whatis.cc: New file.
[gcc.git] / gcc / gcse.c
1 /* Partial redundancy elimination / Hoisting for RTL.
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
3 2006, 2007, 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* TODO
22 - reordering of memory allocation and freeing to be more space efficient
23 - calc rough register pressure information and use the info to drive all
24 kinds of code motion (including code hoisting) in a unified way.
25 */
26
27 /* References searched while implementing this.
28
29 Compilers Principles, Techniques and Tools
30 Aho, Sethi, Ullman
31 Addison-Wesley, 1988
32
33 Global Optimization by Suppression of Partial Redundancies
34 E. Morel, C. Renvoise
35 communications of the acm, Vol. 22, Num. 2, Feb. 1979
36
37 A Portable Machine-Independent Global Optimizer - Design and Measurements
38 Frederick Chow
39 Stanford Ph.D. thesis, Dec. 1983
40
41 A Fast Algorithm for Code Movement Optimization
42 D.M. Dhamdhere
43 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
44
45 A Solution to a Problem with Morel and Renvoise's
46 Global Optimization by Suppression of Partial Redundancies
47 K-H Drechsler, M.P. Stadel
48 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
49
50 Practical Adaptation of the Global Optimization
51 Algorithm of Morel and Renvoise
52 D.M. Dhamdhere
53 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
54
55 Efficiently Computing Static Single Assignment Form and the Control
56 Dependence Graph
57 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
58 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
59
60 Lazy Code Motion
61 J. Knoop, O. Ruthing, B. Steffen
62 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
63
64 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
65 Time for Reducible Flow Control
66 Thomas Ball
67 ACM Letters on Programming Languages and Systems,
68 Vol. 2, Num. 1-4, Mar-Dec 1993
69
70 An Efficient Representation for Sparse Sets
71 Preston Briggs, Linda Torczon
72 ACM Letters on Programming Languages and Systems,
73 Vol. 2, Num. 1-4, Mar-Dec 1993
74
75 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
76 K-H Drechsler, M.P. Stadel
77 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
78
79 Partial Dead Code Elimination
80 J. Knoop, O. Ruthing, B. Steffen
81 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
82
83 Effective Partial Redundancy Elimination
84 P. Briggs, K.D. Cooper
85 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
86
87 The Program Structure Tree: Computing Control Regions in Linear Time
88 R. Johnson, D. Pearson, K. Pingali
89 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
90
91 Optimal Code Motion: Theory and Practice
92 J. Knoop, O. Ruthing, B. Steffen
93 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
94
95 The power of assignment motion
96 J. Knoop, O. Ruthing, B. Steffen
97 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
98
99 Global code motion / global value numbering
100 C. Click
101 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
102
103 Value Driven Redundancy Elimination
104 L.T. Simpson
105 Rice University Ph.D. thesis, Apr. 1996
106
107 Value Numbering
108 L.T. Simpson
109 Massively Scalar Compiler Project, Rice University, Sep. 1996
110
111 High Performance Compilers for Parallel Computing
112 Michael Wolfe
113 Addison-Wesley, 1996
114
115 Advanced Compiler Design and Implementation
116 Steven Muchnick
117 Morgan Kaufmann, 1997
118
119 Building an Optimizing Compiler
120 Robert Morgan
121 Digital Press, 1998
122
123 People wishing to speed up the code here should read:
124 Elimination Algorithms for Data Flow Analysis
125 B.G. Ryder, M.C. Paull
126 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
127
128 How to Analyze Large Programs Efficiently and Informatively
129 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
130 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
131
132 People wishing to do something different can find various possibilities
133 in the above papers and elsewhere.
134 */
135
136 #include "config.h"
137 #include "system.h"
138 #include "coretypes.h"
139 #include "tm.h"
140 #include "diagnostic-core.h"
141 #include "toplev.h"
142
143 #include "hard-reg-set.h"
144 #include "rtl.h"
145 #include "tree.h"
146 #include "tm_p.h"
147 #include "regs.h"
148 #include "ira.h"
149 #include "flags.h"
150 #include "insn-config.h"
151 #include "recog.h"
152 #include "basic-block.h"
153 #include "function.h"
154 #include "expr.h"
155 #include "except.h"
156 #include "ggc.h"
157 #include "params.h"
158 #include "cselib.h"
159 #include "intl.h"
160 #include "obstack.h"
161 #include "tree-pass.h"
162 #include "hashtab.h"
163 #include "df.h"
164 #include "dbgcnt.h"
165 #include "target.h"
166 #include "gcse.h"
167
168 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
169 are a superset of those done by classic GCSE.
170
171 Two passes of copy/constant propagation are done around PRE or hoisting
172 because the first one enables more GCSE and the second one helps to clean
173 up the copies that PRE and HOIST create. This is needed more for PRE than
174 for HOIST because code hoisting will try to use an existing register
175 containing the common subexpression rather than create a new one. This is
176 harder to do for PRE because of the code motion (which HOIST doesn't do).
177
178 Expressions we are interested in GCSE-ing are of the form
179 (set (pseudo-reg) (expression)).
180 Function want_to_gcse_p says what these are.
181
182 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
183 This allows PRE to hoist expressions that are expressed in multiple insns,
184 such as complex address calculations (e.g. for PIC code, or loads with a
185 high part and a low part).
186
187 PRE handles moving invariant expressions out of loops (by treating them as
188 partially redundant).
189
190 **********************
191
192 We used to support multiple passes but there are diminishing returns in
193 doing so. The first pass usually makes 90% of the changes that are doable.
194 A second pass can make a few more changes made possible by the first pass.
195 Experiments show any further passes don't make enough changes to justify
196 the expense.
197
198 A study of spec92 using an unlimited number of passes:
199 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
200 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
201 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
202
203 It was found doing copy propagation between each pass enables further
204 substitutions.
205
206 This study was done before expressions in REG_EQUAL notes were added as
207 candidate expressions for optimization, and before the GIMPLE optimizers
208 were added. Probably, multiple passes is even less efficient now than
209 at the time when the study was conducted.
210
211 PRE is quite expensive in complicated functions because the DFA can take
212 a while to converge. Hence we only perform one pass.
213
214 **********************
215
216 The steps for PRE are:
217
218 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
219
220 2) Perform the data flow analysis for PRE.
221
222 3) Delete the redundant instructions
223
224 4) Insert the required copies [if any] that make the partially
225 redundant instructions fully redundant.
226
227 5) For other reaching expressions, insert an instruction to copy the value
228 to a newly created pseudo that will reach the redundant instruction.
229
230 The deletion is done first so that when we do insertions we
231 know which pseudo reg to use.
232
233 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
234 argue it is not. The number of iterations for the algorithm to converge
235 is typically 2-4 so I don't view it as that expensive (relatively speaking).
236
237 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
238 we create. To make an expression reach the place where it's redundant,
239 the result of the expression is copied to a new register, and the redundant
240 expression is deleted by replacing it with this new register. Classic GCSE
241 doesn't have this problem as much as it computes the reaching defs of
242 each register in each block and thus can try to use an existing
243 register. */
244 \f
245 /* GCSE global vars. */
246
247 struct target_gcse default_target_gcse;
248 #if SWITCHABLE_TARGET
249 struct target_gcse *this_target_gcse = &default_target_gcse;
250 #endif
251
252 /* Set to non-zero if CSE should run after all GCSE optimizations are done. */
253 int flag_rerun_cse_after_global_opts;
254
255 /* An obstack for our working variables. */
256 static struct obstack gcse_obstack;
257
258 struct reg_use {rtx reg_rtx; };
259
260 /* Hash table of expressions. */
261
262 struct expr
263 {
264 /* The expression. */
265 rtx expr;
266 /* Index in the available expression bitmaps. */
267 int bitmap_index;
268 /* Next entry with the same hash. */
269 struct expr *next_same_hash;
270 /* List of anticipatable occurrences in basic blocks in the function.
271 An "anticipatable occurrence" is one that is the first occurrence in the
272 basic block, the operands are not modified in the basic block prior
273 to the occurrence and the output is not used between the start of
274 the block and the occurrence. */
275 struct occr *antic_occr;
276 /* List of available occurrence in basic blocks in the function.
277 An "available occurrence" is one that is the last occurrence in the
278 basic block and the operands are not modified by following statements in
279 the basic block [including this insn]. */
280 struct occr *avail_occr;
281 /* Non-null if the computation is PRE redundant.
282 The value is the newly created pseudo-reg to record a copy of the
283 expression in all the places that reach the redundant copy. */
284 rtx reaching_reg;
285 /* Maximum distance in instructions this expression can travel.
286 We avoid moving simple expressions for more than a few instructions
287 to keep register pressure under control.
288 A value of "0" removes restrictions on how far the expression can
289 travel. */
290 int max_distance;
291 };
292
293 /* Occurrence of an expression.
294 There is one per basic block. If a pattern appears more than once the
295 last appearance is used [or first for anticipatable expressions]. */
296
297 struct occr
298 {
299 /* Next occurrence of this expression. */
300 struct occr *next;
301 /* The insn that computes the expression. */
302 rtx insn;
303 /* Nonzero if this [anticipatable] occurrence has been deleted. */
304 char deleted_p;
305 /* Nonzero if this [available] occurrence has been copied to
306 reaching_reg. */
307 /* ??? This is mutually exclusive with deleted_p, so they could share
308 the same byte. */
309 char copied_p;
310 };
311
312 typedef struct occr *occr_t;
313 DEF_VEC_P (occr_t);
314 DEF_VEC_ALLOC_P (occr_t, heap);
315
316 /* Expression hash tables.
317 Each hash table is an array of buckets.
318 ??? It is known that if it were an array of entries, structure elements
319 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
320 not clear whether in the final analysis a sufficient amount of memory would
321 be saved as the size of the available expression bitmaps would be larger
322 [one could build a mapping table without holes afterwards though].
323 Someday I'll perform the computation and figure it out. */
324
325 struct hash_table_d
326 {
327 /* The table itself.
328 This is an array of `expr_hash_table_size' elements. */
329 struct expr **table;
330
331 /* Size of the hash table, in elements. */
332 unsigned int size;
333
334 /* Number of hash table elements. */
335 unsigned int n_elems;
336 };
337
338 /* Expression hash table. */
339 static struct hash_table_d expr_hash_table;
340
341 /* This is a list of expressions which are MEMs and will be used by load
342 or store motion.
343 Load motion tracks MEMs which aren't killed by anything except itself,
344 i.e. loads and stores to a single location.
345 We can then allow movement of these MEM refs with a little special
346 allowance. (all stores copy the same value to the reaching reg used
347 for the loads). This means all values used to store into memory must have
348 no side effects so we can re-issue the setter value. */
349
350 struct ls_expr
351 {
352 struct expr * expr; /* Gcse expression reference for LM. */
353 rtx pattern; /* Pattern of this mem. */
354 rtx pattern_regs; /* List of registers mentioned by the mem. */
355 rtx loads; /* INSN list of loads seen. */
356 rtx stores; /* INSN list of stores seen. */
357 struct ls_expr * next; /* Next in the list. */
358 int invalid; /* Invalid for some reason. */
359 int index; /* If it maps to a bitmap index. */
360 unsigned int hash_index; /* Index when in a hash table. */
361 rtx reaching_reg; /* Register to use when re-writing. */
362 };
363
364 /* Head of the list of load/store memory refs. */
365 static struct ls_expr * pre_ldst_mems = NULL;
366
367 /* Hashtable for the load/store memory refs. */
368 static htab_t pre_ldst_table = NULL;
369
370 /* Bitmap containing one bit for each register in the program.
371 Used when performing GCSE to track which registers have been set since
372 the start of the basic block. */
373 static regset reg_set_bitmap;
374
375 /* Array, indexed by basic block number for a list of insns which modify
376 memory within that block. */
377 static VEC (rtx,heap) **modify_mem_list;
378 static bitmap modify_mem_list_set;
379
380 typedef struct modify_pair_s
381 {
382 rtx dest; /* A MEM. */
383 rtx dest_addr; /* The canonical address of `dest'. */
384 } modify_pair;
385
386 DEF_VEC_O(modify_pair);
387 DEF_VEC_ALLOC_O(modify_pair,heap);
388
389 /* This array parallels modify_mem_list, except that it stores MEMs
390 being set and their canonicalized memory addresses. */
391 static VEC (modify_pair,heap) **canon_modify_mem_list;
392
393 /* Bitmap indexed by block numbers to record which blocks contain
394 function calls. */
395 static bitmap blocks_with_calls;
396
397 /* Various variables for statistics gathering. */
398
399 /* Memory used in a pass.
400 This isn't intended to be absolutely precise. Its intent is only
401 to keep an eye on memory usage. */
402 static int bytes_used;
403
404 /* GCSE substitutions made. */
405 static int gcse_subst_count;
406 /* Number of copy instructions created. */
407 static int gcse_create_count;
408 \f
409 /* Doing code hoisting. */
410 static bool doing_code_hoisting_p = false;
411 \f
412 /* For available exprs */
413 static sbitmap *ae_kill;
414 \f
415 /* Data stored for each basic block. */
416 struct bb_data
417 {
418 /* Maximal register pressure inside basic block for given register class
419 (defined only for the pressure classes). */
420 int max_reg_pressure[N_REG_CLASSES];
421 /* Recorded register pressure of basic block before trying to hoist
422 an expression. Will be used to restore the register pressure
423 if the expression should not be hoisted. */
424 int old_pressure;
425 /* Recorded register live_in info of basic block during code hoisting
426 process. BACKUP is used to record live_in info before trying to
427 hoist an expression, and will be used to restore LIVE_IN if the
428 expression should not be hoisted. */
429 bitmap live_in, backup;
430 };
431
432 #define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
433
434 static basic_block curr_bb;
435
436 /* Current register pressure for each pressure class. */
437 static int curr_reg_pressure[N_REG_CLASSES];
438 \f
439
440 static void compute_can_copy (void);
441 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
442 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
443 static void *gcse_alloc (unsigned long);
444 static void alloc_gcse_mem (void);
445 static void free_gcse_mem (void);
446 static void hash_scan_insn (rtx, struct hash_table_d *);
447 static void hash_scan_set (rtx, rtx, struct hash_table_d *);
448 static void hash_scan_clobber (rtx, rtx, struct hash_table_d *);
449 static void hash_scan_call (rtx, rtx, struct hash_table_d *);
450 static int want_to_gcse_p (rtx, int *);
451 static int oprs_unchanged_p (const_rtx, const_rtx, int);
452 static int oprs_anticipatable_p (const_rtx, const_rtx);
453 static int oprs_available_p (const_rtx, const_rtx);
454 static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int, int,
455 struct hash_table_d *);
456 static unsigned int hash_expr (const_rtx, enum machine_mode, int *, int);
457 static int expr_equiv_p (const_rtx, const_rtx);
458 static void record_last_reg_set_info (rtx, int);
459 static void record_last_mem_set_info (rtx);
460 static void record_last_set_info (rtx, const_rtx, void *);
461 static void compute_hash_table (struct hash_table_d *);
462 static void alloc_hash_table (struct hash_table_d *);
463 static void free_hash_table (struct hash_table_d *);
464 static void compute_hash_table_work (struct hash_table_d *);
465 static void dump_hash_table (FILE *, const char *, struct hash_table_d *);
466 static void compute_transp (const_rtx, int, sbitmap *);
467 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
468 struct hash_table_d *);
469 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
470 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
471 static void canon_list_insert (rtx, const_rtx, void *);
472 static void alloc_pre_mem (int, int);
473 static void free_pre_mem (void);
474 static struct edge_list *compute_pre_data (void);
475 static int pre_expr_reaches_here_p (basic_block, struct expr *,
476 basic_block);
477 static void insert_insn_end_basic_block (struct expr *, basic_block);
478 static void pre_insert_copy_insn (struct expr *, rtx);
479 static void pre_insert_copies (void);
480 static int pre_delete (void);
481 static int pre_gcse (struct edge_list *);
482 static int one_pre_gcse_pass (void);
483 static void add_label_notes (rtx, rtx);
484 static void alloc_code_hoist_mem (int, int);
485 static void free_code_hoist_mem (void);
486 static void compute_code_hoist_vbeinout (void);
487 static void compute_code_hoist_data (void);
488 static int should_hoist_expr_to_dom (basic_block, struct expr *, basic_block,
489 sbitmap, int, int *, enum reg_class,
490 int *, bitmap, rtx);
491 static int hoist_code (void);
492 static enum reg_class get_regno_pressure_class (int regno, int *nregs);
493 static enum reg_class get_pressure_class_and_nregs (rtx insn, int *nregs);
494 static int one_code_hoisting_pass (void);
495 static rtx process_insert_insn (struct expr *);
496 static int pre_edge_insert (struct edge_list *, struct expr **);
497 static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
498 basic_block, char *);
499 static struct ls_expr * ldst_entry (rtx);
500 static void free_ldst_entry (struct ls_expr *);
501 static void free_ld_motion_mems (void);
502 static void print_ldst_list (FILE *);
503 static struct ls_expr * find_rtx_in_ldst (rtx);
504 static int simple_mem (const_rtx);
505 static void invalidate_any_buried_refs (rtx);
506 static void compute_ld_motion_mems (void);
507 static void trim_ld_motion_mems (void);
508 static void update_ld_motion_stores (struct expr *);
509 static void clear_modify_mem_tables (void);
510 static void free_modify_mem_tables (void);
511 static rtx gcse_emit_move_after (rtx, rtx, rtx);
512 static bool is_too_expensive (const char *);
513
514 #define GNEW(T) ((T *) gmalloc (sizeof (T)))
515 #define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
516
517 #define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
518 #define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
519
520 #define GNEWVAR(T, S) ((T *) gmalloc ((S)))
521 #define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
522
523 #define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
524 #define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
525 \f
526 /* Misc. utilities. */
527
528 #define can_copy \
529 (this_target_gcse->x_can_copy)
530 #define can_copy_init_p \
531 (this_target_gcse->x_can_copy_init_p)
532
533 /* Compute which modes support reg/reg copy operations. */
534
535 static void
536 compute_can_copy (void)
537 {
538 int i;
539 #ifndef AVOID_CCMODE_COPIES
540 rtx reg, insn;
541 #endif
542 memset (can_copy, 0, NUM_MACHINE_MODES);
543
544 start_sequence ();
545 for (i = 0; i < NUM_MACHINE_MODES; i++)
546 if (GET_MODE_CLASS (i) == MODE_CC)
547 {
548 #ifdef AVOID_CCMODE_COPIES
549 can_copy[i] = 0;
550 #else
551 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
552 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
553 if (recog (PATTERN (insn), insn, NULL) >= 0)
554 can_copy[i] = 1;
555 #endif
556 }
557 else
558 can_copy[i] = 1;
559
560 end_sequence ();
561 }
562
563 /* Returns whether the mode supports reg/reg copy operations. */
564
565 bool
566 can_copy_p (enum machine_mode mode)
567 {
568 if (! can_copy_init_p)
569 {
570 compute_can_copy ();
571 can_copy_init_p = true;
572 }
573
574 return can_copy[mode] != 0;
575 }
576 \f
577 /* Cover function to xmalloc to record bytes allocated. */
578
579 static void *
580 gmalloc (size_t size)
581 {
582 bytes_used += size;
583 return xmalloc (size);
584 }
585
586 /* Cover function to xcalloc to record bytes allocated. */
587
588 static void *
589 gcalloc (size_t nelem, size_t elsize)
590 {
591 bytes_used += nelem * elsize;
592 return xcalloc (nelem, elsize);
593 }
594
595 /* Cover function to obstack_alloc. */
596
597 static void *
598 gcse_alloc (unsigned long size)
599 {
600 bytes_used += size;
601 return obstack_alloc (&gcse_obstack, size);
602 }
603
604 /* Allocate memory for the reg/memory set tracking tables.
605 This is called at the start of each pass. */
606
607 static void
608 alloc_gcse_mem (void)
609 {
610 /* Allocate vars to track sets of regs. */
611 reg_set_bitmap = ALLOC_REG_SET (NULL);
612
613 /* Allocate array to keep a list of insns which modify memory in each
614 basic block. */
615 modify_mem_list = GCNEWVEC (VEC (rtx,heap) *, last_basic_block);
616 canon_modify_mem_list = GCNEWVEC (VEC (modify_pair,heap) *,
617 last_basic_block);
618 modify_mem_list_set = BITMAP_ALLOC (NULL);
619 blocks_with_calls = BITMAP_ALLOC (NULL);
620 }
621
622 /* Free memory allocated by alloc_gcse_mem. */
623
624 static void
625 free_gcse_mem (void)
626 {
627 FREE_REG_SET (reg_set_bitmap);
628
629 free_modify_mem_tables ();
630 BITMAP_FREE (modify_mem_list_set);
631 BITMAP_FREE (blocks_with_calls);
632 }
633 \f
634 /* Compute the local properties of each recorded expression.
635
636 Local properties are those that are defined by the block, irrespective of
637 other blocks.
638
639 An expression is transparent in a block if its operands are not modified
640 in the block.
641
642 An expression is computed (locally available) in a block if it is computed
643 at least once and expression would contain the same value if the
644 computation was moved to the end of the block.
645
646 An expression is locally anticipatable in a block if it is computed at
647 least once and expression would contain the same value if the computation
648 was moved to the beginning of the block.
649
650 We call this routine for pre and code hoisting. They all compute
651 basically the same information and thus can easily share this code.
652
653 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
654 properties. If NULL, then it is not necessary to compute or record that
655 particular property.
656
657 TABLE controls which hash table to look at. */
658
659 static void
660 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
661 struct hash_table_d *table)
662 {
663 unsigned int i;
664
665 /* Initialize any bitmaps that were passed in. */
666 if (transp)
667 {
668 bitmap_vector_ones (transp, last_basic_block);
669 }
670
671 if (comp)
672 bitmap_vector_clear (comp, last_basic_block);
673 if (antloc)
674 bitmap_vector_clear (antloc, last_basic_block);
675
676 for (i = 0; i < table->size; i++)
677 {
678 struct expr *expr;
679
680 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
681 {
682 int indx = expr->bitmap_index;
683 struct occr *occr;
684
685 /* The expression is transparent in this block if it is not killed.
686 We start by assuming all are transparent [none are killed], and
687 then reset the bits for those that are. */
688 if (transp)
689 compute_transp (expr->expr, indx, transp);
690
691 /* The occurrences recorded in antic_occr are exactly those that
692 we want to set to nonzero in ANTLOC. */
693 if (antloc)
694 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
695 {
696 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
697
698 /* While we're scanning the table, this is a good place to
699 initialize this. */
700 occr->deleted_p = 0;
701 }
702
703 /* The occurrences recorded in avail_occr are exactly those that
704 we want to set to nonzero in COMP. */
705 if (comp)
706 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
707 {
708 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
709
710 /* While we're scanning the table, this is a good place to
711 initialize this. */
712 occr->copied_p = 0;
713 }
714
715 /* While we're scanning the table, this is a good place to
716 initialize this. */
717 expr->reaching_reg = 0;
718 }
719 }
720 }
721 \f
722 /* Hash table support. */
723
724 struct reg_avail_info
725 {
726 basic_block last_bb;
727 int first_set;
728 int last_set;
729 };
730
731 static struct reg_avail_info *reg_avail_info;
732 static basic_block current_bb;
733
734 /* See whether X, the source of a set, is something we want to consider for
735 GCSE. */
736
737 static int
738 want_to_gcse_p (rtx x, int *max_distance_ptr)
739 {
740 #ifdef STACK_REGS
741 /* On register stack architectures, don't GCSE constants from the
742 constant pool, as the benefits are often swamped by the overhead
743 of shuffling the register stack between basic blocks. */
744 if (IS_STACK_MODE (GET_MODE (x)))
745 x = avoid_constant_pool_reference (x);
746 #endif
747
748 /* GCSE'ing constants:
749
750 We do not specifically distinguish between constant and non-constant
751 expressions in PRE and Hoist. We use set_src_cost below to limit
752 the maximum distance simple expressions can travel.
753
754 Nevertheless, constants are much easier to GCSE, and, hence,
755 it is easy to overdo the optimizations. Usually, excessive PRE and
756 Hoisting of constant leads to increased register pressure.
757
758 RA can deal with this by rematerialing some of the constants.
759 Therefore, it is important that the back-end generates sets of constants
760 in a way that allows reload rematerialize them under high register
761 pressure, i.e., a pseudo register with REG_EQUAL to constant
762 is set only once. Failing to do so will result in IRA/reload
763 spilling such constants under high register pressure instead of
764 rematerializing them. */
765
766 switch (GET_CODE (x))
767 {
768 case REG:
769 case SUBREG:
770 case CALL:
771 return 0;
772
773 CASE_CONST_ANY:
774 if (!doing_code_hoisting_p)
775 /* Do not PRE constants. */
776 return 0;
777
778 /* FALLTHRU */
779
780 default:
781 if (doing_code_hoisting_p)
782 /* PRE doesn't implement max_distance restriction. */
783 {
784 int cost;
785 int max_distance;
786
787 gcc_assert (!optimize_function_for_speed_p (cfun)
788 && optimize_function_for_size_p (cfun));
789 cost = set_src_cost (x, 0);
790
791 if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
792 {
793 max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
794 if (max_distance == 0)
795 return 0;
796
797 gcc_assert (max_distance > 0);
798 }
799 else
800 max_distance = 0;
801
802 if (max_distance_ptr)
803 *max_distance_ptr = max_distance;
804 }
805
806 return can_assign_to_reg_without_clobbers_p (x);
807 }
808 }
809
810 /* Used internally by can_assign_to_reg_without_clobbers_p. */
811
812 static GTY(()) rtx test_insn;
813
814 /* Return true if we can assign X to a pseudo register such that the
815 resulting insn does not result in clobbering a hard register as a
816 side-effect.
817
818 Additionally, if the target requires it, check that the resulting insn
819 can be copied. If it cannot, this means that X is special and probably
820 has hidden side-effects we don't want to mess with.
821
822 This function is typically used by code motion passes, to verify
823 that it is safe to insert an insn without worrying about clobbering
824 maybe live hard regs. */
825
826 bool
827 can_assign_to_reg_without_clobbers_p (rtx x)
828 {
829 int num_clobbers = 0;
830 int icode;
831
832 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
833 if (general_operand (x, GET_MODE (x)))
834 return 1;
835 else if (GET_MODE (x) == VOIDmode)
836 return 0;
837
838 /* Otherwise, check if we can make a valid insn from it. First initialize
839 our test insn if we haven't already. */
840 if (test_insn == 0)
841 {
842 test_insn
843 = make_insn_raw (gen_rtx_SET (VOIDmode,
844 gen_rtx_REG (word_mode,
845 FIRST_PSEUDO_REGISTER * 2),
846 const0_rtx));
847 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
848 }
849
850 /* Now make an insn like the one we would make when GCSE'ing and see if
851 valid. */
852 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
853 SET_SRC (PATTERN (test_insn)) = x;
854
855 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
856 if (icode < 0)
857 return false;
858
859 if (num_clobbers > 0 && added_clobbers_hard_reg_p (icode))
860 return false;
861
862 if (targetm.cannot_copy_insn_p && targetm.cannot_copy_insn_p (test_insn))
863 return false;
864
865 return true;
866 }
867
868 /* Return nonzero if the operands of expression X are unchanged from the
869 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
870 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
871
872 static int
873 oprs_unchanged_p (const_rtx x, const_rtx insn, int avail_p)
874 {
875 int i, j;
876 enum rtx_code code;
877 const char *fmt;
878
879 if (x == 0)
880 return 1;
881
882 code = GET_CODE (x);
883 switch (code)
884 {
885 case REG:
886 {
887 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
888
889 if (info->last_bb != current_bb)
890 return 1;
891 if (avail_p)
892 return info->last_set < DF_INSN_LUID (insn);
893 else
894 return info->first_set >= DF_INSN_LUID (insn);
895 }
896
897 case MEM:
898 if (load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
899 x, avail_p))
900 return 0;
901 else
902 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
903
904 case PRE_DEC:
905 case PRE_INC:
906 case POST_DEC:
907 case POST_INC:
908 case PRE_MODIFY:
909 case POST_MODIFY:
910 return 0;
911
912 case PC:
913 case CC0: /*FIXME*/
914 case CONST:
915 CASE_CONST_ANY:
916 case SYMBOL_REF:
917 case LABEL_REF:
918 case ADDR_VEC:
919 case ADDR_DIFF_VEC:
920 return 1;
921
922 default:
923 break;
924 }
925
926 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
927 {
928 if (fmt[i] == 'e')
929 {
930 /* If we are about to do the last recursive call needed at this
931 level, change it into iteration. This function is called enough
932 to be worth it. */
933 if (i == 0)
934 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
935
936 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
937 return 0;
938 }
939 else if (fmt[i] == 'E')
940 for (j = 0; j < XVECLEN (x, i); j++)
941 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
942 return 0;
943 }
944
945 return 1;
946 }
947
948 /* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
949
950 struct mem_conflict_info
951 {
952 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
953 see if a memory store conflicts with this memory load. */
954 const_rtx mem;
955
956 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
957 references. */
958 bool conflict;
959 };
960
961 /* DEST is the output of an instruction. If it is a memory reference and
962 possibly conflicts with the load found in DATA, then communicate this
963 information back through DATA. */
964
965 static void
966 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
967 void *data)
968 {
969 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
970
971 while (GET_CODE (dest) == SUBREG
972 || GET_CODE (dest) == ZERO_EXTRACT
973 || GET_CODE (dest) == STRICT_LOW_PART)
974 dest = XEXP (dest, 0);
975
976 /* If DEST is not a MEM, then it will not conflict with the load. Note
977 that function calls are assumed to clobber memory, but are handled
978 elsewhere. */
979 if (! MEM_P (dest))
980 return;
981
982 /* If we are setting a MEM in our list of specially recognized MEMs,
983 don't mark as killed this time. */
984 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
985 {
986 if (!find_rtx_in_ldst (dest))
987 mci->conflict = true;
988 return;
989 }
990
991 if (true_dependence (dest, GET_MODE (dest), mci->mem))
992 mci->conflict = true;
993 }
994
995 /* Return nonzero if the expression in X (a memory reference) is killed
996 in block BB before or after the insn with the LUID in UID_LIMIT.
997 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
998 before UID_LIMIT.
999
1000 To check the entire block, set UID_LIMIT to max_uid + 1 and
1001 AVAIL_P to 0. */
1002
1003 static int
1004 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1005 int avail_p)
1006 {
1007 VEC (rtx,heap) *list = modify_mem_list[bb->index];
1008 rtx setter;
1009 unsigned ix;
1010
1011 /* If this is a readonly then we aren't going to be changing it. */
1012 if (MEM_READONLY_P (x))
1013 return 0;
1014
1015 FOR_EACH_VEC_ELT_REVERSE (rtx, list, ix, setter)
1016 {
1017 struct mem_conflict_info mci;
1018
1019 /* Ignore entries in the list that do not apply. */
1020 if ((avail_p
1021 && DF_INSN_LUID (setter) < uid_limit)
1022 || (! avail_p
1023 && DF_INSN_LUID (setter) > uid_limit))
1024 continue;
1025
1026 /* If SETTER is a call everything is clobbered. Note that calls
1027 to pure functions are never put on the list, so we need not
1028 worry about them. */
1029 if (CALL_P (setter))
1030 return 1;
1031
1032 /* SETTER must be an INSN of some kind that sets memory. Call
1033 note_stores to examine each hunk of memory that is modified. */
1034 mci.mem = x;
1035 mci.conflict = false;
1036 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1037 if (mci.conflict)
1038 return 1;
1039 }
1040 return 0;
1041 }
1042
1043 /* Return nonzero if the operands of expression X are unchanged from
1044 the start of INSN's basic block up to but not including INSN. */
1045
1046 static int
1047 oprs_anticipatable_p (const_rtx x, const_rtx insn)
1048 {
1049 return oprs_unchanged_p (x, insn, 0);
1050 }
1051
1052 /* Return nonzero if the operands of expression X are unchanged from
1053 INSN to the end of INSN's basic block. */
1054
1055 static int
1056 oprs_available_p (const_rtx x, const_rtx insn)
1057 {
1058 return oprs_unchanged_p (x, insn, 1);
1059 }
1060
1061 /* Hash expression X.
1062
1063 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1064 indicating if a volatile operand is found or if the expression contains
1065 something we don't want to insert in the table. HASH_TABLE_SIZE is
1066 the current size of the hash table to be probed. */
1067
1068 static unsigned int
1069 hash_expr (const_rtx x, enum machine_mode mode, int *do_not_record_p,
1070 int hash_table_size)
1071 {
1072 unsigned int hash;
1073
1074 *do_not_record_p = 0;
1075
1076 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
1077 return hash % hash_table_size;
1078 }
1079
1080 /* Return nonzero if exp1 is equivalent to exp2. */
1081
1082 static int
1083 expr_equiv_p (const_rtx x, const_rtx y)
1084 {
1085 return exp_equiv_p (x, y, 0, true);
1086 }
1087
1088 /* Insert expression X in INSN in the hash TABLE.
1089 If it is already present, record it as the last occurrence in INSN's
1090 basic block.
1091
1092 MODE is the mode of the value X is being stored into.
1093 It is only used if X is a CONST_INT.
1094
1095 ANTIC_P is nonzero if X is an anticipatable expression.
1096 AVAIL_P is nonzero if X is an available expression.
1097
1098 MAX_DISTANCE is the maximum distance in instructions this expression can
1099 be moved. */
1100
1101 static void
1102 insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
1103 int avail_p, int max_distance, struct hash_table_d *table)
1104 {
1105 int found, do_not_record_p;
1106 unsigned int hash;
1107 struct expr *cur_expr, *last_expr = NULL;
1108 struct occr *antic_occr, *avail_occr;
1109
1110 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1111
1112 /* Do not insert expression in table if it contains volatile operands,
1113 or if hash_expr determines the expression is something we don't want
1114 to or can't handle. */
1115 if (do_not_record_p)
1116 return;
1117
1118 cur_expr = table->table[hash];
1119 found = 0;
1120
1121 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1122 {
1123 /* If the expression isn't found, save a pointer to the end of
1124 the list. */
1125 last_expr = cur_expr;
1126 cur_expr = cur_expr->next_same_hash;
1127 }
1128
1129 if (! found)
1130 {
1131 cur_expr = GOBNEW (struct expr);
1132 bytes_used += sizeof (struct expr);
1133 if (table->table[hash] == NULL)
1134 /* This is the first pattern that hashed to this index. */
1135 table->table[hash] = cur_expr;
1136 else
1137 /* Add EXPR to end of this hash chain. */
1138 last_expr->next_same_hash = cur_expr;
1139
1140 /* Set the fields of the expr element. */
1141 cur_expr->expr = x;
1142 cur_expr->bitmap_index = table->n_elems++;
1143 cur_expr->next_same_hash = NULL;
1144 cur_expr->antic_occr = NULL;
1145 cur_expr->avail_occr = NULL;
1146 gcc_assert (max_distance >= 0);
1147 cur_expr->max_distance = max_distance;
1148 }
1149 else
1150 gcc_assert (cur_expr->max_distance == max_distance);
1151
1152 /* Now record the occurrence(s). */
1153 if (antic_p)
1154 {
1155 antic_occr = cur_expr->antic_occr;
1156
1157 if (antic_occr
1158 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
1159 antic_occr = NULL;
1160
1161 if (antic_occr)
1162 /* Found another instance of the expression in the same basic block.
1163 Prefer the currently recorded one. We want the first one in the
1164 block and the block is scanned from start to end. */
1165 ; /* nothing to do */
1166 else
1167 {
1168 /* First occurrence of this expression in this basic block. */
1169 antic_occr = GOBNEW (struct occr);
1170 bytes_used += sizeof (struct occr);
1171 antic_occr->insn = insn;
1172 antic_occr->next = cur_expr->antic_occr;
1173 antic_occr->deleted_p = 0;
1174 cur_expr->antic_occr = antic_occr;
1175 }
1176 }
1177
1178 if (avail_p)
1179 {
1180 avail_occr = cur_expr->avail_occr;
1181
1182 if (avail_occr
1183 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
1184 {
1185 /* Found another instance of the expression in the same basic block.
1186 Prefer this occurrence to the currently recorded one. We want
1187 the last one in the block and the block is scanned from start
1188 to end. */
1189 avail_occr->insn = insn;
1190 }
1191 else
1192 {
1193 /* First occurrence of this expression in this basic block. */
1194 avail_occr = GOBNEW (struct occr);
1195 bytes_used += sizeof (struct occr);
1196 avail_occr->insn = insn;
1197 avail_occr->next = cur_expr->avail_occr;
1198 avail_occr->deleted_p = 0;
1199 cur_expr->avail_occr = avail_occr;
1200 }
1201 }
1202 }
1203
1204 /* Scan SET present in INSN and add an entry to the hash TABLE. */
1205
1206 static void
1207 hash_scan_set (rtx set, rtx insn, struct hash_table_d *table)
1208 {
1209 rtx src = SET_SRC (set);
1210 rtx dest = SET_DEST (set);
1211 rtx note;
1212
1213 if (GET_CODE (src) == CALL)
1214 hash_scan_call (src, insn, table);
1215
1216 else if (REG_P (dest))
1217 {
1218 unsigned int regno = REGNO (dest);
1219 int max_distance = 0;
1220
1221 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1222
1223 This allows us to do a single GCSE pass and still eliminate
1224 redundant constants, addresses or other expressions that are
1225 constructed with multiple instructions.
1226
1227 However, keep the original SRC if INSN is a simple reg-reg move.
1228 In this case, there will almost always be a REG_EQUAL note on the
1229 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1230 for INSN, we miss copy propagation opportunities and we perform the
1231 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1232 do more than one PRE GCSE pass.
1233
1234 Note that this does not impede profitable constant propagations. We
1235 "look through" reg-reg sets in lookup_avail_set. */
1236 note = find_reg_equal_equiv_note (insn);
1237 if (note != 0
1238 && REG_NOTE_KIND (note) == REG_EQUAL
1239 && !REG_P (src)
1240 && want_to_gcse_p (XEXP (note, 0), NULL))
1241 src = XEXP (note, 0), set = gen_rtx_SET (VOIDmode, dest, src);
1242
1243 /* Only record sets of pseudo-regs in the hash table. */
1244 if (regno >= FIRST_PSEUDO_REGISTER
1245 /* Don't GCSE something if we can't do a reg/reg copy. */
1246 && can_copy_p (GET_MODE (dest))
1247 /* GCSE commonly inserts instruction after the insn. We can't
1248 do that easily for EH edges so disable GCSE on these for now. */
1249 /* ??? We can now easily create new EH landing pads at the
1250 gimple level, for splitting edges; there's no reason we
1251 can't do the same thing at the rtl level. */
1252 && !can_throw_internal (insn)
1253 /* Is SET_SRC something we want to gcse? */
1254 && want_to_gcse_p (src, &max_distance)
1255 /* Don't CSE a nop. */
1256 && ! set_noop_p (set)
1257 /* Don't GCSE if it has attached REG_EQUIV note.
1258 At this point this only function parameters should have
1259 REG_EQUIV notes and if the argument slot is used somewhere
1260 explicitly, it means address of parameter has been taken,
1261 so we should not extend the lifetime of the pseudo. */
1262 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1263 {
1264 /* An expression is not anticipatable if its operands are
1265 modified before this insn or if this is not the only SET in
1266 this insn. The latter condition does not have to mean that
1267 SRC itself is not anticipatable, but we just will not be
1268 able to handle code motion of insns with multiple sets. */
1269 int antic_p = oprs_anticipatable_p (src, insn)
1270 && !multiple_sets (insn);
1271 /* An expression is not available if its operands are
1272 subsequently modified, including this insn. It's also not
1273 available if this is a branch, because we can't insert
1274 a set after the branch. */
1275 int avail_p = (oprs_available_p (src, insn)
1276 && ! JUMP_P (insn));
1277
1278 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1279 max_distance, table);
1280 }
1281 }
1282 /* In case of store we want to consider the memory value as available in
1283 the REG stored in that memory. This makes it possible to remove
1284 redundant loads from due to stores to the same location. */
1285 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1286 {
1287 unsigned int regno = REGNO (src);
1288 int max_distance = 0;
1289
1290 /* Only record sets of pseudo-regs in the hash table. */
1291 if (regno >= FIRST_PSEUDO_REGISTER
1292 /* Don't GCSE something if we can't do a reg/reg copy. */
1293 && can_copy_p (GET_MODE (src))
1294 /* GCSE commonly inserts instruction after the insn. We can't
1295 do that easily for EH edges so disable GCSE on these for now. */
1296 && !can_throw_internal (insn)
1297 /* Is SET_DEST something we want to gcse? */
1298 && want_to_gcse_p (dest, &max_distance)
1299 /* Don't CSE a nop. */
1300 && ! set_noop_p (set)
1301 /* Don't GCSE if it has attached REG_EQUIV note.
1302 At this point this only function parameters should have
1303 REG_EQUIV notes and if the argument slot is used somewhere
1304 explicitly, it means address of parameter has been taken,
1305 so we should not extend the lifetime of the pseudo. */
1306 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1307 || ! MEM_P (XEXP (note, 0))))
1308 {
1309 /* Stores are never anticipatable. */
1310 int antic_p = 0;
1311 /* An expression is not available if its operands are
1312 subsequently modified, including this insn. It's also not
1313 available if this is a branch, because we can't insert
1314 a set after the branch. */
1315 int avail_p = oprs_available_p (dest, insn)
1316 && ! JUMP_P (insn);
1317
1318 /* Record the memory expression (DEST) in the hash table. */
1319 insert_expr_in_table (dest, GET_MODE (dest), insn,
1320 antic_p, avail_p, max_distance, table);
1321 }
1322 }
1323 }
1324
1325 static void
1326 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1327 struct hash_table_d *table ATTRIBUTE_UNUSED)
1328 {
1329 /* Currently nothing to do. */
1330 }
1331
1332 static void
1333 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1334 struct hash_table_d *table ATTRIBUTE_UNUSED)
1335 {
1336 /* Currently nothing to do. */
1337 }
1338
1339 /* Process INSN and add hash table entries as appropriate. */
1340
1341 static void
1342 hash_scan_insn (rtx insn, struct hash_table_d *table)
1343 {
1344 rtx pat = PATTERN (insn);
1345 int i;
1346
1347 /* Pick out the sets of INSN and for other forms of instructions record
1348 what's been modified. */
1349
1350 if (GET_CODE (pat) == SET)
1351 hash_scan_set (pat, insn, table);
1352
1353 else if (GET_CODE (pat) == CLOBBER)
1354 hash_scan_clobber (pat, insn, table);
1355
1356 else if (GET_CODE (pat) == CALL)
1357 hash_scan_call (pat, insn, table);
1358
1359 else if (GET_CODE (pat) == PARALLEL)
1360 for (i = 0; i < XVECLEN (pat, 0); i++)
1361 {
1362 rtx x = XVECEXP (pat, 0, i);
1363
1364 if (GET_CODE (x) == SET)
1365 hash_scan_set (x, insn, table);
1366 else if (GET_CODE (x) == CLOBBER)
1367 hash_scan_clobber (x, insn, table);
1368 else if (GET_CODE (x) == CALL)
1369 hash_scan_call (x, insn, table);
1370 }
1371 }
1372
1373 /* Dump the hash table TABLE to file FILE under the name NAME. */
1374
1375 static void
1376 dump_hash_table (FILE *file, const char *name, struct hash_table_d *table)
1377 {
1378 int i;
1379 /* Flattened out table, so it's printed in proper order. */
1380 struct expr **flat_table;
1381 unsigned int *hash_val;
1382 struct expr *expr;
1383
1384 flat_table = XCNEWVEC (struct expr *, table->n_elems);
1385 hash_val = XNEWVEC (unsigned int, table->n_elems);
1386
1387 for (i = 0; i < (int) table->size; i++)
1388 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1389 {
1390 flat_table[expr->bitmap_index] = expr;
1391 hash_val[expr->bitmap_index] = i;
1392 }
1393
1394 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1395 name, table->size, table->n_elems);
1396
1397 for (i = 0; i < (int) table->n_elems; i++)
1398 if (flat_table[i] != 0)
1399 {
1400 expr = flat_table[i];
1401 fprintf (file, "Index %d (hash value %d; max distance %d)\n ",
1402 expr->bitmap_index, hash_val[i], expr->max_distance);
1403 print_rtl (file, expr->expr);
1404 fprintf (file, "\n");
1405 }
1406
1407 fprintf (file, "\n");
1408
1409 free (flat_table);
1410 free (hash_val);
1411 }
1412
1413 /* Record register first/last/block set information for REGNO in INSN.
1414
1415 first_set records the first place in the block where the register
1416 is set and is used to compute "anticipatability".
1417
1418 last_set records the last place in the block where the register
1419 is set and is used to compute "availability".
1420
1421 last_bb records the block for which first_set and last_set are
1422 valid, as a quick test to invalidate them. */
1423
1424 static void
1425 record_last_reg_set_info (rtx insn, int regno)
1426 {
1427 struct reg_avail_info *info = &reg_avail_info[regno];
1428 int luid = DF_INSN_LUID (insn);
1429
1430 info->last_set = luid;
1431 if (info->last_bb != current_bb)
1432 {
1433 info->last_bb = current_bb;
1434 info->first_set = luid;
1435 }
1436 }
1437
1438 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1439 Note we store a pair of elements in the list, so they have to be
1440 taken off pairwise. */
1441
1442 static void
1443 canon_list_insert (rtx dest ATTRIBUTE_UNUSED, const_rtx x ATTRIBUTE_UNUSED,
1444 void * v_insn)
1445 {
1446 rtx dest_addr, insn;
1447 int bb;
1448 modify_pair pair;
1449
1450 while (GET_CODE (dest) == SUBREG
1451 || GET_CODE (dest) == ZERO_EXTRACT
1452 || GET_CODE (dest) == STRICT_LOW_PART)
1453 dest = XEXP (dest, 0);
1454
1455 /* If DEST is not a MEM, then it will not conflict with a load. Note
1456 that function calls are assumed to clobber memory, but are handled
1457 elsewhere. */
1458
1459 if (! MEM_P (dest))
1460 return;
1461
1462 dest_addr = get_addr (XEXP (dest, 0));
1463 dest_addr = canon_rtx (dest_addr);
1464 insn = (rtx) v_insn;
1465 bb = BLOCK_FOR_INSN (insn)->index;
1466
1467 pair.dest = dest;
1468 pair.dest_addr = dest_addr;
1469 VEC_safe_push (modify_pair, heap, canon_modify_mem_list[bb], pair);
1470 }
1471
1472 /* Record memory modification information for INSN. We do not actually care
1473 about the memory location(s) that are set, or even how they are set (consider
1474 a CALL_INSN). We merely need to record which insns modify memory. */
1475
1476 static void
1477 record_last_mem_set_info (rtx insn)
1478 {
1479 int bb = BLOCK_FOR_INSN (insn)->index;
1480
1481 /* load_killed_in_block_p will handle the case of calls clobbering
1482 everything. */
1483 VEC_safe_push (rtx, heap, modify_mem_list[bb], insn);
1484 bitmap_set_bit (modify_mem_list_set, bb);
1485
1486 if (CALL_P (insn))
1487 bitmap_set_bit (blocks_with_calls, bb);
1488 else
1489 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
1490 }
1491
1492 /* Called from compute_hash_table via note_stores to handle one
1493 SET or CLOBBER in an insn. DATA is really the instruction in which
1494 the SET is taking place. */
1495
1496 static void
1497 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1498 {
1499 rtx last_set_insn = (rtx) data;
1500
1501 if (GET_CODE (dest) == SUBREG)
1502 dest = SUBREG_REG (dest);
1503
1504 if (REG_P (dest))
1505 record_last_reg_set_info (last_set_insn, REGNO (dest));
1506 else if (MEM_P (dest)
1507 /* Ignore pushes, they clobber nothing. */
1508 && ! push_operand (dest, GET_MODE (dest)))
1509 record_last_mem_set_info (last_set_insn);
1510 }
1511
1512 /* Top level function to create an expression hash table.
1513
1514 Expression entries are placed in the hash table if
1515 - they are of the form (set (pseudo-reg) src),
1516 - src is something we want to perform GCSE on,
1517 - none of the operands are subsequently modified in the block
1518
1519 Currently src must be a pseudo-reg or a const_int.
1520
1521 TABLE is the table computed. */
1522
1523 static void
1524 compute_hash_table_work (struct hash_table_d *table)
1525 {
1526 int i;
1527
1528 /* re-Cache any INSN_LIST nodes we have allocated. */
1529 clear_modify_mem_tables ();
1530 /* Some working arrays used to track first and last set in each block. */
1531 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
1532
1533 for (i = 0; i < max_reg_num (); ++i)
1534 reg_avail_info[i].last_bb = NULL;
1535
1536 FOR_EACH_BB (current_bb)
1537 {
1538 rtx insn;
1539 unsigned int regno;
1540
1541 /* First pass over the instructions records information used to
1542 determine when registers and memory are first and last set. */
1543 FOR_BB_INSNS (current_bb, insn)
1544 {
1545 if (!NONDEBUG_INSN_P (insn))
1546 continue;
1547
1548 if (CALL_P (insn))
1549 {
1550 hard_reg_set_iterator hrsi;
1551 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1552 0, regno, hrsi)
1553 record_last_reg_set_info (insn, regno);
1554
1555 if (! RTL_CONST_OR_PURE_CALL_P (insn))
1556 record_last_mem_set_info (insn);
1557 }
1558
1559 note_stores (PATTERN (insn), record_last_set_info, insn);
1560 }
1561
1562 /* The next pass builds the hash table. */
1563 FOR_BB_INSNS (current_bb, insn)
1564 if (NONDEBUG_INSN_P (insn))
1565 hash_scan_insn (insn, table);
1566 }
1567
1568 free (reg_avail_info);
1569 reg_avail_info = NULL;
1570 }
1571
1572 /* Allocate space for the set/expr hash TABLE.
1573 It is used to determine the number of buckets to use. */
1574
1575 static void
1576 alloc_hash_table (struct hash_table_d *table)
1577 {
1578 int n;
1579
1580 n = get_max_insn_count ();
1581
1582 table->size = n / 4;
1583 if (table->size < 11)
1584 table->size = 11;
1585
1586 /* Attempt to maintain efficient use of hash table.
1587 Making it an odd number is simplest for now.
1588 ??? Later take some measurements. */
1589 table->size |= 1;
1590 n = table->size * sizeof (struct expr *);
1591 table->table = GNEWVAR (struct expr *, n);
1592 }
1593
1594 /* Free things allocated by alloc_hash_table. */
1595
1596 static void
1597 free_hash_table (struct hash_table_d *table)
1598 {
1599 free (table->table);
1600 }
1601
1602 /* Compute the expression hash table TABLE. */
1603
1604 static void
1605 compute_hash_table (struct hash_table_d *table)
1606 {
1607 /* Initialize count of number of entries in hash table. */
1608 table->n_elems = 0;
1609 memset (table->table, 0, table->size * sizeof (struct expr *));
1610
1611 compute_hash_table_work (table);
1612 }
1613 \f
1614 /* Expression tracking support. */
1615
1616 /* Clear canon_modify_mem_list and modify_mem_list tables. */
1617 static void
1618 clear_modify_mem_tables (void)
1619 {
1620 unsigned i;
1621 bitmap_iterator bi;
1622
1623 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
1624 {
1625 VEC_free (rtx, heap, modify_mem_list[i]);
1626 VEC_free (modify_pair, heap, canon_modify_mem_list[i]);
1627 }
1628 bitmap_clear (modify_mem_list_set);
1629 bitmap_clear (blocks_with_calls);
1630 }
1631
1632 /* Release memory used by modify_mem_list_set. */
1633
1634 static void
1635 free_modify_mem_tables (void)
1636 {
1637 clear_modify_mem_tables ();
1638 free (modify_mem_list);
1639 free (canon_modify_mem_list);
1640 modify_mem_list = 0;
1641 canon_modify_mem_list = 0;
1642 }
1643 \f
1644 /* For each block, compute whether X is transparent. X is either an
1645 expression or an assignment [though we don't care which, for this context
1646 an assignment is treated as an expression]. For each block where an
1647 element of X is modified, reset the INDX bit in BMAP. */
1648
1649 static void
1650 compute_transp (const_rtx x, int indx, sbitmap *bmap)
1651 {
1652 int i, j;
1653 enum rtx_code code;
1654 const char *fmt;
1655
1656 /* repeat is used to turn tail-recursion into iteration since GCC
1657 can't do it when there's no return value. */
1658 repeat:
1659
1660 if (x == 0)
1661 return;
1662
1663 code = GET_CODE (x);
1664 switch (code)
1665 {
1666 case REG:
1667 {
1668 df_ref def;
1669 for (def = DF_REG_DEF_CHAIN (REGNO (x));
1670 def;
1671 def = DF_REF_NEXT_REG (def))
1672 bitmap_clear_bit (bmap[DF_REF_BB (def)->index], indx);
1673 }
1674
1675 return;
1676
1677 case MEM:
1678 if (! MEM_READONLY_P (x))
1679 {
1680 bitmap_iterator bi;
1681 unsigned bb_index;
1682
1683 /* First handle all the blocks with calls. We don't need to
1684 do any list walking for them. */
1685 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
1686 {
1687 bitmap_clear_bit (bmap[bb_index], indx);
1688 }
1689
1690 /* Now iterate over the blocks which have memory modifications
1691 but which do not have any calls. */
1692 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set,
1693 blocks_with_calls,
1694 0, bb_index, bi)
1695 {
1696 VEC (modify_pair,heap) *list
1697 = canon_modify_mem_list[bb_index];
1698 modify_pair *pair;
1699 unsigned ix;
1700
1701 FOR_EACH_VEC_ELT_REVERSE (modify_pair, list, ix, pair)
1702 {
1703 rtx dest = pair->dest;
1704 rtx dest_addr = pair->dest_addr;
1705
1706 if (canon_true_dependence (dest, GET_MODE (dest),
1707 dest_addr, x, NULL_RTX))
1708 bitmap_clear_bit (bmap[bb_index], indx);
1709 }
1710 }
1711 }
1712
1713 x = XEXP (x, 0);
1714 goto repeat;
1715
1716 case PC:
1717 case CC0: /*FIXME*/
1718 case CONST:
1719 CASE_CONST_ANY:
1720 case SYMBOL_REF:
1721 case LABEL_REF:
1722 case ADDR_VEC:
1723 case ADDR_DIFF_VEC:
1724 return;
1725
1726 default:
1727 break;
1728 }
1729
1730 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1731 {
1732 if (fmt[i] == 'e')
1733 {
1734 /* If we are about to do the last recursive call
1735 needed at this level, change it into iteration.
1736 This function is called enough to be worth it. */
1737 if (i == 0)
1738 {
1739 x = XEXP (x, i);
1740 goto repeat;
1741 }
1742
1743 compute_transp (XEXP (x, i), indx, bmap);
1744 }
1745 else if (fmt[i] == 'E')
1746 for (j = 0; j < XVECLEN (x, i); j++)
1747 compute_transp (XVECEXP (x, i, j), indx, bmap);
1748 }
1749 }
1750 \f
1751 /* Compute PRE+LCM working variables. */
1752
1753 /* Local properties of expressions. */
1754
1755 /* Nonzero for expressions that are transparent in the block. */
1756 static sbitmap *transp;
1757
1758 /* Nonzero for expressions that are computed (available) in the block. */
1759 static sbitmap *comp;
1760
1761 /* Nonzero for expressions that are locally anticipatable in the block. */
1762 static sbitmap *antloc;
1763
1764 /* Nonzero for expressions where this block is an optimal computation
1765 point. */
1766 static sbitmap *pre_optimal;
1767
1768 /* Nonzero for expressions which are redundant in a particular block. */
1769 static sbitmap *pre_redundant;
1770
1771 /* Nonzero for expressions which should be inserted on a specific edge. */
1772 static sbitmap *pre_insert_map;
1773
1774 /* Nonzero for expressions which should be deleted in a specific block. */
1775 static sbitmap *pre_delete_map;
1776
1777 /* Allocate vars used for PRE analysis. */
1778
1779 static void
1780 alloc_pre_mem (int n_blocks, int n_exprs)
1781 {
1782 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1783 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1784 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
1785
1786 pre_optimal = NULL;
1787 pre_redundant = NULL;
1788 pre_insert_map = NULL;
1789 pre_delete_map = NULL;
1790 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
1791
1792 /* pre_insert and pre_delete are allocated later. */
1793 }
1794
1795 /* Free vars used for PRE analysis. */
1796
1797 static void
1798 free_pre_mem (void)
1799 {
1800 sbitmap_vector_free (transp);
1801 sbitmap_vector_free (comp);
1802
1803 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
1804
1805 if (pre_optimal)
1806 sbitmap_vector_free (pre_optimal);
1807 if (pre_redundant)
1808 sbitmap_vector_free (pre_redundant);
1809 if (pre_insert_map)
1810 sbitmap_vector_free (pre_insert_map);
1811 if (pre_delete_map)
1812 sbitmap_vector_free (pre_delete_map);
1813
1814 transp = comp = NULL;
1815 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
1816 }
1817
1818 /* Remove certain expressions from anticipatable and transparent
1819 sets of basic blocks that have incoming abnormal edge.
1820 For PRE remove potentially trapping expressions to avoid placing
1821 them on abnormal edges. For hoisting remove memory references that
1822 can be clobbered by calls. */
1823
1824 static void
1825 prune_expressions (bool pre_p)
1826 {
1827 sbitmap prune_exprs;
1828 struct expr *expr;
1829 unsigned int ui;
1830 basic_block bb;
1831
1832 prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
1833 bitmap_clear (prune_exprs);
1834 for (ui = 0; ui < expr_hash_table.size; ui++)
1835 {
1836 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
1837 {
1838 /* Note potentially trapping expressions. */
1839 if (may_trap_p (expr->expr))
1840 {
1841 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1842 continue;
1843 }
1844
1845 if (!pre_p && MEM_P (expr->expr))
1846 /* Note memory references that can be clobbered by a call.
1847 We do not split abnormal edges in hoisting, so would
1848 a memory reference get hoisted along an abnormal edge,
1849 it would be placed /before/ the call. Therefore, only
1850 constant memory references can be hoisted along abnormal
1851 edges. */
1852 {
1853 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
1854 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
1855 continue;
1856
1857 if (MEM_READONLY_P (expr->expr)
1858 && !MEM_VOLATILE_P (expr->expr)
1859 && MEM_NOTRAP_P (expr->expr))
1860 /* Constant memory reference, e.g., a PIC address. */
1861 continue;
1862
1863 /* ??? Optimally, we would use interprocedural alias
1864 analysis to determine if this mem is actually killed
1865 by this call. */
1866
1867 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1868 }
1869 }
1870 }
1871
1872 FOR_EACH_BB (bb)
1873 {
1874 edge e;
1875 edge_iterator ei;
1876
1877 /* If the current block is the destination of an abnormal edge, we
1878 kill all trapping (for PRE) and memory (for hoist) expressions
1879 because we won't be able to properly place the instruction on
1880 the edge. So make them neither anticipatable nor transparent.
1881 This is fairly conservative.
1882
1883 ??? For hoisting it may be necessary to check for set-and-jump
1884 instructions here, not just for abnormal edges. The general problem
1885 is that when an expression cannot not be placed right at the end of
1886 a basic block we should account for any side-effects of a subsequent
1887 jump instructions that could clobber the expression. It would
1888 be best to implement this check along the lines of
1889 should_hoist_expr_to_dom where the target block is already known
1890 and, hence, there's no need to conservatively prune expressions on
1891 "intermediate" set-and-jump instructions. */
1892 FOR_EACH_EDGE (e, ei, bb->preds)
1893 if ((e->flags & EDGE_ABNORMAL)
1894 && (pre_p || CALL_P (BB_END (e->src))))
1895 {
1896 bitmap_and_compl (antloc[bb->index],
1897 antloc[bb->index], prune_exprs);
1898 bitmap_and_compl (transp[bb->index],
1899 transp[bb->index], prune_exprs);
1900 break;
1901 }
1902 }
1903
1904 sbitmap_free (prune_exprs);
1905 }
1906
1907 /* It may be necessary to insert a large number of insns on edges to
1908 make the existing occurrences of expressions fully redundant. This
1909 routine examines the set of insertions and deletions and if the ratio
1910 of insertions to deletions is too high for a particular expression, then
1911 the expression is removed from the insertion/deletion sets.
1912
1913 N_ELEMS is the number of elements in the hash table. */
1914
1915 static void
1916 prune_insertions_deletions (int n_elems)
1917 {
1918 sbitmap_iterator sbi;
1919 sbitmap prune_exprs;
1920
1921 /* We always use I to iterate over blocks/edges and J to iterate over
1922 expressions. */
1923 unsigned int i, j;
1924
1925 /* Counts for the number of times an expression needs to be inserted and
1926 number of times an expression can be removed as a result. */
1927 int *insertions = GCNEWVEC (int, n_elems);
1928 int *deletions = GCNEWVEC (int, n_elems);
1929
1930 /* Set of expressions which require too many insertions relative to
1931 the number of deletions achieved. We will prune these out of the
1932 insertion/deletion sets. */
1933 prune_exprs = sbitmap_alloc (n_elems);
1934 bitmap_clear (prune_exprs);
1935
1936 /* Iterate over the edges counting the number of times each expression
1937 needs to be inserted. */
1938 for (i = 0; i < (unsigned) n_edges; i++)
1939 {
1940 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
1941 insertions[j]++;
1942 }
1943
1944 /* Similarly for deletions, but those occur in blocks rather than on
1945 edges. */
1946 for (i = 0; i < (unsigned) last_basic_block; i++)
1947 {
1948 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
1949 deletions[j]++;
1950 }
1951
1952 /* Now that we have accurate counts, iterate over the elements in the
1953 hash table and see if any need too many insertions relative to the
1954 number of evaluations that can be removed. If so, mark them in
1955 PRUNE_EXPRS. */
1956 for (j = 0; j < (unsigned) n_elems; j++)
1957 if (deletions[j]
1958 && ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
1959 bitmap_set_bit (prune_exprs, j);
1960
1961 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
1962 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
1963 {
1964 for (i = 0; i < (unsigned) n_edges; i++)
1965 bitmap_clear_bit (pre_insert_map[i], j);
1966
1967 for (i = 0; i < (unsigned) last_basic_block; i++)
1968 bitmap_clear_bit (pre_delete_map[i], j);
1969 }
1970
1971 sbitmap_free (prune_exprs);
1972 free (insertions);
1973 free (deletions);
1974 }
1975
1976 /* Top level routine to do the dataflow analysis needed by PRE. */
1977
1978 static struct edge_list *
1979 compute_pre_data (void)
1980 {
1981 struct edge_list *edge_list;
1982 basic_block bb;
1983
1984 compute_local_properties (transp, comp, antloc, &expr_hash_table);
1985 prune_expressions (true);
1986 bitmap_vector_clear (ae_kill, last_basic_block);
1987
1988 /* Compute ae_kill for each basic block using:
1989
1990 ~(TRANSP | COMP)
1991 */
1992
1993 FOR_EACH_BB (bb)
1994 {
1995 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
1996 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
1997 }
1998
1999 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
2000 ae_kill, &pre_insert_map, &pre_delete_map);
2001 sbitmap_vector_free (antloc);
2002 antloc = NULL;
2003 sbitmap_vector_free (ae_kill);
2004 ae_kill = NULL;
2005
2006 prune_insertions_deletions (expr_hash_table.n_elems);
2007
2008 return edge_list;
2009 }
2010 \f
2011 /* PRE utilities */
2012
2013 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
2014 block BB.
2015
2016 VISITED is a pointer to a working buffer for tracking which BB's have
2017 been visited. It is NULL for the top-level call.
2018
2019 We treat reaching expressions that go through blocks containing the same
2020 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
2021 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
2022 2 as not reaching. The intent is to improve the probability of finding
2023 only one reaching expression and to reduce register lifetimes by picking
2024 the closest such expression. */
2025
2026 static int
2027 pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr,
2028 basic_block bb, char *visited)
2029 {
2030 edge pred;
2031 edge_iterator ei;
2032
2033 FOR_EACH_EDGE (pred, ei, bb->preds)
2034 {
2035 basic_block pred_bb = pred->src;
2036
2037 if (pred->src == ENTRY_BLOCK_PTR
2038 /* Has predecessor has already been visited? */
2039 || visited[pred_bb->index])
2040 ;/* Nothing to do. */
2041
2042 /* Does this predecessor generate this expression? */
2043 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
2044 {
2045 /* Is this the occurrence we're looking for?
2046 Note that there's only one generating occurrence per block
2047 so we just need to check the block number. */
2048 if (occr_bb == pred_bb)
2049 return 1;
2050
2051 visited[pred_bb->index] = 1;
2052 }
2053 /* Ignore this predecessor if it kills the expression. */
2054 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
2055 visited[pred_bb->index] = 1;
2056
2057 /* Neither gen nor kill. */
2058 else
2059 {
2060 visited[pred_bb->index] = 1;
2061 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
2062 return 1;
2063 }
2064 }
2065
2066 /* All paths have been checked. */
2067 return 0;
2068 }
2069
2070 /* The wrapper for pre_expr_reaches_here_work that ensures that any
2071 memory allocated for that function is returned. */
2072
2073 static int
2074 pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
2075 {
2076 int rval;
2077 char *visited = XCNEWVEC (char, last_basic_block);
2078
2079 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
2080
2081 free (visited);
2082 return rval;
2083 }
2084 \f
2085 /* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
2086
2087 static rtx
2088 process_insert_insn (struct expr *expr)
2089 {
2090 rtx reg = expr->reaching_reg;
2091 /* Copy the expression to make sure we don't have any sharing issues. */
2092 rtx exp = copy_rtx (expr->expr);
2093 rtx pat;
2094
2095 start_sequence ();
2096
2097 /* If the expression is something that's an operand, like a constant,
2098 just copy it to a register. */
2099 if (general_operand (exp, GET_MODE (reg)))
2100 emit_move_insn (reg, exp);
2101
2102 /* Otherwise, make a new insn to compute this expression and make sure the
2103 insn will be recognized (this also adds any needed CLOBBERs). */
2104 else
2105 {
2106 rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
2107
2108 if (insn_invalid_p (insn, false))
2109 gcc_unreachable ();
2110 }
2111
2112 pat = get_insns ();
2113 end_sequence ();
2114
2115 return pat;
2116 }
2117
2118 /* Add EXPR to the end of basic block BB.
2119
2120 This is used by both the PRE and code hoisting. */
2121
2122 static void
2123 insert_insn_end_basic_block (struct expr *expr, basic_block bb)
2124 {
2125 rtx insn = BB_END (bb);
2126 rtx new_insn;
2127 rtx reg = expr->reaching_reg;
2128 int regno = REGNO (reg);
2129 rtx pat, pat_end;
2130
2131 pat = process_insert_insn (expr);
2132 gcc_assert (pat && INSN_P (pat));
2133
2134 pat_end = pat;
2135 while (NEXT_INSN (pat_end) != NULL_RTX)
2136 pat_end = NEXT_INSN (pat_end);
2137
2138 /* If the last insn is a jump, insert EXPR in front [taking care to
2139 handle cc0, etc. properly]. Similarly we need to care trapping
2140 instructions in presence of non-call exceptions. */
2141
2142 if (JUMP_P (insn)
2143 || (NONJUMP_INSN_P (insn)
2144 && (!single_succ_p (bb)
2145 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
2146 {
2147 #ifdef HAVE_cc0
2148 rtx note;
2149 #endif
2150
2151 /* If this is a jump table, then we can't insert stuff here. Since
2152 we know the previous real insn must be the tablejump, we insert
2153 the new instruction just before the tablejump. */
2154 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
2155 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
2156 insn = prev_active_insn (insn);
2157
2158 #ifdef HAVE_cc0
2159 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2160 if cc0 isn't set. */
2161 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2162 if (note)
2163 insn = XEXP (note, 0);
2164 else
2165 {
2166 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
2167 if (maybe_cc0_setter
2168 && INSN_P (maybe_cc0_setter)
2169 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2170 insn = maybe_cc0_setter;
2171 }
2172 #endif
2173 /* FIXME: What if something in cc0/jump uses value set in new insn? */
2174 new_insn = emit_insn_before_noloc (pat, insn, bb);
2175 }
2176
2177 /* Likewise if the last insn is a call, as will happen in the presence
2178 of exception handling. */
2179 else if (CALL_P (insn)
2180 && (!single_succ_p (bb)
2181 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
2182 {
2183 /* Keeping in mind targets with small register classes and parameters
2184 in registers, we search backward and place the instructions before
2185 the first parameter is loaded. Do this for everyone for consistency
2186 and a presumption that we'll get better code elsewhere as well. */
2187
2188 /* Since different machines initialize their parameter registers
2189 in different orders, assume nothing. Collect the set of all
2190 parameter registers. */
2191 insn = find_first_parameter_load (insn, BB_HEAD (bb));
2192
2193 /* If we found all the parameter loads, then we want to insert
2194 before the first parameter load.
2195
2196 If we did not find all the parameter loads, then we might have
2197 stopped on the head of the block, which could be a CODE_LABEL.
2198 If we inserted before the CODE_LABEL, then we would be putting
2199 the insn in the wrong basic block. In that case, put the insn
2200 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
2201 while (LABEL_P (insn)
2202 || NOTE_INSN_BASIC_BLOCK_P (insn))
2203 insn = NEXT_INSN (insn);
2204
2205 new_insn = emit_insn_before_noloc (pat, insn, bb);
2206 }
2207 else
2208 new_insn = emit_insn_after_noloc (pat, insn, bb);
2209
2210 while (1)
2211 {
2212 if (INSN_P (pat))
2213 add_label_notes (PATTERN (pat), new_insn);
2214 if (pat == pat_end)
2215 break;
2216 pat = NEXT_INSN (pat);
2217 }
2218
2219 gcse_create_count++;
2220
2221 if (dump_file)
2222 {
2223 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
2224 bb->index, INSN_UID (new_insn));
2225 fprintf (dump_file, "copying expression %d to reg %d\n",
2226 expr->bitmap_index, regno);
2227 }
2228 }
2229
2230 /* Insert partially redundant expressions on edges in the CFG to make
2231 the expressions fully redundant. */
2232
2233 static int
2234 pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
2235 {
2236 int e, i, j, num_edges, set_size, did_insert = 0;
2237 sbitmap *inserted;
2238
2239 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2240 if it reaches any of the deleted expressions. */
2241
2242 set_size = pre_insert_map[0]->size;
2243 num_edges = NUM_EDGES (edge_list);
2244 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
2245 bitmap_vector_clear (inserted, num_edges);
2246
2247 for (e = 0; e < num_edges; e++)
2248 {
2249 int indx;
2250 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
2251
2252 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
2253 {
2254 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
2255
2256 for (j = indx;
2257 insert && j < (int) expr_hash_table.n_elems;
2258 j++, insert >>= 1)
2259 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2260 {
2261 struct expr *expr = index_map[j];
2262 struct occr *occr;
2263
2264 /* Now look at each deleted occurrence of this expression. */
2265 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2266 {
2267 if (! occr->deleted_p)
2268 continue;
2269
2270 /* Insert this expression on this edge if it would
2271 reach the deleted occurrence in BB. */
2272 if (!bitmap_bit_p (inserted[e], j))
2273 {
2274 rtx insn;
2275 edge eg = INDEX_EDGE (edge_list, e);
2276
2277 /* We can't insert anything on an abnormal and
2278 critical edge, so we insert the insn at the end of
2279 the previous block. There are several alternatives
2280 detailed in Morgans book P277 (sec 10.5) for
2281 handling this situation. This one is easiest for
2282 now. */
2283
2284 if (eg->flags & EDGE_ABNORMAL)
2285 insert_insn_end_basic_block (index_map[j], bb);
2286 else
2287 {
2288 insn = process_insert_insn (index_map[j]);
2289 insert_insn_on_edge (insn, eg);
2290 }
2291
2292 if (dump_file)
2293 {
2294 fprintf (dump_file, "PRE: edge (%d,%d), ",
2295 bb->index,
2296 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
2297 fprintf (dump_file, "copy expression %d\n",
2298 expr->bitmap_index);
2299 }
2300
2301 update_ld_motion_stores (expr);
2302 bitmap_set_bit (inserted[e], j);
2303 did_insert = 1;
2304 gcse_create_count++;
2305 }
2306 }
2307 }
2308 }
2309 }
2310
2311 sbitmap_vector_free (inserted);
2312 return did_insert;
2313 }
2314
2315 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
2316 Given "old_reg <- expr" (INSN), instead of adding after it
2317 reaching_reg <- old_reg
2318 it's better to do the following:
2319 reaching_reg <- expr
2320 old_reg <- reaching_reg
2321 because this way copy propagation can discover additional PRE
2322 opportunities. But if this fails, we try the old way.
2323 When "expr" is a store, i.e.
2324 given "MEM <- old_reg", instead of adding after it
2325 reaching_reg <- old_reg
2326 it's better to add it before as follows:
2327 reaching_reg <- old_reg
2328 MEM <- reaching_reg. */
2329
2330 static void
2331 pre_insert_copy_insn (struct expr *expr, rtx insn)
2332 {
2333 rtx reg = expr->reaching_reg;
2334 int regno = REGNO (reg);
2335 int indx = expr->bitmap_index;
2336 rtx pat = PATTERN (insn);
2337 rtx set, first_set, new_insn;
2338 rtx old_reg;
2339 int i;
2340
2341 /* This block matches the logic in hash_scan_insn. */
2342 switch (GET_CODE (pat))
2343 {
2344 case SET:
2345 set = pat;
2346 break;
2347
2348 case PARALLEL:
2349 /* Search through the parallel looking for the set whose
2350 source was the expression that we're interested in. */
2351 first_set = NULL_RTX;
2352 set = NULL_RTX;
2353 for (i = 0; i < XVECLEN (pat, 0); i++)
2354 {
2355 rtx x = XVECEXP (pat, 0, i);
2356 if (GET_CODE (x) == SET)
2357 {
2358 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2359 may not find an equivalent expression, but in this
2360 case the PARALLEL will have a single set. */
2361 if (first_set == NULL_RTX)
2362 first_set = x;
2363 if (expr_equiv_p (SET_SRC (x), expr->expr))
2364 {
2365 set = x;
2366 break;
2367 }
2368 }
2369 }
2370
2371 gcc_assert (first_set);
2372 if (set == NULL_RTX)
2373 set = first_set;
2374 break;
2375
2376 default:
2377 gcc_unreachable ();
2378 }
2379
2380 if (REG_P (SET_DEST (set)))
2381 {
2382 old_reg = SET_DEST (set);
2383 /* Check if we can modify the set destination in the original insn. */
2384 if (validate_change (insn, &SET_DEST (set), reg, 0))
2385 {
2386 new_insn = gen_move_insn (old_reg, reg);
2387 new_insn = emit_insn_after (new_insn, insn);
2388 }
2389 else
2390 {
2391 new_insn = gen_move_insn (reg, old_reg);
2392 new_insn = emit_insn_after (new_insn, insn);
2393 }
2394 }
2395 else /* This is possible only in case of a store to memory. */
2396 {
2397 old_reg = SET_SRC (set);
2398 new_insn = gen_move_insn (reg, old_reg);
2399
2400 /* Check if we can modify the set source in the original insn. */
2401 if (validate_change (insn, &SET_SRC (set), reg, 0))
2402 new_insn = emit_insn_before (new_insn, insn);
2403 else
2404 new_insn = emit_insn_after (new_insn, insn);
2405 }
2406
2407 gcse_create_count++;
2408
2409 if (dump_file)
2410 fprintf (dump_file,
2411 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
2412 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
2413 INSN_UID (insn), regno);
2414 }
2415
2416 /* Copy available expressions that reach the redundant expression
2417 to `reaching_reg'. */
2418
2419 static void
2420 pre_insert_copies (void)
2421 {
2422 unsigned int i, added_copy;
2423 struct expr *expr;
2424 struct occr *occr;
2425 struct occr *avail;
2426
2427 /* For each available expression in the table, copy the result to
2428 `reaching_reg' if the expression reaches a deleted one.
2429
2430 ??? The current algorithm is rather brute force.
2431 Need to do some profiling. */
2432
2433 for (i = 0; i < expr_hash_table.size; i++)
2434 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2435 {
2436 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2437 we don't want to insert a copy here because the expression may not
2438 really be redundant. So only insert an insn if the expression was
2439 deleted. This test also avoids further processing if the
2440 expression wasn't deleted anywhere. */
2441 if (expr->reaching_reg == NULL)
2442 continue;
2443
2444 /* Set when we add a copy for that expression. */
2445 added_copy = 0;
2446
2447 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2448 {
2449 if (! occr->deleted_p)
2450 continue;
2451
2452 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2453 {
2454 rtx insn = avail->insn;
2455
2456 /* No need to handle this one if handled already. */
2457 if (avail->copied_p)
2458 continue;
2459
2460 /* Don't handle this one if it's a redundant one. */
2461 if (INSN_DELETED_P (insn))
2462 continue;
2463
2464 /* Or if the expression doesn't reach the deleted one. */
2465 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
2466 expr,
2467 BLOCK_FOR_INSN (occr->insn)))
2468 continue;
2469
2470 added_copy = 1;
2471
2472 /* Copy the result of avail to reaching_reg. */
2473 pre_insert_copy_insn (expr, insn);
2474 avail->copied_p = 1;
2475 }
2476 }
2477
2478 if (added_copy)
2479 update_ld_motion_stores (expr);
2480 }
2481 }
2482
2483 /* Emit move from SRC to DEST noting the equivalence with expression computed
2484 in INSN. */
2485
2486 static rtx
2487 gcse_emit_move_after (rtx dest, rtx src, rtx insn)
2488 {
2489 rtx new_rtx;
2490 rtx set = single_set (insn), set2;
2491 rtx note;
2492 rtx eqv;
2493
2494 /* This should never fail since we're creating a reg->reg copy
2495 we've verified to be valid. */
2496
2497 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
2498
2499 /* Note the equivalence for local CSE pass. */
2500 set2 = single_set (new_rtx);
2501 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
2502 return new_rtx;
2503 if ((note = find_reg_equal_equiv_note (insn)))
2504 eqv = XEXP (note, 0);
2505 else
2506 eqv = SET_SRC (set);
2507
2508 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
2509
2510 return new_rtx;
2511 }
2512
2513 /* Delete redundant computations.
2514 Deletion is done by changing the insn to copy the `reaching_reg' of
2515 the expression into the result of the SET. It is left to later passes
2516 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
2517
2518 Return nonzero if a change is made. */
2519
2520 static int
2521 pre_delete (void)
2522 {
2523 unsigned int i;
2524 int changed;
2525 struct expr *expr;
2526 struct occr *occr;
2527
2528 changed = 0;
2529 for (i = 0; i < expr_hash_table.size; i++)
2530 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2531 {
2532 int indx = expr->bitmap_index;
2533
2534 /* We only need to search antic_occr since we require ANTLOC != 0. */
2535 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2536 {
2537 rtx insn = occr->insn;
2538 rtx set;
2539 basic_block bb = BLOCK_FOR_INSN (insn);
2540
2541 /* We only delete insns that have a single_set. */
2542 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
2543 && (set = single_set (insn)) != 0
2544 && dbg_cnt (pre_insn))
2545 {
2546 /* Create a pseudo-reg to store the result of reaching
2547 expressions into. Get the mode for the new pseudo from
2548 the mode of the original destination pseudo. */
2549 if (expr->reaching_reg == NULL)
2550 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
2551
2552 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
2553 delete_insn (insn);
2554 occr->deleted_p = 1;
2555 changed = 1;
2556 gcse_subst_count++;
2557
2558 if (dump_file)
2559 {
2560 fprintf (dump_file,
2561 "PRE: redundant insn %d (expression %d) in ",
2562 INSN_UID (insn), indx);
2563 fprintf (dump_file, "bb %d, reaching reg is %d\n",
2564 bb->index, REGNO (expr->reaching_reg));
2565 }
2566 }
2567 }
2568 }
2569
2570 return changed;
2571 }
2572
2573 /* Perform GCSE optimizations using PRE.
2574 This is called by one_pre_gcse_pass after all the dataflow analysis
2575 has been done.
2576
2577 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2578 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2579 Compiler Design and Implementation.
2580
2581 ??? A new pseudo reg is created to hold the reaching expression. The nice
2582 thing about the classical approach is that it would try to use an existing
2583 reg. If the register can't be adequately optimized [i.e. we introduce
2584 reload problems], one could add a pass here to propagate the new register
2585 through the block.
2586
2587 ??? We don't handle single sets in PARALLELs because we're [currently] not
2588 able to copy the rest of the parallel when we insert copies to create full
2589 redundancies from partial redundancies. However, there's no reason why we
2590 can't handle PARALLELs in the cases where there are no partial
2591 redundancies. */
2592
2593 static int
2594 pre_gcse (struct edge_list *edge_list)
2595 {
2596 unsigned int i;
2597 int did_insert, changed;
2598 struct expr **index_map;
2599 struct expr *expr;
2600
2601 /* Compute a mapping from expression number (`bitmap_index') to
2602 hash table entry. */
2603
2604 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
2605 for (i = 0; i < expr_hash_table.size; i++)
2606 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2607 index_map[expr->bitmap_index] = expr;
2608
2609 /* Delete the redundant insns first so that
2610 - we know what register to use for the new insns and for the other
2611 ones with reaching expressions
2612 - we know which insns are redundant when we go to create copies */
2613
2614 changed = pre_delete ();
2615 did_insert = pre_edge_insert (edge_list, index_map);
2616
2617 /* In other places with reaching expressions, copy the expression to the
2618 specially allocated pseudo-reg that reaches the redundant expr. */
2619 pre_insert_copies ();
2620 if (did_insert)
2621 {
2622 commit_edge_insertions ();
2623 changed = 1;
2624 }
2625
2626 free (index_map);
2627 return changed;
2628 }
2629
2630 /* Top level routine to perform one PRE GCSE pass.
2631
2632 Return nonzero if a change was made. */
2633
2634 static int
2635 one_pre_gcse_pass (void)
2636 {
2637 int changed = 0;
2638
2639 gcse_subst_count = 0;
2640 gcse_create_count = 0;
2641
2642 /* Return if there's nothing to do, or it is too expensive. */
2643 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
2644 || is_too_expensive (_("PRE disabled")))
2645 return 0;
2646
2647 /* We need alias. */
2648 init_alias_analysis ();
2649
2650 bytes_used = 0;
2651 gcc_obstack_init (&gcse_obstack);
2652 alloc_gcse_mem ();
2653
2654 alloc_hash_table (&expr_hash_table);
2655 add_noreturn_fake_exit_edges ();
2656 if (flag_gcse_lm)
2657 compute_ld_motion_mems ();
2658
2659 compute_hash_table (&expr_hash_table);
2660 if (flag_gcse_lm)
2661 trim_ld_motion_mems ();
2662 if (dump_file)
2663 dump_hash_table (dump_file, "Expression", &expr_hash_table);
2664
2665 if (expr_hash_table.n_elems > 0)
2666 {
2667 struct edge_list *edge_list;
2668 alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
2669 edge_list = compute_pre_data ();
2670 changed |= pre_gcse (edge_list);
2671 free_edge_list (edge_list);
2672 free_pre_mem ();
2673 }
2674
2675 if (flag_gcse_lm)
2676 free_ld_motion_mems ();
2677 remove_fake_exit_edges ();
2678 free_hash_table (&expr_hash_table);
2679
2680 free_gcse_mem ();
2681 obstack_free (&gcse_obstack, NULL);
2682
2683 /* We are finished with alias. */
2684 end_alias_analysis ();
2685
2686 if (dump_file)
2687 {
2688 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
2689 current_function_name (), n_basic_blocks, bytes_used);
2690 fprintf (dump_file, "%d substs, %d insns created\n",
2691 gcse_subst_count, gcse_create_count);
2692 }
2693
2694 return changed;
2695 }
2696 \f
2697 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2698 to INSN. If such notes are added to an insn which references a
2699 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2700 that note, because the following loop optimization pass requires
2701 them. */
2702
2703 /* ??? If there was a jump optimization pass after gcse and before loop,
2704 then we would not need to do this here, because jump would add the
2705 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
2706
2707 static void
2708 add_label_notes (rtx x, rtx insn)
2709 {
2710 enum rtx_code code = GET_CODE (x);
2711 int i, j;
2712 const char *fmt;
2713
2714 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2715 {
2716 /* This code used to ignore labels that referred to dispatch tables to
2717 avoid flow generating (slightly) worse code.
2718
2719 We no longer ignore such label references (see LABEL_REF handling in
2720 mark_jump_label for additional information). */
2721
2722 /* There's no reason for current users to emit jump-insns with
2723 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2724 notes. */
2725 gcc_assert (!JUMP_P (insn));
2726 add_reg_note (insn, REG_LABEL_OPERAND, XEXP (x, 0));
2727
2728 if (LABEL_P (XEXP (x, 0)))
2729 LABEL_NUSES (XEXP (x, 0))++;
2730
2731 return;
2732 }
2733
2734 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2735 {
2736 if (fmt[i] == 'e')
2737 add_label_notes (XEXP (x, i), insn);
2738 else if (fmt[i] == 'E')
2739 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2740 add_label_notes (XVECEXP (x, i, j), insn);
2741 }
2742 }
2743
2744 /* Code Hoisting variables and subroutines. */
2745
2746 /* Very busy expressions. */
2747 static sbitmap *hoist_vbein;
2748 static sbitmap *hoist_vbeout;
2749
2750 /* ??? We could compute post dominators and run this algorithm in
2751 reverse to perform tail merging, doing so would probably be
2752 more effective than the tail merging code in jump.c.
2753
2754 It's unclear if tail merging could be run in parallel with
2755 code hoisting. It would be nice. */
2756
2757 /* Allocate vars used for code hoisting analysis. */
2758
2759 static void
2760 alloc_code_hoist_mem (int n_blocks, int n_exprs)
2761 {
2762 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2763 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2764 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2765
2766 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2767 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
2768 }
2769
2770 /* Free vars used for code hoisting analysis. */
2771
2772 static void
2773 free_code_hoist_mem (void)
2774 {
2775 sbitmap_vector_free (antloc);
2776 sbitmap_vector_free (transp);
2777 sbitmap_vector_free (comp);
2778
2779 sbitmap_vector_free (hoist_vbein);
2780 sbitmap_vector_free (hoist_vbeout);
2781
2782 free_dominance_info (CDI_DOMINATORS);
2783 }
2784
2785 /* Compute the very busy expressions at entry/exit from each block.
2786
2787 An expression is very busy if all paths from a given point
2788 compute the expression. */
2789
2790 static void
2791 compute_code_hoist_vbeinout (void)
2792 {
2793 int changed, passes;
2794 basic_block bb;
2795
2796 bitmap_vector_clear (hoist_vbeout, last_basic_block);
2797 bitmap_vector_clear (hoist_vbein, last_basic_block);
2798
2799 passes = 0;
2800 changed = 1;
2801
2802 while (changed)
2803 {
2804 changed = 0;
2805
2806 /* We scan the blocks in the reverse order to speed up
2807 the convergence. */
2808 FOR_EACH_BB_REVERSE (bb)
2809 {
2810 if (bb->next_bb != EXIT_BLOCK_PTR)
2811 {
2812 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2813 hoist_vbein, bb);
2814
2815 /* Include expressions in VBEout that are calculated
2816 in BB and available at its end. */
2817 bitmap_ior (hoist_vbeout[bb->index],
2818 hoist_vbeout[bb->index], comp[bb->index]);
2819 }
2820
2821 changed |= bitmap_or_and (hoist_vbein[bb->index],
2822 antloc[bb->index],
2823 hoist_vbeout[bb->index],
2824 transp[bb->index]);
2825 }
2826
2827 passes++;
2828 }
2829
2830 if (dump_file)
2831 {
2832 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2833
2834 FOR_EACH_BB (bb)
2835 {
2836 fprintf (dump_file, "vbein (%d): ", bb->index);
2837 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
2838 fprintf (dump_file, "vbeout(%d): ", bb->index);
2839 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
2840 }
2841 }
2842 }
2843
2844 /* Top level routine to do the dataflow analysis needed by code hoisting. */
2845
2846 static void
2847 compute_code_hoist_data (void)
2848 {
2849 compute_local_properties (transp, comp, antloc, &expr_hash_table);
2850 prune_expressions (false);
2851 compute_code_hoist_vbeinout ();
2852 calculate_dominance_info (CDI_DOMINATORS);
2853 if (dump_file)
2854 fprintf (dump_file, "\n");
2855 }
2856
2857 /* Update register pressure for BB when hoisting an expression from
2858 instruction FROM, if live ranges of inputs are shrunk. Also
2859 maintain live_in information if live range of register referred
2860 in FROM is shrunk.
2861
2862 Return 0 if register pressure doesn't change, otherwise return
2863 the number by which register pressure is decreased.
2864
2865 NOTE: Register pressure won't be increased in this function. */
2866
2867 static int
2868 update_bb_reg_pressure (basic_block bb, rtx from)
2869 {
2870 rtx dreg, insn;
2871 basic_block succ_bb;
2872 df_ref *op, op_ref;
2873 edge succ;
2874 edge_iterator ei;
2875 int decreased_pressure = 0;
2876 int nregs;
2877 enum reg_class pressure_class;
2878
2879 for (op = DF_INSN_USES (from); *op; op++)
2880 {
2881 dreg = DF_REF_REAL_REG (*op);
2882 /* The live range of register is shrunk only if it isn't:
2883 1. referred on any path from the end of this block to EXIT, or
2884 2. referred by insns other than FROM in this block. */
2885 FOR_EACH_EDGE (succ, ei, bb->succs)
2886 {
2887 succ_bb = succ->dest;
2888 if (succ_bb == EXIT_BLOCK_PTR)
2889 continue;
2890
2891 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2892 break;
2893 }
2894 if (succ != NULL)
2895 continue;
2896
2897 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2898 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2899 {
2900 if (!DF_REF_INSN_INFO (op_ref))
2901 continue;
2902
2903 insn = DF_REF_INSN (op_ref);
2904 if (BLOCK_FOR_INSN (insn) == bb
2905 && NONDEBUG_INSN_P (insn) && insn != from)
2906 break;
2907 }
2908
2909 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2910 /* Decrease register pressure and update live_in information for
2911 this block. */
2912 if (!op_ref && pressure_class != NO_REGS)
2913 {
2914 decreased_pressure += nregs;
2915 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2916 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2917 }
2918 }
2919 return decreased_pressure;
2920 }
2921
2922 /* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2923 flow graph, if it can reach BB unimpared. Stop the search if the
2924 expression would need to be moved more than DISTANCE instructions.
2925
2926 DISTANCE is the number of instructions through which EXPR can be
2927 hoisted up in flow graph.
2928
2929 BB_SIZE points to an array which contains the number of instructions
2930 for each basic block.
2931
2932 PRESSURE_CLASS and NREGS are register class and number of hard registers
2933 for storing EXPR.
2934
2935 HOISTED_BBS points to a bitmap indicating basic blocks through which
2936 EXPR is hoisted.
2937
2938 FROM is the instruction from which EXPR is hoisted.
2939
2940 It's unclear exactly what Muchnick meant by "unimpared". It seems
2941 to me that the expression must either be computed or transparent in
2942 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2943 would allow the expression to be hoisted out of loops, even if
2944 the expression wasn't a loop invariant.
2945
2946 Contrast this to reachability for PRE where an expression is
2947 considered reachable if *any* path reaches instead of *all*
2948 paths. */
2949
2950 static int
2951 should_hoist_expr_to_dom (basic_block expr_bb, struct expr *expr,
2952 basic_block bb, sbitmap visited, int distance,
2953 int *bb_size, enum reg_class pressure_class,
2954 int *nregs, bitmap hoisted_bbs, rtx from)
2955 {
2956 unsigned int i;
2957 edge pred;
2958 edge_iterator ei;
2959 sbitmap_iterator sbi;
2960 int visited_allocated_locally = 0;
2961 int decreased_pressure = 0;
2962
2963 if (flag_ira_hoist_pressure)
2964 {
2965 /* Record old information of basic block BB when it is visited
2966 at the first time. */
2967 if (!bitmap_bit_p (hoisted_bbs, bb->index))
2968 {
2969 struct bb_data *data = BB_DATA (bb);
2970 bitmap_copy (data->backup, data->live_in);
2971 data->old_pressure = data->max_reg_pressure[pressure_class];
2972 }
2973 decreased_pressure = update_bb_reg_pressure (bb, from);
2974 }
2975 /* Terminate the search if distance, for which EXPR is allowed to move,
2976 is exhausted. */
2977 if (distance > 0)
2978 {
2979 if (flag_ira_hoist_pressure)
2980 {
2981 /* Prefer to hoist EXPR if register pressure is decreased. */
2982 if (decreased_pressure > *nregs)
2983 distance += bb_size[bb->index];
2984 /* Let EXPR be hoisted through basic block at no cost if one
2985 of following conditions is satisfied:
2986
2987 1. The basic block has low register pressure.
2988 2. Register pressure won't be increases after hoisting EXPR.
2989
2990 Constant expressions is handled conservatively, because
2991 hoisting constant expression aggressively results in worse
2992 code. This decision is made by the observation of CSiBE
2993 on ARM target, while it has no obvious effect on other
2994 targets like x86, x86_64, mips and powerpc. */
2995 else if (CONST_INT_P (expr->expr)
2996 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
2997 >= ira_class_hard_regs_num[pressure_class]
2998 && decreased_pressure < *nregs))
2999 distance -= bb_size[bb->index];
3000 }
3001 else
3002 distance -= bb_size[bb->index];
3003
3004 if (distance <= 0)
3005 return 0;
3006 }
3007 else
3008 gcc_assert (distance == 0);
3009
3010 if (visited == NULL)
3011 {
3012 visited_allocated_locally = 1;
3013 visited = sbitmap_alloc (last_basic_block);
3014 bitmap_clear (visited);
3015 }
3016
3017 FOR_EACH_EDGE (pred, ei, bb->preds)
3018 {
3019 basic_block pred_bb = pred->src;
3020
3021 if (pred->src == ENTRY_BLOCK_PTR)
3022 break;
3023 else if (pred_bb == expr_bb)
3024 continue;
3025 else if (bitmap_bit_p (visited, pred_bb->index))
3026 continue;
3027 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
3028 break;
3029 /* Not killed. */
3030 else
3031 {
3032 bitmap_set_bit (visited, pred_bb->index);
3033 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
3034 visited, distance, bb_size,
3035 pressure_class, nregs,
3036 hoisted_bbs, from))
3037 break;
3038 }
3039 }
3040 if (visited_allocated_locally)
3041 {
3042 /* If EXPR can be hoisted to expr_bb, record basic blocks through
3043 which EXPR is hoisted in hoisted_bbs. */
3044 if (flag_ira_hoist_pressure && !pred)
3045 {
3046 /* Record the basic block from which EXPR is hoisted. */
3047 bitmap_set_bit (visited, bb->index);
3048 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
3049 bitmap_set_bit (hoisted_bbs, i);
3050 }
3051 sbitmap_free (visited);
3052 }
3053
3054 return (pred == NULL);
3055 }
3056 \f
3057 /* Find occurrence in BB. */
3058
3059 static struct occr *
3060 find_occr_in_bb (struct occr *occr, basic_block bb)
3061 {
3062 /* Find the right occurrence of this expression. */
3063 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
3064 occr = occr->next;
3065
3066 return occr;
3067 }
3068
3069 /* Actually perform code hoisting.
3070
3071 The code hoisting pass can hoist multiple computations of the same
3072 expression along dominated path to a dominating basic block, like
3073 from b2/b3 to b1 as depicted below:
3074
3075 b1 ------
3076 /\ |
3077 / \ |
3078 bx by distance
3079 / \ |
3080 / \ |
3081 b2 b3 ------
3082
3083 Unfortunately code hoisting generally extends the live range of an
3084 output pseudo register, which increases register pressure and hurts
3085 register allocation. To address this issue, an attribute MAX_DISTANCE
3086 is computed and attached to each expression. The attribute is computed
3087 from rtx cost of the corresponding expression and it's used to control
3088 how long the expression can be hoisted up in flow graph. As the
3089 expression is hoisted up in flow graph, GCC decreases its DISTANCE
3090 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3091 register pressure if live ranges of inputs are shrunk.
3092
3093 Option "-fira-hoist-pressure" implements register pressure directed
3094 hoist based on upper method. The rationale is:
3095 1. Calculate register pressure for each basic block by reusing IRA
3096 facility.
3097 2. When expression is hoisted through one basic block, GCC checks
3098 the change of live ranges for inputs/output. The basic block's
3099 register pressure will be increased because of extended live
3100 range of output. However, register pressure will be decreased
3101 if the live ranges of inputs are shrunk.
3102 3. After knowing how hoisting affects register pressure, GCC prefers
3103 to hoist the expression if it can decrease register pressure, by
3104 increasing DISTANCE of the corresponding expression.
3105 4. If hoisting the expression increases register pressure, GCC checks
3106 register pressure of the basic block and decrease DISTANCE only if
3107 the register pressure is high. In other words, expression will be
3108 hoisted through at no cost if the basic block has low register
3109 pressure.
3110 5. Update register pressure information for basic blocks through
3111 which expression is hoisted. */
3112
3113 static int
3114 hoist_code (void)
3115 {
3116 basic_block bb, dominated;
3117 VEC (basic_block, heap) *dom_tree_walk;
3118 unsigned int dom_tree_walk_index;
3119 VEC (basic_block, heap) *domby;
3120 unsigned int i, j, k;
3121 struct expr **index_map;
3122 struct expr *expr;
3123 int *to_bb_head;
3124 int *bb_size;
3125 int changed = 0;
3126 struct bb_data *data;
3127 /* Basic blocks that have occurrences reachable from BB. */
3128 bitmap from_bbs;
3129 /* Basic blocks through which expr is hoisted. */
3130 bitmap hoisted_bbs = NULL;
3131 bitmap_iterator bi;
3132
3133 /* Compute a mapping from expression number (`bitmap_index') to
3134 hash table entry. */
3135
3136 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
3137 for (i = 0; i < expr_hash_table.size; i++)
3138 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
3139 index_map[expr->bitmap_index] = expr;
3140
3141 /* Calculate sizes of basic blocks and note how far
3142 each instruction is from the start of its block. We then use this
3143 data to restrict distance an expression can travel. */
3144
3145 to_bb_head = XCNEWVEC (int, get_max_uid ());
3146 bb_size = XCNEWVEC (int, last_basic_block);
3147
3148 FOR_EACH_BB (bb)
3149 {
3150 rtx insn;
3151 int to_head;
3152
3153 to_head = 0;
3154 FOR_BB_INSNS (bb, insn)
3155 {
3156 /* Don't count debug instructions to avoid them affecting
3157 decision choices. */
3158 if (NONDEBUG_INSN_P (insn))
3159 to_bb_head[INSN_UID (insn)] = to_head++;
3160 }
3161
3162 bb_size[bb->index] = to_head;
3163 }
3164
3165 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR->succs) == 1
3166 && (EDGE_SUCC (ENTRY_BLOCK_PTR, 0)->dest
3167 == ENTRY_BLOCK_PTR->next_bb));
3168
3169 from_bbs = BITMAP_ALLOC (NULL);
3170 if (flag_ira_hoist_pressure)
3171 hoisted_bbs = BITMAP_ALLOC (NULL);
3172
3173 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
3174 ENTRY_BLOCK_PTR->next_bb);
3175
3176 /* Walk over each basic block looking for potentially hoistable
3177 expressions, nothing gets hoisted from the entry block. */
3178 FOR_EACH_VEC_ELT (basic_block, dom_tree_walk, dom_tree_walk_index, bb)
3179 {
3180 domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3181
3182 if (VEC_length (basic_block, domby) == 0)
3183 continue;
3184
3185 /* Examine each expression that is very busy at the exit of this
3186 block. These are the potentially hoistable expressions. */
3187 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
3188 {
3189 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
3190 {
3191 int nregs = 0;
3192 enum reg_class pressure_class = NO_REGS;
3193 /* Current expression. */
3194 struct expr *expr = index_map[i];
3195 /* Number of occurrences of EXPR that can be hoisted to BB. */
3196 int hoistable = 0;
3197 /* Occurrences reachable from BB. */
3198 VEC (occr_t, heap) *occrs_to_hoist = NULL;
3199 /* We want to insert the expression into BB only once, so
3200 note when we've inserted it. */
3201 int insn_inserted_p;
3202 occr_t occr;
3203
3204 /* If an expression is computed in BB and is available at end of
3205 BB, hoist all occurrences dominated by BB to BB. */
3206 if (bitmap_bit_p (comp[bb->index], i))
3207 {
3208 occr = find_occr_in_bb (expr->antic_occr, bb);
3209
3210 if (occr)
3211 {
3212 /* An occurrence might've been already deleted
3213 while processing a dominator of BB. */
3214 if (!occr->deleted_p)
3215 {
3216 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3217 hoistable++;
3218 }
3219 }
3220 else
3221 hoistable++;
3222 }
3223
3224 /* We've found a potentially hoistable expression, now
3225 we look at every block BB dominates to see if it
3226 computes the expression. */
3227 FOR_EACH_VEC_ELT (basic_block, domby, j, dominated)
3228 {
3229 int max_distance;
3230
3231 /* Ignore self dominance. */
3232 if (bb == dominated)
3233 continue;
3234 /* We've found a dominated block, now see if it computes
3235 the busy expression and whether or not moving that
3236 expression to the "beginning" of that block is safe. */
3237 if (!bitmap_bit_p (antloc[dominated->index], i))
3238 continue;
3239
3240 occr = find_occr_in_bb (expr->antic_occr, dominated);
3241 gcc_assert (occr);
3242
3243 /* An occurrence might've been already deleted
3244 while processing a dominator of BB. */
3245 if (occr->deleted_p)
3246 continue;
3247 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3248
3249 max_distance = expr->max_distance;
3250 if (max_distance > 0)
3251 /* Adjust MAX_DISTANCE to account for the fact that
3252 OCCR won't have to travel all of DOMINATED, but
3253 only part of it. */
3254 max_distance += (bb_size[dominated->index]
3255 - to_bb_head[INSN_UID (occr->insn)]);
3256
3257 pressure_class = get_pressure_class_and_nregs (occr->insn,
3258 &nregs);
3259
3260 /* Note if the expression should be hoisted from the dominated
3261 block to BB if it can reach DOMINATED unimpared.
3262
3263 Keep track of how many times this expression is hoistable
3264 from a dominated block into BB. */
3265 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3266 max_distance, bb_size,
3267 pressure_class, &nregs,
3268 hoisted_bbs, occr->insn))
3269 {
3270 hoistable++;
3271 VEC_safe_push (occr_t, heap,
3272 occrs_to_hoist, occr);
3273 bitmap_set_bit (from_bbs, dominated->index);
3274 }
3275 }
3276
3277 /* If we found more than one hoistable occurrence of this
3278 expression, then note it in the vector of expressions to
3279 hoist. It makes no sense to hoist things which are computed
3280 in only one BB, and doing so tends to pessimize register
3281 allocation. One could increase this value to try harder
3282 to avoid any possible code expansion due to register
3283 allocation issues; however experiments have shown that
3284 the vast majority of hoistable expressions are only movable
3285 from two successors, so raising this threshold is likely
3286 to nullify any benefit we get from code hoisting. */
3287 if (hoistable > 1 && dbg_cnt (hoist_insn))
3288 {
3289 /* If (hoistable != VEC_length), then there is
3290 an occurrence of EXPR in BB itself. Don't waste
3291 time looking for LCA in this case. */
3292 if ((unsigned) hoistable
3293 == VEC_length (occr_t, occrs_to_hoist))
3294 {
3295 basic_block lca;
3296
3297 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3298 from_bbs);
3299 if (lca != bb)
3300 /* Punt, it's better to hoist these occurrences to
3301 LCA. */
3302 VEC_free (occr_t, heap, occrs_to_hoist);
3303 }
3304 }
3305 else
3306 /* Punt, no point hoisting a single occurence. */
3307 VEC_free (occr_t, heap, occrs_to_hoist);
3308
3309 if (flag_ira_hoist_pressure
3310 && !VEC_empty (occr_t, occrs_to_hoist))
3311 {
3312 /* Increase register pressure of basic blocks to which
3313 expr is hoisted because of extended live range of
3314 output. */
3315 data = BB_DATA (bb);
3316 data->max_reg_pressure[pressure_class] += nregs;
3317 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3318 {
3319 data = BB_DATA (BASIC_BLOCK (k));
3320 data->max_reg_pressure[pressure_class] += nregs;
3321 }
3322 }
3323 else if (flag_ira_hoist_pressure)
3324 {
3325 /* Restore register pressure and live_in info for basic
3326 blocks recorded in hoisted_bbs when expr will not be
3327 hoisted. */
3328 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3329 {
3330 data = BB_DATA (BASIC_BLOCK (k));
3331 bitmap_copy (data->live_in, data->backup);
3332 data->max_reg_pressure[pressure_class]
3333 = data->old_pressure;
3334 }
3335 }
3336
3337 if (flag_ira_hoist_pressure)
3338 bitmap_clear (hoisted_bbs);
3339
3340 insn_inserted_p = 0;
3341
3342 /* Walk through occurrences of I'th expressions we want
3343 to hoist to BB and make the transformations. */
3344 FOR_EACH_VEC_ELT (occr_t, occrs_to_hoist, j, occr)
3345 {
3346 rtx insn;
3347 rtx set;
3348
3349 gcc_assert (!occr->deleted_p);
3350
3351 insn = occr->insn;
3352 set = single_set (insn);
3353 gcc_assert (set);
3354
3355 /* Create a pseudo-reg to store the result of reaching
3356 expressions into. Get the mode for the new pseudo
3357 from the mode of the original destination pseudo.
3358
3359 It is important to use new pseudos whenever we
3360 emit a set. This will allow reload to use
3361 rematerialization for such registers. */
3362 if (!insn_inserted_p)
3363 expr->reaching_reg
3364 = gen_reg_rtx_and_attrs (SET_DEST (set));
3365
3366 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
3367 insn);
3368 delete_insn (insn);
3369 occr->deleted_p = 1;
3370 changed = 1;
3371 gcse_subst_count++;
3372
3373 if (!insn_inserted_p)
3374 {
3375 insert_insn_end_basic_block (expr, bb);
3376 insn_inserted_p = 1;
3377 }
3378 }
3379
3380 VEC_free (occr_t, heap, occrs_to_hoist);
3381 bitmap_clear (from_bbs);
3382 }
3383 }
3384 VEC_free (basic_block, heap, domby);
3385 }
3386
3387 VEC_free (basic_block, heap, dom_tree_walk);
3388 BITMAP_FREE (from_bbs);
3389 if (flag_ira_hoist_pressure)
3390 BITMAP_FREE (hoisted_bbs);
3391
3392 free (bb_size);
3393 free (to_bb_head);
3394 free (index_map);
3395
3396 return changed;
3397 }
3398
3399 /* Return pressure class and number of needed hard registers (through
3400 *NREGS) of register REGNO. */
3401 static enum reg_class
3402 get_regno_pressure_class (int regno, int *nregs)
3403 {
3404 if (regno >= FIRST_PSEUDO_REGISTER)
3405 {
3406 enum reg_class pressure_class;
3407
3408 pressure_class = reg_allocno_class (regno);
3409 pressure_class = ira_pressure_class_translate[pressure_class];
3410 *nregs
3411 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3412 return pressure_class;
3413 }
3414 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3415 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3416 {
3417 *nregs = 1;
3418 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3419 }
3420 else
3421 {
3422 *nregs = 0;
3423 return NO_REGS;
3424 }
3425 }
3426
3427 /* Return pressure class and number of hard registers (through *NREGS)
3428 for destination of INSN. */
3429 static enum reg_class
3430 get_pressure_class_and_nregs (rtx insn, int *nregs)
3431 {
3432 rtx reg;
3433 enum reg_class pressure_class;
3434 rtx set = single_set (insn);
3435
3436 /* Considered invariant insns have only one set. */
3437 gcc_assert (set != NULL_RTX);
3438 reg = SET_DEST (set);
3439 if (GET_CODE (reg) == SUBREG)
3440 reg = SUBREG_REG (reg);
3441 if (MEM_P (reg))
3442 {
3443 *nregs = 0;
3444 pressure_class = NO_REGS;
3445 }
3446 else
3447 {
3448 gcc_assert (REG_P (reg));
3449 pressure_class = reg_allocno_class (REGNO (reg));
3450 pressure_class = ira_pressure_class_translate[pressure_class];
3451 *nregs
3452 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3453 }
3454 return pressure_class;
3455 }
3456
3457 /* Increase (if INCR_P) or decrease current register pressure for
3458 register REGNO. */
3459 static void
3460 change_pressure (int regno, bool incr_p)
3461 {
3462 int nregs;
3463 enum reg_class pressure_class;
3464
3465 pressure_class = get_regno_pressure_class (regno, &nregs);
3466 if (! incr_p)
3467 curr_reg_pressure[pressure_class] -= nregs;
3468 else
3469 {
3470 curr_reg_pressure[pressure_class] += nregs;
3471 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3472 < curr_reg_pressure[pressure_class])
3473 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3474 = curr_reg_pressure[pressure_class];
3475 }
3476 }
3477
3478 /* Calculate register pressure for each basic block by walking insns
3479 from last to first. */
3480 static void
3481 calculate_bb_reg_pressure (void)
3482 {
3483 int i;
3484 unsigned int j;
3485 rtx insn;
3486 basic_block bb;
3487 bitmap curr_regs_live;
3488 bitmap_iterator bi;
3489
3490
3491 ira_setup_eliminable_regset (false);
3492 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
3493 FOR_EACH_BB (bb)
3494 {
3495 curr_bb = bb;
3496 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3497 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3498 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3499 bitmap_copy (curr_regs_live, df_get_live_out (bb));
3500 for (i = 0; i < ira_pressure_classes_num; i++)
3501 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3502 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3503 change_pressure (j, true);
3504
3505 FOR_BB_INSNS_REVERSE (bb, insn)
3506 {
3507 rtx dreg;
3508 int regno;
3509 df_ref *def_rec, *use_rec;
3510
3511 if (! NONDEBUG_INSN_P (insn))
3512 continue;
3513
3514 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
3515 {
3516 dreg = DF_REF_REAL_REG (*def_rec);
3517 gcc_assert (REG_P (dreg));
3518 regno = REGNO (dreg);
3519 if (!(DF_REF_FLAGS (*def_rec)
3520 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3521 {
3522 if (bitmap_clear_bit (curr_regs_live, regno))
3523 change_pressure (regno, false);
3524 }
3525 }
3526
3527 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
3528 {
3529 dreg = DF_REF_REAL_REG (*use_rec);
3530 gcc_assert (REG_P (dreg));
3531 regno = REGNO (dreg);
3532 if (bitmap_set_bit (curr_regs_live, regno))
3533 change_pressure (regno, true);
3534 }
3535 }
3536 }
3537 BITMAP_FREE (curr_regs_live);
3538
3539 if (dump_file == NULL)
3540 return;
3541
3542 fprintf (dump_file, "\nRegister Pressure: \n");
3543 FOR_EACH_BB (bb)
3544 {
3545 fprintf (dump_file, " Basic block %d: \n", bb->index);
3546 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3547 {
3548 enum reg_class pressure_class;
3549
3550 pressure_class = ira_pressure_classes[i];
3551 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3552 continue;
3553
3554 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3555 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3556 }
3557 }
3558 fprintf (dump_file, "\n");
3559 }
3560
3561 /* Top level routine to perform one code hoisting (aka unification) pass
3562
3563 Return nonzero if a change was made. */
3564
3565 static int
3566 one_code_hoisting_pass (void)
3567 {
3568 int changed = 0;
3569
3570 gcse_subst_count = 0;
3571 gcse_create_count = 0;
3572
3573 /* Return if there's nothing to do, or it is too expensive. */
3574 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
3575 || is_too_expensive (_("GCSE disabled")))
3576 return 0;
3577
3578 doing_code_hoisting_p = true;
3579
3580 /* Calculate register pressure for each basic block. */
3581 if (flag_ira_hoist_pressure)
3582 {
3583 regstat_init_n_sets_and_refs ();
3584 ira_set_pseudo_classes (false, dump_file);
3585 alloc_aux_for_blocks (sizeof (struct bb_data));
3586 calculate_bb_reg_pressure ();
3587 regstat_free_n_sets_and_refs ();
3588 }
3589
3590 /* We need alias. */
3591 init_alias_analysis ();
3592
3593 bytes_used = 0;
3594 gcc_obstack_init (&gcse_obstack);
3595 alloc_gcse_mem ();
3596
3597 alloc_hash_table (&expr_hash_table);
3598 compute_hash_table (&expr_hash_table);
3599 if (dump_file)
3600 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
3601
3602 if (expr_hash_table.n_elems > 0)
3603 {
3604 alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
3605 compute_code_hoist_data ();
3606 changed = hoist_code ();
3607 free_code_hoist_mem ();
3608 }
3609
3610 if (flag_ira_hoist_pressure)
3611 {
3612 free_aux_for_blocks ();
3613 free_reg_info ();
3614 }
3615 free_hash_table (&expr_hash_table);
3616 free_gcse_mem ();
3617 obstack_free (&gcse_obstack, NULL);
3618
3619 /* We are finished with alias. */
3620 end_alias_analysis ();
3621
3622 if (dump_file)
3623 {
3624 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
3625 current_function_name (), n_basic_blocks, bytes_used);
3626 fprintf (dump_file, "%d substs, %d insns created\n",
3627 gcse_subst_count, gcse_create_count);
3628 }
3629
3630 doing_code_hoisting_p = false;
3631
3632 return changed;
3633 }
3634 \f
3635 /* Here we provide the things required to do store motion towards the exit.
3636 In order for this to be effective, gcse also needed to be taught how to
3637 move a load when it is killed only by a store to itself.
3638
3639 int i;
3640 float a[10];
3641
3642 void foo(float scale)
3643 {
3644 for (i=0; i<10; i++)
3645 a[i] *= scale;
3646 }
3647
3648 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3649 the load out since its live around the loop, and stored at the bottom
3650 of the loop.
3651
3652 The 'Load Motion' referred to and implemented in this file is
3653 an enhancement to gcse which when using edge based LCM, recognizes
3654 this situation and allows gcse to move the load out of the loop.
3655
3656 Once gcse has hoisted the load, store motion can then push this
3657 load towards the exit, and we end up with no loads or stores of 'i'
3658 in the loop. */
3659
3660 static hashval_t
3661 pre_ldst_expr_hash (const void *p)
3662 {
3663 int do_not_record_p = 0;
3664 const struct ls_expr *const x = (const struct ls_expr *) p;
3665 return
3666 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
3667 }
3668
3669 static int
3670 pre_ldst_expr_eq (const void *p1, const void *p2)
3671 {
3672 const struct ls_expr *const ptr1 = (const struct ls_expr *) p1,
3673 *const ptr2 = (const struct ls_expr *) p2;
3674 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
3675 }
3676
3677 /* This will search the ldst list for a matching expression. If it
3678 doesn't find one, we create one and initialize it. */
3679
3680 static struct ls_expr *
3681 ldst_entry (rtx x)
3682 {
3683 int do_not_record_p = 0;
3684 struct ls_expr * ptr;
3685 unsigned int hash;
3686 void **slot;
3687 struct ls_expr e;
3688
3689 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3690 NULL, /*have_reg_qty=*/false);
3691
3692 e.pattern = x;
3693 slot = htab_find_slot_with_hash (pre_ldst_table, &e, hash, INSERT);
3694 if (*slot)
3695 return (struct ls_expr *)*slot;
3696
3697 ptr = XNEW (struct ls_expr);
3698
3699 ptr->next = pre_ldst_mems;
3700 ptr->expr = NULL;
3701 ptr->pattern = x;
3702 ptr->pattern_regs = NULL_RTX;
3703 ptr->loads = NULL_RTX;
3704 ptr->stores = NULL_RTX;
3705 ptr->reaching_reg = NULL_RTX;
3706 ptr->invalid = 0;
3707 ptr->index = 0;
3708 ptr->hash_index = hash;
3709 pre_ldst_mems = ptr;
3710 *slot = ptr;
3711
3712 return ptr;
3713 }
3714
3715 /* Free up an individual ldst entry. */
3716
3717 static void
3718 free_ldst_entry (struct ls_expr * ptr)
3719 {
3720 free_INSN_LIST_list (& ptr->loads);
3721 free_INSN_LIST_list (& ptr->stores);
3722
3723 free (ptr);
3724 }
3725
3726 /* Free up all memory associated with the ldst list. */
3727
3728 static void
3729 free_ld_motion_mems (void)
3730 {
3731 if (pre_ldst_table)
3732 htab_delete (pre_ldst_table);
3733 pre_ldst_table = NULL;
3734
3735 while (pre_ldst_mems)
3736 {
3737 struct ls_expr * tmp = pre_ldst_mems;
3738
3739 pre_ldst_mems = pre_ldst_mems->next;
3740
3741 free_ldst_entry (tmp);
3742 }
3743
3744 pre_ldst_mems = NULL;
3745 }
3746
3747 /* Dump debugging info about the ldst list. */
3748
3749 static void
3750 print_ldst_list (FILE * file)
3751 {
3752 struct ls_expr * ptr;
3753
3754 fprintf (file, "LDST list: \n");
3755
3756 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
3757 {
3758 fprintf (file, " Pattern (%3d): ", ptr->index);
3759
3760 print_rtl (file, ptr->pattern);
3761
3762 fprintf (file, "\n Loads : ");
3763
3764 if (ptr->loads)
3765 print_rtl (file, ptr->loads);
3766 else
3767 fprintf (file, "(nil)");
3768
3769 fprintf (file, "\n Stores : ");
3770
3771 if (ptr->stores)
3772 print_rtl (file, ptr->stores);
3773 else
3774 fprintf (file, "(nil)");
3775
3776 fprintf (file, "\n\n");
3777 }
3778
3779 fprintf (file, "\n");
3780 }
3781
3782 /* Returns 1 if X is in the list of ldst only expressions. */
3783
3784 static struct ls_expr *
3785 find_rtx_in_ldst (rtx x)
3786 {
3787 struct ls_expr e;
3788 void **slot;
3789 if (!pre_ldst_table)
3790 return NULL;
3791 e.pattern = x;
3792 slot = htab_find_slot (pre_ldst_table, &e, NO_INSERT);
3793 if (!slot || ((struct ls_expr *)*slot)->invalid)
3794 return NULL;
3795 return (struct ls_expr *) *slot;
3796 }
3797 \f
3798 /* Load Motion for loads which only kill themselves. */
3799
3800 /* Return true if x, a MEM, is a simple access with no side effects.
3801 These are the types of loads we consider for the ld_motion list,
3802 otherwise we let the usual aliasing take care of it. */
3803
3804 static int
3805 simple_mem (const_rtx x)
3806 {
3807 if (MEM_VOLATILE_P (x))
3808 return 0;
3809
3810 if (GET_MODE (x) == BLKmode)
3811 return 0;
3812
3813 /* If we are handling exceptions, we must be careful with memory references
3814 that may trap. If we are not, the behavior is undefined, so we may just
3815 continue. */
3816 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
3817 return 0;
3818
3819 if (side_effects_p (x))
3820 return 0;
3821
3822 /* Do not consider function arguments passed on stack. */
3823 if (reg_mentioned_p (stack_pointer_rtx, x))
3824 return 0;
3825
3826 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3827 return 0;
3828
3829 return 1;
3830 }
3831
3832 /* Make sure there isn't a buried reference in this pattern anywhere.
3833 If there is, invalidate the entry for it since we're not capable
3834 of fixing it up just yet.. We have to be sure we know about ALL
3835 loads since the aliasing code will allow all entries in the
3836 ld_motion list to not-alias itself. If we miss a load, we will get
3837 the wrong value since gcse might common it and we won't know to
3838 fix it up. */
3839
3840 static void
3841 invalidate_any_buried_refs (rtx x)
3842 {
3843 const char * fmt;
3844 int i, j;
3845 struct ls_expr * ptr;
3846
3847 /* Invalidate it in the list. */
3848 if (MEM_P (x) && simple_mem (x))
3849 {
3850 ptr = ldst_entry (x);
3851 ptr->invalid = 1;
3852 }
3853
3854 /* Recursively process the insn. */
3855 fmt = GET_RTX_FORMAT (GET_CODE (x));
3856
3857 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3858 {
3859 if (fmt[i] == 'e')
3860 invalidate_any_buried_refs (XEXP (x, i));
3861 else if (fmt[i] == 'E')
3862 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3863 invalidate_any_buried_refs (XVECEXP (x, i, j));
3864 }
3865 }
3866
3867 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3868 being defined as MEM loads and stores to symbols, with no side effects
3869 and no registers in the expression. For a MEM destination, we also
3870 check that the insn is still valid if we replace the destination with a
3871 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3872 which don't match this criteria, they are invalidated and trimmed out
3873 later. */
3874
3875 static void
3876 compute_ld_motion_mems (void)
3877 {
3878 struct ls_expr * ptr;
3879 basic_block bb;
3880 rtx insn;
3881
3882 pre_ldst_mems = NULL;
3883 pre_ldst_table
3884 = htab_create (13, pre_ldst_expr_hash, pre_ldst_expr_eq, NULL);
3885
3886 FOR_EACH_BB (bb)
3887 {
3888 FOR_BB_INSNS (bb, insn)
3889 {
3890 if (NONDEBUG_INSN_P (insn))
3891 {
3892 if (GET_CODE (PATTERN (insn)) == SET)
3893 {
3894 rtx src = SET_SRC (PATTERN (insn));
3895 rtx dest = SET_DEST (PATTERN (insn));
3896
3897 /* Check for a simple LOAD... */
3898 if (MEM_P (src) && simple_mem (src))
3899 {
3900 ptr = ldst_entry (src);
3901 if (REG_P (dest))
3902 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
3903 else
3904 ptr->invalid = 1;
3905 }
3906 else
3907 {
3908 /* Make sure there isn't a buried load somewhere. */
3909 invalidate_any_buried_refs (src);
3910 }
3911
3912 /* Check for stores. Don't worry about aliased ones, they
3913 will block any movement we might do later. We only care
3914 about this exact pattern since those are the only
3915 circumstance that we will ignore the aliasing info. */
3916 if (MEM_P (dest) && simple_mem (dest))
3917 {
3918 ptr = ldst_entry (dest);
3919
3920 if (! MEM_P (src)
3921 && GET_CODE (src) != ASM_OPERANDS
3922 /* Check for REG manually since want_to_gcse_p
3923 returns 0 for all REGs. */
3924 && can_assign_to_reg_without_clobbers_p (src))
3925 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
3926 else
3927 ptr->invalid = 1;
3928 }
3929 }
3930 else
3931 invalidate_any_buried_refs (PATTERN (insn));
3932 }
3933 }
3934 }
3935 }
3936
3937 /* Remove any references that have been either invalidated or are not in the
3938 expression list for pre gcse. */
3939
3940 static void
3941 trim_ld_motion_mems (void)
3942 {
3943 struct ls_expr * * last = & pre_ldst_mems;
3944 struct ls_expr * ptr = pre_ldst_mems;
3945
3946 while (ptr != NULL)
3947 {
3948 struct expr * expr;
3949
3950 /* Delete if entry has been made invalid. */
3951 if (! ptr->invalid)
3952 {
3953 /* Delete if we cannot find this mem in the expression list. */
3954 unsigned int hash = ptr->hash_index % expr_hash_table.size;
3955
3956 for (expr = expr_hash_table.table[hash];
3957 expr != NULL;
3958 expr = expr->next_same_hash)
3959 if (expr_equiv_p (expr->expr, ptr->pattern))
3960 break;
3961 }
3962 else
3963 expr = (struct expr *) 0;
3964
3965 if (expr)
3966 {
3967 /* Set the expression field if we are keeping it. */
3968 ptr->expr = expr;
3969 last = & ptr->next;
3970 ptr = ptr->next;
3971 }
3972 else
3973 {
3974 *last = ptr->next;
3975 htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
3976 free_ldst_entry (ptr);
3977 ptr = * last;
3978 }
3979 }
3980
3981 /* Show the world what we've found. */
3982 if (dump_file && pre_ldst_mems != NULL)
3983 print_ldst_list (dump_file);
3984 }
3985
3986 /* This routine will take an expression which we are replacing with
3987 a reaching register, and update any stores that are needed if
3988 that expression is in the ld_motion list. Stores are updated by
3989 copying their SRC to the reaching register, and then storing
3990 the reaching register into the store location. These keeps the
3991 correct value in the reaching register for the loads. */
3992
3993 static void
3994 update_ld_motion_stores (struct expr * expr)
3995 {
3996 struct ls_expr * mem_ptr;
3997
3998 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
3999 {
4000 /* We can try to find just the REACHED stores, but is shouldn't
4001 matter to set the reaching reg everywhere... some might be
4002 dead and should be eliminated later. */
4003
4004 /* We replace (set mem expr) with (set reg expr) (set mem reg)
4005 where reg is the reaching reg used in the load. We checked in
4006 compute_ld_motion_mems that we can replace (set mem expr) with
4007 (set reg expr) in that insn. */
4008 rtx list = mem_ptr->stores;
4009
4010 for ( ; list != NULL_RTX; list = XEXP (list, 1))
4011 {
4012 rtx insn = XEXP (list, 0);
4013 rtx pat = PATTERN (insn);
4014 rtx src = SET_SRC (pat);
4015 rtx reg = expr->reaching_reg;
4016 rtx copy;
4017
4018 /* If we've already copied it, continue. */
4019 if (expr->reaching_reg == src)
4020 continue;
4021
4022 if (dump_file)
4023 {
4024 fprintf (dump_file, "PRE: store updated with reaching reg ");
4025 print_rtl (dump_file, reg);
4026 fprintf (dump_file, ":\n ");
4027 print_inline_rtx (dump_file, insn, 8);
4028 fprintf (dump_file, "\n");
4029 }
4030
4031 copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
4032 emit_insn_before (copy, insn);
4033 SET_SRC (pat) = reg;
4034 df_insn_rescan (insn);
4035
4036 /* un-recognize this pattern since it's probably different now. */
4037 INSN_CODE (insn) = -1;
4038 gcse_create_count++;
4039 }
4040 }
4041 }
4042 \f
4043 /* Return true if the graph is too expensive to optimize. PASS is the
4044 optimization about to be performed. */
4045
4046 static bool
4047 is_too_expensive (const char *pass)
4048 {
4049 /* Trying to perform global optimizations on flow graphs which have
4050 a high connectivity will take a long time and is unlikely to be
4051 particularly useful.
4052
4053 In normal circumstances a cfg should have about twice as many
4054 edges as blocks. But we do not want to punish small functions
4055 which have a couple switch statements. Rather than simply
4056 threshold the number of blocks, uses something with a more
4057 graceful degradation. */
4058 if (n_edges > 20000 + n_basic_blocks * 4)
4059 {
4060 warning (OPT_Wdisabled_optimization,
4061 "%s: %d basic blocks and %d edges/basic block",
4062 pass, n_basic_blocks, n_edges / n_basic_blocks);
4063
4064 return true;
4065 }
4066
4067 /* If allocating memory for the dataflow bitmaps would take up too much
4068 storage it's better just to disable the optimization. */
4069 if ((n_basic_blocks
4070 * SBITMAP_SET_SIZE (max_reg_num ())
4071 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
4072 {
4073 warning (OPT_Wdisabled_optimization,
4074 "%s: %d basic blocks and %d registers",
4075 pass, n_basic_blocks, max_reg_num ());
4076
4077 return true;
4078 }
4079
4080 return false;
4081 }
4082 \f
4083 /* All the passes implemented in this file. Each pass has its
4084 own gate and execute function, and at the end of the file a
4085 pass definition for passes.c.
4086
4087 We do not construct an accurate cfg in functions which call
4088 setjmp, so none of these passes runs if the function calls
4089 setjmp.
4090 FIXME: Should just handle setjmp via REG_SETJMP notes. */
4091
4092 static bool
4093 gate_rtl_pre (void)
4094 {
4095 return optimize > 0 && flag_gcse
4096 && !cfun->calls_setjmp
4097 && optimize_function_for_speed_p (cfun)
4098 && dbg_cnt (pre);
4099 }
4100
4101 static unsigned int
4102 execute_rtl_pre (void)
4103 {
4104 int changed;
4105 delete_unreachable_blocks ();
4106 df_analyze ();
4107 changed = one_pre_gcse_pass ();
4108 flag_rerun_cse_after_global_opts |= changed;
4109 if (changed)
4110 cleanup_cfg (0);
4111 return 0;
4112 }
4113
4114 static bool
4115 gate_rtl_hoist (void)
4116 {
4117 return optimize > 0 && flag_gcse
4118 && !cfun->calls_setjmp
4119 /* It does not make sense to run code hoisting unless we are optimizing
4120 for code size -- it rarely makes programs faster, and can make then
4121 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4122 && optimize_function_for_size_p (cfun)
4123 && dbg_cnt (hoist);
4124 }
4125
4126 static unsigned int
4127 execute_rtl_hoist (void)
4128 {
4129 int changed;
4130 delete_unreachable_blocks ();
4131 df_analyze ();
4132 changed = one_code_hoisting_pass ();
4133 flag_rerun_cse_after_global_opts |= changed;
4134 if (changed)
4135 cleanup_cfg (0);
4136 return 0;
4137 }
4138
4139 struct rtl_opt_pass pass_rtl_pre =
4140 {
4141 {
4142 RTL_PASS,
4143 "rtl pre", /* name */
4144 OPTGROUP_NONE, /* optinfo_flags */
4145 gate_rtl_pre, /* gate */
4146 execute_rtl_pre, /* execute */
4147 NULL, /* sub */
4148 NULL, /* next */
4149 0, /* static_pass_number */
4150 TV_PRE, /* tv_id */
4151 PROP_cfglayout, /* properties_required */
4152 0, /* properties_provided */
4153 0, /* properties_destroyed */
4154 0, /* todo_flags_start */
4155 TODO_df_finish | TODO_verify_rtl_sharing |
4156 TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */
4157 }
4158 };
4159
4160 struct rtl_opt_pass pass_rtl_hoist =
4161 {
4162 {
4163 RTL_PASS,
4164 "hoist", /* name */
4165 OPTGROUP_NONE, /* optinfo_flags */
4166 gate_rtl_hoist, /* gate */
4167 execute_rtl_hoist, /* execute */
4168 NULL, /* sub */
4169 NULL, /* next */
4170 0, /* static_pass_number */
4171 TV_HOIST, /* tv_id */
4172 PROP_cfglayout, /* properties_required */
4173 0, /* properties_provided */
4174 0, /* properties_destroyed */
4175 0, /* todo_flags_start */
4176 TODO_df_finish | TODO_verify_rtl_sharing |
4177 TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */
4178 }
4179 };
4180
4181 #include "gt-gcse.h"