* jvspec.c (jvgenmain_spec): Don't handle -fnew-verifier.
[gcc.git] / gcc / gcse.c
1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
4 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* TODO
23 - reordering of memory allocation and freeing to be more space efficient
24 - do rough calc of how many regs are needed in each block, and a rough
25 calc of how many regs are available in each class and use that to
26 throttle back the code in cases where RTX_COST is minimal.
27 - a store to the same address as a load does not kill the load if the
28 source of the store is also the destination of the load. Handling this
29 allows more load motion, particularly out of loops.
30
31 */
32
33 /* References searched while implementing this.
34
35 Compilers Principles, Techniques and Tools
36 Aho, Sethi, Ullman
37 Addison-Wesley, 1988
38
39 Global Optimization by Suppression of Partial Redundancies
40 E. Morel, C. Renvoise
41 communications of the acm, Vol. 22, Num. 2, Feb. 1979
42
43 A Portable Machine-Independent Global Optimizer - Design and Measurements
44 Frederick Chow
45 Stanford Ph.D. thesis, Dec. 1983
46
47 A Fast Algorithm for Code Movement Optimization
48 D.M. Dhamdhere
49 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
50
51 A Solution to a Problem with Morel and Renvoise's
52 Global Optimization by Suppression of Partial Redundancies
53 K-H Drechsler, M.P. Stadel
54 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
55
56 Practical Adaptation of the Global Optimization
57 Algorithm of Morel and Renvoise
58 D.M. Dhamdhere
59 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
60
61 Efficiently Computing Static Single Assignment Form and the Control
62 Dependence Graph
63 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
64 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
65
66 Lazy Code Motion
67 J. Knoop, O. Ruthing, B. Steffen
68 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
69
70 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
71 Time for Reducible Flow Control
72 Thomas Ball
73 ACM Letters on Programming Languages and Systems,
74 Vol. 2, Num. 1-4, Mar-Dec 1993
75
76 An Efficient Representation for Sparse Sets
77 Preston Briggs, Linda Torczon
78 ACM Letters on Programming Languages and Systems,
79 Vol. 2, Num. 1-4, Mar-Dec 1993
80
81 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
82 K-H Drechsler, M.P. Stadel
83 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
84
85 Partial Dead Code Elimination
86 J. Knoop, O. Ruthing, B. Steffen
87 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
88
89 Effective Partial Redundancy Elimination
90 P. Briggs, K.D. Cooper
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
92
93 The Program Structure Tree: Computing Control Regions in Linear Time
94 R. Johnson, D. Pearson, K. Pingali
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
96
97 Optimal Code Motion: Theory and Practice
98 J. Knoop, O. Ruthing, B. Steffen
99 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
100
101 The power of assignment motion
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
104
105 Global code motion / global value numbering
106 C. Click
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
108
109 Value Driven Redundancy Elimination
110 L.T. Simpson
111 Rice University Ph.D. thesis, Apr. 1996
112
113 Value Numbering
114 L.T. Simpson
115 Massively Scalar Compiler Project, Rice University, Sep. 1996
116
117 High Performance Compilers for Parallel Computing
118 Michael Wolfe
119 Addison-Wesley, 1996
120
121 Advanced Compiler Design and Implementation
122 Steven Muchnick
123 Morgan Kaufmann, 1997
124
125 Building an Optimizing Compiler
126 Robert Morgan
127 Digital Press, 1998
128
129 People wishing to speed up the code here should read:
130 Elimination Algorithms for Data Flow Analysis
131 B.G. Ryder, M.C. Paull
132 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
133
134 How to Analyze Large Programs Efficiently and Informatively
135 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
136 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
137
138 People wishing to do something different can find various possibilities
139 in the above papers and elsewhere.
140 */
141
142 #include "config.h"
143 #include "system.h"
144 #include "coretypes.h"
145 #include "tm.h"
146 #include "diagnostic-core.h"
147 #include "toplev.h"
148
149 #include "rtl.h"
150 #include "tree.h"
151 #include "tm_p.h"
152 #include "regs.h"
153 #include "hard-reg-set.h"
154 #include "flags.h"
155 #include "insn-config.h"
156 #include "recog.h"
157 #include "basic-block.h"
158 #include "output.h"
159 #include "function.h"
160 #include "expr.h"
161 #include "except.h"
162 #include "ggc.h"
163 #include "params.h"
164 #include "cselib.h"
165 #include "intl.h"
166 #include "obstack.h"
167 #include "timevar.h"
168 #include "tree-pass.h"
169 #include "hashtab.h"
170 #include "df.h"
171 #include "dbgcnt.h"
172 #include "target.h"
173 #include "gcse.h"
174
175 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
176 are a superset of those done by classic GCSE.
177
178 We perform the following steps:
179
180 1) Compute table of places where registers are set.
181
182 2) Perform copy/constant propagation.
183
184 3) Perform global cse using lazy code motion if not optimizing
185 for size, or code hoisting if we are.
186
187 4) Perform another pass of copy/constant propagation. Try to bypass
188 conditional jumps if the condition can be computed from a value of
189 an incoming edge.
190
191 Two passes of copy/constant propagation are done because the first one
192 enables more GCSE and the second one helps to clean up the copies that
193 GCSE creates. This is needed more for PRE than for Classic because Classic
194 GCSE will try to use an existing register containing the common
195 subexpression rather than create a new one. This is harder to do for PRE
196 because of the code motion (which Classic GCSE doesn't do).
197
198 Expressions we are interested in GCSE-ing are of the form
199 (set (pseudo-reg) (expression)).
200 Function want_to_gcse_p says what these are.
201
202 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
203 This allows PRE to hoist expressions that are expressed in multiple insns,
204 such as complex address calculations (e.g. for PIC code, or loads with a
205 high part and a low part).
206
207 PRE handles moving invariant expressions out of loops (by treating them as
208 partially redundant).
209
210 **********************
211
212 We used to support multiple passes but there are diminishing returns in
213 doing so. The first pass usually makes 90% of the changes that are doable.
214 A second pass can make a few more changes made possible by the first pass.
215 Experiments show any further passes don't make enough changes to justify
216 the expense.
217
218 A study of spec92 using an unlimited number of passes:
219 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
220 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
221 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
222
223 It was found doing copy propagation between each pass enables further
224 substitutions.
225
226 This study was done before expressions in REG_EQUAL notes were added as
227 candidate expressions for optimization, and before the GIMPLE optimizers
228 were added. Probably, multiple passes is even less efficient now than
229 at the time when the study was conducted.
230
231 PRE is quite expensive in complicated functions because the DFA can take
232 a while to converge. Hence we only perform one pass.
233
234 **********************
235
236 The steps for PRE are:
237
238 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
239
240 2) Perform the data flow analysis for PRE.
241
242 3) Delete the redundant instructions
243
244 4) Insert the required copies [if any] that make the partially
245 redundant instructions fully redundant.
246
247 5) For other reaching expressions, insert an instruction to copy the value
248 to a newly created pseudo that will reach the redundant instruction.
249
250 The deletion is done first so that when we do insertions we
251 know which pseudo reg to use.
252
253 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
254 argue it is not. The number of iterations for the algorithm to converge
255 is typically 2-4 so I don't view it as that expensive (relatively speaking).
256
257 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
258 we create. To make an expression reach the place where it's redundant,
259 the result of the expression is copied to a new register, and the redundant
260 expression is deleted by replacing it with this new register. Classic GCSE
261 doesn't have this problem as much as it computes the reaching defs of
262 each register in each block and thus can try to use an existing
263 register. */
264 \f
265 /* GCSE global vars. */
266
267 struct target_gcse default_target_gcse;
268 #if SWITCHABLE_TARGET
269 struct target_gcse *this_target_gcse = &default_target_gcse;
270 #endif
271
272 /* Set to non-zero if CSE should run after all GCSE optimizations are done. */
273 int flag_rerun_cse_after_global_opts;
274
275 /* An obstack for our working variables. */
276 static struct obstack gcse_obstack;
277
278 struct reg_use {rtx reg_rtx; };
279
280 /* Hash table of expressions. */
281
282 struct expr
283 {
284 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
285 rtx expr;
286 /* Index in the available expression bitmaps. */
287 int bitmap_index;
288 /* Next entry with the same hash. */
289 struct expr *next_same_hash;
290 /* List of anticipatable occurrences in basic blocks in the function.
291 An "anticipatable occurrence" is one that is the first occurrence in the
292 basic block, the operands are not modified in the basic block prior
293 to the occurrence and the output is not used between the start of
294 the block and the occurrence. */
295 struct occr *antic_occr;
296 /* List of available occurrence in basic blocks in the function.
297 An "available occurrence" is one that is the last occurrence in the
298 basic block and the operands are not modified by following statements in
299 the basic block [including this insn]. */
300 struct occr *avail_occr;
301 /* Non-null if the computation is PRE redundant.
302 The value is the newly created pseudo-reg to record a copy of the
303 expression in all the places that reach the redundant copy. */
304 rtx reaching_reg;
305 /* Maximum distance in instructions this expression can travel.
306 We avoid moving simple expressions for more than a few instructions
307 to keep register pressure under control.
308 A value of "0" removes restrictions on how far the expression can
309 travel. */
310 int max_distance;
311 };
312
313 /* Occurrence of an expression.
314 There is one per basic block. If a pattern appears more than once the
315 last appearance is used [or first for anticipatable expressions]. */
316
317 struct occr
318 {
319 /* Next occurrence of this expression. */
320 struct occr *next;
321 /* The insn that computes the expression. */
322 rtx insn;
323 /* Nonzero if this [anticipatable] occurrence has been deleted. */
324 char deleted_p;
325 /* Nonzero if this [available] occurrence has been copied to
326 reaching_reg. */
327 /* ??? This is mutually exclusive with deleted_p, so they could share
328 the same byte. */
329 char copied_p;
330 };
331
332 typedef struct occr *occr_t;
333 DEF_VEC_P (occr_t);
334 DEF_VEC_ALLOC_P (occr_t, heap);
335
336 /* Expression and copy propagation hash tables.
337 Each hash table is an array of buckets.
338 ??? It is known that if it were an array of entries, structure elements
339 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
340 not clear whether in the final analysis a sufficient amount of memory would
341 be saved as the size of the available expression bitmaps would be larger
342 [one could build a mapping table without holes afterwards though].
343 Someday I'll perform the computation and figure it out. */
344
345 struct hash_table_d
346 {
347 /* The table itself.
348 This is an array of `expr_hash_table_size' elements. */
349 struct expr **table;
350
351 /* Size of the hash table, in elements. */
352 unsigned int size;
353
354 /* Number of hash table elements. */
355 unsigned int n_elems;
356
357 /* Whether the table is expression of copy propagation one. */
358 int set_p;
359 };
360
361 /* Expression hash table. */
362 static struct hash_table_d expr_hash_table;
363
364 /* Copy propagation hash table. */
365 static struct hash_table_d set_hash_table;
366
367 /* This is a list of expressions which are MEMs and will be used by load
368 or store motion.
369 Load motion tracks MEMs which aren't killed by
370 anything except itself. (i.e., loads and stores to a single location).
371 We can then allow movement of these MEM refs with a little special
372 allowance. (all stores copy the same value to the reaching reg used
373 for the loads). This means all values used to store into memory must have
374 no side effects so we can re-issue the setter value.
375 Store Motion uses this structure as an expression table to track stores
376 which look interesting, and might be moveable towards the exit block. */
377
378 struct ls_expr
379 {
380 struct expr * expr; /* Gcse expression reference for LM. */
381 rtx pattern; /* Pattern of this mem. */
382 rtx pattern_regs; /* List of registers mentioned by the mem. */
383 rtx loads; /* INSN list of loads seen. */
384 rtx stores; /* INSN list of stores seen. */
385 struct ls_expr * next; /* Next in the list. */
386 int invalid; /* Invalid for some reason. */
387 int index; /* If it maps to a bitmap index. */
388 unsigned int hash_index; /* Index when in a hash table. */
389 rtx reaching_reg; /* Register to use when re-writing. */
390 };
391
392 /* Array of implicit set patterns indexed by basic block index. */
393 static rtx *implicit_sets;
394
395 /* Head of the list of load/store memory refs. */
396 static struct ls_expr * pre_ldst_mems = NULL;
397
398 /* Hashtable for the load/store memory refs. */
399 static htab_t pre_ldst_table = NULL;
400
401 /* Bitmap containing one bit for each register in the program.
402 Used when performing GCSE to track which registers have been set since
403 the start of the basic block. */
404 static regset reg_set_bitmap;
405
406 /* Array, indexed by basic block number for a list of insns which modify
407 memory within that block. */
408 static rtx * modify_mem_list;
409 static bitmap modify_mem_list_set;
410
411 /* This array parallels modify_mem_list, but is kept canonicalized. */
412 static rtx * canon_modify_mem_list;
413
414 /* Bitmap indexed by block numbers to record which blocks contain
415 function calls. */
416 static bitmap blocks_with_calls;
417
418 /* Various variables for statistics gathering. */
419
420 /* Memory used in a pass.
421 This isn't intended to be absolutely precise. Its intent is only
422 to keep an eye on memory usage. */
423 static int bytes_used;
424
425 /* GCSE substitutions made. */
426 static int gcse_subst_count;
427 /* Number of copy instructions created. */
428 static int gcse_create_count;
429 /* Number of local constants propagated. */
430 static int local_const_prop_count;
431 /* Number of local copies propagated. */
432 static int local_copy_prop_count;
433 /* Number of global constants propagated. */
434 static int global_const_prop_count;
435 /* Number of global copies propagated. */
436 static int global_copy_prop_count;
437 \f
438 /* Doing code hoisting. */
439 static bool doing_code_hoisting_p = false;
440 \f
441 /* For available exprs */
442 static sbitmap *ae_kill;
443 \f
444 static void compute_can_copy (void);
445 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
446 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
447 static void *gcse_alloc (unsigned long);
448 static void alloc_gcse_mem (void);
449 static void free_gcse_mem (void);
450 static void hash_scan_insn (rtx, struct hash_table_d *);
451 static void hash_scan_set (rtx, rtx, struct hash_table_d *);
452 static void hash_scan_clobber (rtx, rtx, struct hash_table_d *);
453 static void hash_scan_call (rtx, rtx, struct hash_table_d *);
454 static int want_to_gcse_p (rtx, int *);
455 static bool gcse_constant_p (const_rtx);
456 static int oprs_unchanged_p (const_rtx, const_rtx, int);
457 static int oprs_anticipatable_p (const_rtx, const_rtx);
458 static int oprs_available_p (const_rtx, const_rtx);
459 static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int, int,
460 struct hash_table_d *);
461 static void insert_set_in_table (rtx, rtx, struct hash_table_d *);
462 static unsigned int hash_expr (const_rtx, enum machine_mode, int *, int);
463 static unsigned int hash_set (int, int);
464 static int expr_equiv_p (const_rtx, const_rtx);
465 static void record_last_reg_set_info (rtx, int);
466 static void record_last_mem_set_info (rtx);
467 static void record_last_set_info (rtx, const_rtx, void *);
468 static void compute_hash_table (struct hash_table_d *);
469 static void alloc_hash_table (struct hash_table_d *, int);
470 static void free_hash_table (struct hash_table_d *);
471 static void compute_hash_table_work (struct hash_table_d *);
472 static void dump_hash_table (FILE *, const char *, struct hash_table_d *);
473 static struct expr *lookup_set (unsigned int, struct hash_table_d *);
474 static struct expr *next_set (unsigned int, struct expr *);
475 static void reset_opr_set_tables (void);
476 static int oprs_not_set_p (const_rtx, const_rtx);
477 static void mark_call (rtx);
478 static void mark_set (rtx, rtx);
479 static void mark_clobber (rtx, rtx);
480 static void mark_oprs_set (rtx);
481 static void alloc_cprop_mem (int, int);
482 static void free_cprop_mem (void);
483 static void compute_transp (const_rtx, int, sbitmap *, int);
484 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
485 struct hash_table_d *);
486 static void compute_cprop_data (void);
487 static void find_used_regs (rtx *, void *);
488 static int try_replace_reg (rtx, rtx, rtx);
489 static struct expr *find_avail_set (int, rtx);
490 static int cprop_jump (basic_block, rtx, rtx, rtx, rtx);
491 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
492 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
493 static void canon_list_insert (rtx, const_rtx, void *);
494 static int cprop_insn (rtx);
495 static void find_implicit_sets (void);
496 static int one_cprop_pass (void);
497 static bool constprop_register (rtx, rtx, rtx);
498 static struct expr *find_bypass_set (int, int);
499 static bool reg_killed_on_edge (const_rtx, const_edge);
500 static int bypass_block (basic_block, rtx, rtx);
501 static int bypass_conditional_jumps (void);
502 static void alloc_pre_mem (int, int);
503 static void free_pre_mem (void);
504 static void compute_pre_data (void);
505 static int pre_expr_reaches_here_p (basic_block, struct expr *,
506 basic_block);
507 static void insert_insn_end_basic_block (struct expr *, basic_block);
508 static void pre_insert_copy_insn (struct expr *, rtx);
509 static void pre_insert_copies (void);
510 static int pre_delete (void);
511 static int pre_gcse (void);
512 static int one_pre_gcse_pass (void);
513 static void add_label_notes (rtx, rtx);
514 static void alloc_code_hoist_mem (int, int);
515 static void free_code_hoist_mem (void);
516 static void compute_code_hoist_vbeinout (void);
517 static void compute_code_hoist_data (void);
518 static int hoist_expr_reaches_here_p (basic_block, int, basic_block, char *,
519 int, int *);
520 static int hoist_code (void);
521 static int one_code_hoisting_pass (void);
522 static rtx process_insert_insn (struct expr *);
523 static int pre_edge_insert (struct edge_list *, struct expr **);
524 static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
525 basic_block, char *);
526 static struct ls_expr * ldst_entry (rtx);
527 static void free_ldst_entry (struct ls_expr *);
528 static void free_ldst_mems (void);
529 static void print_ldst_list (FILE *);
530 static struct ls_expr * find_rtx_in_ldst (rtx);
531 static inline struct ls_expr * first_ls_expr (void);
532 static inline struct ls_expr * next_ls_expr (struct ls_expr *);
533 static int simple_mem (const_rtx);
534 static void invalidate_any_buried_refs (rtx);
535 static void compute_ld_motion_mems (void);
536 static void trim_ld_motion_mems (void);
537 static void update_ld_motion_stores (struct expr *);
538 static void free_insn_expr_list_list (rtx *);
539 static void clear_modify_mem_tables (void);
540 static void free_modify_mem_tables (void);
541 static rtx gcse_emit_move_after (rtx, rtx, rtx);
542 static void local_cprop_find_used_regs (rtx *, void *);
543 static bool do_local_cprop (rtx, rtx);
544 static int local_cprop_pass (void);
545 static bool is_too_expensive (const char *);
546
547 #define GNEW(T) ((T *) gmalloc (sizeof (T)))
548 #define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
549
550 #define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
551 #define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
552
553 #define GNEWVAR(T, S) ((T *) gmalloc ((S)))
554 #define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
555
556 #define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
557 #define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
558 \f
559 /* Misc. utilities. */
560
561 #define can_copy \
562 (this_target_gcse->x_can_copy)
563 #define can_copy_init_p \
564 (this_target_gcse->x_can_copy_init_p)
565
566 /* Compute which modes support reg/reg copy operations. */
567
568 static void
569 compute_can_copy (void)
570 {
571 int i;
572 #ifndef AVOID_CCMODE_COPIES
573 rtx reg, insn;
574 #endif
575 memset (can_copy, 0, NUM_MACHINE_MODES);
576
577 start_sequence ();
578 for (i = 0; i < NUM_MACHINE_MODES; i++)
579 if (GET_MODE_CLASS (i) == MODE_CC)
580 {
581 #ifdef AVOID_CCMODE_COPIES
582 can_copy[i] = 0;
583 #else
584 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
585 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
586 if (recog (PATTERN (insn), insn, NULL) >= 0)
587 can_copy[i] = 1;
588 #endif
589 }
590 else
591 can_copy[i] = 1;
592
593 end_sequence ();
594 }
595
596 /* Returns whether the mode supports reg/reg copy operations. */
597
598 bool
599 can_copy_p (enum machine_mode mode)
600 {
601 if (! can_copy_init_p)
602 {
603 compute_can_copy ();
604 can_copy_init_p = true;
605 }
606
607 return can_copy[mode] != 0;
608 }
609
610 \f
611 /* Cover function to xmalloc to record bytes allocated. */
612
613 static void *
614 gmalloc (size_t size)
615 {
616 bytes_used += size;
617 return xmalloc (size);
618 }
619
620 /* Cover function to xcalloc to record bytes allocated. */
621
622 static void *
623 gcalloc (size_t nelem, size_t elsize)
624 {
625 bytes_used += nelem * elsize;
626 return xcalloc (nelem, elsize);
627 }
628
629 /* Cover function to obstack_alloc. */
630
631 static void *
632 gcse_alloc (unsigned long size)
633 {
634 bytes_used += size;
635 return obstack_alloc (&gcse_obstack, size);
636 }
637
638 /* Allocate memory for the reg/memory set tracking tables.
639 This is called at the start of each pass. */
640
641 static void
642 alloc_gcse_mem (void)
643 {
644 /* Allocate vars to track sets of regs. */
645 reg_set_bitmap = ALLOC_REG_SET (NULL);
646
647 /* Allocate array to keep a list of insns which modify memory in each
648 basic block. */
649 modify_mem_list = GCNEWVEC (rtx, last_basic_block);
650 canon_modify_mem_list = GCNEWVEC (rtx, last_basic_block);
651 modify_mem_list_set = BITMAP_ALLOC (NULL);
652 blocks_with_calls = BITMAP_ALLOC (NULL);
653 }
654
655 /* Free memory allocated by alloc_gcse_mem. */
656
657 static void
658 free_gcse_mem (void)
659 {
660 free_modify_mem_tables ();
661 BITMAP_FREE (modify_mem_list_set);
662 BITMAP_FREE (blocks_with_calls);
663 }
664 \f
665 /* Compute the local properties of each recorded expression.
666
667 Local properties are those that are defined by the block, irrespective of
668 other blocks.
669
670 An expression is transparent in a block if its operands are not modified
671 in the block.
672
673 An expression is computed (locally available) in a block if it is computed
674 at least once and expression would contain the same value if the
675 computation was moved to the end of the block.
676
677 An expression is locally anticipatable in a block if it is computed at
678 least once and expression would contain the same value if the computation
679 was moved to the beginning of the block.
680
681 We call this routine for cprop, pre and code hoisting. They all compute
682 basically the same information and thus can easily share this code.
683
684 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
685 properties. If NULL, then it is not necessary to compute or record that
686 particular property.
687
688 TABLE controls which hash table to look at. If it is set hash table,
689 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
690 ABSALTERED. */
691
692 static void
693 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
694 struct hash_table_d *table)
695 {
696 unsigned int i;
697
698 /* Initialize any bitmaps that were passed in. */
699 if (transp)
700 {
701 if (table->set_p)
702 sbitmap_vector_zero (transp, last_basic_block);
703 else
704 sbitmap_vector_ones (transp, last_basic_block);
705 }
706
707 if (comp)
708 sbitmap_vector_zero (comp, last_basic_block);
709 if (antloc)
710 sbitmap_vector_zero (antloc, last_basic_block);
711
712 for (i = 0; i < table->size; i++)
713 {
714 struct expr *expr;
715
716 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
717 {
718 int indx = expr->bitmap_index;
719 struct occr *occr;
720
721 /* The expression is transparent in this block if it is not killed.
722 We start by assuming all are transparent [none are killed], and
723 then reset the bits for those that are. */
724 if (transp)
725 compute_transp (expr->expr, indx, transp, table->set_p);
726
727 /* The occurrences recorded in antic_occr are exactly those that
728 we want to set to nonzero in ANTLOC. */
729 if (antloc)
730 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
731 {
732 SET_BIT (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
733
734 /* While we're scanning the table, this is a good place to
735 initialize this. */
736 occr->deleted_p = 0;
737 }
738
739 /* The occurrences recorded in avail_occr are exactly those that
740 we want to set to nonzero in COMP. */
741 if (comp)
742 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
743 {
744 SET_BIT (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
745
746 /* While we're scanning the table, this is a good place to
747 initialize this. */
748 occr->copied_p = 0;
749 }
750
751 /* While we're scanning the table, this is a good place to
752 initialize this. */
753 expr->reaching_reg = 0;
754 }
755 }
756 }
757 \f
758 /* Hash table support. */
759
760 struct reg_avail_info
761 {
762 basic_block last_bb;
763 int first_set;
764 int last_set;
765 };
766
767 static struct reg_avail_info *reg_avail_info;
768 static basic_block current_bb;
769
770
771 /* See whether X, the source of a set, is something we want to consider for
772 GCSE. */
773
774 static int
775 want_to_gcse_p (rtx x, int *max_distance_ptr)
776 {
777 #ifdef STACK_REGS
778 /* On register stack architectures, don't GCSE constants from the
779 constant pool, as the benefits are often swamped by the overhead
780 of shuffling the register stack between basic blocks. */
781 if (IS_STACK_MODE (GET_MODE (x)))
782 x = avoid_constant_pool_reference (x);
783 #endif
784
785 /* GCSE'ing constants:
786
787 We do not specifically distinguish between constant and non-constant
788 expressions in PRE and Hoist. We use rtx_cost below to limit
789 the maximum distance simple expressions can travel.
790
791 Nevertheless, constants are much easier to GCSE, and, hence,
792 it is easy to overdo the optimizations. Usually, excessive PRE and
793 Hoisting of constant leads to increased register pressure.
794
795 RA can deal with this by rematerialing some of the constants.
796 Therefore, it is important that the back-end generates sets of constants
797 in a way that allows reload rematerialize them under high register
798 pressure, i.e., a pseudo register with REG_EQUAL to constant
799 is set only once. Failing to do so will result in IRA/reload
800 spilling such constants under high register pressure instead of
801 rematerializing them. */
802
803 switch (GET_CODE (x))
804 {
805 case REG:
806 case SUBREG:
807 case CALL:
808 return 0;
809
810 case CONST_INT:
811 case CONST_DOUBLE:
812 case CONST_FIXED:
813 case CONST_VECTOR:
814 if (!doing_code_hoisting_p)
815 /* Do not PRE constants. */
816 return 0;
817
818 /* FALLTHRU */
819
820 default:
821 if (doing_code_hoisting_p)
822 /* PRE doesn't implement max_distance restriction. */
823 {
824 int cost;
825 int max_distance;
826
827 gcc_assert (!optimize_function_for_speed_p (cfun)
828 && optimize_function_for_size_p (cfun));
829 cost = rtx_cost (x, SET, 0);
830
831 if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
832 {
833 max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
834 if (max_distance == 0)
835 return 0;
836
837 gcc_assert (max_distance > 0);
838 }
839 else
840 max_distance = 0;
841
842 if (max_distance_ptr)
843 *max_distance_ptr = max_distance;
844 }
845
846 return can_assign_to_reg_without_clobbers_p (x);
847 }
848 }
849
850 /* Used internally by can_assign_to_reg_without_clobbers_p. */
851
852 static GTY(()) rtx test_insn;
853
854 /* Return true if we can assign X to a pseudo register such that the
855 resulting insn does not result in clobbering a hard register as a
856 side-effect.
857
858 Additionally, if the target requires it, check that the resulting insn
859 can be copied. If it cannot, this means that X is special and probably
860 has hidden side-effects we don't want to mess with.
861
862 This function is typically used by code motion passes, to verify
863 that it is safe to insert an insn without worrying about clobbering
864 maybe live hard regs. */
865
866 bool
867 can_assign_to_reg_without_clobbers_p (rtx x)
868 {
869 int num_clobbers = 0;
870 int icode;
871
872 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
873 if (general_operand (x, GET_MODE (x)))
874 return 1;
875 else if (GET_MODE (x) == VOIDmode)
876 return 0;
877
878 /* Otherwise, check if we can make a valid insn from it. First initialize
879 our test insn if we haven't already. */
880 if (test_insn == 0)
881 {
882 test_insn
883 = make_insn_raw (gen_rtx_SET (VOIDmode,
884 gen_rtx_REG (word_mode,
885 FIRST_PSEUDO_REGISTER * 2),
886 const0_rtx));
887 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
888 }
889
890 /* Now make an insn like the one we would make when GCSE'ing and see if
891 valid. */
892 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
893 SET_SRC (PATTERN (test_insn)) = x;
894
895 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
896 if (icode < 0)
897 return false;
898
899 if (num_clobbers > 0 && added_clobbers_hard_reg_p (icode))
900 return false;
901
902 if (targetm.cannot_copy_insn_p && targetm.cannot_copy_insn_p (test_insn))
903 return false;
904
905 return true;
906 }
907
908 /* Return nonzero if the operands of expression X are unchanged from the
909 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
910 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
911
912 static int
913 oprs_unchanged_p (const_rtx x, const_rtx insn, int avail_p)
914 {
915 int i, j;
916 enum rtx_code code;
917 const char *fmt;
918
919 if (x == 0)
920 return 1;
921
922 code = GET_CODE (x);
923 switch (code)
924 {
925 case REG:
926 {
927 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
928
929 if (info->last_bb != current_bb)
930 return 1;
931 if (avail_p)
932 return info->last_set < DF_INSN_LUID (insn);
933 else
934 return info->first_set >= DF_INSN_LUID (insn);
935 }
936
937 case MEM:
938 if (load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
939 x, avail_p))
940 return 0;
941 else
942 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
943
944 case PRE_DEC:
945 case PRE_INC:
946 case POST_DEC:
947 case POST_INC:
948 case PRE_MODIFY:
949 case POST_MODIFY:
950 return 0;
951
952 case PC:
953 case CC0: /*FIXME*/
954 case CONST:
955 case CONST_INT:
956 case CONST_DOUBLE:
957 case CONST_FIXED:
958 case CONST_VECTOR:
959 case SYMBOL_REF:
960 case LABEL_REF:
961 case ADDR_VEC:
962 case ADDR_DIFF_VEC:
963 return 1;
964
965 default:
966 break;
967 }
968
969 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
970 {
971 if (fmt[i] == 'e')
972 {
973 /* If we are about to do the last recursive call needed at this
974 level, change it into iteration. This function is called enough
975 to be worth it. */
976 if (i == 0)
977 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
978
979 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
980 return 0;
981 }
982 else if (fmt[i] == 'E')
983 for (j = 0; j < XVECLEN (x, i); j++)
984 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
985 return 0;
986 }
987
988 return 1;
989 }
990
991 /* Used for communication between mems_conflict_for_gcse_p and
992 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
993 conflict between two memory references. */
994 static int gcse_mems_conflict_p;
995
996 /* Used for communication between mems_conflict_for_gcse_p and
997 load_killed_in_block_p. A memory reference for a load instruction,
998 mems_conflict_for_gcse_p will see if a memory store conflicts with
999 this memory load. */
1000 static const_rtx gcse_mem_operand;
1001
1002 /* DEST is the output of an instruction. If it is a memory reference, and
1003 possibly conflicts with the load found in gcse_mem_operand, then set
1004 gcse_mems_conflict_p to a nonzero value. */
1005
1006 static void
1007 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
1008 void *data ATTRIBUTE_UNUSED)
1009 {
1010 while (GET_CODE (dest) == SUBREG
1011 || GET_CODE (dest) == ZERO_EXTRACT
1012 || GET_CODE (dest) == STRICT_LOW_PART)
1013 dest = XEXP (dest, 0);
1014
1015 /* If DEST is not a MEM, then it will not conflict with the load. Note
1016 that function calls are assumed to clobber memory, but are handled
1017 elsewhere. */
1018 if (! MEM_P (dest))
1019 return;
1020
1021 /* If we are setting a MEM in our list of specially recognized MEMs,
1022 don't mark as killed this time. */
1023
1024 if (expr_equiv_p (dest, gcse_mem_operand) && pre_ldst_mems != NULL)
1025 {
1026 if (!find_rtx_in_ldst (dest))
1027 gcse_mems_conflict_p = 1;
1028 return;
1029 }
1030
1031 if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
1032 rtx_addr_varies_p))
1033 gcse_mems_conflict_p = 1;
1034 }
1035
1036 /* Return nonzero if the expression in X (a memory reference) is killed
1037 in block BB before or after the insn with the LUID in UID_LIMIT.
1038 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1039 before UID_LIMIT.
1040
1041 To check the entire block, set UID_LIMIT to max_uid + 1 and
1042 AVAIL_P to 0. */
1043
1044 static int
1045 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x, int avail_p)
1046 {
1047 rtx list_entry = modify_mem_list[bb->index];
1048
1049 /* If this is a readonly then we aren't going to be changing it. */
1050 if (MEM_READONLY_P (x))
1051 return 0;
1052
1053 while (list_entry)
1054 {
1055 rtx setter;
1056 /* Ignore entries in the list that do not apply. */
1057 if ((avail_p
1058 && DF_INSN_LUID (XEXP (list_entry, 0)) < uid_limit)
1059 || (! avail_p
1060 && DF_INSN_LUID (XEXP (list_entry, 0)) > uid_limit))
1061 {
1062 list_entry = XEXP (list_entry, 1);
1063 continue;
1064 }
1065
1066 setter = XEXP (list_entry, 0);
1067
1068 /* If SETTER is a call everything is clobbered. Note that calls
1069 to pure functions are never put on the list, so we need not
1070 worry about them. */
1071 if (CALL_P (setter))
1072 return 1;
1073
1074 /* SETTER must be an INSN of some kind that sets memory. Call
1075 note_stores to examine each hunk of memory that is modified.
1076
1077 The note_stores interface is pretty limited, so we have to
1078 communicate via global variables. Yuk. */
1079 gcse_mem_operand = x;
1080 gcse_mems_conflict_p = 0;
1081 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1082 if (gcse_mems_conflict_p)
1083 return 1;
1084 list_entry = XEXP (list_entry, 1);
1085 }
1086 return 0;
1087 }
1088
1089 /* Return nonzero if the operands of expression X are unchanged from
1090 the start of INSN's basic block up to but not including INSN. */
1091
1092 static int
1093 oprs_anticipatable_p (const_rtx x, const_rtx insn)
1094 {
1095 return oprs_unchanged_p (x, insn, 0);
1096 }
1097
1098 /* Return nonzero if the operands of expression X are unchanged from
1099 INSN to the end of INSN's basic block. */
1100
1101 static int
1102 oprs_available_p (const_rtx x, const_rtx insn)
1103 {
1104 return oprs_unchanged_p (x, insn, 1);
1105 }
1106
1107 /* Hash expression X.
1108
1109 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1110 indicating if a volatile operand is found or if the expression contains
1111 something we don't want to insert in the table. HASH_TABLE_SIZE is
1112 the current size of the hash table to be probed. */
1113
1114 static unsigned int
1115 hash_expr (const_rtx x, enum machine_mode mode, int *do_not_record_p,
1116 int hash_table_size)
1117 {
1118 unsigned int hash;
1119
1120 *do_not_record_p = 0;
1121
1122 hash = hash_rtx (x, mode, do_not_record_p,
1123 NULL, /*have_reg_qty=*/false);
1124 return hash % hash_table_size;
1125 }
1126
1127 /* Hash a set of register REGNO.
1128
1129 Sets are hashed on the register that is set. This simplifies the PRE copy
1130 propagation code.
1131
1132 ??? May need to make things more elaborate. Later, as necessary. */
1133
1134 static unsigned int
1135 hash_set (int regno, int hash_table_size)
1136 {
1137 unsigned int hash;
1138
1139 hash = regno;
1140 return hash % hash_table_size;
1141 }
1142
1143 /* Return nonzero if exp1 is equivalent to exp2. */
1144
1145 static int
1146 expr_equiv_p (const_rtx x, const_rtx y)
1147 {
1148 return exp_equiv_p (x, y, 0, true);
1149 }
1150
1151 /* Insert expression X in INSN in the hash TABLE.
1152 If it is already present, record it as the last occurrence in INSN's
1153 basic block.
1154
1155 MODE is the mode of the value X is being stored into.
1156 It is only used if X is a CONST_INT.
1157
1158 ANTIC_P is nonzero if X is an anticipatable expression.
1159 AVAIL_P is nonzero if X is an available expression.
1160
1161 MAX_DISTANCE is the maximum distance in instructions this expression can
1162 be moved. */
1163
1164 static void
1165 insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
1166 int avail_p, int max_distance, struct hash_table_d *table)
1167 {
1168 int found, do_not_record_p;
1169 unsigned int hash;
1170 struct expr *cur_expr, *last_expr = NULL;
1171 struct occr *antic_occr, *avail_occr;
1172
1173 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1174
1175 /* Do not insert expression in table if it contains volatile operands,
1176 or if hash_expr determines the expression is something we don't want
1177 to or can't handle. */
1178 if (do_not_record_p)
1179 return;
1180
1181 cur_expr = table->table[hash];
1182 found = 0;
1183
1184 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1185 {
1186 /* If the expression isn't found, save a pointer to the end of
1187 the list. */
1188 last_expr = cur_expr;
1189 cur_expr = cur_expr->next_same_hash;
1190 }
1191
1192 if (! found)
1193 {
1194 cur_expr = GOBNEW (struct expr);
1195 bytes_used += sizeof (struct expr);
1196 if (table->table[hash] == NULL)
1197 /* This is the first pattern that hashed to this index. */
1198 table->table[hash] = cur_expr;
1199 else
1200 /* Add EXPR to end of this hash chain. */
1201 last_expr->next_same_hash = cur_expr;
1202
1203 /* Set the fields of the expr element. */
1204 cur_expr->expr = x;
1205 cur_expr->bitmap_index = table->n_elems++;
1206 cur_expr->next_same_hash = NULL;
1207 cur_expr->antic_occr = NULL;
1208 cur_expr->avail_occr = NULL;
1209 gcc_assert (max_distance >= 0);
1210 cur_expr->max_distance = max_distance;
1211 }
1212 else
1213 gcc_assert (cur_expr->max_distance == max_distance);
1214
1215 /* Now record the occurrence(s). */
1216 if (antic_p)
1217 {
1218 antic_occr = cur_expr->antic_occr;
1219
1220 if (antic_occr
1221 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
1222 antic_occr = NULL;
1223
1224 if (antic_occr)
1225 /* Found another instance of the expression in the same basic block.
1226 Prefer the currently recorded one. We want the first one in the
1227 block and the block is scanned from start to end. */
1228 ; /* nothing to do */
1229 else
1230 {
1231 /* First occurrence of this expression in this basic block. */
1232 antic_occr = GOBNEW (struct occr);
1233 bytes_used += sizeof (struct occr);
1234 antic_occr->insn = insn;
1235 antic_occr->next = cur_expr->antic_occr;
1236 antic_occr->deleted_p = 0;
1237 cur_expr->antic_occr = antic_occr;
1238 }
1239 }
1240
1241 if (avail_p)
1242 {
1243 avail_occr = cur_expr->avail_occr;
1244
1245 if (avail_occr
1246 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
1247 {
1248 /* Found another instance of the expression in the same basic block.
1249 Prefer this occurrence to the currently recorded one. We want
1250 the last one in the block and the block is scanned from start
1251 to end. */
1252 avail_occr->insn = insn;
1253 }
1254 else
1255 {
1256 /* First occurrence of this expression in this basic block. */
1257 avail_occr = GOBNEW (struct occr);
1258 bytes_used += sizeof (struct occr);
1259 avail_occr->insn = insn;
1260 avail_occr->next = cur_expr->avail_occr;
1261 avail_occr->deleted_p = 0;
1262 cur_expr->avail_occr = avail_occr;
1263 }
1264 }
1265 }
1266
1267 /* Insert pattern X in INSN in the hash table.
1268 X is a SET of a reg to either another reg or a constant.
1269 If it is already present, record it as the last occurrence in INSN's
1270 basic block. */
1271
1272 static void
1273 insert_set_in_table (rtx x, rtx insn, struct hash_table_d *table)
1274 {
1275 int found;
1276 unsigned int hash;
1277 struct expr *cur_expr, *last_expr = NULL;
1278 struct occr *cur_occr;
1279
1280 gcc_assert (GET_CODE (x) == SET && REG_P (SET_DEST (x)));
1281
1282 hash = hash_set (REGNO (SET_DEST (x)), table->size);
1283
1284 cur_expr = table->table[hash];
1285 found = 0;
1286
1287 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1288 {
1289 /* If the expression isn't found, save a pointer to the end of
1290 the list. */
1291 last_expr = cur_expr;
1292 cur_expr = cur_expr->next_same_hash;
1293 }
1294
1295 if (! found)
1296 {
1297 cur_expr = GOBNEW (struct expr);
1298 bytes_used += sizeof (struct expr);
1299 if (table->table[hash] == NULL)
1300 /* This is the first pattern that hashed to this index. */
1301 table->table[hash] = cur_expr;
1302 else
1303 /* Add EXPR to end of this hash chain. */
1304 last_expr->next_same_hash = cur_expr;
1305
1306 /* Set the fields of the expr element.
1307 We must copy X because it can be modified when copy propagation is
1308 performed on its operands. */
1309 cur_expr->expr = copy_rtx (x);
1310 cur_expr->bitmap_index = table->n_elems++;
1311 cur_expr->next_same_hash = NULL;
1312 cur_expr->antic_occr = NULL;
1313 cur_expr->avail_occr = NULL;
1314 /* Not used for set_p tables. */
1315 cur_expr->max_distance = 0;
1316 }
1317
1318 /* Now record the occurrence. */
1319 cur_occr = cur_expr->avail_occr;
1320
1321 if (cur_occr
1322 && BLOCK_FOR_INSN (cur_occr->insn) == BLOCK_FOR_INSN (insn))
1323 {
1324 /* Found another instance of the expression in the same basic block.
1325 Prefer this occurrence to the currently recorded one. We want
1326 the last one in the block and the block is scanned from start
1327 to end. */
1328 cur_occr->insn = insn;
1329 }
1330 else
1331 {
1332 /* First occurrence of this expression in this basic block. */
1333 cur_occr = GOBNEW (struct occr);
1334 bytes_used += sizeof (struct occr);
1335 cur_occr->insn = insn;
1336 cur_occr->next = cur_expr->avail_occr;
1337 cur_occr->deleted_p = 0;
1338 cur_expr->avail_occr = cur_occr;
1339 }
1340 }
1341
1342 /* Determine whether the rtx X should be treated as a constant for
1343 the purposes of GCSE's constant propagation. */
1344
1345 static bool
1346 gcse_constant_p (const_rtx x)
1347 {
1348 /* Consider a COMPARE of two integers constant. */
1349 if (GET_CODE (x) == COMPARE
1350 && CONST_INT_P (XEXP (x, 0))
1351 && CONST_INT_P (XEXP (x, 1)))
1352 return true;
1353
1354 /* Consider a COMPARE of the same registers is a constant
1355 if they are not floating point registers. */
1356 if (GET_CODE(x) == COMPARE
1357 && REG_P (XEXP (x, 0)) && REG_P (XEXP (x, 1))
1358 && REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 1))
1359 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
1360 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 1))))
1361 return true;
1362
1363 /* Since X might be inserted more than once we have to take care that it
1364 is sharable. */
1365 return CONSTANT_P (x) && (GET_CODE (x) != CONST || shared_const_p (x));
1366 }
1367
1368 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
1369 expression one). */
1370
1371 static void
1372 hash_scan_set (rtx pat, rtx insn, struct hash_table_d *table)
1373 {
1374 rtx src = SET_SRC (pat);
1375 rtx dest = SET_DEST (pat);
1376 rtx note;
1377
1378 if (GET_CODE (src) == CALL)
1379 hash_scan_call (src, insn, table);
1380
1381 else if (REG_P (dest))
1382 {
1383 unsigned int regno = REGNO (dest);
1384 rtx tmp;
1385 int max_distance = 0;
1386
1387 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1388
1389 This allows us to do a single GCSE pass and still eliminate
1390 redundant constants, addresses or other expressions that are
1391 constructed with multiple instructions.
1392
1393 However, keep the original SRC if INSN is a simple reg-reg move. In
1394 In this case, there will almost always be a REG_EQUAL note on the
1395 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1396 for INSN, we miss copy propagation opportunities and we perform the
1397 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1398 do more than one PRE GCSE pass.
1399
1400 Note that this does not impede profitable constant propagations. We
1401 "look through" reg-reg sets in lookup_avail_set. */
1402 note = find_reg_equal_equiv_note (insn);
1403 if (note != 0
1404 && REG_NOTE_KIND (note) == REG_EQUAL
1405 && !REG_P (src)
1406 && (table->set_p
1407 ? gcse_constant_p (XEXP (note, 0))
1408 : want_to_gcse_p (XEXP (note, 0), NULL)))
1409 src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
1410
1411 /* Only record sets of pseudo-regs in the hash table. */
1412 if (! table->set_p
1413 && regno >= FIRST_PSEUDO_REGISTER
1414 /* Don't GCSE something if we can't do a reg/reg copy. */
1415 && can_copy_p (GET_MODE (dest))
1416 /* GCSE commonly inserts instruction after the insn. We can't
1417 do that easily for EH edges so disable GCSE on these for now. */
1418 /* ??? We can now easily create new EH landing pads at the
1419 gimple level, for splitting edges; there's no reason we
1420 can't do the same thing at the rtl level. */
1421 && !can_throw_internal (insn)
1422 /* Is SET_SRC something we want to gcse? */
1423 && want_to_gcse_p (src, &max_distance)
1424 /* Don't CSE a nop. */
1425 && ! set_noop_p (pat)
1426 /* Don't GCSE if it has attached REG_EQUIV note.
1427 At this point this only function parameters should have
1428 REG_EQUIV notes and if the argument slot is used somewhere
1429 explicitly, it means address of parameter has been taken,
1430 so we should not extend the lifetime of the pseudo. */
1431 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1432 {
1433 /* An expression is not anticipatable if its operands are
1434 modified before this insn or if this is not the only SET in
1435 this insn. The latter condition does not have to mean that
1436 SRC itself is not anticipatable, but we just will not be
1437 able to handle code motion of insns with multiple sets. */
1438 int antic_p = oprs_anticipatable_p (src, insn)
1439 && !multiple_sets (insn);
1440 /* An expression is not available if its operands are
1441 subsequently modified, including this insn. It's also not
1442 available if this is a branch, because we can't insert
1443 a set after the branch. */
1444 int avail_p = (oprs_available_p (src, insn)
1445 && ! JUMP_P (insn));
1446
1447 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1448 max_distance, table);
1449 }
1450
1451 /* Record sets for constant/copy propagation. */
1452 else if (table->set_p
1453 && regno >= FIRST_PSEUDO_REGISTER
1454 && ((REG_P (src)
1455 && REGNO (src) >= FIRST_PSEUDO_REGISTER
1456 && can_copy_p (GET_MODE (dest))
1457 && REGNO (src) != regno)
1458 || gcse_constant_p (src))
1459 /* A copy is not available if its src or dest is subsequently
1460 modified. Here we want to search from INSN+1 on, but
1461 oprs_available_p searches from INSN on. */
1462 && (insn == BB_END (BLOCK_FOR_INSN (insn))
1463 || (tmp = next_nonnote_insn (insn)) == NULL_RTX
1464 || BLOCK_FOR_INSN (tmp) != BLOCK_FOR_INSN (insn)
1465 || oprs_available_p (pat, tmp)))
1466 insert_set_in_table (pat, insn, table);
1467 }
1468 /* In case of store we want to consider the memory value as available in
1469 the REG stored in that memory. This makes it possible to remove
1470 redundant loads from due to stores to the same location. */
1471 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1472 {
1473 unsigned int regno = REGNO (src);
1474 int max_distance = 0;
1475
1476 /* Do not do this for constant/copy propagation. */
1477 if (! table->set_p
1478 /* Only record sets of pseudo-regs in the hash table. */
1479 && regno >= FIRST_PSEUDO_REGISTER
1480 /* Don't GCSE something if we can't do a reg/reg copy. */
1481 && can_copy_p (GET_MODE (src))
1482 /* GCSE commonly inserts instruction after the insn. We can't
1483 do that easily for EH edges so disable GCSE on these for now. */
1484 && !can_throw_internal (insn)
1485 /* Is SET_DEST something we want to gcse? */
1486 && want_to_gcse_p (dest, &max_distance)
1487 /* Don't CSE a nop. */
1488 && ! set_noop_p (pat)
1489 /* Don't GCSE if it has attached REG_EQUIV note.
1490 At this point this only function parameters should have
1491 REG_EQUIV notes and if the argument slot is used somewhere
1492 explicitly, it means address of parameter has been taken,
1493 so we should not extend the lifetime of the pseudo. */
1494 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1495 || ! MEM_P (XEXP (note, 0))))
1496 {
1497 /* Stores are never anticipatable. */
1498 int antic_p = 0;
1499 /* An expression is not available if its operands are
1500 subsequently modified, including this insn. It's also not
1501 available if this is a branch, because we can't insert
1502 a set after the branch. */
1503 int avail_p = oprs_available_p (dest, insn)
1504 && ! JUMP_P (insn);
1505
1506 /* Record the memory expression (DEST) in the hash table. */
1507 insert_expr_in_table (dest, GET_MODE (dest), insn,
1508 antic_p, avail_p, max_distance, table);
1509 }
1510 }
1511 }
1512
1513 static void
1514 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1515 struct hash_table_d *table ATTRIBUTE_UNUSED)
1516 {
1517 /* Currently nothing to do. */
1518 }
1519
1520 static void
1521 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1522 struct hash_table_d *table ATTRIBUTE_UNUSED)
1523 {
1524 /* Currently nothing to do. */
1525 }
1526
1527 /* Process INSN and add hash table entries as appropriate.
1528
1529 Only available expressions that set a single pseudo-reg are recorded.
1530
1531 Single sets in a PARALLEL could be handled, but it's an extra complication
1532 that isn't dealt with right now. The trick is handling the CLOBBERs that
1533 are also in the PARALLEL. Later.
1534
1535 If SET_P is nonzero, this is for the assignment hash table,
1536 otherwise it is for the expression hash table. */
1537
1538 static void
1539 hash_scan_insn (rtx insn, struct hash_table_d *table)
1540 {
1541 rtx pat = PATTERN (insn);
1542 int i;
1543
1544 /* Pick out the sets of INSN and for other forms of instructions record
1545 what's been modified. */
1546
1547 if (GET_CODE (pat) == SET)
1548 hash_scan_set (pat, insn, table);
1549 else if (GET_CODE (pat) == PARALLEL)
1550 for (i = 0; i < XVECLEN (pat, 0); i++)
1551 {
1552 rtx x = XVECEXP (pat, 0, i);
1553
1554 if (GET_CODE (x) == SET)
1555 hash_scan_set (x, insn, table);
1556 else if (GET_CODE (x) == CLOBBER)
1557 hash_scan_clobber (x, insn, table);
1558 else if (GET_CODE (x) == CALL)
1559 hash_scan_call (x, insn, table);
1560 }
1561
1562 else if (GET_CODE (pat) == CLOBBER)
1563 hash_scan_clobber (pat, insn, table);
1564 else if (GET_CODE (pat) == CALL)
1565 hash_scan_call (pat, insn, table);
1566 }
1567
1568 static void
1569 dump_hash_table (FILE *file, const char *name, struct hash_table_d *table)
1570 {
1571 int i;
1572 /* Flattened out table, so it's printed in proper order. */
1573 struct expr **flat_table;
1574 unsigned int *hash_val;
1575 struct expr *expr;
1576
1577 flat_table = XCNEWVEC (struct expr *, table->n_elems);
1578 hash_val = XNEWVEC (unsigned int, table->n_elems);
1579
1580 for (i = 0; i < (int) table->size; i++)
1581 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1582 {
1583 flat_table[expr->bitmap_index] = expr;
1584 hash_val[expr->bitmap_index] = i;
1585 }
1586
1587 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1588 name, table->size, table->n_elems);
1589
1590 for (i = 0; i < (int) table->n_elems; i++)
1591 if (flat_table[i] != 0)
1592 {
1593 expr = flat_table[i];
1594 fprintf (file, "Index %d (hash value %d; max distance %d)\n ",
1595 expr->bitmap_index, hash_val[i], expr->max_distance);
1596 print_rtl (file, expr->expr);
1597 fprintf (file, "\n");
1598 }
1599
1600 fprintf (file, "\n");
1601
1602 free (flat_table);
1603 free (hash_val);
1604 }
1605
1606 /* Record register first/last/block set information for REGNO in INSN.
1607
1608 first_set records the first place in the block where the register
1609 is set and is used to compute "anticipatability".
1610
1611 last_set records the last place in the block where the register
1612 is set and is used to compute "availability".
1613
1614 last_bb records the block for which first_set and last_set are
1615 valid, as a quick test to invalidate them. */
1616
1617 static void
1618 record_last_reg_set_info (rtx insn, int regno)
1619 {
1620 struct reg_avail_info *info = &reg_avail_info[regno];
1621 int luid = DF_INSN_LUID (insn);
1622
1623 info->last_set = luid;
1624 if (info->last_bb != current_bb)
1625 {
1626 info->last_bb = current_bb;
1627 info->first_set = luid;
1628 }
1629 }
1630
1631
1632 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1633 Note we store a pair of elements in the list, so they have to be
1634 taken off pairwise. */
1635
1636 static void
1637 canon_list_insert (rtx dest ATTRIBUTE_UNUSED, const_rtx unused1 ATTRIBUTE_UNUSED,
1638 void * v_insn)
1639 {
1640 rtx dest_addr, insn;
1641 int bb;
1642
1643 while (GET_CODE (dest) == SUBREG
1644 || GET_CODE (dest) == ZERO_EXTRACT
1645 || GET_CODE (dest) == STRICT_LOW_PART)
1646 dest = XEXP (dest, 0);
1647
1648 /* If DEST is not a MEM, then it will not conflict with a load. Note
1649 that function calls are assumed to clobber memory, but are handled
1650 elsewhere. */
1651
1652 if (! MEM_P (dest))
1653 return;
1654
1655 dest_addr = get_addr (XEXP (dest, 0));
1656 dest_addr = canon_rtx (dest_addr);
1657 insn = (rtx) v_insn;
1658 bb = BLOCK_FOR_INSN (insn)->index;
1659
1660 canon_modify_mem_list[bb] =
1661 alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
1662 canon_modify_mem_list[bb] =
1663 alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
1664 }
1665
1666 /* Record memory modification information for INSN. We do not actually care
1667 about the memory location(s) that are set, or even how they are set (consider
1668 a CALL_INSN). We merely need to record which insns modify memory. */
1669
1670 static void
1671 record_last_mem_set_info (rtx insn)
1672 {
1673 int bb = BLOCK_FOR_INSN (insn)->index;
1674
1675 /* load_killed_in_block_p will handle the case of calls clobbering
1676 everything. */
1677 modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
1678 bitmap_set_bit (modify_mem_list_set, bb);
1679
1680 if (CALL_P (insn))
1681 {
1682 /* Note that traversals of this loop (other than for free-ing)
1683 will break after encountering a CALL_INSN. So, there's no
1684 need to insert a pair of items, as canon_list_insert does. */
1685 canon_modify_mem_list[bb] =
1686 alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
1687 bitmap_set_bit (blocks_with_calls, bb);
1688 }
1689 else
1690 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
1691 }
1692
1693 /* Called from compute_hash_table via note_stores to handle one
1694 SET or CLOBBER in an insn. DATA is really the instruction in which
1695 the SET is taking place. */
1696
1697 static void
1698 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1699 {
1700 rtx last_set_insn = (rtx) data;
1701
1702 if (GET_CODE (dest) == SUBREG)
1703 dest = SUBREG_REG (dest);
1704
1705 if (REG_P (dest))
1706 record_last_reg_set_info (last_set_insn, REGNO (dest));
1707 else if (MEM_P (dest)
1708 /* Ignore pushes, they clobber nothing. */
1709 && ! push_operand (dest, GET_MODE (dest)))
1710 record_last_mem_set_info (last_set_insn);
1711 }
1712
1713 /* Top level function to create an expression or assignment hash table.
1714
1715 Expression entries are placed in the hash table if
1716 - they are of the form (set (pseudo-reg) src),
1717 - src is something we want to perform GCSE on,
1718 - none of the operands are subsequently modified in the block
1719
1720 Assignment entries are placed in the hash table if
1721 - they are of the form (set (pseudo-reg) src),
1722 - src is something we want to perform const/copy propagation on,
1723 - none of the operands or target are subsequently modified in the block
1724
1725 Currently src must be a pseudo-reg or a const_int.
1726
1727 TABLE is the table computed. */
1728
1729 static void
1730 compute_hash_table_work (struct hash_table_d *table)
1731 {
1732 int i;
1733
1734 /* re-Cache any INSN_LIST nodes we have allocated. */
1735 clear_modify_mem_tables ();
1736 /* Some working arrays used to track first and last set in each block. */
1737 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
1738
1739 for (i = 0; i < max_reg_num (); ++i)
1740 reg_avail_info[i].last_bb = NULL;
1741
1742 FOR_EACH_BB (current_bb)
1743 {
1744 rtx insn;
1745 unsigned int regno;
1746
1747 /* First pass over the instructions records information used to
1748 determine when registers and memory are first and last set. */
1749 FOR_BB_INSNS (current_bb, insn)
1750 {
1751 if (! INSN_P (insn))
1752 continue;
1753
1754 if (CALL_P (insn))
1755 {
1756 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1757 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
1758 record_last_reg_set_info (insn, regno);
1759
1760 mark_call (insn);
1761 }
1762
1763 note_stores (PATTERN (insn), record_last_set_info, insn);
1764 }
1765
1766 /* Insert implicit sets in the hash table. */
1767 if (table->set_p
1768 && implicit_sets[current_bb->index] != NULL_RTX)
1769 hash_scan_set (implicit_sets[current_bb->index],
1770 BB_HEAD (current_bb), table);
1771
1772 /* The next pass builds the hash table. */
1773 FOR_BB_INSNS (current_bb, insn)
1774 if (INSN_P (insn))
1775 hash_scan_insn (insn, table);
1776 }
1777
1778 free (reg_avail_info);
1779 reg_avail_info = NULL;
1780 }
1781
1782 /* Allocate space for the set/expr hash TABLE.
1783 It is used to determine the number of buckets to use.
1784 SET_P determines whether set or expression table will
1785 be created. */
1786
1787 static void
1788 alloc_hash_table (struct hash_table_d *table, int set_p)
1789 {
1790 int n;
1791
1792 n = get_max_insn_count ();
1793
1794 table->size = n / 4;
1795 if (table->size < 11)
1796 table->size = 11;
1797
1798 /* Attempt to maintain efficient use of hash table.
1799 Making it an odd number is simplest for now.
1800 ??? Later take some measurements. */
1801 table->size |= 1;
1802 n = table->size * sizeof (struct expr *);
1803 table->table = GNEWVAR (struct expr *, n);
1804 table->set_p = set_p;
1805 }
1806
1807 /* Free things allocated by alloc_hash_table. */
1808
1809 static void
1810 free_hash_table (struct hash_table_d *table)
1811 {
1812 free (table->table);
1813 }
1814
1815 /* Compute the hash TABLE for doing copy/const propagation or
1816 expression hash table. */
1817
1818 static void
1819 compute_hash_table (struct hash_table_d *table)
1820 {
1821 /* Initialize count of number of entries in hash table. */
1822 table->n_elems = 0;
1823 memset (table->table, 0, table->size * sizeof (struct expr *));
1824
1825 compute_hash_table_work (table);
1826 }
1827 \f
1828 /* Expression tracking support. */
1829
1830 /* Lookup REGNO in the set TABLE. The result is a pointer to the
1831 table entry, or NULL if not found. */
1832
1833 static struct expr *
1834 lookup_set (unsigned int regno, struct hash_table_d *table)
1835 {
1836 unsigned int hash = hash_set (regno, table->size);
1837 struct expr *expr;
1838
1839 expr = table->table[hash];
1840
1841 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
1842 expr = expr->next_same_hash;
1843
1844 return expr;
1845 }
1846
1847 /* Return the next entry for REGNO in list EXPR. */
1848
1849 static struct expr *
1850 next_set (unsigned int regno, struct expr *expr)
1851 {
1852 do
1853 expr = expr->next_same_hash;
1854 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
1855
1856 return expr;
1857 }
1858
1859 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
1860 types may be mixed. */
1861
1862 static void
1863 free_insn_expr_list_list (rtx *listp)
1864 {
1865 rtx list, next;
1866
1867 for (list = *listp; list ; list = next)
1868 {
1869 next = XEXP (list, 1);
1870 if (GET_CODE (list) == EXPR_LIST)
1871 free_EXPR_LIST_node (list);
1872 else
1873 free_INSN_LIST_node (list);
1874 }
1875
1876 *listp = NULL;
1877 }
1878
1879 /* Clear canon_modify_mem_list and modify_mem_list tables. */
1880 static void
1881 clear_modify_mem_tables (void)
1882 {
1883 unsigned i;
1884 bitmap_iterator bi;
1885
1886 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
1887 {
1888 free_INSN_LIST_list (modify_mem_list + i);
1889 free_insn_expr_list_list (canon_modify_mem_list + i);
1890 }
1891 bitmap_clear (modify_mem_list_set);
1892 bitmap_clear (blocks_with_calls);
1893 }
1894
1895 /* Release memory used by modify_mem_list_set. */
1896
1897 static void
1898 free_modify_mem_tables (void)
1899 {
1900 clear_modify_mem_tables ();
1901 free (modify_mem_list);
1902 free (canon_modify_mem_list);
1903 modify_mem_list = 0;
1904 canon_modify_mem_list = 0;
1905 }
1906
1907 /* Reset tables used to keep track of what's still available [since the
1908 start of the block]. */
1909
1910 static void
1911 reset_opr_set_tables (void)
1912 {
1913 /* Maintain a bitmap of which regs have been set since beginning of
1914 the block. */
1915 CLEAR_REG_SET (reg_set_bitmap);
1916
1917 /* Also keep a record of the last instruction to modify memory.
1918 For now this is very trivial, we only record whether any memory
1919 location has been modified. */
1920 clear_modify_mem_tables ();
1921 }
1922
1923 /* Return nonzero if the operands of X are not set before INSN in
1924 INSN's basic block. */
1925
1926 static int
1927 oprs_not_set_p (const_rtx x, const_rtx insn)
1928 {
1929 int i, j;
1930 enum rtx_code code;
1931 const char *fmt;
1932
1933 if (x == 0)
1934 return 1;
1935
1936 code = GET_CODE (x);
1937 switch (code)
1938 {
1939 case PC:
1940 case CC0:
1941 case CONST:
1942 case CONST_INT:
1943 case CONST_DOUBLE:
1944 case CONST_FIXED:
1945 case CONST_VECTOR:
1946 case SYMBOL_REF:
1947 case LABEL_REF:
1948 case ADDR_VEC:
1949 case ADDR_DIFF_VEC:
1950 return 1;
1951
1952 case MEM:
1953 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
1954 DF_INSN_LUID (insn), x, 0))
1955 return 0;
1956 else
1957 return oprs_not_set_p (XEXP (x, 0), insn);
1958
1959 case REG:
1960 return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
1961
1962 default:
1963 break;
1964 }
1965
1966 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1967 {
1968 if (fmt[i] == 'e')
1969 {
1970 /* If we are about to do the last recursive call
1971 needed at this level, change it into iteration.
1972 This function is called enough to be worth it. */
1973 if (i == 0)
1974 return oprs_not_set_p (XEXP (x, i), insn);
1975
1976 if (! oprs_not_set_p (XEXP (x, i), insn))
1977 return 0;
1978 }
1979 else if (fmt[i] == 'E')
1980 for (j = 0; j < XVECLEN (x, i); j++)
1981 if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
1982 return 0;
1983 }
1984
1985 return 1;
1986 }
1987
1988 /* Mark things set by a CALL. */
1989
1990 static void
1991 mark_call (rtx insn)
1992 {
1993 if (! RTL_CONST_OR_PURE_CALL_P (insn))
1994 record_last_mem_set_info (insn);
1995 }
1996
1997 /* Mark things set by a SET. */
1998
1999 static void
2000 mark_set (rtx pat, rtx insn)
2001 {
2002 rtx dest = SET_DEST (pat);
2003
2004 while (GET_CODE (dest) == SUBREG
2005 || GET_CODE (dest) == ZERO_EXTRACT
2006 || GET_CODE (dest) == STRICT_LOW_PART)
2007 dest = XEXP (dest, 0);
2008
2009 if (REG_P (dest))
2010 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
2011 else if (MEM_P (dest))
2012 record_last_mem_set_info (insn);
2013
2014 if (GET_CODE (SET_SRC (pat)) == CALL)
2015 mark_call (insn);
2016 }
2017
2018 /* Record things set by a CLOBBER. */
2019
2020 static void
2021 mark_clobber (rtx pat, rtx insn)
2022 {
2023 rtx clob = XEXP (pat, 0);
2024
2025 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2026 clob = XEXP (clob, 0);
2027
2028 if (REG_P (clob))
2029 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
2030 else
2031 record_last_mem_set_info (insn);
2032 }
2033
2034 /* Record things set by INSN.
2035 This data is used by oprs_not_set_p. */
2036
2037 static void
2038 mark_oprs_set (rtx insn)
2039 {
2040 rtx pat = PATTERN (insn);
2041 int i;
2042
2043 if (GET_CODE (pat) == SET)
2044 mark_set (pat, insn);
2045 else if (GET_CODE (pat) == PARALLEL)
2046 for (i = 0; i < XVECLEN (pat, 0); i++)
2047 {
2048 rtx x = XVECEXP (pat, 0, i);
2049
2050 if (GET_CODE (x) == SET)
2051 mark_set (x, insn);
2052 else if (GET_CODE (x) == CLOBBER)
2053 mark_clobber (x, insn);
2054 else if (GET_CODE (x) == CALL)
2055 mark_call (insn);
2056 }
2057
2058 else if (GET_CODE (pat) == CLOBBER)
2059 mark_clobber (pat, insn);
2060 else if (GET_CODE (pat) == CALL)
2061 mark_call (insn);
2062 }
2063
2064 \f
2065 /* Compute copy/constant propagation working variables. */
2066
2067 /* Local properties of assignments. */
2068 static sbitmap *cprop_pavloc;
2069 static sbitmap *cprop_absaltered;
2070
2071 /* Global properties of assignments (computed from the local properties). */
2072 static sbitmap *cprop_avin;
2073 static sbitmap *cprop_avout;
2074
2075 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
2076 basic blocks. N_SETS is the number of sets. */
2077
2078 static void
2079 alloc_cprop_mem (int n_blocks, int n_sets)
2080 {
2081 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
2082 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
2083
2084 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
2085 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
2086 }
2087
2088 /* Free vars used by copy/const propagation. */
2089
2090 static void
2091 free_cprop_mem (void)
2092 {
2093 sbitmap_vector_free (cprop_pavloc);
2094 sbitmap_vector_free (cprop_absaltered);
2095 sbitmap_vector_free (cprop_avin);
2096 sbitmap_vector_free (cprop_avout);
2097 }
2098
2099 /* For each block, compute whether X is transparent. X is either an
2100 expression or an assignment [though we don't care which, for this context
2101 an assignment is treated as an expression]. For each block where an
2102 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
2103 bit in BMAP. */
2104
2105 static void
2106 compute_transp (const_rtx x, int indx, sbitmap *bmap, int set_p)
2107 {
2108 int i, j;
2109 enum rtx_code code;
2110 const char *fmt;
2111
2112 /* repeat is used to turn tail-recursion into iteration since GCC
2113 can't do it when there's no return value. */
2114 repeat:
2115
2116 if (x == 0)
2117 return;
2118
2119 code = GET_CODE (x);
2120 switch (code)
2121 {
2122 case REG:
2123 if (set_p)
2124 {
2125 df_ref def;
2126 for (def = DF_REG_DEF_CHAIN (REGNO (x));
2127 def;
2128 def = DF_REF_NEXT_REG (def))
2129 SET_BIT (bmap[DF_REF_BB (def)->index], indx);
2130 }
2131 else
2132 {
2133 df_ref def;
2134 for (def = DF_REG_DEF_CHAIN (REGNO (x));
2135 def;
2136 def = DF_REF_NEXT_REG (def))
2137 RESET_BIT (bmap[DF_REF_BB (def)->index], indx);
2138 }
2139
2140 return;
2141
2142 case MEM:
2143 if (! MEM_READONLY_P (x))
2144 {
2145 bitmap_iterator bi;
2146 unsigned bb_index;
2147
2148 /* First handle all the blocks with calls. We don't need to
2149 do any list walking for them. */
2150 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
2151 {
2152 if (set_p)
2153 SET_BIT (bmap[bb_index], indx);
2154 else
2155 RESET_BIT (bmap[bb_index], indx);
2156 }
2157
2158 /* Now iterate over the blocks which have memory modifications
2159 but which do not have any calls. */
2160 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set,
2161 blocks_with_calls,
2162 0, bb_index, bi)
2163 {
2164 rtx list_entry = canon_modify_mem_list[bb_index];
2165
2166 while (list_entry)
2167 {
2168 rtx dest, dest_addr;
2169
2170 /* LIST_ENTRY must be an INSN of some kind that sets memory.
2171 Examine each hunk of memory that is modified. */
2172
2173 dest = XEXP (list_entry, 0);
2174 list_entry = XEXP (list_entry, 1);
2175 dest_addr = XEXP (list_entry, 0);
2176
2177 if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
2178 x, NULL_RTX, rtx_addr_varies_p))
2179 {
2180 if (set_p)
2181 SET_BIT (bmap[bb_index], indx);
2182 else
2183 RESET_BIT (bmap[bb_index], indx);
2184 break;
2185 }
2186 list_entry = XEXP (list_entry, 1);
2187 }
2188 }
2189 }
2190
2191 x = XEXP (x, 0);
2192 goto repeat;
2193
2194 case PC:
2195 case CC0: /*FIXME*/
2196 case CONST:
2197 case CONST_INT:
2198 case CONST_DOUBLE:
2199 case CONST_FIXED:
2200 case CONST_VECTOR:
2201 case SYMBOL_REF:
2202 case LABEL_REF:
2203 case ADDR_VEC:
2204 case ADDR_DIFF_VEC:
2205 return;
2206
2207 default:
2208 break;
2209 }
2210
2211 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2212 {
2213 if (fmt[i] == 'e')
2214 {
2215 /* If we are about to do the last recursive call
2216 needed at this level, change it into iteration.
2217 This function is called enough to be worth it. */
2218 if (i == 0)
2219 {
2220 x = XEXP (x, i);
2221 goto repeat;
2222 }
2223
2224 compute_transp (XEXP (x, i), indx, bmap, set_p);
2225 }
2226 else if (fmt[i] == 'E')
2227 for (j = 0; j < XVECLEN (x, i); j++)
2228 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
2229 }
2230 }
2231
2232 /* Top level routine to do the dataflow analysis needed by copy/const
2233 propagation. */
2234
2235 static void
2236 compute_cprop_data (void)
2237 {
2238 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, &set_hash_table);
2239 compute_available (cprop_pavloc, cprop_absaltered,
2240 cprop_avout, cprop_avin);
2241 }
2242 \f
2243 /* Copy/constant propagation. */
2244
2245 /* Maximum number of register uses in an insn that we handle. */
2246 #define MAX_USES 8
2247
2248 /* Table of uses found in an insn.
2249 Allocated statically to avoid alloc/free complexity and overhead. */
2250 static struct reg_use reg_use_table[MAX_USES];
2251
2252 /* Index into `reg_use_table' while building it. */
2253 static int reg_use_count;
2254
2255 /* Set up a list of register numbers used in INSN. The found uses are stored
2256 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
2257 and contains the number of uses in the table upon exit.
2258
2259 ??? If a register appears multiple times we will record it multiple times.
2260 This doesn't hurt anything but it will slow things down. */
2261
2262 static void
2263 find_used_regs (rtx *xptr, void *data ATTRIBUTE_UNUSED)
2264 {
2265 int i, j;
2266 enum rtx_code code;
2267 const char *fmt;
2268 rtx x = *xptr;
2269
2270 /* repeat is used to turn tail-recursion into iteration since GCC
2271 can't do it when there's no return value. */
2272 repeat:
2273 if (x == 0)
2274 return;
2275
2276 code = GET_CODE (x);
2277 if (REG_P (x))
2278 {
2279 if (reg_use_count == MAX_USES)
2280 return;
2281
2282 reg_use_table[reg_use_count].reg_rtx = x;
2283 reg_use_count++;
2284 }
2285
2286 /* Recursively scan the operands of this expression. */
2287
2288 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2289 {
2290 if (fmt[i] == 'e')
2291 {
2292 /* If we are about to do the last recursive call
2293 needed at this level, change it into iteration.
2294 This function is called enough to be worth it. */
2295 if (i == 0)
2296 {
2297 x = XEXP (x, 0);
2298 goto repeat;
2299 }
2300
2301 find_used_regs (&XEXP (x, i), data);
2302 }
2303 else if (fmt[i] == 'E')
2304 for (j = 0; j < XVECLEN (x, i); j++)
2305 find_used_regs (&XVECEXP (x, i, j), data);
2306 }
2307 }
2308
2309 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
2310 Returns nonzero is successful. */
2311
2312 static int
2313 try_replace_reg (rtx from, rtx to, rtx insn)
2314 {
2315 rtx note = find_reg_equal_equiv_note (insn);
2316 rtx src = 0;
2317 int success = 0;
2318 rtx set = single_set (insn);
2319
2320 /* Usually we substitute easy stuff, so we won't copy everything.
2321 We however need to take care to not duplicate non-trivial CONST
2322 expressions. */
2323 to = copy_rtx (to);
2324
2325 validate_replace_src_group (from, to, insn);
2326 if (num_changes_pending () && apply_change_group ())
2327 success = 1;
2328
2329 /* Try to simplify SET_SRC if we have substituted a constant. */
2330 if (success && set && CONSTANT_P (to))
2331 {
2332 src = simplify_rtx (SET_SRC (set));
2333
2334 if (src)
2335 validate_change (insn, &SET_SRC (set), src, 0);
2336 }
2337
2338 /* If there is already a REG_EQUAL note, update the expression in it
2339 with our replacement. */
2340 if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL)
2341 set_unique_reg_note (insn, REG_EQUAL,
2342 simplify_replace_rtx (XEXP (note, 0), from, to));
2343 if (!success && set && reg_mentioned_p (from, SET_SRC (set)))
2344 {
2345 /* If above failed and this is a single set, try to simplify the source of
2346 the set given our substitution. We could perhaps try this for multiple
2347 SETs, but it probably won't buy us anything. */
2348 src = simplify_replace_rtx (SET_SRC (set), from, to);
2349
2350 if (!rtx_equal_p (src, SET_SRC (set))
2351 && validate_change (insn, &SET_SRC (set), src, 0))
2352 success = 1;
2353
2354 /* If we've failed to do replacement, have a single SET, don't already
2355 have a note, and have no special SET, add a REG_EQUAL note to not
2356 lose information. */
2357 if (!success && note == 0 && set != 0
2358 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2359 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2360 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2361 }
2362
2363 /* REG_EQUAL may get simplified into register.
2364 We don't allow that. Remove that note. This code ought
2365 not to happen, because previous code ought to synthesize
2366 reg-reg move, but be on the safe side. */
2367 if (note && REG_NOTE_KIND (note) == REG_EQUAL && REG_P (XEXP (note, 0)))
2368 remove_note (insn, note);
2369
2370 return success;
2371 }
2372
2373 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
2374 NULL no such set is found. */
2375
2376 static struct expr *
2377 find_avail_set (int regno, rtx insn)
2378 {
2379 /* SET1 contains the last set found that can be returned to the caller for
2380 use in a substitution. */
2381 struct expr *set1 = 0;
2382
2383 /* Loops are not possible here. To get a loop we would need two sets
2384 available at the start of the block containing INSN. i.e. we would
2385 need two sets like this available at the start of the block:
2386
2387 (set (reg X) (reg Y))
2388 (set (reg Y) (reg X))
2389
2390 This can not happen since the set of (reg Y) would have killed the
2391 set of (reg X) making it unavailable at the start of this block. */
2392 while (1)
2393 {
2394 rtx src;
2395 struct expr *set = lookup_set (regno, &set_hash_table);
2396
2397 /* Find a set that is available at the start of the block
2398 which contains INSN. */
2399 while (set)
2400 {
2401 if (TEST_BIT (cprop_avin[BLOCK_FOR_INSN (insn)->index],
2402 set->bitmap_index))
2403 break;
2404 set = next_set (regno, set);
2405 }
2406
2407 /* If no available set was found we've reached the end of the
2408 (possibly empty) copy chain. */
2409 if (set == 0)
2410 break;
2411
2412 gcc_assert (GET_CODE (set->expr) == SET);
2413
2414 src = SET_SRC (set->expr);
2415
2416 /* We know the set is available.
2417 Now check that SRC is ANTLOC (i.e. none of the source operands
2418 have changed since the start of the block).
2419
2420 If the source operand changed, we may still use it for the next
2421 iteration of this loop, but we may not use it for substitutions. */
2422
2423 if (gcse_constant_p (src) || oprs_not_set_p (src, insn))
2424 set1 = set;
2425
2426 /* If the source of the set is anything except a register, then
2427 we have reached the end of the copy chain. */
2428 if (! REG_P (src))
2429 break;
2430
2431 /* Follow the copy chain, i.e. start another iteration of the loop
2432 and see if we have an available copy into SRC. */
2433 regno = REGNO (src);
2434 }
2435
2436 /* SET1 holds the last set that was available and anticipatable at
2437 INSN. */
2438 return set1;
2439 }
2440
2441 /* Subroutine of cprop_insn that tries to propagate constants into
2442 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
2443 it is the instruction that immediately precedes JUMP, and must be a
2444 single SET of a register. FROM is what we will try to replace,
2445 SRC is the constant we will try to substitute for it. Returns nonzero
2446 if a change was made. */
2447
2448 static int
2449 cprop_jump (basic_block bb, rtx setcc, rtx jump, rtx from, rtx src)
2450 {
2451 rtx new_rtx, set_src, note_src;
2452 rtx set = pc_set (jump);
2453 rtx note = find_reg_equal_equiv_note (jump);
2454
2455 if (note)
2456 {
2457 note_src = XEXP (note, 0);
2458 if (GET_CODE (note_src) == EXPR_LIST)
2459 note_src = NULL_RTX;
2460 }
2461 else note_src = NULL_RTX;
2462
2463 /* Prefer REG_EQUAL notes except those containing EXPR_LISTs. */
2464 set_src = note_src ? note_src : SET_SRC (set);
2465
2466 /* First substitute the SETCC condition into the JUMP instruction,
2467 then substitute that given values into this expanded JUMP. */
2468 if (setcc != NULL_RTX
2469 && !modified_between_p (from, setcc, jump)
2470 && !modified_between_p (src, setcc, jump))
2471 {
2472 rtx setcc_src;
2473 rtx setcc_set = single_set (setcc);
2474 rtx setcc_note = find_reg_equal_equiv_note (setcc);
2475 setcc_src = (setcc_note && GET_CODE (XEXP (setcc_note, 0)) != EXPR_LIST)
2476 ? XEXP (setcc_note, 0) : SET_SRC (setcc_set);
2477 set_src = simplify_replace_rtx (set_src, SET_DEST (setcc_set),
2478 setcc_src);
2479 }
2480 else
2481 setcc = NULL_RTX;
2482
2483 new_rtx = simplify_replace_rtx (set_src, from, src);
2484
2485 /* If no simplification can be made, then try the next register. */
2486 if (rtx_equal_p (new_rtx, SET_SRC (set)))
2487 return 0;
2488
2489 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
2490 if (new_rtx == pc_rtx)
2491 delete_insn (jump);
2492 else
2493 {
2494 /* Ensure the value computed inside the jump insn to be equivalent
2495 to one computed by setcc. */
2496 if (setcc && modified_in_p (new_rtx, setcc))
2497 return 0;
2498 if (! validate_unshare_change (jump, &SET_SRC (set), new_rtx, 0))
2499 {
2500 /* When (some) constants are not valid in a comparison, and there
2501 are two registers to be replaced by constants before the entire
2502 comparison can be folded into a constant, we need to keep
2503 intermediate information in REG_EQUAL notes. For targets with
2504 separate compare insns, such notes are added by try_replace_reg.
2505 When we have a combined compare-and-branch instruction, however,
2506 we need to attach a note to the branch itself to make this
2507 optimization work. */
2508
2509 if (!rtx_equal_p (new_rtx, note_src))
2510 set_unique_reg_note (jump, REG_EQUAL, copy_rtx (new_rtx));
2511 return 0;
2512 }
2513
2514 /* Remove REG_EQUAL note after simplification. */
2515 if (note_src)
2516 remove_note (jump, note);
2517 }
2518
2519 #ifdef HAVE_cc0
2520 /* Delete the cc0 setter. */
2521 if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc))))
2522 delete_insn (setcc);
2523 #endif
2524
2525 global_const_prop_count++;
2526 if (dump_file != NULL)
2527 {
2528 fprintf (dump_file,
2529 "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
2530 REGNO (from), INSN_UID (jump));
2531 print_rtl (dump_file, src);
2532 fprintf (dump_file, "\n");
2533 }
2534 purge_dead_edges (bb);
2535
2536 /* If a conditional jump has been changed into unconditional jump, remove
2537 the jump and make the edge fallthru - this is always called in
2538 cfglayout mode. */
2539 if (new_rtx != pc_rtx && simplejump_p (jump))
2540 {
2541 edge e;
2542 edge_iterator ei;
2543
2544 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); ei_next (&ei))
2545 if (e->dest != EXIT_BLOCK_PTR
2546 && BB_HEAD (e->dest) == JUMP_LABEL (jump))
2547 {
2548 e->flags |= EDGE_FALLTHRU;
2549 break;
2550 }
2551 delete_insn (jump);
2552 }
2553
2554 return 1;
2555 }
2556
2557 static bool
2558 constprop_register (rtx insn, rtx from, rtx to)
2559 {
2560 rtx sset;
2561
2562 /* Check for reg or cc0 setting instructions followed by
2563 conditional branch instructions first. */
2564 if ((sset = single_set (insn)) != NULL
2565 && NEXT_INSN (insn)
2566 && any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn)))
2567 {
2568 rtx dest = SET_DEST (sset);
2569 if ((REG_P (dest) || CC0_P (dest))
2570 && cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), from, to))
2571 return 1;
2572 }
2573
2574 /* Handle normal insns next. */
2575 if (NONJUMP_INSN_P (insn)
2576 && try_replace_reg (from, to, insn))
2577 return 1;
2578
2579 /* Try to propagate a CONST_INT into a conditional jump.
2580 We're pretty specific about what we will handle in this
2581 code, we can extend this as necessary over time.
2582
2583 Right now the insn in question must look like
2584 (set (pc) (if_then_else ...)) */
2585 else if (any_condjump_p (insn) && onlyjump_p (insn))
2586 return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, to);
2587 return 0;
2588 }
2589
2590 /* Perform constant and copy propagation on INSN.
2591 The result is nonzero if a change was made. */
2592
2593 static int
2594 cprop_insn (rtx insn)
2595 {
2596 struct reg_use *reg_used;
2597 int changed = 0;
2598 rtx note;
2599
2600 if (!INSN_P (insn))
2601 return 0;
2602
2603 reg_use_count = 0;
2604 note_uses (&PATTERN (insn), find_used_regs, NULL);
2605
2606 note = find_reg_equal_equiv_note (insn);
2607
2608 /* We may win even when propagating constants into notes. */
2609 if (note)
2610 find_used_regs (&XEXP (note, 0), NULL);
2611
2612 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
2613 reg_used++, reg_use_count--)
2614 {
2615 unsigned int regno = REGNO (reg_used->reg_rtx);
2616 rtx pat, src;
2617 struct expr *set;
2618
2619 /* If the register has already been set in this block, there's
2620 nothing we can do. */
2621 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
2622 continue;
2623
2624 /* Find an assignment that sets reg_used and is available
2625 at the start of the block. */
2626 set = find_avail_set (regno, insn);
2627 if (! set)
2628 continue;
2629
2630 pat = set->expr;
2631 /* ??? We might be able to handle PARALLELs. Later. */
2632 gcc_assert (GET_CODE (pat) == SET);
2633
2634 src = SET_SRC (pat);
2635
2636 /* Constant propagation. */
2637 if (gcse_constant_p (src))
2638 {
2639 if (constprop_register (insn, reg_used->reg_rtx, src))
2640 {
2641 changed = 1;
2642 global_const_prop_count++;
2643 if (dump_file != NULL)
2644 {
2645 fprintf (dump_file, "GLOBAL CONST-PROP: Replacing reg %d in ", regno);
2646 fprintf (dump_file, "insn %d with constant ", INSN_UID (insn));
2647 print_rtl (dump_file, src);
2648 fprintf (dump_file, "\n");
2649 }
2650 if (INSN_DELETED_P (insn))
2651 return 1;
2652 }
2653 }
2654 else if (REG_P (src)
2655 && REGNO (src) >= FIRST_PSEUDO_REGISTER
2656 && REGNO (src) != regno)
2657 {
2658 if (try_replace_reg (reg_used->reg_rtx, src, insn))
2659 {
2660 changed = 1;
2661 global_copy_prop_count++;
2662 if (dump_file != NULL)
2663 {
2664 fprintf (dump_file, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
2665 regno, INSN_UID (insn));
2666 fprintf (dump_file, " with reg %d\n", REGNO (src));
2667 }
2668
2669 /* The original insn setting reg_used may or may not now be
2670 deletable. We leave the deletion to flow. */
2671 /* FIXME: If it turns out that the insn isn't deletable,
2672 then we may have unnecessarily extended register lifetimes
2673 and made things worse. */
2674 }
2675 }
2676 }
2677
2678 if (changed && DEBUG_INSN_P (insn))
2679 return 0;
2680
2681 return changed;
2682 }
2683
2684 /* Like find_used_regs, but avoid recording uses that appear in
2685 input-output contexts such as zero_extract or pre_dec. This
2686 restricts the cases we consider to those for which local cprop
2687 can legitimately make replacements. */
2688
2689 static void
2690 local_cprop_find_used_regs (rtx *xptr, void *data)
2691 {
2692 rtx x = *xptr;
2693
2694 if (x == 0)
2695 return;
2696
2697 switch (GET_CODE (x))
2698 {
2699 case ZERO_EXTRACT:
2700 case SIGN_EXTRACT:
2701 case STRICT_LOW_PART:
2702 return;
2703
2704 case PRE_DEC:
2705 case PRE_INC:
2706 case POST_DEC:
2707 case POST_INC:
2708 case PRE_MODIFY:
2709 case POST_MODIFY:
2710 /* Can only legitimately appear this early in the context of
2711 stack pushes for function arguments, but handle all of the
2712 codes nonetheless. */
2713 return;
2714
2715 case SUBREG:
2716 /* Setting a subreg of a register larger than word_mode leaves
2717 the non-written words unchanged. */
2718 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) > BITS_PER_WORD)
2719 return;
2720 break;
2721
2722 default:
2723 break;
2724 }
2725
2726 find_used_regs (xptr, data);
2727 }
2728
2729 /* Try to perform local const/copy propagation on X in INSN. */
2730
2731 static bool
2732 do_local_cprop (rtx x, rtx insn)
2733 {
2734 rtx newreg = NULL, newcnst = NULL;
2735
2736 /* Rule out USE instructions and ASM statements as we don't want to
2737 change the hard registers mentioned. */
2738 if (REG_P (x)
2739 && (REGNO (x) >= FIRST_PSEUDO_REGISTER
2740 || (GET_CODE (PATTERN (insn)) != USE
2741 && asm_noperands (PATTERN (insn)) < 0)))
2742 {
2743 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0);
2744 struct elt_loc_list *l;
2745
2746 if (!val)
2747 return false;
2748 for (l = val->locs; l; l = l->next)
2749 {
2750 rtx this_rtx = l->loc;
2751 rtx note;
2752
2753 if (gcse_constant_p (this_rtx))
2754 newcnst = this_rtx;
2755 if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER
2756 /* Don't copy propagate if it has attached REG_EQUIV note.
2757 At this point this only function parameters should have
2758 REG_EQUIV notes and if the argument slot is used somewhere
2759 explicitly, it means address of parameter has been taken,
2760 so we should not extend the lifetime of the pseudo. */
2761 && (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX))
2762 || ! MEM_P (XEXP (note, 0))))
2763 newreg = this_rtx;
2764 }
2765 if (newcnst && constprop_register (insn, x, newcnst))
2766 {
2767 if (dump_file != NULL)
2768 {
2769 fprintf (dump_file, "LOCAL CONST-PROP: Replacing reg %d in ",
2770 REGNO (x));
2771 fprintf (dump_file, "insn %d with constant ",
2772 INSN_UID (insn));
2773 print_rtl (dump_file, newcnst);
2774 fprintf (dump_file, "\n");
2775 }
2776 local_const_prop_count++;
2777 return true;
2778 }
2779 else if (newreg && newreg != x && try_replace_reg (x, newreg, insn))
2780 {
2781 if (dump_file != NULL)
2782 {
2783 fprintf (dump_file,
2784 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
2785 REGNO (x), INSN_UID (insn));
2786 fprintf (dump_file, " with reg %d\n", REGNO (newreg));
2787 }
2788 local_copy_prop_count++;
2789 return true;
2790 }
2791 }
2792 return false;
2793 }
2794
2795 /* Do local const/copy propagation (i.e. within each basic block). */
2796
2797 static int
2798 local_cprop_pass (void)
2799 {
2800 basic_block bb;
2801 rtx insn;
2802 struct reg_use *reg_used;
2803 bool changed = false;
2804
2805 cselib_init (0);
2806 FOR_EACH_BB (bb)
2807 {
2808 FOR_BB_INSNS (bb, insn)
2809 {
2810 if (INSN_P (insn))
2811 {
2812 rtx note = find_reg_equal_equiv_note (insn);
2813 do
2814 {
2815 reg_use_count = 0;
2816 note_uses (&PATTERN (insn), local_cprop_find_used_regs,
2817 NULL);
2818 if (note)
2819 local_cprop_find_used_regs (&XEXP (note, 0), NULL);
2820
2821 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
2822 reg_used++, reg_use_count--)
2823 {
2824 if (do_local_cprop (reg_used->reg_rtx, insn))
2825 {
2826 changed = true;
2827 break;
2828 }
2829 }
2830 if (INSN_DELETED_P (insn))
2831 break;
2832 }
2833 while (reg_use_count);
2834 }
2835 cselib_process_insn (insn);
2836 }
2837
2838 /* Forget everything at the end of a basic block. */
2839 cselib_clear_table ();
2840 }
2841
2842 cselib_finish ();
2843
2844 return changed;
2845 }
2846
2847 /* Similar to get_condition, only the resulting condition must be
2848 valid at JUMP, instead of at EARLIEST.
2849
2850 This differs from noce_get_condition in ifcvt.c in that we prefer not to
2851 settle for the condition variable in the jump instruction being integral.
2852 We prefer to be able to record the value of a user variable, rather than
2853 the value of a temporary used in a condition. This could be solved by
2854 recording the value of *every* register scanned by canonicalize_condition,
2855 but this would require some code reorganization. */
2856
2857 rtx
2858 fis_get_condition (rtx jump)
2859 {
2860 return get_condition (jump, NULL, false, true);
2861 }
2862
2863 /* Check the comparison COND to see if we can safely form an implicit set from
2864 it. COND is either an EQ or NE comparison. */
2865
2866 static bool
2867 implicit_set_cond_p (const_rtx cond)
2868 {
2869 const enum machine_mode mode = GET_MODE (XEXP (cond, 0));
2870 const_rtx cst = XEXP (cond, 1);
2871
2872 /* We can't perform this optimization if either operand might be or might
2873 contain a signed zero. */
2874 if (HONOR_SIGNED_ZEROS (mode))
2875 {
2876 /* It is sufficient to check if CST is or contains a zero. We must
2877 handle float, complex, and vector. If any subpart is a zero, then
2878 the optimization can't be performed. */
2879 /* ??? The complex and vector checks are not implemented yet. We just
2880 always return zero for them. */
2881 if (GET_CODE (cst) == CONST_DOUBLE)
2882 {
2883 REAL_VALUE_TYPE d;
2884 REAL_VALUE_FROM_CONST_DOUBLE (d, cst);
2885 if (REAL_VALUES_EQUAL (d, dconst0))
2886 return 0;
2887 }
2888 else
2889 return 0;
2890 }
2891
2892 return gcse_constant_p (cst);
2893 }
2894
2895 /* Find the implicit sets of a function. An "implicit set" is a constraint
2896 on the value of a variable, implied by a conditional jump. For example,
2897 following "if (x == 2)", the then branch may be optimized as though the
2898 conditional performed an "explicit set", in this example, "x = 2". This
2899 function records the set patterns that are implicit at the start of each
2900 basic block.
2901
2902 FIXME: This would be more effective if critical edges are pre-split. As
2903 it is now, we can't record implicit sets for blocks that have
2904 critical successor edges. This results in missed optimizations
2905 and in more (unnecessary) work in cfgcleanup.c:thread_jump(). */
2906
2907 static void
2908 find_implicit_sets (void)
2909 {
2910 basic_block bb, dest;
2911 unsigned int count;
2912 rtx cond, new_rtx;
2913
2914 count = 0;
2915 FOR_EACH_BB (bb)
2916 /* Check for more than one successor. */
2917 if (EDGE_COUNT (bb->succs) > 1)
2918 {
2919 cond = fis_get_condition (BB_END (bb));
2920
2921 if (cond
2922 && (GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
2923 && REG_P (XEXP (cond, 0))
2924 && REGNO (XEXP (cond, 0)) >= FIRST_PSEUDO_REGISTER
2925 && implicit_set_cond_p (cond))
2926 {
2927 dest = GET_CODE (cond) == EQ ? BRANCH_EDGE (bb)->dest
2928 : FALLTHRU_EDGE (bb)->dest;
2929
2930 if (dest
2931 /* Record nothing for a critical edge. */
2932 && single_pred_p (dest)
2933 && dest != EXIT_BLOCK_PTR)
2934 {
2935 new_rtx = gen_rtx_SET (VOIDmode, XEXP (cond, 0),
2936 XEXP (cond, 1));
2937 implicit_sets[dest->index] = new_rtx;
2938 if (dump_file)
2939 {
2940 fprintf(dump_file, "Implicit set of reg %d in ",
2941 REGNO (XEXP (cond, 0)));
2942 fprintf(dump_file, "basic block %d\n", dest->index);
2943 }
2944 count++;
2945 }
2946 }
2947 }
2948
2949 if (dump_file)
2950 fprintf (dump_file, "Found %d implicit sets\n", count);
2951 }
2952
2953 /* Bypass conditional jumps. */
2954
2955 /* The value of last_basic_block at the beginning of the jump_bypass
2956 pass. The use of redirect_edge_and_branch_force may introduce new
2957 basic blocks, but the data flow analysis is only valid for basic
2958 block indices less than bypass_last_basic_block. */
2959
2960 static int bypass_last_basic_block;
2961
2962 /* Find a set of REGNO to a constant that is available at the end of basic
2963 block BB. Returns NULL if no such set is found. Based heavily upon
2964 find_avail_set. */
2965
2966 static struct expr *
2967 find_bypass_set (int regno, int bb)
2968 {
2969 struct expr *result = 0;
2970
2971 for (;;)
2972 {
2973 rtx src;
2974 struct expr *set = lookup_set (regno, &set_hash_table);
2975
2976 while (set)
2977 {
2978 if (TEST_BIT (cprop_avout[bb], set->bitmap_index))
2979 break;
2980 set = next_set (regno, set);
2981 }
2982
2983 if (set == 0)
2984 break;
2985
2986 gcc_assert (GET_CODE (set->expr) == SET);
2987
2988 src = SET_SRC (set->expr);
2989 if (gcse_constant_p (src))
2990 result = set;
2991
2992 if (! REG_P (src))
2993 break;
2994
2995 regno = REGNO (src);
2996 }
2997 return result;
2998 }
2999
3000
3001 /* Subroutine of bypass_block that checks whether a pseudo is killed by
3002 any of the instructions inserted on an edge. Jump bypassing places
3003 condition code setters on CFG edges using insert_insn_on_edge. This
3004 function is required to check that our data flow analysis is still
3005 valid prior to commit_edge_insertions. */
3006
3007 static bool
3008 reg_killed_on_edge (const_rtx reg, const_edge e)
3009 {
3010 rtx insn;
3011
3012 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
3013 if (INSN_P (insn) && reg_set_p (reg, insn))
3014 return true;
3015
3016 return false;
3017 }
3018
3019 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
3020 basic block BB which has more than one predecessor. If not NULL, SETCC
3021 is the first instruction of BB, which is immediately followed by JUMP_INSN
3022 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
3023 Returns nonzero if a change was made.
3024
3025 During the jump bypassing pass, we may place copies of SETCC instructions
3026 on CFG edges. The following routine must be careful to pay attention to
3027 these inserted insns when performing its transformations. */
3028
3029 static int
3030 bypass_block (basic_block bb, rtx setcc, rtx jump)
3031 {
3032 rtx insn, note;
3033 edge e, edest;
3034 int i, change;
3035 int may_be_loop_header;
3036 unsigned removed_p;
3037 edge_iterator ei;
3038
3039 insn = (setcc != NULL) ? setcc : jump;
3040
3041 /* Determine set of register uses in INSN. */
3042 reg_use_count = 0;
3043 note_uses (&PATTERN (insn), find_used_regs, NULL);
3044 note = find_reg_equal_equiv_note (insn);
3045 if (note)
3046 find_used_regs (&XEXP (note, 0), NULL);
3047
3048 may_be_loop_header = false;
3049 FOR_EACH_EDGE (e, ei, bb->preds)
3050 if (e->flags & EDGE_DFS_BACK)
3051 {
3052 may_be_loop_header = true;
3053 break;
3054 }
3055
3056 change = 0;
3057 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3058 {
3059 removed_p = 0;
3060
3061 if (e->flags & EDGE_COMPLEX)
3062 {
3063 ei_next (&ei);
3064 continue;
3065 }
3066
3067 /* We can't redirect edges from new basic blocks. */
3068 if (e->src->index >= bypass_last_basic_block)
3069 {
3070 ei_next (&ei);
3071 continue;
3072 }
3073
3074 /* The irreducible loops created by redirecting of edges entering the
3075 loop from outside would decrease effectiveness of some of the following
3076 optimizations, so prevent this. */
3077 if (may_be_loop_header
3078 && !(e->flags & EDGE_DFS_BACK))
3079 {
3080 ei_next (&ei);
3081 continue;
3082 }
3083
3084 for (i = 0; i < reg_use_count; i++)
3085 {
3086 struct reg_use *reg_used = &reg_use_table[i];
3087 unsigned int regno = REGNO (reg_used->reg_rtx);
3088 basic_block dest, old_dest;
3089 struct expr *set;
3090 rtx src, new_rtx;
3091
3092 set = find_bypass_set (regno, e->src->index);
3093
3094 if (! set)
3095 continue;
3096
3097 /* Check the data flow is valid after edge insertions. */
3098 if (e->insns.r && reg_killed_on_edge (reg_used->reg_rtx, e))
3099 continue;
3100
3101 src = SET_SRC (pc_set (jump));
3102
3103 if (setcc != NULL)
3104 src = simplify_replace_rtx (src,
3105 SET_DEST (PATTERN (setcc)),
3106 SET_SRC (PATTERN (setcc)));
3107
3108 new_rtx = simplify_replace_rtx (src, reg_used->reg_rtx,
3109 SET_SRC (set->expr));
3110
3111 /* Jump bypassing may have already placed instructions on
3112 edges of the CFG. We can't bypass an outgoing edge that
3113 has instructions associated with it, as these insns won't
3114 get executed if the incoming edge is redirected. */
3115
3116 if (new_rtx == pc_rtx)
3117 {
3118 edest = FALLTHRU_EDGE (bb);
3119 dest = edest->insns.r ? NULL : edest->dest;
3120 }
3121 else if (GET_CODE (new_rtx) == LABEL_REF)
3122 {
3123 dest = BLOCK_FOR_INSN (XEXP (new_rtx, 0));
3124 /* Don't bypass edges containing instructions. */
3125 edest = find_edge (bb, dest);
3126 if (edest && edest->insns.r)
3127 dest = NULL;
3128 }
3129 else
3130 dest = NULL;
3131
3132 /* Avoid unification of the edge with other edges from original
3133 branch. We would end up emitting the instruction on "both"
3134 edges. */
3135
3136 if (dest && setcc && !CC0_P (SET_DEST (PATTERN (setcc)))
3137 && find_edge (e->src, dest))
3138 dest = NULL;
3139
3140 old_dest = e->dest;
3141 if (dest != NULL
3142 && dest != old_dest
3143 && dest != EXIT_BLOCK_PTR)
3144 {
3145 redirect_edge_and_branch_force (e, dest);
3146
3147 /* Copy the register setter to the redirected edge.
3148 Don't copy CC0 setters, as CC0 is dead after jump. */
3149 if (setcc)
3150 {
3151 rtx pat = PATTERN (setcc);
3152 if (!CC0_P (SET_DEST (pat)))
3153 insert_insn_on_edge (copy_insn (pat), e);
3154 }
3155
3156 if (dump_file != NULL)
3157 {
3158 fprintf (dump_file, "JUMP-BYPASS: Proved reg %d "
3159 "in jump_insn %d equals constant ",
3160 regno, INSN_UID (jump));
3161 print_rtl (dump_file, SET_SRC (set->expr));
3162 fprintf (dump_file, "\nBypass edge from %d->%d to %d\n",
3163 e->src->index, old_dest->index, dest->index);
3164 }
3165 change = 1;
3166 removed_p = 1;
3167 break;
3168 }
3169 }
3170 if (!removed_p)
3171 ei_next (&ei);
3172 }
3173 return change;
3174 }
3175
3176 /* Find basic blocks with more than one predecessor that only contain a
3177 single conditional jump. If the result of the comparison is known at
3178 compile-time from any incoming edge, redirect that edge to the
3179 appropriate target. Returns nonzero if a change was made.
3180
3181 This function is now mis-named, because we also handle indirect jumps. */
3182
3183 static int
3184 bypass_conditional_jumps (void)
3185 {
3186 basic_block bb;
3187 int changed;
3188 rtx setcc;
3189 rtx insn;
3190 rtx dest;
3191
3192 /* Note we start at block 1. */
3193 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3194 return 0;
3195
3196 bypass_last_basic_block = last_basic_block;
3197 mark_dfs_back_edges ();
3198
3199 changed = 0;
3200 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb,
3201 EXIT_BLOCK_PTR, next_bb)
3202 {
3203 /* Check for more than one predecessor. */
3204 if (!single_pred_p (bb))
3205 {
3206 setcc = NULL_RTX;
3207 FOR_BB_INSNS (bb, insn)
3208 if (DEBUG_INSN_P (insn))
3209 continue;
3210 else if (NONJUMP_INSN_P (insn))
3211 {
3212 if (setcc)
3213 break;
3214 if (GET_CODE (PATTERN (insn)) != SET)
3215 break;
3216
3217 dest = SET_DEST (PATTERN (insn));
3218 if (REG_P (dest) || CC0_P (dest))
3219 setcc = insn;
3220 else
3221 break;
3222 }
3223 else if (JUMP_P (insn))
3224 {
3225 if ((any_condjump_p (insn) || computed_jump_p (insn))
3226 && onlyjump_p (insn))
3227 changed |= bypass_block (bb, setcc, insn);
3228 break;
3229 }
3230 else if (INSN_P (insn))
3231 break;
3232 }
3233 }
3234
3235 /* If we bypassed any register setting insns, we inserted a
3236 copy on the redirected edge. These need to be committed. */
3237 if (changed)
3238 commit_edge_insertions ();
3239
3240 return changed;
3241 }
3242 \f
3243 /* Compute PRE+LCM working variables. */
3244
3245 /* Local properties of expressions. */
3246 /* Nonzero for expressions that are transparent in the block. */
3247 static sbitmap *transp;
3248
3249 /* Nonzero for expressions that are computed (available) in the block. */
3250 static sbitmap *comp;
3251
3252 /* Nonzero for expressions that are locally anticipatable in the block. */
3253 static sbitmap *antloc;
3254
3255 /* Nonzero for expressions where this block is an optimal computation
3256 point. */
3257 static sbitmap *pre_optimal;
3258
3259 /* Nonzero for expressions which are redundant in a particular block. */
3260 static sbitmap *pre_redundant;
3261
3262 /* Nonzero for expressions which should be inserted on a specific edge. */
3263 static sbitmap *pre_insert_map;
3264
3265 /* Nonzero for expressions which should be deleted in a specific block. */
3266 static sbitmap *pre_delete_map;
3267
3268 /* Contains the edge_list returned by pre_edge_lcm. */
3269 static struct edge_list *edge_list;
3270
3271 /* Allocate vars used for PRE analysis. */
3272
3273 static void
3274 alloc_pre_mem (int n_blocks, int n_exprs)
3275 {
3276 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
3277 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
3278 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
3279
3280 pre_optimal = NULL;
3281 pre_redundant = NULL;
3282 pre_insert_map = NULL;
3283 pre_delete_map = NULL;
3284 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
3285
3286 /* pre_insert and pre_delete are allocated later. */
3287 }
3288
3289 /* Free vars used for PRE analysis. */
3290
3291 static void
3292 free_pre_mem (void)
3293 {
3294 sbitmap_vector_free (transp);
3295 sbitmap_vector_free (comp);
3296
3297 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
3298
3299 if (pre_optimal)
3300 sbitmap_vector_free (pre_optimal);
3301 if (pre_redundant)
3302 sbitmap_vector_free (pre_redundant);
3303 if (pre_insert_map)
3304 sbitmap_vector_free (pre_insert_map);
3305 if (pre_delete_map)
3306 sbitmap_vector_free (pre_delete_map);
3307
3308 transp = comp = NULL;
3309 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
3310 }
3311
3312 /* Remove certain expressions from anticipatable and transparent
3313 sets of basic blocks that have incoming abnormal edge.
3314 For PRE remove potentially trapping expressions to avoid placing
3315 them on abnormal edges. For hoisting remove memory references that
3316 can be clobbered by calls. */
3317
3318 static void
3319 prune_expressions (bool pre_p)
3320 {
3321 sbitmap prune_exprs;
3322 unsigned int ui;
3323 basic_block bb;
3324
3325 prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
3326 sbitmap_zero (prune_exprs);
3327 for (ui = 0; ui < expr_hash_table.size; ui++)
3328 {
3329 struct expr *e;
3330 for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash)
3331 {
3332 /* Note potentially trapping expressions. */
3333 if (may_trap_p (e->expr))
3334 {
3335 SET_BIT (prune_exprs, e->bitmap_index);
3336 continue;
3337 }
3338
3339 if (!pre_p && MEM_P (e->expr))
3340 /* Note memory references that can be clobbered by a call.
3341 We do not split abnormal edges in hoisting, so would
3342 a memory reference get hoisted along an abnormal edge,
3343 it would be placed /before/ the call. Therefore, only
3344 constant memory references can be hoisted along abnormal
3345 edges. */
3346 {
3347 if (GET_CODE (XEXP (e->expr, 0)) == SYMBOL_REF
3348 && CONSTANT_POOL_ADDRESS_P (XEXP (e->expr, 0)))
3349 continue;
3350
3351 if (MEM_READONLY_P (e->expr)
3352 && !MEM_VOLATILE_P (e->expr)
3353 && MEM_NOTRAP_P (e->expr))
3354 /* Constant memory reference, e.g., a PIC address. */
3355 continue;
3356
3357 /* ??? Optimally, we would use interprocedural alias
3358 analysis to determine if this mem is actually killed
3359 by this call. */
3360
3361 SET_BIT (prune_exprs, e->bitmap_index);
3362 }
3363 }
3364 }
3365
3366 FOR_EACH_BB (bb)
3367 {
3368 edge e;
3369 edge_iterator ei;
3370
3371 /* If the current block is the destination of an abnormal edge, we
3372 kill all trapping (for PRE) and memory (for hoist) expressions
3373 because we won't be able to properly place the instruction on
3374 the edge. So make them neither anticipatable nor transparent.
3375 This is fairly conservative.
3376
3377 ??? For hoisting it may be necessary to check for set-and-jump
3378 instructions here, not just for abnormal edges. The general problem
3379 is that when an expression cannot not be placed right at the end of
3380 a basic block we should account for any side-effects of a subsequent
3381 jump instructions that could clobber the expression. It would
3382 be best to implement this check along the lines of
3383 hoist_expr_reaches_here_p where the target block is already known
3384 and, hence, there's no need to conservatively prune expressions on
3385 "intermediate" set-and-jump instructions. */
3386 FOR_EACH_EDGE (e, ei, bb->preds)
3387 if ((e->flags & EDGE_ABNORMAL)
3388 && (pre_p || CALL_P (BB_END (e->src))))
3389 {
3390 sbitmap_difference (antloc[bb->index],
3391 antloc[bb->index], prune_exprs);
3392 sbitmap_difference (transp[bb->index],
3393 transp[bb->index], prune_exprs);
3394 break;
3395 }
3396 }
3397
3398 sbitmap_free (prune_exprs);
3399 }
3400
3401 /* Top level routine to do the dataflow analysis needed by PRE. */
3402
3403 static void
3404 compute_pre_data (void)
3405 {
3406 basic_block bb;
3407
3408 compute_local_properties (transp, comp, antloc, &expr_hash_table);
3409 prune_expressions (true);
3410 sbitmap_vector_zero (ae_kill, last_basic_block);
3411
3412 /* Compute ae_kill for each basic block using:
3413
3414 ~(TRANSP | COMP)
3415 */
3416
3417 FOR_EACH_BB (bb)
3418 {
3419 sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
3420 sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
3421 }
3422
3423 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
3424 ae_kill, &pre_insert_map, &pre_delete_map);
3425 sbitmap_vector_free (antloc);
3426 antloc = NULL;
3427 sbitmap_vector_free (ae_kill);
3428 ae_kill = NULL;
3429 }
3430 \f
3431 /* PRE utilities */
3432
3433 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
3434 block BB.
3435
3436 VISITED is a pointer to a working buffer for tracking which BB's have
3437 been visited. It is NULL for the top-level call.
3438
3439 We treat reaching expressions that go through blocks containing the same
3440 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3441 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3442 2 as not reaching. The intent is to improve the probability of finding
3443 only one reaching expression and to reduce register lifetimes by picking
3444 the closest such expression. */
3445
3446 static int
3447 pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr, basic_block bb, char *visited)
3448 {
3449 edge pred;
3450 edge_iterator ei;
3451
3452 FOR_EACH_EDGE (pred, ei, bb->preds)
3453 {
3454 basic_block pred_bb = pred->src;
3455
3456 if (pred->src == ENTRY_BLOCK_PTR
3457 /* Has predecessor has already been visited? */
3458 || visited[pred_bb->index])
3459 ;/* Nothing to do. */
3460
3461 /* Does this predecessor generate this expression? */
3462 else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
3463 {
3464 /* Is this the occurrence we're looking for?
3465 Note that there's only one generating occurrence per block
3466 so we just need to check the block number. */
3467 if (occr_bb == pred_bb)
3468 return 1;
3469
3470 visited[pred_bb->index] = 1;
3471 }
3472 /* Ignore this predecessor if it kills the expression. */
3473 else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
3474 visited[pred_bb->index] = 1;
3475
3476 /* Neither gen nor kill. */
3477 else
3478 {
3479 visited[pred_bb->index] = 1;
3480 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
3481 return 1;
3482 }
3483 }
3484
3485 /* All paths have been checked. */
3486 return 0;
3487 }
3488
3489 /* The wrapper for pre_expr_reaches_here_work that ensures that any
3490 memory allocated for that function is returned. */
3491
3492 static int
3493 pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
3494 {
3495 int rval;
3496 char *visited = XCNEWVEC (char, last_basic_block);
3497
3498 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
3499
3500 free (visited);
3501 return rval;
3502 }
3503 \f
3504
3505 /* Given an expr, generate RTL which we can insert at the end of a BB,
3506 or on an edge. Set the block number of any insns generated to
3507 the value of BB. */
3508
3509 static rtx
3510 process_insert_insn (struct expr *expr)
3511 {
3512 rtx reg = expr->reaching_reg;
3513 rtx exp = copy_rtx (expr->expr);
3514 rtx pat;
3515
3516 start_sequence ();
3517
3518 /* If the expression is something that's an operand, like a constant,
3519 just copy it to a register. */
3520 if (general_operand (exp, GET_MODE (reg)))
3521 emit_move_insn (reg, exp);
3522
3523 /* Otherwise, make a new insn to compute this expression and make sure the
3524 insn will be recognized (this also adds any needed CLOBBERs). Copy the
3525 expression to make sure we don't have any sharing issues. */
3526 else
3527 {
3528 rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
3529
3530 if (insn_invalid_p (insn))
3531 gcc_unreachable ();
3532 }
3533
3534
3535 pat = get_insns ();
3536 end_sequence ();
3537
3538 return pat;
3539 }
3540
3541 /* Add EXPR to the end of basic block BB.
3542
3543 This is used by both the PRE and code hoisting. */
3544
3545 static void
3546 insert_insn_end_basic_block (struct expr *expr, basic_block bb)
3547 {
3548 rtx insn = BB_END (bb);
3549 rtx new_insn;
3550 rtx reg = expr->reaching_reg;
3551 int regno = REGNO (reg);
3552 rtx pat, pat_end;
3553
3554 pat = process_insert_insn (expr);
3555 gcc_assert (pat && INSN_P (pat));
3556
3557 pat_end = pat;
3558 while (NEXT_INSN (pat_end) != NULL_RTX)
3559 pat_end = NEXT_INSN (pat_end);
3560
3561 /* If the last insn is a jump, insert EXPR in front [taking care to
3562 handle cc0, etc. properly]. Similarly we need to care trapping
3563 instructions in presence of non-call exceptions. */
3564
3565 if (JUMP_P (insn)
3566 || (NONJUMP_INSN_P (insn)
3567 && (!single_succ_p (bb)
3568 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
3569 {
3570 #ifdef HAVE_cc0
3571 rtx note;
3572 #endif
3573
3574 /* If this is a jump table, then we can't insert stuff here. Since
3575 we know the previous real insn must be the tablejump, we insert
3576 the new instruction just before the tablejump. */
3577 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
3578 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
3579 insn = prev_real_insn (insn);
3580
3581 #ifdef HAVE_cc0
3582 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
3583 if cc0 isn't set. */
3584 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3585 if (note)
3586 insn = XEXP (note, 0);
3587 else
3588 {
3589 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
3590 if (maybe_cc0_setter
3591 && INSN_P (maybe_cc0_setter)
3592 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
3593 insn = maybe_cc0_setter;
3594 }
3595 #endif
3596 /* FIXME: What if something in cc0/jump uses value set in new insn? */
3597 new_insn = emit_insn_before_noloc (pat, insn, bb);
3598 }
3599
3600 /* Likewise if the last insn is a call, as will happen in the presence
3601 of exception handling. */
3602 else if (CALL_P (insn)
3603 && (!single_succ_p (bb)
3604 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
3605 {
3606 /* Keeping in mind targets with small register classes and parameters
3607 in registers, we search backward and place the instructions before
3608 the first parameter is loaded. Do this for everyone for consistency
3609 and a presumption that we'll get better code elsewhere as well. */
3610
3611 /* Since different machines initialize their parameter registers
3612 in different orders, assume nothing. Collect the set of all
3613 parameter registers. */
3614 insn = find_first_parameter_load (insn, BB_HEAD (bb));
3615
3616 /* If we found all the parameter loads, then we want to insert
3617 before the first parameter load.
3618
3619 If we did not find all the parameter loads, then we might have
3620 stopped on the head of the block, which could be a CODE_LABEL.
3621 If we inserted before the CODE_LABEL, then we would be putting
3622 the insn in the wrong basic block. In that case, put the insn
3623 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
3624 while (LABEL_P (insn)
3625 || NOTE_INSN_BASIC_BLOCK_P (insn))
3626 insn = NEXT_INSN (insn);
3627
3628 new_insn = emit_insn_before_noloc (pat, insn, bb);
3629 }
3630 else
3631 new_insn = emit_insn_after_noloc (pat, insn, bb);
3632
3633 while (1)
3634 {
3635 if (INSN_P (pat))
3636 add_label_notes (PATTERN (pat), new_insn);
3637 if (pat == pat_end)
3638 break;
3639 pat = NEXT_INSN (pat);
3640 }
3641
3642 gcse_create_count++;
3643
3644 if (dump_file)
3645 {
3646 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
3647 bb->index, INSN_UID (new_insn));
3648 fprintf (dump_file, "copying expression %d to reg %d\n",
3649 expr->bitmap_index, regno);
3650 }
3651 }
3652
3653 /* Insert partially redundant expressions on edges in the CFG to make
3654 the expressions fully redundant. */
3655
3656 static int
3657 pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
3658 {
3659 int e, i, j, num_edges, set_size, did_insert = 0;
3660 sbitmap *inserted;
3661
3662 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
3663 if it reaches any of the deleted expressions. */
3664
3665 set_size = pre_insert_map[0]->size;
3666 num_edges = NUM_EDGES (edge_list);
3667 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
3668 sbitmap_vector_zero (inserted, num_edges);
3669
3670 for (e = 0; e < num_edges; e++)
3671 {
3672 int indx;
3673 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
3674
3675 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
3676 {
3677 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
3678
3679 for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1)
3680 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
3681 {
3682 struct expr *expr = index_map[j];
3683 struct occr *occr;
3684
3685 /* Now look at each deleted occurrence of this expression. */
3686 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
3687 {
3688 if (! occr->deleted_p)
3689 continue;
3690
3691 /* Insert this expression on this edge if it would
3692 reach the deleted occurrence in BB. */
3693 if (!TEST_BIT (inserted[e], j))
3694 {
3695 rtx insn;
3696 edge eg = INDEX_EDGE (edge_list, e);
3697
3698 /* We can't insert anything on an abnormal and
3699 critical edge, so we insert the insn at the end of
3700 the previous block. There are several alternatives
3701 detailed in Morgans book P277 (sec 10.5) for
3702 handling this situation. This one is easiest for
3703 now. */
3704
3705 if (eg->flags & EDGE_ABNORMAL)
3706 insert_insn_end_basic_block (index_map[j], bb);
3707 else
3708 {
3709 insn = process_insert_insn (index_map[j]);
3710 insert_insn_on_edge (insn, eg);
3711 }
3712
3713 if (dump_file)
3714 {
3715 fprintf (dump_file, "PRE: edge (%d,%d), ",
3716 bb->index,
3717 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
3718 fprintf (dump_file, "copy expression %d\n",
3719 expr->bitmap_index);
3720 }
3721
3722 update_ld_motion_stores (expr);
3723 SET_BIT (inserted[e], j);
3724 did_insert = 1;
3725 gcse_create_count++;
3726 }
3727 }
3728 }
3729 }
3730 }
3731
3732 sbitmap_vector_free (inserted);
3733 return did_insert;
3734 }
3735
3736 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
3737 Given "old_reg <- expr" (INSN), instead of adding after it
3738 reaching_reg <- old_reg
3739 it's better to do the following:
3740 reaching_reg <- expr
3741 old_reg <- reaching_reg
3742 because this way copy propagation can discover additional PRE
3743 opportunities. But if this fails, we try the old way.
3744 When "expr" is a store, i.e.
3745 given "MEM <- old_reg", instead of adding after it
3746 reaching_reg <- old_reg
3747 it's better to add it before as follows:
3748 reaching_reg <- old_reg
3749 MEM <- reaching_reg. */
3750
3751 static void
3752 pre_insert_copy_insn (struct expr *expr, rtx insn)
3753 {
3754 rtx reg = expr->reaching_reg;
3755 int regno = REGNO (reg);
3756 int indx = expr->bitmap_index;
3757 rtx pat = PATTERN (insn);
3758 rtx set, first_set, new_insn;
3759 rtx old_reg;
3760 int i;
3761
3762 /* This block matches the logic in hash_scan_insn. */
3763 switch (GET_CODE (pat))
3764 {
3765 case SET:
3766 set = pat;
3767 break;
3768
3769 case PARALLEL:
3770 /* Search through the parallel looking for the set whose
3771 source was the expression that we're interested in. */
3772 first_set = NULL_RTX;
3773 set = NULL_RTX;
3774 for (i = 0; i < XVECLEN (pat, 0); i++)
3775 {
3776 rtx x = XVECEXP (pat, 0, i);
3777 if (GET_CODE (x) == SET)
3778 {
3779 /* If the source was a REG_EQUAL or REG_EQUIV note, we
3780 may not find an equivalent expression, but in this
3781 case the PARALLEL will have a single set. */
3782 if (first_set == NULL_RTX)
3783 first_set = x;
3784 if (expr_equiv_p (SET_SRC (x), expr->expr))
3785 {
3786 set = x;
3787 break;
3788 }
3789 }
3790 }
3791
3792 gcc_assert (first_set);
3793 if (set == NULL_RTX)
3794 set = first_set;
3795 break;
3796
3797 default:
3798 gcc_unreachable ();
3799 }
3800
3801 if (REG_P (SET_DEST (set)))
3802 {
3803 old_reg = SET_DEST (set);
3804 /* Check if we can modify the set destination in the original insn. */
3805 if (validate_change (insn, &SET_DEST (set), reg, 0))
3806 {
3807 new_insn = gen_move_insn (old_reg, reg);
3808 new_insn = emit_insn_after (new_insn, insn);
3809 }
3810 else
3811 {
3812 new_insn = gen_move_insn (reg, old_reg);
3813 new_insn = emit_insn_after (new_insn, insn);
3814 }
3815 }
3816 else /* This is possible only in case of a store to memory. */
3817 {
3818 old_reg = SET_SRC (set);
3819 new_insn = gen_move_insn (reg, old_reg);
3820
3821 /* Check if we can modify the set source in the original insn. */
3822 if (validate_change (insn, &SET_SRC (set), reg, 0))
3823 new_insn = emit_insn_before (new_insn, insn);
3824 else
3825 new_insn = emit_insn_after (new_insn, insn);
3826 }
3827
3828 gcse_create_count++;
3829
3830 if (dump_file)
3831 fprintf (dump_file,
3832 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
3833 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
3834 INSN_UID (insn), regno);
3835 }
3836
3837 /* Copy available expressions that reach the redundant expression
3838 to `reaching_reg'. */
3839
3840 static void
3841 pre_insert_copies (void)
3842 {
3843 unsigned int i, added_copy;
3844 struct expr *expr;
3845 struct occr *occr;
3846 struct occr *avail;
3847
3848 /* For each available expression in the table, copy the result to
3849 `reaching_reg' if the expression reaches a deleted one.
3850
3851 ??? The current algorithm is rather brute force.
3852 Need to do some profiling. */
3853
3854 for (i = 0; i < expr_hash_table.size; i++)
3855 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
3856 {
3857 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
3858 we don't want to insert a copy here because the expression may not
3859 really be redundant. So only insert an insn if the expression was
3860 deleted. This test also avoids further processing if the
3861 expression wasn't deleted anywhere. */
3862 if (expr->reaching_reg == NULL)
3863 continue;
3864
3865 /* Set when we add a copy for that expression. */
3866 added_copy = 0;
3867
3868 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
3869 {
3870 if (! occr->deleted_p)
3871 continue;
3872
3873 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
3874 {
3875 rtx insn = avail->insn;
3876
3877 /* No need to handle this one if handled already. */
3878 if (avail->copied_p)
3879 continue;
3880
3881 /* Don't handle this one if it's a redundant one. */
3882 if (INSN_DELETED_P (insn))
3883 continue;
3884
3885 /* Or if the expression doesn't reach the deleted one. */
3886 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
3887 expr,
3888 BLOCK_FOR_INSN (occr->insn)))
3889 continue;
3890
3891 added_copy = 1;
3892
3893 /* Copy the result of avail to reaching_reg. */
3894 pre_insert_copy_insn (expr, insn);
3895 avail->copied_p = 1;
3896 }
3897 }
3898
3899 if (added_copy)
3900 update_ld_motion_stores (expr);
3901 }
3902 }
3903
3904 /* Emit move from SRC to DEST noting the equivalence with expression computed
3905 in INSN. */
3906 static rtx
3907 gcse_emit_move_after (rtx src, rtx dest, rtx insn)
3908 {
3909 rtx new_rtx;
3910 rtx set = single_set (insn), set2;
3911 rtx note;
3912 rtx eqv;
3913
3914 /* This should never fail since we're creating a reg->reg copy
3915 we've verified to be valid. */
3916
3917 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
3918
3919 /* Note the equivalence for local CSE pass. */
3920 set2 = single_set (new_rtx);
3921 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
3922 return new_rtx;
3923 if ((note = find_reg_equal_equiv_note (insn)))
3924 eqv = XEXP (note, 0);
3925 else
3926 eqv = SET_SRC (set);
3927
3928 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
3929
3930 return new_rtx;
3931 }
3932
3933 /* Delete redundant computations.
3934 Deletion is done by changing the insn to copy the `reaching_reg' of
3935 the expression into the result of the SET. It is left to later passes
3936 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
3937
3938 Returns nonzero if a change is made. */
3939
3940 static int
3941 pre_delete (void)
3942 {
3943 unsigned int i;
3944 int changed;
3945 struct expr *expr;
3946 struct occr *occr;
3947
3948 changed = 0;
3949 for (i = 0; i < expr_hash_table.size; i++)
3950 for (expr = expr_hash_table.table[i];
3951 expr != NULL;
3952 expr = expr->next_same_hash)
3953 {
3954 int indx = expr->bitmap_index;
3955
3956 /* We only need to search antic_occr since we require
3957 ANTLOC != 0. */
3958
3959 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
3960 {
3961 rtx insn = occr->insn;
3962 rtx set;
3963 basic_block bb = BLOCK_FOR_INSN (insn);
3964
3965 /* We only delete insns that have a single_set. */
3966 if (TEST_BIT (pre_delete_map[bb->index], indx)
3967 && (set = single_set (insn)) != 0
3968 && dbg_cnt (pre_insn))
3969 {
3970 /* Create a pseudo-reg to store the result of reaching
3971 expressions into. Get the mode for the new pseudo from
3972 the mode of the original destination pseudo. */
3973 if (expr->reaching_reg == NULL)
3974 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
3975
3976 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
3977 delete_insn (insn);
3978 occr->deleted_p = 1;
3979 changed = 1;
3980 gcse_subst_count++;
3981
3982 if (dump_file)
3983 {
3984 fprintf (dump_file,
3985 "PRE: redundant insn %d (expression %d) in ",
3986 INSN_UID (insn), indx);
3987 fprintf (dump_file, "bb %d, reaching reg is %d\n",
3988 bb->index, REGNO (expr->reaching_reg));
3989 }
3990 }
3991 }
3992 }
3993
3994 return changed;
3995 }
3996
3997 /* Perform GCSE optimizations using PRE.
3998 This is called by one_pre_gcse_pass after all the dataflow analysis
3999 has been done.
4000
4001 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
4002 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
4003 Compiler Design and Implementation.
4004
4005 ??? A new pseudo reg is created to hold the reaching expression. The nice
4006 thing about the classical approach is that it would try to use an existing
4007 reg. If the register can't be adequately optimized [i.e. we introduce
4008 reload problems], one could add a pass here to propagate the new register
4009 through the block.
4010
4011 ??? We don't handle single sets in PARALLELs because we're [currently] not
4012 able to copy the rest of the parallel when we insert copies to create full
4013 redundancies from partial redundancies. However, there's no reason why we
4014 can't handle PARALLELs in the cases where there are no partial
4015 redundancies. */
4016
4017 static int
4018 pre_gcse (void)
4019 {
4020 unsigned int i;
4021 int did_insert, changed;
4022 struct expr **index_map;
4023 struct expr *expr;
4024
4025 /* Compute a mapping from expression number (`bitmap_index') to
4026 hash table entry. */
4027
4028 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
4029 for (i = 0; i < expr_hash_table.size; i++)
4030 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4031 index_map[expr->bitmap_index] = expr;
4032
4033 /* Delete the redundant insns first so that
4034 - we know what register to use for the new insns and for the other
4035 ones with reaching expressions
4036 - we know which insns are redundant when we go to create copies */
4037
4038 changed = pre_delete ();
4039 did_insert = pre_edge_insert (edge_list, index_map);
4040
4041 /* In other places with reaching expressions, copy the expression to the
4042 specially allocated pseudo-reg that reaches the redundant expr. */
4043 pre_insert_copies ();
4044 if (did_insert)
4045 {
4046 commit_edge_insertions ();
4047 changed = 1;
4048 }
4049
4050 free (index_map);
4051 return changed;
4052 }
4053
4054 /* Top level routine to perform one PRE GCSE pass.
4055
4056 Return nonzero if a change was made. */
4057
4058 static int
4059 one_pre_gcse_pass (void)
4060 {
4061 int changed = 0;
4062
4063 gcse_subst_count = 0;
4064 gcse_create_count = 0;
4065
4066 /* Return if there's nothing to do, or it is too expensive. */
4067 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
4068 || is_too_expensive (_("PRE disabled")))
4069 return 0;
4070
4071 /* We need alias. */
4072 init_alias_analysis ();
4073
4074 bytes_used = 0;
4075 gcc_obstack_init (&gcse_obstack);
4076 alloc_gcse_mem ();
4077
4078 alloc_hash_table (&expr_hash_table, 0);
4079 add_noreturn_fake_exit_edges ();
4080 if (flag_gcse_lm)
4081 compute_ld_motion_mems ();
4082
4083 compute_hash_table (&expr_hash_table);
4084 trim_ld_motion_mems ();
4085 if (dump_file)
4086 dump_hash_table (dump_file, "Expression", &expr_hash_table);
4087
4088 if (expr_hash_table.n_elems > 0)
4089 {
4090 alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
4091 compute_pre_data ();
4092 changed |= pre_gcse ();
4093 free_edge_list (edge_list);
4094 free_pre_mem ();
4095 }
4096
4097 free_ldst_mems ();
4098 remove_fake_exit_edges ();
4099 free_hash_table (&expr_hash_table);
4100
4101 free_gcse_mem ();
4102 obstack_free (&gcse_obstack, NULL);
4103
4104 /* We are finished with alias. */
4105 end_alias_analysis ();
4106
4107 if (dump_file)
4108 {
4109 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
4110 current_function_name (), n_basic_blocks, bytes_used);
4111 fprintf (dump_file, "%d substs, %d insns created\n",
4112 gcse_subst_count, gcse_create_count);
4113 }
4114
4115 return changed;
4116 }
4117 \f
4118 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
4119 to INSN. If such notes are added to an insn which references a
4120 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
4121 that note, because the following loop optimization pass requires
4122 them. */
4123
4124 /* ??? If there was a jump optimization pass after gcse and before loop,
4125 then we would not need to do this here, because jump would add the
4126 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
4127
4128 static void
4129 add_label_notes (rtx x, rtx insn)
4130 {
4131 enum rtx_code code = GET_CODE (x);
4132 int i, j;
4133 const char *fmt;
4134
4135 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
4136 {
4137 /* This code used to ignore labels that referred to dispatch tables to
4138 avoid flow generating (slightly) worse code.
4139
4140 We no longer ignore such label references (see LABEL_REF handling in
4141 mark_jump_label for additional information). */
4142
4143 /* There's no reason for current users to emit jump-insns with
4144 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
4145 notes. */
4146 gcc_assert (!JUMP_P (insn));
4147 add_reg_note (insn, REG_LABEL_OPERAND, XEXP (x, 0));
4148
4149 if (LABEL_P (XEXP (x, 0)))
4150 LABEL_NUSES (XEXP (x, 0))++;
4151
4152 return;
4153 }
4154
4155 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
4156 {
4157 if (fmt[i] == 'e')
4158 add_label_notes (XEXP (x, i), insn);
4159 else if (fmt[i] == 'E')
4160 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4161 add_label_notes (XVECEXP (x, i, j), insn);
4162 }
4163 }
4164
4165 /* Code Hoisting variables and subroutines. */
4166
4167 /* Very busy expressions. */
4168 static sbitmap *hoist_vbein;
4169 static sbitmap *hoist_vbeout;
4170
4171 /* ??? We could compute post dominators and run this algorithm in
4172 reverse to perform tail merging, doing so would probably be
4173 more effective than the tail merging code in jump.c.
4174
4175 It's unclear if tail merging could be run in parallel with
4176 code hoisting. It would be nice. */
4177
4178 /* Allocate vars used for code hoisting analysis. */
4179
4180 static void
4181 alloc_code_hoist_mem (int n_blocks, int n_exprs)
4182 {
4183 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
4184 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4185 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4186
4187 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
4188 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
4189 }
4190
4191 /* Free vars used for code hoisting analysis. */
4192
4193 static void
4194 free_code_hoist_mem (void)
4195 {
4196 sbitmap_vector_free (antloc);
4197 sbitmap_vector_free (transp);
4198 sbitmap_vector_free (comp);
4199
4200 sbitmap_vector_free (hoist_vbein);
4201 sbitmap_vector_free (hoist_vbeout);
4202
4203 free_dominance_info (CDI_DOMINATORS);
4204 }
4205
4206 /* Compute the very busy expressions at entry/exit from each block.
4207
4208 An expression is very busy if all paths from a given point
4209 compute the expression. */
4210
4211 static void
4212 compute_code_hoist_vbeinout (void)
4213 {
4214 int changed, passes;
4215 basic_block bb;
4216
4217 sbitmap_vector_zero (hoist_vbeout, last_basic_block);
4218 sbitmap_vector_zero (hoist_vbein, last_basic_block);
4219
4220 passes = 0;
4221 changed = 1;
4222
4223 while (changed)
4224 {
4225 changed = 0;
4226
4227 /* We scan the blocks in the reverse order to speed up
4228 the convergence. */
4229 FOR_EACH_BB_REVERSE (bb)
4230 {
4231 if (bb->next_bb != EXIT_BLOCK_PTR)
4232 {
4233 sbitmap_intersection_of_succs (hoist_vbeout[bb->index],
4234 hoist_vbein, bb->index);
4235
4236 /* Include expressions in VBEout that are calculated
4237 in BB and available at its end. */
4238 sbitmap_a_or_b (hoist_vbeout[bb->index],
4239 hoist_vbeout[bb->index], comp[bb->index]);
4240 }
4241
4242 changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index],
4243 antloc[bb->index],
4244 hoist_vbeout[bb->index],
4245 transp[bb->index]);
4246 }
4247
4248 passes++;
4249 }
4250
4251 if (dump_file)
4252 {
4253 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
4254
4255 FOR_EACH_BB (bb)
4256 {
4257 fprintf (dump_file, "vbein (%d): ", bb->index);
4258 dump_sbitmap_file (dump_file, hoist_vbein[bb->index]);
4259 fprintf (dump_file, "vbeout(%d): ", bb->index);
4260 dump_sbitmap_file (dump_file, hoist_vbeout[bb->index]);
4261 }
4262 }
4263 }
4264
4265 /* Top level routine to do the dataflow analysis needed by code hoisting. */
4266
4267 static void
4268 compute_code_hoist_data (void)
4269 {
4270 compute_local_properties (transp, comp, antloc, &expr_hash_table);
4271 prune_expressions (false);
4272 compute_code_hoist_vbeinout ();
4273 calculate_dominance_info (CDI_DOMINATORS);
4274 if (dump_file)
4275 fprintf (dump_file, "\n");
4276 }
4277
4278 /* Determine if the expression identified by EXPR_INDEX would
4279 reach BB unimpared if it was placed at the end of EXPR_BB.
4280 Stop the search if the expression would need to be moved more
4281 than DISTANCE instructions.
4282
4283 It's unclear exactly what Muchnick meant by "unimpared". It seems
4284 to me that the expression must either be computed or transparent in
4285 *every* block in the path(s) from EXPR_BB to BB. Any other definition
4286 would allow the expression to be hoisted out of loops, even if
4287 the expression wasn't a loop invariant.
4288
4289 Contrast this to reachability for PRE where an expression is
4290 considered reachable if *any* path reaches instead of *all*
4291 paths. */
4292
4293 static int
4294 hoist_expr_reaches_here_p (basic_block expr_bb, int expr_index, basic_block bb,
4295 char *visited, int distance, int *bb_size)
4296 {
4297 edge pred;
4298 edge_iterator ei;
4299 int visited_allocated_locally = 0;
4300
4301 /* Terminate the search if distance, for which EXPR is allowed to move,
4302 is exhausted. */
4303 if (distance > 0)
4304 {
4305 distance -= bb_size[bb->index];
4306
4307 if (distance <= 0)
4308 return 0;
4309 }
4310 else
4311 gcc_assert (distance == 0);
4312
4313 if (visited == NULL)
4314 {
4315 visited_allocated_locally = 1;
4316 visited = XCNEWVEC (char, last_basic_block);
4317 }
4318
4319 FOR_EACH_EDGE (pred, ei, bb->preds)
4320 {
4321 basic_block pred_bb = pred->src;
4322
4323 if (pred->src == ENTRY_BLOCK_PTR)
4324 break;
4325 else if (pred_bb == expr_bb)
4326 continue;
4327 else if (visited[pred_bb->index])
4328 continue;
4329
4330 else if (! TEST_BIT (transp[pred_bb->index], expr_index))
4331 break;
4332
4333 /* Not killed. */
4334 else
4335 {
4336 visited[pred_bb->index] = 1;
4337 if (! hoist_expr_reaches_here_p (expr_bb, expr_index, pred_bb,
4338 visited, distance, bb_size))
4339 break;
4340 }
4341 }
4342 if (visited_allocated_locally)
4343 free (visited);
4344
4345 return (pred == NULL);
4346 }
4347 \f
4348 /* Find occurence in BB. */
4349 static struct occr *
4350 find_occr_in_bb (struct occr *occr, basic_block bb)
4351 {
4352 /* Find the right occurrence of this expression. */
4353 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
4354 occr = occr->next;
4355
4356 return occr;
4357 }
4358
4359 /* Actually perform code hoisting. */
4360
4361 static int
4362 hoist_code (void)
4363 {
4364 basic_block bb, dominated;
4365 VEC (basic_block, heap) *dom_tree_walk;
4366 unsigned int dom_tree_walk_index;
4367 VEC (basic_block, heap) *domby;
4368 unsigned int i,j;
4369 struct expr **index_map;
4370 struct expr *expr;
4371 int *to_bb_head;
4372 int *bb_size;
4373 int changed = 0;
4374
4375 /* Compute a mapping from expression number (`bitmap_index') to
4376 hash table entry. */
4377
4378 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
4379 for (i = 0; i < expr_hash_table.size; i++)
4380 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4381 index_map[expr->bitmap_index] = expr;
4382
4383 /* Calculate sizes of basic blocks and note how far
4384 each instruction is from the start of its block. We then use this
4385 data to restrict distance an expression can travel. */
4386
4387 to_bb_head = XCNEWVEC (int, get_max_uid ());
4388 bb_size = XCNEWVEC (int, last_basic_block);
4389
4390 FOR_EACH_BB (bb)
4391 {
4392 rtx insn;
4393 int to_head;
4394
4395 to_head = 0;
4396 FOR_BB_INSNS (bb, insn)
4397 {
4398 /* Don't count debug instructions to avoid them affecting
4399 decision choices. */
4400 if (NONDEBUG_INSN_P (insn))
4401 to_bb_head[INSN_UID (insn)] = to_head++;
4402 }
4403
4404 bb_size[bb->index] = to_head;
4405 }
4406
4407 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR->succs) == 1
4408 && (EDGE_SUCC (ENTRY_BLOCK_PTR, 0)->dest
4409 == ENTRY_BLOCK_PTR->next_bb));
4410
4411 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
4412 ENTRY_BLOCK_PTR->next_bb);
4413
4414 /* Walk over each basic block looking for potentially hoistable
4415 expressions, nothing gets hoisted from the entry block. */
4416 FOR_EACH_VEC_ELT (basic_block, dom_tree_walk, dom_tree_walk_index, bb)
4417 {
4418 domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
4419
4420 if (VEC_length (basic_block, domby) == 0)
4421 continue;
4422
4423 /* Examine each expression that is very busy at the exit of this
4424 block. These are the potentially hoistable expressions. */
4425 for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
4426 {
4427 if (TEST_BIT (hoist_vbeout[bb->index], i))
4428 {
4429 /* Current expression. */
4430 struct expr *expr = index_map[i];
4431 /* Number of occurences of EXPR that can be hoisted to BB. */
4432 int hoistable = 0;
4433 /* Basic blocks that have occurences reachable from BB. */
4434 bitmap_head _from_bbs, *from_bbs = &_from_bbs;
4435 /* Occurences reachable from BB. */
4436 VEC (occr_t, heap) *occrs_to_hoist = NULL;
4437 /* We want to insert the expression into BB only once, so
4438 note when we've inserted it. */
4439 int insn_inserted_p;
4440 occr_t occr;
4441
4442 bitmap_initialize (from_bbs, 0);
4443
4444 /* If an expression is computed in BB and is available at end of
4445 BB, hoist all occurences dominated by BB to BB. */
4446 if (TEST_BIT (comp[bb->index], i))
4447 {
4448 occr = find_occr_in_bb (expr->antic_occr, bb);
4449
4450 if (occr)
4451 {
4452 /* An occurence might've been already deleted
4453 while processing a dominator of BB. */
4454 if (occr->deleted_p)
4455 gcc_assert (MAX_HOIST_DEPTH > 1);
4456 else
4457 {
4458 gcc_assert (NONDEBUG_INSN_P (occr->insn));
4459 hoistable++;
4460 }
4461 }
4462 else
4463 hoistable++;
4464 }
4465
4466 /* We've found a potentially hoistable expression, now
4467 we look at every block BB dominates to see if it
4468 computes the expression. */
4469 FOR_EACH_VEC_ELT (basic_block, domby, j, dominated)
4470 {
4471 int max_distance;
4472
4473 /* Ignore self dominance. */
4474 if (bb == dominated)
4475 continue;
4476 /* We've found a dominated block, now see if it computes
4477 the busy expression and whether or not moving that
4478 expression to the "beginning" of that block is safe. */
4479 if (!TEST_BIT (antloc[dominated->index], i))
4480 continue;
4481
4482 occr = find_occr_in_bb (expr->antic_occr, dominated);
4483 gcc_assert (occr);
4484
4485 /* An occurence might've been already deleted
4486 while processing a dominator of BB. */
4487 if (occr->deleted_p)
4488 {
4489 gcc_assert (MAX_HOIST_DEPTH > 1);
4490 continue;
4491 }
4492 gcc_assert (NONDEBUG_INSN_P (occr->insn));
4493
4494 max_distance = expr->max_distance;
4495 if (max_distance > 0)
4496 /* Adjust MAX_DISTANCE to account for the fact that
4497 OCCR won't have to travel all of DOMINATED, but
4498 only part of it. */
4499 max_distance += (bb_size[dominated->index]
4500 - to_bb_head[INSN_UID (occr->insn)]);
4501
4502 /* Note if the expression would reach the dominated block
4503 unimpared if it was placed at the end of BB.
4504
4505 Keep track of how many times this expression is hoistable
4506 from a dominated block into BB. */
4507 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL,
4508 max_distance, bb_size))
4509 {
4510 hoistable++;
4511 VEC_safe_push (occr_t, heap,
4512 occrs_to_hoist, occr);
4513 bitmap_set_bit (from_bbs, dominated->index);
4514 }
4515 }
4516
4517 /* If we found more than one hoistable occurrence of this
4518 expression, then note it in the vector of expressions to
4519 hoist. It makes no sense to hoist things which are computed
4520 in only one BB, and doing so tends to pessimize register
4521 allocation. One could increase this value to try harder
4522 to avoid any possible code expansion due to register
4523 allocation issues; however experiments have shown that
4524 the vast majority of hoistable expressions are only movable
4525 from two successors, so raising this threshold is likely
4526 to nullify any benefit we get from code hoisting. */
4527 if (hoistable > 1 && dbg_cnt (hoist_insn))
4528 {
4529 /* If (hoistable != VEC_length), then there is
4530 an occurence of EXPR in BB itself. Don't waste
4531 time looking for LCA in this case. */
4532 if ((unsigned) hoistable
4533 == VEC_length (occr_t, occrs_to_hoist))
4534 {
4535 basic_block lca;
4536
4537 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
4538 from_bbs);
4539 if (lca != bb)
4540 /* Punt, it's better to hoist these occurences to
4541 LCA. */
4542 VEC_free (occr_t, heap, occrs_to_hoist);
4543 }
4544 }
4545 else
4546 /* Punt, no point hoisting a single occurence. */
4547 VEC_free (occr_t, heap, occrs_to_hoist);
4548
4549 insn_inserted_p = 0;
4550
4551 /* Walk through occurences of I'th expressions we want
4552 to hoist to BB and make the transformations. */
4553 FOR_EACH_VEC_ELT (occr_t, occrs_to_hoist, j, occr)
4554 {
4555 rtx insn;
4556 rtx set;
4557
4558 gcc_assert (!occr->deleted_p);
4559
4560 insn = occr->insn;
4561 set = single_set (insn);
4562 gcc_assert (set);
4563
4564 /* Create a pseudo-reg to store the result of reaching
4565 expressions into. Get the mode for the new pseudo
4566 from the mode of the original destination pseudo.
4567
4568 It is important to use new pseudos whenever we
4569 emit a set. This will allow reload to use
4570 rematerialization for such registers. */
4571 if (!insn_inserted_p)
4572 expr->reaching_reg
4573 = gen_reg_rtx_and_attrs (SET_DEST (set));
4574
4575 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set),
4576 insn);
4577 delete_insn (insn);
4578 occr->deleted_p = 1;
4579 changed = 1;
4580 gcse_subst_count++;
4581
4582 if (!insn_inserted_p)
4583 {
4584 insert_insn_end_basic_block (expr, bb);
4585 insn_inserted_p = 1;
4586 }
4587 }
4588
4589 VEC_free (occr_t, heap, occrs_to_hoist);
4590 bitmap_clear (from_bbs);
4591 }
4592 }
4593 VEC_free (basic_block, heap, domby);
4594 }
4595
4596 VEC_free (basic_block, heap, dom_tree_walk);
4597 free (bb_size);
4598 free (to_bb_head);
4599 free (index_map);
4600
4601 return changed;
4602 }
4603
4604 /* Top level routine to perform one code hoisting (aka unification) pass
4605
4606 Return nonzero if a change was made. */
4607
4608 static int
4609 one_code_hoisting_pass (void)
4610 {
4611 int changed = 0;
4612
4613 gcse_subst_count = 0;
4614 gcse_create_count = 0;
4615
4616 /* Return if there's nothing to do, or it is too expensive. */
4617 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
4618 || is_too_expensive (_("GCSE disabled")))
4619 return 0;
4620
4621 doing_code_hoisting_p = true;
4622
4623 /* We need alias. */
4624 init_alias_analysis ();
4625
4626 bytes_used = 0;
4627 gcc_obstack_init (&gcse_obstack);
4628 alloc_gcse_mem ();
4629
4630 alloc_hash_table (&expr_hash_table, 0);
4631 compute_hash_table (&expr_hash_table);
4632 if (dump_file)
4633 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
4634
4635 if (expr_hash_table.n_elems > 0)
4636 {
4637 alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
4638 compute_code_hoist_data ();
4639 changed = hoist_code ();
4640 free_code_hoist_mem ();
4641 }
4642
4643 free_hash_table (&expr_hash_table);
4644 free_gcse_mem ();
4645 obstack_free (&gcse_obstack, NULL);
4646
4647 /* We are finished with alias. */
4648 end_alias_analysis ();
4649
4650 if (dump_file)
4651 {
4652 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
4653 current_function_name (), n_basic_blocks, bytes_used);
4654 fprintf (dump_file, "%d substs, %d insns created\n",
4655 gcse_subst_count, gcse_create_count);
4656 }
4657
4658 doing_code_hoisting_p = false;
4659
4660 return changed;
4661 }
4662 \f
4663 /* Here we provide the things required to do store motion towards
4664 the exit. In order for this to be effective, gcse also needed to
4665 be taught how to move a load when it is kill only by a store to itself.
4666
4667 int i;
4668 float a[10];
4669
4670 void foo(float scale)
4671 {
4672 for (i=0; i<10; i++)
4673 a[i] *= scale;
4674 }
4675
4676 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
4677 the load out since its live around the loop, and stored at the bottom
4678 of the loop.
4679
4680 The 'Load Motion' referred to and implemented in this file is
4681 an enhancement to gcse which when using edge based lcm, recognizes
4682 this situation and allows gcse to move the load out of the loop.
4683
4684 Once gcse has hoisted the load, store motion can then push this
4685 load towards the exit, and we end up with no loads or stores of 'i'
4686 in the loop. */
4687
4688 static hashval_t
4689 pre_ldst_expr_hash (const void *p)
4690 {
4691 int do_not_record_p = 0;
4692 const struct ls_expr *const x = (const struct ls_expr *) p;
4693 return hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
4694 }
4695
4696 static int
4697 pre_ldst_expr_eq (const void *p1, const void *p2)
4698 {
4699 const struct ls_expr *const ptr1 = (const struct ls_expr *) p1,
4700 *const ptr2 = (const struct ls_expr *) p2;
4701 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
4702 }
4703
4704 /* This will search the ldst list for a matching expression. If it
4705 doesn't find one, we create one and initialize it. */
4706
4707 static struct ls_expr *
4708 ldst_entry (rtx x)
4709 {
4710 int do_not_record_p = 0;
4711 struct ls_expr * ptr;
4712 unsigned int hash;
4713 void **slot;
4714 struct ls_expr e;
4715
4716 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
4717 NULL, /*have_reg_qty=*/false);
4718
4719 e.pattern = x;
4720 slot = htab_find_slot_with_hash (pre_ldst_table, &e, hash, INSERT);
4721 if (*slot)
4722 return (struct ls_expr *)*slot;
4723
4724 ptr = XNEW (struct ls_expr);
4725
4726 ptr->next = pre_ldst_mems;
4727 ptr->expr = NULL;
4728 ptr->pattern = x;
4729 ptr->pattern_regs = NULL_RTX;
4730 ptr->loads = NULL_RTX;
4731 ptr->stores = NULL_RTX;
4732 ptr->reaching_reg = NULL_RTX;
4733 ptr->invalid = 0;
4734 ptr->index = 0;
4735 ptr->hash_index = hash;
4736 pre_ldst_mems = ptr;
4737 *slot = ptr;
4738
4739 return ptr;
4740 }
4741
4742 /* Free up an individual ldst entry. */
4743
4744 static void
4745 free_ldst_entry (struct ls_expr * ptr)
4746 {
4747 free_INSN_LIST_list (& ptr->loads);
4748 free_INSN_LIST_list (& ptr->stores);
4749
4750 free (ptr);
4751 }
4752
4753 /* Free up all memory associated with the ldst list. */
4754
4755 static void
4756 free_ldst_mems (void)
4757 {
4758 if (pre_ldst_table)
4759 htab_delete (pre_ldst_table);
4760 pre_ldst_table = NULL;
4761
4762 while (pre_ldst_mems)
4763 {
4764 struct ls_expr * tmp = pre_ldst_mems;
4765
4766 pre_ldst_mems = pre_ldst_mems->next;
4767
4768 free_ldst_entry (tmp);
4769 }
4770
4771 pre_ldst_mems = NULL;
4772 }
4773
4774 /* Dump debugging info about the ldst list. */
4775
4776 static void
4777 print_ldst_list (FILE * file)
4778 {
4779 struct ls_expr * ptr;
4780
4781 fprintf (file, "LDST list: \n");
4782
4783 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
4784 {
4785 fprintf (file, " Pattern (%3d): ", ptr->index);
4786
4787 print_rtl (file, ptr->pattern);
4788
4789 fprintf (file, "\n Loads : ");
4790
4791 if (ptr->loads)
4792 print_rtl (file, ptr->loads);
4793 else
4794 fprintf (file, "(nil)");
4795
4796 fprintf (file, "\n Stores : ");
4797
4798 if (ptr->stores)
4799 print_rtl (file, ptr->stores);
4800 else
4801 fprintf (file, "(nil)");
4802
4803 fprintf (file, "\n\n");
4804 }
4805
4806 fprintf (file, "\n");
4807 }
4808
4809 /* Returns 1 if X is in the list of ldst only expressions. */
4810
4811 static struct ls_expr *
4812 find_rtx_in_ldst (rtx x)
4813 {
4814 struct ls_expr e;
4815 void **slot;
4816 if (!pre_ldst_table)
4817 return NULL;
4818 e.pattern = x;
4819 slot = htab_find_slot (pre_ldst_table, &e, NO_INSERT);
4820 if (!slot || ((struct ls_expr *)*slot)->invalid)
4821 return NULL;
4822 return (struct ls_expr *) *slot;
4823 }
4824
4825 /* Return first item in the list. */
4826
4827 static inline struct ls_expr *
4828 first_ls_expr (void)
4829 {
4830 return pre_ldst_mems;
4831 }
4832
4833 /* Return the next item in the list after the specified one. */
4834
4835 static inline struct ls_expr *
4836 next_ls_expr (struct ls_expr * ptr)
4837 {
4838 return ptr->next;
4839 }
4840 \f
4841 /* Load Motion for loads which only kill themselves. */
4842
4843 /* Return true if x is a simple MEM operation, with no registers or
4844 side effects. These are the types of loads we consider for the
4845 ld_motion list, otherwise we let the usual aliasing take care of it. */
4846
4847 static int
4848 simple_mem (const_rtx x)
4849 {
4850 if (! MEM_P (x))
4851 return 0;
4852
4853 if (MEM_VOLATILE_P (x))
4854 return 0;
4855
4856 if (GET_MODE (x) == BLKmode)
4857 return 0;
4858
4859 /* If we are handling exceptions, we must be careful with memory references
4860 that may trap. If we are not, the behavior is undefined, so we may just
4861 continue. */
4862 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
4863 return 0;
4864
4865 if (side_effects_p (x))
4866 return 0;
4867
4868 /* Do not consider function arguments passed on stack. */
4869 if (reg_mentioned_p (stack_pointer_rtx, x))
4870 return 0;
4871
4872 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
4873 return 0;
4874
4875 return 1;
4876 }
4877
4878 /* Make sure there isn't a buried reference in this pattern anywhere.
4879 If there is, invalidate the entry for it since we're not capable
4880 of fixing it up just yet.. We have to be sure we know about ALL
4881 loads since the aliasing code will allow all entries in the
4882 ld_motion list to not-alias itself. If we miss a load, we will get
4883 the wrong value since gcse might common it and we won't know to
4884 fix it up. */
4885
4886 static void
4887 invalidate_any_buried_refs (rtx x)
4888 {
4889 const char * fmt;
4890 int i, j;
4891 struct ls_expr * ptr;
4892
4893 /* Invalidate it in the list. */
4894 if (MEM_P (x) && simple_mem (x))
4895 {
4896 ptr = ldst_entry (x);
4897 ptr->invalid = 1;
4898 }
4899
4900 /* Recursively process the insn. */
4901 fmt = GET_RTX_FORMAT (GET_CODE (x));
4902
4903 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
4904 {
4905 if (fmt[i] == 'e')
4906 invalidate_any_buried_refs (XEXP (x, i));
4907 else if (fmt[i] == 'E')
4908 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4909 invalidate_any_buried_refs (XVECEXP (x, i, j));
4910 }
4911 }
4912
4913 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
4914 being defined as MEM loads and stores to symbols, with no side effects
4915 and no registers in the expression. For a MEM destination, we also
4916 check that the insn is still valid if we replace the destination with a
4917 REG, as is done in update_ld_motion_stores. If there are any uses/defs
4918 which don't match this criteria, they are invalidated and trimmed out
4919 later. */
4920
4921 static void
4922 compute_ld_motion_mems (void)
4923 {
4924 struct ls_expr * ptr;
4925 basic_block bb;
4926 rtx insn;
4927
4928 pre_ldst_mems = NULL;
4929 pre_ldst_table = htab_create (13, pre_ldst_expr_hash,
4930 pre_ldst_expr_eq, NULL);
4931
4932 FOR_EACH_BB (bb)
4933 {
4934 FOR_BB_INSNS (bb, insn)
4935 {
4936 if (NONDEBUG_INSN_P (insn))
4937 {
4938 if (GET_CODE (PATTERN (insn)) == SET)
4939 {
4940 rtx src = SET_SRC (PATTERN (insn));
4941 rtx dest = SET_DEST (PATTERN (insn));
4942
4943 /* Check for a simple LOAD... */
4944 if (MEM_P (src) && simple_mem (src))
4945 {
4946 ptr = ldst_entry (src);
4947 if (REG_P (dest))
4948 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
4949 else
4950 ptr->invalid = 1;
4951 }
4952 else
4953 {
4954 /* Make sure there isn't a buried load somewhere. */
4955 invalidate_any_buried_refs (src);
4956 }
4957
4958 /* Check for stores. Don't worry about aliased ones, they
4959 will block any movement we might do later. We only care
4960 about this exact pattern since those are the only
4961 circumstance that we will ignore the aliasing info. */
4962 if (MEM_P (dest) && simple_mem (dest))
4963 {
4964 ptr = ldst_entry (dest);
4965
4966 if (! MEM_P (src)
4967 && GET_CODE (src) != ASM_OPERANDS
4968 /* Check for REG manually since want_to_gcse_p
4969 returns 0 for all REGs. */
4970 && can_assign_to_reg_without_clobbers_p (src))
4971 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
4972 else
4973 ptr->invalid = 1;
4974 }
4975 }
4976 else
4977 invalidate_any_buried_refs (PATTERN (insn));
4978 }
4979 }
4980 }
4981 }
4982
4983 /* Remove any references that have been either invalidated or are not in the
4984 expression list for pre gcse. */
4985
4986 static void
4987 trim_ld_motion_mems (void)
4988 {
4989 struct ls_expr * * last = & pre_ldst_mems;
4990 struct ls_expr * ptr = pre_ldst_mems;
4991
4992 while (ptr != NULL)
4993 {
4994 struct expr * expr;
4995
4996 /* Delete if entry has been made invalid. */
4997 if (! ptr->invalid)
4998 {
4999 /* Delete if we cannot find this mem in the expression list. */
5000 unsigned int hash = ptr->hash_index % expr_hash_table.size;
5001
5002 for (expr = expr_hash_table.table[hash];
5003 expr != NULL;
5004 expr = expr->next_same_hash)
5005 if (expr_equiv_p (expr->expr, ptr->pattern))
5006 break;
5007 }
5008 else
5009 expr = (struct expr *) 0;
5010
5011 if (expr)
5012 {
5013 /* Set the expression field if we are keeping it. */
5014 ptr->expr = expr;
5015 last = & ptr->next;
5016 ptr = ptr->next;
5017 }
5018 else
5019 {
5020 *last = ptr->next;
5021 htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
5022 free_ldst_entry (ptr);
5023 ptr = * last;
5024 }
5025 }
5026
5027 /* Show the world what we've found. */
5028 if (dump_file && pre_ldst_mems != NULL)
5029 print_ldst_list (dump_file);
5030 }
5031
5032 /* This routine will take an expression which we are replacing with
5033 a reaching register, and update any stores that are needed if
5034 that expression is in the ld_motion list. Stores are updated by
5035 copying their SRC to the reaching register, and then storing
5036 the reaching register into the store location. These keeps the
5037 correct value in the reaching register for the loads. */
5038
5039 static void
5040 update_ld_motion_stores (struct expr * expr)
5041 {
5042 struct ls_expr * mem_ptr;
5043
5044 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
5045 {
5046 /* We can try to find just the REACHED stores, but is shouldn't
5047 matter to set the reaching reg everywhere... some might be
5048 dead and should be eliminated later. */
5049
5050 /* We replace (set mem expr) with (set reg expr) (set mem reg)
5051 where reg is the reaching reg used in the load. We checked in
5052 compute_ld_motion_mems that we can replace (set mem expr) with
5053 (set reg expr) in that insn. */
5054 rtx list = mem_ptr->stores;
5055
5056 for ( ; list != NULL_RTX; list = XEXP (list, 1))
5057 {
5058 rtx insn = XEXP (list, 0);
5059 rtx pat = PATTERN (insn);
5060 rtx src = SET_SRC (pat);
5061 rtx reg = expr->reaching_reg;
5062 rtx copy;
5063
5064 /* If we've already copied it, continue. */
5065 if (expr->reaching_reg == src)
5066 continue;
5067
5068 if (dump_file)
5069 {
5070 fprintf (dump_file, "PRE: store updated with reaching reg ");
5071 print_rtl (dump_file, expr->reaching_reg);
5072 fprintf (dump_file, ":\n ");
5073 print_inline_rtx (dump_file, insn, 8);
5074 fprintf (dump_file, "\n");
5075 }
5076
5077 copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
5078 emit_insn_before (copy, insn);
5079 SET_SRC (pat) = reg;
5080 df_insn_rescan (insn);
5081
5082 /* un-recognize this pattern since it's probably different now. */
5083 INSN_CODE (insn) = -1;
5084 gcse_create_count++;
5085 }
5086 }
5087 }
5088 \f
5089 /* Return true if the graph is too expensive to optimize. PASS is the
5090 optimization about to be performed. */
5091
5092 static bool
5093 is_too_expensive (const char *pass)
5094 {
5095 /* Trying to perform global optimizations on flow graphs which have
5096 a high connectivity will take a long time and is unlikely to be
5097 particularly useful.
5098
5099 In normal circumstances a cfg should have about twice as many
5100 edges as blocks. But we do not want to punish small functions
5101 which have a couple switch statements. Rather than simply
5102 threshold the number of blocks, uses something with a more
5103 graceful degradation. */
5104 if (n_edges > 20000 + n_basic_blocks * 4)
5105 {
5106 warning (OPT_Wdisabled_optimization,
5107 "%s: %d basic blocks and %d edges/basic block",
5108 pass, n_basic_blocks, n_edges / n_basic_blocks);
5109
5110 return true;
5111 }
5112
5113 /* If allocating memory for the cprop bitmap would take up too much
5114 storage it's better just to disable the optimization. */
5115 if ((n_basic_blocks
5116 * SBITMAP_SET_SIZE (max_reg_num ())
5117 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
5118 {
5119 warning (OPT_Wdisabled_optimization,
5120 "%s: %d basic blocks and %d registers",
5121 pass, n_basic_blocks, max_reg_num ());
5122
5123 return true;
5124 }
5125
5126 return false;
5127 }
5128
5129 \f
5130 /* Main function for the CPROP pass. */
5131
5132 static int
5133 one_cprop_pass (void)
5134 {
5135 int changed = 0;
5136
5137 /* Return if there's nothing to do, or it is too expensive. */
5138 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
5139 || is_too_expensive (_ ("const/copy propagation disabled")))
5140 return 0;
5141
5142 global_const_prop_count = local_const_prop_count = 0;
5143 global_copy_prop_count = local_copy_prop_count = 0;
5144
5145 bytes_used = 0;
5146 gcc_obstack_init (&gcse_obstack);
5147 alloc_gcse_mem ();
5148
5149 /* Do a local const/copy propagation pass first. The global pass
5150 only handles global opportunities.
5151 If the local pass changes something, remove any unreachable blocks
5152 because the CPROP global dataflow analysis may get into infinite
5153 loops for CFGs with unreachable blocks.
5154
5155 FIXME: This local pass should not be necessary after CSE (but for
5156 some reason it still is). It is also (proven) not necessary
5157 to run the local pass right after FWPWOP.
5158
5159 FIXME: The global analysis would not get into infinite loops if it
5160 would use the DF solver (via df_simple_dataflow) instead of
5161 the solver implemented in this file. */
5162 if (local_cprop_pass ())
5163 {
5164 delete_unreachable_blocks ();
5165 df_analyze ();
5166 }
5167
5168 /* Determine implicit sets. */
5169 implicit_sets = XCNEWVEC (rtx, last_basic_block);
5170 find_implicit_sets ();
5171
5172 alloc_hash_table (&set_hash_table, 1);
5173 compute_hash_table (&set_hash_table);
5174
5175 /* Free implicit_sets before peak usage. */
5176 free (implicit_sets);
5177 implicit_sets = NULL;
5178
5179 if (dump_file)
5180 dump_hash_table (dump_file, "SET", &set_hash_table);
5181 if (set_hash_table.n_elems > 0)
5182 {
5183 basic_block bb;
5184 rtx insn;
5185
5186 alloc_cprop_mem (last_basic_block, set_hash_table.n_elems);
5187 compute_cprop_data ();
5188
5189 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
5190 {
5191 /* Reset tables used to keep track of what's still valid [since
5192 the start of the block]. */
5193 reset_opr_set_tables ();
5194
5195 FOR_BB_INSNS (bb, insn)
5196 if (INSN_P (insn))
5197 {
5198 changed |= cprop_insn (insn);
5199
5200 /* Keep track of everything modified by this insn. */
5201 /* ??? Need to be careful w.r.t. mods done to INSN.
5202 Don't call mark_oprs_set if we turned the
5203 insn into a NOTE. */
5204 if (! NOTE_P (insn))
5205 mark_oprs_set (insn);
5206 }
5207 }
5208
5209 changed |= bypass_conditional_jumps ();
5210 free_cprop_mem ();
5211 }
5212
5213 free_hash_table (&set_hash_table);
5214 free_gcse_mem ();
5215 obstack_free (&gcse_obstack, NULL);
5216
5217 if (dump_file)
5218 {
5219 fprintf (dump_file, "CPROP of %s, %d basic blocks, %d bytes needed, ",
5220 current_function_name (), n_basic_blocks, bytes_used);
5221 fprintf (dump_file, "%d local const props, %d local copy props, ",
5222 local_const_prop_count, local_copy_prop_count);
5223 fprintf (dump_file, "%d global const props, %d global copy props\n\n",
5224 global_const_prop_count, global_copy_prop_count);
5225 }
5226
5227 return changed;
5228 }
5229
5230 \f
5231 /* All the passes implemented in this file. Each pass has its
5232 own gate and execute function, and at the end of the file a
5233 pass definition for passes.c.
5234
5235 We do not construct an accurate cfg in functions which call
5236 setjmp, so none of these passes runs if the function calls
5237 setjmp.
5238 FIXME: Should just handle setjmp via REG_SETJMP notes. */
5239
5240 static bool
5241 gate_rtl_cprop (void)
5242 {
5243 return optimize > 0 && flag_gcse
5244 && !cfun->calls_setjmp
5245 && dbg_cnt (cprop);
5246 }
5247
5248 static unsigned int
5249 execute_rtl_cprop (void)
5250 {
5251 delete_unreachable_blocks ();
5252 df_set_flags (DF_LR_RUN_DCE);
5253 df_analyze ();
5254 flag_rerun_cse_after_global_opts |= one_cprop_pass ();
5255 return 0;
5256 }
5257
5258 static bool
5259 gate_rtl_pre (void)
5260 {
5261 return optimize > 0 && flag_gcse
5262 && !cfun->calls_setjmp
5263 && optimize_function_for_speed_p (cfun)
5264 && dbg_cnt (pre);
5265 }
5266
5267 static unsigned int
5268 execute_rtl_pre (void)
5269 {
5270 delete_unreachable_blocks ();
5271 df_analyze ();
5272 flag_rerun_cse_after_global_opts |= one_pre_gcse_pass ();
5273 return 0;
5274 }
5275
5276 static bool
5277 gate_rtl_hoist (void)
5278 {
5279 return optimize > 0 && flag_gcse
5280 && !cfun->calls_setjmp
5281 /* It does not make sense to run code hoisting unless we are optimizing
5282 for code size -- it rarely makes programs faster, and can make then
5283 bigger if we did PRE (when optimizing for space, we don't run PRE). */
5284 && optimize_function_for_size_p (cfun)
5285 && dbg_cnt (hoist);
5286 }
5287
5288 static unsigned int
5289 execute_rtl_hoist (void)
5290 {
5291 delete_unreachable_blocks ();
5292 df_analyze ();
5293 flag_rerun_cse_after_global_opts |= one_code_hoisting_pass ();
5294 return 0;
5295 }
5296
5297 struct rtl_opt_pass pass_rtl_cprop =
5298 {
5299 {
5300 RTL_PASS,
5301 "cprop", /* name */
5302 gate_rtl_cprop, /* gate */
5303 execute_rtl_cprop, /* execute */
5304 NULL, /* sub */
5305 NULL, /* next */
5306 0, /* static_pass_number */
5307 TV_CPROP, /* tv_id */
5308 PROP_cfglayout, /* properties_required */
5309 0, /* properties_provided */
5310 0, /* properties_destroyed */
5311 0, /* todo_flags_start */
5312 TODO_df_finish | TODO_verify_rtl_sharing |
5313 TODO_dump_func |
5314 TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */
5315 }
5316 };
5317
5318 struct rtl_opt_pass pass_rtl_pre =
5319 {
5320 {
5321 RTL_PASS,
5322 "rtl pre", /* name */
5323 gate_rtl_pre, /* gate */
5324 execute_rtl_pre, /* execute */
5325 NULL, /* sub */
5326 NULL, /* next */
5327 0, /* static_pass_number */
5328 TV_PRE, /* tv_id */
5329 PROP_cfglayout, /* properties_required */
5330 0, /* properties_provided */
5331 0, /* properties_destroyed */
5332 0, /* todo_flags_start */
5333 TODO_df_finish | TODO_verify_rtl_sharing |
5334 TODO_dump_func |
5335 TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */
5336 }
5337 };
5338
5339 struct rtl_opt_pass pass_rtl_hoist =
5340 {
5341 {
5342 RTL_PASS,
5343 "hoist", /* name */
5344 gate_rtl_hoist, /* gate */
5345 execute_rtl_hoist, /* execute */
5346 NULL, /* sub */
5347 NULL, /* next */
5348 0, /* static_pass_number */
5349 TV_HOIST, /* tv_id */
5350 PROP_cfglayout, /* properties_required */
5351 0, /* properties_provided */
5352 0, /* properties_destroyed */
5353 0, /* todo_flags_start */
5354 TODO_df_finish | TODO_verify_rtl_sharing |
5355 TODO_dump_func |
5356 TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */
5357 }
5358 };
5359
5360 #include "gt-gcse.h"