i386-protos.h (ix86_expand_sse_movcc): New.
[gcc.git] / gcc / gcse.c
1 /* Partial redundancy elimination / Hoisting for RTL.
2 Copyright (C) 1997-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* TODO
21 - reordering of memory allocation and freeing to be more space efficient
22 - calc rough register pressure information and use the info to drive all
23 kinds of code motion (including code hoisting) in a unified way.
24 */
25
26 /* References searched while implementing this.
27
28 Compilers Principles, Techniques and Tools
29 Aho, Sethi, Ullman
30 Addison-Wesley, 1988
31
32 Global Optimization by Suppression of Partial Redundancies
33 E. Morel, C. Renvoise
34 communications of the acm, Vol. 22, Num. 2, Feb. 1979
35
36 A Portable Machine-Independent Global Optimizer - Design and Measurements
37 Frederick Chow
38 Stanford Ph.D. thesis, Dec. 1983
39
40 A Fast Algorithm for Code Movement Optimization
41 D.M. Dhamdhere
42 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
43
44 A Solution to a Problem with Morel and Renvoise's
45 Global Optimization by Suppression of Partial Redundancies
46 K-H Drechsler, M.P. Stadel
47 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
48
49 Practical Adaptation of the Global Optimization
50 Algorithm of Morel and Renvoise
51 D.M. Dhamdhere
52 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
53
54 Efficiently Computing Static Single Assignment Form and the Control
55 Dependence Graph
56 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
58
59 Lazy Code Motion
60 J. Knoop, O. Ruthing, B. Steffen
61 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
62
63 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
64 Time for Reducible Flow Control
65 Thomas Ball
66 ACM Letters on Programming Languages and Systems,
67 Vol. 2, Num. 1-4, Mar-Dec 1993
68
69 An Efficient Representation for Sparse Sets
70 Preston Briggs, Linda Torczon
71 ACM Letters on Programming Languages and Systems,
72 Vol. 2, Num. 1-4, Mar-Dec 1993
73
74 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75 K-H Drechsler, M.P. Stadel
76 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
77
78 Partial Dead Code Elimination
79 J. Knoop, O. Ruthing, B. Steffen
80 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
81
82 Effective Partial Redundancy Elimination
83 P. Briggs, K.D. Cooper
84 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
85
86 The Program Structure Tree: Computing Control Regions in Linear Time
87 R. Johnson, D. Pearson, K. Pingali
88 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
89
90 Optimal Code Motion: Theory and Practice
91 J. Knoop, O. Ruthing, B. Steffen
92 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
93
94 The power of assignment motion
95 J. Knoop, O. Ruthing, B. Steffen
96 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
97
98 Global code motion / global value numbering
99 C. Click
100 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
101
102 Value Driven Redundancy Elimination
103 L.T. Simpson
104 Rice University Ph.D. thesis, Apr. 1996
105
106 Value Numbering
107 L.T. Simpson
108 Massively Scalar Compiler Project, Rice University, Sep. 1996
109
110 High Performance Compilers for Parallel Computing
111 Michael Wolfe
112 Addison-Wesley, 1996
113
114 Advanced Compiler Design and Implementation
115 Steven Muchnick
116 Morgan Kaufmann, 1997
117
118 Building an Optimizing Compiler
119 Robert Morgan
120 Digital Press, 1998
121
122 People wishing to speed up the code here should read:
123 Elimination Algorithms for Data Flow Analysis
124 B.G. Ryder, M.C. Paull
125 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
126
127 How to Analyze Large Programs Efficiently and Informatively
128 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
130
131 People wishing to do something different can find various possibilities
132 in the above papers and elsewhere.
133 */
134
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "backend.h"
139 #include "target.h"
140 #include "rtl.h"
141 #include "tree.h"
142 #include "predict.h"
143 #include "df.h"
144 #include "tm_p.h"
145 #include "insn-config.h"
146 #include "regs.h"
147 #include "ira.h"
148 #include "recog.h"
149 #include "diagnostic-core.h"
150 #include "cfgrtl.h"
151 #include "cfganal.h"
152 #include "lcm.h"
153 #include "cfgcleanup.h"
154 #include "expr.h"
155 #include "params.h"
156 #include "intl.h"
157 #include "tree-pass.h"
158 #include "dbgcnt.h"
159 #include "gcse.h"
160 #include "gcse-common.h"
161
162 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
163 are a superset of those done by classic GCSE.
164
165 Two passes of copy/constant propagation are done around PRE or hoisting
166 because the first one enables more GCSE and the second one helps to clean
167 up the copies that PRE and HOIST create. This is needed more for PRE than
168 for HOIST because code hoisting will try to use an existing register
169 containing the common subexpression rather than create a new one. This is
170 harder to do for PRE because of the code motion (which HOIST doesn't do).
171
172 Expressions we are interested in GCSE-ing are of the form
173 (set (pseudo-reg) (expression)).
174 Function want_to_gcse_p says what these are.
175
176 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
177 This allows PRE to hoist expressions that are expressed in multiple insns,
178 such as complex address calculations (e.g. for PIC code, or loads with a
179 high part and a low part).
180
181 PRE handles moving invariant expressions out of loops (by treating them as
182 partially redundant).
183
184 **********************
185
186 We used to support multiple passes but there are diminishing returns in
187 doing so. The first pass usually makes 90% of the changes that are doable.
188 A second pass can make a few more changes made possible by the first pass.
189 Experiments show any further passes don't make enough changes to justify
190 the expense.
191
192 A study of spec92 using an unlimited number of passes:
193 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
194 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
195 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
196
197 It was found doing copy propagation between each pass enables further
198 substitutions.
199
200 This study was done before expressions in REG_EQUAL notes were added as
201 candidate expressions for optimization, and before the GIMPLE optimizers
202 were added. Probably, multiple passes is even less efficient now than
203 at the time when the study was conducted.
204
205 PRE is quite expensive in complicated functions because the DFA can take
206 a while to converge. Hence we only perform one pass.
207
208 **********************
209
210 The steps for PRE are:
211
212 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
213
214 2) Perform the data flow analysis for PRE.
215
216 3) Delete the redundant instructions
217
218 4) Insert the required copies [if any] that make the partially
219 redundant instructions fully redundant.
220
221 5) For other reaching expressions, insert an instruction to copy the value
222 to a newly created pseudo that will reach the redundant instruction.
223
224 The deletion is done first so that when we do insertions we
225 know which pseudo reg to use.
226
227 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
228 argue it is not. The number of iterations for the algorithm to converge
229 is typically 2-4 so I don't view it as that expensive (relatively speaking).
230
231 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
232 we create. To make an expression reach the place where it's redundant,
233 the result of the expression is copied to a new register, and the redundant
234 expression is deleted by replacing it with this new register. Classic GCSE
235 doesn't have this problem as much as it computes the reaching defs of
236 each register in each block and thus can try to use an existing
237 register. */
238 \f
239 /* GCSE global vars. */
240
241 struct target_gcse default_target_gcse;
242 #if SWITCHABLE_TARGET
243 struct target_gcse *this_target_gcse = &default_target_gcse;
244 #endif
245
246 /* Set to non-zero if CSE should run after all GCSE optimizations are done. */
247 int flag_rerun_cse_after_global_opts;
248
249 /* An obstack for our working variables. */
250 static struct obstack gcse_obstack;
251
252 /* Hash table of expressions. */
253
254 struct gcse_expr
255 {
256 /* The expression. */
257 rtx expr;
258 /* Index in the available expression bitmaps. */
259 int bitmap_index;
260 /* Next entry with the same hash. */
261 struct gcse_expr *next_same_hash;
262 /* List of anticipatable occurrences in basic blocks in the function.
263 An "anticipatable occurrence" is one that is the first occurrence in the
264 basic block, the operands are not modified in the basic block prior
265 to the occurrence and the output is not used between the start of
266 the block and the occurrence. */
267 struct gcse_occr *antic_occr;
268 /* List of available occurrence in basic blocks in the function.
269 An "available occurrence" is one that is the last occurrence in the
270 basic block and the operands are not modified by following statements in
271 the basic block [including this insn]. */
272 struct gcse_occr *avail_occr;
273 /* Non-null if the computation is PRE redundant.
274 The value is the newly created pseudo-reg to record a copy of the
275 expression in all the places that reach the redundant copy. */
276 rtx reaching_reg;
277 /* Maximum distance in instructions this expression can travel.
278 We avoid moving simple expressions for more than a few instructions
279 to keep register pressure under control.
280 A value of "0" removes restrictions on how far the expression can
281 travel. */
282 int max_distance;
283 };
284
285 /* Occurrence of an expression.
286 There is one per basic block. If a pattern appears more than once the
287 last appearance is used [or first for anticipatable expressions]. */
288
289 struct gcse_occr
290 {
291 /* Next occurrence of this expression. */
292 struct gcse_occr *next;
293 /* The insn that computes the expression. */
294 rtx_insn *insn;
295 /* Nonzero if this [anticipatable] occurrence has been deleted. */
296 char deleted_p;
297 /* Nonzero if this [available] occurrence has been copied to
298 reaching_reg. */
299 /* ??? This is mutually exclusive with deleted_p, so they could share
300 the same byte. */
301 char copied_p;
302 };
303
304 typedef struct gcse_occr *occr_t;
305
306 /* Expression hash tables.
307 Each hash table is an array of buckets.
308 ??? It is known that if it were an array of entries, structure elements
309 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
310 not clear whether in the final analysis a sufficient amount of memory would
311 be saved as the size of the available expression bitmaps would be larger
312 [one could build a mapping table without holes afterwards though].
313 Someday I'll perform the computation and figure it out. */
314
315 struct gcse_hash_table_d
316 {
317 /* The table itself.
318 This is an array of `expr_hash_table_size' elements. */
319 struct gcse_expr **table;
320
321 /* Size of the hash table, in elements. */
322 unsigned int size;
323
324 /* Number of hash table elements. */
325 unsigned int n_elems;
326 };
327
328 /* Expression hash table. */
329 static struct gcse_hash_table_d expr_hash_table;
330
331 /* This is a list of expressions which are MEMs and will be used by load
332 or store motion.
333 Load motion tracks MEMs which aren't killed by anything except itself,
334 i.e. loads and stores to a single location.
335 We can then allow movement of these MEM refs with a little special
336 allowance. (all stores copy the same value to the reaching reg used
337 for the loads). This means all values used to store into memory must have
338 no side effects so we can re-issue the setter value. */
339
340 struct ls_expr
341 {
342 struct gcse_expr * expr; /* Gcse expression reference for LM. */
343 rtx pattern; /* Pattern of this mem. */
344 rtx pattern_regs; /* List of registers mentioned by the mem. */
345 rtx_insn_list *loads; /* INSN list of loads seen. */
346 rtx_insn_list *stores; /* INSN list of stores seen. */
347 struct ls_expr * next; /* Next in the list. */
348 int invalid; /* Invalid for some reason. */
349 int index; /* If it maps to a bitmap index. */
350 unsigned int hash_index; /* Index when in a hash table. */
351 rtx reaching_reg; /* Register to use when re-writing. */
352 };
353
354 /* Head of the list of load/store memory refs. */
355 static struct ls_expr * pre_ldst_mems = NULL;
356
357 struct pre_ldst_expr_hasher : nofree_ptr_hash <ls_expr>
358 {
359 typedef value_type compare_type;
360 static inline hashval_t hash (const ls_expr *);
361 static inline bool equal (const ls_expr *, const ls_expr *);
362 };
363
364 /* Hashtable helpers. */
365 inline hashval_t
366 pre_ldst_expr_hasher::hash (const ls_expr *x)
367 {
368 int do_not_record_p = 0;
369 return
370 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
371 }
372
373 static int expr_equiv_p (const_rtx, const_rtx);
374
375 inline bool
376 pre_ldst_expr_hasher::equal (const ls_expr *ptr1,
377 const ls_expr *ptr2)
378 {
379 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
380 }
381
382 /* Hashtable for the load/store memory refs. */
383 static hash_table<pre_ldst_expr_hasher> *pre_ldst_table;
384
385 /* Bitmap containing one bit for each register in the program.
386 Used when performing GCSE to track which registers have been set since
387 the start of the basic block. */
388 static regset reg_set_bitmap;
389
390 /* Array, indexed by basic block number for a list of insns which modify
391 memory within that block. */
392 static vec<rtx_insn *> *modify_mem_list;
393 static bitmap modify_mem_list_set;
394
395 /* This array parallels modify_mem_list, except that it stores MEMs
396 being set and their canonicalized memory addresses. */
397 static vec<modify_pair> *canon_modify_mem_list;
398
399 /* Bitmap indexed by block numbers to record which blocks contain
400 function calls. */
401 static bitmap blocks_with_calls;
402
403 /* Various variables for statistics gathering. */
404
405 /* Memory used in a pass.
406 This isn't intended to be absolutely precise. Its intent is only
407 to keep an eye on memory usage. */
408 static int bytes_used;
409
410 /* GCSE substitutions made. */
411 static int gcse_subst_count;
412 /* Number of copy instructions created. */
413 static int gcse_create_count;
414 \f
415 /* Doing code hoisting. */
416 static bool doing_code_hoisting_p = false;
417 \f
418 /* For available exprs */
419 static sbitmap *ae_kill;
420 \f
421 /* Data stored for each basic block. */
422 struct bb_data
423 {
424 /* Maximal register pressure inside basic block for given register class
425 (defined only for the pressure classes). */
426 int max_reg_pressure[N_REG_CLASSES];
427 /* Recorded register pressure of basic block before trying to hoist
428 an expression. Will be used to restore the register pressure
429 if the expression should not be hoisted. */
430 int old_pressure;
431 /* Recorded register live_in info of basic block during code hoisting
432 process. BACKUP is used to record live_in info before trying to
433 hoist an expression, and will be used to restore LIVE_IN if the
434 expression should not be hoisted. */
435 bitmap live_in, backup;
436 };
437
438 #define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
439
440 static basic_block curr_bb;
441
442 /* Current register pressure for each pressure class. */
443 static int curr_reg_pressure[N_REG_CLASSES];
444 \f
445
446 static void compute_can_copy (void);
447 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
448 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
449 static void *gcse_alloc (unsigned long);
450 static void alloc_gcse_mem (void);
451 static void free_gcse_mem (void);
452 static void hash_scan_insn (rtx_insn *, struct gcse_hash_table_d *);
453 static void hash_scan_set (rtx, rtx_insn *, struct gcse_hash_table_d *);
454 static void hash_scan_clobber (rtx, rtx_insn *, struct gcse_hash_table_d *);
455 static void hash_scan_call (rtx, rtx_insn *, struct gcse_hash_table_d *);
456 static int oprs_unchanged_p (const_rtx, const rtx_insn *, int);
457 static int oprs_anticipatable_p (const_rtx, const rtx_insn *);
458 static int oprs_available_p (const_rtx, const rtx_insn *);
459 static void insert_expr_in_table (rtx, machine_mode, rtx_insn *, int, int,
460 int, struct gcse_hash_table_d *);
461 static unsigned int hash_expr (const_rtx, machine_mode, int *, int);
462 static void record_last_reg_set_info (rtx_insn *, int);
463 static void record_last_mem_set_info (rtx_insn *);
464 static void record_last_set_info (rtx, const_rtx, void *);
465 static void compute_hash_table (struct gcse_hash_table_d *);
466 static void alloc_hash_table (struct gcse_hash_table_d *);
467 static void free_hash_table (struct gcse_hash_table_d *);
468 static void compute_hash_table_work (struct gcse_hash_table_d *);
469 static void dump_hash_table (FILE *, const char *, struct gcse_hash_table_d *);
470 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
471 struct gcse_hash_table_d *);
472 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
473 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
474 static void alloc_pre_mem (int, int);
475 static void free_pre_mem (void);
476 static struct edge_list *compute_pre_data (void);
477 static int pre_expr_reaches_here_p (basic_block, struct gcse_expr *,
478 basic_block);
479 static void insert_insn_end_basic_block (struct gcse_expr *, basic_block);
480 static void pre_insert_copy_insn (struct gcse_expr *, rtx_insn *);
481 static void pre_insert_copies (void);
482 static int pre_delete (void);
483 static int pre_gcse (struct edge_list *);
484 static int one_pre_gcse_pass (void);
485 static void add_label_notes (rtx, rtx_insn *);
486 static void alloc_code_hoist_mem (int, int);
487 static void free_code_hoist_mem (void);
488 static void compute_code_hoist_vbeinout (void);
489 static void compute_code_hoist_data (void);
490 static int should_hoist_expr_to_dom (basic_block, struct gcse_expr *, basic_block,
491 sbitmap, int, int *, enum reg_class,
492 int *, bitmap, rtx_insn *);
493 static int hoist_code (void);
494 static enum reg_class get_regno_pressure_class (int regno, int *nregs);
495 static enum reg_class get_pressure_class_and_nregs (rtx_insn *insn, int *nregs);
496 static int one_code_hoisting_pass (void);
497 static rtx_insn *process_insert_insn (struct gcse_expr *);
498 static int pre_edge_insert (struct edge_list *, struct gcse_expr **);
499 static int pre_expr_reaches_here_p_work (basic_block, struct gcse_expr *,
500 basic_block, char *);
501 static struct ls_expr * ldst_entry (rtx);
502 static void free_ldst_entry (struct ls_expr *);
503 static void free_ld_motion_mems (void);
504 static void print_ldst_list (FILE *);
505 static struct ls_expr * find_rtx_in_ldst (rtx);
506 static int simple_mem (const_rtx);
507 static void invalidate_any_buried_refs (rtx);
508 static void compute_ld_motion_mems (void);
509 static void trim_ld_motion_mems (void);
510 static void update_ld_motion_stores (struct gcse_expr *);
511 static void clear_modify_mem_tables (void);
512 static void free_modify_mem_tables (void);
513 static bool is_too_expensive (const char *);
514
515 #define GNEW(T) ((T *) gmalloc (sizeof (T)))
516 #define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
517
518 #define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
519 #define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
520
521 #define GNEWVAR(T, S) ((T *) gmalloc ((S)))
522 #define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
523
524 #define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
525 #define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
526 \f
527 /* Misc. utilities. */
528
529 #define can_copy \
530 (this_target_gcse->x_can_copy)
531 #define can_copy_init_p \
532 (this_target_gcse->x_can_copy_init_p)
533
534 /* Compute which modes support reg/reg copy operations. */
535
536 static void
537 compute_can_copy (void)
538 {
539 int i;
540 #ifndef AVOID_CCMODE_COPIES
541 rtx reg;
542 rtx_insn *insn;
543 #endif
544 memset (can_copy, 0, NUM_MACHINE_MODES);
545
546 start_sequence ();
547 for (i = 0; i < NUM_MACHINE_MODES; i++)
548 if (GET_MODE_CLASS (i) == MODE_CC)
549 {
550 #ifdef AVOID_CCMODE_COPIES
551 can_copy[i] = 0;
552 #else
553 reg = gen_rtx_REG ((machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
554 insn = emit_insn (gen_rtx_SET (reg, reg));
555 if (recog (PATTERN (insn), insn, NULL) >= 0)
556 can_copy[i] = 1;
557 #endif
558 }
559 else
560 can_copy[i] = 1;
561
562 end_sequence ();
563 }
564
565 /* Returns whether the mode supports reg/reg copy operations. */
566
567 bool
568 can_copy_p (machine_mode mode)
569 {
570 if (! can_copy_init_p)
571 {
572 compute_can_copy ();
573 can_copy_init_p = true;
574 }
575
576 return can_copy[mode] != 0;
577 }
578 \f
579 /* Cover function to xmalloc to record bytes allocated. */
580
581 static void *
582 gmalloc (size_t size)
583 {
584 bytes_used += size;
585 return xmalloc (size);
586 }
587
588 /* Cover function to xcalloc to record bytes allocated. */
589
590 static void *
591 gcalloc (size_t nelem, size_t elsize)
592 {
593 bytes_used += nelem * elsize;
594 return xcalloc (nelem, elsize);
595 }
596
597 /* Cover function to obstack_alloc. */
598
599 static void *
600 gcse_alloc (unsigned long size)
601 {
602 bytes_used += size;
603 return obstack_alloc (&gcse_obstack, size);
604 }
605
606 /* Allocate memory for the reg/memory set tracking tables.
607 This is called at the start of each pass. */
608
609 static void
610 alloc_gcse_mem (void)
611 {
612 /* Allocate vars to track sets of regs. */
613 reg_set_bitmap = ALLOC_REG_SET (NULL);
614
615 /* Allocate array to keep a list of insns which modify memory in each
616 basic block. The two typedefs are needed to work around the
617 pre-processor limitation with template types in macro arguments. */
618 typedef vec<rtx_insn *> vec_rtx_heap;
619 typedef vec<modify_pair> vec_modify_pair_heap;
620 modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block_for_fn (cfun));
621 canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap,
622 last_basic_block_for_fn (cfun));
623 modify_mem_list_set = BITMAP_ALLOC (NULL);
624 blocks_with_calls = BITMAP_ALLOC (NULL);
625 }
626
627 /* Free memory allocated by alloc_gcse_mem. */
628
629 static void
630 free_gcse_mem (void)
631 {
632 FREE_REG_SET (reg_set_bitmap);
633
634 free_modify_mem_tables ();
635 BITMAP_FREE (modify_mem_list_set);
636 BITMAP_FREE (blocks_with_calls);
637 }
638 \f
639 /* Compute the local properties of each recorded expression.
640
641 Local properties are those that are defined by the block, irrespective of
642 other blocks.
643
644 An expression is transparent in a block if its operands are not modified
645 in the block.
646
647 An expression is computed (locally available) in a block if it is computed
648 at least once and expression would contain the same value if the
649 computation was moved to the end of the block.
650
651 An expression is locally anticipatable in a block if it is computed at
652 least once and expression would contain the same value if the computation
653 was moved to the beginning of the block.
654
655 We call this routine for pre and code hoisting. They all compute
656 basically the same information and thus can easily share this code.
657
658 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
659 properties. If NULL, then it is not necessary to compute or record that
660 particular property.
661
662 TABLE controls which hash table to look at. */
663
664 static void
665 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
666 struct gcse_hash_table_d *table)
667 {
668 unsigned int i;
669
670 /* Initialize any bitmaps that were passed in. */
671 if (transp)
672 {
673 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
674 }
675
676 if (comp)
677 bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
678 if (antloc)
679 bitmap_vector_clear (antloc, last_basic_block_for_fn (cfun));
680
681 for (i = 0; i < table->size; i++)
682 {
683 struct gcse_expr *expr;
684
685 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
686 {
687 int indx = expr->bitmap_index;
688 struct gcse_occr *occr;
689
690 /* The expression is transparent in this block if it is not killed.
691 We start by assuming all are transparent [none are killed], and
692 then reset the bits for those that are. */
693 if (transp)
694 compute_transp (expr->expr, indx, transp,
695 blocks_with_calls,
696 modify_mem_list_set,
697 canon_modify_mem_list);
698
699 /* The occurrences recorded in antic_occr are exactly those that
700 we want to set to nonzero in ANTLOC. */
701 if (antloc)
702 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
703 {
704 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
705
706 /* While we're scanning the table, this is a good place to
707 initialize this. */
708 occr->deleted_p = 0;
709 }
710
711 /* The occurrences recorded in avail_occr are exactly those that
712 we want to set to nonzero in COMP. */
713 if (comp)
714 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
715 {
716 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
717
718 /* While we're scanning the table, this is a good place to
719 initialize this. */
720 occr->copied_p = 0;
721 }
722
723 /* While we're scanning the table, this is a good place to
724 initialize this. */
725 expr->reaching_reg = 0;
726 }
727 }
728 }
729 \f
730 /* Hash table support. */
731
732 struct reg_avail_info
733 {
734 basic_block last_bb;
735 int first_set;
736 int last_set;
737 };
738
739 static struct reg_avail_info *reg_avail_info;
740 static basic_block current_bb;
741
742 /* See whether X, the source of a set, is something we want to consider for
743 GCSE. */
744
745 static int
746 want_to_gcse_p (rtx x, machine_mode mode, int *max_distance_ptr)
747 {
748 #ifdef STACK_REGS
749 /* On register stack architectures, don't GCSE constants from the
750 constant pool, as the benefits are often swamped by the overhead
751 of shuffling the register stack between basic blocks. */
752 if (IS_STACK_MODE (GET_MODE (x)))
753 x = avoid_constant_pool_reference (x);
754 #endif
755
756 /* GCSE'ing constants:
757
758 We do not specifically distinguish between constant and non-constant
759 expressions in PRE and Hoist. We use set_src_cost below to limit
760 the maximum distance simple expressions can travel.
761
762 Nevertheless, constants are much easier to GCSE, and, hence,
763 it is easy to overdo the optimizations. Usually, excessive PRE and
764 Hoisting of constant leads to increased register pressure.
765
766 RA can deal with this by rematerialing some of the constants.
767 Therefore, it is important that the back-end generates sets of constants
768 in a way that allows reload rematerialize them under high register
769 pressure, i.e., a pseudo register with REG_EQUAL to constant
770 is set only once. Failing to do so will result in IRA/reload
771 spilling such constants under high register pressure instead of
772 rematerializing them. */
773
774 switch (GET_CODE (x))
775 {
776 case REG:
777 case SUBREG:
778 case CALL:
779 return 0;
780
781 CASE_CONST_ANY:
782 if (!doing_code_hoisting_p)
783 /* Do not PRE constants. */
784 return 0;
785
786 /* FALLTHRU */
787
788 default:
789 if (doing_code_hoisting_p)
790 /* PRE doesn't implement max_distance restriction. */
791 {
792 int cost;
793 int max_distance;
794
795 gcc_assert (!optimize_function_for_speed_p (cfun)
796 && optimize_function_for_size_p (cfun));
797 cost = set_src_cost (x, mode, 0);
798
799 if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
800 {
801 max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
802 if (max_distance == 0)
803 return 0;
804
805 gcc_assert (max_distance > 0);
806 }
807 else
808 max_distance = 0;
809
810 if (max_distance_ptr)
811 *max_distance_ptr = max_distance;
812 }
813
814 return can_assign_to_reg_without_clobbers_p (x);
815 }
816 }
817
818 /* Used internally by can_assign_to_reg_without_clobbers_p. */
819
820 static GTY(()) rtx_insn *test_insn;
821
822 /* Return true if we can assign X to a pseudo register such that the
823 resulting insn does not result in clobbering a hard register as a
824 side-effect.
825
826 Additionally, if the target requires it, check that the resulting insn
827 can be copied. If it cannot, this means that X is special and probably
828 has hidden side-effects we don't want to mess with.
829
830 This function is typically used by code motion passes, to verify
831 that it is safe to insert an insn without worrying about clobbering
832 maybe live hard regs. */
833
834 bool
835 can_assign_to_reg_without_clobbers_p (rtx x)
836 {
837 int num_clobbers = 0;
838 int icode;
839 bool can_assign = false;
840
841 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
842 if (general_operand (x, GET_MODE (x)))
843 return 1;
844 else if (GET_MODE (x) == VOIDmode)
845 return 0;
846
847 /* Otherwise, check if we can make a valid insn from it. First initialize
848 our test insn if we haven't already. */
849 if (test_insn == 0)
850 {
851 test_insn
852 = make_insn_raw (gen_rtx_SET (gen_rtx_REG (word_mode,
853 FIRST_PSEUDO_REGISTER * 2),
854 const0_rtx));
855 SET_NEXT_INSN (test_insn) = SET_PREV_INSN (test_insn) = 0;
856 INSN_LOCATION (test_insn) = UNKNOWN_LOCATION;
857 }
858
859 /* Now make an insn like the one we would make when GCSE'ing and see if
860 valid. */
861 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
862 SET_SRC (PATTERN (test_insn)) = x;
863
864 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
865
866 /* If the test insn is valid and doesn't need clobbers, and the target also
867 has no objections, we're good. */
868 if (icode >= 0
869 && (num_clobbers == 0 || !added_clobbers_hard_reg_p (icode))
870 && ! (targetm.cannot_copy_insn_p
871 && targetm.cannot_copy_insn_p (test_insn)))
872 can_assign = true;
873
874 /* Make sure test_insn doesn't have any pointers into GC space. */
875 SET_SRC (PATTERN (test_insn)) = NULL_RTX;
876
877 return can_assign;
878 }
879
880 /* Return nonzero if the operands of expression X are unchanged from the
881 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
882 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
883
884 static int
885 oprs_unchanged_p (const_rtx x, const rtx_insn *insn, int avail_p)
886 {
887 int i, j;
888 enum rtx_code code;
889 const char *fmt;
890
891 if (x == 0)
892 return 1;
893
894 code = GET_CODE (x);
895 switch (code)
896 {
897 case REG:
898 {
899 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
900
901 if (info->last_bb != current_bb)
902 return 1;
903 if (avail_p)
904 return info->last_set < DF_INSN_LUID (insn);
905 else
906 return info->first_set >= DF_INSN_LUID (insn);
907 }
908
909 case MEM:
910 if (! flag_gcse_lm
911 || load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
912 x, avail_p))
913 return 0;
914 else
915 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
916
917 case PRE_DEC:
918 case PRE_INC:
919 case POST_DEC:
920 case POST_INC:
921 case PRE_MODIFY:
922 case POST_MODIFY:
923 return 0;
924
925 case PC:
926 case CC0: /*FIXME*/
927 case CONST:
928 CASE_CONST_ANY:
929 case SYMBOL_REF:
930 case LABEL_REF:
931 case ADDR_VEC:
932 case ADDR_DIFF_VEC:
933 return 1;
934
935 default:
936 break;
937 }
938
939 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
940 {
941 if (fmt[i] == 'e')
942 {
943 /* If we are about to do the last recursive call needed at this
944 level, change it into iteration. This function is called enough
945 to be worth it. */
946 if (i == 0)
947 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
948
949 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
950 return 0;
951 }
952 else if (fmt[i] == 'E')
953 for (j = 0; j < XVECLEN (x, i); j++)
954 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
955 return 0;
956 }
957
958 return 1;
959 }
960
961 /* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
962
963 struct mem_conflict_info
964 {
965 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
966 see if a memory store conflicts with this memory load. */
967 const_rtx mem;
968
969 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
970 references. */
971 bool conflict;
972 };
973
974 /* DEST is the output of an instruction. If it is a memory reference and
975 possibly conflicts with the load found in DATA, then communicate this
976 information back through DATA. */
977
978 static void
979 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
980 void *data)
981 {
982 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
983
984 while (GET_CODE (dest) == SUBREG
985 || GET_CODE (dest) == ZERO_EXTRACT
986 || GET_CODE (dest) == STRICT_LOW_PART)
987 dest = XEXP (dest, 0);
988
989 /* If DEST is not a MEM, then it will not conflict with the load. Note
990 that function calls are assumed to clobber memory, but are handled
991 elsewhere. */
992 if (! MEM_P (dest))
993 return;
994
995 /* If we are setting a MEM in our list of specially recognized MEMs,
996 don't mark as killed this time. */
997 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
998 {
999 if (!find_rtx_in_ldst (dest))
1000 mci->conflict = true;
1001 return;
1002 }
1003
1004 if (true_dependence (dest, GET_MODE (dest), mci->mem))
1005 mci->conflict = true;
1006 }
1007
1008 /* Return nonzero if the expression in X (a memory reference) is killed
1009 in block BB before or after the insn with the LUID in UID_LIMIT.
1010 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1011 before UID_LIMIT.
1012
1013 To check the entire block, set UID_LIMIT to max_uid + 1 and
1014 AVAIL_P to 0. */
1015
1016 static int
1017 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1018 int avail_p)
1019 {
1020 vec<rtx_insn *> list = modify_mem_list[bb->index];
1021 rtx_insn *setter;
1022 unsigned ix;
1023
1024 /* If this is a readonly then we aren't going to be changing it. */
1025 if (MEM_READONLY_P (x))
1026 return 0;
1027
1028 FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
1029 {
1030 struct mem_conflict_info mci;
1031
1032 /* Ignore entries in the list that do not apply. */
1033 if ((avail_p
1034 && DF_INSN_LUID (setter) < uid_limit)
1035 || (! avail_p
1036 && DF_INSN_LUID (setter) > uid_limit))
1037 continue;
1038
1039 /* If SETTER is a call everything is clobbered. Note that calls
1040 to pure functions are never put on the list, so we need not
1041 worry about them. */
1042 if (CALL_P (setter))
1043 return 1;
1044
1045 /* SETTER must be an INSN of some kind that sets memory. Call
1046 note_stores to examine each hunk of memory that is modified. */
1047 mci.mem = x;
1048 mci.conflict = false;
1049 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1050 if (mci.conflict)
1051 return 1;
1052 }
1053 return 0;
1054 }
1055
1056 /* Return nonzero if the operands of expression X are unchanged from
1057 the start of INSN's basic block up to but not including INSN. */
1058
1059 static int
1060 oprs_anticipatable_p (const_rtx x, const rtx_insn *insn)
1061 {
1062 return oprs_unchanged_p (x, insn, 0);
1063 }
1064
1065 /* Return nonzero if the operands of expression X are unchanged from
1066 INSN to the end of INSN's basic block. */
1067
1068 static int
1069 oprs_available_p (const_rtx x, const rtx_insn *insn)
1070 {
1071 return oprs_unchanged_p (x, insn, 1);
1072 }
1073
1074 /* Hash expression X.
1075
1076 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1077 indicating if a volatile operand is found or if the expression contains
1078 something we don't want to insert in the table. HASH_TABLE_SIZE is
1079 the current size of the hash table to be probed. */
1080
1081 static unsigned int
1082 hash_expr (const_rtx x, machine_mode mode, int *do_not_record_p,
1083 int hash_table_size)
1084 {
1085 unsigned int hash;
1086
1087 *do_not_record_p = 0;
1088
1089 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
1090 return hash % hash_table_size;
1091 }
1092
1093 /* Return nonzero if exp1 is equivalent to exp2. */
1094
1095 static int
1096 expr_equiv_p (const_rtx x, const_rtx y)
1097 {
1098 return exp_equiv_p (x, y, 0, true);
1099 }
1100
1101 /* Insert expression X in INSN in the hash TABLE.
1102 If it is already present, record it as the last occurrence in INSN's
1103 basic block.
1104
1105 MODE is the mode of the value X is being stored into.
1106 It is only used if X is a CONST_INT.
1107
1108 ANTIC_P is nonzero if X is an anticipatable expression.
1109 AVAIL_P is nonzero if X is an available expression.
1110
1111 MAX_DISTANCE is the maximum distance in instructions this expression can
1112 be moved. */
1113
1114 static void
1115 insert_expr_in_table (rtx x, machine_mode mode, rtx_insn *insn,
1116 int antic_p,
1117 int avail_p, int max_distance, struct gcse_hash_table_d *table)
1118 {
1119 int found, do_not_record_p;
1120 unsigned int hash;
1121 struct gcse_expr *cur_expr, *last_expr = NULL;
1122 struct gcse_occr *antic_occr, *avail_occr;
1123
1124 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1125
1126 /* Do not insert expression in table if it contains volatile operands,
1127 or if hash_expr determines the expression is something we don't want
1128 to or can't handle. */
1129 if (do_not_record_p)
1130 return;
1131
1132 cur_expr = table->table[hash];
1133 found = 0;
1134
1135 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1136 {
1137 /* If the expression isn't found, save a pointer to the end of
1138 the list. */
1139 last_expr = cur_expr;
1140 cur_expr = cur_expr->next_same_hash;
1141 }
1142
1143 if (! found)
1144 {
1145 cur_expr = GOBNEW (struct gcse_expr);
1146 bytes_used += sizeof (struct gcse_expr);
1147 if (table->table[hash] == NULL)
1148 /* This is the first pattern that hashed to this index. */
1149 table->table[hash] = cur_expr;
1150 else
1151 /* Add EXPR to end of this hash chain. */
1152 last_expr->next_same_hash = cur_expr;
1153
1154 /* Set the fields of the expr element. */
1155 cur_expr->expr = x;
1156 cur_expr->bitmap_index = table->n_elems++;
1157 cur_expr->next_same_hash = NULL;
1158 cur_expr->antic_occr = NULL;
1159 cur_expr->avail_occr = NULL;
1160 gcc_assert (max_distance >= 0);
1161 cur_expr->max_distance = max_distance;
1162 }
1163 else
1164 gcc_assert (cur_expr->max_distance == max_distance);
1165
1166 /* Now record the occurrence(s). */
1167 if (antic_p)
1168 {
1169 antic_occr = cur_expr->antic_occr;
1170
1171 if (antic_occr
1172 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
1173 antic_occr = NULL;
1174
1175 if (antic_occr)
1176 /* Found another instance of the expression in the same basic block.
1177 Prefer the currently recorded one. We want the first one in the
1178 block and the block is scanned from start to end. */
1179 ; /* nothing to do */
1180 else
1181 {
1182 /* First occurrence of this expression in this basic block. */
1183 antic_occr = GOBNEW (struct gcse_occr);
1184 bytes_used += sizeof (struct gcse_occr);
1185 antic_occr->insn = insn;
1186 antic_occr->next = cur_expr->antic_occr;
1187 antic_occr->deleted_p = 0;
1188 cur_expr->antic_occr = antic_occr;
1189 }
1190 }
1191
1192 if (avail_p)
1193 {
1194 avail_occr = cur_expr->avail_occr;
1195
1196 if (avail_occr
1197 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
1198 {
1199 /* Found another instance of the expression in the same basic block.
1200 Prefer this occurrence to the currently recorded one. We want
1201 the last one in the block and the block is scanned from start
1202 to end. */
1203 avail_occr->insn = insn;
1204 }
1205 else
1206 {
1207 /* First occurrence of this expression in this basic block. */
1208 avail_occr = GOBNEW (struct gcse_occr);
1209 bytes_used += sizeof (struct gcse_occr);
1210 avail_occr->insn = insn;
1211 avail_occr->next = cur_expr->avail_occr;
1212 avail_occr->deleted_p = 0;
1213 cur_expr->avail_occr = avail_occr;
1214 }
1215 }
1216 }
1217
1218 /* Scan SET present in INSN and add an entry to the hash TABLE. */
1219
1220 static void
1221 hash_scan_set (rtx set, rtx_insn *insn, struct gcse_hash_table_d *table)
1222 {
1223 rtx src = SET_SRC (set);
1224 rtx dest = SET_DEST (set);
1225 rtx note;
1226
1227 if (GET_CODE (src) == CALL)
1228 hash_scan_call (src, insn, table);
1229
1230 else if (REG_P (dest))
1231 {
1232 unsigned int regno = REGNO (dest);
1233 int max_distance = 0;
1234
1235 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1236
1237 This allows us to do a single GCSE pass and still eliminate
1238 redundant constants, addresses or other expressions that are
1239 constructed with multiple instructions.
1240
1241 However, keep the original SRC if INSN is a simple reg-reg move.
1242 In this case, there will almost always be a REG_EQUAL note on the
1243 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1244 for INSN, we miss copy propagation opportunities and we perform the
1245 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1246 do more than one PRE GCSE pass.
1247
1248 Note that this does not impede profitable constant propagations. We
1249 "look through" reg-reg sets in lookup_avail_set. */
1250 note = find_reg_equal_equiv_note (insn);
1251 if (note != 0
1252 && REG_NOTE_KIND (note) == REG_EQUAL
1253 && !REG_P (src)
1254 && want_to_gcse_p (XEXP (note, 0), GET_MODE (dest), NULL))
1255 src = XEXP (note, 0), set = gen_rtx_SET (dest, src);
1256
1257 /* Only record sets of pseudo-regs in the hash table. */
1258 if (regno >= FIRST_PSEUDO_REGISTER
1259 /* Don't GCSE something if we can't do a reg/reg copy. */
1260 && can_copy_p (GET_MODE (dest))
1261 /* GCSE commonly inserts instruction after the insn. We can't
1262 do that easily for EH edges so disable GCSE on these for now. */
1263 /* ??? We can now easily create new EH landing pads at the
1264 gimple level, for splitting edges; there's no reason we
1265 can't do the same thing at the rtl level. */
1266 && !can_throw_internal (insn)
1267 /* Is SET_SRC something we want to gcse? */
1268 && want_to_gcse_p (src, GET_MODE (dest), &max_distance)
1269 /* Don't CSE a nop. */
1270 && ! set_noop_p (set)
1271 /* Don't GCSE if it has attached REG_EQUIV note.
1272 At this point this only function parameters should have
1273 REG_EQUIV notes and if the argument slot is used somewhere
1274 explicitly, it means address of parameter has been taken,
1275 so we should not extend the lifetime of the pseudo. */
1276 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1277 {
1278 /* An expression is not anticipatable if its operands are
1279 modified before this insn or if this is not the only SET in
1280 this insn. The latter condition does not have to mean that
1281 SRC itself is not anticipatable, but we just will not be
1282 able to handle code motion of insns with multiple sets. */
1283 int antic_p = oprs_anticipatable_p (src, insn)
1284 && !multiple_sets (insn);
1285 /* An expression is not available if its operands are
1286 subsequently modified, including this insn. It's also not
1287 available if this is a branch, because we can't insert
1288 a set after the branch. */
1289 int avail_p = (oprs_available_p (src, insn)
1290 && ! JUMP_P (insn));
1291
1292 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1293 max_distance, table);
1294 }
1295 }
1296 /* In case of store we want to consider the memory value as available in
1297 the REG stored in that memory. This makes it possible to remove
1298 redundant loads from due to stores to the same location. */
1299 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1300 {
1301 unsigned int regno = REGNO (src);
1302 int max_distance = 0;
1303
1304 /* Only record sets of pseudo-regs in the hash table. */
1305 if (regno >= FIRST_PSEUDO_REGISTER
1306 /* Don't GCSE something if we can't do a reg/reg copy. */
1307 && can_copy_p (GET_MODE (src))
1308 /* GCSE commonly inserts instruction after the insn. We can't
1309 do that easily for EH edges so disable GCSE on these for now. */
1310 && !can_throw_internal (insn)
1311 /* Is SET_DEST something we want to gcse? */
1312 && want_to_gcse_p (dest, GET_MODE (dest), &max_distance)
1313 /* Don't CSE a nop. */
1314 && ! set_noop_p (set)
1315 /* Don't GCSE if it has attached REG_EQUIV note.
1316 At this point this only function parameters should have
1317 REG_EQUIV notes and if the argument slot is used somewhere
1318 explicitly, it means address of parameter has been taken,
1319 so we should not extend the lifetime of the pseudo. */
1320 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1321 || ! MEM_P (XEXP (note, 0))))
1322 {
1323 /* Stores are never anticipatable. */
1324 int antic_p = 0;
1325 /* An expression is not available if its operands are
1326 subsequently modified, including this insn. It's also not
1327 available if this is a branch, because we can't insert
1328 a set after the branch. */
1329 int avail_p = oprs_available_p (dest, insn) && ! JUMP_P (insn);
1330
1331 /* Record the memory expression (DEST) in the hash table. */
1332 insert_expr_in_table (dest, GET_MODE (dest), insn,
1333 antic_p, avail_p, max_distance, table);
1334 }
1335 }
1336 }
1337
1338 static void
1339 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1340 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1341 {
1342 /* Currently nothing to do. */
1343 }
1344
1345 static void
1346 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1347 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1348 {
1349 /* Currently nothing to do. */
1350 }
1351
1352 /* Process INSN and add hash table entries as appropriate. */
1353
1354 static void
1355 hash_scan_insn (rtx_insn *insn, struct gcse_hash_table_d *table)
1356 {
1357 rtx pat = PATTERN (insn);
1358 int i;
1359
1360 /* Pick out the sets of INSN and for other forms of instructions record
1361 what's been modified. */
1362
1363 if (GET_CODE (pat) == SET)
1364 hash_scan_set (pat, insn, table);
1365
1366 else if (GET_CODE (pat) == CLOBBER)
1367 hash_scan_clobber (pat, insn, table);
1368
1369 else if (GET_CODE (pat) == CALL)
1370 hash_scan_call (pat, insn, table);
1371
1372 else if (GET_CODE (pat) == PARALLEL)
1373 for (i = 0; i < XVECLEN (pat, 0); i++)
1374 {
1375 rtx x = XVECEXP (pat, 0, i);
1376
1377 if (GET_CODE (x) == SET)
1378 hash_scan_set (x, insn, table);
1379 else if (GET_CODE (x) == CLOBBER)
1380 hash_scan_clobber (x, insn, table);
1381 else if (GET_CODE (x) == CALL)
1382 hash_scan_call (x, insn, table);
1383 }
1384 }
1385
1386 /* Dump the hash table TABLE to file FILE under the name NAME. */
1387
1388 static void
1389 dump_hash_table (FILE *file, const char *name, struct gcse_hash_table_d *table)
1390 {
1391 int i;
1392 /* Flattened out table, so it's printed in proper order. */
1393 struct gcse_expr **flat_table;
1394 unsigned int *hash_val;
1395 struct gcse_expr *expr;
1396
1397 flat_table = XCNEWVEC (struct gcse_expr *, table->n_elems);
1398 hash_val = XNEWVEC (unsigned int, table->n_elems);
1399
1400 for (i = 0; i < (int) table->size; i++)
1401 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1402 {
1403 flat_table[expr->bitmap_index] = expr;
1404 hash_val[expr->bitmap_index] = i;
1405 }
1406
1407 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1408 name, table->size, table->n_elems);
1409
1410 for (i = 0; i < (int) table->n_elems; i++)
1411 if (flat_table[i] != 0)
1412 {
1413 expr = flat_table[i];
1414 fprintf (file, "Index %d (hash value %d; max distance %d)\n ",
1415 expr->bitmap_index, hash_val[i], expr->max_distance);
1416 print_rtl (file, expr->expr);
1417 fprintf (file, "\n");
1418 }
1419
1420 fprintf (file, "\n");
1421
1422 free (flat_table);
1423 free (hash_val);
1424 }
1425
1426 /* Record register first/last/block set information for REGNO in INSN.
1427
1428 first_set records the first place in the block where the register
1429 is set and is used to compute "anticipatability".
1430
1431 last_set records the last place in the block where the register
1432 is set and is used to compute "availability".
1433
1434 last_bb records the block for which first_set and last_set are
1435 valid, as a quick test to invalidate them. */
1436
1437 static void
1438 record_last_reg_set_info (rtx_insn *insn, int regno)
1439 {
1440 struct reg_avail_info *info = &reg_avail_info[regno];
1441 int luid = DF_INSN_LUID (insn);
1442
1443 info->last_set = luid;
1444 if (info->last_bb != current_bb)
1445 {
1446 info->last_bb = current_bb;
1447 info->first_set = luid;
1448 }
1449 }
1450
1451 /* Record memory modification information for INSN. We do not actually care
1452 about the memory location(s) that are set, or even how they are set (consider
1453 a CALL_INSN). We merely need to record which insns modify memory. */
1454
1455 static void
1456 record_last_mem_set_info (rtx_insn *insn)
1457 {
1458 if (! flag_gcse_lm)
1459 return;
1460
1461 record_last_mem_set_info_common (insn, modify_mem_list,
1462 canon_modify_mem_list,
1463 modify_mem_list_set,
1464 blocks_with_calls);
1465 }
1466
1467 /* Called from compute_hash_table via note_stores to handle one
1468 SET or CLOBBER in an insn. DATA is really the instruction in which
1469 the SET is taking place. */
1470
1471 static void
1472 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1473 {
1474 rtx_insn *last_set_insn = (rtx_insn *) data;
1475
1476 if (GET_CODE (dest) == SUBREG)
1477 dest = SUBREG_REG (dest);
1478
1479 if (REG_P (dest))
1480 record_last_reg_set_info (last_set_insn, REGNO (dest));
1481 else if (MEM_P (dest)
1482 /* Ignore pushes, they clobber nothing. */
1483 && ! push_operand (dest, GET_MODE (dest)))
1484 record_last_mem_set_info (last_set_insn);
1485 }
1486
1487 /* Top level function to create an expression hash table.
1488
1489 Expression entries are placed in the hash table if
1490 - they are of the form (set (pseudo-reg) src),
1491 - src is something we want to perform GCSE on,
1492 - none of the operands are subsequently modified in the block
1493
1494 Currently src must be a pseudo-reg or a const_int.
1495
1496 TABLE is the table computed. */
1497
1498 static void
1499 compute_hash_table_work (struct gcse_hash_table_d *table)
1500 {
1501 int i;
1502
1503 /* re-Cache any INSN_LIST nodes we have allocated. */
1504 clear_modify_mem_tables ();
1505 /* Some working arrays used to track first and last set in each block. */
1506 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
1507
1508 for (i = 0; i < max_reg_num (); ++i)
1509 reg_avail_info[i].last_bb = NULL;
1510
1511 FOR_EACH_BB_FN (current_bb, cfun)
1512 {
1513 rtx_insn *insn;
1514 unsigned int regno;
1515
1516 /* First pass over the instructions records information used to
1517 determine when registers and memory are first and last set. */
1518 FOR_BB_INSNS (current_bb, insn)
1519 {
1520 if (!NONDEBUG_INSN_P (insn))
1521 continue;
1522
1523 if (CALL_P (insn))
1524 {
1525 hard_reg_set_iterator hrsi;
1526 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1527 0, regno, hrsi)
1528 record_last_reg_set_info (insn, regno);
1529
1530 if (! RTL_CONST_OR_PURE_CALL_P (insn))
1531 record_last_mem_set_info (insn);
1532 }
1533
1534 note_stores (PATTERN (insn), record_last_set_info, insn);
1535 }
1536
1537 /* The next pass builds the hash table. */
1538 FOR_BB_INSNS (current_bb, insn)
1539 if (NONDEBUG_INSN_P (insn))
1540 hash_scan_insn (insn, table);
1541 }
1542
1543 free (reg_avail_info);
1544 reg_avail_info = NULL;
1545 }
1546
1547 /* Allocate space for the set/expr hash TABLE.
1548 It is used to determine the number of buckets to use. */
1549
1550 static void
1551 alloc_hash_table (struct gcse_hash_table_d *table)
1552 {
1553 int n;
1554
1555 n = get_max_insn_count ();
1556
1557 table->size = n / 4;
1558 if (table->size < 11)
1559 table->size = 11;
1560
1561 /* Attempt to maintain efficient use of hash table.
1562 Making it an odd number is simplest for now.
1563 ??? Later take some measurements. */
1564 table->size |= 1;
1565 n = table->size * sizeof (struct gcse_expr *);
1566 table->table = GNEWVAR (struct gcse_expr *, n);
1567 }
1568
1569 /* Free things allocated by alloc_hash_table. */
1570
1571 static void
1572 free_hash_table (struct gcse_hash_table_d *table)
1573 {
1574 free (table->table);
1575 }
1576
1577 /* Compute the expression hash table TABLE. */
1578
1579 static void
1580 compute_hash_table (struct gcse_hash_table_d *table)
1581 {
1582 /* Initialize count of number of entries in hash table. */
1583 table->n_elems = 0;
1584 memset (table->table, 0, table->size * sizeof (struct gcse_expr *));
1585
1586 compute_hash_table_work (table);
1587 }
1588 \f
1589 /* Expression tracking support. */
1590
1591 /* Clear canon_modify_mem_list and modify_mem_list tables. */
1592 static void
1593 clear_modify_mem_tables (void)
1594 {
1595 unsigned i;
1596 bitmap_iterator bi;
1597
1598 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
1599 {
1600 modify_mem_list[i].release ();
1601 canon_modify_mem_list[i].release ();
1602 }
1603 bitmap_clear (modify_mem_list_set);
1604 bitmap_clear (blocks_with_calls);
1605 }
1606
1607 /* Release memory used by modify_mem_list_set. */
1608
1609 static void
1610 free_modify_mem_tables (void)
1611 {
1612 clear_modify_mem_tables ();
1613 free (modify_mem_list);
1614 free (canon_modify_mem_list);
1615 modify_mem_list = 0;
1616 canon_modify_mem_list = 0;
1617 }
1618 \f
1619 /* Compute PRE+LCM working variables. */
1620
1621 /* Local properties of expressions. */
1622
1623 /* Nonzero for expressions that are transparent in the block. */
1624 static sbitmap *transp;
1625
1626 /* Nonzero for expressions that are computed (available) in the block. */
1627 static sbitmap *comp;
1628
1629 /* Nonzero for expressions that are locally anticipatable in the block. */
1630 static sbitmap *antloc;
1631
1632 /* Nonzero for expressions where this block is an optimal computation
1633 point. */
1634 static sbitmap *pre_optimal;
1635
1636 /* Nonzero for expressions which are redundant in a particular block. */
1637 static sbitmap *pre_redundant;
1638
1639 /* Nonzero for expressions which should be inserted on a specific edge. */
1640 static sbitmap *pre_insert_map;
1641
1642 /* Nonzero for expressions which should be deleted in a specific block. */
1643 static sbitmap *pre_delete_map;
1644
1645 /* Allocate vars used for PRE analysis. */
1646
1647 static void
1648 alloc_pre_mem (int n_blocks, int n_exprs)
1649 {
1650 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1651 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1652 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
1653
1654 pre_optimal = NULL;
1655 pre_redundant = NULL;
1656 pre_insert_map = NULL;
1657 pre_delete_map = NULL;
1658 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
1659
1660 /* pre_insert and pre_delete are allocated later. */
1661 }
1662
1663 /* Free vars used for PRE analysis. */
1664
1665 static void
1666 free_pre_mem (void)
1667 {
1668 sbitmap_vector_free (transp);
1669 sbitmap_vector_free (comp);
1670
1671 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
1672
1673 if (pre_optimal)
1674 sbitmap_vector_free (pre_optimal);
1675 if (pre_redundant)
1676 sbitmap_vector_free (pre_redundant);
1677 if (pre_insert_map)
1678 sbitmap_vector_free (pre_insert_map);
1679 if (pre_delete_map)
1680 sbitmap_vector_free (pre_delete_map);
1681
1682 transp = comp = NULL;
1683 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
1684 }
1685
1686 /* Remove certain expressions from anticipatable and transparent
1687 sets of basic blocks that have incoming abnormal edge.
1688 For PRE remove potentially trapping expressions to avoid placing
1689 them on abnormal edges. For hoisting remove memory references that
1690 can be clobbered by calls. */
1691
1692 static void
1693 prune_expressions (bool pre_p)
1694 {
1695 sbitmap prune_exprs;
1696 struct gcse_expr *expr;
1697 unsigned int ui;
1698 basic_block bb;
1699
1700 prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
1701 bitmap_clear (prune_exprs);
1702 for (ui = 0; ui < expr_hash_table.size; ui++)
1703 {
1704 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
1705 {
1706 /* Note potentially trapping expressions. */
1707 if (may_trap_p (expr->expr))
1708 {
1709 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1710 continue;
1711 }
1712
1713 if (!pre_p && MEM_P (expr->expr))
1714 /* Note memory references that can be clobbered by a call.
1715 We do not split abnormal edges in hoisting, so would
1716 a memory reference get hoisted along an abnormal edge,
1717 it would be placed /before/ the call. Therefore, only
1718 constant memory references can be hoisted along abnormal
1719 edges. */
1720 {
1721 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
1722 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
1723 continue;
1724
1725 if (MEM_READONLY_P (expr->expr)
1726 && !MEM_VOLATILE_P (expr->expr)
1727 && MEM_NOTRAP_P (expr->expr))
1728 /* Constant memory reference, e.g., a PIC address. */
1729 continue;
1730
1731 /* ??? Optimally, we would use interprocedural alias
1732 analysis to determine if this mem is actually killed
1733 by this call. */
1734
1735 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1736 }
1737 }
1738 }
1739
1740 FOR_EACH_BB_FN (bb, cfun)
1741 {
1742 edge e;
1743 edge_iterator ei;
1744
1745 /* If the current block is the destination of an abnormal edge, we
1746 kill all trapping (for PRE) and memory (for hoist) expressions
1747 because we won't be able to properly place the instruction on
1748 the edge. So make them neither anticipatable nor transparent.
1749 This is fairly conservative.
1750
1751 ??? For hoisting it may be necessary to check for set-and-jump
1752 instructions here, not just for abnormal edges. The general problem
1753 is that when an expression cannot not be placed right at the end of
1754 a basic block we should account for any side-effects of a subsequent
1755 jump instructions that could clobber the expression. It would
1756 be best to implement this check along the lines of
1757 should_hoist_expr_to_dom where the target block is already known
1758 and, hence, there's no need to conservatively prune expressions on
1759 "intermediate" set-and-jump instructions. */
1760 FOR_EACH_EDGE (e, ei, bb->preds)
1761 if ((e->flags & EDGE_ABNORMAL)
1762 && (pre_p || CALL_P (BB_END (e->src))))
1763 {
1764 bitmap_and_compl (antloc[bb->index],
1765 antloc[bb->index], prune_exprs);
1766 bitmap_and_compl (transp[bb->index],
1767 transp[bb->index], prune_exprs);
1768 break;
1769 }
1770 }
1771
1772 sbitmap_free (prune_exprs);
1773 }
1774
1775 /* It may be necessary to insert a large number of insns on edges to
1776 make the existing occurrences of expressions fully redundant. This
1777 routine examines the set of insertions and deletions and if the ratio
1778 of insertions to deletions is too high for a particular expression, then
1779 the expression is removed from the insertion/deletion sets.
1780
1781 N_ELEMS is the number of elements in the hash table. */
1782
1783 static void
1784 prune_insertions_deletions (int n_elems)
1785 {
1786 sbitmap_iterator sbi;
1787 sbitmap prune_exprs;
1788
1789 /* We always use I to iterate over blocks/edges and J to iterate over
1790 expressions. */
1791 unsigned int i, j;
1792
1793 /* Counts for the number of times an expression needs to be inserted and
1794 number of times an expression can be removed as a result. */
1795 int *insertions = GCNEWVEC (int, n_elems);
1796 int *deletions = GCNEWVEC (int, n_elems);
1797
1798 /* Set of expressions which require too many insertions relative to
1799 the number of deletions achieved. We will prune these out of the
1800 insertion/deletion sets. */
1801 prune_exprs = sbitmap_alloc (n_elems);
1802 bitmap_clear (prune_exprs);
1803
1804 /* Iterate over the edges counting the number of times each expression
1805 needs to be inserted. */
1806 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1807 {
1808 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
1809 insertions[j]++;
1810 }
1811
1812 /* Similarly for deletions, but those occur in blocks rather than on
1813 edges. */
1814 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1815 {
1816 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
1817 deletions[j]++;
1818 }
1819
1820 /* Now that we have accurate counts, iterate over the elements in the
1821 hash table and see if any need too many insertions relative to the
1822 number of evaluations that can be removed. If so, mark them in
1823 PRUNE_EXPRS. */
1824 for (j = 0; j < (unsigned) n_elems; j++)
1825 if (deletions[j]
1826 && ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
1827 bitmap_set_bit (prune_exprs, j);
1828
1829 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
1830 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
1831 {
1832 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1833 bitmap_clear_bit (pre_insert_map[i], j);
1834
1835 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1836 bitmap_clear_bit (pre_delete_map[i], j);
1837 }
1838
1839 sbitmap_free (prune_exprs);
1840 free (insertions);
1841 free (deletions);
1842 }
1843
1844 /* Top level routine to do the dataflow analysis needed by PRE. */
1845
1846 static struct edge_list *
1847 compute_pre_data (void)
1848 {
1849 struct edge_list *edge_list;
1850 basic_block bb;
1851
1852 compute_local_properties (transp, comp, antloc, &expr_hash_table);
1853 prune_expressions (true);
1854 bitmap_vector_clear (ae_kill, last_basic_block_for_fn (cfun));
1855
1856 /* Compute ae_kill for each basic block using:
1857
1858 ~(TRANSP | COMP)
1859 */
1860
1861 FOR_EACH_BB_FN (bb, cfun)
1862 {
1863 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
1864 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
1865 }
1866
1867 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
1868 ae_kill, &pre_insert_map, &pre_delete_map);
1869 sbitmap_vector_free (antloc);
1870 antloc = NULL;
1871 sbitmap_vector_free (ae_kill);
1872 ae_kill = NULL;
1873
1874 prune_insertions_deletions (expr_hash_table.n_elems);
1875
1876 return edge_list;
1877 }
1878 \f
1879 /* PRE utilities */
1880
1881 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
1882 block BB.
1883
1884 VISITED is a pointer to a working buffer for tracking which BB's have
1885 been visited. It is NULL for the top-level call.
1886
1887 We treat reaching expressions that go through blocks containing the same
1888 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
1889 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
1890 2 as not reaching. The intent is to improve the probability of finding
1891 only one reaching expression and to reduce register lifetimes by picking
1892 the closest such expression. */
1893
1894 static int
1895 pre_expr_reaches_here_p_work (basic_block occr_bb, struct gcse_expr *expr,
1896 basic_block bb, char *visited)
1897 {
1898 edge pred;
1899 edge_iterator ei;
1900
1901 FOR_EACH_EDGE (pred, ei, bb->preds)
1902 {
1903 basic_block pred_bb = pred->src;
1904
1905 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1906 /* Has predecessor has already been visited? */
1907 || visited[pred_bb->index])
1908 ;/* Nothing to do. */
1909
1910 /* Does this predecessor generate this expression? */
1911 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
1912 {
1913 /* Is this the occurrence we're looking for?
1914 Note that there's only one generating occurrence per block
1915 so we just need to check the block number. */
1916 if (occr_bb == pred_bb)
1917 return 1;
1918
1919 visited[pred_bb->index] = 1;
1920 }
1921 /* Ignore this predecessor if it kills the expression. */
1922 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
1923 visited[pred_bb->index] = 1;
1924
1925 /* Neither gen nor kill. */
1926 else
1927 {
1928 visited[pred_bb->index] = 1;
1929 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
1930 return 1;
1931 }
1932 }
1933
1934 /* All paths have been checked. */
1935 return 0;
1936 }
1937
1938 /* The wrapper for pre_expr_reaches_here_work that ensures that any
1939 memory allocated for that function is returned. */
1940
1941 static int
1942 pre_expr_reaches_here_p (basic_block occr_bb, struct gcse_expr *expr, basic_block bb)
1943 {
1944 int rval;
1945 char *visited = XCNEWVEC (char, last_basic_block_for_fn (cfun));
1946
1947 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
1948
1949 free (visited);
1950 return rval;
1951 }
1952 \f
1953 /* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
1954
1955 static rtx_insn *
1956 process_insert_insn (struct gcse_expr *expr)
1957 {
1958 rtx reg = expr->reaching_reg;
1959 /* Copy the expression to make sure we don't have any sharing issues. */
1960 rtx exp = copy_rtx (expr->expr);
1961 rtx_insn *pat;
1962
1963 start_sequence ();
1964
1965 /* If the expression is something that's an operand, like a constant,
1966 just copy it to a register. */
1967 if (general_operand (exp, GET_MODE (reg)))
1968 emit_move_insn (reg, exp);
1969
1970 /* Otherwise, make a new insn to compute this expression and make sure the
1971 insn will be recognized (this also adds any needed CLOBBERs). */
1972 else
1973 {
1974 rtx_insn *insn = emit_insn (gen_rtx_SET (reg, exp));
1975
1976 if (insn_invalid_p (insn, false))
1977 gcc_unreachable ();
1978 }
1979
1980 pat = get_insns ();
1981 end_sequence ();
1982
1983 return pat;
1984 }
1985
1986 /* Add EXPR to the end of basic block BB.
1987
1988 This is used by both the PRE and code hoisting. */
1989
1990 static void
1991 insert_insn_end_basic_block (struct gcse_expr *expr, basic_block bb)
1992 {
1993 rtx_insn *insn = BB_END (bb);
1994 rtx_insn *new_insn;
1995 rtx reg = expr->reaching_reg;
1996 int regno = REGNO (reg);
1997 rtx_insn *pat, *pat_end;
1998
1999 pat = process_insert_insn (expr);
2000 gcc_assert (pat && INSN_P (pat));
2001
2002 pat_end = pat;
2003 while (NEXT_INSN (pat_end) != NULL_RTX)
2004 pat_end = NEXT_INSN (pat_end);
2005
2006 /* If the last insn is a jump, insert EXPR in front [taking care to
2007 handle cc0, etc. properly]. Similarly we need to care trapping
2008 instructions in presence of non-call exceptions. */
2009
2010 if (JUMP_P (insn)
2011 || (NONJUMP_INSN_P (insn)
2012 && (!single_succ_p (bb)
2013 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
2014 {
2015 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2016 if cc0 isn't set. */
2017 if (HAVE_cc0)
2018 {
2019 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2020 if (note)
2021 insn = safe_as_a <rtx_insn *> (XEXP (note, 0));
2022 else
2023 {
2024 rtx_insn *maybe_cc0_setter = prev_nonnote_insn (insn);
2025 if (maybe_cc0_setter
2026 && INSN_P (maybe_cc0_setter)
2027 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2028 insn = maybe_cc0_setter;
2029 }
2030 }
2031
2032 /* FIXME: What if something in cc0/jump uses value set in new insn? */
2033 new_insn = emit_insn_before_noloc (pat, insn, bb);
2034 }
2035
2036 /* Likewise if the last insn is a call, as will happen in the presence
2037 of exception handling. */
2038 else if (CALL_P (insn)
2039 && (!single_succ_p (bb)
2040 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
2041 {
2042 /* Keeping in mind targets with small register classes and parameters
2043 in registers, we search backward and place the instructions before
2044 the first parameter is loaded. Do this for everyone for consistency
2045 and a presumption that we'll get better code elsewhere as well. */
2046
2047 /* Since different machines initialize their parameter registers
2048 in different orders, assume nothing. Collect the set of all
2049 parameter registers. */
2050 insn = find_first_parameter_load (insn, BB_HEAD (bb));
2051
2052 /* If we found all the parameter loads, then we want to insert
2053 before the first parameter load.
2054
2055 If we did not find all the parameter loads, then we might have
2056 stopped on the head of the block, which could be a CODE_LABEL.
2057 If we inserted before the CODE_LABEL, then we would be putting
2058 the insn in the wrong basic block. In that case, put the insn
2059 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
2060 while (LABEL_P (insn)
2061 || NOTE_INSN_BASIC_BLOCK_P (insn))
2062 insn = NEXT_INSN (insn);
2063
2064 new_insn = emit_insn_before_noloc (pat, insn, bb);
2065 }
2066 else
2067 new_insn = emit_insn_after_noloc (pat, insn, bb);
2068
2069 while (1)
2070 {
2071 if (INSN_P (pat))
2072 add_label_notes (PATTERN (pat), new_insn);
2073 if (pat == pat_end)
2074 break;
2075 pat = NEXT_INSN (pat);
2076 }
2077
2078 gcse_create_count++;
2079
2080 if (dump_file)
2081 {
2082 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
2083 bb->index, INSN_UID (new_insn));
2084 fprintf (dump_file, "copying expression %d to reg %d\n",
2085 expr->bitmap_index, regno);
2086 }
2087 }
2088
2089 /* Insert partially redundant expressions on edges in the CFG to make
2090 the expressions fully redundant. */
2091
2092 static int
2093 pre_edge_insert (struct edge_list *edge_list, struct gcse_expr **index_map)
2094 {
2095 int e, i, j, num_edges, set_size, did_insert = 0;
2096 sbitmap *inserted;
2097
2098 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2099 if it reaches any of the deleted expressions. */
2100
2101 set_size = pre_insert_map[0]->size;
2102 num_edges = NUM_EDGES (edge_list);
2103 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
2104 bitmap_vector_clear (inserted, num_edges);
2105
2106 for (e = 0; e < num_edges; e++)
2107 {
2108 int indx;
2109 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
2110
2111 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
2112 {
2113 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
2114
2115 for (j = indx;
2116 insert && j < (int) expr_hash_table.n_elems;
2117 j++, insert >>= 1)
2118 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2119 {
2120 struct gcse_expr *expr = index_map[j];
2121 struct gcse_occr *occr;
2122
2123 /* Now look at each deleted occurrence of this expression. */
2124 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2125 {
2126 if (! occr->deleted_p)
2127 continue;
2128
2129 /* Insert this expression on this edge if it would
2130 reach the deleted occurrence in BB. */
2131 if (!bitmap_bit_p (inserted[e], j))
2132 {
2133 rtx_insn *insn;
2134 edge eg = INDEX_EDGE (edge_list, e);
2135
2136 /* We can't insert anything on an abnormal and
2137 critical edge, so we insert the insn at the end of
2138 the previous block. There are several alternatives
2139 detailed in Morgans book P277 (sec 10.5) for
2140 handling this situation. This one is easiest for
2141 now. */
2142
2143 if (eg->flags & EDGE_ABNORMAL)
2144 insert_insn_end_basic_block (index_map[j], bb);
2145 else
2146 {
2147 insn = process_insert_insn (index_map[j]);
2148 insert_insn_on_edge (insn, eg);
2149 }
2150
2151 if (dump_file)
2152 {
2153 fprintf (dump_file, "PRE: edge (%d,%d), ",
2154 bb->index,
2155 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
2156 fprintf (dump_file, "copy expression %d\n",
2157 expr->bitmap_index);
2158 }
2159
2160 update_ld_motion_stores (expr);
2161 bitmap_set_bit (inserted[e], j);
2162 did_insert = 1;
2163 gcse_create_count++;
2164 }
2165 }
2166 }
2167 }
2168 }
2169
2170 sbitmap_vector_free (inserted);
2171 return did_insert;
2172 }
2173
2174 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
2175 Given "old_reg <- expr" (INSN), instead of adding after it
2176 reaching_reg <- old_reg
2177 it's better to do the following:
2178 reaching_reg <- expr
2179 old_reg <- reaching_reg
2180 because this way copy propagation can discover additional PRE
2181 opportunities. But if this fails, we try the old way.
2182 When "expr" is a store, i.e.
2183 given "MEM <- old_reg", instead of adding after it
2184 reaching_reg <- old_reg
2185 it's better to add it before as follows:
2186 reaching_reg <- old_reg
2187 MEM <- reaching_reg. */
2188
2189 static void
2190 pre_insert_copy_insn (struct gcse_expr *expr, rtx_insn *insn)
2191 {
2192 rtx reg = expr->reaching_reg;
2193 int regno = REGNO (reg);
2194 int indx = expr->bitmap_index;
2195 rtx pat = PATTERN (insn);
2196 rtx set, first_set;
2197 rtx_insn *new_insn;
2198 rtx old_reg;
2199 int i;
2200
2201 /* This block matches the logic in hash_scan_insn. */
2202 switch (GET_CODE (pat))
2203 {
2204 case SET:
2205 set = pat;
2206 break;
2207
2208 case PARALLEL:
2209 /* Search through the parallel looking for the set whose
2210 source was the expression that we're interested in. */
2211 first_set = NULL_RTX;
2212 set = NULL_RTX;
2213 for (i = 0; i < XVECLEN (pat, 0); i++)
2214 {
2215 rtx x = XVECEXP (pat, 0, i);
2216 if (GET_CODE (x) == SET)
2217 {
2218 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2219 may not find an equivalent expression, but in this
2220 case the PARALLEL will have a single set. */
2221 if (first_set == NULL_RTX)
2222 first_set = x;
2223 if (expr_equiv_p (SET_SRC (x), expr->expr))
2224 {
2225 set = x;
2226 break;
2227 }
2228 }
2229 }
2230
2231 gcc_assert (first_set);
2232 if (set == NULL_RTX)
2233 set = first_set;
2234 break;
2235
2236 default:
2237 gcc_unreachable ();
2238 }
2239
2240 if (REG_P (SET_DEST (set)))
2241 {
2242 old_reg = SET_DEST (set);
2243 /* Check if we can modify the set destination in the original insn. */
2244 if (validate_change (insn, &SET_DEST (set), reg, 0))
2245 {
2246 new_insn = gen_move_insn (old_reg, reg);
2247 new_insn = emit_insn_after (new_insn, insn);
2248 }
2249 else
2250 {
2251 new_insn = gen_move_insn (reg, old_reg);
2252 new_insn = emit_insn_after (new_insn, insn);
2253 }
2254 }
2255 else /* This is possible only in case of a store to memory. */
2256 {
2257 old_reg = SET_SRC (set);
2258 new_insn = gen_move_insn (reg, old_reg);
2259
2260 /* Check if we can modify the set source in the original insn. */
2261 if (validate_change (insn, &SET_SRC (set), reg, 0))
2262 new_insn = emit_insn_before (new_insn, insn);
2263 else
2264 new_insn = emit_insn_after (new_insn, insn);
2265 }
2266
2267 gcse_create_count++;
2268
2269 if (dump_file)
2270 fprintf (dump_file,
2271 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
2272 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
2273 INSN_UID (insn), regno);
2274 }
2275
2276 /* Copy available expressions that reach the redundant expression
2277 to `reaching_reg'. */
2278
2279 static void
2280 pre_insert_copies (void)
2281 {
2282 unsigned int i, added_copy;
2283 struct gcse_expr *expr;
2284 struct gcse_occr *occr;
2285 struct gcse_occr *avail;
2286
2287 /* For each available expression in the table, copy the result to
2288 `reaching_reg' if the expression reaches a deleted one.
2289
2290 ??? The current algorithm is rather brute force.
2291 Need to do some profiling. */
2292
2293 for (i = 0; i < expr_hash_table.size; i++)
2294 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2295 {
2296 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2297 we don't want to insert a copy here because the expression may not
2298 really be redundant. So only insert an insn if the expression was
2299 deleted. This test also avoids further processing if the
2300 expression wasn't deleted anywhere. */
2301 if (expr->reaching_reg == NULL)
2302 continue;
2303
2304 /* Set when we add a copy for that expression. */
2305 added_copy = 0;
2306
2307 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2308 {
2309 if (! occr->deleted_p)
2310 continue;
2311
2312 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2313 {
2314 rtx_insn *insn = avail->insn;
2315
2316 /* No need to handle this one if handled already. */
2317 if (avail->copied_p)
2318 continue;
2319
2320 /* Don't handle this one if it's a redundant one. */
2321 if (insn->deleted ())
2322 continue;
2323
2324 /* Or if the expression doesn't reach the deleted one. */
2325 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
2326 expr,
2327 BLOCK_FOR_INSN (occr->insn)))
2328 continue;
2329
2330 added_copy = 1;
2331
2332 /* Copy the result of avail to reaching_reg. */
2333 pre_insert_copy_insn (expr, insn);
2334 avail->copied_p = 1;
2335 }
2336 }
2337
2338 if (added_copy)
2339 update_ld_motion_stores (expr);
2340 }
2341 }
2342
2343 struct set_data
2344 {
2345 rtx_insn *insn;
2346 const_rtx set;
2347 int nsets;
2348 };
2349
2350 /* Increment number of sets and record set in DATA. */
2351
2352 static void
2353 record_set_data (rtx dest, const_rtx set, void *data)
2354 {
2355 struct set_data *s = (struct set_data *)data;
2356
2357 if (GET_CODE (set) == SET)
2358 {
2359 /* We allow insns having multiple sets, where all but one are
2360 dead as single set insns. In the common case only a single
2361 set is present, so we want to avoid checking for REG_UNUSED
2362 notes unless necessary. */
2363 if (s->nsets == 1
2364 && find_reg_note (s->insn, REG_UNUSED, SET_DEST (s->set))
2365 && !side_effects_p (s->set))
2366 s->nsets = 0;
2367
2368 if (!s->nsets)
2369 {
2370 /* Record this set. */
2371 s->nsets += 1;
2372 s->set = set;
2373 }
2374 else if (!find_reg_note (s->insn, REG_UNUSED, dest)
2375 || side_effects_p (set))
2376 s->nsets += 1;
2377 }
2378 }
2379
2380 static const_rtx
2381 single_set_gcse (rtx_insn *insn)
2382 {
2383 struct set_data s;
2384 rtx pattern;
2385
2386 gcc_assert (INSN_P (insn));
2387
2388 /* Optimize common case. */
2389 pattern = PATTERN (insn);
2390 if (GET_CODE (pattern) == SET)
2391 return pattern;
2392
2393 s.insn = insn;
2394 s.nsets = 0;
2395 note_stores (pattern, record_set_data, &s);
2396
2397 /* Considered invariant insns have exactly one set. */
2398 gcc_assert (s.nsets == 1);
2399 return s.set;
2400 }
2401
2402 /* Emit move from SRC to DEST noting the equivalence with expression computed
2403 in INSN. */
2404
2405 static rtx_insn *
2406 gcse_emit_move_after (rtx dest, rtx src, rtx_insn *insn)
2407 {
2408 rtx_insn *new_rtx;
2409 const_rtx set = single_set_gcse (insn);
2410 rtx set2;
2411 rtx note;
2412 rtx eqv = NULL_RTX;
2413
2414 /* This should never fail since we're creating a reg->reg copy
2415 we've verified to be valid. */
2416
2417 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
2418
2419 /* Note the equivalence for local CSE pass. Take the note from the old
2420 set if there was one. Otherwise record the SET_SRC from the old set
2421 unless DEST is also an operand of the SET_SRC. */
2422 set2 = single_set (new_rtx);
2423 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
2424 return new_rtx;
2425 if ((note = find_reg_equal_equiv_note (insn)))
2426 eqv = XEXP (note, 0);
2427 else if (! REG_P (dest)
2428 || ! reg_mentioned_p (dest, SET_SRC (set)))
2429 eqv = SET_SRC (set);
2430
2431 if (eqv != NULL_RTX)
2432 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
2433
2434 return new_rtx;
2435 }
2436
2437 /* Delete redundant computations.
2438 Deletion is done by changing the insn to copy the `reaching_reg' of
2439 the expression into the result of the SET. It is left to later passes
2440 to propagate the copy or eliminate it.
2441
2442 Return nonzero if a change is made. */
2443
2444 static int
2445 pre_delete (void)
2446 {
2447 unsigned int i;
2448 int changed;
2449 struct gcse_expr *expr;
2450 struct gcse_occr *occr;
2451
2452 changed = 0;
2453 for (i = 0; i < expr_hash_table.size; i++)
2454 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2455 {
2456 int indx = expr->bitmap_index;
2457
2458 /* We only need to search antic_occr since we require ANTLOC != 0. */
2459 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2460 {
2461 rtx_insn *insn = occr->insn;
2462 rtx set;
2463 basic_block bb = BLOCK_FOR_INSN (insn);
2464
2465 /* We only delete insns that have a single_set. */
2466 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
2467 && (set = single_set (insn)) != 0
2468 && dbg_cnt (pre_insn))
2469 {
2470 /* Create a pseudo-reg to store the result of reaching
2471 expressions into. Get the mode for the new pseudo from
2472 the mode of the original destination pseudo. */
2473 if (expr->reaching_reg == NULL)
2474 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
2475
2476 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
2477 delete_insn (insn);
2478 occr->deleted_p = 1;
2479 changed = 1;
2480 gcse_subst_count++;
2481
2482 if (dump_file)
2483 {
2484 fprintf (dump_file,
2485 "PRE: redundant insn %d (expression %d) in ",
2486 INSN_UID (insn), indx);
2487 fprintf (dump_file, "bb %d, reaching reg is %d\n",
2488 bb->index, REGNO (expr->reaching_reg));
2489 }
2490 }
2491 }
2492 }
2493
2494 return changed;
2495 }
2496
2497 /* Perform GCSE optimizations using PRE.
2498 This is called by one_pre_gcse_pass after all the dataflow analysis
2499 has been done.
2500
2501 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2502 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2503 Compiler Design and Implementation.
2504
2505 ??? A new pseudo reg is created to hold the reaching expression. The nice
2506 thing about the classical approach is that it would try to use an existing
2507 reg. If the register can't be adequately optimized [i.e. we introduce
2508 reload problems], one could add a pass here to propagate the new register
2509 through the block.
2510
2511 ??? We don't handle single sets in PARALLELs because we're [currently] not
2512 able to copy the rest of the parallel when we insert copies to create full
2513 redundancies from partial redundancies. However, there's no reason why we
2514 can't handle PARALLELs in the cases where there are no partial
2515 redundancies. */
2516
2517 static int
2518 pre_gcse (struct edge_list *edge_list)
2519 {
2520 unsigned int i;
2521 int did_insert, changed;
2522 struct gcse_expr **index_map;
2523 struct gcse_expr *expr;
2524
2525 /* Compute a mapping from expression number (`bitmap_index') to
2526 hash table entry. */
2527
2528 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
2529 for (i = 0; i < expr_hash_table.size; i++)
2530 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2531 index_map[expr->bitmap_index] = expr;
2532
2533 /* Delete the redundant insns first so that
2534 - we know what register to use for the new insns and for the other
2535 ones with reaching expressions
2536 - we know which insns are redundant when we go to create copies */
2537
2538 changed = pre_delete ();
2539 did_insert = pre_edge_insert (edge_list, index_map);
2540
2541 /* In other places with reaching expressions, copy the expression to the
2542 specially allocated pseudo-reg that reaches the redundant expr. */
2543 pre_insert_copies ();
2544 if (did_insert)
2545 {
2546 commit_edge_insertions ();
2547 changed = 1;
2548 }
2549
2550 free (index_map);
2551 return changed;
2552 }
2553
2554 /* Top level routine to perform one PRE GCSE pass.
2555
2556 Return nonzero if a change was made. */
2557
2558 static int
2559 one_pre_gcse_pass (void)
2560 {
2561 int changed = 0;
2562
2563 gcse_subst_count = 0;
2564 gcse_create_count = 0;
2565
2566 /* Return if there's nothing to do, or it is too expensive. */
2567 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
2568 || is_too_expensive (_("PRE disabled")))
2569 return 0;
2570
2571 /* We need alias. */
2572 init_alias_analysis ();
2573
2574 bytes_used = 0;
2575 gcc_obstack_init (&gcse_obstack);
2576 alloc_gcse_mem ();
2577
2578 alloc_hash_table (&expr_hash_table);
2579 add_noreturn_fake_exit_edges ();
2580 if (flag_gcse_lm)
2581 compute_ld_motion_mems ();
2582
2583 compute_hash_table (&expr_hash_table);
2584 if (flag_gcse_lm)
2585 trim_ld_motion_mems ();
2586 if (dump_file)
2587 dump_hash_table (dump_file, "Expression", &expr_hash_table);
2588
2589 if (expr_hash_table.n_elems > 0)
2590 {
2591 struct edge_list *edge_list;
2592 alloc_pre_mem (last_basic_block_for_fn (cfun), expr_hash_table.n_elems);
2593 edge_list = compute_pre_data ();
2594 changed |= pre_gcse (edge_list);
2595 free_edge_list (edge_list);
2596 free_pre_mem ();
2597 }
2598
2599 if (flag_gcse_lm)
2600 free_ld_motion_mems ();
2601 remove_fake_exit_edges ();
2602 free_hash_table (&expr_hash_table);
2603
2604 free_gcse_mem ();
2605 obstack_free (&gcse_obstack, NULL);
2606
2607 /* We are finished with alias. */
2608 end_alias_analysis ();
2609
2610 if (dump_file)
2611 {
2612 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
2613 current_function_name (), n_basic_blocks_for_fn (cfun),
2614 bytes_used);
2615 fprintf (dump_file, "%d substs, %d insns created\n",
2616 gcse_subst_count, gcse_create_count);
2617 }
2618
2619 return changed;
2620 }
2621 \f
2622 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2623 to INSN. If such notes are added to an insn which references a
2624 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2625 that note, because the following loop optimization pass requires
2626 them. */
2627
2628 /* ??? If there was a jump optimization pass after gcse and before loop,
2629 then we would not need to do this here, because jump would add the
2630 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
2631
2632 static void
2633 add_label_notes (rtx x, rtx_insn *insn)
2634 {
2635 enum rtx_code code = GET_CODE (x);
2636 int i, j;
2637 const char *fmt;
2638
2639 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2640 {
2641 /* This code used to ignore labels that referred to dispatch tables to
2642 avoid flow generating (slightly) worse code.
2643
2644 We no longer ignore such label references (see LABEL_REF handling in
2645 mark_jump_label for additional information). */
2646
2647 /* There's no reason for current users to emit jump-insns with
2648 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2649 notes. */
2650 gcc_assert (!JUMP_P (insn));
2651 add_reg_note (insn, REG_LABEL_OPERAND, LABEL_REF_LABEL (x));
2652
2653 if (LABEL_P (LABEL_REF_LABEL (x)))
2654 LABEL_NUSES (LABEL_REF_LABEL (x))++;
2655
2656 return;
2657 }
2658
2659 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2660 {
2661 if (fmt[i] == 'e')
2662 add_label_notes (XEXP (x, i), insn);
2663 else if (fmt[i] == 'E')
2664 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2665 add_label_notes (XVECEXP (x, i, j), insn);
2666 }
2667 }
2668
2669 /* Code Hoisting variables and subroutines. */
2670
2671 /* Very busy expressions. */
2672 static sbitmap *hoist_vbein;
2673 static sbitmap *hoist_vbeout;
2674
2675 /* ??? We could compute post dominators and run this algorithm in
2676 reverse to perform tail merging, doing so would probably be
2677 more effective than the tail merging code in jump.c.
2678
2679 It's unclear if tail merging could be run in parallel with
2680 code hoisting. It would be nice. */
2681
2682 /* Allocate vars used for code hoisting analysis. */
2683
2684 static void
2685 alloc_code_hoist_mem (int n_blocks, int n_exprs)
2686 {
2687 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2688 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2689 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2690
2691 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2692 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
2693 }
2694
2695 /* Free vars used for code hoisting analysis. */
2696
2697 static void
2698 free_code_hoist_mem (void)
2699 {
2700 sbitmap_vector_free (antloc);
2701 sbitmap_vector_free (transp);
2702 sbitmap_vector_free (comp);
2703
2704 sbitmap_vector_free (hoist_vbein);
2705 sbitmap_vector_free (hoist_vbeout);
2706
2707 free_dominance_info (CDI_DOMINATORS);
2708 }
2709
2710 /* Compute the very busy expressions at entry/exit from each block.
2711
2712 An expression is very busy if all paths from a given point
2713 compute the expression. */
2714
2715 static void
2716 compute_code_hoist_vbeinout (void)
2717 {
2718 int changed, passes;
2719 basic_block bb;
2720
2721 bitmap_vector_clear (hoist_vbeout, last_basic_block_for_fn (cfun));
2722 bitmap_vector_clear (hoist_vbein, last_basic_block_for_fn (cfun));
2723
2724 passes = 0;
2725 changed = 1;
2726
2727 while (changed)
2728 {
2729 changed = 0;
2730
2731 /* We scan the blocks in the reverse order to speed up
2732 the convergence. */
2733 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2734 {
2735 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
2736 {
2737 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2738 hoist_vbein, bb);
2739
2740 /* Include expressions in VBEout that are calculated
2741 in BB and available at its end. */
2742 bitmap_ior (hoist_vbeout[bb->index],
2743 hoist_vbeout[bb->index], comp[bb->index]);
2744 }
2745
2746 changed |= bitmap_or_and (hoist_vbein[bb->index],
2747 antloc[bb->index],
2748 hoist_vbeout[bb->index],
2749 transp[bb->index]);
2750 }
2751
2752 passes++;
2753 }
2754
2755 if (dump_file)
2756 {
2757 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2758
2759 FOR_EACH_BB_FN (bb, cfun)
2760 {
2761 fprintf (dump_file, "vbein (%d): ", bb->index);
2762 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
2763 fprintf (dump_file, "vbeout(%d): ", bb->index);
2764 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
2765 }
2766 }
2767 }
2768
2769 /* Top level routine to do the dataflow analysis needed by code hoisting. */
2770
2771 static void
2772 compute_code_hoist_data (void)
2773 {
2774 compute_local_properties (transp, comp, antloc, &expr_hash_table);
2775 prune_expressions (false);
2776 compute_code_hoist_vbeinout ();
2777 calculate_dominance_info (CDI_DOMINATORS);
2778 if (dump_file)
2779 fprintf (dump_file, "\n");
2780 }
2781
2782 /* Update register pressure for BB when hoisting an expression from
2783 instruction FROM, if live ranges of inputs are shrunk. Also
2784 maintain live_in information if live range of register referred
2785 in FROM is shrunk.
2786
2787 Return 0 if register pressure doesn't change, otherwise return
2788 the number by which register pressure is decreased.
2789
2790 NOTE: Register pressure won't be increased in this function. */
2791
2792 static int
2793 update_bb_reg_pressure (basic_block bb, rtx_insn *from)
2794 {
2795 rtx dreg;
2796 rtx_insn *insn;
2797 basic_block succ_bb;
2798 df_ref use, op_ref;
2799 edge succ;
2800 edge_iterator ei;
2801 int decreased_pressure = 0;
2802 int nregs;
2803 enum reg_class pressure_class;
2804
2805 FOR_EACH_INSN_USE (use, from)
2806 {
2807 dreg = DF_REF_REAL_REG (use);
2808 /* The live range of register is shrunk only if it isn't:
2809 1. referred on any path from the end of this block to EXIT, or
2810 2. referred by insns other than FROM in this block. */
2811 FOR_EACH_EDGE (succ, ei, bb->succs)
2812 {
2813 succ_bb = succ->dest;
2814 if (succ_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2815 continue;
2816
2817 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2818 break;
2819 }
2820 if (succ != NULL)
2821 continue;
2822
2823 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2824 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2825 {
2826 if (!DF_REF_INSN_INFO (op_ref))
2827 continue;
2828
2829 insn = DF_REF_INSN (op_ref);
2830 if (BLOCK_FOR_INSN (insn) == bb
2831 && NONDEBUG_INSN_P (insn) && insn != from)
2832 break;
2833 }
2834
2835 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2836 /* Decrease register pressure and update live_in information for
2837 this block. */
2838 if (!op_ref && pressure_class != NO_REGS)
2839 {
2840 decreased_pressure += nregs;
2841 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2842 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2843 }
2844 }
2845 return decreased_pressure;
2846 }
2847
2848 /* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2849 flow graph, if it can reach BB unimpared. Stop the search if the
2850 expression would need to be moved more than DISTANCE instructions.
2851
2852 DISTANCE is the number of instructions through which EXPR can be
2853 hoisted up in flow graph.
2854
2855 BB_SIZE points to an array which contains the number of instructions
2856 for each basic block.
2857
2858 PRESSURE_CLASS and NREGS are register class and number of hard registers
2859 for storing EXPR.
2860
2861 HOISTED_BBS points to a bitmap indicating basic blocks through which
2862 EXPR is hoisted.
2863
2864 FROM is the instruction from which EXPR is hoisted.
2865
2866 It's unclear exactly what Muchnick meant by "unimpared". It seems
2867 to me that the expression must either be computed or transparent in
2868 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2869 would allow the expression to be hoisted out of loops, even if
2870 the expression wasn't a loop invariant.
2871
2872 Contrast this to reachability for PRE where an expression is
2873 considered reachable if *any* path reaches instead of *all*
2874 paths. */
2875
2876 static int
2877 should_hoist_expr_to_dom (basic_block expr_bb, struct gcse_expr *expr,
2878 basic_block bb, sbitmap visited, int distance,
2879 int *bb_size, enum reg_class pressure_class,
2880 int *nregs, bitmap hoisted_bbs, rtx_insn *from)
2881 {
2882 unsigned int i;
2883 edge pred;
2884 edge_iterator ei;
2885 sbitmap_iterator sbi;
2886 int visited_allocated_locally = 0;
2887 int decreased_pressure = 0;
2888
2889 if (flag_ira_hoist_pressure)
2890 {
2891 /* Record old information of basic block BB when it is visited
2892 at the first time. */
2893 if (!bitmap_bit_p (hoisted_bbs, bb->index))
2894 {
2895 struct bb_data *data = BB_DATA (bb);
2896 bitmap_copy (data->backup, data->live_in);
2897 data->old_pressure = data->max_reg_pressure[pressure_class];
2898 }
2899 decreased_pressure = update_bb_reg_pressure (bb, from);
2900 }
2901 /* Terminate the search if distance, for which EXPR is allowed to move,
2902 is exhausted. */
2903 if (distance > 0)
2904 {
2905 if (flag_ira_hoist_pressure)
2906 {
2907 /* Prefer to hoist EXPR if register pressure is decreased. */
2908 if (decreased_pressure > *nregs)
2909 distance += bb_size[bb->index];
2910 /* Let EXPR be hoisted through basic block at no cost if one
2911 of following conditions is satisfied:
2912
2913 1. The basic block has low register pressure.
2914 2. Register pressure won't be increases after hoisting EXPR.
2915
2916 Constant expressions is handled conservatively, because
2917 hoisting constant expression aggressively results in worse
2918 code. This decision is made by the observation of CSiBE
2919 on ARM target, while it has no obvious effect on other
2920 targets like x86, x86_64, mips and powerpc. */
2921 else if (CONST_INT_P (expr->expr)
2922 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
2923 >= ira_class_hard_regs_num[pressure_class]
2924 && decreased_pressure < *nregs))
2925 distance -= bb_size[bb->index];
2926 }
2927 else
2928 distance -= bb_size[bb->index];
2929
2930 if (distance <= 0)
2931 return 0;
2932 }
2933 else
2934 gcc_assert (distance == 0);
2935
2936 if (visited == NULL)
2937 {
2938 visited_allocated_locally = 1;
2939 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
2940 bitmap_clear (visited);
2941 }
2942
2943 FOR_EACH_EDGE (pred, ei, bb->preds)
2944 {
2945 basic_block pred_bb = pred->src;
2946
2947 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2948 break;
2949 else if (pred_bb == expr_bb)
2950 continue;
2951 else if (bitmap_bit_p (visited, pred_bb->index))
2952 continue;
2953 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
2954 break;
2955 /* Not killed. */
2956 else
2957 {
2958 bitmap_set_bit (visited, pred_bb->index);
2959 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
2960 visited, distance, bb_size,
2961 pressure_class, nregs,
2962 hoisted_bbs, from))
2963 break;
2964 }
2965 }
2966 if (visited_allocated_locally)
2967 {
2968 /* If EXPR can be hoisted to expr_bb, record basic blocks through
2969 which EXPR is hoisted in hoisted_bbs. */
2970 if (flag_ira_hoist_pressure && !pred)
2971 {
2972 /* Record the basic block from which EXPR is hoisted. */
2973 bitmap_set_bit (visited, bb->index);
2974 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
2975 bitmap_set_bit (hoisted_bbs, i);
2976 }
2977 sbitmap_free (visited);
2978 }
2979
2980 return (pred == NULL);
2981 }
2982 \f
2983 /* Find occurrence in BB. */
2984
2985 static struct gcse_occr *
2986 find_occr_in_bb (struct gcse_occr *occr, basic_block bb)
2987 {
2988 /* Find the right occurrence of this expression. */
2989 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
2990 occr = occr->next;
2991
2992 return occr;
2993 }
2994
2995 /* Actually perform code hoisting.
2996
2997 The code hoisting pass can hoist multiple computations of the same
2998 expression along dominated path to a dominating basic block, like
2999 from b2/b3 to b1 as depicted below:
3000
3001 b1 ------
3002 /\ |
3003 / \ |
3004 bx by distance
3005 / \ |
3006 / \ |
3007 b2 b3 ------
3008
3009 Unfortunately code hoisting generally extends the live range of an
3010 output pseudo register, which increases register pressure and hurts
3011 register allocation. To address this issue, an attribute MAX_DISTANCE
3012 is computed and attached to each expression. The attribute is computed
3013 from rtx cost of the corresponding expression and it's used to control
3014 how long the expression can be hoisted up in flow graph. As the
3015 expression is hoisted up in flow graph, GCC decreases its DISTANCE
3016 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3017 register pressure if live ranges of inputs are shrunk.
3018
3019 Option "-fira-hoist-pressure" implements register pressure directed
3020 hoist based on upper method. The rationale is:
3021 1. Calculate register pressure for each basic block by reusing IRA
3022 facility.
3023 2. When expression is hoisted through one basic block, GCC checks
3024 the change of live ranges for inputs/output. The basic block's
3025 register pressure will be increased because of extended live
3026 range of output. However, register pressure will be decreased
3027 if the live ranges of inputs are shrunk.
3028 3. After knowing how hoisting affects register pressure, GCC prefers
3029 to hoist the expression if it can decrease register pressure, by
3030 increasing DISTANCE of the corresponding expression.
3031 4. If hoisting the expression increases register pressure, GCC checks
3032 register pressure of the basic block and decrease DISTANCE only if
3033 the register pressure is high. In other words, expression will be
3034 hoisted through at no cost if the basic block has low register
3035 pressure.
3036 5. Update register pressure information for basic blocks through
3037 which expression is hoisted. */
3038
3039 static int
3040 hoist_code (void)
3041 {
3042 basic_block bb, dominated;
3043 vec<basic_block> dom_tree_walk;
3044 unsigned int dom_tree_walk_index;
3045 vec<basic_block> domby;
3046 unsigned int i, j, k;
3047 struct gcse_expr **index_map;
3048 struct gcse_expr *expr;
3049 int *to_bb_head;
3050 int *bb_size;
3051 int changed = 0;
3052 struct bb_data *data;
3053 /* Basic blocks that have occurrences reachable from BB. */
3054 bitmap from_bbs;
3055 /* Basic blocks through which expr is hoisted. */
3056 bitmap hoisted_bbs = NULL;
3057 bitmap_iterator bi;
3058
3059 /* Compute a mapping from expression number (`bitmap_index') to
3060 hash table entry. */
3061
3062 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
3063 for (i = 0; i < expr_hash_table.size; i++)
3064 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
3065 index_map[expr->bitmap_index] = expr;
3066
3067 /* Calculate sizes of basic blocks and note how far
3068 each instruction is from the start of its block. We then use this
3069 data to restrict distance an expression can travel. */
3070
3071 to_bb_head = XCNEWVEC (int, get_max_uid ());
3072 bb_size = XCNEWVEC (int, last_basic_block_for_fn (cfun));
3073
3074 FOR_EACH_BB_FN (bb, cfun)
3075 {
3076 rtx_insn *insn;
3077 int to_head;
3078
3079 to_head = 0;
3080 FOR_BB_INSNS (bb, insn)
3081 {
3082 /* Don't count debug instructions to avoid them affecting
3083 decision choices. */
3084 if (NONDEBUG_INSN_P (insn))
3085 to_bb_head[INSN_UID (insn)] = to_head++;
3086 }
3087
3088 bb_size[bb->index] = to_head;
3089 }
3090
3091 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) == 1
3092 && (EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
3093 == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb));
3094
3095 from_bbs = BITMAP_ALLOC (NULL);
3096 if (flag_ira_hoist_pressure)
3097 hoisted_bbs = BITMAP_ALLOC (NULL);
3098
3099 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
3100 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb);
3101
3102 /* Walk over each basic block looking for potentially hoistable
3103 expressions, nothing gets hoisted from the entry block. */
3104 FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
3105 {
3106 domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3107
3108 if (domby.length () == 0)
3109 continue;
3110
3111 /* Examine each expression that is very busy at the exit of this
3112 block. These are the potentially hoistable expressions. */
3113 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
3114 {
3115 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
3116 {
3117 int nregs = 0;
3118 enum reg_class pressure_class = NO_REGS;
3119 /* Current expression. */
3120 struct gcse_expr *expr = index_map[i];
3121 /* Number of occurrences of EXPR that can be hoisted to BB. */
3122 int hoistable = 0;
3123 /* Occurrences reachable from BB. */
3124 vec<occr_t> occrs_to_hoist = vNULL;
3125 /* We want to insert the expression into BB only once, so
3126 note when we've inserted it. */
3127 int insn_inserted_p;
3128 occr_t occr;
3129
3130 /* If an expression is computed in BB and is available at end of
3131 BB, hoist all occurrences dominated by BB to BB. */
3132 if (bitmap_bit_p (comp[bb->index], i))
3133 {
3134 occr = find_occr_in_bb (expr->antic_occr, bb);
3135
3136 if (occr)
3137 {
3138 /* An occurrence might've been already deleted
3139 while processing a dominator of BB. */
3140 if (!occr->deleted_p)
3141 {
3142 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3143 hoistable++;
3144 }
3145 }
3146 else
3147 hoistable++;
3148 }
3149
3150 /* We've found a potentially hoistable expression, now
3151 we look at every block BB dominates to see if it
3152 computes the expression. */
3153 FOR_EACH_VEC_ELT (domby, j, dominated)
3154 {
3155 int max_distance;
3156
3157 /* Ignore self dominance. */
3158 if (bb == dominated)
3159 continue;
3160 /* We've found a dominated block, now see if it computes
3161 the busy expression and whether or not moving that
3162 expression to the "beginning" of that block is safe. */
3163 if (!bitmap_bit_p (antloc[dominated->index], i))
3164 continue;
3165
3166 occr = find_occr_in_bb (expr->antic_occr, dominated);
3167 gcc_assert (occr);
3168
3169 /* An occurrence might've been already deleted
3170 while processing a dominator of BB. */
3171 if (occr->deleted_p)
3172 continue;
3173 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3174
3175 max_distance = expr->max_distance;
3176 if (max_distance > 0)
3177 /* Adjust MAX_DISTANCE to account for the fact that
3178 OCCR won't have to travel all of DOMINATED, but
3179 only part of it. */
3180 max_distance += (bb_size[dominated->index]
3181 - to_bb_head[INSN_UID (occr->insn)]);
3182
3183 pressure_class = get_pressure_class_and_nregs (occr->insn,
3184 &nregs);
3185
3186 /* Note if the expression should be hoisted from the dominated
3187 block to BB if it can reach DOMINATED unimpared.
3188
3189 Keep track of how many times this expression is hoistable
3190 from a dominated block into BB. */
3191 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3192 max_distance, bb_size,
3193 pressure_class, &nregs,
3194 hoisted_bbs, occr->insn))
3195 {
3196 hoistable++;
3197 occrs_to_hoist.safe_push (occr);
3198 bitmap_set_bit (from_bbs, dominated->index);
3199 }
3200 }
3201
3202 /* If we found more than one hoistable occurrence of this
3203 expression, then note it in the vector of expressions to
3204 hoist. It makes no sense to hoist things which are computed
3205 in only one BB, and doing so tends to pessimize register
3206 allocation. One could increase this value to try harder
3207 to avoid any possible code expansion due to register
3208 allocation issues; however experiments have shown that
3209 the vast majority of hoistable expressions are only movable
3210 from two successors, so raising this threshold is likely
3211 to nullify any benefit we get from code hoisting. */
3212 if (hoistable > 1 && dbg_cnt (hoist_insn))
3213 {
3214 /* If (hoistable != vec::length), then there is
3215 an occurrence of EXPR in BB itself. Don't waste
3216 time looking for LCA in this case. */
3217 if ((unsigned) hoistable == occrs_to_hoist.length ())
3218 {
3219 basic_block lca;
3220
3221 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3222 from_bbs);
3223 if (lca != bb)
3224 /* Punt, it's better to hoist these occurrences to
3225 LCA. */
3226 occrs_to_hoist.release ();
3227 }
3228 }
3229 else
3230 /* Punt, no point hoisting a single occurrence. */
3231 occrs_to_hoist.release ();
3232
3233 if (flag_ira_hoist_pressure
3234 && !occrs_to_hoist.is_empty ())
3235 {
3236 /* Increase register pressure of basic blocks to which
3237 expr is hoisted because of extended live range of
3238 output. */
3239 data = BB_DATA (bb);
3240 data->max_reg_pressure[pressure_class] += nregs;
3241 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3242 {
3243 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3244 data->max_reg_pressure[pressure_class] += nregs;
3245 }
3246 }
3247 else if (flag_ira_hoist_pressure)
3248 {
3249 /* Restore register pressure and live_in info for basic
3250 blocks recorded in hoisted_bbs when expr will not be
3251 hoisted. */
3252 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3253 {
3254 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3255 bitmap_copy (data->live_in, data->backup);
3256 data->max_reg_pressure[pressure_class]
3257 = data->old_pressure;
3258 }
3259 }
3260
3261 if (flag_ira_hoist_pressure)
3262 bitmap_clear (hoisted_bbs);
3263
3264 insn_inserted_p = 0;
3265
3266 /* Walk through occurrences of I'th expressions we want
3267 to hoist to BB and make the transformations. */
3268 FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
3269 {
3270 rtx_insn *insn;
3271 const_rtx set;
3272
3273 gcc_assert (!occr->deleted_p);
3274
3275 insn = occr->insn;
3276 set = single_set_gcse (insn);
3277
3278 /* Create a pseudo-reg to store the result of reaching
3279 expressions into. Get the mode for the new pseudo
3280 from the mode of the original destination pseudo.
3281
3282 It is important to use new pseudos whenever we
3283 emit a set. This will allow reload to use
3284 rematerialization for such registers. */
3285 if (!insn_inserted_p)
3286 expr->reaching_reg
3287 = gen_reg_rtx_and_attrs (SET_DEST (set));
3288
3289 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
3290 insn);
3291 delete_insn (insn);
3292 occr->deleted_p = 1;
3293 changed = 1;
3294 gcse_subst_count++;
3295
3296 if (!insn_inserted_p)
3297 {
3298 insert_insn_end_basic_block (expr, bb);
3299 insn_inserted_p = 1;
3300 }
3301 }
3302
3303 occrs_to_hoist.release ();
3304 bitmap_clear (from_bbs);
3305 }
3306 }
3307 domby.release ();
3308 }
3309
3310 dom_tree_walk.release ();
3311 BITMAP_FREE (from_bbs);
3312 if (flag_ira_hoist_pressure)
3313 BITMAP_FREE (hoisted_bbs);
3314
3315 free (bb_size);
3316 free (to_bb_head);
3317 free (index_map);
3318
3319 return changed;
3320 }
3321
3322 /* Return pressure class and number of needed hard registers (through
3323 *NREGS) of register REGNO. */
3324 static enum reg_class
3325 get_regno_pressure_class (int regno, int *nregs)
3326 {
3327 if (regno >= FIRST_PSEUDO_REGISTER)
3328 {
3329 enum reg_class pressure_class;
3330
3331 pressure_class = reg_allocno_class (regno);
3332 pressure_class = ira_pressure_class_translate[pressure_class];
3333 *nregs
3334 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3335 return pressure_class;
3336 }
3337 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3338 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3339 {
3340 *nregs = 1;
3341 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3342 }
3343 else
3344 {
3345 *nregs = 0;
3346 return NO_REGS;
3347 }
3348 }
3349
3350 /* Return pressure class and number of hard registers (through *NREGS)
3351 for destination of INSN. */
3352 static enum reg_class
3353 get_pressure_class_and_nregs (rtx_insn *insn, int *nregs)
3354 {
3355 rtx reg;
3356 enum reg_class pressure_class;
3357 const_rtx set = single_set_gcse (insn);
3358
3359 reg = SET_DEST (set);
3360 if (GET_CODE (reg) == SUBREG)
3361 reg = SUBREG_REG (reg);
3362 if (MEM_P (reg))
3363 {
3364 *nregs = 0;
3365 pressure_class = NO_REGS;
3366 }
3367 else
3368 {
3369 gcc_assert (REG_P (reg));
3370 pressure_class = reg_allocno_class (REGNO (reg));
3371 pressure_class = ira_pressure_class_translate[pressure_class];
3372 *nregs
3373 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3374 }
3375 return pressure_class;
3376 }
3377
3378 /* Increase (if INCR_P) or decrease current register pressure for
3379 register REGNO. */
3380 static void
3381 change_pressure (int regno, bool incr_p)
3382 {
3383 int nregs;
3384 enum reg_class pressure_class;
3385
3386 pressure_class = get_regno_pressure_class (regno, &nregs);
3387 if (! incr_p)
3388 curr_reg_pressure[pressure_class] -= nregs;
3389 else
3390 {
3391 curr_reg_pressure[pressure_class] += nregs;
3392 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3393 < curr_reg_pressure[pressure_class])
3394 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3395 = curr_reg_pressure[pressure_class];
3396 }
3397 }
3398
3399 /* Calculate register pressure for each basic block by walking insns
3400 from last to first. */
3401 static void
3402 calculate_bb_reg_pressure (void)
3403 {
3404 int i;
3405 unsigned int j;
3406 rtx_insn *insn;
3407 basic_block bb;
3408 bitmap curr_regs_live;
3409 bitmap_iterator bi;
3410
3411
3412 ira_setup_eliminable_regset ();
3413 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
3414 FOR_EACH_BB_FN (bb, cfun)
3415 {
3416 curr_bb = bb;
3417 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3418 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3419 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3420 bitmap_copy (curr_regs_live, df_get_live_out (bb));
3421 for (i = 0; i < ira_pressure_classes_num; i++)
3422 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3423 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3424 change_pressure (j, true);
3425
3426 FOR_BB_INSNS_REVERSE (bb, insn)
3427 {
3428 rtx dreg;
3429 int regno;
3430 df_ref def, use;
3431
3432 if (! NONDEBUG_INSN_P (insn))
3433 continue;
3434
3435 FOR_EACH_INSN_DEF (def, insn)
3436 {
3437 dreg = DF_REF_REAL_REG (def);
3438 gcc_assert (REG_P (dreg));
3439 regno = REGNO (dreg);
3440 if (!(DF_REF_FLAGS (def)
3441 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3442 {
3443 if (bitmap_clear_bit (curr_regs_live, regno))
3444 change_pressure (regno, false);
3445 }
3446 }
3447
3448 FOR_EACH_INSN_USE (use, insn)
3449 {
3450 dreg = DF_REF_REAL_REG (use);
3451 gcc_assert (REG_P (dreg));
3452 regno = REGNO (dreg);
3453 if (bitmap_set_bit (curr_regs_live, regno))
3454 change_pressure (regno, true);
3455 }
3456 }
3457 }
3458 BITMAP_FREE (curr_regs_live);
3459
3460 if (dump_file == NULL)
3461 return;
3462
3463 fprintf (dump_file, "\nRegister Pressure: \n");
3464 FOR_EACH_BB_FN (bb, cfun)
3465 {
3466 fprintf (dump_file, " Basic block %d: \n", bb->index);
3467 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3468 {
3469 enum reg_class pressure_class;
3470
3471 pressure_class = ira_pressure_classes[i];
3472 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3473 continue;
3474
3475 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3476 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3477 }
3478 }
3479 fprintf (dump_file, "\n");
3480 }
3481
3482 /* Top level routine to perform one code hoisting (aka unification) pass
3483
3484 Return nonzero if a change was made. */
3485
3486 static int
3487 one_code_hoisting_pass (void)
3488 {
3489 int changed = 0;
3490
3491 gcse_subst_count = 0;
3492 gcse_create_count = 0;
3493
3494 /* Return if there's nothing to do, or it is too expensive. */
3495 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
3496 || is_too_expensive (_("GCSE disabled")))
3497 return 0;
3498
3499 doing_code_hoisting_p = true;
3500
3501 /* Calculate register pressure for each basic block. */
3502 if (flag_ira_hoist_pressure)
3503 {
3504 regstat_init_n_sets_and_refs ();
3505 ira_set_pseudo_classes (false, dump_file);
3506 alloc_aux_for_blocks (sizeof (struct bb_data));
3507 calculate_bb_reg_pressure ();
3508 regstat_free_n_sets_and_refs ();
3509 }
3510
3511 /* We need alias. */
3512 init_alias_analysis ();
3513
3514 bytes_used = 0;
3515 gcc_obstack_init (&gcse_obstack);
3516 alloc_gcse_mem ();
3517
3518 alloc_hash_table (&expr_hash_table);
3519 compute_hash_table (&expr_hash_table);
3520 if (dump_file)
3521 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
3522
3523 if (expr_hash_table.n_elems > 0)
3524 {
3525 alloc_code_hoist_mem (last_basic_block_for_fn (cfun),
3526 expr_hash_table.n_elems);
3527 compute_code_hoist_data ();
3528 changed = hoist_code ();
3529 free_code_hoist_mem ();
3530 }
3531
3532 if (flag_ira_hoist_pressure)
3533 {
3534 free_aux_for_blocks ();
3535 free_reg_info ();
3536 }
3537 free_hash_table (&expr_hash_table);
3538 free_gcse_mem ();
3539 obstack_free (&gcse_obstack, NULL);
3540
3541 /* We are finished with alias. */
3542 end_alias_analysis ();
3543
3544 if (dump_file)
3545 {
3546 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
3547 current_function_name (), n_basic_blocks_for_fn (cfun),
3548 bytes_used);
3549 fprintf (dump_file, "%d substs, %d insns created\n",
3550 gcse_subst_count, gcse_create_count);
3551 }
3552
3553 doing_code_hoisting_p = false;
3554
3555 return changed;
3556 }
3557 \f
3558 /* Here we provide the things required to do store motion towards the exit.
3559 In order for this to be effective, gcse also needed to be taught how to
3560 move a load when it is killed only by a store to itself.
3561
3562 int i;
3563 float a[10];
3564
3565 void foo(float scale)
3566 {
3567 for (i=0; i<10; i++)
3568 a[i] *= scale;
3569 }
3570
3571 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3572 the load out since its live around the loop, and stored at the bottom
3573 of the loop.
3574
3575 The 'Load Motion' referred to and implemented in this file is
3576 an enhancement to gcse which when using edge based LCM, recognizes
3577 this situation and allows gcse to move the load out of the loop.
3578
3579 Once gcse has hoisted the load, store motion can then push this
3580 load towards the exit, and we end up with no loads or stores of 'i'
3581 in the loop. */
3582
3583 /* This will search the ldst list for a matching expression. If it
3584 doesn't find one, we create one and initialize it. */
3585
3586 static struct ls_expr *
3587 ldst_entry (rtx x)
3588 {
3589 int do_not_record_p = 0;
3590 struct ls_expr * ptr;
3591 unsigned int hash;
3592 ls_expr **slot;
3593 struct ls_expr e;
3594
3595 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3596 NULL, /*have_reg_qty=*/false);
3597
3598 e.pattern = x;
3599 slot = pre_ldst_table->find_slot_with_hash (&e, hash, INSERT);
3600 if (*slot)
3601 return *slot;
3602
3603 ptr = XNEW (struct ls_expr);
3604
3605 ptr->next = pre_ldst_mems;
3606 ptr->expr = NULL;
3607 ptr->pattern = x;
3608 ptr->pattern_regs = NULL_RTX;
3609 ptr->loads = NULL;
3610 ptr->stores = NULL;
3611 ptr->reaching_reg = NULL_RTX;
3612 ptr->invalid = 0;
3613 ptr->index = 0;
3614 ptr->hash_index = hash;
3615 pre_ldst_mems = ptr;
3616 *slot = ptr;
3617
3618 return ptr;
3619 }
3620
3621 /* Free up an individual ldst entry. */
3622
3623 static void
3624 free_ldst_entry (struct ls_expr * ptr)
3625 {
3626 free_INSN_LIST_list (& ptr->loads);
3627 free_INSN_LIST_list (& ptr->stores);
3628
3629 free (ptr);
3630 }
3631
3632 /* Free up all memory associated with the ldst list. */
3633
3634 static void
3635 free_ld_motion_mems (void)
3636 {
3637 delete pre_ldst_table;
3638 pre_ldst_table = NULL;
3639
3640 while (pre_ldst_mems)
3641 {
3642 struct ls_expr * tmp = pre_ldst_mems;
3643
3644 pre_ldst_mems = pre_ldst_mems->next;
3645
3646 free_ldst_entry (tmp);
3647 }
3648
3649 pre_ldst_mems = NULL;
3650 }
3651
3652 /* Dump debugging info about the ldst list. */
3653
3654 static void
3655 print_ldst_list (FILE * file)
3656 {
3657 struct ls_expr * ptr;
3658
3659 fprintf (file, "LDST list: \n");
3660
3661 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
3662 {
3663 fprintf (file, " Pattern (%3d): ", ptr->index);
3664
3665 print_rtl (file, ptr->pattern);
3666
3667 fprintf (file, "\n Loads : ");
3668
3669 if (ptr->loads)
3670 print_rtl (file, ptr->loads);
3671 else
3672 fprintf (file, "(nil)");
3673
3674 fprintf (file, "\n Stores : ");
3675
3676 if (ptr->stores)
3677 print_rtl (file, ptr->stores);
3678 else
3679 fprintf (file, "(nil)");
3680
3681 fprintf (file, "\n\n");
3682 }
3683
3684 fprintf (file, "\n");
3685 }
3686
3687 /* Returns 1 if X is in the list of ldst only expressions. */
3688
3689 static struct ls_expr *
3690 find_rtx_in_ldst (rtx x)
3691 {
3692 struct ls_expr e;
3693 ls_expr **slot;
3694 if (!pre_ldst_table)
3695 return NULL;
3696 e.pattern = x;
3697 slot = pre_ldst_table->find_slot (&e, NO_INSERT);
3698 if (!slot || (*slot)->invalid)
3699 return NULL;
3700 return *slot;
3701 }
3702 \f
3703 /* Load Motion for loads which only kill themselves. */
3704
3705 /* Return true if x, a MEM, is a simple access with no side effects.
3706 These are the types of loads we consider for the ld_motion list,
3707 otherwise we let the usual aliasing take care of it. */
3708
3709 static int
3710 simple_mem (const_rtx x)
3711 {
3712 if (MEM_VOLATILE_P (x))
3713 return 0;
3714
3715 if (GET_MODE (x) == BLKmode)
3716 return 0;
3717
3718 /* If we are handling exceptions, we must be careful with memory references
3719 that may trap. If we are not, the behavior is undefined, so we may just
3720 continue. */
3721 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
3722 return 0;
3723
3724 if (side_effects_p (x))
3725 return 0;
3726
3727 /* Do not consider function arguments passed on stack. */
3728 if (reg_mentioned_p (stack_pointer_rtx, x))
3729 return 0;
3730
3731 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3732 return 0;
3733
3734 return 1;
3735 }
3736
3737 /* Make sure there isn't a buried reference in this pattern anywhere.
3738 If there is, invalidate the entry for it since we're not capable
3739 of fixing it up just yet.. We have to be sure we know about ALL
3740 loads since the aliasing code will allow all entries in the
3741 ld_motion list to not-alias itself. If we miss a load, we will get
3742 the wrong value since gcse might common it and we won't know to
3743 fix it up. */
3744
3745 static void
3746 invalidate_any_buried_refs (rtx x)
3747 {
3748 const char * fmt;
3749 int i, j;
3750 struct ls_expr * ptr;
3751
3752 /* Invalidate it in the list. */
3753 if (MEM_P (x) && simple_mem (x))
3754 {
3755 ptr = ldst_entry (x);
3756 ptr->invalid = 1;
3757 }
3758
3759 /* Recursively process the insn. */
3760 fmt = GET_RTX_FORMAT (GET_CODE (x));
3761
3762 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3763 {
3764 if (fmt[i] == 'e')
3765 invalidate_any_buried_refs (XEXP (x, i));
3766 else if (fmt[i] == 'E')
3767 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3768 invalidate_any_buried_refs (XVECEXP (x, i, j));
3769 }
3770 }
3771
3772 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3773 being defined as MEM loads and stores to symbols, with no side effects
3774 and no registers in the expression. For a MEM destination, we also
3775 check that the insn is still valid if we replace the destination with a
3776 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3777 which don't match this criteria, they are invalidated and trimmed out
3778 later. */
3779
3780 static void
3781 compute_ld_motion_mems (void)
3782 {
3783 struct ls_expr * ptr;
3784 basic_block bb;
3785 rtx_insn *insn;
3786
3787 pre_ldst_mems = NULL;
3788 pre_ldst_table = new hash_table<pre_ldst_expr_hasher> (13);
3789
3790 FOR_EACH_BB_FN (bb, cfun)
3791 {
3792 FOR_BB_INSNS (bb, insn)
3793 {
3794 if (NONDEBUG_INSN_P (insn))
3795 {
3796 if (GET_CODE (PATTERN (insn)) == SET)
3797 {
3798 rtx src = SET_SRC (PATTERN (insn));
3799 rtx dest = SET_DEST (PATTERN (insn));
3800 rtx note = find_reg_equal_equiv_note (insn);
3801 rtx src_eq;
3802
3803 /* Check for a simple LOAD... */
3804 if (MEM_P (src) && simple_mem (src))
3805 {
3806 ptr = ldst_entry (src);
3807 if (REG_P (dest))
3808 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
3809 else
3810 ptr->invalid = 1;
3811 }
3812 else
3813 {
3814 /* Make sure there isn't a buried load somewhere. */
3815 invalidate_any_buried_refs (src);
3816 }
3817
3818 if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL)
3819 src_eq = XEXP (note, 0);
3820 else
3821 src_eq = NULL_RTX;
3822
3823 if (src_eq != NULL_RTX
3824 && !(MEM_P (src_eq) && simple_mem (src_eq)))
3825 invalidate_any_buried_refs (src_eq);
3826
3827 /* Check for stores. Don't worry about aliased ones, they
3828 will block any movement we might do later. We only care
3829 about this exact pattern since those are the only
3830 circumstance that we will ignore the aliasing info. */
3831 if (MEM_P (dest) && simple_mem (dest))
3832 {
3833 ptr = ldst_entry (dest);
3834
3835 if (! MEM_P (src)
3836 && GET_CODE (src) != ASM_OPERANDS
3837 /* Check for REG manually since want_to_gcse_p
3838 returns 0 for all REGs. */
3839 && can_assign_to_reg_without_clobbers_p (src))
3840 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
3841 else
3842 ptr->invalid = 1;
3843 }
3844 }
3845 else
3846 invalidate_any_buried_refs (PATTERN (insn));
3847 }
3848 }
3849 }
3850 }
3851
3852 /* Remove any references that have been either invalidated or are not in the
3853 expression list for pre gcse. */
3854
3855 static void
3856 trim_ld_motion_mems (void)
3857 {
3858 struct ls_expr * * last = & pre_ldst_mems;
3859 struct ls_expr * ptr = pre_ldst_mems;
3860
3861 while (ptr != NULL)
3862 {
3863 struct gcse_expr * expr;
3864
3865 /* Delete if entry has been made invalid. */
3866 if (! ptr->invalid)
3867 {
3868 /* Delete if we cannot find this mem in the expression list. */
3869 unsigned int hash = ptr->hash_index % expr_hash_table.size;
3870
3871 for (expr = expr_hash_table.table[hash];
3872 expr != NULL;
3873 expr = expr->next_same_hash)
3874 if (expr_equiv_p (expr->expr, ptr->pattern))
3875 break;
3876 }
3877 else
3878 expr = (struct gcse_expr *) 0;
3879
3880 if (expr)
3881 {
3882 /* Set the expression field if we are keeping it. */
3883 ptr->expr = expr;
3884 last = & ptr->next;
3885 ptr = ptr->next;
3886 }
3887 else
3888 {
3889 *last = ptr->next;
3890 pre_ldst_table->remove_elt_with_hash (ptr, ptr->hash_index);
3891 free_ldst_entry (ptr);
3892 ptr = * last;
3893 }
3894 }
3895
3896 /* Show the world what we've found. */
3897 if (dump_file && pre_ldst_mems != NULL)
3898 print_ldst_list (dump_file);
3899 }
3900
3901 /* This routine will take an expression which we are replacing with
3902 a reaching register, and update any stores that are needed if
3903 that expression is in the ld_motion list. Stores are updated by
3904 copying their SRC to the reaching register, and then storing
3905 the reaching register into the store location. These keeps the
3906 correct value in the reaching register for the loads. */
3907
3908 static void
3909 update_ld_motion_stores (struct gcse_expr * expr)
3910 {
3911 struct ls_expr * mem_ptr;
3912
3913 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
3914 {
3915 /* We can try to find just the REACHED stores, but is shouldn't
3916 matter to set the reaching reg everywhere... some might be
3917 dead and should be eliminated later. */
3918
3919 /* We replace (set mem expr) with (set reg expr) (set mem reg)
3920 where reg is the reaching reg used in the load. We checked in
3921 compute_ld_motion_mems that we can replace (set mem expr) with
3922 (set reg expr) in that insn. */
3923 rtx list = mem_ptr->stores;
3924
3925 for ( ; list != NULL_RTX; list = XEXP (list, 1))
3926 {
3927 rtx_insn *insn = as_a <rtx_insn *> (XEXP (list, 0));
3928 rtx pat = PATTERN (insn);
3929 rtx src = SET_SRC (pat);
3930 rtx reg = expr->reaching_reg;
3931
3932 /* If we've already copied it, continue. */
3933 if (expr->reaching_reg == src)
3934 continue;
3935
3936 if (dump_file)
3937 {
3938 fprintf (dump_file, "PRE: store updated with reaching reg ");
3939 print_rtl (dump_file, reg);
3940 fprintf (dump_file, ":\n ");
3941 print_inline_rtx (dump_file, insn, 8);
3942 fprintf (dump_file, "\n");
3943 }
3944
3945 rtx_insn *copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
3946 emit_insn_before (copy, insn);
3947 SET_SRC (pat) = reg;
3948 df_insn_rescan (insn);
3949
3950 /* un-recognize this pattern since it's probably different now. */
3951 INSN_CODE (insn) = -1;
3952 gcse_create_count++;
3953 }
3954 }
3955 }
3956 \f
3957 /* Return true if the graph is too expensive to optimize. PASS is the
3958 optimization about to be performed. */
3959
3960 static bool
3961 is_too_expensive (const char *pass)
3962 {
3963 /* Trying to perform global optimizations on flow graphs which have
3964 a high connectivity will take a long time and is unlikely to be
3965 particularly useful.
3966
3967 In normal circumstances a cfg should have about twice as many
3968 edges as blocks. But we do not want to punish small functions
3969 which have a couple switch statements. Rather than simply
3970 threshold the number of blocks, uses something with a more
3971 graceful degradation. */
3972 if (n_edges_for_fn (cfun) > 20000 + n_basic_blocks_for_fn (cfun) * 4)
3973 {
3974 warning (OPT_Wdisabled_optimization,
3975 "%s: %d basic blocks and %d edges/basic block",
3976 pass, n_basic_blocks_for_fn (cfun),
3977 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun));
3978
3979 return true;
3980 }
3981
3982 /* If allocating memory for the dataflow bitmaps would take up too much
3983 storage it's better just to disable the optimization. */
3984 if ((n_basic_blocks_for_fn (cfun)
3985 * SBITMAP_SET_SIZE (max_reg_num ())
3986 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
3987 {
3988 warning (OPT_Wdisabled_optimization,
3989 "%s: %d basic blocks and %d registers",
3990 pass, n_basic_blocks_for_fn (cfun), max_reg_num ());
3991
3992 return true;
3993 }
3994
3995 return false;
3996 }
3997 \f
3998 static unsigned int
3999 execute_rtl_pre (void)
4000 {
4001 int changed;
4002 delete_unreachable_blocks ();
4003 df_analyze ();
4004 changed = one_pre_gcse_pass ();
4005 flag_rerun_cse_after_global_opts |= changed;
4006 if (changed)
4007 cleanup_cfg (0);
4008 return 0;
4009 }
4010
4011 static unsigned int
4012 execute_rtl_hoist (void)
4013 {
4014 int changed;
4015 delete_unreachable_blocks ();
4016 df_analyze ();
4017 changed = one_code_hoisting_pass ();
4018 flag_rerun_cse_after_global_opts |= changed;
4019 if (changed)
4020 cleanup_cfg (0);
4021 return 0;
4022 }
4023
4024 namespace {
4025
4026 const pass_data pass_data_rtl_pre =
4027 {
4028 RTL_PASS, /* type */
4029 "rtl pre", /* name */
4030 OPTGROUP_NONE, /* optinfo_flags */
4031 TV_PRE, /* tv_id */
4032 PROP_cfglayout, /* properties_required */
4033 0, /* properties_provided */
4034 0, /* properties_destroyed */
4035 0, /* todo_flags_start */
4036 TODO_df_finish, /* todo_flags_finish */
4037 };
4038
4039 class pass_rtl_pre : public rtl_opt_pass
4040 {
4041 public:
4042 pass_rtl_pre (gcc::context *ctxt)
4043 : rtl_opt_pass (pass_data_rtl_pre, ctxt)
4044 {}
4045
4046 /* opt_pass methods: */
4047 virtual bool gate (function *);
4048 virtual unsigned int execute (function *) { return execute_rtl_pre (); }
4049
4050 }; // class pass_rtl_pre
4051
4052 /* We do not construct an accurate cfg in functions which call
4053 setjmp, so none of these passes runs if the function calls
4054 setjmp.
4055 FIXME: Should just handle setjmp via REG_SETJMP notes. */
4056
4057 bool
4058 pass_rtl_pre::gate (function *fun)
4059 {
4060 return optimize > 0 && flag_gcse
4061 && !fun->calls_setjmp
4062 && optimize_function_for_speed_p (fun)
4063 && dbg_cnt (pre);
4064 }
4065
4066 } // anon namespace
4067
4068 rtl_opt_pass *
4069 make_pass_rtl_pre (gcc::context *ctxt)
4070 {
4071 return new pass_rtl_pre (ctxt);
4072 }
4073
4074 namespace {
4075
4076 const pass_data pass_data_rtl_hoist =
4077 {
4078 RTL_PASS, /* type */
4079 "hoist", /* name */
4080 OPTGROUP_NONE, /* optinfo_flags */
4081 TV_HOIST, /* tv_id */
4082 PROP_cfglayout, /* properties_required */
4083 0, /* properties_provided */
4084 0, /* properties_destroyed */
4085 0, /* todo_flags_start */
4086 TODO_df_finish, /* todo_flags_finish */
4087 };
4088
4089 class pass_rtl_hoist : public rtl_opt_pass
4090 {
4091 public:
4092 pass_rtl_hoist (gcc::context *ctxt)
4093 : rtl_opt_pass (pass_data_rtl_hoist, ctxt)
4094 {}
4095
4096 /* opt_pass methods: */
4097 virtual bool gate (function *);
4098 virtual unsigned int execute (function *) { return execute_rtl_hoist (); }
4099
4100 }; // class pass_rtl_hoist
4101
4102 bool
4103 pass_rtl_hoist::gate (function *)
4104 {
4105 return optimize > 0 && flag_gcse
4106 && !cfun->calls_setjmp
4107 /* It does not make sense to run code hoisting unless we are optimizing
4108 for code size -- it rarely makes programs faster, and can make then
4109 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4110 && optimize_function_for_size_p (cfun)
4111 && dbg_cnt (hoist);
4112 }
4113
4114 } // anon namespace
4115
4116 rtl_opt_pass *
4117 make_pass_rtl_hoist (gcc::context *ctxt)
4118 {
4119 return new pass_rtl_hoist (ctxt);
4120 }
4121
4122 /* Reset all state within gcse.c so that we can rerun the compiler
4123 within the same process. For use by toplev::finalize. */
4124
4125 void
4126 gcse_c_finalize (void)
4127 {
4128 test_insn = NULL;
4129 }
4130
4131 #include "gt-gcse.h"