Propagate flow information through back edges and thus enable PRE's
171 moving loop invariant calculations out of loops.
172
173 Originally this tended to create worse overall code, but several
174 improvements during the development of PRE seem to have made following
175 back edges generally a win.
176
177 Note much of the loop invariant code motion done here would normally
178 be done by loop.c, which has more heuristics for when to move invariants
179 out of loops. At some point we might need to move some of those
180 heuristics into gcse.c. */
181 #define FOLLOW_BACK_EDGES 1
182
183 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
184 are a superset of those done by GCSE.
185
186 We perform the following steps:
187
188 1) Compute basic block information.
189
190 2) Compute table of places where registers are set.
191
192 3) Perform copy/constant propagation.
193
194 4) Perform global cse.
195
196 5) Perform another pass of copy/constant propagation.
197
198 Two passes of copy/constant propagation are done because the first one
199 enables more GCSE and the second one helps to clean up the copies that
200 GCSE creates. This is needed more for PRE than for Classic because Classic
201 GCSE will try to use an existing register containing the common
202 subexpression rather than create a new one. This is harder to do for PRE
203 because of the code motion (which Classic GCSE doesn't do).
204
205 Expressions we are interested in GCSE-ing are of the form
206 (set (pseudo-reg) (expression)).
207 Function want_to_gcse_p says what these are.
208
209 PRE handles moving invariant expressions out of loops (by treating them as
210 partially redundant).
211
212 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
213 assignment) based GVN (global value numbering). L. T. Simpson's paper
214 (Rice University) on value numbering is a useful reference for this.
215
216 **********************
217
218 We used to support multiple passes but there are diminishing returns in
219 doing so. The first pass usually makes 90% of the changes that are doable.
220 A second pass can make a few more changes made possible by the first pass.
221 Experiments show any further passes don't make enough changes to justify
222 the expense.
223
224 A study of spec92 using an unlimited number of passes:
225 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
226 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
227 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
228
229 It was found doing copy propagation between each pass enables further
230 substitutions.
231
232 PRE is quite expensive in complicated functions because the DFA can take
233 awhile to converge. Hence we only perform one pass. Macro MAX_PASSES can
234 be modified if one wants to experiment.
235
236 **********************
237
238 The steps for PRE are:
239
240 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
241
242 2) Perform the data flow analysis for PRE.
243
244 3) Delete the redundant instructions
245
246 4) Insert the required copies [if any] that make the partially
247 redundant instructions fully redundant.
248
249 5) For other reaching expressions, insert an instruction to copy the value
250 to a newly created pseudo that will reach the redundant instruction.
251
252 The deletion is done first so that when we do insertions we
253 know which pseudo reg to use.
254
255 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
256 argue it is not. The number of iterations for the algorithm to converge
257 is typically 2-4 so I don't view it as that expensive (relatively speaking).
258
259 PRE GCSE depends heavily on the second CSE pass to clean up the copies
260 we create. To make an expression reach the place where it's redundant,
261 the result of the expression is copied to a new register, and the redundant
262 expression is deleted by replacing it with this new register. Classic GCSE
263 doesn't have this problem as much as it computes the reaching defs of
264 each register in each block and thus can try to use an existing register.
265
266 **********************
267
268 A fair bit of simplicity is created by creating small functions for simple
269 tasks, even when the function is only called in one place. This may
270 measurably slow things down [or may not] by creating more function call
271 overhead than is necessary. The source is laid out so that it's trivial
272 to make the affected functions inline so that one can measure what speed
273 up, if any, can be achieved, and maybe later when things settle things can
274 be rearranged.
275
276 Help stamp out big monolithic functions! */
277 \f
278 /* GCSE global vars. */
279
280 /* -dG dump file. */
281 static FILE *gcse_file;
282
283 /* Note whether or not we should run jump optimization after gcse. We
284 want to do this for two cases.
285
286 * If we changed any jumps via cprop.
287
288 * If we added any labels via edge splitting. */
289
290 static int run_jump_opt_after_gcse;
291
292 /* Bitmaps are normally not included in debugging dumps.
293 However it's useful to be able to print them from GDB.
294 We could create special functions for this, but it's simpler to
295 just allow passing stderr to the dump_foo fns. Since stderr can
296 be a macro, we store a copy here. */
297 static FILE *debug_stderr;
298
299 /* An obstack for our working variables. */
300 static struct obstack gcse_obstack;
301
302 /* Non-zero for each mode that supports (set (reg) (reg)).
303 This is trivially true for integer and floating point values.
304 It may or may not be true for condition codes. */
305 static char can_copy_p[(int) NUM_MACHINE_MODES];
306
307 /* Non-zero if can_copy_p has been initialized. */
308 static int can_copy_init_p;
309
310 struct reg_use {rtx reg_rtx; };
311
312 /* Hash table of expressions. */
313
314 struct expr
315 {
316 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
317 rtx expr;
318 /* Index in the available expression bitmaps. */
319 int bitmap_index;
320 /* Next entry with the same hash. */
321 struct expr *next_same_hash;
322 /* List of anticipatable occurrences in basic blocks in the function.
323 An "anticipatable occurrence" is one that is the first occurrence in the
324 basic block, the operands are not modified in the basic block prior
325 to the occurrence and the output is not used between the start of
326 the block and the occurrence. */
327 struct occr *antic_occr;
328 /* List of available occurrence in basic blocks in the function.
329 An "available occurrence" is one that is the last occurrence in the
330 basic block and the operands are not modified by following statements in
331 the basic block [including this insn]. */
332 struct occr *avail_occr;
333 /* Non-null if the computation is PRE redundant.
334 The value is the newly created pseudo-reg to record a copy of the
335 expression in all the places that reach the redundant copy. */
336 rtx reaching_reg;
337 };
338
339 /* Occurrence of an expression.
340 There is one per basic block. If a pattern appears more than once the
341 last appearance is used [or first for anticipatable expressions]. */
342
343 struct occr
344 {
345 /* Next occurrence of this expression. */
346 struct occr *next;
347 /* The insn that computes the expression. */
348 rtx insn;
349 /* Non-zero if this [anticipatable] occurrence has been deleted. */
350 char deleted_p;
351 /* Non-zero if this [available] occurrence has been copied to
352 reaching_reg. */
353 /* ??? This is mutually exclusive with deleted_p, so they could share
354 the same byte. */
355 char copied_p;
356 };
357
358 /* Expression and copy propagation hash tables.
359 Each hash table is an array of buckets.
360 ??? It is known that if it were an array of entries, structure elements
361 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
362 not clear whether in the final analysis a sufficient amount of memory would
363 be saved as the size of the available expression bitmaps would be larger
364 [one could build a mapping table without holes afterwards though].
365 Someday I'll perform the computation and figure it out. */
366
367 /* Total size of the expression hash table, in elements. */
368 static unsigned int expr_hash_table_size;
369
370 /* The table itself.
371 This is an array of `expr_hash_table_size' elements. */
372 static struct expr **expr_hash_table;
373
374 /* Total size of the copy propagation hash table, in elements. */
375 static int set_hash_table_size;
376
377 /* The table itself.
378 This is an array of `set_hash_table_size' elements. */
379 static struct expr **set_hash_table;
380
381 /* Mapping of uids to cuids.
382 Only real insns get cuids. */
383 static int *uid_cuid;
384
385 /* Highest UID in UID_CUID. */
386 static int max_uid;
387
388 /* Get the cuid of an insn. */
389 #ifdef ENABLE_CHECKING
390 #define INSN_CUID(INSN) (INSN_UID (INSN) > max_uid ? (abort (), 0) : uid_cuid[INSN_UID (INSN)])
391 #else
392 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
393 #endif
394
395 /* Number of cuids. */
396 static int max_cuid;
397
398 /* Mapping of cuids to insns. */
399 static rtx *cuid_insn;
400
401 /* Get insn from cuid. */
402 #define CUID_INSN(CUID) (cuid_insn[CUID])
403
404 /* Maximum register number in function prior to doing gcse + 1.
405 Registers created during this pass have regno >= max_gcse_regno.
406 This is named with "gcse" to not collide with global of same name. */
407 static unsigned int max_gcse_regno;
408
409 /* Maximum number of cse-able expressions found. */
410 static int n_exprs;
411
412 /* Maximum number of assignments for copy propagation found. */
413 static int n_sets;
414
415 /* Table of registers that are modified.
416
417 For each register, each element is a list of places where the pseudo-reg
418 is set.
419
420 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
421 requires knowledge of which blocks kill which regs [and thus could use
422 a bitmap instead of the lists `reg_set_table' uses].
423
424 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
425 num-regs) [however perhaps it may be useful to keep the data as is]. One
426 advantage of recording things this way is that `reg_set_table' is fairly
427 sparse with respect to pseudo regs but for hard regs could be fairly dense
428 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
429 up functions like compute_transp since in the case of pseudo-regs we only
430 need to iterate over the number of times a pseudo-reg is set, not over the
431 number of basic blocks [clearly there is a bit of a slow down in the cases
432 where a pseudo is set more than once in a block, however it is believed
433 that the net effect is to speed things up]. This isn't done for hard-regs
434 because recording call-clobbered hard-regs in `reg_set_table' at each
435 function call can consume a fair bit of memory, and iterating over
436 hard-regs stored this way in compute_transp will be more expensive. */
437
438 typedef struct reg_set
439 {
440 /* The next setting of this register. */
441 struct reg_set *next;
442 /* The insn where it was set. */
443 rtx insn;
444 } reg_set;
445
446 static reg_set **reg_set_table;
447
448 /* Size of `reg_set_table'.
449 The table starts out at max_gcse_regno + slop, and is enlarged as
450 necessary. */
451 static int reg_set_table_size;
452
453 /* Amount to grow `reg_set_table' by when it's full. */
454 #define REG_SET_TABLE_SLOP 100
455
456 /* Bitmap containing one bit for each register in the program.
457 Used when performing GCSE to track which registers have been set since
458 the start of the basic block. */
459 static sbitmap reg_set_bitmap;
460
461 /* For each block, a bitmap of registers set in the block.
462 This is used by expr_killed_p and compute_transp.
463 It is computed during hash table computation and not by compute_sets
464 as it includes registers added since the last pass (or between cprop and
465 gcse) and it's currently not easy to realloc sbitmap vectors. */
466 static sbitmap *reg_set_in_block;
467
468 /* For each block, non-zero if memory is set in that block.
469 This is computed during hash table computation and is used by
470 expr_killed_p and compute_transp.
471 ??? Handling of memory is very simple, we don't make any attempt
472 to optimize things (later).
473 ??? This can be computed by compute_sets since the information
474 doesn't change. */
475 static char *mem_set_in_block;
476
477 /* Various variables for statistics gathering. */
478
479 /* Memory used in a pass.
480 This isn't intended to be absolutely precise. Its intent is only
481 to keep an eye on memory usage. */
482 static int bytes_used;
483
484 /* GCSE substitutions made. */
485 static int gcse_subst_count;
486 /* Number of copy instructions created. */
487 static int gcse_create_count;
488 /* Number of constants propagated. */
489 static int const_prop_count;
490 /* Number of copys propagated. */
491 static int copy_prop_count;
492 \f
493 /* These variables are used by classic GCSE.
494 Normally they'd be defined a bit later, but `rd_gen' needs to
495 be declared sooner. */
496
497 /* Each block has a bitmap of each type.
498 The length of each blocks bitmap is:
499
500 max_cuid - for reaching definitions
501 n_exprs - for available expressions
502
503 Thus we view the bitmaps as 2 dimensional arrays. i.e.
504 rd_kill[block_num][cuid_num]
505 ae_kill[block_num][expr_num] */
506
507 /* For reaching defs */
508 static sbitmap *rd_kill, *rd_gen, *reaching_defs, *rd_out;
509
510 /* for available exprs */
511 static sbitmap *ae_kill, *ae_gen, *ae_in, *ae_out;
512
513 /* Objects of this type are passed around by the null-pointer check
514 removal routines. */
515 struct null_pointer_info
516 {
517 /* The basic block being processed. */
518 int current_block;
519 /* The first register to be handled in this pass. */
520 unsigned int min_reg;
521 /* One greater than the last register to be handled in this pass. */
522 unsigned int max_reg;
523 sbitmap *nonnull_local;
524 sbitmap *nonnull_killed;
525 };
526 \f
527 static void compute_can_copy PARAMS ((void));
528 static char *gmalloc PARAMS ((unsigned int));
529 static char *grealloc PARAMS ((char *, unsigned int));
530 static char *gcse_alloc PARAMS ((unsigned long));
531 static void alloc_gcse_mem PARAMS ((rtx));
532 static void free_gcse_mem PARAMS ((void));
533 static void alloc_reg_set_mem PARAMS ((int));
534 static void free_reg_set_mem PARAMS ((void));
535 static int get_bitmap_width PARAMS ((int, int, int));
536 static void record_one_set PARAMS ((int, rtx));
537 static void record_set_info PARAMS ((rtx, rtx, void *));
538 static void compute_sets PARAMS ((rtx));
539 static void hash_scan_insn PARAMS ((rtx, int, int));
540 static void hash_scan_set PARAMS ((rtx, rtx, int));
541 static void hash_scan_clobber PARAMS ((rtx, rtx));
542 static void hash_scan_call PARAMS ((rtx, rtx));
543 static int want_to_gcse_p PARAMS ((rtx));
544 static int oprs_unchanged_p PARAMS ((rtx, rtx, int));
545 static int oprs_anticipatable_p PARAMS ((rtx, rtx));
546 static int oprs_available_p PARAMS ((rtx, rtx));
547 static void insert_expr_in_table PARAMS ((rtx, enum machine_mode, rtx,
548 int, int));
549 static void insert_set_in_table PARAMS ((rtx, rtx));
550 static unsigned int hash_expr PARAMS ((rtx, enum machine_mode, int *, int));
551 static unsigned int hash_expr_1 PARAMS ((rtx, enum machine_mode, int *));
552 static unsigned int hash_set PARAMS ((int, int));
553 static int expr_equiv_p PARAMS ((rtx, rtx));
554 static void record_last_reg_set_info PARAMS ((rtx, int));
555 static void record_last_mem_set_info PARAMS ((rtx));
556 static void record_last_set_info PARAMS ((rtx, rtx, void *));
557 static void compute_hash_table PARAMS ((int));
558 static void alloc_set_hash_table PARAMS ((int));
559 static void free_set_hash_table PARAMS ((void));
560 static void compute_set_hash_table PARAMS ((void));
561 static void alloc_expr_hash_table PARAMS ((unsigned int));
562 static void free_expr_hash_table PARAMS ((void));
563 static void compute_expr_hash_table PARAMS ((void));
564 static void dump_hash_table PARAMS ((FILE *, const char *, struct expr **,
565 int, int));
566 static struct expr *lookup_expr PARAMS ((rtx));
567 static struct expr *lookup_set PARAMS ((unsigned int, rtx));
568 static struct expr *next_set PARAMS ((unsigned int, struct expr *));
569 static void reset_opr_set_tables PARAMS ((void));
570 static int oprs_not_set_p PARAMS ((rtx, rtx));
571 static void mark_call PARAMS ((rtx));
572 static void mark_set PARAMS ((rtx, rtx));
573 static void mark_clobber PARAMS ((rtx, rtx));
574 static void mark_oprs_set PARAMS ((rtx));
575 static void alloc_cprop_mem PARAMS ((int, int));
576 static void free_cprop_mem PARAMS ((void));
577 static void compute_transp PARAMS ((rtx, int, sbitmap *, int));
578 static void compute_transpout PARAMS ((void));
579 static void compute_local_properties PARAMS ((sbitmap *, sbitmap *, sbitmap *,
580 int));
581 static void compute_cprop_data PARAMS ((void));
582 static void find_used_regs PARAMS ((rtx));
583 static int try_replace_reg PARAMS ((rtx, rtx, rtx));
584 static struct expr *find_avail_set PARAMS ((int, rtx));
585 static int cprop_jump PARAMS ((rtx, rtx, struct reg_use *, rtx));
586 #ifdef HAVE_cc0
587 static int cprop_cc0_jump PARAMS ((rtx, struct reg_use *, rtx));
588 #endif
589 static int cprop_insn PARAMS ((rtx, int));
590 static int cprop PARAMS ((int));
591 static int one_cprop_pass PARAMS ((int, int));
592 static void alloc_pre_mem PARAMS ((int, int));
593 static void free_pre_mem PARAMS ((void));
594 static void compute_pre_data PARAMS ((void));
595 static int pre_expr_reaches_here_p PARAMS ((int, struct expr *, int));
596 static void insert_insn_end_bb PARAMS ((struct expr *, int, int));
597 static void pre_insert_copy_insn PARAMS ((struct expr *, rtx));
598 static void pre_insert_copies PARAMS ((void));
599 static int pre_delete PARAMS ((void));
600 static int pre_gcse PARAMS ((void));
601 static int one_pre_gcse_pass PARAMS ((int));
602 static void add_label_notes PARAMS ((rtx, rtx));
603 static void alloc_code_hoist_mem PARAMS ((int, int));
604 static void free_code_hoist_mem PARAMS ((void));
605 static void compute_code_hoist_vbeinout PARAMS ((void));
606 static void compute_code_hoist_data PARAMS ((void));
607 static int hoist_expr_reaches_here_p PARAMS ((int, int, int, char *));
608 static void hoist_code PARAMS ((void));
609 static int one_code_hoisting_pass PARAMS ((void));
610 static void alloc_rd_mem PARAMS ((int, int));
611 static void free_rd_mem PARAMS ((void));
612 static void handle_rd_kill_set PARAMS ((rtx, int, int));
613 static void compute_kill_rd PARAMS ((void));
614 static void compute_rd PARAMS ((void));
615 static void alloc_avail_expr_mem PARAMS ((int, int));
616 static void free_avail_expr_mem PARAMS ((void));
617 static void compute_ae_gen PARAMS ((void));
618 static int expr_killed_p PARAMS ((rtx, int));
619 static void compute_ae_kill PARAMS ((sbitmap *, sbitmap *));
620 static int expr_reaches_here_p PARAMS ((struct occr *, struct expr *,
621 int, int));
622 static rtx computing_insn PARAMS ((struct expr *, rtx));
623 static int def_reaches_here_p PARAMS ((rtx, rtx));
624 static int can_disregard_other_sets PARAMS ((struct reg_set **, rtx, int));
625 static int handle_avail_expr PARAMS ((rtx, struct expr *));
626 static int classic_gcse PARAMS ((void));
627 static int one_classic_gcse_pass PARAMS ((int));
628 static void invalidate_nonnull_info PARAMS ((rtx, rtx, void *));
629 static void delete_null_pointer_checks_1 PARAMS ((unsigned int *, sbitmap *,
630 sbitmap *,
631 struct null_pointer_info *));
632 static rtx process_insert_insn PARAMS ((struct expr *));
633 static int pre_edge_insert PARAMS ((struct edge_list *, struct expr **));
634 static int expr_reaches_here_p_work PARAMS ((struct occr *, struct expr *,
635 int, int, char *));
636 static int pre_expr_reaches_here_p_work PARAMS ((int, struct expr *,
637 int, char *));
638 \f
639 /* Entry point for global common subexpression elimination.
640 F is the first instruction in the function. */
641
642 int
643 gcse_main (f, file)
644 rtx f;
645 FILE *file;
646 {
647 int changed, pass;
648 /* Bytes used at start of pass. */
649 int initial_bytes_used;
650 /* Maximum number of bytes used by a pass. */
651 int max_pass_bytes;
652 /* Point to release obstack data from for each pass. */
653 char *gcse_obstack_bottom;
654
655 /* We do not construct an accurate cfg in functions which call
656 setjmp, so just punt to be safe. */
657 if (current_function_calls_setjmp)
658 return 0;
659
660 /* Assume that we do not need to run jump optimizations after gcse. */
661 run_jump_opt_after_gcse = 0;
662
663 /* For calling dump_foo fns from gdb. */
664 debug_stderr = stderr;
665 gcse_file = file;
666
667 /* Identify the basic block information for this function, including
668 successors and predecessors. */
669 max_gcse_regno = max_reg_num ();
670
671 if (file)
672 dump_flow_info (file);
673
674 /* Return if there's nothing to do. */
675 if (n_basic_blocks <= 1)
676 return 0;
677
678 /* Trying to perform global optimizations on flow graphs which have
679 a high connectivity will take a long time and is unlikely to be
680 particularly useful.
681
682 In normal circumstances a cfg should have about twice has many edges
683 as blocks. But we do not want to punish small functions which have
684 a couple switch statements. So we require a relatively large number
685 of basic blocks and the ratio of edges to blocks to be high. */
686 if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
687 return 0;
688
689 /* See what modes support reg/reg copy operations. */
690 if (! can_copy_init_p)
691 {
692 compute_can_copy ();
693 can_copy_init_p = 1;
694 }
695
696 gcc_obstack_init (&gcse_obstack);
697 bytes_used = 0;
698
699 /* Record where pseudo-registers are set. This data is kept accurate
700 during each pass. ??? We could also record hard-reg information here
701 [since it's unchanging], however it is currently done during hash table
702 computation.
703
704 It may be tempting to compute MEM set information here too, but MEM sets
705 will be subject to code motion one day and thus we need to compute
706 information about memory sets when we build the hash tables. */
707
708 alloc_reg_set_mem (max_gcse_regno);
709 compute_sets (f);
710
711 pass = 0;
712 initial_bytes_used = bytes_used;
713 max_pass_bytes = 0;
714 gcse_obstack_bottom = gcse_alloc (1);
715 changed = 1;
716 while (changed && pass < MAX_PASSES)
717 {
718 changed = 0;
719 if (file)
720 fprintf (file, "GCSE pass %d\n\n", pass + 1);
721
722 /* Initialize bytes_used to the space for the pred/succ lists,
723 and the reg_set_table data. */
724 bytes_used = initial_bytes_used;
725
726 /* Each pass may create new registers, so recalculate each time. */
727 max_gcse_regno = max_reg_num ();
728
729 alloc_gcse_mem (f);
730
731 /* Don't allow constant propagation to modify jumps
732 during this pass. */
733 changed = one_cprop_pass (pass + 1, 0);
734
735 if (optimize_size)
736 changed |= one_classic_gcse_pass (pass + 1);
737 else
738 {
739 changed |= one_pre_gcse_pass (pass + 1);
740 free_reg_set_mem ();
741 alloc_reg_set_mem (max_reg_num ());
742 compute_sets (f);
743 run_jump_opt_after_gcse = 1;
744 }
745
746 if (max_pass_bytes < bytes_used)
747 max_pass_bytes = bytes_used;
748
749 /* Free up memory, then reallocate for code hoisting. We can
750 not re-use the existing allocated memory because the tables
751 will not have info for the insns or registers created by
752 partial redundancy elimination. */
753 free_gcse_mem ();
754
755 /* It does not make sense to run code hoisting unless we optimizing
756 for code size -- it rarely makes programs faster, and can make
757 them bigger if we did partial redundancy elimination (when optimizing
758 for space, we use a classic gcse algorithm instead of partial
759 redundancy algorithms). */
760 if (optimize_size)
761 {
762 max_gcse_regno = max_reg_num ();
763 alloc_gcse_mem (f);
764 changed |= one_code_hoisting_pass ();
765 free_gcse_mem ();
766
767 if (max_pass_bytes < bytes_used)
768 max_pass_bytes = bytes_used;
769 }
770
771 if (file)
772 {
773 fprintf (file, "\n");
774 fflush (file);
775 }
776
777 obstack_free (&gcse_obstack, gcse_obstack_bottom);
778 pass++;
779 }
780
781 /* Do one last pass of copy propagation, including cprop into
782 conditional jumps. */
783
784 max_gcse_regno = max_reg_num ();
785 alloc_gcse_mem (f);
786 /* This time, go ahead and allow cprop to alter jumps. */
787 one_cprop_pass (pass + 1, 1);
788 free_gcse_mem ();
789
790 if (file)
791 {
792 fprintf (file, "GCSE of %s: %d basic blocks, ",
793 current_function_name, n_basic_blocks);
794 fprintf (file, "%d pass%s, %d bytes\n\n",
795 pass, pass > 1 ? "es" : "", max_pass_bytes);
796 }
797
798 obstack_free (&gcse_obstack, NULL_PTR);
799 free_reg_set_mem ();
800 return run_jump_opt_after_gcse;
801 }
802 \f
803 /* Misc. utilities. */
804
805 /* Compute which modes support reg/reg copy operations. */
806
807 static void
808 compute_can_copy ()
809 {
810 int i;
811 #ifndef AVOID_CCMODE_COPIES
812 rtx reg,insn;
813 #endif
814 char *free_point = (char *) oballoc (1);
815
816 bzero (can_copy_p, NUM_MACHINE_MODES);
817
818 start_sequence ();
819 for (i = 0; i < NUM_MACHINE_MODES; i++)
820 if (GET_MODE_CLASS (i) == MODE_CC)
821 {
822 #ifdef AVOID_CCMODE_COPIES
823 can_copy_p[i] = 0;
824 #else
825 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
826 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
827 if (recog (PATTERN (insn), insn, NULL_PTR) >= 0)
828 can_copy_p[i] = 1;
829 #endif
830 }
831 else
832 can_copy_p[i] = 1;
833
834 end_sequence ();
835
836 /* Free the objects we just allocated. */
837 obfree (free_point);
838 }
839 \f
840 /* Cover function to xmalloc to record bytes allocated. */
841
842 static char *
843 gmalloc (size)
844 unsigned int size;
845 {
846 bytes_used += size;
847 return xmalloc (size);
848 }
849
850 /* Cover function to xrealloc.
851 We don't record the additional size since we don't know it.
852 It won't affect memory usage stats much anyway. */
853
854 static char *
855 grealloc (ptr, size)
856 char *ptr;
857 unsigned int size;
858 {
859 return xrealloc (ptr, size);
860 }
861
862 /* Cover function to obstack_alloc.
863 We don't need to record the bytes allocated here since
864 obstack_chunk_alloc is set to gmalloc. */
865
866 static char *
867 gcse_alloc (size)
868 unsigned long size;
869 {
870 return (char *) obstack_alloc (&gcse_obstack, size);
871 }
872
873 /* Allocate memory for the cuid mapping array,
874 and reg/memory set tracking tables.
875
876 This is called at the start of each pass. */
877
878 static void
879 alloc_gcse_mem (f)
880 rtx f;
881 {
882 int i,n;
883 rtx insn;
884
885 /* Find the largest UID and create a mapping from UIDs to CUIDs.
886 CUIDs are like UIDs except they increase monotonically, have no gaps,
887 and only apply to real insns. */
888
889 max_uid = get_max_uid ();
890 n = (max_uid + 1) * sizeof (int);
891 uid_cuid = (int *) gmalloc (n);
892 bzero ((char *) uid_cuid, n);
893 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
894 {
895 if (INSN_P (insn))
896 uid_cuid[INSN_UID (insn)] = i++;
897 else
898 uid_cuid[INSN_UID (insn)] = i;
899 }
900
901 /* Create a table mapping cuids to insns. */
902
903 max_cuid = i;
904 n = (max_cuid + 1) * sizeof (rtx);
905 cuid_insn = (rtx *) gmalloc (n);
906 bzero ((char *) cuid_insn, n);
907 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
908 if (INSN_P (insn))
909 CUID_INSN (i++) = insn;
910
911 /* Allocate vars to track sets of regs. */
912 reg_set_bitmap = (sbitmap) sbitmap_alloc (max_gcse_regno);
913
914 /* Allocate vars to track sets of regs, memory per block. */
915 reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks,
916 max_gcse_regno);
917 mem_set_in_block = (char *) gmalloc (n_basic_blocks);
918 }
919
920 /* Free memory allocated by alloc_gcse_mem. */
921
922 static void
923 free_gcse_mem ()
924 {
925 free (uid_cuid);
926 free (cuid_insn);
927
928 free (reg_set_bitmap);
929
930 free (reg_set_in_block);
931 free (mem_set_in_block);
932 }
933
934 /* Many of the global optimization algorithms work by solving dataflow
935 equations for various expressions. Initially, some local value is
936 computed for each expression in each block. Then, the values across the
937 various blocks are combined (by following flow graph edges) to arrive at
938 global values. Conceptually, each set of equations is independent. We
939 may therefore solve all the equations in parallel, solve them one at a
940 time, or pick any intermediate approach.
941
942 When you're going to need N two-dimensional bitmaps, each X (say, the
943 number of blocks) by Y (say, the number of expressions), call this
944 function. It's not important what X and Y represent; only that Y
945 correspond to the things that can be done in parallel. This function will
946 return an appropriate chunking factor C; you should solve C sets of
947 equations in parallel. By going through this function, we can easily
948 trade space against time; by solving fewer equations in parallel we use
949 less space. */
950
951 static int
952 get_bitmap_width (n, x, y)
953 int n;
954 int x;
955 int y;
956 {
957 /* It's not really worth figuring out *exactly* how much memory will
958 be used by a particular choice. The important thing is to get
959 something approximately right. */
960 size_t max_bitmap_memory = 10 * 1024 * 1024;
961
962 /* The number of bytes we'd use for a single column of minimum
963 width. */
964 size_t column_size = n * x * sizeof (SBITMAP_ELT_TYPE);
965
966 /* Often, it's reasonable just to solve all the equations in
967 parallel. */
968 if (column_size * SBITMAP_SET_SIZE (y) <= max_bitmap_memory)
969 return y;
970
971 /* Otherwise, pick the largest width we can, without going over the
972 limit. */
973 return SBITMAP_ELT_BITS * ((max_bitmap_memory + column_size - 1)
974 / column_size);
975 }
976 \f
977 /* Compute the local properties of each recorded expression.
978
979 Local properties are those that are defined by the block, irrespective of
980 other blocks.
981
982 An expression is transparent in a block if its operands are not modified
983 in the block.
984
985 An expression is computed (locally available) in a block if it is computed
986 at least once and expression would contain the same value if the
987 computation was moved to the end of the block.
988
989 An expression is locally anticipatable in a block if it is computed at
990 least once and expression would contain the same value if the computation
991 was moved to the beginning of the block.
992
993 We call this routine for cprop, pre and code hoisting. They all compute
994 basically the same information and thus can easily share this code.
995
996 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
997 properties. If NULL, then it is not necessary to compute or record that
998 particular property.
999
1000 SETP controls which hash table to look at. If zero, this routine looks at
1001 the expr hash table; if nonzero this routine looks at the set hash table.
1002 Additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1003 ABSALTERED. */
1004
1005 static void
1006 compute_local_properties (transp, comp, antloc, setp)
1007 sbitmap *transp;
1008 sbitmap *comp;
1009 sbitmap *antloc;
1010 int setp;
1011 {
1012 unsigned int i, hash_table_size;
1013 struct expr **hash_table;
1014
1015 /* Initialize any bitmaps that were passed in. */
1016 if (transp)
1017 {
1018 if (setp)
1019 sbitmap_vector_zero (transp, n_basic_blocks);
1020 else
1021 sbitmap_vector_ones (transp, n_basic_blocks);
1022 }
1023
1024 if (comp)
1025 sbitmap_vector_zero (comp, n_basic_blocks);
1026 if (antloc)
1027 sbitmap_vector_zero (antloc, n_basic_blocks);
1028
1029 /* We use the same code for cprop, pre and hoisting. For cprop
1030 we care about the set hash table, for pre and hoisting we
1031 care about the expr hash table. */
1032 hash_table_size = setp ? set_hash_table_size : expr_hash_table_size;
1033 hash_table = setp ? set_hash_table : expr_hash_table;
1034
1035 for (i = 0; i < hash_table_size; i++)
1036 {
1037 struct expr *expr;
1038
1039 for (expr = hash_table[i]; expr != NULL; expr = expr->next_same_hash)
1040 {
1041 int indx = expr->bitmap_index;
1042 struct occr *occr;
1043
1044 /* The expression is transparent in this block if it is not killed.
1045 We start by assuming all are transparent [none are killed], and
1046 then reset the bits for those that are. */
1047 if (transp)
1048 compute_transp (expr->expr, indx, transp, setp);
1049
1050 /* The occurrences recorded in antic_occr are exactly those that
1051 we want to set to non-zero in ANTLOC. */
1052 if (antloc)
1053 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1054 {
1055 SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
1056
1057 /* While we're scanning the table, this is a good place to
1058 initialize this. */
1059 occr->deleted_p = 0;
1060 }
1061
1062 /* The occurrences recorded in avail_occr are exactly those that
1063 we want to set to non-zero in COMP. */
1064 if (comp)
1065 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1066 {
1067 SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
1068
1069 /* While we're scanning the table, this is a good place to
1070 initialize this. */
1071 occr->copied_p = 0;
1072 }
1073
1074 /* While we're scanning the table, this is a good place to
1075 initialize this. */
1076 expr->reaching_reg = 0;
1077 }
1078 }
1079 }
1080 \f
1081 /* Register set information.
1082
1083 `reg_set_table' records where each register is set or otherwise
1084 modified. */
1085
1086 static struct obstack reg_set_obstack;
1087
1088 static void
1089 alloc_reg_set_mem (n_regs)
1090 int n_regs;
1091 {
1092 unsigned int n;
1093
1094 reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
1095 n = reg_set_table_size * sizeof (struct reg_set *);
1096 reg_set_table = (struct reg_set **) gmalloc (n);
1097 bzero ((char *) reg_set_table, n);
1098
1099 gcc_obstack_init (&reg_set_obstack);
1100 }
1101
1102 static void
1103 free_reg_set_mem ()
1104 {
1105 free (reg_set_table);
1106 obstack_free (&reg_set_obstack, NULL_PTR);
1107 }
1108
1109 /* Record REGNO in the reg_set table. */
1110
1111 static void
1112 record_one_set (regno, insn)
1113 int regno;
1114 rtx insn;
1115 {
1116 /* allocate a new reg_set element and link it onto the list */
1117 struct reg_set *new_reg_info;
1118
1119 /* If the table isn't big enough, enlarge it. */
1120 if (regno >= reg_set_table_size)
1121 {
1122 int new_size = regno + REG_SET_TABLE_SLOP;
1123
1124 reg_set_table
1125 = (struct reg_set **) grealloc ((char *) reg_set_table,
1126 new_size * sizeof (struct reg_set *));
1127 bzero ((char *) (reg_set_table + reg_set_table_size),
1128 (new_size - reg_set_table_size) * sizeof (struct reg_set *));
1129 reg_set_table_size = new_size;
1130 }
1131
1132 new_reg_info = (struct reg_set *) obstack_alloc (&reg_set_obstack,
1133 sizeof (struct reg_set));
1134 bytes_used += sizeof (struct reg_set);
1135 new_reg_info->insn = insn;
1136 new_reg_info->next = reg_set_table[regno];
1137 reg_set_table[regno] = new_reg_info;
1138 }
1139
1140 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1141 an insn. The DATA is really the instruction in which the SET is
1142 occurring. */
1143
1144 static void
1145 record_set_info (dest, setter, data)
1146 rtx dest, setter ATTRIBUTE_UNUSED;
1147 void *data;
1148 {
1149 rtx record_set_insn = (rtx) data;
1150
1151 if (GET_CODE (dest) == REG && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
1152 record_one_set (REGNO (dest), record_set_insn);
1153 }
1154
1155 /* Scan the function and record each set of each pseudo-register.
1156
1157 This is called once, at the start of the gcse pass. See the comments for
1158 `reg_set_table' for further documenation. */
1159
1160 static void
1161 compute_sets (f)
1162 rtx f;
1163 {
1164 rtx insn;
1165
1166 for (insn = f; insn != 0; insn = NEXT_INSN (insn))
1167 if (INSN_P (insn))
1168 note_stores (PATTERN (insn), record_set_info, insn);
1169 }
1170 \f
1171 /* Hash table support. */
1172
1173 /* For each register, the cuid of the first/last insn in the block to set it,
1174 or -1 if not set. */
1175 #define NEVER_SET -1
1176 static int *reg_first_set;
1177 static int *reg_last_set;
1178
1179 /* While computing "first/last set" info, this is the CUID of first/last insn
1180 to set memory or -1 if not set. `mem_last_set' is also used when
1181 performing GCSE to record whether memory has been set since the beginning
1182 of the block.
1183
1184 Note that handling of memory is very simple, we don't make any attempt
1185 to optimize things (later). */
1186 static int mem_first_set;
1187 static int mem_last_set;
1188
1189 /* Perform a quick check whether X, the source of a set, is something
1190 we want to consider for GCSE. */
1191
1192 static int
1193 want_to_gcse_p (x)
1194 rtx x;
1195 {
1196 switch (GET_CODE (x))
1197 {
1198 case REG:
1199 case SUBREG:
1200 case CONST_INT:
1201 case CONST_DOUBLE:
1202 case CALL:
1203 return 0;
1204
1205 default:
1206 break;
1207 }
1208
1209 return 1;
1210 }
1211
1212 /* Return non-zero if the operands of expression X are unchanged from the
1213 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1214 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1215
1216 static int
1217 oprs_unchanged_p (x, insn, avail_p)
1218 rtx x, insn;
1219 int avail_p;
1220 {
1221 int i, j;
1222 enum rtx_code code;
1223 const char *fmt;
1224
1225 if (x == 0)
1226 return 1;
1227
1228 code = GET_CODE (x);
1229 switch (code)
1230 {
1231 case REG:
1232 if (avail_p)
1233 return (reg_last_set[REGNO (x)] == NEVER_SET
1234 || reg_last_set[REGNO (x)] < INSN_CUID (insn));
1235 else
1236 return (reg_first_set[REGNO (x)] == NEVER_SET
1237 || reg_first_set[REGNO (x)] >= INSN_CUID (insn));
1238
1239 case MEM:
1240 if (avail_p && mem_last_set != NEVER_SET
1241 && mem_last_set >= INSN_CUID (insn))
1242 return 0;
1243 else if (! avail_p && mem_first_set != NEVER_SET
1244 && mem_first_set < INSN_CUID (insn))
1245 return 0;
1246 else
1247 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
1248
1249 case PRE_DEC:
1250 case PRE_INC:
1251 case POST_DEC:
1252 case POST_INC:
1253 case PRE_MODIFY:
1254 case POST_MODIFY:
1255 return 0;
1256
1257 case PC:
1258 case CC0: /*FIXME*/
1259 case CONST:
1260 case CONST_INT:
1261 case CONST_DOUBLE:
1262 case SYMBOL_REF:
1263 case LABEL_REF:
1264 case ADDR_VEC:
1265 case ADDR_DIFF_VEC:
1266 return 1;
1267
1268 default:
1269 break;
1270 }
1271
1272 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1273 {
1274 if (fmt[i] == 'e')
1275 {
1276 /* If we are about to do the last recursive call needed at this
1277 level, change it into iteration. This function is called enough
1278 to be worth it. */
1279 if (i == 0)
1280 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
1281
1282 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
1283 return 0;
1284 }
1285 else if (fmt[i] == 'E')
1286 for (j = 0; j < XVECLEN (x, i); j++)
1287 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
1288 return 0;
1289 }
1290
1291 return 1;
1292 }
1293
1294 /* Return non-zero if the operands of expression X are unchanged from
1295 the start of INSN's basic block up to but not including INSN. */
1296
1297 static int
1298 oprs_anticipatable_p (x, insn)
1299 rtx x, insn;
1300 {
1301 return oprs_unchanged_p (x, insn, 0);
1302 }
1303
1304 /* Return non-zero if the operands of expression X are unchanged from
1305 INSN to the end of INSN's basic block. */
1306
1307 static int
1308 oprs_available_p (x, insn)
1309 rtx x, insn;
1310 {
1311 return oprs_unchanged_p (x, insn, 1);
1312 }
1313
1314 /* Hash expression X.
1315
1316 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1317 indicating if a volatile operand is found or if the expression contains
1318 something we don't want to insert in the table.
1319
1320 ??? One might want to merge this with canon_hash. Later. */
1321
1322 static unsigned int
1323 hash_expr (x, mode, do_not_record_p, hash_table_size)
1324 rtx x;
1325 enum machine_mode mode;
1326 int *do_not_record_p;
1327 int hash_table_size;
1328 {
1329 unsigned int hash;
1330
1331 *do_not_record_p = 0;
1332
1333 hash = hash_expr_1 (x, mode, do_not_record_p);
1334 return hash % hash_table_size;
1335 }
1336
1337 /* Subroutine of hash_expr to do the actual work. */
1338
1339 static unsigned int
1340 hash_expr_1 (x, mode, do_not_record_p)
1341 rtx x;
1342 enum machine_mode mode;
1343 int *do_not_record_p;
1344 {
1345 int i, j;
1346 unsigned hash = 0;
1347 enum rtx_code code;
1348 const char *fmt;
1349
1350 /* Used to turn recursion into iteration. We can't rely on GCC's
1351 tail-recursion eliminatio since we need to keep accumulating values
1352 in HASH. */
1353
1354 if (x == 0)
1355 return hash;
1356
1357 repeat:
1358 code = GET_CODE (x);
1359 switch (code)
1360 {
1361 case REG:
1362 hash += ((unsigned int) REG << 7) + REGNO (x);
1363 return hash;
1364
1365 case CONST_INT:
1366 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
1367 + (unsigned int) INTVAL (x));
1368 return hash;
1369
1370 case CONST_DOUBLE:
1371 /* This is like the general case, except that it only counts
1372 the integers representing the constant. */
1373 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
1374 if (GET_MODE (x) != VOIDmode)
1375 for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
1376 hash += (unsigned int) XWINT (x, i);
1377 else
1378 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
1379 + (unsigned int) CONST_DOUBLE_HIGH (x));
1380 return hash;
1381
1382 /* Assume there is only one rtx object for any given label. */
1383 case LABEL_REF:
1384 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1385 differences and differences between each stage's debugging dumps. */
1386 hash += (((unsigned int) LABEL_REF << 7)
1387 + CODE_LABEL_NUMBER (XEXP (x, 0)));
1388 return hash;
1389
1390 case SYMBOL_REF:
1391 {
1392 /* Don't hash on the symbol's address to avoid bootstrap differences.
1393 Different hash values may cause expressions to be recorded in
1394 different orders and thus different registers to be used in the
1395 final assembler. This also avoids differences in the dump files
1396 between various stages. */
1397 unsigned int h = 0;
1398 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
1399
1400 while (*p)
1401 h += (h << 7) + *p++; /* ??? revisit */
1402
1403 hash += ((unsigned int) SYMBOL_REF << 7) + h;
1404 return hash;
1405 }
1406
1407 case MEM:
1408 if (MEM_VOLATILE_P (x))
1409 {
1410 *do_not_record_p = 1;
1411 return 0;
1412 }
1413
1414 hash += (unsigned int) MEM;
1415 hash += MEM_ALIAS_SET (x);
1416 x = XEXP (x, 0);
1417 goto repeat;
1418
1419 case PRE_DEC:
1420 case PRE_INC:
1421 case POST_DEC:
1422 case POST_INC:
1423 case PC:
1424 case CC0:
1425 case CALL:
1426 case UNSPEC_VOLATILE:
1427 *do_not_record_p = 1;
1428 return 0;
1429
1430 case ASM_OPERANDS:
1431 if (MEM_VOLATILE_P (x))
1432 {
1433 *do_not_record_p = 1;
1434 return 0;
1435 }
1436
1437 default:
1438 break;
1439 }
1440
1441 hash += (unsigned) code + (unsigned) GET_MODE (x);
1442 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1443 {
1444 if (fmt[i] == 'e')
1445 {
1446 /* If we are about to do the last recursive call
1447 needed at this level, change it into iteration.
1448 This function is called enough to be worth it. */
1449 if (i == 0)
1450 {
1451 x = XEXP (x, i);
1452 goto repeat;
1453 }
1454
1455 hash += hash_expr_1 (XEXP (x, i), 0, do_not_record_p);
1456 if (*do_not_record_p)
1457 return 0;
1458 }
1459
1460 else if (fmt[i] == 'E')
1461 for (j = 0; j < XVECLEN (x, i); j++)
1462 {
1463 hash += hash_expr_1 (XVECEXP (x, i, j), 0, do_not_record_p);
1464 if (*do_not_record_p)
1465 return 0;
1466 }
1467
1468 else if (fmt[i] == 's')
1469 {
1470 register const unsigned char *p =
1471 (const unsigned char *) XSTR (x, i);
1472
1473 if (p)
1474 while (*p)
1475 hash += *p++;
1476 }
1477 else if (fmt[i] == 'i')
1478 hash += (unsigned int) XINT (x, i);
1479 else
1480 abort ();
1481 }
1482
1483 return hash;
1484 }
1485
1486 /* Hash a set of register REGNO.
1487
1488 Sets are hashed on the register that is set. This simplifies the PRE copy
1489 propagation code.
1490
1491 ??? May need to make things more elaborate. Later, as necessary. */
1492
1493 static unsigned int
1494 hash_set (regno, hash_table_size)
1495 int regno;
1496 int hash_table_size;
1497 {
1498 unsigned int hash;
1499
1500 hash = regno;
1501 return hash % hash_table_size;
1502 }
1503
1504 /* Return non-zero if exp1 is equivalent to exp2.
1505 ??? Borrowed from cse.c. Might want to remerge with cse.c. Later. */
1506
1507 static int
1508 expr_equiv_p (x, y)
1509 rtx x, y;
1510 {
1511 register int i, j;
1512 register enum rtx_code code;
1513 register const char *fmt;
1514
1515 if (x == y)
1516 return 1;
1517
1518 if (x == 0 || y == 0)
1519 return x == y;
1520
1521 code = GET_CODE (x);
1522 if (code != GET_CODE (y))
1523 return 0;
1524
1525 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1526 if (GET_MODE (x) != GET_MODE (y))
1527 return 0;
1528
1529 switch (code)
1530 {
1531 case PC:
1532 case CC0:
1533 return x == y;
1534
1535 case CONST_INT:
1536 return INTVAL (x) == INTVAL (y);
1537
1538 case LABEL_REF:
1539 return XEXP (x, 0) == XEXP (y, 0);
1540
1541 case SYMBOL_REF:
1542 return XSTR (x, 0) == XSTR (y, 0);
1543
1544 case REG:
1545 return REGNO (x) == REGNO (y);
1546
1547 case MEM:
1548 /* Can't merge two expressions in different alias sets, since we can
1549 decide that the expression is transparent in a block when it isn't,
1550 due to it being set with the different alias set. */
1551 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
1552 return 0;
1553 break;
1554
1555 /* For commutative operations, check both orders. */
1556 case PLUS:
1557 case MULT:
1558 case AND:
1559 case IOR:
1560 case XOR:
1561 case NE:
1562 case EQ:
1563 return ((expr_equiv_p (XEXP (x, 0), XEXP (y, 0))
1564 && expr_equiv_p (XEXP (x, 1), XEXP (y, 1)))
1565 || (expr_equiv_p (XEXP (x, 0), XEXP (y, 1))
1566 && expr_equiv_p (XEXP (x, 1), XEXP (y, 0))));
1567
1568 default:
1569 break;
1570 }
1571
1572 /* Compare the elements. If any pair of corresponding elements
1573 fail to match, return 0 for the whole thing. */
1574
1575 fmt = GET_RTX_FORMAT (code);
1576 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1577 {
1578 switch (fmt[i])
1579 {
1580 case 'e':
1581 if (! expr_equiv_p (XEXP (x, i), XEXP (y, i)))
1582 return 0;
1583 break;
1584
1585 case 'E':
1586 if (XVECLEN (x, i) != XVECLEN (y, i))
1587 return 0;
1588 for (j = 0; j < XVECLEN (x, i); j++)
1589 if (! expr_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1590 return 0;
1591 break;
1592
1593 case 's':
1594 if (strcmp (XSTR (x, i), XSTR (y, i)))
1595 return 0;
1596 break;
1597
1598 case 'i':
1599 if (XINT (x, i) != XINT (y, i))
1600 return 0;
1601 break;
1602
1603 case 'w':
1604 if (XWINT (x, i) != XWINT (y, i))
1605 return 0;
1606 break;
1607
1608 case '0':
1609 break;
1610
1611 default:
1612 abort ();
1613 }
1614 }
1615
1616 return 1;
1617 }
1618
1619 /* Insert expression X in INSN in the hash table.
1620 If it is already present, record it as the last occurrence in INSN's
1621 basic block.
1622
1623 MODE is the mode of the value X is being stored into.
1624 It is only used if X is a CONST_INT.
1625
1626 ANTIC_P is non-zero if X is an anticipatable expression.
1627 AVAIL_P is non-zero if X is an available expression. */
1628
1629 static void
1630 insert_expr_in_table (x, mode, insn, antic_p, avail_p)
1631 rtx x;
1632 enum machine_mode mode;
1633 rtx insn;
1634 int antic_p, avail_p;
1635 {
1636 int found, do_not_record_p;
1637 unsigned int hash;
1638 struct expr *cur_expr, *last_expr = NULL;
1639 struct occr *antic_occr, *avail_occr;
1640 struct occr *last_occr = NULL;
1641
1642 hash = hash_expr (x, mode, &do_not_record_p, expr_hash_table_size);
1643
1644 /* Do not insert expression in table if it contains volatile operands,
1645 or if hash_expr determines the expression is something we don't want
1646 to or can't handle. */
1647 if (do_not_record_p)
1648 return;
1649
1650 cur_expr = expr_hash_table[hash];
1651 found = 0;
1652
1653 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1654 {
1655 /* If the expression isn't found, save a pointer to the end of
1656 the list. */
1657 last_expr = cur_expr;
1658 cur_expr = cur_expr->next_same_hash;
1659 }
1660
1661 if (! found)
1662 {
1663 cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
1664 bytes_used += sizeof (struct expr);
1665 if (expr_hash_table[hash] == NULL)
1666 /* This is the first pattern that hashed to this index. */
1667 expr_hash_table[hash] = cur_expr;
1668 else
1669 /* Add EXPR to end of this hash chain. */
1670 last_expr->next_same_hash = cur_expr;
1671
1672 /* Set the fields of the expr element. */
1673 cur_expr->expr = x;
1674 cur_expr->bitmap_index = n_exprs++;
1675 cur_expr->next_same_hash = NULL;
1676 cur_expr->antic_occr = NULL;
1677 cur_expr->avail_occr = NULL;
1678 }
1679
1680 /* Now record the occurrence(s). */
1681 if (antic_p)
1682 {
1683 antic_occr = cur_expr->antic_occr;
1684
1685 /* Search for another occurrence in the same basic block. */
1686 while (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
1687 {
1688 /* If an occurrence isn't found, save a pointer to the end of
1689 the list. */
1690 last_occr = antic_occr;
1691 antic_occr = antic_occr->next;
1692 }
1693
1694 if (antic_occr)
1695 /* Found another instance of the expression in the same basic block.
1696 Prefer the currently recorded one. We want the first one in the
1697 block and the block is scanned from start to end. */
1698 ; /* nothing to do */
1699 else
1700 {
1701 /* First occurrence of this expression in this basic block. */
1702 antic_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
1703 bytes_used += sizeof (struct occr);
1704 /* First occurrence of this expression in any block? */
1705 if (cur_expr->antic_occr == NULL)
1706 cur_expr->antic_occr = antic_occr;
1707 else
1708 last_occr->next = antic_occr;
1709
1710 antic_occr->insn = insn;
1711 antic_occr->next = NULL;
1712 }
1713 }
1714
1715 if (avail_p)
1716 {
1717 avail_occr = cur_expr->avail_occr;
1718
1719 /* Search for another occurrence in the same basic block. */
1720 while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
1721 {
1722 /* If an occurrence isn't found, save a pointer to the end of
1723 the list. */
1724 last_occr = avail_occr;
1725 avail_occr = avail_occr->next;
1726 }
1727
1728 if (avail_occr)
1729 /* Found another instance of the expression in the same basic block.
1730 Prefer this occurrence to the currently recorded one. We want
1731 the last one in the block and the block is scanned from start
1732 to end. */
1733 avail_occr->insn = insn;
1734 else
1735 {
1736 /* First occurrence of this expression in this basic block. */
1737 avail_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
1738 bytes_used += sizeof (struct occr);
1739
1740 /* First occurrence of this expression in any block? */
1741 if (cur_expr->avail_occr == NULL)
1742 cur_expr->avail_occr = avail_occr;
1743 else
1744 last_occr->next = avail_occr;
1745
1746 avail_occr->insn = insn;
1747 avail_occr->next = NULL;
1748 }
1749 }
1750 }
1751
1752 /* Insert pattern X in INSN in the hash table.
1753 X is a SET of a reg to either another reg or a constant.
1754 If it is already present, record it as the last occurrence in INSN's
1755 basic block. */
1756
1757 static void
1758 insert_set_in_table (x, insn)
1759 rtx x;
1760 rtx insn;
1761 {
1762 int found;
1763 unsigned int hash;
1764 struct expr *cur_expr, *last_expr = NULL;
1765 struct occr *cur_occr, *last_occr = NULL;
1766
1767 if (GET_CODE (x) != SET
1768 || GET_CODE (SET_DEST (x)) != REG)
1769 abort ();
1770
1771 hash = hash_set (REGNO (SET_DEST (x)), set_hash_table_size);
1772
1773 cur_expr = set_hash_table[hash];
1774 found = 0;
1775
1776 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1777 {
1778 /* If the expression isn't found, save a pointer to the end of
1779 the list. */
1780 last_expr = cur_expr;
1781 cur_expr = cur_expr->next_same_hash;
1782 }
1783
1784 if (! found)
1785 {
1786 cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
1787 bytes_used += sizeof (struct expr);
1788 if (set_hash_table[hash] == NULL)
1789 /* This is the first pattern that hashed to this index. */
1790 set_hash_table[hash] = cur_expr;
1791 else
1792 /* Add EXPR to end of this hash chain. */
1793 last_expr->next_same_hash = cur_expr;
1794
1795 /* Set the fields of the expr element.
1796 We must copy X because it can be modified when copy propagation is
1797 performed on its operands. */
1798 /* ??? Should this go in a different obstack? */
1799 cur_expr->expr = copy_rtx (x);
1800 cur_expr->bitmap_index = n_sets++;
1801 cur_expr->next_same_hash = NULL;
1802 cur_expr->antic_occr = NULL;
1803 cur_expr->avail_occr = NULL;
1804 }
1805
1806 /* Now record the occurrence. */
1807 cur_occr = cur_expr->avail_occr;
1808
1809 /* Search for another occurrence in the same basic block. */
1810 while (cur_occr && BLOCK_NUM (cur_occr->insn) != BLOCK_NUM (insn))
1811 {
1812 /* If an occurrence isn't found, save a pointer to the end of
1813 the list. */
1814 last_occr = cur_occr;
1815 cur_occr = cur_occr->next;
1816 }
1817
1818 if (cur_occr)
1819 /* Found another instance of the expression in the same basic block.
1820 Prefer this occurrence to the currently recorded one. We want the
1821 last one in the block and the block is scanned from start to end. */
1822 cur_occr->insn = insn;
1823 else
1824 {
1825 /* First occurrence of this expression in this basic block. */
1826 cur_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
1827 bytes_used += sizeof (struct occr);
1828
1829 /* First occurrence of this expression in any block? */
1830 if (cur_expr->avail_occr == NULL)
1831 cur_expr->avail_occr = cur_occr;
1832 else
1833 last_occr->next = cur_occr;
1834
1835 cur_occr->insn = insn;
1836 cur_occr->next = NULL;
1837 }
1838 }
1839
1840 /* Scan pattern PAT of INSN and add an entry to the hash table. If SET_P is
1841 non-zero, this is for the assignment hash table, otherwise it is for the
1842 expression hash table. */
1843
1844 static void
1845 hash_scan_set (pat, insn, set_p)
1846 rtx pat, insn;
1847 int set_p;
1848 {
1849 rtx src = SET_SRC (pat);
1850 rtx dest = SET_DEST (pat);
1851
1852 if (GET_CODE (src) == CALL)
1853 hash_scan_call (src, insn);
1854
1855 if (GET_CODE (dest) == REG)
1856 {
1857 int regno = REGNO (dest);
1858 rtx tmp;
1859
1860 /* Only record sets of pseudo-regs in the hash table. */
1861 if (! set_p
1862 && regno >= FIRST_PSEUDO_REGISTER
1863 /* Don't GCSE something if we can't do a reg/reg copy. */
1864 && can_copy_p [GET_MODE (dest)]
1865 /* Is SET_SRC something we want to gcse? */
1866 && want_to_gcse_p (src))
1867 {
1868 /* An expression is not anticipatable if its operands are
1869 modified before this insn. */
1870 int antic_p = oprs_anticipatable_p (src, insn);
1871 /* An expression is not available if its operands are
1872 subsequently modified, including this insn. */
1873 int avail_p = oprs_available_p (src, insn);
1874
1875 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p);
1876 }
1877
1878 /* Record sets for constant/copy propagation. */
1879 else if (set_p
1880 && regno >= FIRST_PSEUDO_REGISTER
1881 && ((GET_CODE (src) == REG
1882 && REGNO (src) >= FIRST_PSEUDO_REGISTER
1883 && can_copy_p [GET_MODE (dest)])
1884 || GET_CODE (src) == CONST_INT
1885 || GET_CODE (src) == SYMBOL_REF
1886 || GET_CODE (src) == CONST_DOUBLE)
1887 /* A copy is not available if its src or dest is subsequently
1888 modified. Here we want to search from INSN+1 on, but
1889 oprs_available_p searches from INSN on. */
1890 && (insn == BLOCK_END (BLOCK_NUM (insn))
1891 || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
1892 && oprs_available_p (pat, tmp))))
1893 insert_set_in_table (pat, insn);
1894 }
1895 }
1896
1897 static void
1898 hash_scan_clobber (x, insn)
1899 rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
1900 {
1901 /* Currently nothing to do. */
1902 }
1903
1904 static void
1905 hash_scan_call (x, insn)
1906 rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
1907 {
1908 /* Currently nothing to do. */
1909 }
1910
1911 /* Process INSN and add hash table entries as appropriate.
1912
1913 Only available expressions that set a single pseudo-reg are recorded.
1914
1915 Single sets in a PARALLEL could be handled, but it's an extra complication
1916 that isn't dealt with right now. The trick is handling the CLOBBERs that
1917 are also in the PARALLEL. Later.
1918
1919 If SET_P is non-zero, this is for the assignment hash table,
1920 otherwise it is for the expression hash table.
1921 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
1922 not record any expressions. */
1923
1924 static void
1925 hash_scan_insn (insn, set_p, in_libcall_block)
1926 rtx insn;
1927 int set_p;
1928 int in_libcall_block;
1929 {
1930 rtx pat = PATTERN (insn);
1931 int i;
1932
1933 /* Pick out the sets of INSN and for other forms of instructions record
1934 what's been modified. */
1935
1936 if (GET_CODE (pat) == SET && ! in_libcall_block)
1937 {
1938 /* Ignore obvious no-ops. */
1939 if (SET_SRC (pat) != SET_DEST (pat))
1940 hash_scan_set (pat, insn, set_p);
1941 }
1942 else if (GET_CODE (pat) == PARALLEL)
1943 for (i = 0; i < XVECLEN (pat, 0); i++)
1944 {
1945 rtx x = XVECEXP (pat, 0, i);
1946
1947 if (GET_CODE (x) == SET)
1948 {
1949 if (GET_CODE (SET_SRC (x)) == CALL)
1950 hash_scan_call (SET_SRC (x), insn);
1951 }
1952 else if (GET_CODE (x) == CLOBBER)
1953 hash_scan_clobber (x, insn);
1954 else if (GET_CODE (x) == CALL)
1955 hash_scan_call (x, insn);
1956 }
1957
1958 else if (GET_CODE (pat) == CLOBBER)
1959 hash_scan_clobber (pat, insn);
1960 else if (GET_CODE (pat) == CALL)
1961 hash_scan_call (pat, insn);
1962 }
1963
1964 static void
1965 dump_hash_table (file, name, table, table_size, total_size)
1966 FILE *file;
1967 const char *name;
1968 struct expr **table;
1969 int table_size, total_size;
1970 {
1971 int i;
1972 /* Flattened out table, so it's printed in proper order. */
1973 struct expr **flat_table;
1974 unsigned int *hash_val;
1975 struct expr *expr;
1976
1977 flat_table
1978 = (struct expr **) xcalloc (total_size, sizeof (struct expr *));
1979 hash_val = (unsigned int *) xmalloc (total_size * sizeof (unsigned int));
1980
1981 for (i = 0; i < table_size; i++)
1982 for (expr = table[i]; expr != NULL; expr = expr->next_same_hash)
1983 {
1984 flat_table[expr->bitmap_index] = expr;
1985 hash_val[expr->bitmap_index] = i;
1986 }
1987
1988 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1989 name, table_size, total_size);
1990
1991 for (i = 0; i < total_size; i++)
1992 if (flat_table[i] != 0)
1993 {
1994 expr = flat_table[i];
1995 fprintf (file, "Index %d (hash value %d)\n ",
1996 expr->bitmap_index, hash_val[i]);
1997 print_rtl (file, expr->expr);
1998 fprintf (file, "\n");
1999 }
2000
2001 fprintf (file, "\n");
2002
2003 free (flat_table);
2004 free (hash_val);
2005 }
2006
2007 /* Record register first/last/block set information for REGNO in INSN.
2008
2009 reg_first_set records the first place in the block where the register
2010 is set and is used to compute "anticipatability".
2011
2012 reg_last_set records the last place in the block where the register
2013 is set and is used to compute "availability".
2014
2015 reg_set_in_block records whether the register is set in the block
2016 and is used to compute "transparency". */
2017
2018 static void
2019 record_last_reg_set_info (insn, regno)
2020 rtx insn;
2021 int regno;
2022 {
2023 if (reg_first_set[regno] == NEVER_SET)
2024 reg_first_set[regno] = INSN_CUID (insn);
2025
2026 reg_last_set[regno] = INSN_CUID (insn);
2027 SET_BIT (reg_set_in_block[BLOCK_NUM (insn)], regno);
2028 }
2029
2030 /* Record memory first/last/block set information for INSN. */
2031
2032 static void
2033 record_last_mem_set_info (insn)
2034 rtx insn;
2035 {
2036 if (mem_first_set == NEVER_SET)
2037 mem_first_set = INSN_CUID (insn);
2038
2039 mem_last_set = INSN_CUID (insn);
2040 mem_set_in_block[BLOCK_NUM (insn)] = 1;
2041 }
2042
2043 /* Called from compute_hash_table via note_stores to handle one
2044 SET or CLOBBER in an insn. DATA is really the instruction in which
2045 the SET is taking place. */
2046
2047 static void
2048 record_last_set_info (dest, setter, data)
2049 rtx dest, setter ATTRIBUTE_UNUSED;
2050 void *data;
2051 {
2052 rtx last_set_insn = (rtx) data;
2053
2054 if (GET_CODE (dest) == SUBREG)
2055 dest = SUBREG_REG (dest);
2056
2057 if (GET_CODE (dest) == REG)
2058 record_last_reg_set_info (last_set_insn, REGNO (dest));
2059 else if (GET_CODE (dest) == MEM
2060 /* Ignore pushes, they clobber nothing. */
2061 && ! push_operand (dest, GET_MODE (dest)))
2062 record_last_mem_set_info (last_set_insn);
2063 }
2064
2065 /* Top level function to create an expression or assignment hash table.
2066
2067 Expression entries are placed in the hash table if
2068 - they are of the form (set (pseudo-reg) src),
2069 - src is something we want to perform GCSE on,
2070 - none of the operands are subsequently modified in the block
2071
2072 Assignment entries are placed in the hash table if
2073 - they are of the form (set (pseudo-reg) src),
2074 - src is something we want to perform const/copy propagation on,
2075 - none of the operands or target are subsequently modified in the block
2076
2077 Currently src must be a pseudo-reg or a const_int.
2078
2079 F is the first insn.
2080 SET_P is non-zero for computing the assignment hash table. */
2081
2082 static void
2083 compute_hash_table (set_p)
2084 int set_p;
2085 {
2086 int bb;
2087
2088 /* While we compute the hash table we also compute a bit array of which
2089 registers are set in which blocks.
2090 We also compute which blocks set memory, in the absence of aliasing
2091 support [which is TODO].
2092 ??? This isn't needed during const/copy propagation, but it's cheap to
2093 compute. Later. */
2094 sbitmap_vector_zero (reg_set_in_block, n_basic_blocks);
2095 bzero ((char *) mem_set_in_block, n_basic_blocks);
2096
2097 /* Some working arrays used to track first and last set in each block. */
2098 /* ??? One could use alloca here, but at some size a threshold is crossed
2099 beyond which one should use malloc. Are we at that threshold here? */
2100 reg_first_set = (int *) gmalloc (max_gcse_regno * sizeof (int));
2101 reg_last_set = (int *) gmalloc (max_gcse_regno * sizeof (int));
2102
2103 for (bb = 0; bb < n_basic_blocks; bb++)
2104 {
2105 rtx insn;
2106 unsigned int regno;
2107 int in_libcall_block;
2108 unsigned int i;
2109
2110 /* First pass over the instructions records information used to
2111 determine when registers and memory are first and last set.
2112 ??? The mem_set_in_block and hard-reg reg_set_in_block computation
2113 could be moved to compute_sets since they currently don't change. */
2114
2115 for (i = 0; i < max_gcse_regno; i++)
2116 reg_first_set[i] = reg_last_set[i] = NEVER_SET;
2117
2118 mem_first_set = NEVER_SET;
2119 mem_last_set = NEVER_SET;
2120
2121 for (insn = BLOCK_HEAD (bb);
2122 insn && insn != NEXT_INSN (BLOCK_END (bb));
2123 insn = NEXT_INSN (insn))
2124 {
2125 #ifdef NON_SAVING_SETJMP
2126 if (NON_SAVING_SETJMP && GET_CODE (insn) == NOTE
2127 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
2128 {
2129 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2130 record_last_reg_set_info (insn, regno);
2131 continue;
2132 }
2133 #endif
2134
2135 if (! INSN_P (insn))
2136 continue;
2137
2138 if (GET_CODE (insn) == CALL_INSN)
2139 {
2140 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2141 if ((call_used_regs[regno]
2142 && regno != STACK_POINTER_REGNUM
2143 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2144 && regno != HARD_FRAME_POINTER_REGNUM
2145 #endif
2146 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2147 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2148 #endif
2149 #if defined (PIC_OFFSET_TABLE_REGNUM) && !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED)
2150 && ! (regno == PIC_OFFSET_TABLE_REGNUM && flag_pic)
2151 #endif
2152
2153 && regno != FRAME_POINTER_REGNUM)
2154 || global_regs[regno])
2155 record_last_reg_set_info (insn, regno);
2156
2157 if (! CONST_CALL_P (insn))
2158 record_last_mem_set_info (insn);
2159 }
2160
2161 note_stores (PATTERN (insn), record_last_set_info, insn);
2162 }
2163
2164 /* The next pass builds the hash table. */
2165
2166 for (insn = BLOCK_HEAD (bb), in_libcall_block = 0;
2167 insn && insn != NEXT_INSN (BLOCK_END (bb));
2168 insn = NEXT_INSN (insn))
2169 if (INSN_P (insn))
2170 {
2171 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2172 in_libcall_block = 1;
2173 else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
2174 in_libcall_block = 0;
2175 hash_scan_insn (insn, set_p, in_libcall_block);
2176 }
2177 }
2178
2179 free (reg_first_set);
2180 free (reg_last_set);
2181
2182 /* Catch bugs early. */
2183 reg_first_set = reg_last_set = 0;
2184 }
2185
2186 /* Allocate space for the set hash table.
2187 N_INSNS is the number of instructions in the function.
2188 It is used to determine the number of buckets to use. */
2189
2190 static void
2191 alloc_set_hash_table (n_insns)
2192 int n_insns;
2193 {
2194 int n;
2195
2196 set_hash_table_size = n_insns / 4;
2197 if (set_hash_table_size < 11)
2198 set_hash_table_size = 11;
2199
2200 /* Attempt to maintain efficient use of hash table.
2201 Making it an odd number is simplest for now.
2202 ??? Later take some measurements. */
2203 set_hash_table_size |= 1;
2204 n = set_hash_table_size * sizeof (struct expr *);
2205 set_hash_table = (struct expr **) gmalloc (n);
2206 }
2207
2208 /* Free things allocated by alloc_set_hash_table. */
2209
2210 static void
2211 free_set_hash_table ()
2212 {
2213 free (set_hash_table);
2214 }
2215
2216 /* Compute the hash table for doing copy/const propagation. */
2217
2218 static void
2219 compute_set_hash_table ()
2220 {
2221 /* Initialize count of number of entries in hash table. */
2222 n_sets = 0;
2223 bzero ((char *) set_hash_table,
2224 set_hash_table_size * sizeof (struct expr *));
2225
2226 compute_hash_table (1);
2227 }
2228
2229 /* Allocate space for the expression hash table.
2230 N_INSNS is the number of instructions in the function.
2231 It is used to determine the number of buckets to use. */
2232
2233 static void
2234 alloc_expr_hash_table (n_insns)
2235 unsigned int n_insns;
2236 {
2237 int n;
2238
2239 expr_hash_table_size = n_insns / 2;
2240 /* Make sure the amount is usable. */
2241 if (expr_hash_table_size < 11)
2242 expr_hash_table_size = 11;
2243
2244 /* Attempt to maintain efficient use of hash table.
2245 Making it an odd number is simplest for now.
2246 ??? Later take some measurements. */
2247 expr_hash_table_size |= 1;
2248 n = expr_hash_table_size * sizeof (struct expr *);
2249 expr_hash_table = (struct expr **) gmalloc (n);
2250 }
2251
2252 /* Free things allocated by alloc_expr_hash_table. */
2253
2254 static void
2255 free_expr_hash_table ()
2256 {
2257 free (expr_hash_table);
2258 }
2259
2260 /* Compute the hash table for doing GCSE. */
2261
2262 static void
2263 compute_expr_hash_table ()
2264 {
2265 /* Initialize count of number of entries in hash table. */
2266 n_exprs = 0;
2267 bzero ((char *) expr_hash_table,
2268 expr_hash_table_size * sizeof (struct expr *));
2269
2270 compute_hash_table (0);
2271 }
2272 \f
2273 /* Expression tracking support. */
2274
2275 /* Lookup pattern PAT in the expression table.
2276 The result is a pointer to the table entry, or NULL if not found. */
2277
2278 static struct expr *
2279 lookup_expr (pat)
2280 rtx pat;
2281 {
2282 int do_not_record_p;
2283 unsigned int hash = hash_expr (pat, GET_MODE (pat), &do_not_record_p,
2284 expr_hash_table_size);
2285 struct expr *expr;
2286
2287 if (do_not_record_p)
2288 return NULL;
2289
2290 expr = expr_hash_table[hash];
2291
2292 while (expr && ! expr_equiv_p (expr->expr, pat))
2293 expr = expr->next_same_hash;
2294
2295 return expr;
2296 }
2297
2298 /* Lookup REGNO in the set table. If PAT is non-NULL look for the entry that
2299 matches it, otherwise return the first entry for REGNO. The result is a
2300 pointer to the table entry, or NULL if not found. */
2301
2302 static struct expr *
2303 lookup_set (regno, pat)
2304 unsigned int regno;
2305 rtx pat;
2306 {
2307 unsigned int hash = hash_set (regno, set_hash_table_size);
2308 struct expr *expr;
2309
2310 expr = set_hash_table[hash];
2311
2312 if (pat)
2313 {
2314 while (expr && ! expr_equiv_p (expr->expr, pat))
2315 expr = expr->next_same_hash;
2316 }
2317 else
2318 {
2319 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
2320 expr = expr->next_same_hash;
2321 }
2322
2323 return expr;
2324 }
2325
2326 /* Return the next entry for REGNO in list EXPR. */
2327
2328 static struct expr *
2329 next_set (regno, expr)
2330 unsigned int regno;
2331 struct expr *expr;
2332 {
2333 do
2334 expr = expr->next_same_hash;
2335 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
2336
2337 return expr;
2338 }
2339
2340 /* Reset tables used to keep track of what's still available [since the
2341 start of the block]. */
2342
2343 static void
2344 reset_opr_set_tables ()
2345 {
2346 /* Maintain a bitmap of which regs have been set since beginning of
2347 the block. */
2348 sbitmap_zero (reg_set_bitmap);
2349
2350 /* Also keep a record of the last instruction to modify memory.
2351 For now this is very trivial, we only record whether any memory
2352 location has been modified. */
2353 mem_last_set = 0;
2354 }
2355
2356 /* Return non-zero if the operands of X are not set before INSN in
2357 INSN's basic block. */
2358
2359 static int
2360 oprs_not_set_p (x, insn)
2361 rtx x, insn;
2362 {
2363 int i, j;
2364 enum rtx_code code;
2365 const char *fmt;
2366
2367 if (x == 0)
2368 return 1;
2369
2370 code = GET_CODE (x);
2371 switch (code)
2372 {
2373 case PC:
2374 case CC0:
2375 case CONST:
2376 case CONST_INT:
2377 case CONST_DOUBLE:
2378 case SYMBOL_REF:
2379 case LABEL_REF:
2380 case ADDR_VEC:
2381 case ADDR_DIFF_VEC:
2382 return 1;
2383
2384 case MEM:
2385 if (mem_last_set != 0)
2386 return 0;
2387 else
2388 return oprs_not_set_p (XEXP (x, 0), insn);
2389
2390 case REG:
2391 return ! TEST_BIT (reg_set_bitmap, REGNO (x));
2392
2393 default:
2394 break;
2395 }
2396
2397 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2398 {
2399 if (fmt[i] == 'e')
2400 {
2401 /* If we are about to do the last recursive call
2402 needed at this level, change it into iteration.
2403 This function is called enough to be worth it. */
2404 if (i == 0)
2405 return oprs_not_set_p (XEXP (x, i), insn);
2406
2407 if (! oprs_not_set_p (XEXP (x, i), insn))
2408 return 0;
2409 }
2410 else if (fmt[i] == 'E')
2411 for (j = 0; j < XVECLEN (x, i); j++)
2412 if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
2413 return 0;
2414 }
2415
2416 return 1;
2417 }
2418
2419 /* Mark things set by a CALL. */
2420
2421 static void
2422 mark_call (insn)
2423 rtx insn;
2424 {
2425 mem_last_set = INSN_CUID (insn);
2426 }
2427
2428 /* Mark things set by a SET. */
2429
2430 static void
2431 mark_set (pat, insn)
2432 rtx pat, insn;
2433 {
2434 rtx dest = SET_DEST (pat);
2435
2436 while (GET_CODE (dest) == SUBREG
2437 || GET_CODE (dest) == ZERO_EXTRACT
2438 || GET_CODE (dest) == SIGN_EXTRACT
2439 || GET_CODE (dest) == STRICT_LOW_PART)
2440 dest = XEXP (dest, 0);
2441
2442 if (GET_CODE (dest) == REG)
2443 SET_BIT (reg_set_bitmap, REGNO (dest));
2444 else if (GET_CODE (dest) == MEM)
2445 mem_last_set = INSN_CUID (insn);
2446
2447 if (GET_CODE (SET_SRC (pat)) == CALL)
2448 mark_call (insn);
2449 }
2450
2451 /* Record things set by a CLOBBER. */
2452
2453 static void
2454 mark_clobber (pat, insn)
2455 rtx pat, insn;
2456 {
2457 rtx clob = XEXP (pat, 0);
2458
2459 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2460 clob = XEXP (clob, 0);
2461
2462 if (GET_CODE (clob) == REG)
2463 SET_BIT (reg_set_bitmap, REGNO (clob));
2464 else
2465 mem_last_set = INSN_CUID (insn);
2466 }
2467
2468 /* Record things set by INSN.
2469 This data is used by oprs_not_set_p. */
2470
2471 static void
2472 mark_oprs_set (insn)
2473 rtx insn;
2474 {
2475 rtx pat = PATTERN (insn);
2476 int i;
2477
2478 if (GET_CODE (pat) == SET)
2479 mark_set (pat, insn);
2480 else if (GET_CODE (pat) == PARALLEL)
2481 for (i = 0; i < XVECLEN (pat, 0); i++)
2482 {
2483 rtx x = XVECEXP (pat, 0, i);
2484
2485 if (GET_CODE (x) == SET)
2486 mark_set (x, insn);
2487 else if (GET_CODE (x) == CLOBBER)
2488 mark_clobber (x, insn);
2489 else if (GET_CODE (x) == CALL)
2490 mark_call (insn);
2491 }
2492
2493 else if (GET_CODE (pat) == CLOBBER)
2494 mark_clobber (pat, insn);
2495 else if (GET_CODE (pat) == CALL)
2496 mark_call (insn);
2497 }
2498
2499 \f
2500 /* Classic GCSE reaching definition support. */
2501
2502 /* Allocate reaching def variables. */
2503
2504 static void
2505 alloc_rd_mem (n_blocks, n_insns)
2506 int n_blocks, n_insns;
2507 {
2508 rd_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2509 sbitmap_vector_zero (rd_kill, n_basic_blocks);
2510
2511 rd_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2512 sbitmap_vector_zero (rd_gen, n_basic_blocks);
2513
2514 reaching_defs = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2515 sbitmap_vector_zero (reaching_defs, n_basic_blocks);
2516
2517 rd_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2518 sbitmap_vector_zero (rd_out, n_basic_blocks);
2519 }
2520
2521 /* Free reaching def variables. */
2522
2523 static void
2524 free_rd_mem ()
2525 {
2526 free (rd_kill);
2527 free (rd_gen);
2528 free (reaching_defs);
2529 free (rd_out);
2530 }
2531
2532 /* Add INSN to the kills of BB. REGNO, set in BB, is killed by INSN. */
2533
2534 static void
2535 handle_rd_kill_set (insn, regno, bb)
2536 rtx insn;
2537 int regno, bb;
2538 {
2539 struct reg_set *this_reg;
2540
2541 for (this_reg = reg_set_table[regno]; this_reg; this_reg = this_reg ->next)
2542 if (BLOCK_NUM (this_reg->insn) != BLOCK_NUM (insn))
2543 SET_BIT (rd_kill[bb], INSN_CUID (this_reg->insn));
2544 }
2545
2546 /* Compute the set of kill's for reaching definitions. */
2547
2548 static void
2549 compute_kill_rd ()
2550 {
2551 int bb, cuid;
2552 int regno, i;
2553
2554 /* For each block
2555 For each set bit in `gen' of the block (i.e each insn which
2556 generates a definition in the block)
2557 Call the reg set by the insn corresponding to that bit regx
2558 Look at the linked list starting at reg_set_table[regx]
2559 For each setting of regx in the linked list, which is not in
2560 this block
2561 Set the bit in `kill' corresponding to that insn. */
2562 for (bb = 0; bb < n_basic_blocks; bb++)
2563 for (cuid = 0; cuid < max_cuid; cuid++)
2564 if (TEST_BIT (rd_gen[bb], cuid))
2565 {
2566 rtx insn = CUID_INSN (cuid);
2567 rtx pat = PATTERN (insn);
2568
2569 if (GET_CODE (insn) == CALL_INSN)
2570 {
2571 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2572 {
2573 if ((call_used_regs[regno]
2574 && regno != STACK_POINTER_REGNUM
2575 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2576 && regno != HARD_FRAME_POINTER_REGNUM
2577 #endif
2578 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2579 && ! (regno == ARG_POINTER_REGNUM
2580 && fixed_regs[regno])
2581 #endif
2582 #if defined (PIC_OFFSET_TABLE_REGNUM) && !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED)
2583 && ! (regno == PIC_OFFSET_TABLE_REGNUM && flag_pic)
2584 #endif
2585 && regno != FRAME_POINTER_REGNUM)
2586 || global_regs[regno])
2587 handle_rd_kill_set (insn, regno, bb);
2588 }
2589 }
2590
2591 if (GET_CODE (pat) == PARALLEL)
2592 {
2593 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
2594 {
2595 enum rtx_code code = GET_CODE (XVECEXP (pat, 0, i));
2596
2597 if ((code == SET || code == CLOBBER)
2598 && GET_CODE (XEXP (XVECEXP (pat, 0, i), 0)) == REG)
2599 handle_rd_kill_set (insn,
2600 REGNO (XEXP (XVECEXP (pat, 0, i), 0)),
2601 bb);
2602 }
2603 }
2604 else if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == REG)
2605 /* Each setting of this register outside of this block
2606 must be marked in the set of kills in this block. */
2607 handle_rd_kill_set (insn, REGNO (SET_DEST (pat)), bb);
2608 }
2609 }
2610
2611 /* Compute the reaching definitions as in
2612 Compilers Principles, Techniques, and Tools. Aho, Sethi, Ullman,
2613 Chapter 10. It is the same algorithm as used for computing available
2614 expressions but applied to the gens and kills of reaching definitions. */
2615
2616 static void
2617 compute_rd ()
2618 {
2619 int bb, changed, passes;
2620
2621 for (bb = 0; bb < n_basic_blocks; bb++)
2622 sbitmap_copy (rd_out[bb] /*dst*/, rd_gen[bb] /*src*/);
2623
2624 passes = 0;
2625 changed = 1;
2626 while (changed)
2627 {
2628 changed = 0;
2629 for (bb = 0; bb < n_basic_blocks; bb++)
2630 {
2631 sbitmap_union_of_preds (reaching_defs[bb], rd_out, bb);
2632 changed |= sbitmap_union_of_diff (rd_out[bb], rd_gen[bb],
2633 reaching_defs[bb], rd_kill[bb]);
2634 }
2635 passes++;
2636 }
2637
2638 if (gcse_file)
2639 fprintf (gcse_file, "reaching def computation: %d passes\n", passes);
2640 }
2641 \f
2642 /* Classic GCSE available expression support. */
2643
2644 /* Allocate memory for available expression computation. */
2645
2646 static void
2647 alloc_avail_expr_mem (n_blocks, n_exprs)
2648 int n_blocks, n_exprs;
2649 {
2650 ae_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
2651 sbitmap_vector_zero (ae_kill, n_basic_blocks);
2652
2653 ae_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
2654 sbitmap_vector_zero (ae_gen, n_basic_blocks);
2655
2656 ae_in = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
2657 sbitmap_vector_zero (ae_in, n_basic_blocks);
2658
2659 ae_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
2660 sbitmap_vector_zero (ae_out, n_basic_blocks);
2661 }
2662
2663 static void
2664 free_avail_expr_mem ()
2665 {
2666 free (ae_kill);
2667 free (ae_gen);
2668 free (ae_in);
2669 free (ae_out);
2670 }
2671
2672 /* Compute the set of available expressions generated in each basic block. */
2673
2674 static void
2675 compute_ae_gen ()
2676 {
2677 unsigned int i;
2678 struct expr *expr;
2679 struct occr *occr;
2680
2681 /* For each recorded occurrence of each expression, set ae_gen[bb][expr].
2682 This is all we have to do because an expression is not recorded if it
2683 is not available, and the only expressions we want to work with are the
2684 ones that are recorded. */
2685 for (i = 0; i < expr_hash_table_size; i++)
2686 for (expr = expr_hash_table[i]; expr != 0; expr = expr->next_same_hash)
2687 for (occr = expr->avail_occr; occr != 0; occr = occr->next)
2688 SET_BIT (ae_gen[BLOCK_NUM (occr->insn)], expr->bitmap_index);
2689 }
2690
2691 /* Return non-zero if expression X is killed in BB. */
2692
2693 static int
2694 expr_killed_p (x, bb)
2695 rtx x;
2696 int bb;
2697 {
2698 int i, j;
2699 enum rtx_code code;
2700 const char *fmt;
2701
2702 if (x == 0)
2703 return 1;
2704
2705 code = GET_CODE (x);
2706 switch (code)
2707 {
2708 case REG:
2709 return TEST_BIT (reg_set_in_block[bb], REGNO (x));
2710
2711 case MEM:
2712 if (mem_set_in_block[bb])
2713 return 1;
2714 else
2715 return expr_killed_p (XEXP (x, 0), bb);
2716
2717 case PC:
2718 case CC0: /*FIXME*/
2719 case CONST:
2720 case CONST_INT:
2721 case CONST_DOUBLE:
2722 case SYMBOL_REF:
2723 case LABEL_REF:
2724 case ADDR_VEC:
2725 case ADDR_DIFF_VEC:
2726 return 0;
2727
2728 default:
2729 break;
2730 }
2731
2732 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2733 {
2734 if (fmt[i] == 'e')
2735 {
2736 /* If we are about to do the last recursive call
2737 needed at this level, change it into iteration.
2738 This function is called enough to be worth it. */
2739 if (i == 0)
2740 return expr_killed_p (XEXP (x, i), bb);
2741 else if (expr_killed_p (XEXP (x, i), bb))
2742 return 1;
2743 }
2744 else if (fmt[i] == 'E')
2745 for (j = 0; j < XVECLEN (x, i); j++)
2746 if (expr_killed_p (XVECEXP (x, i, j), bb))
2747 return 1;
2748 }
2749
2750 return 0;
2751 }
2752
2753 /* Compute the set of available expressions killed in each basic block. */
2754
2755 static void
2756 compute_ae_kill (ae_gen, ae_kill)
2757 sbitmap *ae_gen, *ae_kill;
2758 {
2759 int bb;
2760 unsigned int i;
2761 struct expr *expr;
2762
2763 for (bb = 0; bb < n_basic_blocks; bb++)
2764 for (i = 0; i < expr_hash_table_size; i++)
2765 for (expr = expr_hash_table[i]; expr; expr = expr->next_same_hash)
2766 {
2767 /* Skip EXPR if generated in this block. */
2768 if (TEST_BIT (ae_gen[bb], expr->bitmap_index))
2769 continue;
2770
2771 if (expr_killed_p (expr->expr, bb))
2772 SET_BIT (ae_kill[bb], expr->bitmap_index);
2773 }
2774 }
2775 \f
2776 /* Actually perform the Classic GCSE optimizations. */
2777
2778 /* Return non-zero if occurrence OCCR of expression EXPR reaches block BB.
2779
2780 CHECK_SELF_LOOP is non-zero if we should consider a block reaching itself
2781 as a positive reach. We want to do this when there are two computations
2782 of the expression in the block.
2783
2784 VISITED is a pointer to a working buffer for tracking which BB's have
2785 been visited. It is NULL for the top-level call.
2786
2787 We treat reaching expressions that go through blocks containing the same
2788 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
2789 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
2790 2 as not reaching. The intent is to improve the probability of finding
2791 only one reaching expression and to reduce register lifetimes by picking
2792 the closest such expression. */
2793
2794 static int
2795 expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited)
2796 struct occr *occr;
2797 struct expr *expr;
2798 int bb;
2799 int check_self_loop;
2800 char *visited;
2801 {
2802 edge pred;
2803
2804 for (pred = BASIC_BLOCK(bb)->pred; pred != NULL; pred = pred->pred_next)
2805 {
2806 int pred_bb = pred->src->index;
2807
2808 if (visited[pred_bb])
2809 /* This predecessor has already been visited. Nothing to do. */
2810 ;
2811 else if (pred_bb == bb)
2812 {
2813 /* BB loops on itself. */
2814 if (check_self_loop
2815 && TEST_BIT (ae_gen[pred_bb], expr->bitmap_index)
2816 && BLOCK_NUM (occr->insn) == pred_bb)
2817 return 1;
2818
2819 visited[pred_bb] = 1;
2820 }
2821
2822 /* Ignore this predecessor if it kills the expression. */
2823 else if (TEST_BIT (ae_kill[pred_bb], expr->bitmap_index))
2824 visited[pred_bb] = 1;
2825
2826 /* Does this predecessor generate this expression? */
2827 else if (TEST_BIT (ae_gen[pred_bb], expr->bitmap_index))
2828 {
2829 /* Is this the occurrence we're looking for?
2830 Note that there's only one generating occurrence per block
2831 so we just need to check the block number. */
2832 if (BLOCK_NUM (occr->insn) == pred_bb)
2833 return 1;
2834
2835 visited[pred_bb] = 1;
2836 }
2837
2838 /* Neither gen nor kill. */
2839 else
2840 {
2841 visited[pred_bb] = 1;
2842 if (expr_reaches_here_p_work (occr, expr, pred_bb, check_self_loop,
2843 visited))
2844
2845 return 1;
2846 }
2847 }
2848
2849 /* All paths have been checked. */
2850 return 0;
2851 }
2852
2853 /* This wrapper for expr_reaches_here_p_work() is to ensure that any
2854 memory allocated for that function is returned. */
2855
2856 static int
2857 expr_reaches_here_p (occr, expr, bb, check_self_loop)
2858 struct occr *occr;
2859 struct expr *expr;
2860 int bb;
2861 int check_self_loop;
2862 {
2863 int rval;
2864 char *visited = (char *) xcalloc (n_basic_blocks, 1);
2865
2866 rval = expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited);
2867
2868 free (visited);
2869 return rval;
2870 }
2871
2872 /* Return the instruction that computes EXPR that reaches INSN's basic block.
2873 If there is more than one such instruction, return NULL.
2874
2875 Called only by handle_avail_expr. */
2876
2877 static rtx
2878 computing_insn (expr, insn)
2879 struct expr *expr;
2880 rtx insn;
2881 {
2882 int bb = BLOCK_NUM (insn);
2883
2884 if (expr->avail_occr->next == NULL)
2885 {
2886 if (BLOCK_NUM (expr->avail_occr->insn) == bb)
2887 /* The available expression is actually itself
2888 (i.e. a loop in the flow graph) so do nothing. */
2889 return NULL;
2890
2891 /* (FIXME) Case that we found a pattern that was created by
2892 a substitution that took place. */
2893 return expr->avail_occr->insn;
2894 }
2895 else
2896 {
2897 /* Pattern is computed more than once.
2898 Search backwards from this insn to see how many of these
2899 computations actually reach this insn. */
2900 struct occr *occr;
2901 rtx insn_computes_expr = NULL;
2902 int can_reach = 0;
2903
2904 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
2905 {
2906 if (BLOCK_NUM (occr->insn) == bb)
2907 {
2908 /* The expression is generated in this block.
2909 The only time we care about this is when the expression
2910 is generated later in the block [and thus there's a loop].
2911 We let the normal cse pass handle the other cases. */
2912 if (INSN_CUID (insn) < INSN_CUID (occr->insn)
2913 && expr_reaches_here_p (occr, expr, bb, 1))
2914 {
2915 can_reach++;
2916 if (can_reach > 1)
2917 return NULL;
2918
2919 insn_computes_expr = occr->insn;
2920 }
2921 }
2922 else if (expr_reaches_here_p (occr, expr, bb, 0))
2923 {
2924 can_reach++;
2925 if (can_reach > 1)
2926 return NULL;
2927
2928 insn_computes_expr = occr->insn;
2929 }
2930 }
2931
2932 if (insn_computes_expr == NULL)
2933 abort ();
2934
2935 return insn_computes_expr;
2936 }
2937 }
2938
2939 /* Return non-zero if the definition in DEF_INSN can reach INSN.
2940 Only called by can_disregard_other_sets. */
2941
2942 static int
2943 def_reaches_here_p (insn, def_insn)
2944 rtx insn, def_insn;
2945 {
2946 rtx reg;
2947
2948 if (TEST_BIT (reaching_defs[BLOCK_NUM (insn)], INSN_CUID (def_insn)))
2949 return 1;
2950
2951 if (BLOCK_NUM (insn) == BLOCK_NUM (def_insn))
2952 {
2953 if (INSN_CUID (def_insn) < INSN_CUID (insn))
2954 {
2955 if (GET_CODE (PATTERN (def_insn)) == PARALLEL)
2956 return 1;
2957 else if (GET_CODE (PATTERN (def_insn)) == CLOBBER)
2958 reg = XEXP (PATTERN (def_insn), 0);
2959 else if (GET_CODE (PATTERN (def_insn)) == SET)
2960 reg = SET_DEST (PATTERN (def_insn));
2961 else
2962 abort ();
2963
2964 return ! reg_set_between_p (reg, NEXT_INSN (def_insn), insn);
2965 }
2966 else
2967 return 0;
2968 }
2969
2970 return 0;
2971 }
2972
2973 /* Return non-zero if *ADDR_THIS_REG can only have one value at INSN. The
2974 value returned is the number of definitions that reach INSN. Returning a
2975 value of zero means that [maybe] more than one definition reaches INSN and
2976 the caller can't perform whatever optimization it is trying. i.e. it is
2977 always safe to return zero. */
2978
2979 static int
2980 can_disregard_other_sets (addr_this_reg, insn, for_combine)
2981 struct reg_set **addr_this_reg;
2982 rtx insn;
2983 int for_combine;
2984 {
2985 int number_of_reaching_defs = 0;
2986 struct reg_set *this_reg;
2987
2988 for (this_reg = *addr_this_reg; this_reg != 0; this_reg = this_reg->next)
2989 if (def_reaches_here_p (insn, this_reg->insn))
2990 {
2991 number_of_reaching_defs++;
2992 /* Ignore parallels for now. */
2993 if (GET_CODE (PATTERN (this_reg->insn)) == PARALLEL)
2994 return 0;
2995
2996 if (!for_combine
2997 && (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER
2998 || ! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
2999 SET_SRC (PATTERN (insn)))))
3000 /* A setting of the reg to a different value reaches INSN. */
3001 return 0;
3002
3003 if (number_of_reaching_defs > 1)
3004 {
3005 /* If in this setting the value the register is being set to is
3006 equal to the previous value the register was set to and this
3007 setting reaches the insn we are trying to do the substitution
3008 on then we are ok. */
3009 if (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER)
3010 return 0;
3011 else if (! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
3012 SET_SRC (PATTERN (insn))))
3013 return 0;
3014 }
3015
3016 *addr_this_reg = this_reg;
3017 }
3018
3019 return number_of_reaching_defs;
3020 }
3021
3022 /* Expression computed by insn is available and the substitution is legal,
3023 so try to perform the substitution.
3024
3025 The result is non-zero if any changes were made. */
3026
3027 static int
3028 handle_avail_expr (insn, expr)
3029 rtx insn;
3030 struct expr *expr;
3031 {
3032 rtx pat, insn_computes_expr;
3033 rtx to;
3034 struct reg_set *this_reg;
3035 int found_setting, use_src;
3036 int changed = 0;
3037
3038 /* We only handle the case where one computation of the expression
3039 reaches this instruction. */
3040 insn_computes_expr = computing_insn (expr, insn);
3041 if (insn_computes_expr == NULL)
3042 return 0;
3043
3044 found_setting = 0;
3045 use_src = 0;
3046
3047 /* At this point we know only one computation of EXPR outside of this
3048 block reaches this insn. Now try to find a register that the
3049 expression is computed into. */
3050 if (GET_CODE (SET_SRC (PATTERN (insn_computes_expr))) == REG)
3051 {
3052 /* This is the case when the available expression that reaches
3053 here has already been handled as an available expression. */
3054 unsigned int regnum_for_replacing
3055 = REGNO (SET_SRC (PATTERN (insn_computes_expr)));
3056
3057 /* If the register was created by GCSE we can't use `reg_set_table',
3058 however we know it's set only once. */
3059 if (regnum_for_replacing >= max_gcse_regno
3060 /* If the register the expression is computed into is set only once,
3061 or only one set reaches this insn, we can use it. */
3062 || (((this_reg = reg_set_table[regnum_for_replacing]),
3063 this_reg->next == NULL)
3064 || can_disregard_other_sets (&this_reg, insn, 0)))
3065 {
3066 use_src = 1;
3067 found_setting = 1;
3068 }
3069 }
3070
3071 if (!found_setting)
3072 {
3073 unsigned int regnum_for_replacing
3074 = REGNO (SET_DEST (PATTERN (insn_computes_expr)));
3075
3076 /* This shouldn't happen. */
3077 if (regnum_for_replacing >= max_gcse_regno)
3078 abort ();
3079
3080 this_reg = reg_set_table[regnum_for_replacing];
3081
3082 /* If the register the expression is computed into is set only once,
3083 or only one set reaches this insn, use it. */
3084 if (this_reg->next == NULL
3085 || can_disregard_other_sets (&this_reg, insn, 0))
3086 found_setting = 1;
3087 }
3088
3089 if (found_setting)
3090 {
3091 pat = PATTERN (insn);
3092 if (use_src)
3093 to = SET_SRC (PATTERN (insn_computes_expr));
3094 else
3095 to = SET_DEST (PATTERN (insn_computes_expr));
3096 changed = validate_change (insn, &SET_SRC (pat), to, 0);
3097
3098 /* We should be able to ignore the return code from validate_change but
3099 to play it safe we check. */
3100 if (changed)
3101 {
3102 gcse_subst_count++;
3103 if (gcse_file != NULL)
3104 {
3105 fprintf (gcse_file, "GCSE: Replacing the source in insn %d with",
3106 INSN_UID (insn));
3107 fprintf (gcse_file, " reg %d %s insn %d\n",
3108 REGNO (to), use_src ? "from" : "set in",
3109 INSN_UID (insn_computes_expr));
3110 }
3111 }
3112 }
3113
3114 /* The register that the expr is computed into is set more than once. */
3115 else if (1 /*expensive_op(this_pattrn->op) && do_expensive_gcse)*/)
3116 {
3117 /* Insert an insn after insnx that copies the reg set in insnx
3118 into a new pseudo register call this new register REGN.
3119 From insnb until end of basic block or until REGB is set
3120 replace all uses of REGB with REGN. */
3121 rtx new_insn;
3122
3123 to = gen_reg_rtx (GET_MODE (SET_DEST (PATTERN (insn_computes_expr))));
3124
3125 /* Generate the new insn. */
3126 /* ??? If the change fails, we return 0, even though we created
3127 an insn. I think this is ok. */
3128 new_insn
3129 = emit_insn_after (gen_rtx_SET (VOIDmode, to,
3130 SET_DEST (PATTERN
3131 (insn_computes_expr))),
3132 insn_computes_expr);
3133
3134 /* Keep block number table up to date. */
3135 set_block_num (new_insn, BLOCK_NUM (insn_computes_expr));
3136
3137 /* Keep register set table up to date. */
3138 record_one_set (REGNO (to), new_insn);
3139
3140 gcse_create_count++;
3141 if (gcse_file != NULL)
3142 {
3143 fprintf (gcse_file, "GCSE: Creating insn %d to copy value of reg %d",
3144 INSN_UID (NEXT_INSN (insn_computes_expr)),
3145 REGNO (SET_SRC (PATTERN (NEXT_INSN (insn_computes_expr)))));
3146 fprintf (gcse_file, ", computed in insn %d,\n",
3147 INSN_UID (insn_computes_expr));
3148 fprintf (gcse_file, " into newly allocated reg %d\n",
3149 REGNO (to));
3150 }
3151
3152 pat = PATTERN (insn);
3153
3154 /* Do register replacement for INSN. */
3155 changed = validate_change (insn, &SET_SRC (pat),
3156 SET_DEST (PATTERN
3157 (NEXT_INSN (insn_computes_expr))),
3158 0);
3159
3160 /* We should be able to ignore the return code from validate_change but
3161 to play it safe we check. */
3162 if (changed)
3163 {
3164 gcse_subst_count++;
3165 if (gcse_file != NULL)
3166 {
3167 fprintf (gcse_file,
3168 "GCSE: Replacing the source in insn %d with reg %d ",
3169 INSN_UID (insn),
3170 REGNO (SET_DEST (PATTERN (NEXT_INSN
3171 (insn_computes_expr)))));
3172 fprintf (gcse_file, "set in insn %d\n",
3173 INSN_UID (insn_computes_expr));
3174 }
3175 }
3176 }
3177
3178 return changed;
3179 }
3180
3181 /* Perform classic GCSE. This is called by one_classic_gcse_pass after all
3182 the dataflow analysis has been done.
3183
3184 The result is non-zero if a change was made. */
3185
3186 static int
3187 classic_gcse ()
3188 {
3189 int bb, changed;
3190 rtx insn;
3191
3192 /* Note we start at block 1. */
3193
3194 changed = 0;
3195 for (bb = 1; bb < n_basic_blocks; bb++)
3196 {
3197 /* Reset tables used to keep track of what's still valid [since the
3198 start of the block]. */
3199 reset_opr_set_tables ();
3200
3201 for (insn = BLOCK_HEAD (bb);
3202 insn != NULL && insn != NEXT_INSN (BLOCK_END (bb));
3203 insn = NEXT_INSN (insn))
3204 {
3205 /* Is insn of form (set (pseudo-reg) ...)? */
3206 if (GET_CODE (insn) == INSN
3207 && GET_CODE (PATTERN (insn)) == SET
3208 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
3209 && REGNO (SET_DEST (PATTERN (insn))) >= FIRST_PSEUDO_REGISTER)
3210 {
3211 rtx pat = PATTERN (insn);
3212 rtx src = SET_SRC (pat);
3213 struct expr *expr;
3214
3215 if (want_to_gcse_p (src)
3216 /* Is the expression recorded? */
3217 && ((expr = lookup_expr (src)) != NULL)
3218 /* Is the expression available [at the start of the
3219 block]? */
3220 && TEST_BIT (ae_in[bb], expr->bitmap_index)
3221 /* Are the operands unchanged since the start of the
3222 block? */
3223 && oprs_not_set_p (src, insn))
3224 changed |= handle_avail_expr (insn, expr);
3225 }
3226
3227 /* Keep track of everything modified by this insn. */
3228 /* ??? Need to be careful w.r.t. mods done to INSN. */
3229 if (INSN_P (insn))
3230 mark_oprs_set (insn);
3231 }
3232 }
3233
3234 return changed;
3235 }
3236
3237 /* Top level routine to perform one classic GCSE pass.
3238
3239 Return non-zero if a change was made. */
3240
3241 static int
3242 one_classic_gcse_pass (pass)
3243 int pass;
3244 {
3245 int changed = 0;
3246
3247 gcse_subst_count = 0;
3248 gcse_create_count = 0;
3249
3250 alloc_expr_hash_table (max_cuid);
3251 alloc_rd_mem (n_basic_blocks, max_cuid);
3252 compute_expr_hash_table ();
3253 if (gcse_file)
3254 dump_hash_table (gcse_file, "Expression", expr_hash_table,
3255 expr_hash_table_size, n_exprs);
3256
3257 if (n_exprs > 0)
3258 {
3259 compute_kill_rd ();
3260 compute_rd ();
3261 alloc_avail_expr_mem (n_basic_blocks, n_exprs);
3262 compute_ae_gen ();
3263 compute_ae_kill (ae_gen, ae_kill);
3264 compute_available (ae_gen, ae_kill, ae_out, ae_in);
3265 changed = classic_gcse ();
3266 free_avail_expr_mem ();
3267 }
3268
3269 free_rd_mem ();
3270 free_expr_hash_table ();
3271
3272 if (gcse_file)
3273 {
3274 fprintf (gcse_file, "\n");
3275 fprintf (gcse_file, "GCSE of %s, pass %d: %d bytes needed, %d substs,",
3276 current_function_name, pass, bytes_used, gcse_subst_count);
3277 fprintf (gcse_file, "%d insns created\n", gcse_create_count);
3278 }
3279
3280 return changed;
3281 }
3282 \f
3283 /* Compute copy/constant propagation working variables. */
3284
3285 /* Local properties of assignments. */
3286 static sbitmap *cprop_pavloc;
3287 static sbitmap *cprop_absaltered;
3288
3289 /* Global properties of assignments (computed from the local properties). */
3290 static sbitmap *cprop_avin;
3291 static sbitmap *cprop_avout;
3292
3293 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
3294 basic blocks. N_SETS is the number of sets. */
3295
3296 static void
3297 alloc_cprop_mem (n_blocks, n_sets)
3298 int n_blocks, n_sets;
3299 {
3300 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
3301 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
3302
3303 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
3304 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
3305 }
3306
3307 /* Free vars used by copy/const propagation. */
3308
3309 static void
3310 free_cprop_mem ()
3311 {
3312 free (cprop_pavloc);
3313 free (cprop_absaltered);
3314 free (cprop_avin);
3315 free (cprop_avout);
3316 }
3317
3318 /* For each block, compute whether X is transparent. X is either an
3319 expression or an assignment [though we don't care which, for this context
3320 an assignment is treated as an expression]. For each block where an
3321 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
3322 bit in BMAP. */
3323
3324 static void
3325 compute_transp (x, indx, bmap, set_p)
3326 rtx x;
3327 int indx;
3328 sbitmap *bmap;
3329 int set_p;
3330 {
3331 int bb, i, j;
3332 enum rtx_code code;
3333 reg_set *r;
3334 const char *fmt;
3335
3336 /* repeat is used to turn tail-recursion into iteration since GCC
3337 can't do it when there's no return value. */
3338 repeat:
3339
3340 if (x == 0)
3341 return;
3342
3343 code = GET_CODE (x);
3344 switch (code)
3345 {
3346 case REG:
3347 if (set_p)
3348 {
3349 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
3350 {
3351 for (bb = 0; bb < n_basic_blocks; bb++)
3352 if (TEST_BIT (reg_set_in_block[bb], REGNO (x)))
3353 SET_BIT (bmap[bb], indx);
3354 }
3355 else
3356 {
3357 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
3358 SET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
3359 }
3360 }
3361 else
3362 {
3363 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
3364 {
3365 for (bb = 0; bb < n_basic_blocks; bb++)
3366 if (TEST_BIT (reg_set_in_block[bb], REGNO (x)))
3367 RESET_BIT (bmap[bb], indx);
3368 }
3369 else
3370 {
3371 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
3372 RESET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
3373 }
3374 }
3375
3376 return;
3377
3378 case MEM:
3379 if (set_p)
3380 {
3381 for (bb = 0; bb < n_basic_blocks; bb++)
3382 if (mem_set_in_block[bb])
3383 SET_BIT (bmap[bb], indx);
3384 }
3385 else
3386 {
3387 for (bb = 0; bb < n_basic_blocks; bb++)
3388 if (mem_set_in_block[bb])
3389 RESET_BIT (bmap[bb], indx);
3390 }
3391
3392 x = XEXP (x, 0);
3393 goto repeat;
3394
3395 case PC:
3396 case CC0: /*FIXME*/
3397 case CONST:
3398 case CONST_INT:
3399 case CONST_DOUBLE:
3400 case SYMBOL_REF:
3401 case LABEL_REF:
3402 case ADDR_VEC:
3403 case ADDR_DIFF_VEC:
3404 return;
3405
3406 default:
3407 break;
3408 }
3409
3410 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3411 {
3412 if (fmt[i] == 'e')
3413 {
3414 /* If we are about to do the last recursive call
3415 needed at this level, change it into iteration.
3416 This function is called enough to be worth it. */
3417 if (i == 0)
3418 {
3419 x = XEXP (x, i);
3420 goto repeat;
3421 }
3422
3423 compute_transp (XEXP (x, i), indx, bmap, set_p);
3424 }
3425 else if (fmt[i] == 'E')
3426 for (j = 0; j < XVECLEN (x, i); j++)
3427 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
3428 }
3429 }
3430
3431 /* Top level routine to do the dataflow analysis needed by copy/const
3432 propagation. */
3433
3434 static void
3435 compute_cprop_data ()
3436 {
3437 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, 1);
3438 compute_available (cprop_pavloc, cprop_absaltered,
3439 cprop_avout, cprop_avin);
3440 }
3441 \f
3442 /* Copy/constant propagation. */
3443
3444 /* Maximum number of register uses in an insn that we handle. */
3445 #define MAX_USES 8
3446
3447 /* Table of uses found in an insn.
3448 Allocated statically to avoid alloc/free complexity and overhead. */
3449 static struct reg_use reg_use_table[MAX_USES];
3450
3451 /* Index into `reg_use_table' while building it. */
3452 static int reg_use_count;
3453
3454 /* Set up a list of register numbers used in INSN. The found uses are stored
3455 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
3456 and contains the number of uses in the table upon exit.
3457
3458 ??? If a register appears multiple times we will record it multiple times.
3459 This doesn't hurt anything but it will slow things down. */
3460
3461 static void
3462 find_used_regs (x)
3463 rtx x;
3464 {
3465 int i, j;
3466 enum rtx_code code;
3467 const char *fmt;
3468
3469 /* repeat is used to turn tail-recursion into iteration since GCC
3470 can't do it when there's no return value. */
3471 repeat:
3472
3473 if (x == 0)
3474 return;
3475
3476 code = GET_CODE (x);
3477 switch (code)
3478 {
3479 case REG:
3480 if (reg_use_count == MAX_USES)
3481 return;
3482
3483 reg_use_table[reg_use_count].reg_rtx = x;
3484 reg_use_count++;
3485 return;
3486
3487 case MEM:
3488 x = XEXP (x, 0);
3489 goto repeat;
3490
3491 case PC:
3492 case CC0:
3493 case CONST:
3494 case CONST_INT:
3495 case CONST_DOUBLE:
3496 case SYMBOL_REF:
3497 case LABEL_REF:
3498 case CLOBBER:
3499 case ADDR_VEC:
3500 case ADDR_DIFF_VEC:
3501 case ASM_INPUT: /*FIXME*/
3502 return;
3503
3504 case SET:
3505 if (GET_CODE (SET_DEST (x)) == MEM)
3506 find_used_regs (SET_DEST (x));
3507 x = SET_SRC (x);
3508 goto repeat;
3509
3510 default:
3511 break;
3512 }
3513
3514 /* Recursively scan the operands of this expression. */
3515
3516 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3517 {
3518 if (fmt[i] == 'e')
3519 {
3520 /* If we are about to do the last recursive call
3521 needed at this level, change it into iteration.
3522 This function is called enough to be worth it. */
3523 if (i == 0)
3524 {
3525 x = XEXP (x, 0);
3526 goto repeat;
3527 }
3528
3529 find_used_regs (XEXP (x, i));
3530 }
3531 else if (fmt[i] == 'E')
3532 for (j = 0; j < XVECLEN (x, i); j++)
3533 find_used_regs (XVECEXP (x, i, j));
3534 }
3535 }
3536
3537 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
3538 Returns non-zero is successful. */
3539
3540 static int
3541 try_replace_reg (from, to, insn)
3542 rtx from, to, insn;
3543 {
3544 rtx note;
3545 rtx src;
3546 int success;
3547 rtx set;
3548
3549 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3550
3551 if (!note)
3552 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3553
3554 /* If this fails we could try to simplify the result of the
3555 replacement and attempt to recognize the simplified insn.
3556
3557 But we need a general simplify_rtx that doesn't have pass
3558 specific state variables. I'm not aware of one at the moment. */
3559
3560 success = validate_replace_src (from, to, insn);
3561 set = single_set (insn);
3562
3563 /* We've failed to do replacement. Try to add REG_EQUAL note to not loose
3564 information. */
3565 if (!success && !note)
3566 {
3567 if (!set)
3568 return 0;
3569
3570 note = REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL,
3571 copy_rtx (SET_SRC (set)),
3572 REG_NOTES (insn));
3573 }
3574
3575 /* Always do the replacement in REQ_EQUAL and REG_EQUIV notes. Also
3576 try to simplify them. */
3577 if (note)
3578 {
3579 rtx simplified;
3580
3581 if (!validate_replace_rtx_subexp (from, to, insn, &XEXP (note, 0)))
3582 abort();
3583
3584 src = XEXP (note, 0);
3585
3586 /* Try to simplify resulting note. */
3587 simplified = simplify_rtx (src);
3588 if (simplified)
3589 {
3590 src = simplified;
3591 XEXP (note, 0) = src;
3592 }
3593
3594 /* REG_EQUAL may get simplified into register.
3595 We don't allow that. Remove that note. This code ought
3596 not to hapen, because previous code ought to syntetize
3597 reg-reg move, but be on the safe side. */
3598 else if (REG_P (src))
3599 remove_note (insn, note);
3600 }
3601 return success;
3602 }
3603
3604 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
3605 NULL no such set is found. */
3606
3607 static struct expr *
3608 find_avail_set (regno, insn)
3609 int regno;
3610 rtx insn;
3611 {
3612 /* SET1 contains the last set found that can be returned to the caller for
3613 use in a substitution. */
3614 struct expr *set1 = 0;
3615
3616 /* Loops are not possible here. To get a loop we would need two sets
3617 available at the start of the block containing INSN. ie we would
3618 need two sets like this available at the start of the block:
3619
3620 (set (reg X) (reg Y))
3621 (set (reg Y) (reg X))
3622
3623 This can not happen since the set of (reg Y) would have killed the
3624 set of (reg X) making it unavailable at the start of this block. */
3625 while (1)
3626 {
3627 rtx src;
3628 struct expr *set = lookup_set (regno, NULL_RTX);
3629
3630 /* Find a set that is available at the start of the block
3631 which contains INSN. */
3632 while (set)
3633 {
3634 if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
3635 break;
3636 set = next_set (regno, set);
3637 }
3638
3639 /* If no available set was found we've reached the end of the
3640 (possibly empty) copy chain. */
3641 if (set == 0)
3642 break;
3643
3644 if (GET_CODE (set->expr) != SET)
3645 abort ();
3646
3647 src = SET_SRC (set->expr);
3648
3649 /* We know the set is available.
3650 Now check that SRC is ANTLOC (i.e. none of the source operands
3651 have changed since the start of the block).
3652
3653 If the source operand changed, we may still use it for the next
3654 iteration of this loop, but we may not use it for substitutions. */
3655
3656 if (CONSTANT_P (src) || oprs_not_set_p (src, insn))
3657 set1 = set;
3658
3659 /* If the source of the set is anything except a register, then
3660 we have reached the end of the copy chain. */
3661 if (GET_CODE (src) != REG)
3662 break;
3663
3664 /* Follow the copy chain, ie start another iteration of the loop
3665 and see if we have an available copy into SRC. */
3666 regno = REGNO (src);
3667 }
3668
3669 /* SET1 holds the last set that was available and anticipatable at
3670 INSN. */
3671 return set1;
3672 }
3673
3674 /* Subroutine of cprop_insn that tries to propagate constants into
3675 JUMP_INSNS. INSN must be a conditional jump; COPY is a copy of it
3676 that we can use for substitutions.
3677 REG_USED is the use we will try to replace, SRC is the constant we
3678 will try to substitute for it.
3679 Returns nonzero if a change was made. */
3680
3681 static int
3682 cprop_jump (insn, copy, reg_used, src)
3683 rtx insn, copy;
3684 struct reg_use *reg_used;
3685 rtx src;
3686 {
3687 rtx set = PATTERN (copy);
3688 rtx temp;
3689
3690 /* Replace the register with the appropriate constant. */
3691 replace_rtx (SET_SRC (set), reg_used->reg_rtx, src);
3692
3693 temp = simplify_ternary_operation (GET_CODE (SET_SRC (set)),
3694 GET_MODE (SET_SRC (set)),
3695 GET_MODE (XEXP (SET_SRC (set), 0)),
3696 XEXP (SET_SRC (set), 0),
3697 XEXP (SET_SRC (set), 1),
3698 XEXP (SET_SRC (set), 2));
3699
3700 /* If no simplification can be made, then try the next
3701 register. */
3702 if (temp == 0)
3703 return 0;
3704
3705 SET_SRC (set) = temp;
3706
3707 /* That may have changed the structure of TEMP, so
3708 force it to be rerecognized if it has not turned
3709 into a nop or unconditional jump. */
3710
3711 INSN_CODE (copy) = -1;
3712 if ((SET_DEST (set) == pc_rtx
3713 && (SET_SRC (set) == pc_rtx
3714 || GET_CODE (SET_SRC (set)) == LABEL_REF))
3715 || recog (PATTERN (copy), copy, NULL) >= 0)
3716 {
3717 /* This has either become an unconditional jump
3718 or a nop-jump. We'd like to delete nop jumps
3719 here, but doing so confuses gcse. So we just
3720 make the replacement and let later passes
3721 sort things out. */
3722 PATTERN (insn) = set;
3723 INSN_CODE (insn) = -1;
3724
3725 /* One less use of the label this insn used to jump to
3726 if we turned this into a NOP jump. */
3727 if (SET_SRC (set) == pc_rtx && JUMP_LABEL (insn) != 0)
3728 --LABEL_NUSES (JUMP_LABEL (insn));
3729
3730 /* If this has turned into an unconditional jump,
3731 then put a barrier after it so that the unreachable
3732 code will be deleted. */
3733 if (GET_CODE (SET_SRC (set)) == LABEL_REF)
3734 emit_barrier_after (insn);
3735
3736 run_jump_opt_after_gcse = 1;
3737
3738 const_prop_count++;
3739 if (gcse_file != NULL)
3740 {
3741 fprintf (gcse_file,
3742 "CONST-PROP: Replacing reg %d in insn %d with constant ",
3743 REGNO (reg_used->reg_rtx), INSN_UID (insn));
3744 print_rtl (gcse_file, src);
3745 fprintf (gcse_file, "\n");
3746 }
3747
3748 return 1;
3749 }
3750 return 0;
3751 }
3752
3753 #ifdef HAVE_cc0
3754
3755 /* Subroutine of cprop_insn that tries to propagate constants into JUMP_INSNS
3756 for machines that have CC0. INSN is a single set that stores into CC0;
3757 the insn following it is a conditional jump. REG_USED is the use we will
3758 try to replace, SRC is the constant we will try to substitute for it.
3759 Returns nonzero if a change was made. */
3760
3761 static int
3762 cprop_cc0_jump (insn, reg_used, src)
3763 rtx insn;
3764 struct reg_use *reg_used;
3765 rtx src;
3766 {
3767 rtx jump = NEXT_INSN (insn);
3768 rtx copy = copy_rtx (jump);
3769 rtx set = PATTERN (copy);
3770
3771 /* We need to copy the source of the cc0 setter, as cprop_jump is going to
3772 substitute into it. */
3773 replace_rtx (SET_SRC (set), cc0_rtx, copy_rtx (SET_SRC (PATTERN (insn))));
3774 if (! cprop_jump (jump, copy, reg_used, src))
3775 return 0;
3776
3777 /* If we succeeded, delete the cc0 setter. */
3778 PUT_CODE (insn, NOTE);
3779 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
3780 NOTE_SOURCE_FILE (insn) = 0;
3781 return 1;
3782 }
3783 #endif
3784
3785 /* Perform constant and copy propagation on INSN.
3786 The result is non-zero if a change was made. */
3787
3788 static int
3789 cprop_insn (insn, alter_jumps)
3790 rtx insn;
3791 int alter_jumps;
3792 {
3793 struct reg_use *reg_used;
3794 int changed = 0;
3795 rtx note;
3796
3797 /* Only propagate into SETs. Note that a conditional jump is a
3798 SET with pc_rtx as the destination. */
3799 if ((GET_CODE (insn) != INSN
3800 && GET_CODE (insn) != JUMP_INSN)
3801 || GET_CODE (PATTERN (insn)) != SET)
3802 return 0;
3803
3804 reg_use_count = 0;
3805 find_used_regs (PATTERN (insn));
3806
3807 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3808 if (!note)
3809 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3810
3811 /* We may win even when propagating constants into notes. */
3812 if (note)
3813 find_used_regs (XEXP (note, 0));
3814
3815 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
3816 reg_used++, reg_use_count--)
3817 {
3818 unsigned int regno = REGNO (reg_used->reg_rtx);
3819 rtx pat, src;
3820 struct expr *set;
3821
3822 /* Ignore registers created by GCSE.
3823 We do this because ... */
3824 if (regno >= max_gcse_regno)
3825 continue;
3826
3827 /* If the register has already been set in this block, there's
3828 nothing we can do. */
3829 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
3830 continue;
3831
3832 /* Find an assignment that sets reg_used and is available
3833 at the start of the block. */
3834 set = find_avail_set (regno, insn);
3835 if (! set)
3836 continue;
3837
3838 pat = set->expr;
3839 /* ??? We might be able to handle PARALLELs. Later. */
3840 if (GET_CODE (pat) != SET)
3841 abort ();
3842
3843 src = SET_SRC (pat);
3844
3845 /* Constant propagation. */
3846 if (GET_CODE (src) == CONST_INT || GET_CODE (src) == CONST_DOUBLE
3847 || GET_CODE (src) == SYMBOL_REF)
3848 {
3849 /* Handle normal insns first. */
3850 if (GET_CODE (insn) == INSN
3851 && try_replace_reg (reg_used->reg_rtx, src, insn))
3852 {
3853 changed = 1;
3854 const_prop_count++;
3855 if (gcse_file != NULL)
3856 {
3857 fprintf (gcse_file, "CONST-PROP: Replacing reg %d in ",
3858 regno);
3859 fprintf (gcse_file, "insn %d with constant ",
3860 INSN_UID (insn));
3861 print_rtl (gcse_file, src);
3862 fprintf (gcse_file, "\n");
3863 }
3864
3865 /* The original insn setting reg_used may or may not now be
3866 deletable. We leave the deletion to flow. */
3867 }
3868
3869 /* Try to propagate a CONST_INT into a conditional jump.
3870 We're pretty specific about what we will handle in this
3871 code, we can extend this as necessary over time.
3872
3873 Right now the insn in question must look like
3874 (set (pc) (if_then_else ...)) */
3875 else if (alter_jumps
3876 && GET_CODE (insn) == JUMP_INSN
3877 && condjump_p (insn)
3878 && ! simplejump_p (insn))
3879 changed |= cprop_jump (insn, copy_rtx (insn), reg_used, src);
3880 #ifdef HAVE_cc0
3881 /* Similar code for machines that use a pair of CC0 setter and
3882 conditional jump insn. */
3883 else if (alter_jumps
3884 && GET_CODE (PATTERN (insn)) == SET
3885 && SET_DEST (PATTERN (insn)) == cc0_rtx
3886 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
3887 && condjump_p (NEXT_INSN (insn))
3888 && ! simplejump_p (NEXT_INSN (insn)))
3889 changed |= cprop_cc0_jump (insn, reg_used, src);
3890 #endif
3891 }
3892 else if (GET_CODE (src) == REG
3893 && REGNO (src) >= FIRST_PSEUDO_REGISTER
3894 && REGNO (src) != regno)
3895 {
3896 if (try_replace_reg (reg_used->reg_rtx, src, insn))
3897 {
3898 changed = 1;
3899 copy_prop_count++;
3900 if (gcse_file != NULL)
3901 {
3902 fprintf (gcse_file, "COPY-PROP: Replacing reg %d in insn %d",
3903 regno, INSN_UID (insn));
3904 fprintf (gcse_file, " with reg %d\n", REGNO (src));
3905 }
3906
3907 /* The original insn setting reg_used may or may not now be
3908 deletable. We leave the deletion to flow. */
3909 /* FIXME: If it turns out that the insn isn't deletable,
3910 then we may have unnecessarily extended register lifetimes
3911 and made things worse. */
3912 }
3913 }
3914 }
3915
3916 return changed;
3917 }
3918
3919 /* Forward propagate copies. This includes copies and constants. Return
3920 non-zero if a change was made. */
3921
3922 static int
3923 cprop (alter_jumps)
3924 int alter_jumps;
3925 {
3926 int bb, changed;
3927 rtx insn;
3928
3929 /* Note we start at block 1. */
3930
3931 changed = 0;
3932 for (bb = 1; bb < n_basic_blocks; bb++)
3933 {
3934 /* Reset tables used to keep track of what's still valid [since the
3935 start of the block]. */
3936 reset_opr_set_tables ();
3937
3938 for (insn = BLOCK_HEAD (bb);
3939 insn != NULL && insn != NEXT_INSN (BLOCK_END (bb));
3940 insn = NEXT_INSN (insn))
3941 {
3942 if (INSN_P (insn))
3943 {
3944 changed |= cprop_insn (insn, alter_jumps);
3945
3946 /* Keep track of everything modified by this insn. */
3947 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
3948 call mark_oprs_set if we turned the insn into a NOTE. */
3949 if (GET_CODE (insn) != NOTE)
3950 mark_oprs_set (insn);
3951 }
3952 }
3953 }
3954
3955 if (gcse_file != NULL)
3956 fprintf (gcse_file, "\n");
3957
3958 return changed;
3959 }
3960
3961 /* Perform one copy/constant propagation pass.
3962 F is the first insn in the function.
3963 PASS is the pass count. */
3964
3965 static int
3966 one_cprop_pass (pass, alter_jumps)
3967 int pass;
3968 int alter_jumps;
3969 {
3970 int changed = 0;
3971
3972 const_prop_count = 0;
3973 copy_prop_count = 0;
3974
3975 alloc_set_hash_table (max_cuid);
3976 compute_set_hash_table ();
3977 if (gcse_file)
3978 dump_hash_table (gcse_file, "SET", set_hash_table, set_hash_table_size,
3979 n_sets);
3980 if (n_sets > 0)
3981 {
3982 alloc_cprop_mem (n_basic_blocks, n_sets);
3983 compute_cprop_data ();
3984 changed = cprop (alter_jumps);
3985 free_cprop_mem ();
3986 }
3987
3988 free_set_hash_table ();
3989
3990 if (gcse_file)
3991 {
3992 fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, ",
3993 current_function_name, pass, bytes_used);
3994 fprintf (gcse_file, "%d const props, %d copy props\n\n",
3995 const_prop_count, copy_prop_count);
3996 }
3997
3998 return changed;
3999 }
4000 \f
4001 /* Compute PRE+LCM working variables. */
4002
4003 /* Local properties of expressions. */
4004 /* Nonzero for expressions that are transparent in the block. */
4005 static sbitmap *transp;
4006
4007 /* Nonzero for expressions that are transparent at the end of the block.
4008 This is only zero for expressions killed by abnormal critical edge
4009 created by a calls. */
4010 static sbitmap *transpout;
4011
4012 /* Nonzero for expressions that are computed (available) in the block. */
4013 static sbitmap *comp;
4014
4015 /* Nonzero for expressions that are locally anticipatable in the block. */
4016 static sbitmap *antloc;
4017
4018 /* Nonzero for expressions where this block is an optimal computation
4019 point. */
4020 static sbitmap *pre_optimal;
4021
4022 /* Nonzero for expressions which are redundant in a particular block. */
4023 static sbitmap *pre_redundant;
4024
4025 /* Nonzero for expressions which should be inserted on a specific edge. */
4026 static sbitmap *pre_insert_map;
4027
4028 /* Nonzero for expressions which should be deleted in a specific block. */
4029 static sbitmap *pre_delete_map;
4030
4031 /* Contains the edge_list returned by pre_edge_lcm. */
4032 static struct edge_list *edge_list;
4033
4034 /* Redundant insns. */
4035 static sbitmap pre_redundant_insns;
4036
4037 /* Allocate vars used for PRE analysis. */
4038
4039 static void
4040 alloc_pre_mem (n_blocks, n_exprs)
4041 int n_blocks, n_exprs;
4042 {
4043 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4044 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4045 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
4046
4047 pre_optimal = NULL;
4048 pre_redundant = NULL;
4049 pre_insert_map = NULL;
4050 pre_delete_map = NULL;
4051 ae_in = NULL;
4052 ae_out = NULL;
4053 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
4054
4055 /* pre_insert and pre_delete are allocated later. */
4056 }
4057
4058 /* Free vars used for PRE analysis. */
4059
4060 static void
4061 free_pre_mem ()
4062 {
4063 free (transp);
4064 free (comp);
4065
4066 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
4067
4068 if (pre_optimal)
4069 free (pre_optimal);
4070 if (pre_redundant)
4071 free (pre_redundant);
4072 if (pre_insert_map)
4073 free (pre_insert_map);
4074 if (pre_delete_map)
4075 free (pre_delete_map);
4076
4077 if (ae_in)
4078 free (ae_in);
4079 if (ae_out)
4080 free (ae_out);
4081
4082 transp = comp = NULL;
4083 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
4084 ae_in = ae_out = NULL;
4085 }
4086
4087 /* Top level routine to do the dataflow analysis needed by PRE. */
4088
4089 static void
4090 compute_pre_data ()
4091 {
4092 int i;
4093
4094 compute_local_properties (transp, comp, antloc, 0);
4095 sbitmap_vector_zero (ae_kill, n_basic_blocks);
4096
4097 /* Compute ae_kill for each basic block using:
4098
4099 ~(TRANSP | COMP)
4100
4101 This is significantly faster than compute_ae_kill. */
4102
4103 for (i = 0; i < n_basic_blocks; i++)
4104 {
4105 sbitmap_a_or_b (ae_kill[i], transp[i], comp[i]);
4106 sbitmap_not (ae_kill[i], ae_kill[i]);
4107 }
4108
4109 edge_list = pre_edge_lcm (gcse_file, n_exprs, transp, comp, antloc,
4110 ae_kill, &pre_insert_map, &pre_delete_map);
4111 free (antloc);
4112 antloc = NULL;
4113 free (ae_kill);
4114 ae_kill = NULL;
4115 }
4116 \f
4117 /* PRE utilities */
4118
4119 /* Return non-zero if an occurrence of expression EXPR in OCCR_BB would reach
4120 block BB.
4121
4122 VISITED is a pointer to a working buffer for tracking which BB's have
4123 been visited. It is NULL for the top-level call.
4124
4125 We treat reaching expressions that go through blocks containing the same
4126 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
4127 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
4128 2 as not reaching. The intent is to improve the probability of finding
4129 only one reaching expression and to reduce register lifetimes by picking
4130 the closest such expression. */
4131
4132 static int
4133 pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited)
4134 int occr_bb;
4135 struct expr *expr;
4136 int bb;
4137 char *visited;
4138 {
4139 edge pred;
4140
4141 for (pred = BASIC_BLOCK (bb)->pred; pred != NULL; pred = pred->pred_next)
4142 {
4143 int pred_bb = pred->src->index;
4144
4145 if (pred->src == ENTRY_BLOCK_PTR
4146 /* Has predecessor has already been visited? */
4147 || visited[pred_bb])
4148 ;/* Nothing to do. */
4149
4150 /* Does this predecessor generate this expression? */
4151 else if (TEST_BIT (comp[pred_bb], expr->bitmap_index))
4152 {
4153 /* Is this the occurrence we're looking for?
4154 Note that there's only one generating occurrence per block
4155 so we just need to check the block number. */
4156 if (occr_bb == pred_bb)
4157 return 1;
4158
4159 visited[pred_bb] = 1;
4160 }
4161 /* Ignore this predecessor if it kills the expression. */
4162 else if (! TEST_BIT (transp[pred_bb], expr->bitmap_index))
4163 visited[pred_bb] = 1;
4164
4165 /* Neither gen nor kill. */
4166 else
4167 {
4168 visited[pred_bb] = 1;
4169 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
4170 return 1;
4171 }
4172 }
4173
4174 /* All paths have been checked. */
4175 return 0;
4176 }
4177
4178 /* The wrapper for pre_expr_reaches_here_work that ensures that any
4179 memory allocated for that function is returned. */
4180
4181 static int
4182 pre_expr_reaches_here_p (occr_bb, expr, bb)
4183 int occr_bb;
4184 struct expr *expr;
4185 int bb;
4186 {
4187 int rval;
4188 char *visited = (char *) xcalloc (n_basic_blocks, 1);
4189
4190 rval = pre_expr_reaches_here_p_work(occr_bb, expr, bb, visited);
4191
4192 free (visited);
4193 return rval;
4194 }
4195 \f
4196
4197 /* Given an expr, generate RTL which we can insert at the end of a BB,
4198 or on an edge. Set the block number of any insns generated to
4199 the value of BB. */
4200
4201 static rtx
4202 process_insert_insn (expr)
4203 struct expr *expr;
4204 {
4205 rtx reg = expr->reaching_reg;
4206 rtx pat, copied_expr;
4207 rtx first_new_insn;
4208
4209 start_sequence ();
4210 copied_expr = copy_rtx (expr->expr);
4211 emit_move_insn (reg, copied_expr);
4212 first_new_insn = get_insns ();
4213 pat = gen_sequence ();
4214 end_sequence ();
4215
4216 return pat;
4217 }
4218
4219 /* Add EXPR to the end of basic block BB.
4220
4221 This is used by both the PRE and code hoisting.
4222
4223 For PRE, we want to verify that the expr is either transparent
4224 or locally anticipatable in the target block. This check makes
4225 no sense for code hoisting. */
4226
4227 static void
4228 insert_insn_end_bb (expr, bb, pre)
4229 struct expr *expr;
4230 int bb;
4231 int pre;
4232 {
4233 rtx insn = BLOCK_END (bb);
4234 rtx new_insn;
4235 rtx reg = expr->reaching_reg;
4236 int regno = REGNO (reg);
4237 rtx pat;
4238 int i;
4239
4240 pat = process_insert_insn (expr);
4241
4242 /* If the last insn is a jump, insert EXPR in front [taking care to
4243 handle cc0, etc. properly]. */
4244
4245 if (GET_CODE (insn) == JUMP_INSN)
4246 {
4247 #ifdef HAVE_cc0
4248 rtx note;
4249 #endif
4250
4251 /* If this is a jump table, then we can't insert stuff here. Since
4252 we know the previous real insn must be the tablejump, we insert
4253 the new instruction just before the tablejump. */
4254 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
4255 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
4256 insn = prev_real_insn (insn);
4257
4258 #ifdef HAVE_cc0
4259 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
4260 if cc0 isn't set. */
4261 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
4262 if (note)
4263 insn = XEXP (note, 0);
4264 else
4265 {
4266 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
4267 if (maybe_cc0_setter
4268 && INSN_P (maybe_cc0_setter)
4269 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
4270 insn = maybe_cc0_setter;
4271 }
4272 #endif
4273 /* FIXME: What if something in cc0/jump uses value set in new insn? */
4274 new_insn = emit_block_insn_before (pat, insn, BASIC_BLOCK (bb));
4275 }
4276
4277 /* Likewise if the last insn is a call, as will happen in the presence
4278 of exception handling. */
4279 else if (GET_CODE (insn) == CALL_INSN)
4280 {
4281 HARD_REG_SET parm_regs;
4282 int nparm_regs;
4283 rtx p;
4284
4285 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4286 we search backward and place the instructions before the first
4287 parameter is loaded. Do this for everyone for consistency and a
4288 presumtion that we'll get better code elsewhere as well.
4289
4290 It should always be the case that we can put these instructions
4291 anywhere in the basic block with performing PRE optimizations.
4292 Check this. */
4293
4294 if (pre
4295 && !TEST_BIT (antloc[bb], expr->bitmap_index)
4296 && !TEST_BIT (transp[bb], expr->bitmap_index))
4297 abort ();
4298
4299 /* Since different machines initialize their parameter registers
4300 in different orders, assume nothing. Collect the set of all
4301 parameter registers. */
4302 CLEAR_HARD_REG_SET (parm_regs);
4303 nparm_regs = 0;
4304 for (p = CALL_INSN_FUNCTION_USAGE (insn); p ; p = XEXP (p, 1))
4305 if (GET_CODE (XEXP (p, 0)) == USE
4306 && GET_CODE (XEXP (XEXP (p, 0), 0)) == REG)
4307 {
4308 if (REGNO (XEXP (XEXP (p, 0), 0)) >= FIRST_PSEUDO_REGISTER)
4309 abort ();
4310
4311 SET_HARD_REG_BIT (parm_regs, REGNO (XEXP (XEXP (p, 0), 0)));
4312 nparm_regs++;
4313 }
4314
4315 /* Search backward for the first set of a register in this set. */
4316 while (nparm_regs && BLOCK_HEAD (bb) != insn)
4317 {
4318 insn = PREV_INSN (insn);
4319 p = single_set (insn);
4320 if (p && GET_CODE (SET_DEST (p)) == REG
4321 && REGNO (SET_DEST (p)) < FIRST_PSEUDO_REGISTER
4322 && TEST_HARD_REG_BIT (parm_regs, REGNO (SET_DEST (p))))
4323 {
4324 CLEAR_HARD_REG_BIT (parm_regs, REGNO (SET_DEST (p)));
4325 nparm_regs--;
4326 }
4327 }
4328
4329 /* If we found all the parameter loads, then we want to insert
4330 before the first parameter load.
4331
4332 If we did not find all the parameter loads, then we might have
4333 stopped on the head of the block, which could be a CODE_LABEL.
4334 If we inserted before the CODE_LABEL, then we would be putting
4335 the insn in the wrong basic block. In that case, put the insn
4336 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
4337 while (GET_CODE (insn) == CODE_LABEL
4338 || NOTE_INSN_BASIC_BLOCK_P (insn))
4339 insn = NEXT_INSN (insn);
4340
4341 new_insn = emit_block_insn_before (pat, insn, BASIC_BLOCK (bb));
4342 }
4343 else
4344 {
4345 new_insn = emit_insn_after (pat, insn);
4346 BLOCK_END (bb) = new_insn;
4347 }
4348
4349 /* Keep block number table up to date.
4350 Note, PAT could be a multiple insn sequence, we have to make
4351 sure that each insn in the sequence is handled. */
4352 if (GET_CODE (pat) == SEQUENCE)
4353 {
4354 for (i = 0; i < XVECLEN (pat, 0); i++)
4355 {
4356 rtx insn = XVECEXP (pat, 0, i);
4357
4358 set_block_num (insn, bb);
4359 if (INSN_P (insn))
4360 add_label_notes (PATTERN (insn), new_insn);
4361
4362 note_stores (PATTERN (insn), record_set_info, insn);
4363 }
4364 }
4365 else
4366 {
4367 add_label_notes (SET_SRC (pat), new_insn);
4368 set_block_num (new_insn, bb);
4369
4370 /* Keep register set table up to date. */
4371 record_one_set (regno, new_insn);
4372 }
4373
4374 gcse_create_count++;
4375
4376 if (gcse_file)
4377 {
4378 fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, ",
4379 bb, INSN_UID (new_insn));
4380 fprintf (gcse_file, "copying expression %d to reg %d\n",
4381 expr->bitmap_index, regno);
4382 }
4383 }
4384
4385 /* Insert partially redundant expressions on edges in the CFG to make
4386 the expressions fully redundant. */
4387
4388 static int
4389 pre_edge_insert (edge_list, index_map)
4390 struct edge_list *edge_list;
4391 struct expr **index_map;
4392 {
4393 int e, i, j, num_edges, set_size, did_insert = 0;
4394 sbitmap *inserted;
4395
4396 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
4397 if it reaches any of the deleted expressions. */
4398
4399 set_size = pre_insert_map[0]->size;
4400 num_edges = NUM_EDGES (edge_list);
4401 inserted = sbitmap_vector_alloc (num_edges, n_exprs);
4402 sbitmap_vector_zero (inserted, num_edges);
4403
4404 for (e = 0; e < num_edges; e++)
4405 {
4406 int indx;
4407 basic_block pred = INDEX_EDGE_PRED_BB (edge_list, e);
4408 int bb = pred->index;
4409
4410 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
4411 {
4412 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
4413
4414 for (j = indx; insert && j < n_exprs; j++, insert >>= 1)
4415 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
4416 {
4417 struct expr *expr = index_map[j];
4418 struct occr *occr;
4419
4420 /* Now look at each deleted occurence of this expression. */
4421 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4422 {
4423 if (! occr->deleted_p)
4424 continue;
4425
4426 /* Insert this expression on this edge if if it would
4427 reach the deleted occurence in BB. */
4428 if (!TEST_BIT (inserted[e], j))
4429 {
4430 rtx insn;
4431 edge eg = INDEX_EDGE (edge_list, e);
4432
4433 /* We can't insert anything on an abnormal and
4434 critical edge, so we insert the insn at the end of
4435 the previous block. There are several alternatives
4436 detailed in Morgans book P277 (sec 10.5) for
4437 handling this situation. This one is easiest for
4438 now. */
4439
4440 if ((eg->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
4441 insert_insn_end_bb (index_map[j], bb, 0);
4442 else
4443 {
4444 insn = process_insert_insn (index_map[j]);
4445 insert_insn_on_edge (insn, eg);
4446 }
4447
4448 if (gcse_file)
4449 {
4450 fprintf (gcse_file, "PRE/HOIST: edge (%d,%d), ",
4451 bb,
4452 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
4453 fprintf (gcse_file, "copy expression %d\n",
4454 expr->bitmap_index);
4455 }
4456
4457 SET_BIT (inserted[e], j);
4458 did_insert = 1;
4459 gcse_create_count++;
4460 }
4461 }
4462 }
4463 }
4464 }
4465
4466 free (inserted);
4467 return did_insert;
4468 }
4469
4470 /* Copy the result of INSN to REG. INDX is the expression number. */
4471
4472 static void
4473 pre_insert_copy_insn (expr, insn)
4474 struct expr *expr;
4475 rtx insn;
4476 {
4477 rtx reg = expr->reaching_reg;
4478 int regno = REGNO (reg);
4479 int indx = expr->bitmap_index;
4480 rtx set = single_set (insn);
4481 rtx new_insn;
4482 int bb = BLOCK_NUM (insn);
4483
4484 if (!set)
4485 abort ();
4486
4487 new_insn = emit_insn_after (gen_rtx_SET (VOIDmode, reg, SET_DEST (set)),
4488 insn);
4489
4490 /* Keep block number table up to date. */
4491 set_block_num (new_insn, bb);
4492
4493 /* Keep register set table up to date. */
4494 record_one_set (regno, new_insn);
4495 if (insn == BLOCK_END (bb))
4496 BLOCK_END (bb) = new_insn;
4497
4498 gcse_create_count++;
4499
4500 if (gcse_file)
4501 fprintf (gcse_file,
4502 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
4503 BLOCK_NUM (insn), INSN_UID (new_insn), indx,
4504 INSN_UID (insn), regno);
4505 }
4506
4507 /* Copy available expressions that reach the redundant expression
4508 to `reaching_reg'. */
4509
4510 static void
4511 pre_insert_copies ()
4512 {
4513 unsigned int i;
4514 struct expr *expr;
4515 struct occr *occr;
4516 struct occr *avail;
4517
4518 /* For each available expression in the table, copy the result to
4519 `reaching_reg' if the expression reaches a deleted one.
4520
4521 ??? The current algorithm is rather brute force.
4522 Need to do some profiling. */
4523
4524 for (i = 0; i < expr_hash_table_size; i++)
4525 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
4526 {
4527 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
4528 we don't want to insert a copy here because the expression may not
4529 really be redundant. So only insert an insn if the expression was
4530 deleted. This test also avoids further processing if the
4531 expression wasn't deleted anywhere. */
4532 if (expr->reaching_reg == NULL)
4533 continue;
4534
4535 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4536 {
4537 if (! occr->deleted_p)
4538 continue;
4539
4540 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
4541 {
4542 rtx insn = avail->insn;
4543
4544 /* No need to handle this one if handled already. */
4545 if (avail->copied_p)
4546 continue;
4547
4548 /* Don't handle this one if it's a redundant one. */
4549 if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
4550 continue;
4551
4552 /* Or if the expression doesn't reach the deleted one. */
4553 if (! pre_expr_reaches_here_p (BLOCK_NUM (avail->insn), expr,
4554 BLOCK_NUM (occr->insn)))
4555 continue;
4556
4557 /* Copy the result of avail to reaching_reg. */
4558 pre_insert_copy_insn (expr, insn);
4559 avail->copied_p = 1;
4560 }
4561 }
4562 }
4563 }
4564
4565 /* Delete redundant computations.
4566 Deletion is done by changing the insn to copy the `reaching_reg' of
4567 the expression into the result of the SET. It is left to later passes
4568 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
4569
4570 Returns non-zero if a change is made. */
4571
4572 static int
4573 pre_delete ()
4574 {
4575 unsigned int i;
4576 int changed;
4577 struct expr *expr;
4578 struct occr *occr;
4579
4580 changed = 0;
4581 for (i = 0; i < expr_hash_table_size; i++)
4582 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
4583 {
4584 int indx = expr->bitmap_index;
4585
4586 /* We only need to search antic_occr since we require
4587 ANTLOC != 0. */
4588
4589 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4590 {
4591 rtx insn = occr->insn;
4592 rtx set;
4593 int bb = BLOCK_NUM (insn);
4594
4595 if (TEST_BIT (pre_delete_map[bb], indx))
4596 {
4597 set = single_set (insn);
4598 if (! set)
4599 abort ();
4600
4601 /* Create a pseudo-reg to store the result of reaching
4602 expressions into. Get the mode for the new pseudo from
4603 the mode of the original destination pseudo. */
4604 if (expr->reaching_reg == NULL)
4605 expr->reaching_reg
4606 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4607
4608 /* In theory this should never fail since we're creating
4609 a reg->reg copy.
4610
4611 However, on the x86 some of the movXX patterns actually
4612 contain clobbers of scratch regs. This may cause the
4613 insn created by validate_change to not match any pattern
4614 and thus cause validate_change to fail. */
4615 if (validate_change (insn, &SET_SRC (set),
4616 expr->reaching_reg, 0))
4617 {
4618 occr->deleted_p = 1;
4619 SET_BIT (pre_redundant_insns, INSN_CUID (insn));
4620 changed = 1;
4621 gcse_subst_count++;
4622 }
4623
4624 if (gcse_file)
4625 {
4626 fprintf (gcse_file,
4627 "PRE: redundant insn %d (expression %d) in ",
4628 INSN_UID (insn), indx);
4629 fprintf (gcse_file, "bb %d, reaching reg is %d\n",
4630 bb, REGNO (expr->reaching_reg));
4631 }
4632 }
4633 }
4634 }
4635
4636 return changed;
4637 }
4638
4639 /* Perform GCSE optimizations using PRE.
4640 This is called by one_pre_gcse_pass after all the dataflow analysis
4641 has been done.
4642
4643 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
4644 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
4645 Compiler Design and Implementation.
4646
4647 ??? A new pseudo reg is created to hold the reaching expression. The nice
4648 thing about the classical approach is that it would try to use an existing
4649 reg. If the register can't be adequately optimized [i.e. we introduce
4650 reload problems], one could add a pass here to propagate the new register
4651 through the block.
4652
4653 ??? We don't handle single sets in PARALLELs because we're [currently] not
4654 able to copy the rest of the parallel when we insert copies to create full
4655 redundancies from partial redundancies. However, there's no reason why we
4656 can't handle PARALLELs in the cases where there are no partial
4657 redundancies. */
4658
4659 static int
4660 pre_gcse ()
4661 {
4662 unsigned int i;
4663 int did_insert, changed;
4664 struct expr **index_map;
4665 struct expr *expr;
4666
4667 /* Compute a mapping from expression number (`bitmap_index') to
4668 hash table entry. */
4669
4670 index_map = (struct expr **) xcalloc (n_exprs, sizeof (struct expr *));
4671 for (i = 0; i < expr_hash_table_size; i++)
4672 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
4673 index_map[expr->bitmap_index] = expr;
4674
4675 /* Reset bitmap used to track which insns are redundant. */
4676 pre_redundant_insns = sbitmap_alloc (max_cuid);
4677 sbitmap_zero (pre_redundant_insns);
4678
4679 /* Delete the redundant insns first so that
4680 - we know what register to use for the new insns and for the other
4681 ones with reaching expressions
4682 - we know which insns are redundant when we go to create copies */
4683
4684 changed = pre_delete ();
4685
4686 did_insert = pre_edge_insert (edge_list, index_map);
4687
4688 /* In other places with reaching expressions, copy the expression to the
4689 specially allocated pseudo-reg that reaches the redundant expr. */
4690 pre_insert_copies ();
4691 if (did_insert)
4692 {
4693 commit_edge_insertions ();
4694 changed = 1;
4695 }
4696
4697 free (index_map);
4698 free (pre_redundant_insns);
4699 return changed;
4700 }
4701
4702 /* Top level routine to perform one PRE GCSE pass.
4703
4704 Return non-zero if a change was made. */
4705
4706 static int
4707 one_pre_gcse_pass (pass)
4708 int pass;
4709 {
4710 int changed = 0;
4711
4712 gcse_subst_count = 0;
4713 gcse_create_count = 0;
4714
4715 alloc_expr_hash_table (max_cuid);
4716 add_noreturn_fake_exit_edges ();
4717 compute_expr_hash_table ();
4718 if (gcse_file)
4719 dump_hash_table (gcse_file, "Expression", expr_hash_table,
4720 expr_hash_table_size, n_exprs);
4721
4722 if (n_exprs > 0)
4723 {
4724 alloc_pre_mem (n_basic_blocks, n_exprs);
4725 compute_pre_data ();
4726 changed |= pre_gcse ();
4727 free_edge_list (edge_list);
4728 free_pre_mem ();
4729 }
4730
4731 remove_fake_edges ();
4732 free_expr_hash_table ();
4733
4734 if (gcse_file)
4735 {
4736 fprintf (gcse_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
4737 current_function_name, pass, bytes_used);
4738 fprintf (gcse_file, "%d substs, %d insns created\n",
4739 gcse_subst_count, gcse_create_count);
4740 }
4741
4742 return changed;
4743 }
4744 \f
4745 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
4746 We have to add REG_LABEL notes, because the following loop optimization
4747 pass requires them. */
4748
4749 /* ??? This is very similar to the loop.c add_label_notes function. We
4750 could probably share code here. */
4751
4752 /* ??? If there was a jump optimization pass after gcse and before loop,
4753 then we would not need to do this here, because jump would add the
4754 necessary REG_LABEL notes. */
4755
4756 static void
4757 add_label_notes (x, insn)
4758 rtx x;
4759 rtx insn;
4760 {
4761 enum rtx_code code = GET_CODE (x);
4762 int i, j;
4763 const char *fmt;
4764
4765 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
4766 {
4767 /* This code used to ignore labels that referred to dispatch tables to
4768 avoid flow generating (slighly) worse code.
4769
4770 We no longer ignore such label references (see LABEL_REF handling in
4771 mark_jump_label for additional information). */
4772
4773 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL, XEXP (x, 0),
4774 REG_NOTES (insn));
4775 return;
4776 }
4777
4778 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
4779 {
4780 if (fmt[i] == 'e')
4781 add_label_notes (XEXP (x, i), insn);
4782 else if (fmt[i] == 'E')
4783 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4784 add_label_notes (XVECEXP (x, i, j), insn);
4785 }
4786 }
4787
4788 /* Compute transparent outgoing information for each block.
4789
4790 An expression is transparent to an edge unless it is killed by
4791 the edge itself. This can only happen with abnormal control flow,
4792 when the edge is traversed through a call. This happens with
4793 non-local labels and exceptions.
4794
4795 This would not be necessary if we split the edge. While this is
4796 normally impossible for abnormal critical edges, with some effort
4797 it should be possible with exception handling, since we still have
4798 control over which handler should be invoked. But due to increased
4799 EH table sizes, this may not be worthwhile. */
4800
4801 static void
4802 compute_transpout ()
4803 {
4804 int bb;
4805 unsigned int i;
4806 struct expr *expr;
4807
4808 sbitmap_vector_ones (transpout, n_basic_blocks);
4809
4810 for (bb = 0; bb < n_basic_blocks; ++bb)
4811 {
4812 /* Note that flow inserted a nop a the end of basic blocks that
4813 end in call instructions for reasons other than abnormal
4814 control flow. */
4815 if (GET_CODE (BLOCK_END (bb)) != CALL_INSN)
4816 continue;
4817
4818 for (i = 0; i < expr_hash_table_size; i++)
4819 for (expr = expr_hash_table[i]; expr ; expr = expr->next_same_hash)
4820 if (GET_CODE (expr->expr) == MEM)
4821 {
4822 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
4823 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
4824 continue;
4825
4826 /* ??? Optimally, we would use interprocedural alias
4827 analysis to determine if this mem is actually killed
4828 by this call. */
4829 RESET_BIT (transpout[bb], expr->bitmap_index);
4830 }
4831 }
4832 }
4833
4834 /* Removal of useless null pointer checks */
4835
4836 /* Called via note_stores. X is set by SETTER. If X is a register we must
4837 invalidate nonnull_local and set nonnull_killed. DATA is really a
4838 `null_pointer_info *'.
4839
4840 We ignore hard registers. */
4841
4842 static void
4843 invalidate_nonnull_info (x, setter, data)
4844 rtx x;
4845 rtx setter ATTRIBUTE_UNUSED;
4846 void *data;
4847 {
4848 unsigned int regno;
4849 struct null_pointer_info *npi = (struct null_pointer_info *) data;
4850
4851 while (GET_CODE (x) == SUBREG)
4852 x = SUBREG_REG (x);
4853
4854 /* Ignore anything that is not a register or is a hard register. */
4855 if (GET_CODE (x) != REG
4856 || REGNO (x) < npi->min_reg
4857 || REGNO (x) >= npi->max_reg)
4858 return;
4859
4860 regno = REGNO (x) - npi->min_reg;
4861
4862 RESET_BIT (npi->nonnull_local[npi->current_block], regno);
4863 SET_BIT (npi->nonnull_killed[npi->current_block], regno);
4864 }
4865
4866 /* Do null-pointer check elimination for the registers indicated in
4867 NPI. NONNULL_AVIN and NONNULL_AVOUT are pre-allocated sbitmaps;
4868 they are not our responsibility to free. */
4869
4870 static void
4871 delete_null_pointer_checks_1 (block_reg, nonnull_avin, nonnull_avout, npi)
4872 unsigned int *block_reg;
4873 sbitmap *nonnull_avin;
4874 sbitmap *nonnull_avout;
4875 struct null_pointer_info *npi;
4876 {
4877 int bb;
4878 int current_block;
4879 sbitmap *nonnull_local = npi->nonnull_local;
4880 sbitmap *nonnull_killed = npi->nonnull_killed;
4881
4882 /* Compute local properties, nonnull and killed. A register will have
4883 the nonnull property if at the end of the current block its value is
4884 known to be nonnull. The killed property indicates that somewhere in
4885 the block any information we had about the register is killed.
4886
4887 Note that a register can have both properties in a single block. That
4888 indicates that it's killed, then later in the block a new value is
4889 computed. */
4890 sbitmap_vector_zero (nonnull_local, n_basic_blocks);
4891 sbitmap_vector_zero (nonnull_killed, n_basic_blocks);
4892
4893 for (current_block = 0; current_block < n_basic_blocks; current_block++)
4894 {
4895 rtx insn, stop_insn;
4896
4897 /* Set the current block for invalidate_nonnull_info. */
4898 npi->current_block = current_block;
4899
4900 /* Scan each insn in the basic block looking for memory references and
4901 register sets. */
4902 stop_insn = NEXT_INSN (BLOCK_END (current_block));
4903 for (insn = BLOCK_HEAD (current_block);
4904 insn != stop_insn;
4905 insn = NEXT_INSN (insn))
4906 {
4907 rtx set;
4908 rtx reg;
4909
4910 /* Ignore anything that is not a normal insn. */
4911 if (! INSN_P (insn))
4912 continue;
4913
4914 /* Basically ignore anything that is not a simple SET. We do have
4915 to make sure to invalidate nonnull_local and set nonnull_killed
4916 for such insns though. */
4917 set = single_set (insn);
4918 if (!set)
4919 {
4920 note_stores (PATTERN (insn), invalidate_nonnull_info, npi);
4921 continue;
4922 }
4923
4924 /* See if we've got a useable memory load. We handle it first
4925 in case it uses its address register as a dest (which kills
4926 the nonnull property). */
4927 if (GET_CODE (SET_SRC (set)) == MEM
4928 && GET_CODE ((reg = XEXP (SET_SRC (set), 0))) == REG
4929 && REGNO (reg) >= npi->min_reg
4930 && REGNO (reg) < npi->max_reg)
4931 SET_BIT (nonnull_local[current_block],
4932 REGNO (reg) - npi->min_reg);
4933
4934 /* Now invalidate stuff clobbered by this insn. */
4935 note_stores (PATTERN (insn), invalidate_nonnull_info, npi);
4936
4937 /* And handle stores, we do these last since any sets in INSN can
4938 not kill the nonnull property if it is derived from a MEM
4939 appearing in a SET_DEST. */
4940 if (GET_CODE (SET_DEST (set)) == MEM
4941 && GET_CODE ((reg = XEXP (SET_DEST (set), 0))) == REG
4942 && REGNO (reg) >= npi->min_reg
4943 && REGNO (reg) < npi->max_reg)
4944 SET_BIT (nonnull_local[current_block],
4945 REGNO (reg) - npi->min_reg);
4946 }
4947 }
4948
4949 /* Now compute global properties based on the local properties. This
4950 is a classic global availablity algorithm. */
4951 compute_available (nonnull_local, nonnull_killed,
4952 nonnull_avout, nonnull_avin);
4953
4954 /* Now look at each bb and see if it ends with a compare of a value
4955 against zero. */
4956 for (bb = 0; bb < n_basic_blocks; bb++)
4957 {
4958 rtx last_insn = BLOCK_END (bb);
4959 rtx condition, earliest;
4960 int compare_and_branch;
4961
4962 /* Since MIN_REG is always at least FIRST_PSEUDO_REGISTER, and
4963 since BLOCK_REG[BB] is zero if this block did not end with a
4964 comparison against zero, this condition works. */
4965 if (block_reg[bb] < npi->min_reg
4966 || block_reg[bb] >= npi->max_reg)
4967 continue;
4968
4969 /* LAST_INSN is a conditional jump. Get its condition. */
4970 condition = get_condition (last_insn, &earliest);
4971
4972 /* If we can't determine the condition then skip. */
4973 if (! condition)
4974 continue;
4975
4976 /* Is the register known to have a nonzero value? */
4977 if (!TEST_BIT (nonnull_avout[bb], block_reg[bb] - npi->min_reg))
4978 continue;
4979
4980 /* Try to compute whether the compare/branch at the loop end is one or
4981 two instructions. */
4982 if (earliest == last_insn)
4983 compare_and_branch = 1;
4984 else if (earliest == prev_nonnote_insn (last_insn))
4985 compare_and_branch = 2;
4986 else
4987 continue;
4988
4989 /* We know the register in this comparison is nonnull at exit from
4990 this block. We can optimize this comparison. */
4991 if (GET_CODE (condition) == NE)
4992 {
4993 rtx new_jump;
4994
4995 new_jump = emit_jump_insn_before (gen_jump (JUMP_LABEL (last_insn)),
4996 last_insn);
4997 JUMP_LABEL (new_jump) = JUMP_LABEL (last_insn);
4998 LABEL_NUSES (JUMP_LABEL (new_jump))++;
4999 emit_barrier_after (new_jump);
5000 }
5001 delete_insn (last_insn);
5002 if (compare_and_branch == 2)
5003 delete_insn (earliest);
5004
5005 /* Don't check this block again. (Note that BLOCK_END is
5006 invalid here; we deleted the last instruction in the
5007 block.) */
5008 block_reg[bb] = 0;
5009 }
5010 }
5011
5012 /* Find EQ/NE comparisons against zero which can be (indirectly) evaluated
5013 at compile time.
5014
5015 This is conceptually similar to global constant/copy propagation and
5016 classic global CSE (it even uses the same dataflow equations as cprop).
5017
5018 If a register is used as memory address with the form (mem (reg)), then we
5019 know that REG can not be zero at that point in the program. Any instruction
5020 which sets REG "kills" this property.
5021
5022 So, if every path leading to a conditional branch has an available memory
5023 reference of that form, then we know the register can not have the value
5024 zero at the conditional branch.
5025
5026 So we merely need to compute the local properies and propagate that data
5027 around the cfg, then optimize where possible.
5028
5029 We run this pass two times. Once before CSE, then again after CSE. This
5030 has proven to be the most profitable approach. It is rare for new
5031 optimization opportunities of this nature to appear after the first CSE
5032 pass.
5033
5034 This could probably be integrated with global cprop with a little work. */
5035
5036 void
5037 delete_null_pointer_checks (f)
5038 rtx f ATTRIBUTE_UNUSED;
5039 {
5040 sbitmap *nonnull_avin, *nonnull_avout;
5041 unsigned int *block_reg;
5042 int bb;
5043 int reg;
5044 int regs_per_pass;
5045 int max_reg;
5046 struct null_pointer_info npi;
5047
5048 /* If we have only a single block, then there's nothing to do. */
5049 if (n_basic_blocks <= 1)
5050 return;
5051
5052 /* Trying to perform global optimizations on flow graphs which have
5053 a high connectivity will take a long time and is unlikely to be
5054 particularly useful.
5055
5056 In normal circumstances a cfg should have about twice has many edges
5057 as blocks. But we do not want to punish small functions which have
5058 a couple switch statements. So we require a relatively large number
5059 of basic blocks and the ratio of edges to blocks to be high. */
5060 if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
5061 return;
5062
5063 /* We need four bitmaps, each with a bit for each register in each
5064 basic block. */
5065 max_reg = max_reg_num ();
5066 regs_per_pass = get_bitmap_width (4, n_basic_blocks, max_reg);
5067
5068 /* Allocate bitmaps to hold local and global properties. */
5069 npi.nonnull_local = sbitmap_vector_alloc (n_basic_blocks, regs_per_pass);
5070 npi.nonnull_killed = sbitmap_vector_alloc (n_basic_blocks, regs_per_pass);
5071 nonnull_avin = sbitmap_vector_alloc (n_basic_blocks, regs_per_pass);
5072 nonnull_avout = sbitmap_vector_alloc (n_basic_blocks, regs_per_pass);
5073
5074 /* Go through the basic blocks, seeing whether or not each block
5075 ends with a conditional branch whose condition is a comparison
5076 against zero. Record the register compared in BLOCK_REG. */
5077 block_reg = (unsigned int *) xcalloc (n_basic_blocks, sizeof (int));
5078 for (bb = 0; bb < n_basic_blocks; bb++)
5079 {
5080 rtx last_insn = BLOCK_END (bb);
5081 rtx condition, earliest, reg;
5082
5083 /* We only want conditional branches. */
5084 if (GET_CODE (last_insn) != JUMP_INSN
5085 || !any_condjump_p (last_insn)
5086 || !onlyjump_p (last_insn))
5087 continue;
5088
5089 /* LAST_INSN is a conditional jump. Get its condition. */
5090 condition = get_condition (last_insn, &earliest);
5091
5092 /* If we were unable to get the condition, or it is not a equality
5093 comparison against zero then there's nothing we can do. */
5094 if (!condition
5095 || (GET_CODE (condition) != NE && GET_CODE (condition) != EQ)
5096 || GET_CODE (XEXP (condition, 1)) != CONST_INT
5097 || (XEXP (condition, 1)
5098 != CONST0_RTX (GET_MODE (XEXP (condition, 0)))))
5099 continue;
5100
5101 /* We must be checking a register against zero. */
5102 reg = XEXP (condition, 0);
5103 if (GET_CODE (reg) != REG)
5104 continue;
5105
5106 block_reg[bb] = REGNO (reg);
5107 }
5108
5109 /* Go through the algorithm for each block of registers. */
5110 for (reg = FIRST_PSEUDO_REGISTER; reg < max_reg; reg += regs_per_pass)
5111 {
5112 npi.min_reg = reg;
5113 npi.max_reg = MIN (reg + regs_per_pass, max_reg);
5114 delete_null_pointer_checks_1 (block_reg, nonnull_avin,
5115 nonnull_avout, &npi);
5116 }
5117
5118 /* Free the table of registers compared at the end of every block. */
5119 free (block_reg);
5120
5121 /* Free bitmaps. */
5122 free (npi.nonnull_local);
5123 free (npi.nonnull_killed);
5124 free (nonnull_avin);
5125 free (nonnull_avout);
5126 }
5127
5128 /* Code Hoisting variables and subroutines. */
5129
5130 /* Very busy expressions. */
5131 static sbitmap *hoist_vbein;
5132 static sbitmap *hoist_vbeout;
5133
5134 /* Hoistable expressions. */
5135 static sbitmap *hoist_exprs;
5136
5137 /* Dominator bitmaps. */
5138 static sbitmap *dominators;
5139
5140 /* ??? We could compute post dominators and run this algorithm in
5141 reverse to to perform tail merging, doing so would probably be
5142 more effective than the tail merging code in jump.c.
5143
5144 It's unclear if tail merging could be run in parallel with
5145 code hoisting. It would be nice. */
5146
5147 /* Allocate vars used for code hoisting analysis. */
5148
5149 static void
5150 alloc_code_hoist_mem (n_blocks, n_exprs)
5151 int n_blocks, n_exprs;
5152 {
5153 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
5154 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
5155 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
5156
5157 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
5158 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
5159 hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
5160 transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
5161
5162 dominators = sbitmap_vector_alloc (n_blocks, n_blocks);
5163 }
5164
5165 /* Free vars used for code hoisting analysis. */
5166
5167 static void
5168 free_code_hoist_mem ()
5169 {
5170 free (antloc);
5171 free (transp);
5172 free (comp);
5173
5174 free (hoist_vbein);
5175 free (hoist_vbeout);
5176 free (hoist_exprs);
5177 free (transpout);
5178
5179 free (dominators);
5180 }
5181
5182 /* Compute the very busy expressions at entry/exit from each block.
5183
5184 An expression is very busy if all paths from a given point
5185 compute the expression. */
5186
5187 static void
5188 compute_code_hoist_vbeinout ()
5189 {
5190 int bb, changed, passes;
5191
5192 sbitmap_vector_zero (hoist_vbeout, n_basic_blocks);
5193 sbitmap_vector_zero (hoist_vbein, n_basic_blocks);
5194
5195 passes = 0;
5196 changed = 1;
5197
5198 while (changed)
5199 {
5200 changed = 0;
5201
5202 /* We scan the blocks in the reverse order to speed up
5203 the convergence. */
5204 for (bb = n_basic_blocks - 1; bb >= 0; bb--)
5205 {
5206 changed |= sbitmap_a_or_b_and_c (hoist_vbein[bb], antloc[bb],
5207 hoist_vbeout[bb], transp[bb]);
5208 if (bb != n_basic_blocks - 1)
5209 sbitmap_intersection_of_succs (hoist_vbeout[bb], hoist_vbein, bb);
5210 }
5211
5212 passes++;
5213 }
5214
5215 if (gcse_file)
5216 fprintf (gcse_file, "hoisting vbeinout computation: %d passes\n", passes);
5217 }
5218
5219 /* Top level routine to do the dataflow analysis needed by code hoisting. */
5220
5221 static void
5222 compute_code_hoist_data ()
5223 {
5224 compute_local_properties (transp, comp, antloc, 0);
5225 compute_transpout ();
5226 compute_code_hoist_vbeinout ();
5227 compute_flow_dominators (dominators, NULL);
5228 if (gcse_file)
5229 fprintf (gcse_file, "\n");
5230 }
5231
5232 /* Determine if the expression identified by EXPR_INDEX would
5233 reach BB unimpared if it was placed at the end of EXPR_BB.
5234
5235 It's unclear exactly what Muchnick meant by "unimpared". It seems
5236 to me that the expression must either be computed or transparent in
5237 *every* block in the path(s) from EXPR_BB to BB. Any other definition
5238 would allow the expression to be hoisted out of loops, even if
5239 the expression wasn't a loop invariant.
5240
5241 Contrast this to reachability for PRE where an expression is
5242 considered reachable if *any* path reaches instead of *all*
5243 paths. */
5244
5245 static int
5246 hoist_expr_reaches_here_p (expr_bb, expr_index, bb, visited)
5247 int expr_bb;
5248 int expr_index;
5249 int bb;
5250 char *visited;
5251 {
5252 edge pred;
5253 int visited_allocated_locally = 0;
5254
5255
5256 if (visited == NULL)
5257 {
5258 visited_allocated_locally = 1;
5259 visited = xcalloc (n_basic_blocks, 1);
5260 }
5261
5262 visited[expr_bb] = 1;
5263 for (pred = BASIC_BLOCK (bb)->pred; pred != NULL; pred = pred->pred_next)
5264 {
5265 int pred_bb = pred->src->index;
5266
5267 if (pred->src == ENTRY_BLOCK_PTR)
5268 break;
5269 else if (visited[pred_bb])
5270 continue;
5271
5272 /* Does this predecessor generate this expression? */
5273 else if (TEST_BIT (comp[pred_bb], expr_index))
5274 break;
5275 else if (! TEST_BIT (transp[pred_bb], expr_index))
5276 break;
5277
5278 /* Not killed. */
5279 else
5280 {
5281 visited[pred_bb] = 1;
5282 if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
5283 pred_bb, visited))
5284 break;
5285 }
5286 }
5287 if (visited_allocated_locally)
5288 free (visited);
5289
5290 return (pred == NULL);
5291 }
5292 \f
5293 /* Actually perform code hoisting. */
5294
5295 static void
5296 hoist_code ()
5297 {
5298 int bb, dominated;
5299 unsigned int i;
5300 struct expr **index_map;
5301 struct expr *expr;
5302
5303 sbitmap_vector_zero (hoist_exprs, n_basic_blocks);
5304
5305 /* Compute a mapping from expression number (`bitmap_index') to
5306 hash table entry. */
5307
5308 index_map = (struct expr **) xcalloc (n_exprs, sizeof (struct expr *));
5309 for (i = 0; i < expr_hash_table_size; i++)
5310 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
5311 index_map[expr->bitmap_index] = expr;
5312
5313 /* Walk over each basic block looking for potentially hoistable
5314 expressions, nothing gets hoisted from the entry block. */
5315 for (bb = 0; bb < n_basic_blocks; bb++)
5316 {
5317 int found = 0;
5318 int insn_inserted_p;
5319
5320 /* Examine each expression that is very busy at the exit of this
5321 block. These are the potentially hoistable expressions. */
5322 for (i = 0; i < hoist_vbeout[bb]->n_bits; i++)
5323 {
5324 int hoistable = 0;
5325
5326 if (TEST_BIT (hoist_vbeout[bb], i) && TEST_BIT (transpout[bb], i))
5327 {
5328 /* We've found a potentially hoistable expression, now
5329 we look at every block BB dominates to see if it
5330 computes the expression. */
5331 for (dominated = 0; dominated < n_basic_blocks; dominated++)
5332 {
5333 /* Ignore self dominance. */
5334 if (bb == dominated
5335 || ! TEST_BIT (dominators[dominated], bb))
5336 continue;
5337
5338 /* We've found a dominated block, now see if it computes
5339 the busy expression and whether or not moving that
5340 expression to the "beginning" of that block is safe. */
5341 if (!TEST_BIT (antloc[dominated], i))
5342 continue;
5343
5344 /* Note if the expression would reach the dominated block
5345 unimpared if it was placed at the end of BB.
5346
5347 Keep track of how many times this expression is hoistable
5348 from a dominated block into BB. */
5349 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
5350 hoistable++;
5351 }
5352
5353 /* If we found more than one hoistable occurence of this
5354 expression, then note it in the bitmap of expressions to
5355 hoist. It makes no sense to hoist things which are computed
5356 in only one BB, and doing so tends to pessimize register
5357 allocation. One could increase this value to try harder
5358 to avoid any possible code expansion due to register
5359 allocation issues; however experiments have shown that
5360 the vast majority of hoistable expressions are only movable
5361 from two successors, so raising this threshhold is likely
5362 to nullify any benefit we get from code hoisting. */
5363 if (hoistable > 1)
5364 {
5365 SET_BIT (hoist_exprs[bb], i);
5366 found = 1;
5367 }
5368 }
5369 }
5370
5371 /* If we found nothing to hoist, then quit now. */
5372 if (! found)
5373 continue;
5374
5375 /* Loop over all the hoistable expressions. */
5376 for (i = 0; i < hoist_exprs[bb]->n_bits; i++)
5377 {
5378 /* We want to insert the expression into BB only once, so
5379 note when we've inserted it. */
5380 insn_inserted_p = 0;
5381
5382 /* These tests should be the same as the tests above. */
5383 if (TEST_BIT (hoist_vbeout[bb], i))
5384 {
5385 /* We've found a potentially hoistable expression, now
5386 we look at every block BB dominates to see if it
5387 computes the expression. */
5388 for (dominated = 0; dominated < n_basic_blocks; dominated++)
5389 {
5390 /* Ignore self dominance. */
5391 if (bb == dominated
5392 || ! TEST_BIT (dominators[dominated], bb))
5393 continue;
5394
5395 /* We've found a dominated block, now see if it computes
5396 the busy expression and whether or not moving that
5397 expression to the "beginning" of that block is safe. */
5398 if (!TEST_BIT (antloc[dominated], i))
5399 continue;
5400
5401 /* The expression is computed in the dominated block and
5402 it would be safe to compute it at the start of the
5403 dominated block. Now we have to determine if the
5404 expresion would reach the dominated block if it was
5405 placed at the end of BB. */
5406 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
5407 {
5408 struct expr *expr = index_map[i];
5409 struct occr *occr = expr->antic_occr;
5410 rtx insn;
5411 rtx set;
5412
5413 /* Find the right occurence of this expression. */
5414 while (BLOCK_NUM (occr->insn) != dominated && occr)
5415 occr = occr->next;
5416
5417 /* Should never happen. */
5418 if (!occr)
5419 abort ();
5420
5421 insn = occr->insn;
5422
5423 set = single_set (insn);
5424 if (! set)
5425 abort ();
5426
5427 /* Create a pseudo-reg to store the result of reaching
5428 expressions into. Get the mode for the new pseudo
5429 from the mode of the original destination pseudo. */
5430 if (expr->reaching_reg == NULL)
5431 expr->reaching_reg
5432 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
5433
5434 /* In theory this should never fail since we're creating
5435 a reg->reg copy.
5436
5437 However, on the x86 some of the movXX patterns
5438 actually contain clobbers of scratch regs. This may
5439 cause the insn created by validate_change to not
5440 match any pattern and thus cause validate_change to
5441 fail. */
5442 if (validate_change (insn, &SET_SRC (set),
5443 expr->reaching_reg, 0))
5444 {
5445 occr->deleted_p = 1;
5446 if (!insn_inserted_p)
5447 {
5448 insert_insn_end_bb (index_map[i], bb, 0);
5449 insn_inserted_p = 1;
5450 }
5451 }
5452 }
5453 }
5454 }
5455 }
5456 }
5457
5458 free (index_map);
5459 }
5460
5461 /* Top level routine to perform one code hoisting (aka unification) pass
5462
5463 Return non-zero if a change was made. */
5464
5465 static int
5466 one_code_hoisting_pass ()
5467 {
5468 int changed = 0;
5469
5470 alloc_expr_hash_table (max_cuid);
5471 compute_expr_hash_table ();
5472 if (gcse_file)
5473 dump_hash_table (gcse_file, "Code Hosting Expressions", expr_hash_table,
5474 expr_hash_table_size, n_exprs);
5475
5476 if (n_exprs > 0)
5477 {
5478 alloc_code_hoist_mem (n_basic_blocks, n_exprs);
5479 compute_code_hoist_data ();
5480 hoist_code ();
5481 free_code_hoist_mem ();
5482 }
5483
5484 free_expr_hash_table ();
5485
5486 return changed;
5487 }