rtl.h (ASM_OPERANDS_INPUT_CONSTRAINT_EXP): New macro.
[gcc.git] / gcc / gcse.c
1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* TODO
23 - reordering of memory allocation and freeing to be more space efficient
24 - do rough calc of how many regs are needed in each block, and a rough
25 calc of how many regs are available in each class and use that to
26 throttle back the code in cases where RTX_COST is minimal.
27 - dead store elimination
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
34
35 */
36
37 /* References searched while implementing this.
38
39 Compilers Principles, Techniques and Tools
40 Aho, Sethi, Ullman
41 Addison-Wesley, 1988
42
43 Global Optimization by Suppression of Partial Redundancies
44 E. Morel, C. Renvoise
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
46
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
48 Frederick Chow
49 Stanford Ph.D. thesis, Dec. 1983
50
51 A Fast Algorithm for Code Movement Optimization
52 D.M. Dhamdhere
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
54
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
59
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
62 D.M. Dhamdhere
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
64
65 Efficiently Computing Static Single Assignment Form and the Control
66 Dependence Graph
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
69
70 Lazy Code Motion
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
73
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
76 Thomas Ball
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
79
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
84
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
88
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
92
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
96
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
100
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
104
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
108
109 Global code motion / global value numbering
110 C. Click
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
112
113 Value Driven Redundancy Elimination
114 L.T. Simpson
115 Rice University Ph.D. thesis, Apr. 1996
116
117 Value Numbering
118 L.T. Simpson
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
120
121 High Performance Compilers for Parallel Computing
122 Michael Wolfe
123 Addison-Wesley, 1996
124
125 Advanced Compiler Design and Implementation
126 Steven Muchnick
127 Morgan Kaufmann, 1997
128
129 Building an Optimizing Compiler
130 Robert Morgan
131 Digital Press, 1998
132
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
137
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
141
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
144 */
145
146 #include "config.h"
147 #include "system.h"
148 #include "toplev.h"
149
150 #include "rtl.h"
151 #include "tm_p.h"
152 #include "regs.h"
153 #include "hard-reg-set.h"
154 #include "flags.h"
155 #include "real.h"
156 #include "insn-config.h"
157 #include "recog.h"
158 #include "basic-block.h"
159 #include "output.h"
160 #include "function.h"
161 #include "expr.h"
162
163 #include "obstack.h"
164 #define obstack_chunk_alloc gmalloc
165 #define obstack_chunk_free free
166
167 /* Maximum number of passes to perform. */
168 #define MAX_PASSES 1
169
170 /* Propagate flow information through back edges and thus enable PRE's
171 moving loop invariant calculations out of loops.
172
173 Originally this tended to create worse overall code, but several
174 improvements during the development of PRE seem to have made following
175 back edges generally a win.
176
177 Note much of the loop invariant code motion done here would normally
178 be done by loop.c, which has more heuristics for when to move invariants
179 out of loops. At some point we might need to move some of those
180 heuristics into gcse.c. */
181 #define FOLLOW_BACK_EDGES 1
182
183 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
184 are a superset of those done by GCSE.
185
186 We perform the following steps:
187
188 1) Compute basic block information.
189
190 2) Compute table of places where registers are set.
191
192 3) Perform copy/constant propagation.
193
194 4) Perform global cse.
195
196 5) Perform another pass of copy/constant propagation.
197
198 Two passes of copy/constant propagation are done because the first one
199 enables more GCSE and the second one helps to clean up the copies that
200 GCSE creates. This is needed more for PRE than for Classic because Classic
201 GCSE will try to use an existing register containing the common
202 subexpression rather than create a new one. This is harder to do for PRE
203 because of the code motion (which Classic GCSE doesn't do).
204
205 Expressions we are interested in GCSE-ing are of the form
206 (set (pseudo-reg) (expression)).
207 Function want_to_gcse_p says what these are.
208
209 PRE handles moving invariant expressions out of loops (by treating them as
210 partially redundant).
211
212 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
213 assignment) based GVN (global value numbering). L. T. Simpson's paper
214 (Rice University) on value numbering is a useful reference for this.
215
216 **********************
217
218 We used to support multiple passes but there are diminishing returns in
219 doing so. The first pass usually makes 90% of the changes that are doable.
220 A second pass can make a few more changes made possible by the first pass.
221 Experiments show any further passes don't make enough changes to justify
222 the expense.
223
224 A study of spec92 using an unlimited number of passes:
225 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
226 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
227 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
228
229 It was found doing copy propagation between each pass enables further
230 substitutions.
231
232 PRE is quite expensive in complicated functions because the DFA can take
233 awhile to converge. Hence we only perform one pass. Macro MAX_PASSES can
234 be modified if one wants to experiment.
235
236 **********************
237
238 The steps for PRE are:
239
240 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
241
242 2) Perform the data flow analysis for PRE.
243
244 3) Delete the redundant instructions
245
246 4) Insert the required copies [if any] that make the partially
247 redundant instructions fully redundant.
248
249 5) For other reaching expressions, insert an instruction to copy the value
250 to a newly created pseudo that will reach the redundant instruction.
251
252 The deletion is done first so that when we do insertions we
253 know which pseudo reg to use.
254
255 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
256 argue it is not. The number of iterations for the algorithm to converge
257 is typically 2-4 so I don't view it as that expensive (relatively speaking).
258
259 PRE GCSE depends heavily on the second CSE pass to clean up the copies
260 we create. To make an expression reach the place where it's redundant,
261 the result of the expression is copied to a new register, and the redundant
262 expression is deleted by replacing it with this new register. Classic GCSE
263 doesn't have this problem as much as it computes the reaching defs of
264 each register in each block and thus can try to use an existing register.
265
266 **********************
267
268 A fair bit of simplicity is created by creating small functions for simple
269 tasks, even when the function is only called in one place. This may
270 measurably slow things down [or may not] by creating more function call
271 overhead than is necessary. The source is laid out so that it's trivial
272 to make the affected functions inline so that one can measure what speed
273 up, if any, can be achieved, and maybe later when things settle things can
274 be rearranged.
275
276 Help stamp out big monolithic functions! */
277 \f
278 /* GCSE global vars. */
279
280 /* -dG dump file. */
281 static FILE *gcse_file;
282
283 /* Note whether or not we should run jump optimization after gcse. We
284 want to do this for two cases.
285
286 * If we changed any jumps via cprop.
287
288 * If we added any labels via edge splitting. */
289
290 static int run_jump_opt_after_gcse;
291
292 /* Bitmaps are normally not included in debugging dumps.
293 However it's useful to be able to print them from GDB.
294 We could create special functions for this, but it's simpler to
295 just allow passing stderr to the dump_foo fns. Since stderr can
296 be a macro, we store a copy here. */
297 static FILE *debug_stderr;
298
299 /* An obstack for our working variables. */
300 static struct obstack gcse_obstack;
301
302 /* Non-zero for each mode that supports (set (reg) (reg)).
303 This is trivially true for integer and floating point values.
304 It may or may not be true for condition codes. */
305 static char can_copy_p[(int) NUM_MACHINE_MODES];
306
307 /* Non-zero if can_copy_p has been initialized. */
308 static int can_copy_init_p;
309
310 struct reg_use {rtx reg_rtx; };
311
312 /* Hash table of expressions. */
313
314 struct expr
315 {
316 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
317 rtx expr;
318 /* Index in the available expression bitmaps. */
319 int bitmap_index;
320 /* Next entry with the same hash. */
321 struct expr *next_same_hash;
322 /* List of anticipatable occurrences in basic blocks in the function.
323 An "anticipatable occurrence" is one that is the first occurrence in the
324 basic block, the operands are not modified in the basic block prior
325 to the occurrence and the output is not used between the start of
326 the block and the occurrence. */
327 struct occr *antic_occr;
328 /* List of available occurrence in basic blocks in the function.
329 An "available occurrence" is one that is the last occurrence in the
330 basic block and the operands are not modified by following statements in
331 the basic block [including this insn]. */
332 struct occr *avail_occr;
333 /* Non-null if the computation is PRE redundant.
334 The value is the newly created pseudo-reg to record a copy of the
335 expression in all the places that reach the redundant copy. */
336 rtx reaching_reg;
337 };
338
339 /* Occurrence of an expression.
340 There is one per basic block. If a pattern appears more than once the
341 last appearance is used [or first for anticipatable expressions]. */
342
343 struct occr
344 {
345 /* Next occurrence of this expression. */
346 struct occr *next;
347 /* The insn that computes the expression. */
348 rtx insn;
349 /* Non-zero if this [anticipatable] occurrence has been deleted. */
350 char deleted_p;
351 /* Non-zero if this [available] occurrence has been copied to
352 reaching_reg. */
353 /* ??? This is mutually exclusive with deleted_p, so they could share
354 the same byte. */
355 char copied_p;
356 };
357
358 /* Expression and copy propagation hash tables.
359 Each hash table is an array of buckets.
360 ??? It is known that if it were an array of entries, structure elements
361 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
362 not clear whether in the final analysis a sufficient amount of memory would
363 be saved as the size of the available expression bitmaps would be larger
364 [one could build a mapping table without holes afterwards though].
365 Someday I'll perform the computation and figure it out. */
366
367 /* Total size of the expression hash table, in elements. */
368 static unsigned int expr_hash_table_size;
369
370 /* The table itself.
371 This is an array of `expr_hash_table_size' elements. */
372 static struct expr **expr_hash_table;
373
374 /* Total size of the copy propagation hash table, in elements. */
375 static int set_hash_table_size;
376
377 /* The table itself.
378 This is an array of `set_hash_table_size' elements. */
379 static struct expr **set_hash_table;
380
381 /* Mapping of uids to cuids.
382 Only real insns get cuids. */
383 static int *uid_cuid;
384
385 /* Highest UID in UID_CUID. */
386 static int max_uid;
387
388 /* Get the cuid of an insn. */
389 #ifdef ENABLE_CHECKING
390 #define INSN_CUID(INSN) (INSN_UID (INSN) > max_uid ? (abort (), 0) : uid_cuid[INSN_UID (INSN)])
391 #else
392 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
393 #endif
394
395 /* Number of cuids. */
396 static int max_cuid;
397
398 /* Mapping of cuids to insns. */
399 static rtx *cuid_insn;
400
401 /* Get insn from cuid. */
402 #define CUID_INSN(CUID) (cuid_insn[CUID])
403
404 /* Maximum register number in function prior to doing gcse + 1.
405 Registers created during this pass have regno >= max_gcse_regno.
406 This is named with "gcse" to not collide with global of same name. */
407 static unsigned int max_gcse_regno;
408
409 /* Maximum number of cse-able expressions found. */
410 static int n_exprs;
411
412 /* Maximum number of assignments for copy propagation found. */
413 static int n_sets;
414
415 /* Table of registers that are modified.
416
417 For each register, each element is a list of places where the pseudo-reg
418 is set.
419
420 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
421 requires knowledge of which blocks kill which regs [and thus could use
422 a bitmap instead of the lists `reg_set_table' uses].
423
424 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
425 num-regs) [however perhaps it may be useful to keep the data as is]. One
426 advantage of recording things this way is that `reg_set_table' is fairly
427 sparse with respect to pseudo regs but for hard regs could be fairly dense
428 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
429 up functions like compute_transp since in the case of pseudo-regs we only
430 need to iterate over the number of times a pseudo-reg is set, not over the
431 number of basic blocks [clearly there is a bit of a slow down in the cases
432 where a pseudo is set more than once in a block, however it is believed
433 that the net effect is to speed things up]. This isn't done for hard-regs
434 because recording call-clobbered hard-regs in `reg_set_table' at each
435 function call can consume a fair bit of memory, and iterating over
436 hard-regs stored this way in compute_transp will be more expensive. */
437
438 typedef struct reg_set
439 {
440 /* The next setting of this register. */
441 struct reg_set *next;
442 /* The insn where it was set. */
443 rtx insn;
444 } reg_set;
445
446 static reg_set **reg_set_table;
447
448 /* Size of `reg_set_table'.
449 The table starts out at max_gcse_regno + slop, and is enlarged as
450 necessary. */
451 static int reg_set_table_size;
452
453 /* Amount to grow `reg_set_table' by when it's full. */
454 #define REG_SET_TABLE_SLOP 100
455
456 /* Bitmap containing one bit for each register in the program.
457 Used when performing GCSE to track which registers have been set since
458 the start of the basic block. */
459 static sbitmap reg_set_bitmap;
460
461 /* For each block, a bitmap of registers set in the block.
462 This is used by expr_killed_p and compute_transp.
463 It is computed during hash table computation and not by compute_sets
464 as it includes registers added since the last pass (or between cprop and
465 gcse) and it's currently not easy to realloc sbitmap vectors. */
466 static sbitmap *reg_set_in_block;
467
468 /* For each block, non-zero if memory is set in that block.
469 This is computed during hash table computation and is used by
470 expr_killed_p and compute_transp.
471 ??? Handling of memory is very simple, we don't make any attempt
472 to optimize things (later).
473 ??? This can be computed by compute_sets since the information
474 doesn't change. */
475 static char *mem_set_in_block;
476
477 /* Various variables for statistics gathering. */
478
479 /* Memory used in a pass.
480 This isn't intended to be absolutely precise. Its intent is only
481 to keep an eye on memory usage. */
482 static int bytes_used;
483
484 /* GCSE substitutions made. */
485 static int gcse_subst_count;
486 /* Number of copy instructions created. */
487 static int gcse_create_count;
488 /* Number of constants propagated. */
489 static int const_prop_count;
490 /* Number of copys propagated. */
491 static int copy_prop_count;
492 \f
493 /* These variables are used by classic GCSE.
494 Normally they'd be defined a bit later, but `rd_gen' needs to
495 be declared sooner. */
496
497 /* Each block has a bitmap of each type.
498 The length of each blocks bitmap is:
499
500 max_cuid - for reaching definitions
501 n_exprs - for available expressions
502
503 Thus we view the bitmaps as 2 dimensional arrays. i.e.
504 rd_kill[block_num][cuid_num]
505 ae_kill[block_num][expr_num] */
506
507 /* For reaching defs */
508 static sbitmap *rd_kill, *rd_gen, *reaching_defs, *rd_out;
509
510 /* for available exprs */
511 static sbitmap *ae_kill, *ae_gen, *ae_in, *ae_out;
512
513 /* Objects of this type are passed around by the null-pointer check
514 removal routines. */
515 struct null_pointer_info
516 {
517 /* The basic block being processed. */
518 int current_block;
519 /* The first register to be handled in this pass. */
520 unsigned int min_reg;
521 /* One greater than the last register to be handled in this pass. */
522 unsigned int max_reg;
523 sbitmap *nonnull_local;
524 sbitmap *nonnull_killed;
525 };
526 \f
527 static void compute_can_copy PARAMS ((void));
528 static char *gmalloc PARAMS ((unsigned int));
529 static char *grealloc PARAMS ((char *, unsigned int));
530 static char *gcse_alloc PARAMS ((unsigned long));
531 static void alloc_gcse_mem PARAMS ((rtx));
532 static void free_gcse_mem PARAMS ((void));
533 static void alloc_reg_set_mem PARAMS ((int));
534 static void free_reg_set_mem PARAMS ((void));
535 static int get_bitmap_width PARAMS ((int, int, int));
536 static void record_one_set PARAMS ((int, rtx));
537 static void record_set_info PARAMS ((rtx, rtx, void *));
538 static void compute_sets PARAMS ((rtx));
539 static void hash_scan_insn PARAMS ((rtx, int, int));
540 static void hash_scan_set PARAMS ((rtx, rtx, int));
541 static void hash_scan_clobber PARAMS ((rtx, rtx));
542 static void hash_scan_call PARAMS ((rtx, rtx));
543 static int want_to_gcse_p PARAMS ((rtx));
544 static int oprs_unchanged_p PARAMS ((rtx, rtx, int));
545 static int oprs_anticipatable_p PARAMS ((rtx, rtx));
546 static int oprs_available_p PARAMS ((rtx, rtx));
547 static void insert_expr_in_table PARAMS ((rtx, enum machine_mode, rtx,
548 int, int));
549 static void insert_set_in_table PARAMS ((rtx, rtx));
550 static unsigned int hash_expr PARAMS ((rtx, enum machine_mode, int *, int));
551 static unsigned int hash_expr_1 PARAMS ((rtx, enum machine_mode, int *));
552 static unsigned int hash_set PARAMS ((int, int));
553 static int expr_equiv_p PARAMS ((rtx, rtx));
554 static void record_last_reg_set_info PARAMS ((rtx, int));
555 static void record_last_mem_set_info PARAMS ((rtx));
556 static void record_last_set_info PARAMS ((rtx, rtx, void *));
557 static void compute_hash_table PARAMS ((int));
558 static void alloc_set_hash_table PARAMS ((int));
559 static void free_set_hash_table PARAMS ((void));
560 static void compute_set_hash_table PARAMS ((void));
561 static void alloc_expr_hash_table PARAMS ((unsigned int));
562 static void free_expr_hash_table PARAMS ((void));
563 static void compute_expr_hash_table PARAMS ((void));
564 static void dump_hash_table PARAMS ((FILE *, const char *, struct expr **,
565 int, int));
566 static struct expr *lookup_expr PARAMS ((rtx));
567 static struct expr *lookup_set PARAMS ((unsigned int, rtx));
568 static struct expr *next_set PARAMS ((unsigned int, struct expr *));
569 static void reset_opr_set_tables PARAMS ((void));
570 static int oprs_not_set_p PARAMS ((rtx, rtx));
571 static void mark_call PARAMS ((rtx));
572 static void mark_set PARAMS ((rtx, rtx));
573 static void mark_clobber PARAMS ((rtx, rtx));
574 static void mark_oprs_set PARAMS ((rtx));
575 static void alloc_cprop_mem PARAMS ((int, int));
576 static void free_cprop_mem PARAMS ((void));
577 static void compute_transp PARAMS ((rtx, int, sbitmap *, int));
578 static void compute_transpout PARAMS ((void));
579 static void compute_local_properties PARAMS ((sbitmap *, sbitmap *, sbitmap *,
580 int));
581 static void compute_cprop_data PARAMS ((void));
582 static void find_used_regs PARAMS ((rtx));
583 static int try_replace_reg PARAMS ((rtx, rtx, rtx));
584 static struct expr *find_avail_set PARAMS ((int, rtx));
585 static int cprop_jump PARAMS ((rtx, rtx, struct reg_use *, rtx));
586 #ifdef HAVE_cc0
587 static int cprop_cc0_jump PARAMS ((rtx, struct reg_use *, rtx));
588 #endif
589 static int cprop_insn PARAMS ((rtx, int));
590 static int cprop PARAMS ((int));
591 static int one_cprop_pass PARAMS ((int, int));
592 static void alloc_pre_mem PARAMS ((int, int));
593 static void free_pre_mem PARAMS ((void));
594 static void compute_pre_data PARAMS ((void));
595 static int pre_expr_reaches_here_p PARAMS ((int, struct expr *, int));
596 static void insert_insn_end_bb PARAMS ((struct expr *, int, int));
597 static void pre_insert_copy_insn PARAMS ((struct expr *, rtx));
598 static void pre_insert_copies PARAMS ((void));
599 static int pre_delete PARAMS ((void));
600 static int pre_gcse PARAMS ((void));
601 static int one_pre_gcse_pass PARAMS ((int));
602 static void add_label_notes PARAMS ((rtx, rtx));
603 static void alloc_code_hoist_mem PARAMS ((int, int));
604 static void free_code_hoist_mem PARAMS ((void));
605 static void compute_code_hoist_vbeinout PARAMS ((void));
606 static void compute_code_hoist_data PARAMS ((void));
607 static int hoist_expr_reaches_here_p PARAMS ((int, int, int, char *));
608 static void hoist_code PARAMS ((void));
609 static int one_code_hoisting_pass PARAMS ((void));
610 static void alloc_rd_mem PARAMS ((int, int));
611 static void free_rd_mem PARAMS ((void));
612 static void handle_rd_kill_set PARAMS ((rtx, int, int));
613 static void compute_kill_rd PARAMS ((void));
614 static void compute_rd PARAMS ((void));
615 static void alloc_avail_expr_mem PARAMS ((int, int));
616 static void free_avail_expr_mem PARAMS ((void));
617 static void compute_ae_gen PARAMS ((void));
618 static int expr_killed_p PARAMS ((rtx, int));
619 static void compute_ae_kill PARAMS ((sbitmap *, sbitmap *));
620 static int expr_reaches_here_p PARAMS ((struct occr *, struct expr *,
621 int, int));
622 static rtx computing_insn PARAMS ((struct expr *, rtx));
623 static int def_reaches_here_p PARAMS ((rtx, rtx));
624 static int can_disregard_other_sets PARAMS ((struct reg_set **, rtx, int));
625 static int handle_avail_expr PARAMS ((rtx, struct expr *));
626 static int classic_gcse PARAMS ((void));
627 static int one_classic_gcse_pass PARAMS ((int));
628 static void invalidate_nonnull_info PARAMS ((rtx, rtx, void *));
629 static void delete_null_pointer_checks_1 PARAMS ((unsigned int *, sbitmap *,
630 sbitmap *,
631 struct null_pointer_info *));
632 static rtx process_insert_insn PARAMS ((struct expr *));
633 static int pre_edge_insert PARAMS ((struct edge_list *, struct expr **));
634 static int expr_reaches_here_p_work PARAMS ((struct occr *, struct expr *,
635 int, int, char *));
636 static int pre_expr_reaches_here_p_work PARAMS ((int, struct expr *,
637 int, char *));
638 \f
639 /* Entry point for global common subexpression elimination.
640 F is the first instruction in the function. */
641
642 int
643 gcse_main (f, file)
644 rtx f;
645 FILE *file;
646 {
647 int changed, pass;
648 /* Bytes used at start of pass. */
649 int initial_bytes_used;
650 /* Maximum number of bytes used by a pass. */
651 int max_pass_bytes;
652 /* Point to release obstack data from for each pass. */
653 char *gcse_obstack_bottom;
654
655 /* We do not construct an accurate cfg in functions which call
656 setjmp, so just punt to be safe. */
657 if (current_function_calls_setjmp)
658 return 0;
659
660 /* Assume that we do not need to run jump optimizations after gcse. */
661 run_jump_opt_after_gcse = 0;
662
663 /* For calling dump_foo fns from gdb. */
664 debug_stderr = stderr;
665 gcse_file = file;
666
667 /* Identify the basic block information for this function, including
668 successors and predecessors. */
669 max_gcse_regno = max_reg_num ();
670
671 if (file)
672 dump_flow_info (file);
673
674 /* Return if there's nothing to do. */
675 if (n_basic_blocks <= 1)
676 return 0;
677
678 /* Trying to perform global optimizations on flow graphs which have
679 a high connectivity will take a long time and is unlikely to be
680 particularly useful.
681
682 In normal circumstances a cfg should have about twice has many edges
683 as blocks. But we do not want to punish small functions which have
684 a couple switch statements. So we require a relatively large number
685 of basic blocks and the ratio of edges to blocks to be high. */
686 if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
687 return 0;
688
689 /* See what modes support reg/reg copy operations. */
690 if (! can_copy_init_p)
691 {
692 compute_can_copy ();
693 can_copy_init_p = 1;
694 }
695
696 gcc_obstack_init (&gcse_obstack);
697 bytes_used = 0;
698
699 /* Record where pseudo-registers are set. This data is kept accurate
700 during each pass. ??? We could also record hard-reg information here
701 [since it's unchanging], however it is currently done during hash table
702 computation.
703
704 It may be tempting to compute MEM set information here too, but MEM sets
705 will be subject to code motion one day and thus we need to compute
706 information about memory sets when we build the hash tables. */
707
708 alloc_reg_set_mem (max_gcse_regno);
709 compute_sets (f);
710
711 pass = 0;
712 initial_bytes_used = bytes_used;
713 max_pass_bytes = 0;
714 gcse_obstack_bottom = gcse_alloc (1);
715 changed = 1;
716 while (changed && pass < MAX_PASSES)
717 {
718 changed = 0;
719 if (file)
720 fprintf (file, "GCSE pass %d\n\n", pass + 1);
721
722 /* Initialize bytes_used to the space for the pred/succ lists,
723 and the reg_set_table data. */
724 bytes_used = initial_bytes_used;
725
726 /* Each pass may create new registers, so recalculate each time. */
727 max_gcse_regno = max_reg_num ();
728
729 alloc_gcse_mem (f);
730
731 /* Don't allow constant propagation to modify jumps
732 during this pass. */
733 changed = one_cprop_pass (pass + 1, 0);
734
735 if (optimize_size)
736 changed |= one_classic_gcse_pass (pass + 1);
737 else
738 {
739 changed |= one_pre_gcse_pass (pass + 1);
740 free_reg_set_mem ();
741 alloc_reg_set_mem (max_reg_num ());
742 compute_sets (f);
743 run_jump_opt_after_gcse = 1;
744 }
745
746 if (max_pass_bytes < bytes_used)
747 max_pass_bytes = bytes_used;
748
749 /* Free up memory, then reallocate for code hoisting. We can
750 not re-use the existing allocated memory because the tables
751 will not have info for the insns or registers created by
752 partial redundancy elimination. */
753 free_gcse_mem ();
754
755 /* It does not make sense to run code hoisting unless we optimizing
756 for code size -- it rarely makes programs faster, and can make
757 them bigger if we did partial redundancy elimination (when optimizing
758 for space, we use a classic gcse algorithm instead of partial
759 redundancy algorithms). */
760 if (optimize_size)
761 {
762 max_gcse_regno = max_reg_num ();
763 alloc_gcse_mem (f);
764 changed |= one_code_hoisting_pass ();
765 free_gcse_mem ();
766
767 if (max_pass_bytes < bytes_used)
768 max_pass_bytes = bytes_used;
769 }
770
771 if (file)
772 {
773 fprintf (file, "\n");
774 fflush (file);
775 }
776
777 obstack_free (&gcse_obstack, gcse_obstack_bottom);
778 pass++;
779 }
780
781 /* Do one last pass of copy propagation, including cprop into
782 conditional jumps. */
783
784 max_gcse_regno = max_reg_num ();
785 alloc_gcse_mem (f);
786 /* This time, go ahead and allow cprop to alter jumps. */
787 one_cprop_pass (pass + 1, 1);
788 free_gcse_mem ();
789
790 if (file)
791 {
792 fprintf (file, "GCSE of %s: %d basic blocks, ",
793 current_function_name, n_basic_blocks);
794 fprintf (file, "%d pass%s, %d bytes\n\n",
795 pass, pass > 1 ? "es" : "", max_pass_bytes);
796 }
797
798 obstack_free (&gcse_obstack, NULL_PTR);
799 free_reg_set_mem ();
800 return run_jump_opt_after_gcse;
801 }
802 \f
803 /* Misc. utilities. */
804
805 /* Compute which modes support reg/reg copy operations. */
806
807 static void
808 compute_can_copy ()
809 {
810 int i;
811 #ifndef AVOID_CCMODE_COPIES
812 rtx reg,insn;
813 #endif
814 char *free_point = (char *) oballoc (1);
815
816 bzero (can_copy_p, NUM_MACHINE_MODES);
817
818 start_sequence ();
819 for (i = 0; i < NUM_MACHINE_MODES; i++)
820 if (GET_MODE_CLASS (i) == MODE_CC)
821 {
822 #ifdef AVOID_CCMODE_COPIES
823 can_copy_p[i] = 0;
824 #else
825 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
826 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
827 if (recog (PATTERN (insn), insn, NULL_PTR) >= 0)
828 can_copy_p[i] = 1;
829 #endif
830 }
831 else
832 can_copy_p[i] = 1;
833
834 end_sequence ();
835
836 /* Free the objects we just allocated. */
837 obfree (free_point);
838 }
839 \f
840 /* Cover function to xmalloc to record bytes allocated. */
841
842 static char *
843 gmalloc (size)
844 unsigned int size;
845 {
846 bytes_used += size;
847 return xmalloc (size);
848 }
849
850 /* Cover function to xrealloc.
851 We don't record the additional size since we don't know it.
852 It won't affect memory usage stats much anyway. */
853
854 static char *
855 grealloc (ptr, size)
856 char *ptr;
857 unsigned int size;
858 {
859 return xrealloc (ptr, size);
860 }
861
862 /* Cover function to obstack_alloc.
863 We don't need to record the bytes allocated here since
864 obstack_chunk_alloc is set to gmalloc. */
865
866 static char *
867 gcse_alloc (size)
868 unsigned long size;
869 {
870 return (char *) obstack_alloc (&gcse_obstack, size);
871 }
872
873 /* Allocate memory for the cuid mapping array,
874 and reg/memory set tracking tables.
875
876 This is called at the start of each pass. */
877
878 static void
879 alloc_gcse_mem (f)
880 rtx f;
881 {
882 int i,n;
883 rtx insn;
884
885 /* Find the largest UID and create a mapping from UIDs to CUIDs.
886 CUIDs are like UIDs except they increase monotonically, have no gaps,
887 and only apply to real insns. */
888
889 max_uid = get_max_uid ();
890 n = (max_uid + 1) * sizeof (int);
891 uid_cuid = (int *) gmalloc (n);
892 bzero ((char *) uid_cuid, n);
893 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
894 {
895 if (INSN_P (insn))
896 uid_cuid[INSN_UID (insn)] = i++;
897 else
898 uid_cuid[INSN_UID (insn)] = i;
899 }
900
901 /* Create a table mapping cuids to insns. */
902
903 max_cuid = i;
904 n = (max_cuid + 1) * sizeof (rtx);
905 cuid_insn = (rtx *) gmalloc (n);
906 bzero ((char *) cuid_insn, n);
907 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
908 if (INSN_P (insn))
909 CUID_INSN (i++) = insn;
910
911 /* Allocate vars to track sets of regs. */
912 reg_set_bitmap = (sbitmap) sbitmap_alloc (max_gcse_regno);
913
914 /* Allocate vars to track sets of regs, memory per block. */
915 reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks,
916 max_gcse_regno);
917 mem_set_in_block = (char *) gmalloc (n_basic_blocks);
918 }
919
920 /* Free memory allocated by alloc_gcse_mem. */
921
922 static void
923 free_gcse_mem ()
924 {
925 free (uid_cuid);
926 free (cuid_insn);
927
928 free (reg_set_bitmap);
929
930 free (reg_set_in_block);
931 free (mem_set_in_block);
932 }
933
934 /* Many of the global optimization algorithms work by solving dataflow
935 equations for various expressions. Initially, some local value is
936 computed for each expression in each block. Then, the values across the
937 various blocks are combined (by following flow graph edges) to arrive at
938 global values. Conceptually, each set of equations is independent. We
939 may therefore solve all the equations in parallel, solve them one at a
940 time, or pick any intermediate approach.
941
942 When you're going to need N two-dimensional bitmaps, each X (say, the
943 number of blocks) by Y (say, the number of expressions), call this
944 function. It's not important what X and Y represent; only that Y
945 correspond to the things that can be done in parallel. This function will
946 return an appropriate chunking factor C; you should solve C sets of
947 equations in parallel. By going through this function, we can easily
948 trade space against time; by solving fewer equations in parallel we use
949 less space. */
950
951 static int
952 get_bitmap_width (n, x, y)
953 int n;
954 int x;
955 int y;
956 {
957 /* It's not really worth figuring out *exactly* how much memory will
958 be used by a particular choice. The important thing is to get
959 something approximately right. */
960 size_t max_bitmap_memory = 10 * 1024 * 1024;
961
962 /* The number of bytes we'd use for a single column of minimum
963 width. */
964 size_t column_size = n * x * sizeof (SBITMAP_ELT_TYPE);
965
966 /* Often, it's reasonable just to solve all the equations in
967 parallel. */
968 if (column_size * SBITMAP_SET_SIZE (y) <= max_bitmap_memory)
969 return y;
970
971 /* Otherwise, pick the largest width we can, without going over the
972 limit. */
973 return SBITMAP_ELT_BITS * ((max_bitmap_memory + column_size - 1)
974 / column_size);
975 }
976 \f
977 /* Compute the local properties of each recorded expression.
978
979 Local properties are those that are defined by the block, irrespective of
980 other blocks.
981
982 An expression is transparent in a block if its operands are not modified
983 in the block.
984
985 An expression is computed (locally available) in a block if it is computed
986 at least once and expression would contain the same value if the
987 computation was moved to the end of the block.
988
989 An expression is locally anticipatable in a block if it is computed at
990 least once and expression would contain the same value if the computation
991 was moved to the beginning of the block.
992
993 We call this routine for cprop, pre and code hoisting. They all compute
994 basically the same information and thus can easily share this code.
995
996 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
997 properties. If NULL, then it is not necessary to compute or record that
998 particular property.
999
1000 SETP controls which hash table to look at. If zero, this routine looks at
1001 the expr hash table; if nonzero this routine looks at the set hash table.
1002 Additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1003 ABSALTERED. */
1004
1005 static void
1006 compute_local_properties (transp, comp, antloc, setp)
1007 sbitmap *transp;
1008 sbitmap *comp;
1009 sbitmap *antloc;
1010 int setp;
1011 {
1012 unsigned int i, hash_table_size;
1013 struct expr **hash_table;
1014
1015 /* Initialize any bitmaps that were passed in. */
1016 if (transp)
1017 {
1018 if (setp)
1019 sbitmap_vector_zero (transp, n_basic_blocks);
1020 else
1021 sbitmap_vector_ones (transp, n_basic_blocks);
1022 }
1023
1024 if (comp)
1025 sbitmap_vector_zero (comp, n_basic_blocks);
1026 if (antloc)
1027 sbitmap_vector_zero (antloc, n_basic_blocks);
1028
1029 /* We use the same code for cprop, pre and hoisting. For cprop
1030 we care about the set hash table, for pre and hoisting we
1031 care about the expr hash table. */
1032 hash_table_size = setp ? set_hash_table_size : expr_hash_table_size;
1033 hash_table = setp ? set_hash_table : expr_hash_table;
1034
1035 for (i = 0; i < hash_table_size; i++)
1036 {
1037 struct expr *expr;
1038
1039 for (expr = hash_table[i]; expr != NULL; expr = expr->next_same_hash)
1040 {
1041 int indx = expr->bitmap_index;
1042 struct occr *occr;
1043
1044 /* The expression is transparent in this block if it is not killed.
1045 We start by assuming all are transparent [none are killed], and
1046 then reset the bits for those that are. */
1047 if (transp)
1048 compute_transp (expr->expr, indx, transp, setp);
1049
1050 /* The occurrences recorded in antic_occr are exactly those that
1051 we want to set to non-zero in ANTLOC. */
1052 if (antloc)
1053 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1054 {
1055 SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
1056
1057 /* While we're scanning the table, this is a good place to
1058 initialize this. */
1059 occr->deleted_p = 0;
1060 }
1061
1062 /* The occurrences recorded in avail_occr are exactly those that
1063 we want to set to non-zero in COMP. */
1064 if (comp)
1065 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1066 {
1067 SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
1068
1069 /* While we're scanning the table, this is a good place to
1070 initialize this. */
1071 occr->copied_p = 0;
1072 }
1073
1074 /* While we're scanning the table, this is a good place to
1075 initialize this. */
1076 expr->reaching_reg = 0;
1077 }
1078 }
1079 }
1080 \f
1081 /* Register set information.
1082
1083 `reg_set_table' records where each register is set or otherwise
1084 modified. */
1085
1086 static struct obstack reg_set_obstack;
1087
1088 static void
1089 alloc_reg_set_mem (n_regs)
1090 int n_regs;
1091 {
1092 unsigned int n;
1093
1094 reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
1095 n = reg_set_table_size * sizeof (struct reg_set *);
1096 reg_set_table = (struct reg_set **) gmalloc (n);
1097 bzero ((char *) reg_set_table, n);
1098
1099 gcc_obstack_init (&reg_set_obstack);
1100 }
1101
1102 static void
1103 free_reg_set_mem ()
1104 {
1105 free (reg_set_table);
1106 obstack_free (&reg_set_obstack, NULL_PTR);
1107 }
1108
1109 /* Record REGNO in the reg_set table. */
1110
1111 static void
1112 record_one_set (regno, insn)
1113 int regno;
1114 rtx insn;
1115 {
1116 /* allocate a new reg_set element and link it onto the list */
1117 struct reg_set *new_reg_info;
1118
1119 /* If the table isn't big enough, enlarge it. */
1120 if (regno >= reg_set_table_size)
1121 {
1122 int new_size = regno + REG_SET_TABLE_SLOP;
1123
1124 reg_set_table
1125 = (struct reg_set **) grealloc ((char *) reg_set_table,
1126 new_size * sizeof (struct reg_set *));
1127 bzero ((char *) (reg_set_table + reg_set_table_size),
1128 (new_size - reg_set_table_size) * sizeof (struct reg_set *));
1129 reg_set_table_size = new_size;
1130 }
1131
1132 new_reg_info = (struct reg_set *) obstack_alloc (&reg_set_obstack,
1133 sizeof (struct reg_set));
1134 bytes_used += sizeof (struct reg_set);
1135 new_reg_info->insn = insn;
1136 new_reg_info->next = reg_set_table[regno];
1137 reg_set_table[regno] = new_reg_info;
1138 }
1139
1140 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1141 an insn. The DATA is really the instruction in which the SET is
1142 occurring. */
1143
1144 static void
1145 record_set_info (dest, setter, data)
1146 rtx dest, setter ATTRIBUTE_UNUSED;
1147 void *data;
1148 {
1149 rtx record_set_insn = (rtx) data;
1150
1151 if (GET_CODE (dest) == REG && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
1152 record_one_set (REGNO (dest), record_set_insn);
1153 }
1154
1155 /* Scan the function and record each set of each pseudo-register.
1156
1157 This is called once, at the start of the gcse pass. See the comments for
1158 `reg_set_table' for further documenation. */
1159
1160 static void
1161 compute_sets (f)
1162 rtx f;
1163 {
1164 rtx insn;
1165
1166 for (insn = f; insn != 0; insn = NEXT_INSN (insn))
1167 if (INSN_P (insn))
1168 note_stores (PATTERN (insn), record_set_info, insn);
1169 }
1170 \f
1171 /* Hash table support. */
1172
1173 /* For each register, the cuid of the first/last insn in the block to set it,
1174 or -1 if not set. */
1175 #define NEVER_SET -1
1176 static int *reg_first_set;
1177 static int *reg_last_set;
1178
1179 /* While computing "first/last set" info, this is the CUID of first/last insn
1180 to set memory or -1 if not set. `mem_last_set' is also used when
1181 performing GCSE to record whether memory has been set since the beginning
1182 of the block.
1183
1184 Note that handling of memory is very simple, we don't make any attempt
1185 to optimize things (later). */
1186 static int mem_first_set;
1187 static int mem_last_set;
1188
1189 /* Perform a quick check whether X, the source of a set, is something
1190 we want to consider for GCSE. */
1191
1192 static int
1193 want_to_gcse_p (x)
1194 rtx x;
1195 {
1196 switch (GET_CODE (x))
1197 {
1198 case REG:
1199 case SUBREG:
1200 case CONST_INT:
1201 case CONST_DOUBLE:
1202 case CALL:
1203 return 0;
1204
1205 default:
1206 break;
1207 }
1208
1209 return 1;
1210 }
1211
1212 /* Return non-zero if the operands of expression X are unchanged from the
1213 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1214 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1215
1216 static int
1217 oprs_unchanged_p (x, insn, avail_p)
1218 rtx x, insn;
1219 int avail_p;
1220 {
1221 int i, j;
1222 enum rtx_code code;
1223 const char *fmt;
1224
1225 if (x == 0)
1226 return 1;
1227
1228 code = GET_CODE (x);
1229 switch (code)
1230 {
1231 case REG:
1232 if (avail_p)
1233 return (reg_last_set[REGNO (x)] == NEVER_SET
1234 || reg_last_set[REGNO (x)] < INSN_CUID (insn));
1235 else
1236 return (reg_first_set[REGNO (x)] == NEVER_SET
1237 || reg_first_set[REGNO (x)] >= INSN_CUID (insn));
1238
1239 case MEM:
1240 if (avail_p && mem_last_set != NEVER_SET
1241 && mem_last_set >= INSN_CUID (insn))
1242 return 0;
1243 else if (! avail_p && mem_first_set != NEVER_SET
1244 && mem_first_set < INSN_CUID (insn))
1245 return 0;
1246 else
1247 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
1248
1249 case PRE_DEC:
1250 case PRE_INC:
1251 case POST_DEC:
1252 case POST_INC:
1253 case PRE_MODIFY:
1254 case POST_MODIFY:
1255 return 0;
1256
1257 case PC:
1258 case CC0: /*FIXME*/
1259 case CONST:
1260 case CONST_INT:
1261 case CONST_DOUBLE:
1262 case SYMBOL_REF:
1263 case LABEL_REF:
1264 case ADDR_VEC:
1265 case ADDR_DIFF_VEC:
1266 return 1;
1267
1268 default:
1269 break;
1270 }
1271
1272 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1273 {
1274 if (fmt[i] == 'e')
1275 {
1276 /* If we are about to do the last recursive call needed at this
1277 level, change it into iteration. This function is called enough
1278 to be worth it. */
1279 if (i == 0)
1280 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
1281
1282 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
1283 return 0;
1284 }
1285 else if (fmt[i] == 'E')
1286 for (j = 0; j < XVECLEN (x, i); j++)
1287 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
1288 return 0;
1289 }
1290
1291 return 1;
1292 }
1293
1294 /* Return non-zero if the operands of expression X are unchanged from
1295 the start of INSN's basic block up to but not including INSN. */
1296
1297 static int
1298 oprs_anticipatable_p (x, insn)
1299 rtx x, insn;
1300 {
1301 return oprs_unchanged_p (x, insn, 0);
1302 }
1303
1304 /* Return non-zero if the operands of expression X are unchanged from
1305 INSN to the end of INSN's basic block. */
1306
1307 static int
1308 oprs_available_p (x, insn)
1309 rtx x, insn;
1310 {
1311 return oprs_unchanged_p (x, insn, 1);
1312 }
1313
1314 /* Hash expression X.
1315
1316 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1317 indicating if a volatile operand is found or if the expression contains
1318 something we don't want to insert in the table.
1319
1320 ??? One might want to merge this with canon_hash. Later. */
1321
1322 static unsigned int
1323 hash_expr (x, mode, do_not_record_p, hash_table_size)
1324 rtx x;
1325 enum machine_mode mode;
1326 int *do_not_record_p;
1327 int hash_table_size;
1328 {
1329 unsigned int hash;
1330
1331 *do_not_record_p = 0;
1332
1333 hash = hash_expr_1 (x, mode, do_not_record_p);
1334 return hash % hash_table_size;
1335 }
1336 /* Hash a string. Just add its bytes up. */
1337 static inline unsigned
1338 hash_string_1 (ps)
1339 const char *ps;
1340 {
1341 unsigned hash = 0;
1342 const unsigned char *p = (const unsigned char *)ps;
1343
1344 if (p)
1345 while (*p)
1346 hash += *p++;
1347
1348 return hash;
1349 }
1350
1351 /* Subroutine of hash_expr to do the actual work. */
1352
1353 static unsigned int
1354 hash_expr_1 (x, mode, do_not_record_p)
1355 rtx x;
1356 enum machine_mode mode;
1357 int *do_not_record_p;
1358 {
1359 int i, j;
1360 unsigned hash = 0;
1361 enum rtx_code code;
1362 const char *fmt;
1363
1364 /* Used to turn recursion into iteration. We can't rely on GCC's
1365 tail-recursion eliminatio since we need to keep accumulating values
1366 in HASH. */
1367
1368 if (x == 0)
1369 return hash;
1370
1371 repeat:
1372 code = GET_CODE (x);
1373 switch (code)
1374 {
1375 case REG:
1376 hash += ((unsigned int) REG << 7) + REGNO (x);
1377 return hash;
1378
1379 case CONST_INT:
1380 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
1381 + (unsigned int) INTVAL (x));
1382 return hash;
1383
1384 case CONST_DOUBLE:
1385 /* This is like the general case, except that it only counts
1386 the integers representing the constant. */
1387 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
1388 if (GET_MODE (x) != VOIDmode)
1389 for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
1390 hash += (unsigned int) XWINT (x, i);
1391 else
1392 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
1393 + (unsigned int) CONST_DOUBLE_HIGH (x));
1394 return hash;
1395
1396 /* Assume there is only one rtx object for any given label. */
1397 case LABEL_REF:
1398 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1399 differences and differences between each stage's debugging dumps. */
1400 hash += (((unsigned int) LABEL_REF << 7)
1401 + CODE_LABEL_NUMBER (XEXP (x, 0)));
1402 return hash;
1403
1404 case SYMBOL_REF:
1405 {
1406 /* Don't hash on the symbol's address to avoid bootstrap differences.
1407 Different hash values may cause expressions to be recorded in
1408 different orders and thus different registers to be used in the
1409 final assembler. This also avoids differences in the dump files
1410 between various stages. */
1411 unsigned int h = 0;
1412 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
1413
1414 while (*p)
1415 h += (h << 7) + *p++; /* ??? revisit */
1416
1417 hash += ((unsigned int) SYMBOL_REF << 7) + h;
1418 return hash;
1419 }
1420
1421 case MEM:
1422 if (MEM_VOLATILE_P (x))
1423 {
1424 *do_not_record_p = 1;
1425 return 0;
1426 }
1427
1428 hash += (unsigned int) MEM;
1429 hash += MEM_ALIAS_SET (x);
1430 x = XEXP (x, 0);
1431 goto repeat;
1432
1433 case PRE_DEC:
1434 case PRE_INC:
1435 case POST_DEC:
1436 case POST_INC:
1437 case PC:
1438 case CC0:
1439 case CALL:
1440 case UNSPEC_VOLATILE:
1441 *do_not_record_p = 1;
1442 return 0;
1443
1444 case ASM_OPERANDS:
1445 if (MEM_VOLATILE_P (x))
1446 {
1447 *do_not_record_p = 1;
1448 return 0;
1449 }
1450 else
1451 {
1452 /* We don't want to take the filename and line into account. */
1453 hash += (unsigned) code + (unsigned) GET_MODE (x)
1454 + hash_string_1 (ASM_OPERANDS_TEMPLATE (x))
1455 + hash_string_1 (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
1456 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
1457
1458 if (ASM_OPERANDS_INPUT_LENGTH (x))
1459 {
1460 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
1461 {
1462 hash += (hash_expr_1 (ASM_OPERANDS_INPUT (x, i),
1463 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
1464 do_not_record_p)
1465 + hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT
1466 (x, i)));
1467 }
1468
1469 hash += hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
1470 x = ASM_OPERANDS_INPUT (x, 0);
1471 mode = GET_MODE (x);
1472 goto repeat;
1473 }
1474 return hash;
1475 }
1476
1477 default:
1478 break;
1479 }
1480
1481 hash += (unsigned) code + (unsigned) GET_MODE (x);
1482 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1483 {
1484 if (fmt[i] == 'e')
1485 {
1486 /* If we are about to do the last recursive call
1487 needed at this level, change it into iteration.
1488 This function is called enough to be worth it. */
1489 if (i == 0)
1490 {
1491 x = XEXP (x, i);
1492 goto repeat;
1493 }
1494
1495 hash += hash_expr_1 (XEXP (x, i), 0, do_not_record_p);
1496 if (*do_not_record_p)
1497 return 0;
1498 }
1499
1500 else if (fmt[i] == 'E')
1501 for (j = 0; j < XVECLEN (x, i); j++)
1502 {
1503 hash += hash_expr_1 (XVECEXP (x, i, j), 0, do_not_record_p);
1504 if (*do_not_record_p)
1505 return 0;
1506 }
1507
1508 else if (fmt[i] == 's')
1509 hash += hash_string_1 (XSTR (x, i));
1510 else if (fmt[i] == 'i')
1511 hash += (unsigned int) XINT (x, i);
1512 else
1513 abort ();
1514 }
1515
1516 return hash;
1517 }
1518
1519 /* Hash a set of register REGNO.
1520
1521 Sets are hashed on the register that is set. This simplifies the PRE copy
1522 propagation code.
1523
1524 ??? May need to make things more elaborate. Later, as necessary. */
1525
1526 static unsigned int
1527 hash_set (regno, hash_table_size)
1528 int regno;
1529 int hash_table_size;
1530 {
1531 unsigned int hash;
1532
1533 hash = regno;
1534 return hash % hash_table_size;
1535 }
1536
1537 /* Return non-zero if exp1 is equivalent to exp2.
1538 ??? Borrowed from cse.c. Might want to remerge with cse.c. Later. */
1539
1540 static int
1541 expr_equiv_p (x, y)
1542 rtx x, y;
1543 {
1544 register int i, j;
1545 register enum rtx_code code;
1546 register const char *fmt;
1547
1548 if (x == y)
1549 return 1;
1550
1551 if (x == 0 || y == 0)
1552 return x == y;
1553
1554 code = GET_CODE (x);
1555 if (code != GET_CODE (y))
1556 return 0;
1557
1558 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1559 if (GET_MODE (x) != GET_MODE (y))
1560 return 0;
1561
1562 switch (code)
1563 {
1564 case PC:
1565 case CC0:
1566 return x == y;
1567
1568 case CONST_INT:
1569 return INTVAL (x) == INTVAL (y);
1570
1571 case LABEL_REF:
1572 return XEXP (x, 0) == XEXP (y, 0);
1573
1574 case SYMBOL_REF:
1575 return XSTR (x, 0) == XSTR (y, 0);
1576
1577 case REG:
1578 return REGNO (x) == REGNO (y);
1579
1580 case MEM:
1581 /* Can't merge two expressions in different alias sets, since we can
1582 decide that the expression is transparent in a block when it isn't,
1583 due to it being set with the different alias set. */
1584 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
1585 return 0;
1586 break;
1587
1588 /* For commutative operations, check both orders. */
1589 case PLUS:
1590 case MULT:
1591 case AND:
1592 case IOR:
1593 case XOR:
1594 case NE:
1595 case EQ:
1596 return ((expr_equiv_p (XEXP (x, 0), XEXP (y, 0))
1597 && expr_equiv_p (XEXP (x, 1), XEXP (y, 1)))
1598 || (expr_equiv_p (XEXP (x, 0), XEXP (y, 1))
1599 && expr_equiv_p (XEXP (x, 1), XEXP (y, 0))));
1600
1601 case ASM_OPERANDS:
1602 /* We don't use the generic code below because we want to
1603 disregard filename and line numbers. */
1604
1605 /* A volatile asm isn't equivalent to any other. */
1606 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
1607 return 0;
1608
1609 if (GET_MODE (x) != GET_MODE (y)
1610 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
1611 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
1612 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
1613 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
1614 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
1615 return 0;
1616
1617 if (ASM_OPERANDS_INPUT_LENGTH (x))
1618 {
1619 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
1620 if (! expr_equiv_p (ASM_OPERANDS_INPUT (x, i),
1621 ASM_OPERANDS_INPUT (y, i))
1622 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
1623 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
1624 return 0;
1625 }
1626
1627 return 1;
1628
1629 default:
1630 break;
1631 }
1632
1633 /* Compare the elements. If any pair of corresponding elements
1634 fail to match, return 0 for the whole thing. */
1635
1636 fmt = GET_RTX_FORMAT (code);
1637 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1638 {
1639 switch (fmt[i])
1640 {
1641 case 'e':
1642 if (! expr_equiv_p (XEXP (x, i), XEXP (y, i)))
1643 return 0;
1644 break;
1645
1646 case 'E':
1647 if (XVECLEN (x, i) != XVECLEN (y, i))
1648 return 0;
1649 for (j = 0; j < XVECLEN (x, i); j++)
1650 if (! expr_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1651 return 0;
1652 break;
1653
1654 case 's':
1655 if (strcmp (XSTR (x, i), XSTR (y, i)))
1656 return 0;
1657 break;
1658
1659 case 'i':
1660 if (XINT (x, i) != XINT (y, i))
1661 return 0;
1662 break;
1663
1664 case 'w':
1665 if (XWINT (x, i) != XWINT (y, i))
1666 return 0;
1667 break;
1668
1669 case '0':
1670 break;
1671
1672 default:
1673 abort ();
1674 }
1675 }
1676
1677 return 1;
1678 }
1679
1680 /* Insert expression X in INSN in the hash table.
1681 If it is already present, record it as the last occurrence in INSN's
1682 basic block.
1683
1684 MODE is the mode of the value X is being stored into.
1685 It is only used if X is a CONST_INT.
1686
1687 ANTIC_P is non-zero if X is an anticipatable expression.
1688 AVAIL_P is non-zero if X is an available expression. */
1689
1690 static void
1691 insert_expr_in_table (x, mode, insn, antic_p, avail_p)
1692 rtx x;
1693 enum machine_mode mode;
1694 rtx insn;
1695 int antic_p, avail_p;
1696 {
1697 int found, do_not_record_p;
1698 unsigned int hash;
1699 struct expr *cur_expr, *last_expr = NULL;
1700 struct occr *antic_occr, *avail_occr;
1701 struct occr *last_occr = NULL;
1702
1703 hash = hash_expr (x, mode, &do_not_record_p, expr_hash_table_size);
1704
1705 /* Do not insert expression in table if it contains volatile operands,
1706 or if hash_expr determines the expression is something we don't want
1707 to or can't handle. */
1708 if (do_not_record_p)
1709 return;
1710
1711 cur_expr = expr_hash_table[hash];
1712 found = 0;
1713
1714 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1715 {
1716 /* If the expression isn't found, save a pointer to the end of
1717 the list. */
1718 last_expr = cur_expr;
1719 cur_expr = cur_expr->next_same_hash;
1720 }
1721
1722 if (! found)
1723 {
1724 cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
1725 bytes_used += sizeof (struct expr);
1726 if (expr_hash_table[hash] == NULL)
1727 /* This is the first pattern that hashed to this index. */
1728 expr_hash_table[hash] = cur_expr;
1729 else
1730 /* Add EXPR to end of this hash chain. */
1731 last_expr->next_same_hash = cur_expr;
1732
1733 /* Set the fields of the expr element. */
1734 cur_expr->expr = x;
1735 cur_expr->bitmap_index = n_exprs++;
1736 cur_expr->next_same_hash = NULL;
1737 cur_expr->antic_occr = NULL;
1738 cur_expr->avail_occr = NULL;
1739 }
1740
1741 /* Now record the occurrence(s). */
1742 if (antic_p)
1743 {
1744 antic_occr = cur_expr->antic_occr;
1745
1746 /* Search for another occurrence in the same basic block. */
1747 while (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
1748 {
1749 /* If an occurrence isn't found, save a pointer to the end of
1750 the list. */
1751 last_occr = antic_occr;
1752 antic_occr = antic_occr->next;
1753 }
1754
1755 if (antic_occr)
1756 /* Found another instance of the expression in the same basic block.
1757 Prefer the currently recorded one. We want the first one in the
1758 block and the block is scanned from start to end. */
1759 ; /* nothing to do */
1760 else
1761 {
1762 /* First occurrence of this expression in this basic block. */
1763 antic_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
1764 bytes_used += sizeof (struct occr);
1765 /* First occurrence of this expression in any block? */
1766 if (cur_expr->antic_occr == NULL)
1767 cur_expr->antic_occr = antic_occr;
1768 else
1769 last_occr->next = antic_occr;
1770
1771 antic_occr->insn = insn;
1772 antic_occr->next = NULL;
1773 }
1774 }
1775
1776 if (avail_p)
1777 {
1778 avail_occr = cur_expr->avail_occr;
1779
1780 /* Search for another occurrence in the same basic block. */
1781 while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
1782 {
1783 /* If an occurrence isn't found, save a pointer to the end of
1784 the list. */
1785 last_occr = avail_occr;
1786 avail_occr = avail_occr->next;
1787 }
1788
1789 if (avail_occr)
1790 /* Found another instance of the expression in the same basic block.
1791 Prefer this occurrence to the currently recorded one. We want
1792 the last one in the block and the block is scanned from start
1793 to end. */
1794 avail_occr->insn = insn;
1795 else
1796 {
1797 /* First occurrence of this expression in this basic block. */
1798 avail_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
1799 bytes_used += sizeof (struct occr);
1800
1801 /* First occurrence of this expression in any block? */
1802 if (cur_expr->avail_occr == NULL)
1803 cur_expr->avail_occr = avail_occr;
1804 else
1805 last_occr->next = avail_occr;
1806
1807 avail_occr->insn = insn;
1808 avail_occr->next = NULL;
1809 }
1810 }
1811 }
1812
1813 /* Insert pattern X in INSN in the hash table.
1814 X is a SET of a reg to either another reg or a constant.
1815 If it is already present, record it as the last occurrence in INSN's
1816 basic block. */
1817
1818 static void
1819 insert_set_in_table (x, insn)
1820 rtx x;
1821 rtx insn;
1822 {
1823 int found;
1824 unsigned int hash;
1825 struct expr *cur_expr, *last_expr = NULL;
1826 struct occr *cur_occr, *last_occr = NULL;
1827
1828 if (GET_CODE (x) != SET
1829 || GET_CODE (SET_DEST (x)) != REG)
1830 abort ();
1831
1832 hash = hash_set (REGNO (SET_DEST (x)), set_hash_table_size);
1833
1834 cur_expr = set_hash_table[hash];
1835 found = 0;
1836
1837 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1838 {
1839 /* If the expression isn't found, save a pointer to the end of
1840 the list. */
1841 last_expr = cur_expr;
1842 cur_expr = cur_expr->next_same_hash;
1843 }
1844
1845 if (! found)
1846 {
1847 cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
1848 bytes_used += sizeof (struct expr);
1849 if (set_hash_table[hash] == NULL)
1850 /* This is the first pattern that hashed to this index. */
1851 set_hash_table[hash] = cur_expr;
1852 else
1853 /* Add EXPR to end of this hash chain. */
1854 last_expr->next_same_hash = cur_expr;
1855
1856 /* Set the fields of the expr element.
1857 We must copy X because it can be modified when copy propagation is
1858 performed on its operands. */
1859 /* ??? Should this go in a different obstack? */
1860 cur_expr->expr = copy_rtx (x);
1861 cur_expr->bitmap_index = n_sets++;
1862 cur_expr->next_same_hash = NULL;
1863 cur_expr->antic_occr = NULL;
1864 cur_expr->avail_occr = NULL;
1865 }
1866
1867 /* Now record the occurrence. */
1868 cur_occr = cur_expr->avail_occr;
1869
1870 /* Search for another occurrence in the same basic block. */
1871 while (cur_occr && BLOCK_NUM (cur_occr->insn) != BLOCK_NUM (insn))
1872 {
1873 /* If an occurrence isn't found, save a pointer to the end of
1874 the list. */
1875 last_occr = cur_occr;
1876 cur_occr = cur_occr->next;
1877 }
1878
1879 if (cur_occr)
1880 /* Found another instance of the expression in the same basic block.
1881 Prefer this occurrence to the currently recorded one. We want the
1882 last one in the block and the block is scanned from start to end. */
1883 cur_occr->insn = insn;
1884 else
1885 {
1886 /* First occurrence of this expression in this basic block. */
1887 cur_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
1888 bytes_used += sizeof (struct occr);
1889
1890 /* First occurrence of this expression in any block? */
1891 if (cur_expr->avail_occr == NULL)
1892 cur_expr->avail_occr = cur_occr;
1893 else
1894 last_occr->next = cur_occr;
1895
1896 cur_occr->insn = insn;
1897 cur_occr->next = NULL;
1898 }
1899 }
1900
1901 /* Scan pattern PAT of INSN and add an entry to the hash table. If SET_P is
1902 non-zero, this is for the assignment hash table, otherwise it is for the
1903 expression hash table. */
1904
1905 static void
1906 hash_scan_set (pat, insn, set_p)
1907 rtx pat, insn;
1908 int set_p;
1909 {
1910 rtx src = SET_SRC (pat);
1911 rtx dest = SET_DEST (pat);
1912
1913 if (GET_CODE (src) == CALL)
1914 hash_scan_call (src, insn);
1915
1916 if (GET_CODE (dest) == REG)
1917 {
1918 int regno = REGNO (dest);
1919 rtx tmp;
1920
1921 /* Only record sets of pseudo-regs in the hash table. */
1922 if (! set_p
1923 && regno >= FIRST_PSEUDO_REGISTER
1924 /* Don't GCSE something if we can't do a reg/reg copy. */
1925 && can_copy_p [GET_MODE (dest)]
1926 /* Is SET_SRC something we want to gcse? */
1927 && want_to_gcse_p (src))
1928 {
1929 /* An expression is not anticipatable if its operands are
1930 modified before this insn. */
1931 int antic_p = oprs_anticipatable_p (src, insn);
1932 /* An expression is not available if its operands are
1933 subsequently modified, including this insn. */
1934 int avail_p = oprs_available_p (src, insn);
1935
1936 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p);
1937 }
1938
1939 /* Record sets for constant/copy propagation. */
1940 else if (set_p
1941 && regno >= FIRST_PSEUDO_REGISTER
1942 && ((GET_CODE (src) == REG
1943 && REGNO (src) >= FIRST_PSEUDO_REGISTER
1944 && can_copy_p [GET_MODE (dest)])
1945 || GET_CODE (src) == CONST_INT
1946 || GET_CODE (src) == SYMBOL_REF
1947 || GET_CODE (src) == CONST_DOUBLE)
1948 /* A copy is not available if its src or dest is subsequently
1949 modified. Here we want to search from INSN+1 on, but
1950 oprs_available_p searches from INSN on. */
1951 && (insn == BLOCK_END (BLOCK_NUM (insn))
1952 || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
1953 && oprs_available_p (pat, tmp))))
1954 insert_set_in_table (pat, insn);
1955 }
1956 }
1957
1958 static void
1959 hash_scan_clobber (x, insn)
1960 rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
1961 {
1962 /* Currently nothing to do. */
1963 }
1964
1965 static void
1966 hash_scan_call (x, insn)
1967 rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
1968 {
1969 /* Currently nothing to do. */
1970 }
1971
1972 /* Process INSN and add hash table entries as appropriate.
1973
1974 Only available expressions that set a single pseudo-reg are recorded.
1975
1976 Single sets in a PARALLEL could be handled, but it's an extra complication
1977 that isn't dealt with right now. The trick is handling the CLOBBERs that
1978 are also in the PARALLEL. Later.
1979
1980 If SET_P is non-zero, this is for the assignment hash table,
1981 otherwise it is for the expression hash table.
1982 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
1983 not record any expressions. */
1984
1985 static void
1986 hash_scan_insn (insn, set_p, in_libcall_block)
1987 rtx insn;
1988 int set_p;
1989 int in_libcall_block;
1990 {
1991 rtx pat = PATTERN (insn);
1992 int i;
1993
1994 /* Pick out the sets of INSN and for other forms of instructions record
1995 what's been modified. */
1996
1997 if (GET_CODE (pat) == SET && ! in_libcall_block)
1998 {
1999 /* Ignore obvious no-ops. */
2000 if (SET_SRC (pat) != SET_DEST (pat))
2001 hash_scan_set (pat, insn, set_p);
2002 }
2003 else if (GET_CODE (pat) == PARALLEL)
2004 for (i = 0; i < XVECLEN (pat, 0); i++)
2005 {
2006 rtx x = XVECEXP (pat, 0, i);
2007
2008 if (GET_CODE (x) == SET)
2009 {
2010 if (GET_CODE (SET_SRC (x)) == CALL)
2011 hash_scan_call (SET_SRC (x), insn);
2012 }
2013 else if (GET_CODE (x) == CLOBBER)
2014 hash_scan_clobber (x, insn);
2015 else if (GET_CODE (x) == CALL)
2016 hash_scan_call (x, insn);
2017 }
2018
2019 else if (GET_CODE (pat) == CLOBBER)
2020 hash_scan_clobber (pat, insn);
2021 else if (GET_CODE (pat) == CALL)
2022 hash_scan_call (pat, insn);
2023 }
2024
2025 static void
2026 dump_hash_table (file, name, table, table_size, total_size)
2027 FILE *file;
2028 const char *name;
2029 struct expr **table;
2030 int table_size, total_size;
2031 {
2032 int i;
2033 /* Flattened out table, so it's printed in proper order. */
2034 struct expr **flat_table;
2035 unsigned int *hash_val;
2036 struct expr *expr;
2037
2038 flat_table
2039 = (struct expr **) xcalloc (total_size, sizeof (struct expr *));
2040 hash_val = (unsigned int *) xmalloc (total_size * sizeof (unsigned int));
2041
2042 for (i = 0; i < table_size; i++)
2043 for (expr = table[i]; expr != NULL; expr = expr->next_same_hash)
2044 {
2045 flat_table[expr->bitmap_index] = expr;
2046 hash_val[expr->bitmap_index] = i;
2047 }
2048
2049 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
2050 name, table_size, total_size);
2051
2052 for (i = 0; i < total_size; i++)
2053 if (flat_table[i] != 0)
2054 {
2055 expr = flat_table[i];
2056 fprintf (file, "Index %d (hash value %d)\n ",
2057 expr->bitmap_index, hash_val[i]);
2058 print_rtl (file, expr->expr);
2059 fprintf (file, "\n");
2060 }
2061
2062 fprintf (file, "\n");
2063
2064 free (flat_table);
2065 free (hash_val);
2066 }
2067
2068 /* Record register first/last/block set information for REGNO in INSN.
2069
2070 reg_first_set records the first place in the block where the register
2071 is set and is used to compute "anticipatability".
2072
2073 reg_last_set records the last place in the block where the register
2074 is set and is used to compute "availability".
2075
2076 reg_set_in_block records whether the register is set in the block
2077 and is used to compute "transparency". */
2078
2079 static void
2080 record_last_reg_set_info (insn, regno)
2081 rtx insn;
2082 int regno;
2083 {
2084 if (reg_first_set[regno] == NEVER_SET)
2085 reg_first_set[regno] = INSN_CUID (insn);
2086
2087 reg_last_set[regno] = INSN_CUID (insn);
2088 SET_BIT (reg_set_in_block[BLOCK_NUM (insn)], regno);
2089 }
2090
2091 /* Record memory first/last/block set information for INSN. */
2092
2093 static void
2094 record_last_mem_set_info (insn)
2095 rtx insn;
2096 {
2097 if (mem_first_set == NEVER_SET)
2098 mem_first_set = INSN_CUID (insn);
2099
2100 mem_last_set = INSN_CUID (insn);
2101 mem_set_in_block[BLOCK_NUM (insn)] = 1;
2102 }
2103
2104 /* Called from compute_hash_table via note_stores to handle one
2105 SET or CLOBBER in an insn. DATA is really the instruction in which
2106 the SET is taking place. */
2107
2108 static void
2109 record_last_set_info (dest, setter, data)
2110 rtx dest, setter ATTRIBUTE_UNUSED;
2111 void *data;
2112 {
2113 rtx last_set_insn = (rtx) data;
2114
2115 if (GET_CODE (dest) == SUBREG)
2116 dest = SUBREG_REG (dest);
2117
2118 if (GET_CODE (dest) == REG)
2119 record_last_reg_set_info (last_set_insn, REGNO (dest));
2120 else if (GET_CODE (dest) == MEM
2121 /* Ignore pushes, they clobber nothing. */
2122 && ! push_operand (dest, GET_MODE (dest)))
2123 record_last_mem_set_info (last_set_insn);
2124 }
2125
2126 /* Top level function to create an expression or assignment hash table.
2127
2128 Expression entries are placed in the hash table if
2129 - they are of the form (set (pseudo-reg) src),
2130 - src is something we want to perform GCSE on,
2131 - none of the operands are subsequently modified in the block
2132
2133 Assignment entries are placed in the hash table if
2134 - they are of the form (set (pseudo-reg) src),
2135 - src is something we want to perform const/copy propagation on,
2136 - none of the operands or target are subsequently modified in the block
2137
2138 Currently src must be a pseudo-reg or a const_int.
2139
2140 F is the first insn.
2141 SET_P is non-zero for computing the assignment hash table. */
2142
2143 static void
2144 compute_hash_table (set_p)
2145 int set_p;
2146 {
2147 int bb;
2148
2149 /* While we compute the hash table we also compute a bit array of which
2150 registers are set in which blocks.
2151 We also compute which blocks set memory, in the absence of aliasing
2152 support [which is TODO].
2153 ??? This isn't needed during const/copy propagation, but it's cheap to
2154 compute. Later. */
2155 sbitmap_vector_zero (reg_set_in_block, n_basic_blocks);
2156 bzero ((char *) mem_set_in_block, n_basic_blocks);
2157
2158 /* Some working arrays used to track first and last set in each block. */
2159 /* ??? One could use alloca here, but at some size a threshold is crossed
2160 beyond which one should use malloc. Are we at that threshold here? */
2161 reg_first_set = (int *) gmalloc (max_gcse_regno * sizeof (int));
2162 reg_last_set = (int *) gmalloc (max_gcse_regno * sizeof (int));
2163
2164 for (bb = 0; bb < n_basic_blocks; bb++)
2165 {
2166 rtx insn;
2167 unsigned int regno;
2168 int in_libcall_block;
2169 unsigned int i;
2170
2171 /* First pass over the instructions records information used to
2172 determine when registers and memory are first and last set.
2173 ??? The mem_set_in_block and hard-reg reg_set_in_block computation
2174 could be moved to compute_sets since they currently don't change. */
2175
2176 for (i = 0; i < max_gcse_regno; i++)
2177 reg_first_set[i] = reg_last_set[i] = NEVER_SET;
2178
2179 mem_first_set = NEVER_SET;
2180 mem_last_set = NEVER_SET;
2181
2182 for (insn = BLOCK_HEAD (bb);
2183 insn && insn != NEXT_INSN (BLOCK_END (bb));
2184 insn = NEXT_INSN (insn))
2185 {
2186 #ifdef NON_SAVING_SETJMP
2187 if (NON_SAVING_SETJMP && GET_CODE (insn) == NOTE
2188 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
2189 {
2190 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2191 record_last_reg_set_info (insn, regno);
2192 continue;
2193 }
2194 #endif
2195
2196 if (! INSN_P (insn))
2197 continue;
2198
2199 if (GET_CODE (insn) == CALL_INSN)
2200 {
2201 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2202 if ((call_used_regs[regno]
2203 && regno != STACK_POINTER_REGNUM
2204 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2205 && regno != HARD_FRAME_POINTER_REGNUM
2206 #endif
2207 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2208 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2209 #endif
2210 #if defined (PIC_OFFSET_TABLE_REGNUM) && !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED)
2211 && ! (regno == PIC_OFFSET_TABLE_REGNUM && flag_pic)
2212 #endif
2213
2214 && regno != FRAME_POINTER_REGNUM)
2215 || global_regs[regno])
2216 record_last_reg_set_info (insn, regno);
2217
2218 if (! CONST_CALL_P (insn))
2219 record_last_mem_set_info (insn);
2220 }
2221
2222 note_stores (PATTERN (insn), record_last_set_info, insn);
2223 }
2224
2225 /* The next pass builds the hash table. */
2226
2227 for (insn = BLOCK_HEAD (bb), in_libcall_block = 0;
2228 insn && insn != NEXT_INSN (BLOCK_END (bb));
2229 insn = NEXT_INSN (insn))
2230 if (INSN_P (insn))
2231 {
2232 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2233 in_libcall_block = 1;
2234 else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
2235 in_libcall_block = 0;
2236 hash_scan_insn (insn, set_p, in_libcall_block);
2237 }
2238 }
2239
2240 free (reg_first_set);
2241 free (reg_last_set);
2242
2243 /* Catch bugs early. */
2244 reg_first_set = reg_last_set = 0;
2245 }
2246
2247 /* Allocate space for the set hash table.
2248 N_INSNS is the number of instructions in the function.
2249 It is used to determine the number of buckets to use. */
2250
2251 static void
2252 alloc_set_hash_table (n_insns)
2253 int n_insns;
2254 {
2255 int n;
2256
2257 set_hash_table_size = n_insns / 4;
2258 if (set_hash_table_size < 11)
2259 set_hash_table_size = 11;
2260
2261 /* Attempt to maintain efficient use of hash table.
2262 Making it an odd number is simplest for now.
2263 ??? Later take some measurements. */
2264 set_hash_table_size |= 1;
2265 n = set_hash_table_size * sizeof (struct expr *);
2266 set_hash_table = (struct expr **) gmalloc (n);
2267 }
2268
2269 /* Free things allocated by alloc_set_hash_table. */
2270
2271 static void
2272 free_set_hash_table ()
2273 {
2274 free (set_hash_table);
2275 }
2276
2277 /* Compute the hash table for doing copy/const propagation. */
2278
2279 static void
2280 compute_set_hash_table ()
2281 {
2282 /* Initialize count of number of entries in hash table. */
2283 n_sets = 0;
2284 bzero ((char *) set_hash_table,
2285 set_hash_table_size * sizeof (struct expr *));
2286
2287 compute_hash_table (1);
2288 }
2289
2290 /* Allocate space for the expression hash table.
2291 N_INSNS is the number of instructions in the function.
2292 It is used to determine the number of buckets to use. */
2293
2294 static void
2295 alloc_expr_hash_table (n_insns)
2296 unsigned int n_insns;
2297 {
2298 int n;
2299
2300 expr_hash_table_size = n_insns / 2;
2301 /* Make sure the amount is usable. */
2302 if (expr_hash_table_size < 11)
2303 expr_hash_table_size = 11;
2304
2305 /* Attempt to maintain efficient use of hash table.
2306 Making it an odd number is simplest for now.
2307 ??? Later take some measurements. */
2308 expr_hash_table_size |= 1;
2309 n = expr_hash_table_size * sizeof (struct expr *);
2310 expr_hash_table = (struct expr **) gmalloc (n);
2311 }
2312
2313 /* Free things allocated by alloc_expr_hash_table. */
2314
2315 static void
2316 free_expr_hash_table ()
2317 {
2318 free (expr_hash_table);
2319 }
2320
2321 /* Compute the hash table for doing GCSE. */
2322
2323 static void
2324 compute_expr_hash_table ()
2325 {
2326 /* Initialize count of number of entries in hash table. */
2327 n_exprs = 0;
2328 bzero ((char *) expr_hash_table,
2329 expr_hash_table_size * sizeof (struct expr *));
2330
2331 compute_hash_table (0);
2332 }
2333 \f
2334 /* Expression tracking support. */
2335
2336 /* Lookup pattern PAT in the expression table.
2337 The result is a pointer to the table entry, or NULL if not found. */
2338
2339 static struct expr *
2340 lookup_expr (pat)
2341 rtx pat;
2342 {
2343 int do_not_record_p;
2344 unsigned int hash = hash_expr (pat, GET_MODE (pat), &do_not_record_p,
2345 expr_hash_table_size);
2346 struct expr *expr;
2347
2348 if (do_not_record_p)
2349 return NULL;
2350
2351 expr = expr_hash_table[hash];
2352
2353 while (expr && ! expr_equiv_p (expr->expr, pat))
2354 expr = expr->next_same_hash;
2355
2356 return expr;
2357 }
2358
2359 /* Lookup REGNO in the set table. If PAT is non-NULL look for the entry that
2360 matches it, otherwise return the first entry for REGNO. The result is a
2361 pointer to the table entry, or NULL if not found. */
2362
2363 static struct expr *
2364 lookup_set (regno, pat)
2365 unsigned int regno;
2366 rtx pat;
2367 {
2368 unsigned int hash = hash_set (regno, set_hash_table_size);
2369 struct expr *expr;
2370
2371 expr = set_hash_table[hash];
2372
2373 if (pat)
2374 {
2375 while (expr && ! expr_equiv_p (expr->expr, pat))
2376 expr = expr->next_same_hash;
2377 }
2378 else
2379 {
2380 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
2381 expr = expr->next_same_hash;
2382 }
2383
2384 return expr;
2385 }
2386
2387 /* Return the next entry for REGNO in list EXPR. */
2388
2389 static struct expr *
2390 next_set (regno, expr)
2391 unsigned int regno;
2392 struct expr *expr;
2393 {
2394 do
2395 expr = expr->next_same_hash;
2396 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
2397
2398 return expr;
2399 }
2400
2401 /* Reset tables used to keep track of what's still available [since the
2402 start of the block]. */
2403
2404 static void
2405 reset_opr_set_tables ()
2406 {
2407 /* Maintain a bitmap of which regs have been set since beginning of
2408 the block. */
2409 sbitmap_zero (reg_set_bitmap);
2410
2411 /* Also keep a record of the last instruction to modify memory.
2412 For now this is very trivial, we only record whether any memory
2413 location has been modified. */
2414 mem_last_set = 0;
2415 }
2416
2417 /* Return non-zero if the operands of X are not set before INSN in
2418 INSN's basic block. */
2419
2420 static int
2421 oprs_not_set_p (x, insn)
2422 rtx x, insn;
2423 {
2424 int i, j;
2425 enum rtx_code code;
2426 const char *fmt;
2427
2428 if (x == 0)
2429 return 1;
2430
2431 code = GET_CODE (x);
2432 switch (code)
2433 {
2434 case PC:
2435 case CC0:
2436 case CONST:
2437 case CONST_INT:
2438 case CONST_DOUBLE:
2439 case SYMBOL_REF:
2440 case LABEL_REF:
2441 case ADDR_VEC:
2442 case ADDR_DIFF_VEC:
2443 return 1;
2444
2445 case MEM:
2446 if (mem_last_set != 0)
2447 return 0;
2448 else
2449 return oprs_not_set_p (XEXP (x, 0), insn);
2450
2451 case REG:
2452 return ! TEST_BIT (reg_set_bitmap, REGNO (x));
2453
2454 default:
2455 break;
2456 }
2457
2458 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2459 {
2460 if (fmt[i] == 'e')
2461 {
2462 /* If we are about to do the last recursive call
2463 needed at this level, change it into iteration.
2464 This function is called enough to be worth it. */
2465 if (i == 0)
2466 return oprs_not_set_p (XEXP (x, i), insn);
2467
2468 if (! oprs_not_set_p (XEXP (x, i), insn))
2469 return 0;
2470 }
2471 else if (fmt[i] == 'E')
2472 for (j = 0; j < XVECLEN (x, i); j++)
2473 if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
2474 return 0;
2475 }
2476
2477 return 1;
2478 }
2479
2480 /* Mark things set by a CALL. */
2481
2482 static void
2483 mark_call (insn)
2484 rtx insn;
2485 {
2486 mem_last_set = INSN_CUID (insn);
2487 }
2488
2489 /* Mark things set by a SET. */
2490
2491 static void
2492 mark_set (pat, insn)
2493 rtx pat, insn;
2494 {
2495 rtx dest = SET_DEST (pat);
2496
2497 while (GET_CODE (dest) == SUBREG
2498 || GET_CODE (dest) == ZERO_EXTRACT
2499 || GET_CODE (dest) == SIGN_EXTRACT
2500 || GET_CODE (dest) == STRICT_LOW_PART)
2501 dest = XEXP (dest, 0);
2502
2503 if (GET_CODE (dest) == REG)
2504 SET_BIT (reg_set_bitmap, REGNO (dest));
2505 else if (GET_CODE (dest) == MEM)
2506 mem_last_set = INSN_CUID (insn);
2507
2508 if (GET_CODE (SET_SRC (pat)) == CALL)
2509 mark_call (insn);
2510 }
2511
2512 /* Record things set by a CLOBBER. */
2513
2514 static void
2515 mark_clobber (pat, insn)
2516 rtx pat, insn;
2517 {
2518 rtx clob = XEXP (pat, 0);
2519
2520 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2521 clob = XEXP (clob, 0);
2522
2523 if (GET_CODE (clob) == REG)
2524 SET_BIT (reg_set_bitmap, REGNO (clob));
2525 else
2526 mem_last_set = INSN_CUID (insn);
2527 }
2528
2529 /* Record things set by INSN.
2530 This data is used by oprs_not_set_p. */
2531
2532 static void
2533 mark_oprs_set (insn)
2534 rtx insn;
2535 {
2536 rtx pat = PATTERN (insn);
2537 int i;
2538
2539 if (GET_CODE (pat) == SET)
2540 mark_set (pat, insn);
2541 else if (GET_CODE (pat) == PARALLEL)
2542 for (i = 0; i < XVECLEN (pat, 0); i++)
2543 {
2544 rtx x = XVECEXP (pat, 0, i);
2545
2546 if (GET_CODE (x) == SET)
2547 mark_set (x, insn);
2548 else if (GET_CODE (x) == CLOBBER)
2549 mark_clobber (x, insn);
2550 else if (GET_CODE (x) == CALL)
2551 mark_call (insn);
2552 }
2553
2554 else if (GET_CODE (pat) == CLOBBER)
2555 mark_clobber (pat, insn);
2556 else if (GET_CODE (pat) == CALL)
2557 mark_call (insn);
2558 }
2559
2560 \f
2561 /* Classic GCSE reaching definition support. */
2562
2563 /* Allocate reaching def variables. */
2564
2565 static void
2566 alloc_rd_mem (n_blocks, n_insns)
2567 int n_blocks, n_insns;
2568 {
2569 rd_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2570 sbitmap_vector_zero (rd_kill, n_basic_blocks);
2571
2572 rd_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2573 sbitmap_vector_zero (rd_gen, n_basic_blocks);
2574
2575 reaching_defs = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2576 sbitmap_vector_zero (reaching_defs, n_basic_blocks);
2577
2578 rd_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2579 sbitmap_vector_zero (rd_out, n_basic_blocks);
2580 }
2581
2582 /* Free reaching def variables. */
2583
2584 static void
2585 free_rd_mem ()
2586 {
2587 free (rd_kill);
2588 free (rd_gen);
2589 free (reaching_defs);
2590 free (rd_out);
2591 }
2592
2593 /* Add INSN to the kills of BB. REGNO, set in BB, is killed by INSN. */
2594
2595 static void
2596 handle_rd_kill_set (insn, regno, bb)
2597 rtx insn;
2598 int regno, bb;
2599 {
2600 struct reg_set *this_reg;
2601
2602 for (this_reg = reg_set_table[regno]; this_reg; this_reg = this_reg ->next)
2603 if (BLOCK_NUM (this_reg->insn) != BLOCK_NUM (insn))
2604 SET_BIT (rd_kill[bb], INSN_CUID (this_reg->insn));
2605 }
2606
2607 /* Compute the set of kill's for reaching definitions. */
2608
2609 static void
2610 compute_kill_rd ()
2611 {
2612 int bb, cuid;
2613 int regno, i;
2614
2615 /* For each block
2616 For each set bit in `gen' of the block (i.e each insn which
2617 generates a definition in the block)
2618 Call the reg set by the insn corresponding to that bit regx
2619 Look at the linked list starting at reg_set_table[regx]
2620 For each setting of regx in the linked list, which is not in
2621 this block
2622 Set the bit in `kill' corresponding to that insn. */
2623 for (bb = 0; bb < n_basic_blocks; bb++)
2624 for (cuid = 0; cuid < max_cuid; cuid++)
2625 if (TEST_BIT (rd_gen[bb], cuid))
2626 {
2627 rtx insn = CUID_INSN (cuid);
2628 rtx pat = PATTERN (insn);
2629
2630 if (GET_CODE (insn) == CALL_INSN)
2631 {
2632 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2633 {
2634 if ((call_used_regs[regno]
2635 && regno != STACK_POINTER_REGNUM
2636 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2637 && regno != HARD_FRAME_POINTER_REGNUM
2638 #endif
2639 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2640 && ! (regno == ARG_POINTER_REGNUM
2641 && fixed_regs[regno])
2642 #endif
2643 #if defined (PIC_OFFSET_TABLE_REGNUM) && !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED)
2644 && ! (regno == PIC_OFFSET_TABLE_REGNUM && flag_pic)
2645 #endif
2646 && regno != FRAME_POINTER_REGNUM)
2647 || global_regs[regno])
2648 handle_rd_kill_set (insn, regno, bb);
2649 }
2650 }
2651
2652 if (GET_CODE (pat) == PARALLEL)
2653 {
2654 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
2655 {
2656 enum rtx_code code = GET_CODE (XVECEXP (pat, 0, i));
2657
2658 if ((code == SET || code == CLOBBER)
2659 && GET_CODE (XEXP (XVECEXP (pat, 0, i), 0)) == REG)
2660 handle_rd_kill_set (insn,
2661 REGNO (XEXP (XVECEXP (pat, 0, i), 0)),
2662 bb);
2663 }
2664 }
2665 else if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == REG)
2666 /* Each setting of this register outside of this block
2667 must be marked in the set of kills in this block. */
2668 handle_rd_kill_set (insn, REGNO (SET_DEST (pat)), bb);
2669 }
2670 }
2671
2672 /* Compute the reaching definitions as in
2673 Compilers Principles, Techniques, and Tools. Aho, Sethi, Ullman,
2674 Chapter 10. It is the same algorithm as used for computing available
2675 expressions but applied to the gens and kills of reaching definitions. */
2676
2677 static void
2678 compute_rd ()
2679 {
2680 int bb, changed, passes;
2681
2682 for (bb = 0; bb < n_basic_blocks; bb++)
2683 sbitmap_copy (rd_out[bb] /*dst*/, rd_gen[bb] /*src*/);
2684
2685 passes = 0;
2686 changed = 1;
2687 while (changed)
2688 {
2689 changed = 0;
2690 for (bb = 0; bb < n_basic_blocks; bb++)
2691 {
2692 sbitmap_union_of_preds (reaching_defs[bb], rd_out, bb);
2693 changed |= sbitmap_union_of_diff (rd_out[bb], rd_gen[bb],
2694 reaching_defs[bb], rd_kill[bb]);
2695 }
2696 passes++;
2697 }
2698
2699 if (gcse_file)
2700 fprintf (gcse_file, "reaching def computation: %d passes\n", passes);
2701 }
2702 \f
2703 /* Classic GCSE available expression support. */
2704
2705 /* Allocate memory for available expression computation. */
2706
2707 static void
2708 alloc_avail_expr_mem (n_blocks, n_exprs)
2709 int n_blocks, n_exprs;
2710 {
2711 ae_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
2712 sbitmap_vector_zero (ae_kill, n_basic_blocks);
2713
2714 ae_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
2715 sbitmap_vector_zero (ae_gen, n_basic_blocks);
2716
2717 ae_in = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
2718 sbitmap_vector_zero (ae_in, n_basic_blocks);
2719
2720 ae_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
2721 sbitmap_vector_zero (ae_out, n_basic_blocks);
2722 }
2723
2724 static void
2725 free_avail_expr_mem ()
2726 {
2727 free (ae_kill);
2728 free (ae_gen);
2729 free (ae_in);
2730 free (ae_out);
2731 }
2732
2733 /* Compute the set of available expressions generated in each basic block. */
2734
2735 static void
2736 compute_ae_gen ()
2737 {
2738 unsigned int i;
2739 struct expr *expr;
2740 struct occr *occr;
2741
2742 /* For each recorded occurrence of each expression, set ae_gen[bb][expr].
2743 This is all we have to do because an expression is not recorded if it
2744 is not available, and the only expressions we want to work with are the
2745 ones that are recorded. */
2746 for (i = 0; i < expr_hash_table_size; i++)
2747 for (expr = expr_hash_table[i]; expr != 0; expr = expr->next_same_hash)
2748 for (occr = expr->avail_occr; occr != 0; occr = occr->next)
2749 SET_BIT (ae_gen[BLOCK_NUM (occr->insn)], expr->bitmap_index);
2750 }
2751
2752 /* Return non-zero if expression X is killed in BB. */
2753
2754 static int
2755 expr_killed_p (x, bb)
2756 rtx x;
2757 int bb;
2758 {
2759 int i, j;
2760 enum rtx_code code;
2761 const char *fmt;
2762
2763 if (x == 0)
2764 return 1;
2765
2766 code = GET_CODE (x);
2767 switch (code)
2768 {
2769 case REG:
2770 return TEST_BIT (reg_set_in_block[bb], REGNO (x));
2771
2772 case MEM:
2773 if (mem_set_in_block[bb])
2774 return 1;
2775 else
2776 return expr_killed_p (XEXP (x, 0), bb);
2777
2778 case PC:
2779 case CC0: /*FIXME*/
2780 case CONST:
2781 case CONST_INT:
2782 case CONST_DOUBLE:
2783 case SYMBOL_REF:
2784 case LABEL_REF:
2785 case ADDR_VEC:
2786 case ADDR_DIFF_VEC:
2787 return 0;
2788
2789 default:
2790 break;
2791 }
2792
2793 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2794 {
2795 if (fmt[i] == 'e')
2796 {
2797 /* If we are about to do the last recursive call
2798 needed at this level, change it into iteration.
2799 This function is called enough to be worth it. */
2800 if (i == 0)
2801 return expr_killed_p (XEXP (x, i), bb);
2802 else if (expr_killed_p (XEXP (x, i), bb))
2803 return 1;
2804 }
2805 else if (fmt[i] == 'E')
2806 for (j = 0; j < XVECLEN (x, i); j++)
2807 if (expr_killed_p (XVECEXP (x, i, j), bb))
2808 return 1;
2809 }
2810
2811 return 0;
2812 }
2813
2814 /* Compute the set of available expressions killed in each basic block. */
2815
2816 static void
2817 compute_ae_kill (ae_gen, ae_kill)
2818 sbitmap *ae_gen, *ae_kill;
2819 {
2820 int bb;
2821 unsigned int i;
2822 struct expr *expr;
2823
2824 for (bb = 0; bb < n_basic_blocks; bb++)
2825 for (i = 0; i < expr_hash_table_size; i++)
2826 for (expr = expr_hash_table[i]; expr; expr = expr->next_same_hash)
2827 {
2828 /* Skip EXPR if generated in this block. */
2829 if (TEST_BIT (ae_gen[bb], expr->bitmap_index))
2830 continue;
2831
2832 if (expr_killed_p (expr->expr, bb))
2833 SET_BIT (ae_kill[bb], expr->bitmap_index);
2834 }
2835 }
2836 \f
2837 /* Actually perform the Classic GCSE optimizations. */
2838
2839 /* Return non-zero if occurrence OCCR of expression EXPR reaches block BB.
2840
2841 CHECK_SELF_LOOP is non-zero if we should consider a block reaching itself
2842 as a positive reach. We want to do this when there are two computations
2843 of the expression in the block.
2844
2845 VISITED is a pointer to a working buffer for tracking which BB's have
2846 been visited. It is NULL for the top-level call.
2847
2848 We treat reaching expressions that go through blocks containing the same
2849 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
2850 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
2851 2 as not reaching. The intent is to improve the probability of finding
2852 only one reaching expression and to reduce register lifetimes by picking
2853 the closest such expression. */
2854
2855 static int
2856 expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited)
2857 struct occr *occr;
2858 struct expr *expr;
2859 int bb;
2860 int check_self_loop;
2861 char *visited;
2862 {
2863 edge pred;
2864
2865 for (pred = BASIC_BLOCK(bb)->pred; pred != NULL; pred = pred->pred_next)
2866 {
2867 int pred_bb = pred->src->index;
2868
2869 if (visited[pred_bb])
2870 /* This predecessor has already been visited. Nothing to do. */
2871 ;
2872 else if (pred_bb == bb)
2873 {
2874 /* BB loops on itself. */
2875 if (check_self_loop
2876 && TEST_BIT (ae_gen[pred_bb], expr->bitmap_index)
2877 && BLOCK_NUM (occr->insn) == pred_bb)
2878 return 1;
2879
2880 visited[pred_bb] = 1;
2881 }
2882
2883 /* Ignore this predecessor if it kills the expression. */
2884 else if (TEST_BIT (ae_kill[pred_bb], expr->bitmap_index))
2885 visited[pred_bb] = 1;
2886
2887 /* Does this predecessor generate this expression? */
2888 else if (TEST_BIT (ae_gen[pred_bb], expr->bitmap_index))
2889 {
2890 /* Is this the occurrence we're looking for?
2891 Note that there's only one generating occurrence per block
2892 so we just need to check the block number. */
2893 if (BLOCK_NUM (occr->insn) == pred_bb)
2894 return 1;
2895
2896 visited[pred_bb] = 1;
2897 }
2898
2899 /* Neither gen nor kill. */
2900 else
2901 {
2902 visited[pred_bb] = 1;
2903 if (expr_reaches_here_p_work (occr, expr, pred_bb, check_self_loop,
2904 visited))
2905
2906 return 1;
2907 }
2908 }
2909
2910 /* All paths have been checked. */
2911 return 0;
2912 }
2913
2914 /* This wrapper for expr_reaches_here_p_work() is to ensure that any
2915 memory allocated for that function is returned. */
2916
2917 static int
2918 expr_reaches_here_p (occr, expr, bb, check_self_loop)
2919 struct occr *occr;
2920 struct expr *expr;
2921 int bb;
2922 int check_self_loop;
2923 {
2924 int rval;
2925 char *visited = (char *) xcalloc (n_basic_blocks, 1);
2926
2927 rval = expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited);
2928
2929 free (visited);
2930 return rval;
2931 }
2932
2933 /* Return the instruction that computes EXPR that reaches INSN's basic block.
2934 If there is more than one such instruction, return NULL.
2935
2936 Called only by handle_avail_expr. */
2937
2938 static rtx
2939 computing_insn (expr, insn)
2940 struct expr *expr;
2941 rtx insn;
2942 {
2943 int bb = BLOCK_NUM (insn);
2944
2945 if (expr->avail_occr->next == NULL)
2946 {
2947 if (BLOCK_NUM (expr->avail_occr->insn) == bb)
2948 /* The available expression is actually itself
2949 (i.e. a loop in the flow graph) so do nothing. */
2950 return NULL;
2951
2952 /* (FIXME) Case that we found a pattern that was created by
2953 a substitution that took place. */
2954 return expr->avail_occr->insn;
2955 }
2956 else
2957 {
2958 /* Pattern is computed more than once.
2959 Search backwards from this insn to see how many of these
2960 computations actually reach this insn. */
2961 struct occr *occr;
2962 rtx insn_computes_expr = NULL;
2963 int can_reach = 0;
2964
2965 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
2966 {
2967 if (BLOCK_NUM (occr->insn) == bb)
2968 {
2969 /* The expression is generated in this block.
2970 The only time we care about this is when the expression
2971 is generated later in the block [and thus there's a loop].
2972 We let the normal cse pass handle the other cases. */
2973 if (INSN_CUID (insn) < INSN_CUID (occr->insn)
2974 && expr_reaches_here_p (occr, expr, bb, 1))
2975 {
2976 can_reach++;
2977 if (can_reach > 1)
2978 return NULL;
2979
2980 insn_computes_expr = occr->insn;
2981 }
2982 }
2983 else if (expr_reaches_here_p (occr, expr, bb, 0))
2984 {
2985 can_reach++;
2986 if (can_reach > 1)
2987 return NULL;
2988
2989 insn_computes_expr = occr->insn;
2990 }
2991 }
2992
2993 if (insn_computes_expr == NULL)
2994 abort ();
2995
2996 return insn_computes_expr;
2997 }
2998 }
2999
3000 /* Return non-zero if the definition in DEF_INSN can reach INSN.
3001 Only called by can_disregard_other_sets. */
3002
3003 static int
3004 def_reaches_here_p (insn, def_insn)
3005 rtx insn, def_insn;
3006 {
3007 rtx reg;
3008
3009 if (TEST_BIT (reaching_defs[BLOCK_NUM (insn)], INSN_CUID (def_insn)))
3010 return 1;
3011
3012 if (BLOCK_NUM (insn) == BLOCK_NUM (def_insn))
3013 {
3014 if (INSN_CUID (def_insn) < INSN_CUID (insn))
3015 {
3016 if (GET_CODE (PATTERN (def_insn)) == PARALLEL)
3017 return 1;
3018 else if (GET_CODE (PATTERN (def_insn)) == CLOBBER)
3019 reg = XEXP (PATTERN (def_insn), 0);
3020 else if (GET_CODE (PATTERN (def_insn)) == SET)
3021 reg = SET_DEST (PATTERN (def_insn));
3022 else
3023 abort ();
3024
3025 return ! reg_set_between_p (reg, NEXT_INSN (def_insn), insn);
3026 }
3027 else
3028 return 0;
3029 }
3030
3031 return 0;
3032 }
3033
3034 /* Return non-zero if *ADDR_THIS_REG can only have one value at INSN. The
3035 value returned is the number of definitions that reach INSN. Returning a
3036 value of zero means that [maybe] more than one definition reaches INSN and
3037 the caller can't perform whatever optimization it is trying. i.e. it is
3038 always safe to return zero. */
3039
3040 static int
3041 can_disregard_other_sets (addr_this_reg, insn, for_combine)
3042 struct reg_set **addr_this_reg;
3043 rtx insn;
3044 int for_combine;
3045 {
3046 int number_of_reaching_defs = 0;
3047 struct reg_set *this_reg;
3048
3049 for (this_reg = *addr_this_reg; this_reg != 0; this_reg = this_reg->next)
3050 if (def_reaches_here_p (insn, this_reg->insn))
3051 {
3052 number_of_reaching_defs++;
3053 /* Ignore parallels for now. */
3054 if (GET_CODE (PATTERN (this_reg->insn)) == PARALLEL)
3055 return 0;
3056
3057 if (!for_combine
3058 && (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER
3059 || ! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
3060 SET_SRC (PATTERN (insn)))))
3061 /* A setting of the reg to a different value reaches INSN. */
3062 return 0;
3063
3064 if (number_of_reaching_defs > 1)
3065 {
3066 /* If in this setting the value the register is being set to is
3067 equal to the previous value the register was set to and this
3068 setting reaches the insn we are trying to do the substitution
3069 on then we are ok. */
3070 if (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER)
3071 return 0;
3072 else if (! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
3073 SET_SRC (PATTERN (insn))))
3074 return 0;
3075 }
3076
3077 *addr_this_reg = this_reg;
3078 }
3079
3080 return number_of_reaching_defs;
3081 }
3082
3083 /* Expression computed by insn is available and the substitution is legal,
3084 so try to perform the substitution.
3085
3086 The result is non-zero if any changes were made. */
3087
3088 static int
3089 handle_avail_expr (insn, expr)
3090 rtx insn;
3091 struct expr *expr;
3092 {
3093 rtx pat, insn_computes_expr;
3094 rtx to;
3095 struct reg_set *this_reg;
3096 int found_setting, use_src;
3097 int changed = 0;
3098
3099 /* We only handle the case where one computation of the expression
3100 reaches this instruction. */
3101 insn_computes_expr = computing_insn (expr, insn);
3102 if (insn_computes_expr == NULL)
3103 return 0;
3104
3105 found_setting = 0;
3106 use_src = 0;
3107
3108 /* At this point we know only one computation of EXPR outside of this
3109 block reaches this insn. Now try to find a register that the
3110 expression is computed into. */
3111 if (GET_CODE (SET_SRC (PATTERN (insn_computes_expr))) == REG)
3112 {
3113 /* This is the case when the available expression that reaches
3114 here has already been handled as an available expression. */
3115 unsigned int regnum_for_replacing
3116 = REGNO (SET_SRC (PATTERN (insn_computes_expr)));
3117
3118 /* If the register was created by GCSE we can't use `reg_set_table',
3119 however we know it's set only once. */
3120 if (regnum_for_replacing >= max_gcse_regno
3121 /* If the register the expression is computed into is set only once,
3122 or only one set reaches this insn, we can use it. */
3123 || (((this_reg = reg_set_table[regnum_for_replacing]),
3124 this_reg->next == NULL)
3125 || can_disregard_other_sets (&this_reg, insn, 0)))
3126 {
3127 use_src = 1;
3128 found_setting = 1;
3129 }
3130 }
3131
3132 if (!found_setting)
3133 {
3134 unsigned int regnum_for_replacing
3135 = REGNO (SET_DEST (PATTERN (insn_computes_expr)));
3136
3137 /* This shouldn't happen. */
3138 if (regnum_for_replacing >= max_gcse_regno)
3139 abort ();
3140
3141 this_reg = reg_set_table[regnum_for_replacing];
3142
3143 /* If the register the expression is computed into is set only once,
3144 or only one set reaches this insn, use it. */
3145 if (this_reg->next == NULL
3146 || can_disregard_other_sets (&this_reg, insn, 0))
3147 found_setting = 1;
3148 }
3149
3150 if (found_setting)
3151 {
3152 pat = PATTERN (insn);
3153 if (use_src)
3154 to = SET_SRC (PATTERN (insn_computes_expr));
3155 else
3156 to = SET_DEST (PATTERN (insn_computes_expr));
3157 changed = validate_change (insn, &SET_SRC (pat), to, 0);
3158
3159 /* We should be able to ignore the return code from validate_change but
3160 to play it safe we check. */
3161 if (changed)
3162 {
3163 gcse_subst_count++;
3164 if (gcse_file != NULL)
3165 {
3166 fprintf (gcse_file, "GCSE: Replacing the source in insn %d with",
3167 INSN_UID (insn));
3168 fprintf (gcse_file, " reg %d %s insn %d\n",
3169 REGNO (to), use_src ? "from" : "set in",
3170 INSN_UID (insn_computes_expr));
3171 }
3172 }
3173 }
3174
3175 /* The register that the expr is computed into is set more than once. */
3176 else if (1 /*expensive_op(this_pattrn->op) && do_expensive_gcse)*/)
3177 {
3178 /* Insert an insn after insnx that copies the reg set in insnx
3179 into a new pseudo register call this new register REGN.
3180 From insnb until end of basic block or until REGB is set
3181 replace all uses of REGB with REGN. */
3182 rtx new_insn;
3183
3184 to = gen_reg_rtx (GET_MODE (SET_DEST (PATTERN (insn_computes_expr))));
3185
3186 /* Generate the new insn. */
3187 /* ??? If the change fails, we return 0, even though we created
3188 an insn. I think this is ok. */
3189 new_insn
3190 = emit_insn_after (gen_rtx_SET (VOIDmode, to,
3191 SET_DEST (PATTERN
3192 (insn_computes_expr))),
3193 insn_computes_expr);
3194
3195 /* Keep block number table up to date. */
3196 set_block_num (new_insn, BLOCK_NUM (insn_computes_expr));
3197
3198 /* Keep register set table up to date. */
3199 record_one_set (REGNO (to), new_insn);
3200
3201 gcse_create_count++;
3202 if (gcse_file != NULL)
3203 {
3204 fprintf (gcse_file, "GCSE: Creating insn %d to copy value of reg %d",
3205 INSN_UID (NEXT_INSN (insn_computes_expr)),
3206 REGNO (SET_SRC (PATTERN (NEXT_INSN (insn_computes_expr)))));
3207 fprintf (gcse_file, ", computed in insn %d,\n",
3208 INSN_UID (insn_computes_expr));
3209 fprintf (gcse_file, " into newly allocated reg %d\n",
3210 REGNO (to));
3211 }
3212
3213 pat = PATTERN (insn);
3214
3215 /* Do register replacement for INSN. */
3216 changed = validate_change (insn, &SET_SRC (pat),
3217 SET_DEST (PATTERN
3218 (NEXT_INSN (insn_computes_expr))),
3219 0);
3220
3221 /* We should be able to ignore the return code from validate_change but
3222 to play it safe we check. */
3223 if (changed)
3224 {
3225 gcse_subst_count++;
3226 if (gcse_file != NULL)
3227 {
3228 fprintf (gcse_file,
3229 "GCSE: Replacing the source in insn %d with reg %d ",
3230 INSN_UID (insn),
3231 REGNO (SET_DEST (PATTERN (NEXT_INSN
3232 (insn_computes_expr)))));
3233 fprintf (gcse_file, "set in insn %d\n",
3234 INSN_UID (insn_computes_expr));
3235 }
3236 }
3237 }
3238
3239 return changed;
3240 }
3241
3242 /* Perform classic GCSE. This is called by one_classic_gcse_pass after all
3243 the dataflow analysis has been done.
3244
3245 The result is non-zero if a change was made. */
3246
3247 static int
3248 classic_gcse ()
3249 {
3250 int bb, changed;
3251 rtx insn;
3252
3253 /* Note we start at block 1. */
3254
3255 changed = 0;
3256 for (bb = 1; bb < n_basic_blocks; bb++)
3257 {
3258 /* Reset tables used to keep track of what's still valid [since the
3259 start of the block]. */
3260 reset_opr_set_tables ();
3261
3262 for (insn = BLOCK_HEAD (bb);
3263 insn != NULL && insn != NEXT_INSN (BLOCK_END (bb));
3264 insn = NEXT_INSN (insn))
3265 {
3266 /* Is insn of form (set (pseudo-reg) ...)? */
3267 if (GET_CODE (insn) == INSN
3268 && GET_CODE (PATTERN (insn)) == SET
3269 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
3270 && REGNO (SET_DEST (PATTERN (insn))) >= FIRST_PSEUDO_REGISTER)
3271 {
3272 rtx pat = PATTERN (insn);
3273 rtx src = SET_SRC (pat);
3274 struct expr *expr;
3275
3276 if (want_to_gcse_p (src)
3277 /* Is the expression recorded? */
3278 && ((expr = lookup_expr (src)) != NULL)
3279 /* Is the expression available [at the start of the
3280 block]? */
3281 && TEST_BIT (ae_in[bb], expr->bitmap_index)
3282 /* Are the operands unchanged since the start of the
3283 block? */
3284 && oprs_not_set_p (src, insn))
3285 changed |= handle_avail_expr (insn, expr);
3286 }
3287
3288 /* Keep track of everything modified by this insn. */
3289 /* ??? Need to be careful w.r.t. mods done to INSN. */
3290 if (INSN_P (insn))
3291 mark_oprs_set (insn);
3292 }
3293 }
3294
3295 return changed;
3296 }
3297
3298 /* Top level routine to perform one classic GCSE pass.
3299
3300 Return non-zero if a change was made. */
3301
3302 static int
3303 one_classic_gcse_pass (pass)
3304 int pass;
3305 {
3306 int changed = 0;
3307
3308 gcse_subst_count = 0;
3309 gcse_create_count = 0;
3310
3311 alloc_expr_hash_table (max_cuid);
3312 alloc_rd_mem (n_basic_blocks, max_cuid);
3313 compute_expr_hash_table ();
3314 if (gcse_file)
3315 dump_hash_table (gcse_file, "Expression", expr_hash_table,
3316 expr_hash_table_size, n_exprs);
3317
3318 if (n_exprs > 0)
3319 {
3320 compute_kill_rd ();
3321 compute_rd ();
3322 alloc_avail_expr_mem (n_basic_blocks, n_exprs);
3323 compute_ae_gen ();
3324 compute_ae_kill (ae_gen, ae_kill);
3325 compute_available (ae_gen, ae_kill, ae_out, ae_in);
3326 changed = classic_gcse ();
3327 free_avail_expr_mem ();
3328 }
3329
3330 free_rd_mem ();
3331 free_expr_hash_table ();
3332
3333 if (gcse_file)
3334 {
3335 fprintf (gcse_file, "\n");
3336 fprintf (gcse_file, "GCSE of %s, pass %d: %d bytes needed, %d substs,",
3337 current_function_name, pass, bytes_used, gcse_subst_count);
3338 fprintf (gcse_file, "%d insns created\n", gcse_create_count);
3339 }
3340
3341 return changed;
3342 }
3343 \f
3344 /* Compute copy/constant propagation working variables. */
3345
3346 /* Local properties of assignments. */
3347 static sbitmap *cprop_pavloc;
3348 static sbitmap *cprop_absaltered;
3349
3350 /* Global properties of assignments (computed from the local properties). */
3351 static sbitmap *cprop_avin;
3352 static sbitmap *cprop_avout;
3353
3354 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
3355 basic blocks. N_SETS is the number of sets. */
3356
3357 static void
3358 alloc_cprop_mem (n_blocks, n_sets)
3359 int n_blocks, n_sets;
3360 {
3361 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
3362 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
3363
3364 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
3365 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
3366 }
3367
3368 /* Free vars used by copy/const propagation. */
3369
3370 static void
3371 free_cprop_mem ()
3372 {
3373 free (cprop_pavloc);
3374 free (cprop_absaltered);
3375 free (cprop_avin);
3376 free (cprop_avout);
3377 }
3378
3379 /* For each block, compute whether X is transparent. X is either an
3380 expression or an assignment [though we don't care which, for this context
3381 an assignment is treated as an expression]. For each block where an
3382 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
3383 bit in BMAP. */
3384
3385 static void
3386 compute_transp (x, indx, bmap, set_p)
3387 rtx x;
3388 int indx;
3389 sbitmap *bmap;
3390 int set_p;
3391 {
3392 int bb, i, j;
3393 enum rtx_code code;
3394 reg_set *r;
3395 const char *fmt;
3396
3397 /* repeat is used to turn tail-recursion into iteration since GCC
3398 can't do it when there's no return value. */
3399 repeat:
3400
3401 if (x == 0)
3402 return;
3403
3404 code = GET_CODE (x);
3405 switch (code)
3406 {
3407 case REG:
3408 if (set_p)
3409 {
3410 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
3411 {
3412 for (bb = 0; bb < n_basic_blocks; bb++)
3413 if (TEST_BIT (reg_set_in_block[bb], REGNO (x)))
3414 SET_BIT (bmap[bb], indx);
3415 }
3416 else
3417 {
3418 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
3419 SET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
3420 }
3421 }
3422 else
3423 {
3424 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
3425 {
3426 for (bb = 0; bb < n_basic_blocks; bb++)
3427 if (TEST_BIT (reg_set_in_block[bb], REGNO (x)))
3428 RESET_BIT (bmap[bb], indx);
3429 }
3430 else
3431 {
3432 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
3433 RESET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
3434 }
3435 }
3436
3437 return;
3438
3439 case MEM:
3440 if (set_p)
3441 {
3442 for (bb = 0; bb < n_basic_blocks; bb++)
3443 if (mem_set_in_block[bb])
3444 SET_BIT (bmap[bb], indx);
3445 }
3446 else
3447 {
3448 for (bb = 0; bb < n_basic_blocks; bb++)
3449 if (mem_set_in_block[bb])
3450 RESET_BIT (bmap[bb], indx);
3451 }
3452
3453 x = XEXP (x, 0);
3454 goto repeat;
3455
3456 case PC:
3457 case CC0: /*FIXME*/
3458 case CONST:
3459 case CONST_INT:
3460 case CONST_DOUBLE:
3461 case SYMBOL_REF:
3462 case LABEL_REF:
3463 case ADDR_VEC:
3464 case ADDR_DIFF_VEC:
3465 return;
3466
3467 default:
3468 break;
3469 }
3470
3471 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3472 {
3473 if (fmt[i] == 'e')
3474 {
3475 /* If we are about to do the last recursive call
3476 needed at this level, change it into iteration.
3477 This function is called enough to be worth it. */
3478 if (i == 0)
3479 {
3480 x = XEXP (x, i);
3481 goto repeat;
3482 }
3483
3484 compute_transp (XEXP (x, i), indx, bmap, set_p);
3485 }
3486 else if (fmt[i] == 'E')
3487 for (j = 0; j < XVECLEN (x, i); j++)
3488 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
3489 }
3490 }
3491
3492 /* Top level routine to do the dataflow analysis needed by copy/const
3493 propagation. */
3494
3495 static void
3496 compute_cprop_data ()
3497 {
3498 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, 1);
3499 compute_available (cprop_pavloc, cprop_absaltered,
3500 cprop_avout, cprop_avin);
3501 }
3502 \f
3503 /* Copy/constant propagation. */
3504
3505 /* Maximum number of register uses in an insn that we handle. */
3506 #define MAX_USES 8
3507
3508 /* Table of uses found in an insn.
3509 Allocated statically to avoid alloc/free complexity and overhead. */
3510 static struct reg_use reg_use_table[MAX_USES];
3511
3512 /* Index into `reg_use_table' while building it. */
3513 static int reg_use_count;
3514
3515 /* Set up a list of register numbers used in INSN. The found uses are stored
3516 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
3517 and contains the number of uses in the table upon exit.
3518
3519 ??? If a register appears multiple times we will record it multiple times.
3520 This doesn't hurt anything but it will slow things down. */
3521
3522 static void
3523 find_used_regs (x)
3524 rtx x;
3525 {
3526 int i, j;
3527 enum rtx_code code;
3528 const char *fmt;
3529
3530 /* repeat is used to turn tail-recursion into iteration since GCC
3531 can't do it when there's no return value. */
3532 repeat:
3533
3534 if (x == 0)
3535 return;
3536
3537 code = GET_CODE (x);
3538 switch (code)
3539 {
3540 case REG:
3541 if (reg_use_count == MAX_USES)
3542 return;
3543
3544 reg_use_table[reg_use_count].reg_rtx = x;
3545 reg_use_count++;
3546 return;
3547
3548 case MEM:
3549 x = XEXP (x, 0);
3550 goto repeat;
3551
3552 case PC:
3553 case CC0:
3554 case CONST:
3555 case CONST_INT:
3556 case CONST_DOUBLE:
3557 case SYMBOL_REF:
3558 case LABEL_REF:
3559 case CLOBBER:
3560 case ADDR_VEC:
3561 case ADDR_DIFF_VEC:
3562 case ASM_INPUT: /*FIXME*/
3563 return;
3564
3565 case SET:
3566 if (GET_CODE (SET_DEST (x)) == MEM)
3567 find_used_regs (SET_DEST (x));
3568 x = SET_SRC (x);
3569 goto repeat;
3570
3571 default:
3572 break;
3573 }
3574
3575 /* Recursively scan the operands of this expression. */
3576
3577 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3578 {
3579 if (fmt[i] == 'e')
3580 {
3581 /* If we are about to do the last recursive call
3582 needed at this level, change it into iteration.
3583 This function is called enough to be worth it. */
3584 if (i == 0)
3585 {
3586 x = XEXP (x, 0);
3587 goto repeat;
3588 }
3589
3590 find_used_regs (XEXP (x, i));
3591 }
3592 else if (fmt[i] == 'E')
3593 for (j = 0; j < XVECLEN (x, i); j++)
3594 find_used_regs (XVECEXP (x, i, j));
3595 }
3596 }
3597
3598 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
3599 Returns non-zero is successful. */
3600
3601 static int
3602 try_replace_reg (from, to, insn)
3603 rtx from, to, insn;
3604 {
3605 rtx note;
3606 rtx src;
3607 int success;
3608 rtx set;
3609
3610 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3611
3612 if (!note)
3613 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3614
3615 /* If this fails we could try to simplify the result of the
3616 replacement and attempt to recognize the simplified insn.
3617
3618 But we need a general simplify_rtx that doesn't have pass
3619 specific state variables. I'm not aware of one at the moment. */
3620
3621 success = validate_replace_src (from, to, insn);
3622 set = single_set (insn);
3623
3624 /* We've failed to do replacement. Try to add REG_EQUAL note to not loose
3625 information. */
3626 if (!success && !note)
3627 {
3628 if (!set)
3629 return 0;
3630
3631 note = REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL,
3632 copy_rtx (SET_SRC (set)),
3633 REG_NOTES (insn));
3634 }
3635
3636 /* Always do the replacement in REQ_EQUAL and REG_EQUIV notes. Also
3637 try to simplify them. */
3638 if (note)
3639 {
3640 rtx simplified;
3641
3642 if (!validate_replace_rtx_subexp (from, to, insn, &XEXP (note, 0)))
3643 abort();
3644
3645 src = XEXP (note, 0);
3646
3647 /* Try to simplify resulting note. */
3648 simplified = simplify_rtx (src);
3649 if (simplified)
3650 {
3651 src = simplified;
3652 XEXP (note, 0) = src;
3653 }
3654
3655 /* REG_EQUAL may get simplified into register.
3656 We don't allow that. Remove that note. This code ought
3657 not to hapen, because previous code ought to syntetize
3658 reg-reg move, but be on the safe side. */
3659 else if (REG_P (src))
3660 remove_note (insn, note);
3661 }
3662 return success;
3663 }
3664
3665 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
3666 NULL no such set is found. */
3667
3668 static struct expr *
3669 find_avail_set (regno, insn)
3670 int regno;
3671 rtx insn;
3672 {
3673 /* SET1 contains the last set found that can be returned to the caller for
3674 use in a substitution. */
3675 struct expr *set1 = 0;
3676
3677 /* Loops are not possible here. To get a loop we would need two sets
3678 available at the start of the block containing INSN. ie we would
3679 need two sets like this available at the start of the block:
3680
3681 (set (reg X) (reg Y))
3682 (set (reg Y) (reg X))
3683
3684 This can not happen since the set of (reg Y) would have killed the
3685 set of (reg X) making it unavailable at the start of this block. */
3686 while (1)
3687 {
3688 rtx src;
3689 struct expr *set = lookup_set (regno, NULL_RTX);
3690
3691 /* Find a set that is available at the start of the block
3692 which contains INSN. */
3693 while (set)
3694 {
3695 if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
3696 break;
3697 set = next_set (regno, set);
3698 }
3699
3700 /* If no available set was found we've reached the end of the
3701 (possibly empty) copy chain. */
3702 if (set == 0)
3703 break;
3704
3705 if (GET_CODE (set->expr) != SET)
3706 abort ();
3707
3708 src = SET_SRC (set->expr);
3709
3710 /* We know the set is available.
3711 Now check that SRC is ANTLOC (i.e. none of the source operands
3712 have changed since the start of the block).
3713
3714 If the source operand changed, we may still use it for the next
3715 iteration of this loop, but we may not use it for substitutions. */
3716
3717 if (CONSTANT_P (src) || oprs_not_set_p (src, insn))
3718 set1 = set;
3719
3720 /* If the source of the set is anything except a register, then
3721 we have reached the end of the copy chain. */
3722 if (GET_CODE (src) != REG)
3723 break;
3724
3725 /* Follow the copy chain, ie start another iteration of the loop
3726 and see if we have an available copy into SRC. */
3727 regno = REGNO (src);
3728 }
3729
3730 /* SET1 holds the last set that was available and anticipatable at
3731 INSN. */
3732 return set1;
3733 }
3734
3735 /* Subroutine of cprop_insn that tries to propagate constants into
3736 JUMP_INSNS. INSN must be a conditional jump; COPY is a copy of it
3737 that we can use for substitutions.
3738 REG_USED is the use we will try to replace, SRC is the constant we
3739 will try to substitute for it.
3740 Returns nonzero if a change was made. */
3741
3742 static int
3743 cprop_jump (insn, copy, reg_used, src)
3744 rtx insn, copy;
3745 struct reg_use *reg_used;
3746 rtx src;
3747 {
3748 rtx set = PATTERN (copy);
3749 rtx temp;
3750
3751 /* Replace the register with the appropriate constant. */
3752 replace_rtx (SET_SRC (set), reg_used->reg_rtx, src);
3753
3754 temp = simplify_ternary_operation (GET_CODE (SET_SRC (set)),
3755 GET_MODE (SET_SRC (set)),
3756 GET_MODE (XEXP (SET_SRC (set), 0)),
3757 XEXP (SET_SRC (set), 0),
3758 XEXP (SET_SRC (set), 1),
3759 XEXP (SET_SRC (set), 2));
3760
3761 /* If no simplification can be made, then try the next
3762 register. */
3763 if (temp == 0)
3764 return 0;
3765
3766 SET_SRC (set) = temp;
3767
3768 /* That may have changed the structure of TEMP, so
3769 force it to be rerecognized if it has not turned
3770 into a nop or unconditional jump. */
3771
3772 INSN_CODE (copy) = -1;
3773 if ((SET_DEST (set) == pc_rtx
3774 && (SET_SRC (set) == pc_rtx
3775 || GET_CODE (SET_SRC (set)) == LABEL_REF))
3776 || recog (PATTERN (copy), copy, NULL) >= 0)
3777 {
3778 /* This has either become an unconditional jump
3779 or a nop-jump. We'd like to delete nop jumps
3780 here, but doing so confuses gcse. So we just
3781 make the replacement and let later passes
3782 sort things out. */
3783 PATTERN (insn) = set;
3784 INSN_CODE (insn) = -1;
3785
3786 /* One less use of the label this insn used to jump to
3787 if we turned this into a NOP jump. */
3788 if (SET_SRC (set) == pc_rtx && JUMP_LABEL (insn) != 0)
3789 --LABEL_NUSES (JUMP_LABEL (insn));
3790
3791 /* If this has turned into an unconditional jump,
3792 then put a barrier after it so that the unreachable
3793 code will be deleted. */
3794 if (GET_CODE (SET_SRC (set)) == LABEL_REF)
3795 emit_barrier_after (insn);
3796
3797 run_jump_opt_after_gcse = 1;
3798
3799 const_prop_count++;
3800 if (gcse_file != NULL)
3801 {
3802 fprintf (gcse_file,
3803 "CONST-PROP: Replacing reg %d in insn %d with constant ",
3804 REGNO (reg_used->reg_rtx), INSN_UID (insn));
3805 print_rtl (gcse_file, src);
3806 fprintf (gcse_file, "\n");
3807 }
3808
3809 return 1;
3810 }
3811 return 0;
3812 }
3813
3814 #ifdef HAVE_cc0
3815
3816 /* Subroutine of cprop_insn that tries to propagate constants into JUMP_INSNS
3817 for machines that have CC0. INSN is a single set that stores into CC0;
3818 the insn following it is a conditional jump. REG_USED is the use we will
3819 try to replace, SRC is the constant we will try to substitute for it.
3820 Returns nonzero if a change was made. */
3821
3822 static int
3823 cprop_cc0_jump (insn, reg_used, src)
3824 rtx insn;
3825 struct reg_use *reg_used;
3826 rtx src;
3827 {
3828 rtx jump = NEXT_INSN (insn);
3829 rtx copy = copy_rtx (jump);
3830 rtx set = PATTERN (copy);
3831
3832 /* We need to copy the source of the cc0 setter, as cprop_jump is going to
3833 substitute into it. */
3834 replace_rtx (SET_SRC (set), cc0_rtx, copy_rtx (SET_SRC (PATTERN (insn))));
3835 if (! cprop_jump (jump, copy, reg_used, src))
3836 return 0;
3837
3838 /* If we succeeded, delete the cc0 setter. */
3839 PUT_CODE (insn, NOTE);
3840 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
3841 NOTE_SOURCE_FILE (insn) = 0;
3842 return 1;
3843 }
3844 #endif
3845
3846 /* Perform constant and copy propagation on INSN.
3847 The result is non-zero if a change was made. */
3848
3849 static int
3850 cprop_insn (insn, alter_jumps)
3851 rtx insn;
3852 int alter_jumps;
3853 {
3854 struct reg_use *reg_used;
3855 int changed = 0;
3856 rtx note;
3857
3858 /* Only propagate into SETs. Note that a conditional jump is a
3859 SET with pc_rtx as the destination. */
3860 if ((GET_CODE (insn) != INSN
3861 && GET_CODE (insn) != JUMP_INSN)
3862 || GET_CODE (PATTERN (insn)) != SET)
3863 return 0;
3864
3865 reg_use_count = 0;
3866 find_used_regs (PATTERN (insn));
3867
3868 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3869 if (!note)
3870 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3871
3872 /* We may win even when propagating constants into notes. */
3873 if (note)
3874 find_used_regs (XEXP (note, 0));
3875
3876 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
3877 reg_used++, reg_use_count--)
3878 {
3879 unsigned int regno = REGNO (reg_used->reg_rtx);
3880 rtx pat, src;
3881 struct expr *set;
3882
3883 /* Ignore registers created by GCSE.
3884 We do this because ... */
3885 if (regno >= max_gcse_regno)
3886 continue;
3887
3888 /* If the register has already been set in this block, there's
3889 nothing we can do. */
3890 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
3891 continue;
3892
3893 /* Find an assignment that sets reg_used and is available
3894 at the start of the block. */
3895 set = find_avail_set (regno, insn);
3896 if (! set)
3897 continue;
3898
3899 pat = set->expr;
3900 /* ??? We might be able to handle PARALLELs. Later. */
3901 if (GET_CODE (pat) != SET)
3902 abort ();
3903
3904 src = SET_SRC (pat);
3905
3906 /* Constant propagation. */
3907 if (GET_CODE (src) == CONST_INT || GET_CODE (src) == CONST_DOUBLE
3908 || GET_CODE (src) == SYMBOL_REF)
3909 {
3910 /* Handle normal insns first. */
3911 if (GET_CODE (insn) == INSN
3912 && try_replace_reg (reg_used->reg_rtx, src, insn))
3913 {
3914 changed = 1;
3915 const_prop_count++;
3916 if (gcse_file != NULL)
3917 {
3918 fprintf (gcse_file, "CONST-PROP: Replacing reg %d in ",
3919 regno);
3920 fprintf (gcse_file, "insn %d with constant ",
3921 INSN_UID (insn));
3922 print_rtl (gcse_file, src);
3923 fprintf (gcse_file, "\n");
3924 }
3925
3926 /* The original insn setting reg_used may or may not now be
3927 deletable. We leave the deletion to flow. */
3928 }
3929
3930 /* Try to propagate a CONST_INT into a conditional jump.
3931 We're pretty specific about what we will handle in this
3932 code, we can extend this as necessary over time.
3933
3934 Right now the insn in question must look like
3935 (set (pc) (if_then_else ...)) */
3936 else if (alter_jumps
3937 && GET_CODE (insn) == JUMP_INSN
3938 && condjump_p (insn)
3939 && ! simplejump_p (insn))
3940 changed |= cprop_jump (insn, copy_rtx (insn), reg_used, src);
3941 #ifdef HAVE_cc0
3942 /* Similar code for machines that use a pair of CC0 setter and
3943 conditional jump insn. */
3944 else if (alter_jumps
3945 && GET_CODE (PATTERN (insn)) == SET
3946 && SET_DEST (PATTERN (insn)) == cc0_rtx
3947 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
3948 && condjump_p (NEXT_INSN (insn))
3949 && ! simplejump_p (NEXT_INSN (insn)))
3950 changed |= cprop_cc0_jump (insn, reg_used, src);
3951 #endif
3952 }
3953 else if (GET_CODE (src) == REG
3954 && REGNO (src) >= FIRST_PSEUDO_REGISTER
3955 && REGNO (src) != regno)
3956 {
3957 if (try_replace_reg (reg_used->reg_rtx, src, insn))
3958 {
3959 changed = 1;
3960 copy_prop_count++;
3961 if (gcse_file != NULL)
3962 {
3963 fprintf (gcse_file, "COPY-PROP: Replacing reg %d in insn %d",
3964 regno, INSN_UID (insn));
3965 fprintf (gcse_file, " with reg %d\n", REGNO (src));
3966 }
3967
3968 /* The original insn setting reg_used may or may not now be
3969 deletable. We leave the deletion to flow. */
3970 /* FIXME: If it turns out that the insn isn't deletable,
3971 then we may have unnecessarily extended register lifetimes
3972 and made things worse. */
3973 }
3974 }
3975 }
3976
3977 return changed;
3978 }
3979
3980 /* Forward propagate copies. This includes copies and constants. Return
3981 non-zero if a change was made. */
3982
3983 static int
3984 cprop (alter_jumps)
3985 int alter_jumps;
3986 {
3987 int bb, changed;
3988 rtx insn;
3989
3990 /* Note we start at block 1. */
3991
3992 changed = 0;
3993 for (bb = 1; bb < n_basic_blocks; bb++)
3994 {
3995 /* Reset tables used to keep track of what's still valid [since the
3996 start of the block]. */
3997 reset_opr_set_tables ();
3998
3999 for (insn = BLOCK_HEAD (bb);
4000 insn != NULL && insn != NEXT_INSN (BLOCK_END (bb));
4001 insn = NEXT_INSN (insn))
4002 {
4003 if (INSN_P (insn))
4004 {
4005 changed |= cprop_insn (insn, alter_jumps);
4006
4007 /* Keep track of everything modified by this insn. */
4008 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
4009 call mark_oprs_set if we turned the insn into a NOTE. */
4010 if (GET_CODE (insn) != NOTE)
4011 mark_oprs_set (insn);
4012 }
4013 }
4014 }
4015
4016 if (gcse_file != NULL)
4017 fprintf (gcse_file, "\n");
4018
4019 return changed;
4020 }
4021
4022 /* Perform one copy/constant propagation pass.
4023 F is the first insn in the function.
4024 PASS is the pass count. */
4025
4026 static int
4027 one_cprop_pass (pass, alter_jumps)
4028 int pass;
4029 int alter_jumps;
4030 {
4031 int changed = 0;
4032
4033 const_prop_count = 0;
4034 copy_prop_count = 0;
4035
4036 alloc_set_hash_table (max_cuid);
4037 compute_set_hash_table ();
4038 if (gcse_file)
4039 dump_hash_table (gcse_file, "SET", set_hash_table, set_hash_table_size,
4040 n_sets);
4041 if (n_sets > 0)
4042 {
4043 alloc_cprop_mem (n_basic_blocks, n_sets);
4044 compute_cprop_data ();
4045 changed = cprop (alter_jumps);
4046 free_cprop_mem ();
4047 }
4048
4049 free_set_hash_table ();
4050
4051 if (gcse_file)
4052 {
4053 fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, ",
4054 current_function_name, pass, bytes_used);
4055 fprintf (gcse_file, "%d const props, %d copy props\n\n",
4056 const_prop_count, copy_prop_count);
4057 }
4058
4059 return changed;
4060 }
4061 \f
4062 /* Compute PRE+LCM working variables. */
4063
4064 /* Local properties of expressions. */
4065 /* Nonzero for expressions that are transparent in the block. */
4066 static sbitmap *transp;
4067
4068 /* Nonzero for expressions that are transparent at the end of the block.
4069 This is only zero for expressions killed by abnormal critical edge
4070 created by a calls. */
4071 static sbitmap *transpout;
4072
4073 /* Nonzero for expressions that are computed (available) in the block. */
4074 static sbitmap *comp;
4075
4076 /* Nonzero for expressions that are locally anticipatable in the block. */
4077 static sbitmap *antloc;
4078
4079 /* Nonzero for expressions where this block is an optimal computation
4080 point. */
4081 static sbitmap *pre_optimal;
4082
4083 /* Nonzero for expressions which are redundant in a particular block. */
4084 static sbitmap *pre_redundant;
4085
4086 /* Nonzero for expressions which should be inserted on a specific edge. */
4087 static sbitmap *pre_insert_map;
4088
4089 /* Nonzero for expressions which should be deleted in a specific block. */
4090 static sbitmap *pre_delete_map;
4091
4092 /* Contains the edge_list returned by pre_edge_lcm. */
4093 static struct edge_list *edge_list;
4094
4095 /* Redundant insns. */
4096 static sbitmap pre_redundant_insns;
4097
4098 /* Allocate vars used for PRE analysis. */
4099
4100 static void
4101 alloc_pre_mem (n_blocks, n_exprs)
4102 int n_blocks, n_exprs;
4103 {
4104 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4105 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4106 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
4107
4108 pre_optimal = NULL;
4109 pre_redundant = NULL;
4110 pre_insert_map = NULL;
4111 pre_delete_map = NULL;
4112 ae_in = NULL;
4113 ae_out = NULL;
4114 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
4115
4116 /* pre_insert and pre_delete are allocated later. */
4117 }
4118
4119 /* Free vars used for PRE analysis. */
4120
4121 static void
4122 free_pre_mem ()
4123 {
4124 free (transp);
4125 free (comp);
4126
4127 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
4128
4129 if (pre_optimal)
4130 free (pre_optimal);
4131 if (pre_redundant)
4132 free (pre_redundant);
4133 if (pre_insert_map)
4134 free (pre_insert_map);
4135 if (pre_delete_map)
4136 free (pre_delete_map);
4137
4138 if (ae_in)
4139 free (ae_in);
4140 if (ae_out)
4141 free (ae_out);
4142
4143 transp = comp = NULL;
4144 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
4145 ae_in = ae_out = NULL;
4146 }
4147
4148 /* Top level routine to do the dataflow analysis needed by PRE. */
4149
4150 static void
4151 compute_pre_data ()
4152 {
4153 int i;
4154
4155 compute_local_properties (transp, comp, antloc, 0);
4156 sbitmap_vector_zero (ae_kill, n_basic_blocks);
4157
4158 /* Compute ae_kill for each basic block using:
4159
4160 ~(TRANSP | COMP)
4161
4162 This is significantly faster than compute_ae_kill. */
4163
4164 for (i = 0; i < n_basic_blocks; i++)
4165 {
4166 sbitmap_a_or_b (ae_kill[i], transp[i], comp[i]);
4167 sbitmap_not (ae_kill[i], ae_kill[i]);
4168 }
4169
4170 edge_list = pre_edge_lcm (gcse_file, n_exprs, transp, comp, antloc,
4171 ae_kill, &pre_insert_map, &pre_delete_map);
4172 free (antloc);
4173 antloc = NULL;
4174 free (ae_kill);
4175 ae_kill = NULL;
4176 }
4177 \f
4178 /* PRE utilities */
4179
4180 /* Return non-zero if an occurrence of expression EXPR in OCCR_BB would reach
4181 block BB.
4182
4183 VISITED is a pointer to a working buffer for tracking which BB's have
4184 been visited. It is NULL for the top-level call.
4185
4186 We treat reaching expressions that go through blocks containing the same
4187 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
4188 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
4189 2 as not reaching. The intent is to improve the probability of finding
4190 only one reaching expression and to reduce register lifetimes by picking
4191 the closest such expression. */
4192
4193 static int
4194 pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited)
4195 int occr_bb;
4196 struct expr *expr;
4197 int bb;
4198 char *visited;
4199 {
4200 edge pred;
4201
4202 for (pred = BASIC_BLOCK (bb)->pred; pred != NULL; pred = pred->pred_next)
4203 {
4204 int pred_bb = pred->src->index;
4205
4206 if (pred->src == ENTRY_BLOCK_PTR
4207 /* Has predecessor has already been visited? */
4208 || visited[pred_bb])
4209 ;/* Nothing to do. */
4210
4211 /* Does this predecessor generate this expression? */
4212 else if (TEST_BIT (comp[pred_bb], expr->bitmap_index))
4213 {
4214 /* Is this the occurrence we're looking for?
4215 Note that there's only one generating occurrence per block
4216 so we just need to check the block number. */
4217 if (occr_bb == pred_bb)
4218 return 1;
4219
4220 visited[pred_bb] = 1;
4221 }
4222 /* Ignore this predecessor if it kills the expression. */
4223 else if (! TEST_BIT (transp[pred_bb], expr->bitmap_index))
4224 visited[pred_bb] = 1;
4225
4226 /* Neither gen nor kill. */
4227 else
4228 {
4229 visited[pred_bb] = 1;
4230 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
4231 return 1;
4232 }
4233 }
4234
4235 /* All paths have been checked. */
4236 return 0;
4237 }
4238
4239 /* The wrapper for pre_expr_reaches_here_work that ensures that any
4240 memory allocated for that function is returned. */
4241
4242 static int
4243 pre_expr_reaches_here_p (occr_bb, expr, bb)
4244 int occr_bb;
4245 struct expr *expr;
4246 int bb;
4247 {
4248 int rval;
4249 char *visited = (char *) xcalloc (n_basic_blocks, 1);
4250
4251 rval = pre_expr_reaches_here_p_work(occr_bb, expr, bb, visited);
4252
4253 free (visited);
4254 return rval;
4255 }
4256 \f
4257
4258 /* Given an expr, generate RTL which we can insert at the end of a BB,
4259 or on an edge. Set the block number of any insns generated to
4260 the value of BB. */
4261
4262 static rtx
4263 process_insert_insn (expr)
4264 struct expr *expr;
4265 {
4266 rtx reg = expr->reaching_reg;
4267 rtx pat, copied_expr;
4268 rtx first_new_insn;
4269
4270 start_sequence ();
4271 copied_expr = copy_rtx (expr->expr);
4272 emit_move_insn (reg, copied_expr);
4273 first_new_insn = get_insns ();
4274 pat = gen_sequence ();
4275 end_sequence ();
4276
4277 return pat;
4278 }
4279
4280 /* Add EXPR to the end of basic block BB.
4281
4282 This is used by both the PRE and code hoisting.
4283
4284 For PRE, we want to verify that the expr is either transparent
4285 or locally anticipatable in the target block. This check makes
4286 no sense for code hoisting. */
4287
4288 static void
4289 insert_insn_end_bb (expr, bb, pre)
4290 struct expr *expr;
4291 int bb;
4292 int pre;
4293 {
4294 rtx insn = BLOCK_END (bb);
4295 rtx new_insn;
4296 rtx reg = expr->reaching_reg;
4297 int regno = REGNO (reg);
4298 rtx pat;
4299 int i;
4300
4301 pat = process_insert_insn (expr);
4302
4303 /* If the last insn is a jump, insert EXPR in front [taking care to
4304 handle cc0, etc. properly]. */
4305
4306 if (GET_CODE (insn) == JUMP_INSN)
4307 {
4308 #ifdef HAVE_cc0
4309 rtx note;
4310 #endif
4311
4312 /* If this is a jump table, then we can't insert stuff here. Since
4313 we know the previous real insn must be the tablejump, we insert
4314 the new instruction just before the tablejump. */
4315 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
4316 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
4317 insn = prev_real_insn (insn);
4318
4319 #ifdef HAVE_cc0
4320 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
4321 if cc0 isn't set. */
4322 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
4323 if (note)
4324 insn = XEXP (note, 0);
4325 else
4326 {
4327 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
4328 if (maybe_cc0_setter
4329 && INSN_P (maybe_cc0_setter)
4330 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
4331 insn = maybe_cc0_setter;
4332 }
4333 #endif
4334 /* FIXME: What if something in cc0/jump uses value set in new insn? */
4335 new_insn = emit_block_insn_before (pat, insn, BASIC_BLOCK (bb));
4336 }
4337
4338 /* Likewise if the last insn is a call, as will happen in the presence
4339 of exception handling. */
4340 else if (GET_CODE (insn) == CALL_INSN)
4341 {
4342 HARD_REG_SET parm_regs;
4343 int nparm_regs;
4344 rtx p;
4345
4346 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4347 we search backward and place the instructions before the first
4348 parameter is loaded. Do this for everyone for consistency and a
4349 presumtion that we'll get better code elsewhere as well.
4350
4351 It should always be the case that we can put these instructions
4352 anywhere in the basic block with performing PRE optimizations.
4353 Check this. */
4354
4355 if (pre
4356 && !TEST_BIT (antloc[bb], expr->bitmap_index)
4357 && !TEST_BIT (transp[bb], expr->bitmap_index))
4358 abort ();
4359
4360 /* Since different machines initialize their parameter registers
4361 in different orders, assume nothing. Collect the set of all
4362 parameter registers. */
4363 CLEAR_HARD_REG_SET (parm_regs);
4364 nparm_regs = 0;
4365 for (p = CALL_INSN_FUNCTION_USAGE (insn); p ; p = XEXP (p, 1))
4366 if (GET_CODE (XEXP (p, 0)) == USE
4367 && GET_CODE (XEXP (XEXP (p, 0), 0)) == REG)
4368 {
4369 if (REGNO (XEXP (XEXP (p, 0), 0)) >= FIRST_PSEUDO_REGISTER)
4370 abort ();
4371
4372 SET_HARD_REG_BIT (parm_regs, REGNO (XEXP (XEXP (p, 0), 0)));
4373 nparm_regs++;
4374 }
4375
4376 /* Search backward for the first set of a register in this set. */
4377 while (nparm_regs && BLOCK_HEAD (bb) != insn)
4378 {
4379 insn = PREV_INSN (insn);
4380 p = single_set (insn);
4381 if (p && GET_CODE (SET_DEST (p)) == REG
4382 && REGNO (SET_DEST (p)) < FIRST_PSEUDO_REGISTER
4383 && TEST_HARD_REG_BIT (parm_regs, REGNO (SET_DEST (p))))
4384 {
4385 CLEAR_HARD_REG_BIT (parm_regs, REGNO (SET_DEST (p)));
4386 nparm_regs--;
4387 }
4388 }
4389
4390 /* If we found all the parameter loads, then we want to insert
4391 before the first parameter load.
4392
4393 If we did not find all the parameter loads, then we might have
4394 stopped on the head of the block, which could be a CODE_LABEL.
4395 If we inserted before the CODE_LABEL, then we would be putting
4396 the insn in the wrong basic block. In that case, put the insn
4397 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
4398 while (GET_CODE (insn) == CODE_LABEL
4399 || NOTE_INSN_BASIC_BLOCK_P (insn))
4400 insn = NEXT_INSN (insn);
4401
4402 new_insn = emit_block_insn_before (pat, insn, BASIC_BLOCK (bb));
4403 }
4404 else
4405 {
4406 new_insn = emit_insn_after (pat, insn);
4407 BLOCK_END (bb) = new_insn;
4408 }
4409
4410 /* Keep block number table up to date.
4411 Note, PAT could be a multiple insn sequence, we have to make
4412 sure that each insn in the sequence is handled. */
4413 if (GET_CODE (pat) == SEQUENCE)
4414 {
4415 for (i = 0; i < XVECLEN (pat, 0); i++)
4416 {
4417 rtx insn = XVECEXP (pat, 0, i);
4418
4419 set_block_num (insn, bb);
4420 if (INSN_P (insn))
4421 add_label_notes (PATTERN (insn), new_insn);
4422
4423 note_stores (PATTERN (insn), record_set_info, insn);
4424 }
4425 }
4426 else
4427 {
4428 add_label_notes (SET_SRC (pat), new_insn);
4429 set_block_num (new_insn, bb);
4430
4431 /* Keep register set table up to date. */
4432 record_one_set (regno, new_insn);
4433 }
4434
4435 gcse_create_count++;
4436
4437 if (gcse_file)
4438 {
4439 fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, ",
4440 bb, INSN_UID (new_insn));
4441 fprintf (gcse_file, "copying expression %d to reg %d\n",
4442 expr->bitmap_index, regno);
4443 }
4444 }
4445
4446 /* Insert partially redundant expressions on edges in the CFG to make
4447 the expressions fully redundant. */
4448
4449 static int
4450 pre_edge_insert (edge_list, index_map)
4451 struct edge_list *edge_list;
4452 struct expr **index_map;
4453 {
4454 int e, i, j, num_edges, set_size, did_insert = 0;
4455 sbitmap *inserted;
4456
4457 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
4458 if it reaches any of the deleted expressions. */
4459
4460 set_size = pre_insert_map[0]->size;
4461 num_edges = NUM_EDGES (edge_list);
4462 inserted = sbitmap_vector_alloc (num_edges, n_exprs);
4463 sbitmap_vector_zero (inserted, num_edges);
4464
4465 for (e = 0; e < num_edges; e++)
4466 {
4467 int indx;
4468 basic_block pred = INDEX_EDGE_PRED_BB (edge_list, e);
4469 int bb = pred->index;
4470
4471 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
4472 {
4473 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
4474
4475 for (j = indx; insert && j < n_exprs; j++, insert >>= 1)
4476 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
4477 {
4478 struct expr *expr = index_map[j];
4479 struct occr *occr;
4480
4481 /* Now look at each deleted occurence of this expression. */
4482 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4483 {
4484 if (! occr->deleted_p)
4485 continue;
4486
4487 /* Insert this expression on this edge if if it would
4488 reach the deleted occurence in BB. */
4489 if (!TEST_BIT (inserted[e], j))
4490 {
4491 rtx insn;
4492 edge eg = INDEX_EDGE (edge_list, e);
4493
4494 /* We can't insert anything on an abnormal and
4495 critical edge, so we insert the insn at the end of
4496 the previous block. There are several alternatives
4497 detailed in Morgans book P277 (sec 10.5) for
4498 handling this situation. This one is easiest for
4499 now. */
4500
4501 if ((eg->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
4502 insert_insn_end_bb (index_map[j], bb, 0);
4503 else
4504 {
4505 insn = process_insert_insn (index_map[j]);
4506 insert_insn_on_edge (insn, eg);
4507 }
4508
4509 if (gcse_file)
4510 {
4511 fprintf (gcse_file, "PRE/HOIST: edge (%d,%d), ",
4512 bb,
4513 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
4514 fprintf (gcse_file, "copy expression %d\n",
4515 expr->bitmap_index);
4516 }
4517
4518 SET_BIT (inserted[e], j);
4519 did_insert = 1;
4520 gcse_create_count++;
4521 }
4522 }
4523 }
4524 }
4525 }
4526
4527 free (inserted);
4528 return did_insert;
4529 }
4530
4531 /* Copy the result of INSN to REG. INDX is the expression number. */
4532
4533 static void
4534 pre_insert_copy_insn (expr, insn)
4535 struct expr *expr;
4536 rtx insn;
4537 {
4538 rtx reg = expr->reaching_reg;
4539 int regno = REGNO (reg);
4540 int indx = expr->bitmap_index;
4541 rtx set = single_set (insn);
4542 rtx new_insn;
4543 int bb = BLOCK_NUM (insn);
4544
4545 if (!set)
4546 abort ();
4547
4548 new_insn = emit_insn_after (gen_rtx_SET (VOIDmode, reg, SET_DEST (set)),
4549 insn);
4550
4551 /* Keep block number table up to date. */
4552 set_block_num (new_insn, bb);
4553
4554 /* Keep register set table up to date. */
4555 record_one_set (regno, new_insn);
4556 if (insn == BLOCK_END (bb))
4557 BLOCK_END (bb) = new_insn;
4558
4559 gcse_create_count++;
4560
4561 if (gcse_file)
4562 fprintf (gcse_file,
4563 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
4564 BLOCK_NUM (insn), INSN_UID (new_insn), indx,
4565 INSN_UID (insn), regno);
4566 }
4567
4568 /* Copy available expressions that reach the redundant expression
4569 to `reaching_reg'. */
4570
4571 static void
4572 pre_insert_copies ()
4573 {
4574 unsigned int i;
4575 struct expr *expr;
4576 struct occr *occr;
4577 struct occr *avail;
4578
4579 /* For each available expression in the table, copy the result to
4580 `reaching_reg' if the expression reaches a deleted one.
4581
4582 ??? The current algorithm is rather brute force.
4583 Need to do some profiling. */
4584
4585 for (i = 0; i < expr_hash_table_size; i++)
4586 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
4587 {
4588 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
4589 we don't want to insert a copy here because the expression may not
4590 really be redundant. So only insert an insn if the expression was
4591 deleted. This test also avoids further processing if the
4592 expression wasn't deleted anywhere. */
4593 if (expr->reaching_reg == NULL)
4594 continue;
4595
4596 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4597 {
4598 if (! occr->deleted_p)
4599 continue;
4600
4601 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
4602 {
4603 rtx insn = avail->insn;
4604
4605 /* No need to handle this one if handled already. */
4606 if (avail->copied_p)
4607 continue;
4608
4609 /* Don't handle this one if it's a redundant one. */
4610 if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
4611 continue;
4612
4613 /* Or if the expression doesn't reach the deleted one. */
4614 if (! pre_expr_reaches_here_p (BLOCK_NUM (avail->insn), expr,
4615 BLOCK_NUM (occr->insn)))
4616 continue;
4617
4618 /* Copy the result of avail to reaching_reg. */
4619 pre_insert_copy_insn (expr, insn);
4620 avail->copied_p = 1;
4621 }
4622 }
4623 }
4624 }
4625
4626 /* Delete redundant computations.
4627 Deletion is done by changing the insn to copy the `reaching_reg' of
4628 the expression into the result of the SET. It is left to later passes
4629 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
4630
4631 Returns non-zero if a change is made. */
4632
4633 static int
4634 pre_delete ()
4635 {
4636 unsigned int i;
4637 int changed;
4638 struct expr *expr;
4639 struct occr *occr;
4640
4641 changed = 0;
4642 for (i = 0; i < expr_hash_table_size; i++)
4643 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
4644 {
4645 int indx = expr->bitmap_index;
4646
4647 /* We only need to search antic_occr since we require
4648 ANTLOC != 0. */
4649
4650 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4651 {
4652 rtx insn = occr->insn;
4653 rtx set;
4654 int bb = BLOCK_NUM (insn);
4655
4656 if (TEST_BIT (pre_delete_map[bb], indx))
4657 {
4658 set = single_set (insn);
4659 if (! set)
4660 abort ();
4661
4662 /* Create a pseudo-reg to store the result of reaching
4663 expressions into. Get the mode for the new pseudo from
4664 the mode of the original destination pseudo. */
4665 if (expr->reaching_reg == NULL)
4666 expr->reaching_reg
4667 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4668
4669 /* In theory this should never fail since we're creating
4670 a reg->reg copy.
4671
4672 However, on the x86 some of the movXX patterns actually
4673 contain clobbers of scratch regs. This may cause the
4674 insn created by validate_change to not match any pattern
4675 and thus cause validate_change to fail. */
4676 if (validate_change (insn, &SET_SRC (set),
4677 expr->reaching_reg, 0))
4678 {
4679 occr->deleted_p = 1;
4680 SET_BIT (pre_redundant_insns, INSN_CUID (insn));
4681 changed = 1;
4682 gcse_subst_count++;
4683 }
4684
4685 if (gcse_file)
4686 {
4687 fprintf (gcse_file,
4688 "PRE: redundant insn %d (expression %d) in ",
4689 INSN_UID (insn), indx);
4690 fprintf (gcse_file, "bb %d, reaching reg is %d\n",
4691 bb, REGNO (expr->reaching_reg));
4692 }
4693 }
4694 }
4695 }
4696
4697 return changed;
4698 }
4699
4700 /* Perform GCSE optimizations using PRE.
4701 This is called by one_pre_gcse_pass after all the dataflow analysis
4702 has been done.
4703
4704 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
4705 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
4706 Compiler Design and Implementation.
4707
4708 ??? A new pseudo reg is created to hold the reaching expression. The nice
4709 thing about the classical approach is that it would try to use an existing
4710 reg. If the register can't be adequately optimized [i.e. we introduce
4711 reload problems], one could add a pass here to propagate the new register
4712 through the block.
4713
4714 ??? We don't handle single sets in PARALLELs because we're [currently] not
4715 able to copy the rest of the parallel when we insert copies to create full
4716 redundancies from partial redundancies. However, there's no reason why we
4717 can't handle PARALLELs in the cases where there are no partial
4718 redundancies. */
4719
4720 static int
4721 pre_gcse ()
4722 {
4723 unsigned int i;
4724 int did_insert, changed;
4725 struct expr **index_map;
4726 struct expr *expr;
4727
4728 /* Compute a mapping from expression number (`bitmap_index') to
4729 hash table entry. */
4730
4731 index_map = (struct expr **) xcalloc (n_exprs, sizeof (struct expr *));
4732 for (i = 0; i < expr_hash_table_size; i++)
4733 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
4734 index_map[expr->bitmap_index] = expr;
4735
4736 /* Reset bitmap used to track which insns are redundant. */
4737 pre_redundant_insns = sbitmap_alloc (max_cuid);
4738 sbitmap_zero (pre_redundant_insns);
4739
4740 /* Delete the redundant insns first so that
4741 - we know what register to use for the new insns and for the other
4742 ones with reaching expressions
4743 - we know which insns are redundant when we go to create copies */
4744
4745 changed = pre_delete ();
4746
4747 did_insert = pre_edge_insert (edge_list, index_map);
4748
4749 /* In other places with reaching expressions, copy the expression to the
4750 specially allocated pseudo-reg that reaches the redundant expr. */
4751 pre_insert_copies ();
4752 if (did_insert)
4753 {
4754 commit_edge_insertions ();
4755 changed = 1;
4756 }
4757
4758 free (index_map);
4759 free (pre_redundant_insns);
4760 return changed;
4761 }
4762
4763 /* Top level routine to perform one PRE GCSE pass.
4764
4765 Return non-zero if a change was made. */
4766
4767 static int
4768 one_pre_gcse_pass (pass)
4769 int pass;
4770 {
4771 int changed = 0;
4772
4773 gcse_subst_count = 0;
4774 gcse_create_count = 0;
4775
4776 alloc_expr_hash_table (max_cuid);
4777 add_noreturn_fake_exit_edges ();
4778 compute_expr_hash_table ();
4779 if (gcse_file)
4780 dump_hash_table (gcse_file, "Expression", expr_hash_table,
4781 expr_hash_table_size, n_exprs);
4782
4783 if (n_exprs > 0)
4784 {
4785 alloc_pre_mem (n_basic_blocks, n_exprs);
4786 compute_pre_data ();
4787 changed |= pre_gcse ();
4788 free_edge_list (edge_list);
4789 free_pre_mem ();
4790 }
4791
4792 remove_fake_edges ();
4793 free_expr_hash_table ();
4794
4795 if (gcse_file)
4796 {
4797 fprintf (gcse_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
4798 current_function_name, pass, bytes_used);
4799 fprintf (gcse_file, "%d substs, %d insns created\n",
4800 gcse_subst_count, gcse_create_count);
4801 }
4802
4803 return changed;
4804 }
4805 \f
4806 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
4807 We have to add REG_LABEL notes, because the following loop optimization
4808 pass requires them. */
4809
4810 /* ??? This is very similar to the loop.c add_label_notes function. We
4811 could probably share code here. */
4812
4813 /* ??? If there was a jump optimization pass after gcse and before loop,
4814 then we would not need to do this here, because jump would add the
4815 necessary REG_LABEL notes. */
4816
4817 static void
4818 add_label_notes (x, insn)
4819 rtx x;
4820 rtx insn;
4821 {
4822 enum rtx_code code = GET_CODE (x);
4823 int i, j;
4824 const char *fmt;
4825
4826 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
4827 {
4828 /* This code used to ignore labels that referred to dispatch tables to
4829 avoid flow generating (slighly) worse code.
4830
4831 We no longer ignore such label references (see LABEL_REF handling in
4832 mark_jump_label for additional information). */
4833
4834 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL, XEXP (x, 0),
4835 REG_NOTES (insn));
4836 return;
4837 }
4838
4839 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
4840 {
4841 if (fmt[i] == 'e')
4842 add_label_notes (XEXP (x, i), insn);
4843 else if (fmt[i] == 'E')
4844 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4845 add_label_notes (XVECEXP (x, i, j), insn);
4846 }
4847 }
4848
4849 /* Compute transparent outgoing information for each block.
4850
4851 An expression is transparent to an edge unless it is killed by
4852 the edge itself. This can only happen with abnormal control flow,
4853 when the edge is traversed through a call. This happens with
4854 non-local labels and exceptions.
4855
4856 This would not be necessary if we split the edge. While this is
4857 normally impossible for abnormal critical edges, with some effort
4858 it should be possible with exception handling, since we still have
4859 control over which handler should be invoked. But due to increased
4860 EH table sizes, this may not be worthwhile. */
4861
4862 static void
4863 compute_transpout ()
4864 {
4865 int bb;
4866 unsigned int i;
4867 struct expr *expr;
4868
4869 sbitmap_vector_ones (transpout, n_basic_blocks);
4870
4871 for (bb = 0; bb < n_basic_blocks; ++bb)
4872 {
4873 /* Note that flow inserted a nop a the end of basic blocks that
4874 end in call instructions for reasons other than abnormal
4875 control flow. */
4876 if (GET_CODE (BLOCK_END (bb)) != CALL_INSN)
4877 continue;
4878
4879 for (i = 0; i < expr_hash_table_size; i++)
4880 for (expr = expr_hash_table[i]; expr ; expr = expr->next_same_hash)
4881 if (GET_CODE (expr->expr) == MEM)
4882 {
4883 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
4884 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
4885 continue;
4886
4887 /* ??? Optimally, we would use interprocedural alias
4888 analysis to determine if this mem is actually killed
4889 by this call. */
4890 RESET_BIT (transpout[bb], expr->bitmap_index);
4891 }
4892 }
4893 }
4894
4895 /* Removal of useless null pointer checks */
4896
4897 /* Called via note_stores. X is set by SETTER. If X is a register we must
4898 invalidate nonnull_local and set nonnull_killed. DATA is really a
4899 `null_pointer_info *'.
4900
4901 We ignore hard registers. */
4902
4903 static void
4904 invalidate_nonnull_info (x, setter, data)
4905 rtx x;
4906 rtx setter ATTRIBUTE_UNUSED;
4907 void *data;
4908 {
4909 unsigned int regno;
4910 struct null_pointer_info *npi = (struct null_pointer_info *) data;
4911
4912 while (GET_CODE (x) == SUBREG)
4913 x = SUBREG_REG (x);
4914
4915 /* Ignore anything that is not a register or is a hard register. */
4916 if (GET_CODE (x) != REG
4917 || REGNO (x) < npi->min_reg
4918 || REGNO (x) >= npi->max_reg)
4919 return;
4920
4921 regno = REGNO (x) - npi->min_reg;
4922
4923 RESET_BIT (npi->nonnull_local[npi->current_block], regno);
4924 SET_BIT (npi->nonnull_killed[npi->current_block], regno);
4925 }
4926
4927 /* Do null-pointer check elimination for the registers indicated in
4928 NPI. NONNULL_AVIN and NONNULL_AVOUT are pre-allocated sbitmaps;
4929 they are not our responsibility to free. */
4930
4931 static void
4932 delete_null_pointer_checks_1 (block_reg, nonnull_avin, nonnull_avout, npi)
4933 unsigned int *block_reg;
4934 sbitmap *nonnull_avin;
4935 sbitmap *nonnull_avout;
4936 struct null_pointer_info *npi;
4937 {
4938 int bb;
4939 int current_block;
4940 sbitmap *nonnull_local = npi->nonnull_local;
4941 sbitmap *nonnull_killed = npi->nonnull_killed;
4942
4943 /* Compute local properties, nonnull and killed. A register will have
4944 the nonnull property if at the end of the current block its value is
4945 known to be nonnull. The killed property indicates that somewhere in
4946 the block any information we had about the register is killed.
4947
4948 Note that a register can have both properties in a single block. That
4949 indicates that it's killed, then later in the block a new value is
4950 computed. */
4951 sbitmap_vector_zero (nonnull_local, n_basic_blocks);
4952 sbitmap_vector_zero (nonnull_killed, n_basic_blocks);
4953
4954 for (current_block = 0; current_block < n_basic_blocks; current_block++)
4955 {
4956 rtx insn, stop_insn;
4957
4958 /* Set the current block for invalidate_nonnull_info. */
4959 npi->current_block = current_block;
4960
4961 /* Scan each insn in the basic block looking for memory references and
4962 register sets. */
4963 stop_insn = NEXT_INSN (BLOCK_END (current_block));
4964 for (insn = BLOCK_HEAD (current_block);
4965 insn != stop_insn;
4966 insn = NEXT_INSN (insn))
4967 {
4968 rtx set;
4969 rtx reg;
4970
4971 /* Ignore anything that is not a normal insn. */
4972 if (! INSN_P (insn))
4973 continue;
4974
4975 /* Basically ignore anything that is not a simple SET. We do have
4976 to make sure to invalidate nonnull_local and set nonnull_killed
4977 for such insns though. */
4978 set = single_set (insn);
4979 if (!set)
4980 {
4981 note_stores (PATTERN (insn), invalidate_nonnull_info, npi);
4982 continue;
4983 }
4984
4985 /* See if we've got a useable memory load. We handle it first
4986 in case it uses its address register as a dest (which kills
4987 the nonnull property). */
4988 if (GET_CODE (SET_SRC (set)) == MEM
4989 && GET_CODE ((reg = XEXP (SET_SRC (set), 0))) == REG
4990 && REGNO (reg) >= npi->min_reg
4991 && REGNO (reg) < npi->max_reg)
4992 SET_BIT (nonnull_local[current_block],
4993 REGNO (reg) - npi->min_reg);
4994
4995 /* Now invalidate stuff clobbered by this insn. */
4996 note_stores (PATTERN (insn), invalidate_nonnull_info, npi);
4997
4998 /* And handle stores, we do these last since any sets in INSN can
4999 not kill the nonnull property if it is derived from a MEM
5000 appearing in a SET_DEST. */
5001 if (GET_CODE (SET_DEST (set)) == MEM
5002 && GET_CODE ((reg = XEXP (SET_DEST (set), 0))) == REG
5003 && REGNO (reg) >= npi->min_reg
5004 && REGNO (reg) < npi->max_reg)
5005 SET_BIT (nonnull_local[current_block],
5006 REGNO (reg) - npi->min_reg);
5007 }
5008 }
5009
5010 /* Now compute global properties based on the local properties. This
5011 is a classic global availablity algorithm. */
5012 compute_available (nonnull_local, nonnull_killed,
5013 nonnull_avout, nonnull_avin);
5014
5015 /* Now look at each bb and see if it ends with a compare of a value
5016 against zero. */
5017 for (bb = 0; bb < n_basic_blocks; bb++)
5018 {
5019 rtx last_insn = BLOCK_END (bb);
5020 rtx condition, earliest;
5021 int compare_and_branch;
5022
5023 /* Since MIN_REG is always at least FIRST_PSEUDO_REGISTER, and
5024 since BLOCK_REG[BB] is zero if this block did not end with a
5025 comparison against zero, this condition works. */
5026 if (block_reg[bb] < npi->min_reg
5027 || block_reg[bb] >= npi->max_reg)
5028 continue;
5029
5030 /* LAST_INSN is a conditional jump. Get its condition. */
5031 condition = get_condition (last_insn, &earliest);
5032
5033 /* If we can't determine the condition then skip. */
5034 if (! condition)
5035 continue;
5036
5037 /* Is the register known to have a nonzero value? */
5038 if (!TEST_BIT (nonnull_avout[bb], block_reg[bb] - npi->min_reg))
5039 continue;
5040
5041 /* Try to compute whether the compare/branch at the loop end is one or
5042 two instructions. */
5043 if (earliest == last_insn)
5044 compare_and_branch = 1;
5045 else if (earliest == prev_nonnote_insn (last_insn))
5046 compare_and_branch = 2;
5047 else
5048 continue;
5049
5050 /* We know the register in this comparison is nonnull at exit from
5051 this block. We can optimize this comparison. */
5052 if (GET_CODE (condition) == NE)
5053 {
5054 rtx new_jump;
5055
5056 new_jump = emit_jump_insn_before (gen_jump (JUMP_LABEL (last_insn)),
5057 last_insn);
5058 JUMP_LABEL (new_jump) = JUMP_LABEL (last_insn);
5059 LABEL_NUSES (JUMP_LABEL (new_jump))++;
5060 emit_barrier_after (new_jump);
5061 }
5062 delete_insn (last_insn);
5063 if (compare_and_branch == 2)
5064 delete_insn (earliest);
5065
5066 /* Don't check this block again. (Note that BLOCK_END is
5067 invalid here; we deleted the last instruction in the
5068 block.) */
5069 block_reg[bb] = 0;
5070 }
5071 }
5072
5073 /* Find EQ/NE comparisons against zero which can be (indirectly) evaluated
5074 at compile time.
5075
5076 This is conceptually similar to global constant/copy propagation and
5077 classic global CSE (it even uses the same dataflow equations as cprop).
5078
5079 If a register is used as memory address with the form (mem (reg)), then we
5080 know that REG can not be zero at that point in the program. Any instruction
5081 which sets REG "kills" this property.
5082
5083 So, if every path leading to a conditional branch has an available memory
5084 reference of that form, then we know the register can not have the value
5085 zero at the conditional branch.
5086
5087 So we merely need to compute the local properies and propagate that data
5088 around the cfg, then optimize where possible.
5089
5090 We run this pass two times. Once before CSE, then again after CSE. This
5091 has proven to be the most profitable approach. It is rare for new
5092 optimization opportunities of this nature to appear after the first CSE
5093 pass.
5094
5095 This could probably be integrated with global cprop with a little work. */
5096
5097 void
5098 delete_null_pointer_checks (f)
5099 rtx f ATTRIBUTE_UNUSED;
5100 {
5101 sbitmap *nonnull_avin, *nonnull_avout;
5102 unsigned int *block_reg;
5103 int bb;
5104 int reg;
5105 int regs_per_pass;
5106 int max_reg;
5107 struct null_pointer_info npi;
5108
5109 /* If we have only a single block, then there's nothing to do. */
5110 if (n_basic_blocks <= 1)
5111 return;
5112
5113 /* Trying to perform global optimizations on flow graphs which have
5114 a high connectivity will take a long time and is unlikely to be
5115 particularly useful.
5116
5117 In normal circumstances a cfg should have about twice has many edges
5118 as blocks. But we do not want to punish small functions which have
5119 a couple switch statements. So we require a relatively large number
5120 of basic blocks and the ratio of edges to blocks to be high. */
5121 if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
5122 return;
5123
5124 /* We need four bitmaps, each with a bit for each register in each
5125 basic block. */
5126 max_reg = max_reg_num ();
5127 regs_per_pass = get_bitmap_width (4, n_basic_blocks, max_reg);
5128
5129 /* Allocate bitmaps to hold local and global properties. */
5130 npi.nonnull_local = sbitmap_vector_alloc (n_basic_blocks, regs_per_pass);
5131 npi.nonnull_killed = sbitmap_vector_alloc (n_basic_blocks, regs_per_pass);
5132 nonnull_avin = sbitmap_vector_alloc (n_basic_blocks, regs_per_pass);
5133 nonnull_avout = sbitmap_vector_alloc (n_basic_blocks, regs_per_pass);
5134
5135 /* Go through the basic blocks, seeing whether or not each block
5136 ends with a conditional branch whose condition is a comparison
5137 against zero. Record the register compared in BLOCK_REG. */
5138 block_reg = (unsigned int *) xcalloc (n_basic_blocks, sizeof (int));
5139 for (bb = 0; bb < n_basic_blocks; bb++)
5140 {
5141 rtx last_insn = BLOCK_END (bb);
5142 rtx condition, earliest, reg;
5143
5144 /* We only want conditional branches. */
5145 if (GET_CODE (last_insn) != JUMP_INSN
5146 || !any_condjump_p (last_insn)
5147 || !onlyjump_p (last_insn))
5148 continue;
5149
5150 /* LAST_INSN is a conditional jump. Get its condition. */
5151 condition = get_condition (last_insn, &earliest);
5152
5153 /* If we were unable to get the condition, or it is not a equality
5154 comparison against zero then there's nothing we can do. */
5155 if (!condition
5156 || (GET_CODE (condition) != NE && GET_CODE (condition) != EQ)
5157 || GET_CODE (XEXP (condition, 1)) != CONST_INT
5158 || (XEXP (condition, 1)
5159 != CONST0_RTX (GET_MODE (XEXP (condition, 0)))))
5160 continue;
5161
5162 /* We must be checking a register against zero. */
5163 reg = XEXP (condition, 0);
5164 if (GET_CODE (reg) != REG)
5165 continue;
5166
5167 block_reg[bb] = REGNO (reg);
5168 }
5169
5170 /* Go through the algorithm for each block of registers. */
5171 for (reg = FIRST_PSEUDO_REGISTER; reg < max_reg; reg += regs_per_pass)
5172 {
5173 npi.min_reg = reg;
5174 npi.max_reg = MIN (reg + regs_per_pass, max_reg);
5175 delete_null_pointer_checks_1 (block_reg, nonnull_avin,
5176 nonnull_avout, &npi);
5177 }
5178
5179 /* Free the table of registers compared at the end of every block. */
5180 free (block_reg);
5181
5182 /* Free bitmaps. */
5183 free (npi.nonnull_local);
5184 free (npi.nonnull_killed);
5185 free (nonnull_avin);
5186 free (nonnull_avout);
5187 }
5188
5189 /* Code Hoisting variables and subroutines. */
5190
5191 /* Very busy expressions. */
5192 static sbitmap *hoist_vbein;
5193 static sbitmap *hoist_vbeout;
5194
5195 /* Hoistable expressions. */
5196 static sbitmap *hoist_exprs;
5197
5198 /* Dominator bitmaps. */
5199 static sbitmap *dominators;
5200
5201 /* ??? We could compute post dominators and run this algorithm in
5202 reverse to to perform tail merging, doing so would probably be
5203 more effective than the tail merging code in jump.c.
5204
5205 It's unclear if tail merging could be run in parallel with
5206 code hoisting. It would be nice. */
5207
5208 /* Allocate vars used for code hoisting analysis. */
5209
5210 static void
5211 alloc_code_hoist_mem (n_blocks, n_exprs)
5212 int n_blocks, n_exprs;
5213 {
5214 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
5215 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
5216 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
5217
5218 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
5219 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
5220 hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
5221 transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
5222
5223 dominators = sbitmap_vector_alloc (n_blocks, n_blocks);
5224 }
5225
5226 /* Free vars used for code hoisting analysis. */
5227
5228 static void
5229 free_code_hoist_mem ()
5230 {
5231 free (antloc);
5232 free (transp);
5233 free (comp);
5234
5235 free (hoist_vbein);
5236 free (hoist_vbeout);
5237 free (hoist_exprs);
5238 free (transpout);
5239
5240 free (dominators);
5241 }
5242
5243 /* Compute the very busy expressions at entry/exit from each block.
5244
5245 An expression is very busy if all paths from a given point
5246 compute the expression. */
5247
5248 static void
5249 compute_code_hoist_vbeinout ()
5250 {
5251 int bb, changed, passes;
5252
5253 sbitmap_vector_zero (hoist_vbeout, n_basic_blocks);
5254 sbitmap_vector_zero (hoist_vbein, n_basic_blocks);
5255
5256 passes = 0;
5257 changed = 1;
5258
5259 while (changed)
5260 {
5261 changed = 0;
5262
5263 /* We scan the blocks in the reverse order to speed up
5264 the convergence. */
5265 for (bb = n_basic_blocks - 1; bb >= 0; bb--)
5266 {
5267 changed |= sbitmap_a_or_b_and_c (hoist_vbein[bb], antloc[bb],
5268 hoist_vbeout[bb], transp[bb]);
5269 if (bb != n_basic_blocks - 1)
5270 sbitmap_intersection_of_succs (hoist_vbeout[bb], hoist_vbein, bb);
5271 }
5272
5273 passes++;
5274 }
5275
5276 if (gcse_file)
5277 fprintf (gcse_file, "hoisting vbeinout computation: %d passes\n", passes);
5278 }
5279
5280 /* Top level routine to do the dataflow analysis needed by code hoisting. */
5281
5282 static void
5283 compute_code_hoist_data ()
5284 {
5285 compute_local_properties (transp, comp, antloc, 0);
5286 compute_transpout ();
5287 compute_code_hoist_vbeinout ();
5288 compute_flow_dominators (dominators, NULL);
5289 if (gcse_file)
5290 fprintf (gcse_file, "\n");
5291 }
5292
5293 /* Determine if the expression identified by EXPR_INDEX would
5294 reach BB unimpared if it was placed at the end of EXPR_BB.
5295
5296 It's unclear exactly what Muchnick meant by "unimpared". It seems
5297 to me that the expression must either be computed or transparent in
5298 *every* block in the path(s) from EXPR_BB to BB. Any other definition
5299 would allow the expression to be hoisted out of loops, even if
5300 the expression wasn't a loop invariant.
5301
5302 Contrast this to reachability for PRE where an expression is
5303 considered reachable if *any* path reaches instead of *all*
5304 paths. */
5305
5306 static int
5307 hoist_expr_reaches_here_p (expr_bb, expr_index, bb, visited)
5308 int expr_bb;
5309 int expr_index;
5310 int bb;
5311 char *visited;
5312 {
5313 edge pred;
5314 int visited_allocated_locally = 0;
5315
5316
5317 if (visited == NULL)
5318 {
5319 visited_allocated_locally = 1;
5320 visited = xcalloc (n_basic_blocks, 1);
5321 }
5322
5323 visited[expr_bb] = 1;
5324 for (pred = BASIC_BLOCK (bb)->pred; pred != NULL; pred = pred->pred_next)
5325 {
5326 int pred_bb = pred->src->index;
5327
5328 if (pred->src == ENTRY_BLOCK_PTR)
5329 break;
5330 else if (visited[pred_bb])
5331 continue;
5332
5333 /* Does this predecessor generate this expression? */
5334 else if (TEST_BIT (comp[pred_bb], expr_index))
5335 break;
5336 else if (! TEST_BIT (transp[pred_bb], expr_index))
5337 break;
5338
5339 /* Not killed. */
5340 else
5341 {
5342 visited[pred_bb] = 1;
5343 if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
5344 pred_bb, visited))
5345 break;
5346 }
5347 }
5348 if (visited_allocated_locally)
5349 free (visited);
5350
5351 return (pred == NULL);
5352 }
5353 \f
5354 /* Actually perform code hoisting. */
5355
5356 static void
5357 hoist_code ()
5358 {
5359 int bb, dominated;
5360 unsigned int i;
5361 struct expr **index_map;
5362 struct expr *expr;
5363
5364 sbitmap_vector_zero (hoist_exprs, n_basic_blocks);
5365
5366 /* Compute a mapping from expression number (`bitmap_index') to
5367 hash table entry. */
5368
5369 index_map = (struct expr **) xcalloc (n_exprs, sizeof (struct expr *));
5370 for (i = 0; i < expr_hash_table_size; i++)
5371 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
5372 index_map[expr->bitmap_index] = expr;
5373
5374 /* Walk over each basic block looking for potentially hoistable
5375 expressions, nothing gets hoisted from the entry block. */
5376 for (bb = 0; bb < n_basic_blocks; bb++)
5377 {
5378 int found = 0;
5379 int insn_inserted_p;
5380
5381 /* Examine each expression that is very busy at the exit of this
5382 block. These are the potentially hoistable expressions. */
5383 for (i = 0; i < hoist_vbeout[bb]->n_bits; i++)
5384 {
5385 int hoistable = 0;
5386
5387 if (TEST_BIT (hoist_vbeout[bb], i) && TEST_BIT (transpout[bb], i))
5388 {
5389 /* We've found a potentially hoistable expression, now
5390 we look at every block BB dominates to see if it
5391 computes the expression. */
5392 for (dominated = 0; dominated < n_basic_blocks; dominated++)
5393 {
5394 /* Ignore self dominance. */
5395 if (bb == dominated
5396 || ! TEST_BIT (dominators[dominated], bb))
5397 continue;
5398
5399 /* We've found a dominated block, now see if it computes
5400 the busy expression and whether or not moving that
5401 expression to the "beginning" of that block is safe. */
5402 if (!TEST_BIT (antloc[dominated], i))
5403 continue;
5404
5405 /* Note if the expression would reach the dominated block
5406 unimpared if it was placed at the end of BB.
5407
5408 Keep track of how many times this expression is hoistable
5409 from a dominated block into BB. */
5410 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
5411 hoistable++;
5412 }
5413
5414 /* If we found more than one hoistable occurence of this
5415 expression, then note it in the bitmap of expressions to
5416 hoist. It makes no sense to hoist things which are computed
5417 in only one BB, and doing so tends to pessimize register
5418 allocation. One could increase this value to try harder
5419 to avoid any possible code expansion due to register
5420 allocation issues; however experiments have shown that
5421 the vast majority of hoistable expressions are only movable
5422 from two successors, so raising this threshhold is likely
5423 to nullify any benefit we get from code hoisting. */
5424 if (hoistable > 1)
5425 {
5426 SET_BIT (hoist_exprs[bb], i);
5427 found = 1;
5428 }
5429 }
5430 }
5431
5432 /* If we found nothing to hoist, then quit now. */
5433 if (! found)
5434 continue;
5435
5436 /* Loop over all the hoistable expressions. */
5437 for (i = 0; i < hoist_exprs[bb]->n_bits; i++)
5438 {
5439 /* We want to insert the expression into BB only once, so
5440 note when we've inserted it. */
5441 insn_inserted_p = 0;
5442
5443 /* These tests should be the same as the tests above. */
5444 if (TEST_BIT (hoist_vbeout[bb], i))
5445 {
5446 /* We've found a potentially hoistable expression, now
5447 we look at every block BB dominates to see if it
5448 computes the expression. */
5449 for (dominated = 0; dominated < n_basic_blocks; dominated++)
5450 {
5451 /* Ignore self dominance. */
5452 if (bb == dominated
5453 || ! TEST_BIT (dominators[dominated], bb))
5454 continue;
5455
5456 /* We've found a dominated block, now see if it computes
5457 the busy expression and whether or not moving that
5458 expression to the "beginning" of that block is safe. */
5459 if (!TEST_BIT (antloc[dominated], i))
5460 continue;
5461
5462 /* The expression is computed in the dominated block and
5463 it would be safe to compute it at the start of the
5464 dominated block. Now we have to determine if the
5465 expresion would reach the dominated block if it was
5466 placed at the end of BB. */
5467 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
5468 {
5469 struct expr *expr = index_map[i];
5470 struct occr *occr = expr->antic_occr;
5471 rtx insn;
5472 rtx set;
5473
5474 /* Find the right occurence of this expression. */
5475 while (BLOCK_NUM (occr->insn) != dominated && occr)
5476 occr = occr->next;
5477
5478 /* Should never happen. */
5479 if (!occr)
5480 abort ();
5481
5482 insn = occr->insn;
5483
5484 set = single_set (insn);
5485 if (! set)
5486 abort ();
5487
5488 /* Create a pseudo-reg to store the result of reaching
5489 expressions into. Get the mode for the new pseudo
5490 from the mode of the original destination pseudo. */
5491 if (expr->reaching_reg == NULL)
5492 expr->reaching_reg
5493 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
5494
5495 /* In theory this should never fail since we're creating
5496 a reg->reg copy.
5497
5498 However, on the x86 some of the movXX patterns
5499 actually contain clobbers of scratch regs. This may
5500 cause the insn created by validate_change to not
5501 match any pattern and thus cause validate_change to
5502 fail. */
5503 if (validate_change (insn, &SET_SRC (set),
5504 expr->reaching_reg, 0))
5505 {
5506 occr->deleted_p = 1;
5507 if (!insn_inserted_p)
5508 {
5509 insert_insn_end_bb (index_map[i], bb, 0);
5510 insn_inserted_p = 1;
5511 }
5512 }
5513 }
5514 }
5515 }
5516 }
5517 }
5518
5519 free (index_map);
5520 }
5521
5522 /* Top level routine to perform one code hoisting (aka unification) pass
5523
5524 Return non-zero if a change was made. */
5525
5526 static int
5527 one_code_hoisting_pass ()
5528 {
5529 int changed = 0;
5530
5531 alloc_expr_hash_table (max_cuid);
5532 compute_expr_hash_table ();
5533 if (gcse_file)
5534 dump_hash_table (gcse_file, "Code Hosting Expressions", expr_hash_table,
5535 expr_hash_table_size, n_exprs);
5536
5537 if (n_exprs > 0)
5538 {
5539 alloc_code_hoist_mem (n_basic_blocks, n_exprs);
5540 compute_code_hoist_data ();
5541 hoist_code ();
5542 free_code_hoist_mem ();
5543 }
5544
5545 free_expr_hash_table ();
5546
5547 return changed;
5548 }