Daily bump.
[gcc.git] / gcc / gcse.c
1 /* Partial redundancy elimination / Hoisting for RTL.
2 Copyright (C) 1997-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* TODO
21 - reordering of memory allocation and freeing to be more space efficient
22 - calc rough register pressure information and use the info to drive all
23 kinds of code motion (including code hoisting) in a unified way.
24 */
25
26 /* References searched while implementing this.
27
28 Compilers Principles, Techniques and Tools
29 Aho, Sethi, Ullman
30 Addison-Wesley, 1988
31
32 Global Optimization by Suppression of Partial Redundancies
33 E. Morel, C. Renvoise
34 communications of the acm, Vol. 22, Num. 2, Feb. 1979
35
36 A Portable Machine-Independent Global Optimizer - Design and Measurements
37 Frederick Chow
38 Stanford Ph.D. thesis, Dec. 1983
39
40 A Fast Algorithm for Code Movement Optimization
41 D.M. Dhamdhere
42 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
43
44 A Solution to a Problem with Morel and Renvoise's
45 Global Optimization by Suppression of Partial Redundancies
46 K-H Drechsler, M.P. Stadel
47 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
48
49 Practical Adaptation of the Global Optimization
50 Algorithm of Morel and Renvoise
51 D.M. Dhamdhere
52 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
53
54 Efficiently Computing Static Single Assignment Form and the Control
55 Dependence Graph
56 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
58
59 Lazy Code Motion
60 J. Knoop, O. Ruthing, B. Steffen
61 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
62
63 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
64 Time for Reducible Flow Control
65 Thomas Ball
66 ACM Letters on Programming Languages and Systems,
67 Vol. 2, Num. 1-4, Mar-Dec 1993
68
69 An Efficient Representation for Sparse Sets
70 Preston Briggs, Linda Torczon
71 ACM Letters on Programming Languages and Systems,
72 Vol. 2, Num. 1-4, Mar-Dec 1993
73
74 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75 K-H Drechsler, M.P. Stadel
76 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
77
78 Partial Dead Code Elimination
79 J. Knoop, O. Ruthing, B. Steffen
80 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
81
82 Effective Partial Redundancy Elimination
83 P. Briggs, K.D. Cooper
84 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
85
86 The Program Structure Tree: Computing Control Regions in Linear Time
87 R. Johnson, D. Pearson, K. Pingali
88 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
89
90 Optimal Code Motion: Theory and Practice
91 J. Knoop, O. Ruthing, B. Steffen
92 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
93
94 The power of assignment motion
95 J. Knoop, O. Ruthing, B. Steffen
96 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
97
98 Global code motion / global value numbering
99 C. Click
100 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
101
102 Value Driven Redundancy Elimination
103 L.T. Simpson
104 Rice University Ph.D. thesis, Apr. 1996
105
106 Value Numbering
107 L.T. Simpson
108 Massively Scalar Compiler Project, Rice University, Sep. 1996
109
110 High Performance Compilers for Parallel Computing
111 Michael Wolfe
112 Addison-Wesley, 1996
113
114 Advanced Compiler Design and Implementation
115 Steven Muchnick
116 Morgan Kaufmann, 1997
117
118 Building an Optimizing Compiler
119 Robert Morgan
120 Digital Press, 1998
121
122 People wishing to speed up the code here should read:
123 Elimination Algorithms for Data Flow Analysis
124 B.G. Ryder, M.C. Paull
125 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
126
127 How to Analyze Large Programs Efficiently and Informatively
128 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
130
131 People wishing to do something different can find various possibilities
132 in the above papers and elsewhere.
133 */
134
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "backend.h"
139 #include "target.h"
140 #include "rtl.h"
141 #include "tree.h"
142 #include "predict.h"
143 #include "df.h"
144 #include "memmodel.h"
145 #include "tm_p.h"
146 #include "insn-config.h"
147 #include "print-rtl.h"
148 #include "regs.h"
149 #include "ira.h"
150 #include "recog.h"
151 #include "diagnostic-core.h"
152 #include "cfgrtl.h"
153 #include "cfganal.h"
154 #include "lcm.h"
155 #include "cfgcleanup.h"
156 #include "expr.h"
157 #include "params.h"
158 #include "intl.h"
159 #include "tree-pass.h"
160 #include "dbgcnt.h"
161 #include "gcse.h"
162 #include "gcse-common.h"
163
164 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
165 are a superset of those done by classic GCSE.
166
167 Two passes of copy/constant propagation are done around PRE or hoisting
168 because the first one enables more GCSE and the second one helps to clean
169 up the copies that PRE and HOIST create. This is needed more for PRE than
170 for HOIST because code hoisting will try to use an existing register
171 containing the common subexpression rather than create a new one. This is
172 harder to do for PRE because of the code motion (which HOIST doesn't do).
173
174 Expressions we are interested in GCSE-ing are of the form
175 (set (pseudo-reg) (expression)).
176 Function want_to_gcse_p says what these are.
177
178 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
179 This allows PRE to hoist expressions that are expressed in multiple insns,
180 such as complex address calculations (e.g. for PIC code, or loads with a
181 high part and a low part).
182
183 PRE handles moving invariant expressions out of loops (by treating them as
184 partially redundant).
185
186 **********************
187
188 We used to support multiple passes but there are diminishing returns in
189 doing so. The first pass usually makes 90% of the changes that are doable.
190 A second pass can make a few more changes made possible by the first pass.
191 Experiments show any further passes don't make enough changes to justify
192 the expense.
193
194 A study of spec92 using an unlimited number of passes:
195 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
196 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
197 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
198
199 It was found doing copy propagation between each pass enables further
200 substitutions.
201
202 This study was done before expressions in REG_EQUAL notes were added as
203 candidate expressions for optimization, and before the GIMPLE optimizers
204 were added. Probably, multiple passes is even less efficient now than
205 at the time when the study was conducted.
206
207 PRE is quite expensive in complicated functions because the DFA can take
208 a while to converge. Hence we only perform one pass.
209
210 **********************
211
212 The steps for PRE are:
213
214 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
215
216 2) Perform the data flow analysis for PRE.
217
218 3) Delete the redundant instructions
219
220 4) Insert the required copies [if any] that make the partially
221 redundant instructions fully redundant.
222
223 5) For other reaching expressions, insert an instruction to copy the value
224 to a newly created pseudo that will reach the redundant instruction.
225
226 The deletion is done first so that when we do insertions we
227 know which pseudo reg to use.
228
229 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
230 argue it is not. The number of iterations for the algorithm to converge
231 is typically 2-4 so I don't view it as that expensive (relatively speaking).
232
233 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
234 we create. To make an expression reach the place where it's redundant,
235 the result of the expression is copied to a new register, and the redundant
236 expression is deleted by replacing it with this new register. Classic GCSE
237 doesn't have this problem as much as it computes the reaching defs of
238 each register in each block and thus can try to use an existing
239 register. */
240 \f
241 /* GCSE global vars. */
242
243 struct target_gcse default_target_gcse;
244 #if SWITCHABLE_TARGET
245 struct target_gcse *this_target_gcse = &default_target_gcse;
246 #endif
247
248 /* Set to non-zero if CSE should run after all GCSE optimizations are done. */
249 int flag_rerun_cse_after_global_opts;
250
251 /* An obstack for our working variables. */
252 static struct obstack gcse_obstack;
253
254 /* Hash table of expressions. */
255
256 struct gcse_expr
257 {
258 /* The expression. */
259 rtx expr;
260 /* Index in the available expression bitmaps. */
261 int bitmap_index;
262 /* Next entry with the same hash. */
263 struct gcse_expr *next_same_hash;
264 /* List of anticipatable occurrences in basic blocks in the function.
265 An "anticipatable occurrence" is one that is the first occurrence in the
266 basic block, the operands are not modified in the basic block prior
267 to the occurrence and the output is not used between the start of
268 the block and the occurrence. */
269 struct gcse_occr *antic_occr;
270 /* List of available occurrence in basic blocks in the function.
271 An "available occurrence" is one that is the last occurrence in the
272 basic block and the operands are not modified by following statements in
273 the basic block [including this insn]. */
274 struct gcse_occr *avail_occr;
275 /* Non-null if the computation is PRE redundant.
276 The value is the newly created pseudo-reg to record a copy of the
277 expression in all the places that reach the redundant copy. */
278 rtx reaching_reg;
279 /* Maximum distance in instructions this expression can travel.
280 We avoid moving simple expressions for more than a few instructions
281 to keep register pressure under control.
282 A value of "0" removes restrictions on how far the expression can
283 travel. */
284 HOST_WIDE_INT max_distance;
285 };
286
287 /* Occurrence of an expression.
288 There is one per basic block. If a pattern appears more than once the
289 last appearance is used [or first for anticipatable expressions]. */
290
291 struct gcse_occr
292 {
293 /* Next occurrence of this expression. */
294 struct gcse_occr *next;
295 /* The insn that computes the expression. */
296 rtx_insn *insn;
297 /* Nonzero if this [anticipatable] occurrence has been deleted. */
298 char deleted_p;
299 /* Nonzero if this [available] occurrence has been copied to
300 reaching_reg. */
301 /* ??? This is mutually exclusive with deleted_p, so they could share
302 the same byte. */
303 char copied_p;
304 };
305
306 typedef struct gcse_occr *occr_t;
307
308 /* Expression hash tables.
309 Each hash table is an array of buckets.
310 ??? It is known that if it were an array of entries, structure elements
311 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
312 not clear whether in the final analysis a sufficient amount of memory would
313 be saved as the size of the available expression bitmaps would be larger
314 [one could build a mapping table without holes afterwards though].
315 Someday I'll perform the computation and figure it out. */
316
317 struct gcse_hash_table_d
318 {
319 /* The table itself.
320 This is an array of `expr_hash_table_size' elements. */
321 struct gcse_expr **table;
322
323 /* Size of the hash table, in elements. */
324 unsigned int size;
325
326 /* Number of hash table elements. */
327 unsigned int n_elems;
328 };
329
330 /* Expression hash table. */
331 static struct gcse_hash_table_d expr_hash_table;
332
333 /* This is a list of expressions which are MEMs and will be used by load
334 or store motion.
335 Load motion tracks MEMs which aren't killed by anything except itself,
336 i.e. loads and stores to a single location.
337 We can then allow movement of these MEM refs with a little special
338 allowance. (all stores copy the same value to the reaching reg used
339 for the loads). This means all values used to store into memory must have
340 no side effects so we can re-issue the setter value. */
341
342 struct ls_expr
343 {
344 struct gcse_expr * expr; /* Gcse expression reference for LM. */
345 rtx pattern; /* Pattern of this mem. */
346 rtx pattern_regs; /* List of registers mentioned by the mem. */
347 vec<rtx_insn *> stores; /* INSN list of stores seen. */
348 struct ls_expr * next; /* Next in the list. */
349 int invalid; /* Invalid for some reason. */
350 int index; /* If it maps to a bitmap index. */
351 unsigned int hash_index; /* Index when in a hash table. */
352 rtx reaching_reg; /* Register to use when re-writing. */
353 };
354
355 /* Head of the list of load/store memory refs. */
356 static struct ls_expr * pre_ldst_mems = NULL;
357
358 struct pre_ldst_expr_hasher : nofree_ptr_hash <ls_expr>
359 {
360 typedef value_type compare_type;
361 static inline hashval_t hash (const ls_expr *);
362 static inline bool equal (const ls_expr *, const ls_expr *);
363 };
364
365 /* Hashtable helpers. */
366 inline hashval_t
367 pre_ldst_expr_hasher::hash (const ls_expr *x)
368 {
369 int do_not_record_p = 0;
370 return
371 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
372 }
373
374 static int expr_equiv_p (const_rtx, const_rtx);
375
376 inline bool
377 pre_ldst_expr_hasher::equal (const ls_expr *ptr1,
378 const ls_expr *ptr2)
379 {
380 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
381 }
382
383 /* Hashtable for the load/store memory refs. */
384 static hash_table<pre_ldst_expr_hasher> *pre_ldst_table;
385
386 /* Bitmap containing one bit for each register in the program.
387 Used when performing GCSE to track which registers have been set since
388 the start of the basic block. */
389 static regset reg_set_bitmap;
390
391 /* Array, indexed by basic block number for a list of insns which modify
392 memory within that block. */
393 static vec<rtx_insn *> *modify_mem_list;
394 static bitmap modify_mem_list_set;
395
396 /* This array parallels modify_mem_list, except that it stores MEMs
397 being set and their canonicalized memory addresses. */
398 static vec<modify_pair> *canon_modify_mem_list;
399
400 /* Bitmap indexed by block numbers to record which blocks contain
401 function calls. */
402 static bitmap blocks_with_calls;
403
404 /* Various variables for statistics gathering. */
405
406 /* Memory used in a pass.
407 This isn't intended to be absolutely precise. Its intent is only
408 to keep an eye on memory usage. */
409 static int bytes_used;
410
411 /* GCSE substitutions made. */
412 static int gcse_subst_count;
413 /* Number of copy instructions created. */
414 static int gcse_create_count;
415 \f
416 /* Doing code hoisting. */
417 static bool doing_code_hoisting_p = false;
418 \f
419 /* For available exprs */
420 static sbitmap *ae_kill;
421 \f
422 /* Data stored for each basic block. */
423 struct bb_data
424 {
425 /* Maximal register pressure inside basic block for given register class
426 (defined only for the pressure classes). */
427 int max_reg_pressure[N_REG_CLASSES];
428 /* Recorded register pressure of basic block before trying to hoist
429 an expression. Will be used to restore the register pressure
430 if the expression should not be hoisted. */
431 int old_pressure;
432 /* Recorded register live_in info of basic block during code hoisting
433 process. BACKUP is used to record live_in info before trying to
434 hoist an expression, and will be used to restore LIVE_IN if the
435 expression should not be hoisted. */
436 bitmap live_in, backup;
437 };
438
439 #define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
440
441 static basic_block curr_bb;
442
443 /* Current register pressure for each pressure class. */
444 static int curr_reg_pressure[N_REG_CLASSES];
445 \f
446
447 static void compute_can_copy (void);
448 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
449 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
450 static void *gcse_alloc (unsigned long);
451 static void alloc_gcse_mem (void);
452 static void free_gcse_mem (void);
453 static void hash_scan_insn (rtx_insn *, struct gcse_hash_table_d *);
454 static void hash_scan_set (rtx, rtx_insn *, struct gcse_hash_table_d *);
455 static void hash_scan_clobber (rtx, rtx_insn *, struct gcse_hash_table_d *);
456 static void hash_scan_call (rtx, rtx_insn *, struct gcse_hash_table_d *);
457 static int oprs_unchanged_p (const_rtx, const rtx_insn *, int);
458 static int oprs_anticipatable_p (const_rtx, const rtx_insn *);
459 static int oprs_available_p (const_rtx, const rtx_insn *);
460 static void insert_expr_in_table (rtx, machine_mode, rtx_insn *, int, int,
461 HOST_WIDE_INT, struct gcse_hash_table_d *);
462 static unsigned int hash_expr (const_rtx, machine_mode, int *, int);
463 static void record_last_reg_set_info (rtx_insn *, int);
464 static void record_last_mem_set_info (rtx_insn *);
465 static void record_last_set_info (rtx, const_rtx, void *);
466 static void compute_hash_table (struct gcse_hash_table_d *);
467 static void alloc_hash_table (struct gcse_hash_table_d *);
468 static void free_hash_table (struct gcse_hash_table_d *);
469 static void compute_hash_table_work (struct gcse_hash_table_d *);
470 static void dump_hash_table (FILE *, const char *, struct gcse_hash_table_d *);
471 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
472 struct gcse_hash_table_d *);
473 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
474 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
475 static void alloc_pre_mem (int, int);
476 static void free_pre_mem (void);
477 static struct edge_list *compute_pre_data (void);
478 static int pre_expr_reaches_here_p (basic_block, struct gcse_expr *,
479 basic_block);
480 static void insert_insn_end_basic_block (struct gcse_expr *, basic_block);
481 static void pre_insert_copy_insn (struct gcse_expr *, rtx_insn *);
482 static void pre_insert_copies (void);
483 static int pre_delete (void);
484 static int pre_gcse (struct edge_list *);
485 static int one_pre_gcse_pass (void);
486 static void add_label_notes (rtx, rtx_insn *);
487 static void alloc_code_hoist_mem (int, int);
488 static void free_code_hoist_mem (void);
489 static void compute_code_hoist_vbeinout (void);
490 static void compute_code_hoist_data (void);
491 static int should_hoist_expr_to_dom (basic_block, struct gcse_expr *,
492 basic_block,
493 sbitmap, HOST_WIDE_INT, int *,
494 enum reg_class,
495 int *, bitmap, rtx_insn *);
496 static int hoist_code (void);
497 static enum reg_class get_regno_pressure_class (int regno, int *nregs);
498 static enum reg_class get_pressure_class_and_nregs (rtx_insn *insn, int *nregs);
499 static int one_code_hoisting_pass (void);
500 static rtx_insn *process_insert_insn (struct gcse_expr *);
501 static int pre_edge_insert (struct edge_list *, struct gcse_expr **);
502 static int pre_expr_reaches_here_p_work (basic_block, struct gcse_expr *,
503 basic_block, char *);
504 static struct ls_expr * ldst_entry (rtx);
505 static void free_ldst_entry (struct ls_expr *);
506 static void free_ld_motion_mems (void);
507 static void print_ldst_list (FILE *);
508 static struct ls_expr * find_rtx_in_ldst (rtx);
509 static int simple_mem (const_rtx);
510 static void invalidate_any_buried_refs (rtx);
511 static void compute_ld_motion_mems (void);
512 static void trim_ld_motion_mems (void);
513 static void update_ld_motion_stores (struct gcse_expr *);
514 static void clear_modify_mem_tables (void);
515 static void free_modify_mem_tables (void);
516
517 #define GNEW(T) ((T *) gmalloc (sizeof (T)))
518 #define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
519
520 #define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
521 #define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
522
523 #define GNEWVAR(T, S) ((T *) gmalloc ((S)))
524 #define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
525
526 #define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
527 #define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
528 \f
529 /* Misc. utilities. */
530
531 #define can_copy \
532 (this_target_gcse->x_can_copy)
533 #define can_copy_init_p \
534 (this_target_gcse->x_can_copy_init_p)
535
536 /* Compute which modes support reg/reg copy operations. */
537
538 static void
539 compute_can_copy (void)
540 {
541 int i;
542 #ifndef AVOID_CCMODE_COPIES
543 rtx reg;
544 rtx_insn *insn;
545 #endif
546 memset (can_copy, 0, NUM_MACHINE_MODES);
547
548 start_sequence ();
549 for (i = 0; i < NUM_MACHINE_MODES; i++)
550 if (GET_MODE_CLASS (i) == MODE_CC)
551 {
552 #ifdef AVOID_CCMODE_COPIES
553 can_copy[i] = 0;
554 #else
555 reg = gen_rtx_REG ((machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
556 insn = emit_insn (gen_rtx_SET (reg, reg));
557 if (recog (PATTERN (insn), insn, NULL) >= 0)
558 can_copy[i] = 1;
559 #endif
560 }
561 else
562 can_copy[i] = 1;
563
564 end_sequence ();
565 }
566
567 /* Returns whether the mode supports reg/reg copy operations. */
568
569 bool
570 can_copy_p (machine_mode mode)
571 {
572 if (! can_copy_init_p)
573 {
574 compute_can_copy ();
575 can_copy_init_p = true;
576 }
577
578 return can_copy[mode] != 0;
579 }
580 \f
581 /* Cover function to xmalloc to record bytes allocated. */
582
583 static void *
584 gmalloc (size_t size)
585 {
586 bytes_used += size;
587 return xmalloc (size);
588 }
589
590 /* Cover function to xcalloc to record bytes allocated. */
591
592 static void *
593 gcalloc (size_t nelem, size_t elsize)
594 {
595 bytes_used += nelem * elsize;
596 return xcalloc (nelem, elsize);
597 }
598
599 /* Cover function to obstack_alloc. */
600
601 static void *
602 gcse_alloc (unsigned long size)
603 {
604 bytes_used += size;
605 return obstack_alloc (&gcse_obstack, size);
606 }
607
608 /* Allocate memory for the reg/memory set tracking tables.
609 This is called at the start of each pass. */
610
611 static void
612 alloc_gcse_mem (void)
613 {
614 /* Allocate vars to track sets of regs. */
615 reg_set_bitmap = ALLOC_REG_SET (NULL);
616
617 /* Allocate array to keep a list of insns which modify memory in each
618 basic block. The two typedefs are needed to work around the
619 pre-processor limitation with template types in macro arguments. */
620 typedef vec<rtx_insn *> vec_rtx_heap;
621 typedef vec<modify_pair> vec_modify_pair_heap;
622 modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block_for_fn (cfun));
623 canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap,
624 last_basic_block_for_fn (cfun));
625 modify_mem_list_set = BITMAP_ALLOC (NULL);
626 blocks_with_calls = BITMAP_ALLOC (NULL);
627 }
628
629 /* Free memory allocated by alloc_gcse_mem. */
630
631 static void
632 free_gcse_mem (void)
633 {
634 FREE_REG_SET (reg_set_bitmap);
635
636 free_modify_mem_tables ();
637 BITMAP_FREE (modify_mem_list_set);
638 BITMAP_FREE (blocks_with_calls);
639 }
640 \f
641 /* Compute the local properties of each recorded expression.
642
643 Local properties are those that are defined by the block, irrespective of
644 other blocks.
645
646 An expression is transparent in a block if its operands are not modified
647 in the block.
648
649 An expression is computed (locally available) in a block if it is computed
650 at least once and expression would contain the same value if the
651 computation was moved to the end of the block.
652
653 An expression is locally anticipatable in a block if it is computed at
654 least once and expression would contain the same value if the computation
655 was moved to the beginning of the block.
656
657 We call this routine for pre and code hoisting. They all compute
658 basically the same information and thus can easily share this code.
659
660 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
661 properties. If NULL, then it is not necessary to compute or record that
662 particular property.
663
664 TABLE controls which hash table to look at. */
665
666 static void
667 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
668 struct gcse_hash_table_d *table)
669 {
670 unsigned int i;
671
672 /* Initialize any bitmaps that were passed in. */
673 if (transp)
674 {
675 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
676 }
677
678 if (comp)
679 bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
680 if (antloc)
681 bitmap_vector_clear (antloc, last_basic_block_for_fn (cfun));
682
683 for (i = 0; i < table->size; i++)
684 {
685 struct gcse_expr *expr;
686
687 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
688 {
689 int indx = expr->bitmap_index;
690 struct gcse_occr *occr;
691
692 /* The expression is transparent in this block if it is not killed.
693 We start by assuming all are transparent [none are killed], and
694 then reset the bits for those that are. */
695 if (transp)
696 compute_transp (expr->expr, indx, transp,
697 blocks_with_calls,
698 modify_mem_list_set,
699 canon_modify_mem_list);
700
701 /* The occurrences recorded in antic_occr are exactly those that
702 we want to set to nonzero in ANTLOC. */
703 if (antloc)
704 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
705 {
706 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
707
708 /* While we're scanning the table, this is a good place to
709 initialize this. */
710 occr->deleted_p = 0;
711 }
712
713 /* The occurrences recorded in avail_occr are exactly those that
714 we want to set to nonzero in COMP. */
715 if (comp)
716 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
717 {
718 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
719
720 /* While we're scanning the table, this is a good place to
721 initialize this. */
722 occr->copied_p = 0;
723 }
724
725 /* While we're scanning the table, this is a good place to
726 initialize this. */
727 expr->reaching_reg = 0;
728 }
729 }
730 }
731 \f
732 /* Hash table support. */
733
734 struct reg_avail_info
735 {
736 basic_block last_bb;
737 int first_set;
738 int last_set;
739 };
740
741 static struct reg_avail_info *reg_avail_info;
742 static basic_block current_bb;
743
744 /* See whether X, the source of a set, is something we want to consider for
745 GCSE. */
746
747 static int
748 want_to_gcse_p (rtx x, machine_mode mode, HOST_WIDE_INT *max_distance_ptr)
749 {
750 #ifdef STACK_REGS
751 /* On register stack architectures, don't GCSE constants from the
752 constant pool, as the benefits are often swamped by the overhead
753 of shuffling the register stack between basic blocks. */
754 if (IS_STACK_MODE (GET_MODE (x)))
755 x = avoid_constant_pool_reference (x);
756 #endif
757
758 /* GCSE'ing constants:
759
760 We do not specifically distinguish between constant and non-constant
761 expressions in PRE and Hoist. We use set_src_cost below to limit
762 the maximum distance simple expressions can travel.
763
764 Nevertheless, constants are much easier to GCSE, and, hence,
765 it is easy to overdo the optimizations. Usually, excessive PRE and
766 Hoisting of constant leads to increased register pressure.
767
768 RA can deal with this by rematerialing some of the constants.
769 Therefore, it is important that the back-end generates sets of constants
770 in a way that allows reload rematerialize them under high register
771 pressure, i.e., a pseudo register with REG_EQUAL to constant
772 is set only once. Failing to do so will result in IRA/reload
773 spilling such constants under high register pressure instead of
774 rematerializing them. */
775
776 switch (GET_CODE (x))
777 {
778 case REG:
779 case SUBREG:
780 case CALL:
781 return 0;
782
783 CASE_CONST_ANY:
784 if (!doing_code_hoisting_p)
785 /* Do not PRE constants. */
786 return 0;
787
788 /* FALLTHRU */
789
790 default:
791 if (doing_code_hoisting_p)
792 /* PRE doesn't implement max_distance restriction. */
793 {
794 int cost;
795 HOST_WIDE_INT max_distance;
796
797 gcc_assert (!optimize_function_for_speed_p (cfun)
798 && optimize_function_for_size_p (cfun));
799 cost = set_src_cost (x, mode, 0);
800
801 if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
802 {
803 max_distance
804 = ((HOST_WIDE_INT)GCSE_COST_DISTANCE_RATIO * cost) / 10;
805 if (max_distance == 0)
806 return 0;
807
808 gcc_assert (max_distance > 0);
809 }
810 else
811 max_distance = 0;
812
813 if (max_distance_ptr)
814 *max_distance_ptr = max_distance;
815 }
816
817 return can_assign_to_reg_without_clobbers_p (x, mode);
818 }
819 }
820
821 /* Used internally by can_assign_to_reg_without_clobbers_p. */
822
823 static GTY(()) rtx_insn *test_insn;
824
825 /* Return true if we can assign X to a pseudo register of mode MODE
826 such that the resulting insn does not result in clobbering a hard
827 register as a side-effect.
828
829 Additionally, if the target requires it, check that the resulting insn
830 can be copied. If it cannot, this means that X is special and probably
831 has hidden side-effects we don't want to mess with.
832
833 This function is typically used by code motion passes, to verify
834 that it is safe to insert an insn without worrying about clobbering
835 maybe live hard regs. */
836
837 bool
838 can_assign_to_reg_without_clobbers_p (rtx x, machine_mode mode)
839 {
840 int num_clobbers = 0;
841 int icode;
842 bool can_assign = false;
843
844 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
845 if (general_operand (x, mode))
846 return 1;
847 else if (GET_MODE (x) == VOIDmode)
848 return 0;
849
850 /* Otherwise, check if we can make a valid insn from it. First initialize
851 our test insn if we haven't already. */
852 if (test_insn == 0)
853 {
854 test_insn
855 = make_insn_raw (gen_rtx_SET (gen_rtx_REG (word_mode,
856 FIRST_PSEUDO_REGISTER * 2),
857 const0_rtx));
858 SET_NEXT_INSN (test_insn) = SET_PREV_INSN (test_insn) = 0;
859 INSN_LOCATION (test_insn) = UNKNOWN_LOCATION;
860 }
861
862 /* Now make an insn like the one we would make when GCSE'ing and see if
863 valid. */
864 PUT_MODE (SET_DEST (PATTERN (test_insn)), mode);
865 SET_SRC (PATTERN (test_insn)) = x;
866
867 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
868
869 /* If the test insn is valid and doesn't need clobbers, and the target also
870 has no objections, we're good. */
871 if (icode >= 0
872 && (num_clobbers == 0 || !added_clobbers_hard_reg_p (icode))
873 && ! (targetm.cannot_copy_insn_p
874 && targetm.cannot_copy_insn_p (test_insn)))
875 can_assign = true;
876
877 /* Make sure test_insn doesn't have any pointers into GC space. */
878 SET_SRC (PATTERN (test_insn)) = NULL_RTX;
879
880 return can_assign;
881 }
882
883 /* Return nonzero if the operands of expression X are unchanged from the
884 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
885 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
886
887 static int
888 oprs_unchanged_p (const_rtx x, const rtx_insn *insn, int avail_p)
889 {
890 int i, j;
891 enum rtx_code code;
892 const char *fmt;
893
894 if (x == 0)
895 return 1;
896
897 code = GET_CODE (x);
898 switch (code)
899 {
900 case REG:
901 {
902 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
903
904 if (info->last_bb != current_bb)
905 return 1;
906 if (avail_p)
907 return info->last_set < DF_INSN_LUID (insn);
908 else
909 return info->first_set >= DF_INSN_LUID (insn);
910 }
911
912 case MEM:
913 if (! flag_gcse_lm
914 || load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
915 x, avail_p))
916 return 0;
917 else
918 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
919
920 case PRE_DEC:
921 case PRE_INC:
922 case POST_DEC:
923 case POST_INC:
924 case PRE_MODIFY:
925 case POST_MODIFY:
926 return 0;
927
928 case PC:
929 case CC0: /*FIXME*/
930 case CONST:
931 CASE_CONST_ANY:
932 case SYMBOL_REF:
933 case LABEL_REF:
934 case ADDR_VEC:
935 case ADDR_DIFF_VEC:
936 return 1;
937
938 default:
939 break;
940 }
941
942 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
943 {
944 if (fmt[i] == 'e')
945 {
946 /* If we are about to do the last recursive call needed at this
947 level, change it into iteration. This function is called enough
948 to be worth it. */
949 if (i == 0)
950 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
951
952 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
953 return 0;
954 }
955 else if (fmt[i] == 'E')
956 for (j = 0; j < XVECLEN (x, i); j++)
957 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
958 return 0;
959 }
960
961 return 1;
962 }
963
964 /* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
965
966 struct mem_conflict_info
967 {
968 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
969 see if a memory store conflicts with this memory load. */
970 const_rtx mem;
971
972 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
973 references. */
974 bool conflict;
975 };
976
977 /* DEST is the output of an instruction. If it is a memory reference and
978 possibly conflicts with the load found in DATA, then communicate this
979 information back through DATA. */
980
981 static void
982 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
983 void *data)
984 {
985 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
986
987 while (GET_CODE (dest) == SUBREG
988 || GET_CODE (dest) == ZERO_EXTRACT
989 || GET_CODE (dest) == STRICT_LOW_PART)
990 dest = XEXP (dest, 0);
991
992 /* If DEST is not a MEM, then it will not conflict with the load. Note
993 that function calls are assumed to clobber memory, but are handled
994 elsewhere. */
995 if (! MEM_P (dest))
996 return;
997
998 /* If we are setting a MEM in our list of specially recognized MEMs,
999 don't mark as killed this time. */
1000 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
1001 {
1002 if (!find_rtx_in_ldst (dest))
1003 mci->conflict = true;
1004 return;
1005 }
1006
1007 if (true_dependence (dest, GET_MODE (dest), mci->mem))
1008 mci->conflict = true;
1009 }
1010
1011 /* Return nonzero if the expression in X (a memory reference) is killed
1012 in block BB before or after the insn with the LUID in UID_LIMIT.
1013 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1014 before UID_LIMIT.
1015
1016 To check the entire block, set UID_LIMIT to max_uid + 1 and
1017 AVAIL_P to 0. */
1018
1019 static int
1020 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1021 int avail_p)
1022 {
1023 vec<rtx_insn *> list = modify_mem_list[bb->index];
1024 rtx_insn *setter;
1025 unsigned ix;
1026
1027 /* If this is a readonly then we aren't going to be changing it. */
1028 if (MEM_READONLY_P (x))
1029 return 0;
1030
1031 FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
1032 {
1033 struct mem_conflict_info mci;
1034
1035 /* Ignore entries in the list that do not apply. */
1036 if ((avail_p
1037 && DF_INSN_LUID (setter) < uid_limit)
1038 || (! avail_p
1039 && DF_INSN_LUID (setter) > uid_limit))
1040 continue;
1041
1042 /* If SETTER is a call everything is clobbered. Note that calls
1043 to pure functions are never put on the list, so we need not
1044 worry about them. */
1045 if (CALL_P (setter))
1046 return 1;
1047
1048 /* SETTER must be an INSN of some kind that sets memory. Call
1049 note_stores to examine each hunk of memory that is modified. */
1050 mci.mem = x;
1051 mci.conflict = false;
1052 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1053 if (mci.conflict)
1054 return 1;
1055 }
1056 return 0;
1057 }
1058
1059 /* Return nonzero if the operands of expression X are unchanged from
1060 the start of INSN's basic block up to but not including INSN. */
1061
1062 static int
1063 oprs_anticipatable_p (const_rtx x, const rtx_insn *insn)
1064 {
1065 return oprs_unchanged_p (x, insn, 0);
1066 }
1067
1068 /* Return nonzero if the operands of expression X are unchanged from
1069 INSN to the end of INSN's basic block. */
1070
1071 static int
1072 oprs_available_p (const_rtx x, const rtx_insn *insn)
1073 {
1074 return oprs_unchanged_p (x, insn, 1);
1075 }
1076
1077 /* Hash expression X.
1078
1079 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1080 indicating if a volatile operand is found or if the expression contains
1081 something we don't want to insert in the table. HASH_TABLE_SIZE is
1082 the current size of the hash table to be probed. */
1083
1084 static unsigned int
1085 hash_expr (const_rtx x, machine_mode mode, int *do_not_record_p,
1086 int hash_table_size)
1087 {
1088 unsigned int hash;
1089
1090 *do_not_record_p = 0;
1091
1092 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
1093 return hash % hash_table_size;
1094 }
1095
1096 /* Return nonzero if exp1 is equivalent to exp2. */
1097
1098 static int
1099 expr_equiv_p (const_rtx x, const_rtx y)
1100 {
1101 return exp_equiv_p (x, y, 0, true);
1102 }
1103
1104 /* Insert expression X in INSN in the hash TABLE.
1105 If it is already present, record it as the last occurrence in INSN's
1106 basic block.
1107
1108 MODE is the mode of the value X is being stored into.
1109 It is only used if X is a CONST_INT.
1110
1111 ANTIC_P is nonzero if X is an anticipatable expression.
1112 AVAIL_P is nonzero if X is an available expression.
1113
1114 MAX_DISTANCE is the maximum distance in instructions this expression can
1115 be moved. */
1116
1117 static void
1118 insert_expr_in_table (rtx x, machine_mode mode, rtx_insn *insn,
1119 int antic_p,
1120 int avail_p, HOST_WIDE_INT max_distance,
1121 struct gcse_hash_table_d *table)
1122 {
1123 int found, do_not_record_p;
1124 unsigned int hash;
1125 struct gcse_expr *cur_expr, *last_expr = NULL;
1126 struct gcse_occr *antic_occr, *avail_occr;
1127
1128 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1129
1130 /* Do not insert expression in table if it contains volatile operands,
1131 or if hash_expr determines the expression is something we don't want
1132 to or can't handle. */
1133 if (do_not_record_p)
1134 return;
1135
1136 cur_expr = table->table[hash];
1137 found = 0;
1138
1139 while (cur_expr && (found = expr_equiv_p (cur_expr->expr, x)) == 0)
1140 {
1141 /* If the expression isn't found, save a pointer to the end of
1142 the list. */
1143 last_expr = cur_expr;
1144 cur_expr = cur_expr->next_same_hash;
1145 }
1146
1147 if (! found)
1148 {
1149 cur_expr = GOBNEW (struct gcse_expr);
1150 bytes_used += sizeof (struct gcse_expr);
1151 if (table->table[hash] == NULL)
1152 /* This is the first pattern that hashed to this index. */
1153 table->table[hash] = cur_expr;
1154 else
1155 /* Add EXPR to end of this hash chain. */
1156 last_expr->next_same_hash = cur_expr;
1157
1158 /* Set the fields of the expr element. */
1159 cur_expr->expr = x;
1160 cur_expr->bitmap_index = table->n_elems++;
1161 cur_expr->next_same_hash = NULL;
1162 cur_expr->antic_occr = NULL;
1163 cur_expr->avail_occr = NULL;
1164 gcc_assert (max_distance >= 0);
1165 cur_expr->max_distance = max_distance;
1166 }
1167 else
1168 gcc_assert (cur_expr->max_distance == max_distance);
1169
1170 /* Now record the occurrence(s). */
1171 if (antic_p)
1172 {
1173 antic_occr = cur_expr->antic_occr;
1174
1175 if (antic_occr
1176 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
1177 antic_occr = NULL;
1178
1179 if (antic_occr)
1180 /* Found another instance of the expression in the same basic block.
1181 Prefer the currently recorded one. We want the first one in the
1182 block and the block is scanned from start to end. */
1183 ; /* nothing to do */
1184 else
1185 {
1186 /* First occurrence of this expression in this basic block. */
1187 antic_occr = GOBNEW (struct gcse_occr);
1188 bytes_used += sizeof (struct gcse_occr);
1189 antic_occr->insn = insn;
1190 antic_occr->next = cur_expr->antic_occr;
1191 antic_occr->deleted_p = 0;
1192 cur_expr->antic_occr = antic_occr;
1193 }
1194 }
1195
1196 if (avail_p)
1197 {
1198 avail_occr = cur_expr->avail_occr;
1199
1200 if (avail_occr
1201 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
1202 {
1203 /* Found another instance of the expression in the same basic block.
1204 Prefer this occurrence to the currently recorded one. We want
1205 the last one in the block and the block is scanned from start
1206 to end. */
1207 avail_occr->insn = insn;
1208 }
1209 else
1210 {
1211 /* First occurrence of this expression in this basic block. */
1212 avail_occr = GOBNEW (struct gcse_occr);
1213 bytes_used += sizeof (struct gcse_occr);
1214 avail_occr->insn = insn;
1215 avail_occr->next = cur_expr->avail_occr;
1216 avail_occr->deleted_p = 0;
1217 cur_expr->avail_occr = avail_occr;
1218 }
1219 }
1220 }
1221
1222 /* Scan SET present in INSN and add an entry to the hash TABLE. */
1223
1224 static void
1225 hash_scan_set (rtx set, rtx_insn *insn, struct gcse_hash_table_d *table)
1226 {
1227 rtx src = SET_SRC (set);
1228 rtx dest = SET_DEST (set);
1229 rtx note;
1230
1231 if (GET_CODE (src) == CALL)
1232 hash_scan_call (src, insn, table);
1233
1234 else if (REG_P (dest))
1235 {
1236 unsigned int regno = REGNO (dest);
1237 HOST_WIDE_INT max_distance = 0;
1238
1239 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1240
1241 This allows us to do a single GCSE pass and still eliminate
1242 redundant constants, addresses or other expressions that are
1243 constructed with multiple instructions.
1244
1245 However, keep the original SRC if INSN is a simple reg-reg move.
1246 In this case, there will almost always be a REG_EQUAL note on the
1247 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1248 for INSN, we miss copy propagation opportunities and we perform the
1249 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1250 do more than one PRE GCSE pass.
1251
1252 Note that this does not impede profitable constant propagations. We
1253 "look through" reg-reg sets in lookup_avail_set. */
1254 note = find_reg_equal_equiv_note (insn);
1255 if (note != 0
1256 && REG_NOTE_KIND (note) == REG_EQUAL
1257 && !REG_P (src)
1258 && want_to_gcse_p (XEXP (note, 0), GET_MODE (dest), NULL))
1259 src = XEXP (note, 0), set = gen_rtx_SET (dest, src);
1260
1261 /* Only record sets of pseudo-regs in the hash table. */
1262 if (regno >= FIRST_PSEUDO_REGISTER
1263 /* Don't GCSE something if we can't do a reg/reg copy. */
1264 && can_copy_p (GET_MODE (dest))
1265 /* GCSE commonly inserts instruction after the insn. We can't
1266 do that easily for EH edges so disable GCSE on these for now. */
1267 /* ??? We can now easily create new EH landing pads at the
1268 gimple level, for splitting edges; there's no reason we
1269 can't do the same thing at the rtl level. */
1270 && !can_throw_internal (insn)
1271 /* Is SET_SRC something we want to gcse? */
1272 && want_to_gcse_p (src, GET_MODE (dest), &max_distance)
1273 /* Don't CSE a nop. */
1274 && ! set_noop_p (set)
1275 /* Don't GCSE if it has attached REG_EQUIV note.
1276 At this point this only function parameters should have
1277 REG_EQUIV notes and if the argument slot is used somewhere
1278 explicitly, it means address of parameter has been taken,
1279 so we should not extend the lifetime of the pseudo. */
1280 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1281 {
1282 /* An expression is not anticipatable if its operands are
1283 modified before this insn or if this is not the only SET in
1284 this insn. The latter condition does not have to mean that
1285 SRC itself is not anticipatable, but we just will not be
1286 able to handle code motion of insns with multiple sets. */
1287 int antic_p = oprs_anticipatable_p (src, insn)
1288 && !multiple_sets (insn);
1289 /* An expression is not available if its operands are
1290 subsequently modified, including this insn. It's also not
1291 available if this is a branch, because we can't insert
1292 a set after the branch. */
1293 int avail_p = (oprs_available_p (src, insn)
1294 && ! JUMP_P (insn));
1295
1296 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1297 max_distance, table);
1298 }
1299 }
1300 /* In case of store we want to consider the memory value as available in
1301 the REG stored in that memory. This makes it possible to remove
1302 redundant loads from due to stores to the same location. */
1303 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1304 {
1305 unsigned int regno = REGNO (src);
1306 HOST_WIDE_INT max_distance = 0;
1307
1308 /* Only record sets of pseudo-regs in the hash table. */
1309 if (regno >= FIRST_PSEUDO_REGISTER
1310 /* Don't GCSE something if we can't do a reg/reg copy. */
1311 && can_copy_p (GET_MODE (src))
1312 /* GCSE commonly inserts instruction after the insn. We can't
1313 do that easily for EH edges so disable GCSE on these for now. */
1314 && !can_throw_internal (insn)
1315 /* Is SET_DEST something we want to gcse? */
1316 && want_to_gcse_p (dest, GET_MODE (dest), &max_distance)
1317 /* Don't CSE a nop. */
1318 && ! set_noop_p (set)
1319 /* Don't GCSE if it has attached REG_EQUIV note.
1320 At this point this only function parameters should have
1321 REG_EQUIV notes and if the argument slot is used somewhere
1322 explicitly, it means address of parameter has been taken,
1323 so we should not extend the lifetime of the pseudo. */
1324 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1325 || ! MEM_P (XEXP (note, 0))))
1326 {
1327 /* Stores are never anticipatable. */
1328 int antic_p = 0;
1329 /* An expression is not available if its operands are
1330 subsequently modified, including this insn. It's also not
1331 available if this is a branch, because we can't insert
1332 a set after the branch. */
1333 int avail_p = oprs_available_p (dest, insn) && ! JUMP_P (insn);
1334
1335 /* Record the memory expression (DEST) in the hash table. */
1336 insert_expr_in_table (dest, GET_MODE (dest), insn,
1337 antic_p, avail_p, max_distance, table);
1338 }
1339 }
1340 }
1341
1342 static void
1343 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1344 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1345 {
1346 /* Currently nothing to do. */
1347 }
1348
1349 static void
1350 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1351 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1352 {
1353 /* Currently nothing to do. */
1354 }
1355
1356 /* Process INSN and add hash table entries as appropriate. */
1357
1358 static void
1359 hash_scan_insn (rtx_insn *insn, struct gcse_hash_table_d *table)
1360 {
1361 rtx pat = PATTERN (insn);
1362 int i;
1363
1364 /* Pick out the sets of INSN and for other forms of instructions record
1365 what's been modified. */
1366
1367 if (GET_CODE (pat) == SET)
1368 hash_scan_set (pat, insn, table);
1369
1370 else if (GET_CODE (pat) == CLOBBER)
1371 hash_scan_clobber (pat, insn, table);
1372
1373 else if (GET_CODE (pat) == CALL)
1374 hash_scan_call (pat, insn, table);
1375
1376 else if (GET_CODE (pat) == PARALLEL)
1377 for (i = 0; i < XVECLEN (pat, 0); i++)
1378 {
1379 rtx x = XVECEXP (pat, 0, i);
1380
1381 if (GET_CODE (x) == SET)
1382 hash_scan_set (x, insn, table);
1383 else if (GET_CODE (x) == CLOBBER)
1384 hash_scan_clobber (x, insn, table);
1385 else if (GET_CODE (x) == CALL)
1386 hash_scan_call (x, insn, table);
1387 }
1388 }
1389
1390 /* Dump the hash table TABLE to file FILE under the name NAME. */
1391
1392 static void
1393 dump_hash_table (FILE *file, const char *name, struct gcse_hash_table_d *table)
1394 {
1395 int i;
1396 /* Flattened out table, so it's printed in proper order. */
1397 struct gcse_expr **flat_table;
1398 unsigned int *hash_val;
1399 struct gcse_expr *expr;
1400
1401 flat_table = XCNEWVEC (struct gcse_expr *, table->n_elems);
1402 hash_val = XNEWVEC (unsigned int, table->n_elems);
1403
1404 for (i = 0; i < (int) table->size; i++)
1405 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1406 {
1407 flat_table[expr->bitmap_index] = expr;
1408 hash_val[expr->bitmap_index] = i;
1409 }
1410
1411 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1412 name, table->size, table->n_elems);
1413
1414 for (i = 0; i < (int) table->n_elems; i++)
1415 if (flat_table[i] != 0)
1416 {
1417 expr = flat_table[i];
1418 fprintf (file, "Index %d (hash value %d; max distance "
1419 HOST_WIDE_INT_PRINT_DEC ")\n ",
1420 expr->bitmap_index, hash_val[i], expr->max_distance);
1421 print_rtl (file, expr->expr);
1422 fprintf (file, "\n");
1423 }
1424
1425 fprintf (file, "\n");
1426
1427 free (flat_table);
1428 free (hash_val);
1429 }
1430
1431 /* Record register first/last/block set information for REGNO in INSN.
1432
1433 first_set records the first place in the block where the register
1434 is set and is used to compute "anticipatability".
1435
1436 last_set records the last place in the block where the register
1437 is set and is used to compute "availability".
1438
1439 last_bb records the block for which first_set and last_set are
1440 valid, as a quick test to invalidate them. */
1441
1442 static void
1443 record_last_reg_set_info (rtx_insn *insn, int regno)
1444 {
1445 struct reg_avail_info *info = &reg_avail_info[regno];
1446 int luid = DF_INSN_LUID (insn);
1447
1448 info->last_set = luid;
1449 if (info->last_bb != current_bb)
1450 {
1451 info->last_bb = current_bb;
1452 info->first_set = luid;
1453 }
1454 }
1455
1456 /* Record memory modification information for INSN. We do not actually care
1457 about the memory location(s) that are set, or even how they are set (consider
1458 a CALL_INSN). We merely need to record which insns modify memory. */
1459
1460 static void
1461 record_last_mem_set_info (rtx_insn *insn)
1462 {
1463 if (! flag_gcse_lm)
1464 return;
1465
1466 record_last_mem_set_info_common (insn, modify_mem_list,
1467 canon_modify_mem_list,
1468 modify_mem_list_set,
1469 blocks_with_calls);
1470 }
1471
1472 /* Called from compute_hash_table via note_stores to handle one
1473 SET or CLOBBER in an insn. DATA is really the instruction in which
1474 the SET is taking place. */
1475
1476 static void
1477 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1478 {
1479 rtx_insn *last_set_insn = (rtx_insn *) data;
1480
1481 if (GET_CODE (dest) == SUBREG)
1482 dest = SUBREG_REG (dest);
1483
1484 if (REG_P (dest))
1485 record_last_reg_set_info (last_set_insn, REGNO (dest));
1486 else if (MEM_P (dest)
1487 /* Ignore pushes, they clobber nothing. */
1488 && ! push_operand (dest, GET_MODE (dest)))
1489 record_last_mem_set_info (last_set_insn);
1490 }
1491
1492 /* Top level function to create an expression hash table.
1493
1494 Expression entries are placed in the hash table if
1495 - they are of the form (set (pseudo-reg) src),
1496 - src is something we want to perform GCSE on,
1497 - none of the operands are subsequently modified in the block
1498
1499 Currently src must be a pseudo-reg or a const_int.
1500
1501 TABLE is the table computed. */
1502
1503 static void
1504 compute_hash_table_work (struct gcse_hash_table_d *table)
1505 {
1506 int i;
1507
1508 /* re-Cache any INSN_LIST nodes we have allocated. */
1509 clear_modify_mem_tables ();
1510 /* Some working arrays used to track first and last set in each block. */
1511 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
1512
1513 for (i = 0; i < max_reg_num (); ++i)
1514 reg_avail_info[i].last_bb = NULL;
1515
1516 FOR_EACH_BB_FN (current_bb, cfun)
1517 {
1518 rtx_insn *insn;
1519 unsigned int regno;
1520
1521 /* First pass over the instructions records information used to
1522 determine when registers and memory are first and last set. */
1523 FOR_BB_INSNS (current_bb, insn)
1524 {
1525 if (!NONDEBUG_INSN_P (insn))
1526 continue;
1527
1528 if (CALL_P (insn))
1529 {
1530 hard_reg_set_iterator hrsi;
1531 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1532 0, regno, hrsi)
1533 record_last_reg_set_info (insn, regno);
1534
1535 if (! RTL_CONST_OR_PURE_CALL_P (insn))
1536 record_last_mem_set_info (insn);
1537 }
1538
1539 note_stores (PATTERN (insn), record_last_set_info, insn);
1540 }
1541
1542 /* The next pass builds the hash table. */
1543 FOR_BB_INSNS (current_bb, insn)
1544 if (NONDEBUG_INSN_P (insn))
1545 hash_scan_insn (insn, table);
1546 }
1547
1548 free (reg_avail_info);
1549 reg_avail_info = NULL;
1550 }
1551
1552 /* Allocate space for the set/expr hash TABLE.
1553 It is used to determine the number of buckets to use. */
1554
1555 static void
1556 alloc_hash_table (struct gcse_hash_table_d *table)
1557 {
1558 int n;
1559
1560 n = get_max_insn_count ();
1561
1562 table->size = n / 4;
1563 if (table->size < 11)
1564 table->size = 11;
1565
1566 /* Attempt to maintain efficient use of hash table.
1567 Making it an odd number is simplest for now.
1568 ??? Later take some measurements. */
1569 table->size |= 1;
1570 n = table->size * sizeof (struct gcse_expr *);
1571 table->table = GNEWVAR (struct gcse_expr *, n);
1572 }
1573
1574 /* Free things allocated by alloc_hash_table. */
1575
1576 static void
1577 free_hash_table (struct gcse_hash_table_d *table)
1578 {
1579 free (table->table);
1580 }
1581
1582 /* Compute the expression hash table TABLE. */
1583
1584 static void
1585 compute_hash_table (struct gcse_hash_table_d *table)
1586 {
1587 /* Initialize count of number of entries in hash table. */
1588 table->n_elems = 0;
1589 memset (table->table, 0, table->size * sizeof (struct gcse_expr *));
1590
1591 compute_hash_table_work (table);
1592 }
1593 \f
1594 /* Expression tracking support. */
1595
1596 /* Clear canon_modify_mem_list and modify_mem_list tables. */
1597 static void
1598 clear_modify_mem_tables (void)
1599 {
1600 unsigned i;
1601 bitmap_iterator bi;
1602
1603 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
1604 {
1605 modify_mem_list[i].release ();
1606 canon_modify_mem_list[i].release ();
1607 }
1608 bitmap_clear (modify_mem_list_set);
1609 bitmap_clear (blocks_with_calls);
1610 }
1611
1612 /* Release memory used by modify_mem_list_set. */
1613
1614 static void
1615 free_modify_mem_tables (void)
1616 {
1617 clear_modify_mem_tables ();
1618 free (modify_mem_list);
1619 free (canon_modify_mem_list);
1620 modify_mem_list = 0;
1621 canon_modify_mem_list = 0;
1622 }
1623 \f
1624 /* Compute PRE+LCM working variables. */
1625
1626 /* Local properties of expressions. */
1627
1628 /* Nonzero for expressions that are transparent in the block. */
1629 static sbitmap *transp;
1630
1631 /* Nonzero for expressions that are computed (available) in the block. */
1632 static sbitmap *comp;
1633
1634 /* Nonzero for expressions that are locally anticipatable in the block. */
1635 static sbitmap *antloc;
1636
1637 /* Nonzero for expressions where this block is an optimal computation
1638 point. */
1639 static sbitmap *pre_optimal;
1640
1641 /* Nonzero for expressions which are redundant in a particular block. */
1642 static sbitmap *pre_redundant;
1643
1644 /* Nonzero for expressions which should be inserted on a specific edge. */
1645 static sbitmap *pre_insert_map;
1646
1647 /* Nonzero for expressions which should be deleted in a specific block. */
1648 static sbitmap *pre_delete_map;
1649
1650 /* Allocate vars used for PRE analysis. */
1651
1652 static void
1653 alloc_pre_mem (int n_blocks, int n_exprs)
1654 {
1655 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1656 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1657 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
1658
1659 pre_optimal = NULL;
1660 pre_redundant = NULL;
1661 pre_insert_map = NULL;
1662 pre_delete_map = NULL;
1663 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
1664
1665 /* pre_insert and pre_delete are allocated later. */
1666 }
1667
1668 /* Free vars used for PRE analysis. */
1669
1670 static void
1671 free_pre_mem (void)
1672 {
1673 sbitmap_vector_free (transp);
1674 sbitmap_vector_free (comp);
1675
1676 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
1677
1678 if (pre_optimal)
1679 sbitmap_vector_free (pre_optimal);
1680 if (pre_redundant)
1681 sbitmap_vector_free (pre_redundant);
1682 if (pre_insert_map)
1683 sbitmap_vector_free (pre_insert_map);
1684 if (pre_delete_map)
1685 sbitmap_vector_free (pre_delete_map);
1686
1687 transp = comp = NULL;
1688 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
1689 }
1690
1691 /* Remove certain expressions from anticipatable and transparent
1692 sets of basic blocks that have incoming abnormal edge.
1693 For PRE remove potentially trapping expressions to avoid placing
1694 them on abnormal edges. For hoisting remove memory references that
1695 can be clobbered by calls. */
1696
1697 static void
1698 prune_expressions (bool pre_p)
1699 {
1700 struct gcse_expr *expr;
1701 unsigned int ui;
1702 basic_block bb;
1703
1704 auto_sbitmap prune_exprs (expr_hash_table.n_elems);
1705 bitmap_clear (prune_exprs);
1706 for (ui = 0; ui < expr_hash_table.size; ui++)
1707 {
1708 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
1709 {
1710 /* Note potentially trapping expressions. */
1711 if (may_trap_p (expr->expr))
1712 {
1713 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1714 continue;
1715 }
1716
1717 if (!pre_p && contains_mem_rtx_p (expr->expr))
1718 /* Note memory references that can be clobbered by a call.
1719 We do not split abnormal edges in hoisting, so would
1720 a memory reference get hoisted along an abnormal edge,
1721 it would be placed /before/ the call. Therefore, only
1722 constant memory references can be hoisted along abnormal
1723 edges. */
1724 {
1725 rtx x = expr->expr;
1726
1727 /* Common cases where we might find the MEM which may allow us
1728 to avoid pruning the expression. */
1729 while (GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1730 x = XEXP (x, 0);
1731
1732 /* If we found the MEM, go ahead and look at it to see if it has
1733 properties that allow us to avoid pruning its expression out
1734 of the tables. */
1735 if (MEM_P (x))
1736 {
1737 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
1738 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
1739 continue;
1740
1741 if (MEM_READONLY_P (x)
1742 && !MEM_VOLATILE_P (x)
1743 && MEM_NOTRAP_P (x))
1744 /* Constant memory reference, e.g., a PIC address. */
1745 continue;
1746 }
1747
1748 /* ??? Optimally, we would use interprocedural alias
1749 analysis to determine if this mem is actually killed
1750 by this call. */
1751
1752 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1753 }
1754 }
1755 }
1756
1757 FOR_EACH_BB_FN (bb, cfun)
1758 {
1759 edge e;
1760 edge_iterator ei;
1761
1762 /* If the current block is the destination of an abnormal edge, we
1763 kill all trapping (for PRE) and memory (for hoist) expressions
1764 because we won't be able to properly place the instruction on
1765 the edge. So make them neither anticipatable nor transparent.
1766 This is fairly conservative.
1767
1768 ??? For hoisting it may be necessary to check for set-and-jump
1769 instructions here, not just for abnormal edges. The general problem
1770 is that when an expression cannot not be placed right at the end of
1771 a basic block we should account for any side-effects of a subsequent
1772 jump instructions that could clobber the expression. It would
1773 be best to implement this check along the lines of
1774 should_hoist_expr_to_dom where the target block is already known
1775 and, hence, there's no need to conservatively prune expressions on
1776 "intermediate" set-and-jump instructions. */
1777 FOR_EACH_EDGE (e, ei, bb->preds)
1778 if ((e->flags & EDGE_ABNORMAL)
1779 && (pre_p || CALL_P (BB_END (e->src))))
1780 {
1781 bitmap_and_compl (antloc[bb->index],
1782 antloc[bb->index], prune_exprs);
1783 bitmap_and_compl (transp[bb->index],
1784 transp[bb->index], prune_exprs);
1785 break;
1786 }
1787 }
1788 }
1789
1790 /* It may be necessary to insert a large number of insns on edges to
1791 make the existing occurrences of expressions fully redundant. This
1792 routine examines the set of insertions and deletions and if the ratio
1793 of insertions to deletions is too high for a particular expression, then
1794 the expression is removed from the insertion/deletion sets.
1795
1796 N_ELEMS is the number of elements in the hash table. */
1797
1798 static void
1799 prune_insertions_deletions (int n_elems)
1800 {
1801 sbitmap_iterator sbi;
1802
1803 /* We always use I to iterate over blocks/edges and J to iterate over
1804 expressions. */
1805 unsigned int i, j;
1806
1807 /* Counts for the number of times an expression needs to be inserted and
1808 number of times an expression can be removed as a result. */
1809 int *insertions = GCNEWVEC (int, n_elems);
1810 int *deletions = GCNEWVEC (int, n_elems);
1811
1812 /* Set of expressions which require too many insertions relative to
1813 the number of deletions achieved. We will prune these out of the
1814 insertion/deletion sets. */
1815 auto_sbitmap prune_exprs (n_elems);
1816 bitmap_clear (prune_exprs);
1817
1818 /* Iterate over the edges counting the number of times each expression
1819 needs to be inserted. */
1820 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1821 {
1822 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
1823 insertions[j]++;
1824 }
1825
1826 /* Similarly for deletions, but those occur in blocks rather than on
1827 edges. */
1828 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1829 {
1830 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
1831 deletions[j]++;
1832 }
1833
1834 /* Now that we have accurate counts, iterate over the elements in the
1835 hash table and see if any need too many insertions relative to the
1836 number of evaluations that can be removed. If so, mark them in
1837 PRUNE_EXPRS. */
1838 for (j = 0; j < (unsigned) n_elems; j++)
1839 if (deletions[j]
1840 && ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
1841 bitmap_set_bit (prune_exprs, j);
1842
1843 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
1844 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
1845 {
1846 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1847 bitmap_clear_bit (pre_insert_map[i], j);
1848
1849 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1850 bitmap_clear_bit (pre_delete_map[i], j);
1851 }
1852
1853 free (insertions);
1854 free (deletions);
1855 }
1856
1857 /* Top level routine to do the dataflow analysis needed by PRE. */
1858
1859 static struct edge_list *
1860 compute_pre_data (void)
1861 {
1862 struct edge_list *edge_list;
1863 basic_block bb;
1864
1865 compute_local_properties (transp, comp, antloc, &expr_hash_table);
1866 prune_expressions (true);
1867 bitmap_vector_clear (ae_kill, last_basic_block_for_fn (cfun));
1868
1869 /* Compute ae_kill for each basic block using:
1870
1871 ~(TRANSP | COMP)
1872 */
1873
1874 FOR_EACH_BB_FN (bb, cfun)
1875 {
1876 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
1877 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
1878 }
1879
1880 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
1881 ae_kill, &pre_insert_map, &pre_delete_map);
1882 sbitmap_vector_free (antloc);
1883 antloc = NULL;
1884 sbitmap_vector_free (ae_kill);
1885 ae_kill = NULL;
1886
1887 prune_insertions_deletions (expr_hash_table.n_elems);
1888
1889 return edge_list;
1890 }
1891 \f
1892 /* PRE utilities */
1893
1894 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
1895 block BB.
1896
1897 VISITED is a pointer to a working buffer for tracking which BB's have
1898 been visited. It is NULL for the top-level call.
1899
1900 We treat reaching expressions that go through blocks containing the same
1901 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
1902 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
1903 2 as not reaching. The intent is to improve the probability of finding
1904 only one reaching expression and to reduce register lifetimes by picking
1905 the closest such expression. */
1906
1907 static int
1908 pre_expr_reaches_here_p_work (basic_block occr_bb, struct gcse_expr *expr,
1909 basic_block bb, char *visited)
1910 {
1911 edge pred;
1912 edge_iterator ei;
1913
1914 FOR_EACH_EDGE (pred, ei, bb->preds)
1915 {
1916 basic_block pred_bb = pred->src;
1917
1918 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1919 /* Has predecessor has already been visited? */
1920 || visited[pred_bb->index])
1921 ;/* Nothing to do. */
1922
1923 /* Does this predecessor generate this expression? */
1924 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
1925 {
1926 /* Is this the occurrence we're looking for?
1927 Note that there's only one generating occurrence per block
1928 so we just need to check the block number. */
1929 if (occr_bb == pred_bb)
1930 return 1;
1931
1932 visited[pred_bb->index] = 1;
1933 }
1934 /* Ignore this predecessor if it kills the expression. */
1935 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
1936 visited[pred_bb->index] = 1;
1937
1938 /* Neither gen nor kill. */
1939 else
1940 {
1941 visited[pred_bb->index] = 1;
1942 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
1943 return 1;
1944 }
1945 }
1946
1947 /* All paths have been checked. */
1948 return 0;
1949 }
1950
1951 /* The wrapper for pre_expr_reaches_here_work that ensures that any
1952 memory allocated for that function is returned. */
1953
1954 static int
1955 pre_expr_reaches_here_p (basic_block occr_bb, struct gcse_expr *expr, basic_block bb)
1956 {
1957 int rval;
1958 char *visited = XCNEWVEC (char, last_basic_block_for_fn (cfun));
1959
1960 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
1961
1962 free (visited);
1963 return rval;
1964 }
1965 \f
1966 /* Generate RTL to copy an EXP to REG and return it. */
1967
1968 rtx_insn *
1969 prepare_copy_insn (rtx reg, rtx exp)
1970 {
1971 rtx_insn *pat;
1972
1973 start_sequence ();
1974
1975 /* If the expression is something that's an operand, like a constant,
1976 just copy it to a register. */
1977 if (general_operand (exp, GET_MODE (reg)))
1978 emit_move_insn (reg, exp);
1979
1980 /* Otherwise, make a new insn to compute this expression and make sure the
1981 insn will be recognized (this also adds any needed CLOBBERs). */
1982 else
1983 {
1984 rtx_insn *insn = emit_insn (gen_rtx_SET (reg, exp));
1985
1986 if (insn_invalid_p (insn, false))
1987 gcc_unreachable ();
1988 }
1989
1990 pat = get_insns ();
1991 end_sequence ();
1992
1993 return pat;
1994 }
1995
1996 /* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
1997
1998 static rtx_insn *
1999 process_insert_insn (struct gcse_expr *expr)
2000 {
2001 rtx reg = expr->reaching_reg;
2002 /* Copy the expression to make sure we don't have any sharing issues. */
2003 rtx exp = copy_rtx (expr->expr);
2004
2005 return prepare_copy_insn (reg, exp);
2006 }
2007
2008 /* Add EXPR to the end of basic block BB.
2009
2010 This is used by both the PRE and code hoisting. */
2011
2012 static void
2013 insert_insn_end_basic_block (struct gcse_expr *expr, basic_block bb)
2014 {
2015 rtx_insn *insn = BB_END (bb);
2016 rtx_insn *new_insn;
2017 rtx reg = expr->reaching_reg;
2018 int regno = REGNO (reg);
2019 rtx_insn *pat, *pat_end;
2020
2021 pat = process_insert_insn (expr);
2022 gcc_assert (pat && INSN_P (pat));
2023
2024 pat_end = pat;
2025 while (NEXT_INSN (pat_end) != NULL_RTX)
2026 pat_end = NEXT_INSN (pat_end);
2027
2028 /* If the last insn is a jump, insert EXPR in front [taking care to
2029 handle cc0, etc. properly]. Similarly we need to care trapping
2030 instructions in presence of non-call exceptions. */
2031
2032 if (JUMP_P (insn)
2033 || (NONJUMP_INSN_P (insn)
2034 && (!single_succ_p (bb)
2035 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
2036 {
2037 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2038 if cc0 isn't set. */
2039 if (HAVE_cc0)
2040 {
2041 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2042 if (note)
2043 insn = safe_as_a <rtx_insn *> (XEXP (note, 0));
2044 else
2045 {
2046 rtx_insn *maybe_cc0_setter = prev_nonnote_insn (insn);
2047 if (maybe_cc0_setter
2048 && INSN_P (maybe_cc0_setter)
2049 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2050 insn = maybe_cc0_setter;
2051 }
2052 }
2053
2054 /* FIXME: What if something in cc0/jump uses value set in new insn? */
2055 new_insn = emit_insn_before_noloc (pat, insn, bb);
2056 }
2057
2058 /* Likewise if the last insn is a call, as will happen in the presence
2059 of exception handling. */
2060 else if (CALL_P (insn)
2061 && (!single_succ_p (bb)
2062 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
2063 {
2064 /* Keeping in mind targets with small register classes and parameters
2065 in registers, we search backward and place the instructions before
2066 the first parameter is loaded. Do this for everyone for consistency
2067 and a presumption that we'll get better code elsewhere as well. */
2068
2069 /* Since different machines initialize their parameter registers
2070 in different orders, assume nothing. Collect the set of all
2071 parameter registers. */
2072 insn = find_first_parameter_load (insn, BB_HEAD (bb));
2073
2074 /* If we found all the parameter loads, then we want to insert
2075 before the first parameter load.
2076
2077 If we did not find all the parameter loads, then we might have
2078 stopped on the head of the block, which could be a CODE_LABEL.
2079 If we inserted before the CODE_LABEL, then we would be putting
2080 the insn in the wrong basic block. In that case, put the insn
2081 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
2082 while (LABEL_P (insn)
2083 || NOTE_INSN_BASIC_BLOCK_P (insn))
2084 insn = NEXT_INSN (insn);
2085
2086 new_insn = emit_insn_before_noloc (pat, insn, bb);
2087 }
2088 else
2089 new_insn = emit_insn_after_noloc (pat, insn, bb);
2090
2091 while (1)
2092 {
2093 if (INSN_P (pat))
2094 add_label_notes (PATTERN (pat), new_insn);
2095 if (pat == pat_end)
2096 break;
2097 pat = NEXT_INSN (pat);
2098 }
2099
2100 gcse_create_count++;
2101
2102 if (dump_file)
2103 {
2104 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
2105 bb->index, INSN_UID (new_insn));
2106 fprintf (dump_file, "copying expression %d to reg %d\n",
2107 expr->bitmap_index, regno);
2108 }
2109 }
2110
2111 /* Insert partially redundant expressions on edges in the CFG to make
2112 the expressions fully redundant. */
2113
2114 static int
2115 pre_edge_insert (struct edge_list *edge_list, struct gcse_expr **index_map)
2116 {
2117 int e, i, j, num_edges, set_size, did_insert = 0;
2118 sbitmap *inserted;
2119
2120 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2121 if it reaches any of the deleted expressions. */
2122
2123 set_size = pre_insert_map[0]->size;
2124 num_edges = NUM_EDGES (edge_list);
2125 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
2126 bitmap_vector_clear (inserted, num_edges);
2127
2128 for (e = 0; e < num_edges; e++)
2129 {
2130 int indx;
2131 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
2132
2133 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
2134 {
2135 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
2136
2137 for (j = indx;
2138 insert && j < (int) expr_hash_table.n_elems;
2139 j++, insert >>= 1)
2140 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2141 {
2142 struct gcse_expr *expr = index_map[j];
2143 struct gcse_occr *occr;
2144
2145 /* Now look at each deleted occurrence of this expression. */
2146 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2147 {
2148 if (! occr->deleted_p)
2149 continue;
2150
2151 /* Insert this expression on this edge if it would
2152 reach the deleted occurrence in BB. */
2153 if (!bitmap_bit_p (inserted[e], j))
2154 {
2155 rtx_insn *insn;
2156 edge eg = INDEX_EDGE (edge_list, e);
2157
2158 /* We can't insert anything on an abnormal and
2159 critical edge, so we insert the insn at the end of
2160 the previous block. There are several alternatives
2161 detailed in Morgans book P277 (sec 10.5) for
2162 handling this situation. This one is easiest for
2163 now. */
2164
2165 if (eg->flags & EDGE_ABNORMAL)
2166 insert_insn_end_basic_block (index_map[j], bb);
2167 else
2168 {
2169 insn = process_insert_insn (index_map[j]);
2170 insert_insn_on_edge (insn, eg);
2171 }
2172
2173 if (dump_file)
2174 {
2175 fprintf (dump_file, "PRE: edge (%d,%d), ",
2176 bb->index,
2177 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
2178 fprintf (dump_file, "copy expression %d\n",
2179 expr->bitmap_index);
2180 }
2181
2182 update_ld_motion_stores (expr);
2183 bitmap_set_bit (inserted[e], j);
2184 did_insert = 1;
2185 gcse_create_count++;
2186 }
2187 }
2188 }
2189 }
2190 }
2191
2192 sbitmap_vector_free (inserted);
2193 return did_insert;
2194 }
2195
2196 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
2197 Given "old_reg <- expr" (INSN), instead of adding after it
2198 reaching_reg <- old_reg
2199 it's better to do the following:
2200 reaching_reg <- expr
2201 old_reg <- reaching_reg
2202 because this way copy propagation can discover additional PRE
2203 opportunities. But if this fails, we try the old way.
2204 When "expr" is a store, i.e.
2205 given "MEM <- old_reg", instead of adding after it
2206 reaching_reg <- old_reg
2207 it's better to add it before as follows:
2208 reaching_reg <- old_reg
2209 MEM <- reaching_reg. */
2210
2211 static void
2212 pre_insert_copy_insn (struct gcse_expr *expr, rtx_insn *insn)
2213 {
2214 rtx reg = expr->reaching_reg;
2215 int regno = REGNO (reg);
2216 int indx = expr->bitmap_index;
2217 rtx pat = PATTERN (insn);
2218 rtx set, first_set;
2219 rtx_insn *new_insn;
2220 rtx old_reg;
2221 int i;
2222
2223 /* This block matches the logic in hash_scan_insn. */
2224 switch (GET_CODE (pat))
2225 {
2226 case SET:
2227 set = pat;
2228 break;
2229
2230 case PARALLEL:
2231 /* Search through the parallel looking for the set whose
2232 source was the expression that we're interested in. */
2233 first_set = NULL_RTX;
2234 set = NULL_RTX;
2235 for (i = 0; i < XVECLEN (pat, 0); i++)
2236 {
2237 rtx x = XVECEXP (pat, 0, i);
2238 if (GET_CODE (x) == SET)
2239 {
2240 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2241 may not find an equivalent expression, but in this
2242 case the PARALLEL will have a single set. */
2243 if (first_set == NULL_RTX)
2244 first_set = x;
2245 if (expr_equiv_p (SET_SRC (x), expr->expr))
2246 {
2247 set = x;
2248 break;
2249 }
2250 }
2251 }
2252
2253 gcc_assert (first_set);
2254 if (set == NULL_RTX)
2255 set = first_set;
2256 break;
2257
2258 default:
2259 gcc_unreachable ();
2260 }
2261
2262 if (REG_P (SET_DEST (set)))
2263 {
2264 old_reg = SET_DEST (set);
2265 /* Check if we can modify the set destination in the original insn. */
2266 if (validate_change (insn, &SET_DEST (set), reg, 0))
2267 {
2268 new_insn = gen_move_insn (old_reg, reg);
2269 new_insn = emit_insn_after (new_insn, insn);
2270 }
2271 else
2272 {
2273 new_insn = gen_move_insn (reg, old_reg);
2274 new_insn = emit_insn_after (new_insn, insn);
2275 }
2276 }
2277 else /* This is possible only in case of a store to memory. */
2278 {
2279 old_reg = SET_SRC (set);
2280 new_insn = gen_move_insn (reg, old_reg);
2281
2282 /* Check if we can modify the set source in the original insn. */
2283 if (validate_change (insn, &SET_SRC (set), reg, 0))
2284 new_insn = emit_insn_before (new_insn, insn);
2285 else
2286 new_insn = emit_insn_after (new_insn, insn);
2287 }
2288
2289 gcse_create_count++;
2290
2291 if (dump_file)
2292 fprintf (dump_file,
2293 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
2294 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
2295 INSN_UID (insn), regno);
2296 }
2297
2298 /* Copy available expressions that reach the redundant expression
2299 to `reaching_reg'. */
2300
2301 static void
2302 pre_insert_copies (void)
2303 {
2304 unsigned int i, added_copy;
2305 struct gcse_expr *expr;
2306 struct gcse_occr *occr;
2307 struct gcse_occr *avail;
2308
2309 /* For each available expression in the table, copy the result to
2310 `reaching_reg' if the expression reaches a deleted one.
2311
2312 ??? The current algorithm is rather brute force.
2313 Need to do some profiling. */
2314
2315 for (i = 0; i < expr_hash_table.size; i++)
2316 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2317 {
2318 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2319 we don't want to insert a copy here because the expression may not
2320 really be redundant. So only insert an insn if the expression was
2321 deleted. This test also avoids further processing if the
2322 expression wasn't deleted anywhere. */
2323 if (expr->reaching_reg == NULL)
2324 continue;
2325
2326 /* Set when we add a copy for that expression. */
2327 added_copy = 0;
2328
2329 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2330 {
2331 if (! occr->deleted_p)
2332 continue;
2333
2334 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2335 {
2336 rtx_insn *insn = avail->insn;
2337
2338 /* No need to handle this one if handled already. */
2339 if (avail->copied_p)
2340 continue;
2341
2342 /* Don't handle this one if it's a redundant one. */
2343 if (insn->deleted ())
2344 continue;
2345
2346 /* Or if the expression doesn't reach the deleted one. */
2347 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
2348 expr,
2349 BLOCK_FOR_INSN (occr->insn)))
2350 continue;
2351
2352 added_copy = 1;
2353
2354 /* Copy the result of avail to reaching_reg. */
2355 pre_insert_copy_insn (expr, insn);
2356 avail->copied_p = 1;
2357 }
2358 }
2359
2360 if (added_copy)
2361 update_ld_motion_stores (expr);
2362 }
2363 }
2364
2365 struct set_data
2366 {
2367 rtx_insn *insn;
2368 const_rtx set;
2369 int nsets;
2370 };
2371
2372 /* Increment number of sets and record set in DATA. */
2373
2374 static void
2375 record_set_data (rtx dest, const_rtx set, void *data)
2376 {
2377 struct set_data *s = (struct set_data *)data;
2378
2379 if (GET_CODE (set) == SET)
2380 {
2381 /* We allow insns having multiple sets, where all but one are
2382 dead as single set insns. In the common case only a single
2383 set is present, so we want to avoid checking for REG_UNUSED
2384 notes unless necessary. */
2385 if (s->nsets == 1
2386 && find_reg_note (s->insn, REG_UNUSED, SET_DEST (s->set))
2387 && !side_effects_p (s->set))
2388 s->nsets = 0;
2389
2390 if (!s->nsets)
2391 {
2392 /* Record this set. */
2393 s->nsets += 1;
2394 s->set = set;
2395 }
2396 else if (!find_reg_note (s->insn, REG_UNUSED, dest)
2397 || side_effects_p (set))
2398 s->nsets += 1;
2399 }
2400 }
2401
2402 static const_rtx
2403 single_set_gcse (rtx_insn *insn)
2404 {
2405 struct set_data s;
2406 rtx pattern;
2407
2408 gcc_assert (INSN_P (insn));
2409
2410 /* Optimize common case. */
2411 pattern = PATTERN (insn);
2412 if (GET_CODE (pattern) == SET)
2413 return pattern;
2414
2415 s.insn = insn;
2416 s.nsets = 0;
2417 note_stores (pattern, record_set_data, &s);
2418
2419 /* Considered invariant insns have exactly one set. */
2420 gcc_assert (s.nsets == 1);
2421 return s.set;
2422 }
2423
2424 /* Emit move from SRC to DEST noting the equivalence with expression computed
2425 in INSN. */
2426
2427 static rtx_insn *
2428 gcse_emit_move_after (rtx dest, rtx src, rtx_insn *insn)
2429 {
2430 rtx_insn *new_rtx;
2431 const_rtx set = single_set_gcse (insn);
2432 rtx set2;
2433 rtx note;
2434 rtx eqv = NULL_RTX;
2435
2436 /* This should never fail since we're creating a reg->reg copy
2437 we've verified to be valid. */
2438
2439 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
2440
2441 /* Note the equivalence for local CSE pass. Take the note from the old
2442 set if there was one. Otherwise record the SET_SRC from the old set
2443 unless DEST is also an operand of the SET_SRC. */
2444 set2 = single_set (new_rtx);
2445 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
2446 return new_rtx;
2447 if ((note = find_reg_equal_equiv_note (insn)))
2448 eqv = XEXP (note, 0);
2449 else if (! REG_P (dest)
2450 || ! reg_mentioned_p (dest, SET_SRC (set)))
2451 eqv = SET_SRC (set);
2452
2453 if (eqv != NULL_RTX)
2454 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
2455
2456 return new_rtx;
2457 }
2458
2459 /* Delete redundant computations.
2460 Deletion is done by changing the insn to copy the `reaching_reg' of
2461 the expression into the result of the SET. It is left to later passes
2462 to propagate the copy or eliminate it.
2463
2464 Return nonzero if a change is made. */
2465
2466 static int
2467 pre_delete (void)
2468 {
2469 unsigned int i;
2470 int changed;
2471 struct gcse_expr *expr;
2472 struct gcse_occr *occr;
2473
2474 changed = 0;
2475 for (i = 0; i < expr_hash_table.size; i++)
2476 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2477 {
2478 int indx = expr->bitmap_index;
2479
2480 /* We only need to search antic_occr since we require ANTLOC != 0. */
2481 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2482 {
2483 rtx_insn *insn = occr->insn;
2484 rtx set;
2485 basic_block bb = BLOCK_FOR_INSN (insn);
2486
2487 /* We only delete insns that have a single_set. */
2488 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
2489 && (set = single_set (insn)) != 0
2490 && dbg_cnt (pre_insn))
2491 {
2492 /* Create a pseudo-reg to store the result of reaching
2493 expressions into. Get the mode for the new pseudo from
2494 the mode of the original destination pseudo. */
2495 if (expr->reaching_reg == NULL)
2496 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
2497
2498 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
2499 delete_insn (insn);
2500 occr->deleted_p = 1;
2501 changed = 1;
2502 gcse_subst_count++;
2503
2504 if (dump_file)
2505 {
2506 fprintf (dump_file,
2507 "PRE: redundant insn %d (expression %d) in ",
2508 INSN_UID (insn), indx);
2509 fprintf (dump_file, "bb %d, reaching reg is %d\n",
2510 bb->index, REGNO (expr->reaching_reg));
2511 }
2512 }
2513 }
2514 }
2515
2516 return changed;
2517 }
2518
2519 /* Perform GCSE optimizations using PRE.
2520 This is called by one_pre_gcse_pass after all the dataflow analysis
2521 has been done.
2522
2523 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2524 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2525 Compiler Design and Implementation.
2526
2527 ??? A new pseudo reg is created to hold the reaching expression. The nice
2528 thing about the classical approach is that it would try to use an existing
2529 reg. If the register can't be adequately optimized [i.e. we introduce
2530 reload problems], one could add a pass here to propagate the new register
2531 through the block.
2532
2533 ??? We don't handle single sets in PARALLELs because we're [currently] not
2534 able to copy the rest of the parallel when we insert copies to create full
2535 redundancies from partial redundancies. However, there's no reason why we
2536 can't handle PARALLELs in the cases where there are no partial
2537 redundancies. */
2538
2539 static int
2540 pre_gcse (struct edge_list *edge_list)
2541 {
2542 unsigned int i;
2543 int did_insert, changed;
2544 struct gcse_expr **index_map;
2545 struct gcse_expr *expr;
2546
2547 /* Compute a mapping from expression number (`bitmap_index') to
2548 hash table entry. */
2549
2550 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
2551 for (i = 0; i < expr_hash_table.size; i++)
2552 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2553 index_map[expr->bitmap_index] = expr;
2554
2555 /* Delete the redundant insns first so that
2556 - we know what register to use for the new insns and for the other
2557 ones with reaching expressions
2558 - we know which insns are redundant when we go to create copies */
2559
2560 changed = pre_delete ();
2561 did_insert = pre_edge_insert (edge_list, index_map);
2562
2563 /* In other places with reaching expressions, copy the expression to the
2564 specially allocated pseudo-reg that reaches the redundant expr. */
2565 pre_insert_copies ();
2566 if (did_insert)
2567 {
2568 commit_edge_insertions ();
2569 changed = 1;
2570 }
2571
2572 free (index_map);
2573 return changed;
2574 }
2575
2576 /* Top level routine to perform one PRE GCSE pass.
2577
2578 Return nonzero if a change was made. */
2579
2580 static int
2581 one_pre_gcse_pass (void)
2582 {
2583 int changed = 0;
2584
2585 gcse_subst_count = 0;
2586 gcse_create_count = 0;
2587
2588 /* Return if there's nothing to do, or it is too expensive. */
2589 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
2590 || gcse_or_cprop_is_too_expensive (_("PRE disabled")))
2591 return 0;
2592
2593 /* We need alias. */
2594 init_alias_analysis ();
2595
2596 bytes_used = 0;
2597 gcc_obstack_init (&gcse_obstack);
2598 alloc_gcse_mem ();
2599
2600 alloc_hash_table (&expr_hash_table);
2601 add_noreturn_fake_exit_edges ();
2602 if (flag_gcse_lm)
2603 compute_ld_motion_mems ();
2604
2605 compute_hash_table (&expr_hash_table);
2606 if (flag_gcse_lm)
2607 trim_ld_motion_mems ();
2608 if (dump_file)
2609 dump_hash_table (dump_file, "Expression", &expr_hash_table);
2610
2611 if (expr_hash_table.n_elems > 0)
2612 {
2613 struct edge_list *edge_list;
2614 alloc_pre_mem (last_basic_block_for_fn (cfun), expr_hash_table.n_elems);
2615 edge_list = compute_pre_data ();
2616 changed |= pre_gcse (edge_list);
2617 free_edge_list (edge_list);
2618 free_pre_mem ();
2619 }
2620
2621 if (flag_gcse_lm)
2622 free_ld_motion_mems ();
2623 remove_fake_exit_edges ();
2624 free_hash_table (&expr_hash_table);
2625
2626 free_gcse_mem ();
2627 obstack_free (&gcse_obstack, NULL);
2628
2629 /* We are finished with alias. */
2630 end_alias_analysis ();
2631
2632 if (dump_file)
2633 {
2634 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
2635 current_function_name (), n_basic_blocks_for_fn (cfun),
2636 bytes_used);
2637 fprintf (dump_file, "%d substs, %d insns created\n",
2638 gcse_subst_count, gcse_create_count);
2639 }
2640
2641 return changed;
2642 }
2643 \f
2644 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2645 to INSN. If such notes are added to an insn which references a
2646 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2647 that note, because the following loop optimization pass requires
2648 them. */
2649
2650 /* ??? If there was a jump optimization pass after gcse and before loop,
2651 then we would not need to do this here, because jump would add the
2652 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
2653
2654 static void
2655 add_label_notes (rtx x, rtx_insn *insn)
2656 {
2657 enum rtx_code code = GET_CODE (x);
2658 int i, j;
2659 const char *fmt;
2660
2661 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2662 {
2663 /* This code used to ignore labels that referred to dispatch tables to
2664 avoid flow generating (slightly) worse code.
2665
2666 We no longer ignore such label references (see LABEL_REF handling in
2667 mark_jump_label for additional information). */
2668
2669 /* There's no reason for current users to emit jump-insns with
2670 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2671 notes. */
2672 gcc_assert (!JUMP_P (insn));
2673 add_reg_note (insn, REG_LABEL_OPERAND, label_ref_label (x));
2674
2675 if (LABEL_P (label_ref_label (x)))
2676 LABEL_NUSES (label_ref_label (x))++;
2677
2678 return;
2679 }
2680
2681 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2682 {
2683 if (fmt[i] == 'e')
2684 add_label_notes (XEXP (x, i), insn);
2685 else if (fmt[i] == 'E')
2686 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2687 add_label_notes (XVECEXP (x, i, j), insn);
2688 }
2689 }
2690
2691 /* Code Hoisting variables and subroutines. */
2692
2693 /* Very busy expressions. */
2694 static sbitmap *hoist_vbein;
2695 static sbitmap *hoist_vbeout;
2696
2697 /* ??? We could compute post dominators and run this algorithm in
2698 reverse to perform tail merging, doing so would probably be
2699 more effective than the tail merging code in jump.c.
2700
2701 It's unclear if tail merging could be run in parallel with
2702 code hoisting. It would be nice. */
2703
2704 /* Allocate vars used for code hoisting analysis. */
2705
2706 static void
2707 alloc_code_hoist_mem (int n_blocks, int n_exprs)
2708 {
2709 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2710 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2711 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2712
2713 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2714 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
2715 }
2716
2717 /* Free vars used for code hoisting analysis. */
2718
2719 static void
2720 free_code_hoist_mem (void)
2721 {
2722 sbitmap_vector_free (antloc);
2723 sbitmap_vector_free (transp);
2724 sbitmap_vector_free (comp);
2725
2726 sbitmap_vector_free (hoist_vbein);
2727 sbitmap_vector_free (hoist_vbeout);
2728
2729 free_dominance_info (CDI_DOMINATORS);
2730 }
2731
2732 /* Compute the very busy expressions at entry/exit from each block.
2733
2734 An expression is very busy if all paths from a given point
2735 compute the expression. */
2736
2737 static void
2738 compute_code_hoist_vbeinout (void)
2739 {
2740 int changed, passes;
2741 basic_block bb;
2742
2743 bitmap_vector_clear (hoist_vbeout, last_basic_block_for_fn (cfun));
2744 bitmap_vector_clear (hoist_vbein, last_basic_block_for_fn (cfun));
2745
2746 passes = 0;
2747 changed = 1;
2748
2749 while (changed)
2750 {
2751 changed = 0;
2752
2753 /* We scan the blocks in the reverse order to speed up
2754 the convergence. */
2755 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2756 {
2757 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
2758 {
2759 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2760 hoist_vbein, bb);
2761
2762 /* Include expressions in VBEout that are calculated
2763 in BB and available at its end. */
2764 bitmap_ior (hoist_vbeout[bb->index],
2765 hoist_vbeout[bb->index], comp[bb->index]);
2766 }
2767
2768 changed |= bitmap_or_and (hoist_vbein[bb->index],
2769 antloc[bb->index],
2770 hoist_vbeout[bb->index],
2771 transp[bb->index]);
2772 }
2773
2774 passes++;
2775 }
2776
2777 if (dump_file)
2778 {
2779 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2780
2781 FOR_EACH_BB_FN (bb, cfun)
2782 {
2783 fprintf (dump_file, "vbein (%d): ", bb->index);
2784 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
2785 fprintf (dump_file, "vbeout(%d): ", bb->index);
2786 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
2787 }
2788 }
2789 }
2790
2791 /* Top level routine to do the dataflow analysis needed by code hoisting. */
2792
2793 static void
2794 compute_code_hoist_data (void)
2795 {
2796 compute_local_properties (transp, comp, antloc, &expr_hash_table);
2797 prune_expressions (false);
2798 compute_code_hoist_vbeinout ();
2799 calculate_dominance_info (CDI_DOMINATORS);
2800 if (dump_file)
2801 fprintf (dump_file, "\n");
2802 }
2803
2804 /* Update register pressure for BB when hoisting an expression from
2805 instruction FROM, if live ranges of inputs are shrunk. Also
2806 maintain live_in information if live range of register referred
2807 in FROM is shrunk.
2808
2809 Return 0 if register pressure doesn't change, otherwise return
2810 the number by which register pressure is decreased.
2811
2812 NOTE: Register pressure won't be increased in this function. */
2813
2814 static int
2815 update_bb_reg_pressure (basic_block bb, rtx_insn *from)
2816 {
2817 rtx dreg;
2818 rtx_insn *insn;
2819 basic_block succ_bb;
2820 df_ref use, op_ref;
2821 edge succ;
2822 edge_iterator ei;
2823 int decreased_pressure = 0;
2824 int nregs;
2825 enum reg_class pressure_class;
2826
2827 FOR_EACH_INSN_USE (use, from)
2828 {
2829 dreg = DF_REF_REAL_REG (use);
2830 /* The live range of register is shrunk only if it isn't:
2831 1. referred on any path from the end of this block to EXIT, or
2832 2. referred by insns other than FROM in this block. */
2833 FOR_EACH_EDGE (succ, ei, bb->succs)
2834 {
2835 succ_bb = succ->dest;
2836 if (succ_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2837 continue;
2838
2839 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2840 break;
2841 }
2842 if (succ != NULL)
2843 continue;
2844
2845 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2846 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2847 {
2848 if (!DF_REF_INSN_INFO (op_ref))
2849 continue;
2850
2851 insn = DF_REF_INSN (op_ref);
2852 if (BLOCK_FOR_INSN (insn) == bb
2853 && NONDEBUG_INSN_P (insn) && insn != from)
2854 break;
2855 }
2856
2857 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2858 /* Decrease register pressure and update live_in information for
2859 this block. */
2860 if (!op_ref && pressure_class != NO_REGS)
2861 {
2862 decreased_pressure += nregs;
2863 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2864 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2865 }
2866 }
2867 return decreased_pressure;
2868 }
2869
2870 /* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2871 flow graph, if it can reach BB unimpared. Stop the search if the
2872 expression would need to be moved more than DISTANCE instructions.
2873
2874 DISTANCE is the number of instructions through which EXPR can be
2875 hoisted up in flow graph.
2876
2877 BB_SIZE points to an array which contains the number of instructions
2878 for each basic block.
2879
2880 PRESSURE_CLASS and NREGS are register class and number of hard registers
2881 for storing EXPR.
2882
2883 HOISTED_BBS points to a bitmap indicating basic blocks through which
2884 EXPR is hoisted.
2885
2886 FROM is the instruction from which EXPR is hoisted.
2887
2888 It's unclear exactly what Muchnick meant by "unimpared". It seems
2889 to me that the expression must either be computed or transparent in
2890 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2891 would allow the expression to be hoisted out of loops, even if
2892 the expression wasn't a loop invariant.
2893
2894 Contrast this to reachability for PRE where an expression is
2895 considered reachable if *any* path reaches instead of *all*
2896 paths. */
2897
2898 static int
2899 should_hoist_expr_to_dom (basic_block expr_bb, struct gcse_expr *expr,
2900 basic_block bb, sbitmap visited,
2901 HOST_WIDE_INT distance,
2902 int *bb_size, enum reg_class pressure_class,
2903 int *nregs, bitmap hoisted_bbs, rtx_insn *from)
2904 {
2905 unsigned int i;
2906 edge pred;
2907 edge_iterator ei;
2908 sbitmap_iterator sbi;
2909 int visited_allocated_locally = 0;
2910 int decreased_pressure = 0;
2911
2912 if (flag_ira_hoist_pressure)
2913 {
2914 /* Record old information of basic block BB when it is visited
2915 at the first time. */
2916 if (!bitmap_bit_p (hoisted_bbs, bb->index))
2917 {
2918 struct bb_data *data = BB_DATA (bb);
2919 bitmap_copy (data->backup, data->live_in);
2920 data->old_pressure = data->max_reg_pressure[pressure_class];
2921 }
2922 decreased_pressure = update_bb_reg_pressure (bb, from);
2923 }
2924 /* Terminate the search if distance, for which EXPR is allowed to move,
2925 is exhausted. */
2926 if (distance > 0)
2927 {
2928 if (flag_ira_hoist_pressure)
2929 {
2930 /* Prefer to hoist EXPR if register pressure is decreased. */
2931 if (decreased_pressure > *nregs)
2932 distance += bb_size[bb->index];
2933 /* Let EXPR be hoisted through basic block at no cost if one
2934 of following conditions is satisfied:
2935
2936 1. The basic block has low register pressure.
2937 2. Register pressure won't be increases after hoisting EXPR.
2938
2939 Constant expressions is handled conservatively, because
2940 hoisting constant expression aggressively results in worse
2941 code. This decision is made by the observation of CSiBE
2942 on ARM target, while it has no obvious effect on other
2943 targets like x86, x86_64, mips and powerpc. */
2944 else if (CONST_INT_P (expr->expr)
2945 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
2946 >= ira_class_hard_regs_num[pressure_class]
2947 && decreased_pressure < *nregs))
2948 distance -= bb_size[bb->index];
2949 }
2950 else
2951 distance -= bb_size[bb->index];
2952
2953 if (distance <= 0)
2954 return 0;
2955 }
2956 else
2957 gcc_assert (distance == 0);
2958
2959 if (visited == NULL)
2960 {
2961 visited_allocated_locally = 1;
2962 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
2963 bitmap_clear (visited);
2964 }
2965
2966 FOR_EACH_EDGE (pred, ei, bb->preds)
2967 {
2968 basic_block pred_bb = pred->src;
2969
2970 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2971 break;
2972 else if (pred_bb == expr_bb)
2973 continue;
2974 else if (bitmap_bit_p (visited, pred_bb->index))
2975 continue;
2976 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
2977 break;
2978 /* Not killed. */
2979 else
2980 {
2981 bitmap_set_bit (visited, pred_bb->index);
2982 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
2983 visited, distance, bb_size,
2984 pressure_class, nregs,
2985 hoisted_bbs, from))
2986 break;
2987 }
2988 }
2989 if (visited_allocated_locally)
2990 {
2991 /* If EXPR can be hoisted to expr_bb, record basic blocks through
2992 which EXPR is hoisted in hoisted_bbs. */
2993 if (flag_ira_hoist_pressure && !pred)
2994 {
2995 /* Record the basic block from which EXPR is hoisted. */
2996 bitmap_set_bit (visited, bb->index);
2997 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
2998 bitmap_set_bit (hoisted_bbs, i);
2999 }
3000 sbitmap_free (visited);
3001 }
3002
3003 return (pred == NULL);
3004 }
3005 \f
3006 /* Find occurrence in BB. */
3007
3008 static struct gcse_occr *
3009 find_occr_in_bb (struct gcse_occr *occr, basic_block bb)
3010 {
3011 /* Find the right occurrence of this expression. */
3012 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
3013 occr = occr->next;
3014
3015 return occr;
3016 }
3017
3018 /* Actually perform code hoisting.
3019
3020 The code hoisting pass can hoist multiple computations of the same
3021 expression along dominated path to a dominating basic block, like
3022 from b2/b3 to b1 as depicted below:
3023
3024 b1 ------
3025 /\ |
3026 / \ |
3027 bx by distance
3028 / \ |
3029 / \ |
3030 b2 b3 ------
3031
3032 Unfortunately code hoisting generally extends the live range of an
3033 output pseudo register, which increases register pressure and hurts
3034 register allocation. To address this issue, an attribute MAX_DISTANCE
3035 is computed and attached to each expression. The attribute is computed
3036 from rtx cost of the corresponding expression and it's used to control
3037 how long the expression can be hoisted up in flow graph. As the
3038 expression is hoisted up in flow graph, GCC decreases its DISTANCE
3039 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3040 register pressure if live ranges of inputs are shrunk.
3041
3042 Option "-fira-hoist-pressure" implements register pressure directed
3043 hoist based on upper method. The rationale is:
3044 1. Calculate register pressure for each basic block by reusing IRA
3045 facility.
3046 2. When expression is hoisted through one basic block, GCC checks
3047 the change of live ranges for inputs/output. The basic block's
3048 register pressure will be increased because of extended live
3049 range of output. However, register pressure will be decreased
3050 if the live ranges of inputs are shrunk.
3051 3. After knowing how hoisting affects register pressure, GCC prefers
3052 to hoist the expression if it can decrease register pressure, by
3053 increasing DISTANCE of the corresponding expression.
3054 4. If hoisting the expression increases register pressure, GCC checks
3055 register pressure of the basic block and decrease DISTANCE only if
3056 the register pressure is high. In other words, expression will be
3057 hoisted through at no cost if the basic block has low register
3058 pressure.
3059 5. Update register pressure information for basic blocks through
3060 which expression is hoisted. */
3061
3062 static int
3063 hoist_code (void)
3064 {
3065 basic_block bb, dominated;
3066 vec<basic_block> dom_tree_walk;
3067 unsigned int dom_tree_walk_index;
3068 vec<basic_block> domby;
3069 unsigned int i, j, k;
3070 struct gcse_expr **index_map;
3071 struct gcse_expr *expr;
3072 int *to_bb_head;
3073 int *bb_size;
3074 int changed = 0;
3075 struct bb_data *data;
3076 /* Basic blocks that have occurrences reachable from BB. */
3077 bitmap from_bbs;
3078 /* Basic blocks through which expr is hoisted. */
3079 bitmap hoisted_bbs = NULL;
3080 bitmap_iterator bi;
3081
3082 /* Compute a mapping from expression number (`bitmap_index') to
3083 hash table entry. */
3084
3085 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
3086 for (i = 0; i < expr_hash_table.size; i++)
3087 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
3088 index_map[expr->bitmap_index] = expr;
3089
3090 /* Calculate sizes of basic blocks and note how far
3091 each instruction is from the start of its block. We then use this
3092 data to restrict distance an expression can travel. */
3093
3094 to_bb_head = XCNEWVEC (int, get_max_uid ());
3095 bb_size = XCNEWVEC (int, last_basic_block_for_fn (cfun));
3096
3097 FOR_EACH_BB_FN (bb, cfun)
3098 {
3099 rtx_insn *insn;
3100 int to_head;
3101
3102 to_head = 0;
3103 FOR_BB_INSNS (bb, insn)
3104 {
3105 /* Don't count debug instructions to avoid them affecting
3106 decision choices. */
3107 if (NONDEBUG_INSN_P (insn))
3108 to_bb_head[INSN_UID (insn)] = to_head++;
3109 }
3110
3111 bb_size[bb->index] = to_head;
3112 }
3113
3114 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) == 1
3115 && (EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
3116 == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb));
3117
3118 from_bbs = BITMAP_ALLOC (NULL);
3119 if (flag_ira_hoist_pressure)
3120 hoisted_bbs = BITMAP_ALLOC (NULL);
3121
3122 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
3123 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb);
3124
3125 /* Walk over each basic block looking for potentially hoistable
3126 expressions, nothing gets hoisted from the entry block. */
3127 FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
3128 {
3129 domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3130
3131 if (domby.length () == 0)
3132 continue;
3133
3134 /* Examine each expression that is very busy at the exit of this
3135 block. These are the potentially hoistable expressions. */
3136 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
3137 {
3138 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
3139 {
3140 int nregs = 0;
3141 enum reg_class pressure_class = NO_REGS;
3142 /* Current expression. */
3143 struct gcse_expr *expr = index_map[i];
3144 /* Number of occurrences of EXPR that can be hoisted to BB. */
3145 int hoistable = 0;
3146 /* Occurrences reachable from BB. */
3147 vec<occr_t> occrs_to_hoist = vNULL;
3148 /* We want to insert the expression into BB only once, so
3149 note when we've inserted it. */
3150 int insn_inserted_p;
3151 occr_t occr;
3152
3153 /* If an expression is computed in BB and is available at end of
3154 BB, hoist all occurrences dominated by BB to BB. */
3155 if (bitmap_bit_p (comp[bb->index], i))
3156 {
3157 occr = find_occr_in_bb (expr->antic_occr, bb);
3158
3159 if (occr)
3160 {
3161 /* An occurrence might've been already deleted
3162 while processing a dominator of BB. */
3163 if (!occr->deleted_p)
3164 {
3165 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3166 hoistable++;
3167 }
3168 }
3169 else
3170 hoistable++;
3171 }
3172
3173 /* We've found a potentially hoistable expression, now
3174 we look at every block BB dominates to see if it
3175 computes the expression. */
3176 FOR_EACH_VEC_ELT (domby, j, dominated)
3177 {
3178 HOST_WIDE_INT max_distance;
3179
3180 /* Ignore self dominance. */
3181 if (bb == dominated)
3182 continue;
3183 /* We've found a dominated block, now see if it computes
3184 the busy expression and whether or not moving that
3185 expression to the "beginning" of that block is safe. */
3186 if (!bitmap_bit_p (antloc[dominated->index], i))
3187 continue;
3188
3189 occr = find_occr_in_bb (expr->antic_occr, dominated);
3190 gcc_assert (occr);
3191
3192 /* An occurrence might've been already deleted
3193 while processing a dominator of BB. */
3194 if (occr->deleted_p)
3195 continue;
3196 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3197
3198 max_distance = expr->max_distance;
3199 if (max_distance > 0)
3200 /* Adjust MAX_DISTANCE to account for the fact that
3201 OCCR won't have to travel all of DOMINATED, but
3202 only part of it. */
3203 max_distance += (bb_size[dominated->index]
3204 - to_bb_head[INSN_UID (occr->insn)]);
3205
3206 pressure_class = get_pressure_class_and_nregs (occr->insn,
3207 &nregs);
3208
3209 /* Note if the expression should be hoisted from the dominated
3210 block to BB if it can reach DOMINATED unimpared.
3211
3212 Keep track of how many times this expression is hoistable
3213 from a dominated block into BB. */
3214 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3215 max_distance, bb_size,
3216 pressure_class, &nregs,
3217 hoisted_bbs, occr->insn))
3218 {
3219 hoistable++;
3220 occrs_to_hoist.safe_push (occr);
3221 bitmap_set_bit (from_bbs, dominated->index);
3222 }
3223 }
3224
3225 /* If we found more than one hoistable occurrence of this
3226 expression, then note it in the vector of expressions to
3227 hoist. It makes no sense to hoist things which are computed
3228 in only one BB, and doing so tends to pessimize register
3229 allocation. One could increase this value to try harder
3230 to avoid any possible code expansion due to register
3231 allocation issues; however experiments have shown that
3232 the vast majority of hoistable expressions are only movable
3233 from two successors, so raising this threshold is likely
3234 to nullify any benefit we get from code hoisting. */
3235 if (hoistable > 1 && dbg_cnt (hoist_insn))
3236 {
3237 /* If (hoistable != vec::length), then there is
3238 an occurrence of EXPR in BB itself. Don't waste
3239 time looking for LCA in this case. */
3240 if ((unsigned) hoistable == occrs_to_hoist.length ())
3241 {
3242 basic_block lca;
3243
3244 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3245 from_bbs);
3246 if (lca != bb)
3247 /* Punt, it's better to hoist these occurrences to
3248 LCA. */
3249 occrs_to_hoist.release ();
3250 }
3251 }
3252 else
3253 /* Punt, no point hoisting a single occurrence. */
3254 occrs_to_hoist.release ();
3255
3256 if (flag_ira_hoist_pressure
3257 && !occrs_to_hoist.is_empty ())
3258 {
3259 /* Increase register pressure of basic blocks to which
3260 expr is hoisted because of extended live range of
3261 output. */
3262 data = BB_DATA (bb);
3263 data->max_reg_pressure[pressure_class] += nregs;
3264 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3265 {
3266 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3267 data->max_reg_pressure[pressure_class] += nregs;
3268 }
3269 }
3270 else if (flag_ira_hoist_pressure)
3271 {
3272 /* Restore register pressure and live_in info for basic
3273 blocks recorded in hoisted_bbs when expr will not be
3274 hoisted. */
3275 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3276 {
3277 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3278 bitmap_copy (data->live_in, data->backup);
3279 data->max_reg_pressure[pressure_class]
3280 = data->old_pressure;
3281 }
3282 }
3283
3284 if (flag_ira_hoist_pressure)
3285 bitmap_clear (hoisted_bbs);
3286
3287 insn_inserted_p = 0;
3288
3289 /* Walk through occurrences of I'th expressions we want
3290 to hoist to BB and make the transformations. */
3291 FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
3292 {
3293 rtx_insn *insn;
3294 const_rtx set;
3295
3296 gcc_assert (!occr->deleted_p);
3297
3298 insn = occr->insn;
3299 set = single_set_gcse (insn);
3300
3301 /* Create a pseudo-reg to store the result of reaching
3302 expressions into. Get the mode for the new pseudo
3303 from the mode of the original destination pseudo.
3304
3305 It is important to use new pseudos whenever we
3306 emit a set. This will allow reload to use
3307 rematerialization for such registers. */
3308 if (!insn_inserted_p)
3309 expr->reaching_reg
3310 = gen_reg_rtx_and_attrs (SET_DEST (set));
3311
3312 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
3313 insn);
3314 delete_insn (insn);
3315 occr->deleted_p = 1;
3316 changed = 1;
3317 gcse_subst_count++;
3318
3319 if (!insn_inserted_p)
3320 {
3321 insert_insn_end_basic_block (expr, bb);
3322 insn_inserted_p = 1;
3323 }
3324 }
3325
3326 occrs_to_hoist.release ();
3327 bitmap_clear (from_bbs);
3328 }
3329 }
3330 domby.release ();
3331 }
3332
3333 dom_tree_walk.release ();
3334 BITMAP_FREE (from_bbs);
3335 if (flag_ira_hoist_pressure)
3336 BITMAP_FREE (hoisted_bbs);
3337
3338 free (bb_size);
3339 free (to_bb_head);
3340 free (index_map);
3341
3342 return changed;
3343 }
3344
3345 /* Return pressure class and number of needed hard registers (through
3346 *NREGS) of register REGNO. */
3347 static enum reg_class
3348 get_regno_pressure_class (int regno, int *nregs)
3349 {
3350 if (regno >= FIRST_PSEUDO_REGISTER)
3351 {
3352 enum reg_class pressure_class;
3353
3354 pressure_class = reg_allocno_class (regno);
3355 pressure_class = ira_pressure_class_translate[pressure_class];
3356 *nregs
3357 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3358 return pressure_class;
3359 }
3360 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3361 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3362 {
3363 *nregs = 1;
3364 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3365 }
3366 else
3367 {
3368 *nregs = 0;
3369 return NO_REGS;
3370 }
3371 }
3372
3373 /* Return pressure class and number of hard registers (through *NREGS)
3374 for destination of INSN. */
3375 static enum reg_class
3376 get_pressure_class_and_nregs (rtx_insn *insn, int *nregs)
3377 {
3378 rtx reg;
3379 enum reg_class pressure_class;
3380 const_rtx set = single_set_gcse (insn);
3381
3382 reg = SET_DEST (set);
3383 if (GET_CODE (reg) == SUBREG)
3384 reg = SUBREG_REG (reg);
3385 if (MEM_P (reg))
3386 {
3387 *nregs = 0;
3388 pressure_class = NO_REGS;
3389 }
3390 else
3391 {
3392 gcc_assert (REG_P (reg));
3393 pressure_class = reg_allocno_class (REGNO (reg));
3394 pressure_class = ira_pressure_class_translate[pressure_class];
3395 *nregs
3396 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3397 }
3398 return pressure_class;
3399 }
3400
3401 /* Increase (if INCR_P) or decrease current register pressure for
3402 register REGNO. */
3403 static void
3404 change_pressure (int regno, bool incr_p)
3405 {
3406 int nregs;
3407 enum reg_class pressure_class;
3408
3409 pressure_class = get_regno_pressure_class (regno, &nregs);
3410 if (! incr_p)
3411 curr_reg_pressure[pressure_class] -= nregs;
3412 else
3413 {
3414 curr_reg_pressure[pressure_class] += nregs;
3415 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3416 < curr_reg_pressure[pressure_class])
3417 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3418 = curr_reg_pressure[pressure_class];
3419 }
3420 }
3421
3422 /* Calculate register pressure for each basic block by walking insns
3423 from last to first. */
3424 static void
3425 calculate_bb_reg_pressure (void)
3426 {
3427 int i;
3428 unsigned int j;
3429 rtx_insn *insn;
3430 basic_block bb;
3431 bitmap curr_regs_live;
3432 bitmap_iterator bi;
3433
3434
3435 ira_setup_eliminable_regset ();
3436 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
3437 FOR_EACH_BB_FN (bb, cfun)
3438 {
3439 curr_bb = bb;
3440 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3441 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3442 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3443 bitmap_copy (curr_regs_live, df_get_live_out (bb));
3444 for (i = 0; i < ira_pressure_classes_num; i++)
3445 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3446 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3447 change_pressure (j, true);
3448
3449 FOR_BB_INSNS_REVERSE (bb, insn)
3450 {
3451 rtx dreg;
3452 int regno;
3453 df_ref def, use;
3454
3455 if (! NONDEBUG_INSN_P (insn))
3456 continue;
3457
3458 FOR_EACH_INSN_DEF (def, insn)
3459 {
3460 dreg = DF_REF_REAL_REG (def);
3461 gcc_assert (REG_P (dreg));
3462 regno = REGNO (dreg);
3463 if (!(DF_REF_FLAGS (def)
3464 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3465 {
3466 if (bitmap_clear_bit (curr_regs_live, regno))
3467 change_pressure (regno, false);
3468 }
3469 }
3470
3471 FOR_EACH_INSN_USE (use, insn)
3472 {
3473 dreg = DF_REF_REAL_REG (use);
3474 gcc_assert (REG_P (dreg));
3475 regno = REGNO (dreg);
3476 if (bitmap_set_bit (curr_regs_live, regno))
3477 change_pressure (regno, true);
3478 }
3479 }
3480 }
3481 BITMAP_FREE (curr_regs_live);
3482
3483 if (dump_file == NULL)
3484 return;
3485
3486 fprintf (dump_file, "\nRegister Pressure: \n");
3487 FOR_EACH_BB_FN (bb, cfun)
3488 {
3489 fprintf (dump_file, " Basic block %d: \n", bb->index);
3490 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3491 {
3492 enum reg_class pressure_class;
3493
3494 pressure_class = ira_pressure_classes[i];
3495 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3496 continue;
3497
3498 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3499 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3500 }
3501 }
3502 fprintf (dump_file, "\n");
3503 }
3504
3505 /* Top level routine to perform one code hoisting (aka unification) pass
3506
3507 Return nonzero if a change was made. */
3508
3509 static int
3510 one_code_hoisting_pass (void)
3511 {
3512 int changed = 0;
3513
3514 gcse_subst_count = 0;
3515 gcse_create_count = 0;
3516
3517 /* Return if there's nothing to do, or it is too expensive. */
3518 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
3519 || gcse_or_cprop_is_too_expensive (_("GCSE disabled")))
3520 return 0;
3521
3522 doing_code_hoisting_p = true;
3523
3524 /* Calculate register pressure for each basic block. */
3525 if (flag_ira_hoist_pressure)
3526 {
3527 regstat_init_n_sets_and_refs ();
3528 ira_set_pseudo_classes (false, dump_file);
3529 alloc_aux_for_blocks (sizeof (struct bb_data));
3530 calculate_bb_reg_pressure ();
3531 regstat_free_n_sets_and_refs ();
3532 }
3533
3534 /* We need alias. */
3535 init_alias_analysis ();
3536
3537 bytes_used = 0;
3538 gcc_obstack_init (&gcse_obstack);
3539 alloc_gcse_mem ();
3540
3541 alloc_hash_table (&expr_hash_table);
3542 compute_hash_table (&expr_hash_table);
3543 if (dump_file)
3544 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
3545
3546 if (expr_hash_table.n_elems > 0)
3547 {
3548 alloc_code_hoist_mem (last_basic_block_for_fn (cfun),
3549 expr_hash_table.n_elems);
3550 compute_code_hoist_data ();
3551 changed = hoist_code ();
3552 free_code_hoist_mem ();
3553 }
3554
3555 if (flag_ira_hoist_pressure)
3556 {
3557 free_aux_for_blocks ();
3558 free_reg_info ();
3559 }
3560 free_hash_table (&expr_hash_table);
3561 free_gcse_mem ();
3562 obstack_free (&gcse_obstack, NULL);
3563
3564 /* We are finished with alias. */
3565 end_alias_analysis ();
3566
3567 if (dump_file)
3568 {
3569 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
3570 current_function_name (), n_basic_blocks_for_fn (cfun),
3571 bytes_used);
3572 fprintf (dump_file, "%d substs, %d insns created\n",
3573 gcse_subst_count, gcse_create_count);
3574 }
3575
3576 doing_code_hoisting_p = false;
3577
3578 return changed;
3579 }
3580 \f
3581 /* Here we provide the things required to do store motion towards the exit.
3582 In order for this to be effective, gcse also needed to be taught how to
3583 move a load when it is killed only by a store to itself.
3584
3585 int i;
3586 float a[10];
3587
3588 void foo(float scale)
3589 {
3590 for (i=0; i<10; i++)
3591 a[i] *= scale;
3592 }
3593
3594 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3595 the load out since its live around the loop, and stored at the bottom
3596 of the loop.
3597
3598 The 'Load Motion' referred to and implemented in this file is
3599 an enhancement to gcse which when using edge based LCM, recognizes
3600 this situation and allows gcse to move the load out of the loop.
3601
3602 Once gcse has hoisted the load, store motion can then push this
3603 load towards the exit, and we end up with no loads or stores of 'i'
3604 in the loop. */
3605
3606 /* This will search the ldst list for a matching expression. If it
3607 doesn't find one, we create one and initialize it. */
3608
3609 static struct ls_expr *
3610 ldst_entry (rtx x)
3611 {
3612 int do_not_record_p = 0;
3613 struct ls_expr * ptr;
3614 unsigned int hash;
3615 ls_expr **slot;
3616 struct ls_expr e;
3617
3618 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3619 NULL, /*have_reg_qty=*/false);
3620
3621 e.pattern = x;
3622 slot = pre_ldst_table->find_slot_with_hash (&e, hash, INSERT);
3623 if (*slot)
3624 return *slot;
3625
3626 ptr = XNEW (struct ls_expr);
3627
3628 ptr->next = pre_ldst_mems;
3629 ptr->expr = NULL;
3630 ptr->pattern = x;
3631 ptr->pattern_regs = NULL_RTX;
3632 ptr->stores.create (0);
3633 ptr->reaching_reg = NULL_RTX;
3634 ptr->invalid = 0;
3635 ptr->index = 0;
3636 ptr->hash_index = hash;
3637 pre_ldst_mems = ptr;
3638 *slot = ptr;
3639
3640 return ptr;
3641 }
3642
3643 /* Free up an individual ldst entry. */
3644
3645 static void
3646 free_ldst_entry (struct ls_expr * ptr)
3647 {
3648 ptr->stores.release ();
3649
3650 free (ptr);
3651 }
3652
3653 /* Free up all memory associated with the ldst list. */
3654
3655 static void
3656 free_ld_motion_mems (void)
3657 {
3658 delete pre_ldst_table;
3659 pre_ldst_table = NULL;
3660
3661 while (pre_ldst_mems)
3662 {
3663 struct ls_expr * tmp = pre_ldst_mems;
3664
3665 pre_ldst_mems = pre_ldst_mems->next;
3666
3667 free_ldst_entry (tmp);
3668 }
3669
3670 pre_ldst_mems = NULL;
3671 }
3672
3673 /* Dump debugging info about the ldst list. */
3674
3675 static void
3676 print_ldst_list (FILE * file)
3677 {
3678 struct ls_expr * ptr;
3679
3680 fprintf (file, "LDST list: \n");
3681
3682 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
3683 {
3684 fprintf (file, " Pattern (%3d): ", ptr->index);
3685
3686 print_rtl (file, ptr->pattern);
3687
3688 fprintf (file, "\n Stores : ");
3689 print_rtx_insn_vec (file, ptr->stores);
3690
3691 fprintf (file, "\n\n");
3692 }
3693
3694 fprintf (file, "\n");
3695 }
3696
3697 /* Returns 1 if X is in the list of ldst only expressions. */
3698
3699 static struct ls_expr *
3700 find_rtx_in_ldst (rtx x)
3701 {
3702 struct ls_expr e;
3703 ls_expr **slot;
3704 if (!pre_ldst_table)
3705 return NULL;
3706 e.pattern = x;
3707 slot = pre_ldst_table->find_slot (&e, NO_INSERT);
3708 if (!slot || (*slot)->invalid)
3709 return NULL;
3710 return *slot;
3711 }
3712 \f
3713 /* Load Motion for loads which only kill themselves. */
3714
3715 /* Return true if x, a MEM, is a simple access with no side effects.
3716 These are the types of loads we consider for the ld_motion list,
3717 otherwise we let the usual aliasing take care of it. */
3718
3719 static int
3720 simple_mem (const_rtx x)
3721 {
3722 if (MEM_VOLATILE_P (x))
3723 return 0;
3724
3725 if (GET_MODE (x) == BLKmode)
3726 return 0;
3727
3728 /* If we are handling exceptions, we must be careful with memory references
3729 that may trap. If we are not, the behavior is undefined, so we may just
3730 continue. */
3731 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
3732 return 0;
3733
3734 if (side_effects_p (x))
3735 return 0;
3736
3737 /* Do not consider function arguments passed on stack. */
3738 if (reg_mentioned_p (stack_pointer_rtx, x))
3739 return 0;
3740
3741 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3742 return 0;
3743
3744 return 1;
3745 }
3746
3747 /* Make sure there isn't a buried reference in this pattern anywhere.
3748 If there is, invalidate the entry for it since we're not capable
3749 of fixing it up just yet.. We have to be sure we know about ALL
3750 loads since the aliasing code will allow all entries in the
3751 ld_motion list to not-alias itself. If we miss a load, we will get
3752 the wrong value since gcse might common it and we won't know to
3753 fix it up. */
3754
3755 static void
3756 invalidate_any_buried_refs (rtx x)
3757 {
3758 const char * fmt;
3759 int i, j;
3760 struct ls_expr * ptr;
3761
3762 /* Invalidate it in the list. */
3763 if (MEM_P (x) && simple_mem (x))
3764 {
3765 ptr = ldst_entry (x);
3766 ptr->invalid = 1;
3767 }
3768
3769 /* Recursively process the insn. */
3770 fmt = GET_RTX_FORMAT (GET_CODE (x));
3771
3772 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3773 {
3774 if (fmt[i] == 'e')
3775 invalidate_any_buried_refs (XEXP (x, i));
3776 else if (fmt[i] == 'E')
3777 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3778 invalidate_any_buried_refs (XVECEXP (x, i, j));
3779 }
3780 }
3781
3782 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3783 being defined as MEM loads and stores to symbols, with no side effects
3784 and no registers in the expression. For a MEM destination, we also
3785 check that the insn is still valid if we replace the destination with a
3786 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3787 which don't match this criteria, they are invalidated and trimmed out
3788 later. */
3789
3790 static void
3791 compute_ld_motion_mems (void)
3792 {
3793 struct ls_expr * ptr;
3794 basic_block bb;
3795 rtx_insn *insn;
3796
3797 pre_ldst_mems = NULL;
3798 pre_ldst_table = new hash_table<pre_ldst_expr_hasher> (13);
3799
3800 FOR_EACH_BB_FN (bb, cfun)
3801 {
3802 FOR_BB_INSNS (bb, insn)
3803 {
3804 if (NONDEBUG_INSN_P (insn))
3805 {
3806 if (GET_CODE (PATTERN (insn)) == SET)
3807 {
3808 rtx src = SET_SRC (PATTERN (insn));
3809 rtx dest = SET_DEST (PATTERN (insn));
3810
3811 /* Check for a simple load. */
3812 if (MEM_P (src) && simple_mem (src))
3813 {
3814 ptr = ldst_entry (src);
3815 if (!REG_P (dest))
3816 ptr->invalid = 1;
3817 }
3818 else
3819 {
3820 /* Make sure there isn't a buried load somewhere. */
3821 invalidate_any_buried_refs (src);
3822 }
3823
3824 /* Check for a simple load through a REG_EQUAL note. */
3825 rtx note = find_reg_equal_equiv_note (insn), src_eq;
3826 if (note
3827 && REG_NOTE_KIND (note) == REG_EQUAL
3828 && (src_eq = XEXP (note, 0))
3829 && !(MEM_P (src_eq) && simple_mem (src_eq)))
3830 invalidate_any_buried_refs (src_eq);
3831
3832 /* Check for stores. Don't worry about aliased ones, they
3833 will block any movement we might do later. We only care
3834 about this exact pattern since those are the only
3835 circumstance that we will ignore the aliasing info. */
3836 if (MEM_P (dest) && simple_mem (dest))
3837 {
3838 ptr = ldst_entry (dest);
3839 machine_mode src_mode = GET_MODE (src);
3840 if (! MEM_P (src)
3841 && GET_CODE (src) != ASM_OPERANDS
3842 /* Check for REG manually since want_to_gcse_p
3843 returns 0 for all REGs. */
3844 && can_assign_to_reg_without_clobbers_p (src,
3845 src_mode))
3846 ptr->stores.safe_push (insn);
3847 else
3848 ptr->invalid = 1;
3849 }
3850 }
3851 else
3852 {
3853 /* Invalidate all MEMs in the pattern and... */
3854 invalidate_any_buried_refs (PATTERN (insn));
3855
3856 /* ...in REG_EQUAL notes for PARALLELs with single SET. */
3857 rtx note = find_reg_equal_equiv_note (insn), src_eq;
3858 if (note
3859 && REG_NOTE_KIND (note) == REG_EQUAL
3860 && (src_eq = XEXP (note, 0)))
3861 invalidate_any_buried_refs (src_eq);
3862 }
3863 }
3864 }
3865 }
3866 }
3867
3868 /* Remove any references that have been either invalidated or are not in the
3869 expression list for pre gcse. */
3870
3871 static void
3872 trim_ld_motion_mems (void)
3873 {
3874 struct ls_expr * * last = & pre_ldst_mems;
3875 struct ls_expr * ptr = pre_ldst_mems;
3876
3877 while (ptr != NULL)
3878 {
3879 struct gcse_expr * expr;
3880
3881 /* Delete if entry has been made invalid. */
3882 if (! ptr->invalid)
3883 {
3884 /* Delete if we cannot find this mem in the expression list. */
3885 unsigned int hash = ptr->hash_index % expr_hash_table.size;
3886
3887 for (expr = expr_hash_table.table[hash];
3888 expr != NULL;
3889 expr = expr->next_same_hash)
3890 if (expr_equiv_p (expr->expr, ptr->pattern))
3891 break;
3892 }
3893 else
3894 expr = (struct gcse_expr *) 0;
3895
3896 if (expr)
3897 {
3898 /* Set the expression field if we are keeping it. */
3899 ptr->expr = expr;
3900 last = & ptr->next;
3901 ptr = ptr->next;
3902 }
3903 else
3904 {
3905 *last = ptr->next;
3906 pre_ldst_table->remove_elt_with_hash (ptr, ptr->hash_index);
3907 free_ldst_entry (ptr);
3908 ptr = * last;
3909 }
3910 }
3911
3912 /* Show the world what we've found. */
3913 if (dump_file && pre_ldst_mems != NULL)
3914 print_ldst_list (dump_file);
3915 }
3916
3917 /* This routine will take an expression which we are replacing with
3918 a reaching register, and update any stores that are needed if
3919 that expression is in the ld_motion list. Stores are updated by
3920 copying their SRC to the reaching register, and then storing
3921 the reaching register into the store location. These keeps the
3922 correct value in the reaching register for the loads. */
3923
3924 static void
3925 update_ld_motion_stores (struct gcse_expr * expr)
3926 {
3927 struct ls_expr * mem_ptr;
3928
3929 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
3930 {
3931 /* We can try to find just the REACHED stores, but is shouldn't
3932 matter to set the reaching reg everywhere... some might be
3933 dead and should be eliminated later. */
3934
3935 /* We replace (set mem expr) with (set reg expr) (set mem reg)
3936 where reg is the reaching reg used in the load. We checked in
3937 compute_ld_motion_mems that we can replace (set mem expr) with
3938 (set reg expr) in that insn. */
3939 rtx_insn *insn;
3940 unsigned int i;
3941 FOR_EACH_VEC_ELT_REVERSE (mem_ptr->stores, i, insn)
3942 {
3943 rtx pat = PATTERN (insn);
3944 rtx src = SET_SRC (pat);
3945 rtx reg = expr->reaching_reg;
3946
3947 /* If we've already copied it, continue. */
3948 if (expr->reaching_reg == src)
3949 continue;
3950
3951 if (dump_file)
3952 {
3953 fprintf (dump_file, "PRE: store updated with reaching reg ");
3954 print_rtl (dump_file, reg);
3955 fprintf (dump_file, ":\n ");
3956 print_inline_rtx (dump_file, insn, 8);
3957 fprintf (dump_file, "\n");
3958 }
3959
3960 rtx_insn *copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
3961 emit_insn_before (copy, insn);
3962 SET_SRC (pat) = reg;
3963 df_insn_rescan (insn);
3964
3965 /* un-recognize this pattern since it's probably different now. */
3966 INSN_CODE (insn) = -1;
3967 gcse_create_count++;
3968 }
3969 }
3970 }
3971 \f
3972 /* Return true if the graph is too expensive to optimize. PASS is the
3973 optimization about to be performed. */
3974
3975 bool
3976 gcse_or_cprop_is_too_expensive (const char *pass)
3977 {
3978 unsigned int memory_request = (n_basic_blocks_for_fn (cfun)
3979 * SBITMAP_SET_SIZE (max_reg_num ())
3980 * sizeof (SBITMAP_ELT_TYPE));
3981
3982 /* Trying to perform global optimizations on flow graphs which have
3983 a high connectivity will take a long time and is unlikely to be
3984 particularly useful.
3985
3986 In normal circumstances a cfg should have about twice as many
3987 edges as blocks. But we do not want to punish small functions
3988 which have a couple switch statements. Rather than simply
3989 threshold the number of blocks, uses something with a more
3990 graceful degradation. */
3991 if (n_edges_for_fn (cfun) > 20000 + n_basic_blocks_for_fn (cfun) * 4)
3992 {
3993 warning (OPT_Wdisabled_optimization,
3994 "%s: %d basic blocks and %d edges/basic block",
3995 pass, n_basic_blocks_for_fn (cfun),
3996 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun));
3997
3998 return true;
3999 }
4000
4001 /* If allocating memory for the dataflow bitmaps would take up too much
4002 storage it's better just to disable the optimization. */
4003 if (memory_request > MAX_GCSE_MEMORY)
4004 {
4005 warning (OPT_Wdisabled_optimization,
4006 "%s: %d basic blocks and %d registers; increase --param max-gcse-memory above %d",
4007 pass, n_basic_blocks_for_fn (cfun), max_reg_num (),
4008 memory_request);
4009
4010 return true;
4011 }
4012
4013 return false;
4014 }
4015 \f
4016 static unsigned int
4017 execute_rtl_pre (void)
4018 {
4019 int changed;
4020 delete_unreachable_blocks ();
4021 df_analyze ();
4022 changed = one_pre_gcse_pass ();
4023 flag_rerun_cse_after_global_opts |= changed;
4024 if (changed)
4025 cleanup_cfg (0);
4026 return 0;
4027 }
4028
4029 static unsigned int
4030 execute_rtl_hoist (void)
4031 {
4032 int changed;
4033 delete_unreachable_blocks ();
4034 df_analyze ();
4035 changed = one_code_hoisting_pass ();
4036 flag_rerun_cse_after_global_opts |= changed;
4037 if (changed)
4038 cleanup_cfg (0);
4039 return 0;
4040 }
4041
4042 namespace {
4043
4044 const pass_data pass_data_rtl_pre =
4045 {
4046 RTL_PASS, /* type */
4047 "rtl pre", /* name */
4048 OPTGROUP_NONE, /* optinfo_flags */
4049 TV_PRE, /* tv_id */
4050 PROP_cfglayout, /* properties_required */
4051 0, /* properties_provided */
4052 0, /* properties_destroyed */
4053 0, /* todo_flags_start */
4054 TODO_df_finish, /* todo_flags_finish */
4055 };
4056
4057 class pass_rtl_pre : public rtl_opt_pass
4058 {
4059 public:
4060 pass_rtl_pre (gcc::context *ctxt)
4061 : rtl_opt_pass (pass_data_rtl_pre, ctxt)
4062 {}
4063
4064 /* opt_pass methods: */
4065 virtual bool gate (function *);
4066 virtual unsigned int execute (function *) { return execute_rtl_pre (); }
4067
4068 }; // class pass_rtl_pre
4069
4070 /* We do not construct an accurate cfg in functions which call
4071 setjmp, so none of these passes runs if the function calls
4072 setjmp.
4073 FIXME: Should just handle setjmp via REG_SETJMP notes. */
4074
4075 bool
4076 pass_rtl_pre::gate (function *fun)
4077 {
4078 return optimize > 0 && flag_gcse
4079 && !fun->calls_setjmp
4080 && optimize_function_for_speed_p (fun)
4081 && dbg_cnt (pre);
4082 }
4083
4084 } // anon namespace
4085
4086 rtl_opt_pass *
4087 make_pass_rtl_pre (gcc::context *ctxt)
4088 {
4089 return new pass_rtl_pre (ctxt);
4090 }
4091
4092 namespace {
4093
4094 const pass_data pass_data_rtl_hoist =
4095 {
4096 RTL_PASS, /* type */
4097 "hoist", /* name */
4098 OPTGROUP_NONE, /* optinfo_flags */
4099 TV_HOIST, /* tv_id */
4100 PROP_cfglayout, /* properties_required */
4101 0, /* properties_provided */
4102 0, /* properties_destroyed */
4103 0, /* todo_flags_start */
4104 TODO_df_finish, /* todo_flags_finish */
4105 };
4106
4107 class pass_rtl_hoist : public rtl_opt_pass
4108 {
4109 public:
4110 pass_rtl_hoist (gcc::context *ctxt)
4111 : rtl_opt_pass (pass_data_rtl_hoist, ctxt)
4112 {}
4113
4114 /* opt_pass methods: */
4115 virtual bool gate (function *);
4116 virtual unsigned int execute (function *) { return execute_rtl_hoist (); }
4117
4118 }; // class pass_rtl_hoist
4119
4120 bool
4121 pass_rtl_hoist::gate (function *)
4122 {
4123 return optimize > 0 && flag_gcse
4124 && !cfun->calls_setjmp
4125 /* It does not make sense to run code hoisting unless we are optimizing
4126 for code size -- it rarely makes programs faster, and can make then
4127 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4128 && optimize_function_for_size_p (cfun)
4129 && dbg_cnt (hoist);
4130 }
4131
4132 } // anon namespace
4133
4134 rtl_opt_pass *
4135 make_pass_rtl_hoist (gcc::context *ctxt)
4136 {
4137 return new pass_rtl_hoist (ctxt);
4138 }
4139
4140 /* Reset all state within gcse.c so that we can rerun the compiler
4141 within the same process. For use by toplev::finalize. */
4142
4143 void
4144 gcse_c_finalize (void)
4145 {
4146 test_insn = NULL;
4147 }
4148
4149 #include "gt-gcse.h"