decl.c (value_annotation_hasher::handle_cache_entry): Delete.
[gcc.git] / gcc / gcse.c
1 /* Partial redundancy elimination / Hoisting for RTL.
2 Copyright (C) 1997-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* TODO
21 - reordering of memory allocation and freeing to be more space efficient
22 - calc rough register pressure information and use the info to drive all
23 kinds of code motion (including code hoisting) in a unified way.
24 */
25
26 /* References searched while implementing this.
27
28 Compilers Principles, Techniques and Tools
29 Aho, Sethi, Ullman
30 Addison-Wesley, 1988
31
32 Global Optimization by Suppression of Partial Redundancies
33 E. Morel, C. Renvoise
34 communications of the acm, Vol. 22, Num. 2, Feb. 1979
35
36 A Portable Machine-Independent Global Optimizer - Design and Measurements
37 Frederick Chow
38 Stanford Ph.D. thesis, Dec. 1983
39
40 A Fast Algorithm for Code Movement Optimization
41 D.M. Dhamdhere
42 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
43
44 A Solution to a Problem with Morel and Renvoise's
45 Global Optimization by Suppression of Partial Redundancies
46 K-H Drechsler, M.P. Stadel
47 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
48
49 Practical Adaptation of the Global Optimization
50 Algorithm of Morel and Renvoise
51 D.M. Dhamdhere
52 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
53
54 Efficiently Computing Static Single Assignment Form and the Control
55 Dependence Graph
56 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
58
59 Lazy Code Motion
60 J. Knoop, O. Ruthing, B. Steffen
61 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
62
63 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
64 Time for Reducible Flow Control
65 Thomas Ball
66 ACM Letters on Programming Languages and Systems,
67 Vol. 2, Num. 1-4, Mar-Dec 1993
68
69 An Efficient Representation for Sparse Sets
70 Preston Briggs, Linda Torczon
71 ACM Letters on Programming Languages and Systems,
72 Vol. 2, Num. 1-4, Mar-Dec 1993
73
74 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75 K-H Drechsler, M.P. Stadel
76 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
77
78 Partial Dead Code Elimination
79 J. Knoop, O. Ruthing, B. Steffen
80 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
81
82 Effective Partial Redundancy Elimination
83 P. Briggs, K.D. Cooper
84 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
85
86 The Program Structure Tree: Computing Control Regions in Linear Time
87 R. Johnson, D. Pearson, K. Pingali
88 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
89
90 Optimal Code Motion: Theory and Practice
91 J. Knoop, O. Ruthing, B. Steffen
92 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
93
94 The power of assignment motion
95 J. Knoop, O. Ruthing, B. Steffen
96 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
97
98 Global code motion / global value numbering
99 C. Click
100 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
101
102 Value Driven Redundancy Elimination
103 L.T. Simpson
104 Rice University Ph.D. thesis, Apr. 1996
105
106 Value Numbering
107 L.T. Simpson
108 Massively Scalar Compiler Project, Rice University, Sep. 1996
109
110 High Performance Compilers for Parallel Computing
111 Michael Wolfe
112 Addison-Wesley, 1996
113
114 Advanced Compiler Design and Implementation
115 Steven Muchnick
116 Morgan Kaufmann, 1997
117
118 Building an Optimizing Compiler
119 Robert Morgan
120 Digital Press, 1998
121
122 People wishing to speed up the code here should read:
123 Elimination Algorithms for Data Flow Analysis
124 B.G. Ryder, M.C. Paull
125 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
126
127 How to Analyze Large Programs Efficiently and Informatively
128 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
130
131 People wishing to do something different can find various possibilities
132 in the above papers and elsewhere.
133 */
134
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "tm.h"
139 #include "diagnostic-core.h"
140 #include "toplev.h"
141 #include "hard-reg-set.h"
142 #include "rtl.h"
143 #include "alias.h"
144 #include "symtab.h"
145 #include "tree.h"
146 #include "tm_p.h"
147 #include "regs.h"
148 #include "ira.h"
149 #include "flags.h"
150 #include "insn-config.h"
151 #include "recog.h"
152 #include "predict.h"
153 #include "function.h"
154 #include "dominance.h"
155 #include "cfg.h"
156 #include "cfgrtl.h"
157 #include "cfganal.h"
158 #include "lcm.h"
159 #include "cfgcleanup.h"
160 #include "basic-block.h"
161 #include "expmed.h"
162 #include "dojump.h"
163 #include "explow.h"
164 #include "calls.h"
165 #include "emit-rtl.h"
166 #include "varasm.h"
167 #include "stmt.h"
168 #include "expr.h"
169 #include "except.h"
170 #include "params.h"
171 #include "alloc-pool.h"
172 #include "cselib.h"
173 #include "intl.h"
174 #include "obstack.h"
175 #include "tree-pass.h"
176 #include "df.h"
177 #include "dbgcnt.h"
178 #include "target.h"
179 #include "gcse.h"
180 #include "gcse-common.h"
181
182 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
183 are a superset of those done by classic GCSE.
184
185 Two passes of copy/constant propagation are done around PRE or hoisting
186 because the first one enables more GCSE and the second one helps to clean
187 up the copies that PRE and HOIST create. This is needed more for PRE than
188 for HOIST because code hoisting will try to use an existing register
189 containing the common subexpression rather than create a new one. This is
190 harder to do for PRE because of the code motion (which HOIST doesn't do).
191
192 Expressions we are interested in GCSE-ing are of the form
193 (set (pseudo-reg) (expression)).
194 Function want_to_gcse_p says what these are.
195
196 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
197 This allows PRE to hoist expressions that are expressed in multiple insns,
198 such as complex address calculations (e.g. for PIC code, or loads with a
199 high part and a low part).
200
201 PRE handles moving invariant expressions out of loops (by treating them as
202 partially redundant).
203
204 **********************
205
206 We used to support multiple passes but there are diminishing returns in
207 doing so. The first pass usually makes 90% of the changes that are doable.
208 A second pass can make a few more changes made possible by the first pass.
209 Experiments show any further passes don't make enough changes to justify
210 the expense.
211
212 A study of spec92 using an unlimited number of passes:
213 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
214 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
215 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
216
217 It was found doing copy propagation between each pass enables further
218 substitutions.
219
220 This study was done before expressions in REG_EQUAL notes were added as
221 candidate expressions for optimization, and before the GIMPLE optimizers
222 were added. Probably, multiple passes is even less efficient now than
223 at the time when the study was conducted.
224
225 PRE is quite expensive in complicated functions because the DFA can take
226 a while to converge. Hence we only perform one pass.
227
228 **********************
229
230 The steps for PRE are:
231
232 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
233
234 2) Perform the data flow analysis for PRE.
235
236 3) Delete the redundant instructions
237
238 4) Insert the required copies [if any] that make the partially
239 redundant instructions fully redundant.
240
241 5) For other reaching expressions, insert an instruction to copy the value
242 to a newly created pseudo that will reach the redundant instruction.
243
244 The deletion is done first so that when we do insertions we
245 know which pseudo reg to use.
246
247 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
248 argue it is not. The number of iterations for the algorithm to converge
249 is typically 2-4 so I don't view it as that expensive (relatively speaking).
250
251 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
252 we create. To make an expression reach the place where it's redundant,
253 the result of the expression is copied to a new register, and the redundant
254 expression is deleted by replacing it with this new register. Classic GCSE
255 doesn't have this problem as much as it computes the reaching defs of
256 each register in each block and thus can try to use an existing
257 register. */
258 \f
259 /* GCSE global vars. */
260
261 struct target_gcse default_target_gcse;
262 #if SWITCHABLE_TARGET
263 struct target_gcse *this_target_gcse = &default_target_gcse;
264 #endif
265
266 /* Set to non-zero if CSE should run after all GCSE optimizations are done. */
267 int flag_rerun_cse_after_global_opts;
268
269 /* An obstack for our working variables. */
270 static struct obstack gcse_obstack;
271
272 /* Hash table of expressions. */
273
274 struct gcse_expr
275 {
276 /* The expression. */
277 rtx expr;
278 /* Index in the available expression bitmaps. */
279 int bitmap_index;
280 /* Next entry with the same hash. */
281 struct gcse_expr *next_same_hash;
282 /* List of anticipatable occurrences in basic blocks in the function.
283 An "anticipatable occurrence" is one that is the first occurrence in the
284 basic block, the operands are not modified in the basic block prior
285 to the occurrence and the output is not used between the start of
286 the block and the occurrence. */
287 struct gcse_occr *antic_occr;
288 /* List of available occurrence in basic blocks in the function.
289 An "available occurrence" is one that is the last occurrence in the
290 basic block and the operands are not modified by following statements in
291 the basic block [including this insn]. */
292 struct gcse_occr *avail_occr;
293 /* Non-null if the computation is PRE redundant.
294 The value is the newly created pseudo-reg to record a copy of the
295 expression in all the places that reach the redundant copy. */
296 rtx reaching_reg;
297 /* Maximum distance in instructions this expression can travel.
298 We avoid moving simple expressions for more than a few instructions
299 to keep register pressure under control.
300 A value of "0" removes restrictions on how far the expression can
301 travel. */
302 int max_distance;
303 };
304
305 /* Occurrence of an expression.
306 There is one per basic block. If a pattern appears more than once the
307 last appearance is used [or first for anticipatable expressions]. */
308
309 struct gcse_occr
310 {
311 /* Next occurrence of this expression. */
312 struct gcse_occr *next;
313 /* The insn that computes the expression. */
314 rtx_insn *insn;
315 /* Nonzero if this [anticipatable] occurrence has been deleted. */
316 char deleted_p;
317 /* Nonzero if this [available] occurrence has been copied to
318 reaching_reg. */
319 /* ??? This is mutually exclusive with deleted_p, so they could share
320 the same byte. */
321 char copied_p;
322 };
323
324 typedef struct gcse_occr *occr_t;
325
326 /* Expression hash tables.
327 Each hash table is an array of buckets.
328 ??? It is known that if it were an array of entries, structure elements
329 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
330 not clear whether in the final analysis a sufficient amount of memory would
331 be saved as the size of the available expression bitmaps would be larger
332 [one could build a mapping table without holes afterwards though].
333 Someday I'll perform the computation and figure it out. */
334
335 struct gcse_hash_table_d
336 {
337 /* The table itself.
338 This is an array of `expr_hash_table_size' elements. */
339 struct gcse_expr **table;
340
341 /* Size of the hash table, in elements. */
342 unsigned int size;
343
344 /* Number of hash table elements. */
345 unsigned int n_elems;
346 };
347
348 /* Expression hash table. */
349 static struct gcse_hash_table_d expr_hash_table;
350
351 /* This is a list of expressions which are MEMs and will be used by load
352 or store motion.
353 Load motion tracks MEMs which aren't killed by anything except itself,
354 i.e. loads and stores to a single location.
355 We can then allow movement of these MEM refs with a little special
356 allowance. (all stores copy the same value to the reaching reg used
357 for the loads). This means all values used to store into memory must have
358 no side effects so we can re-issue the setter value. */
359
360 struct ls_expr
361 {
362 struct gcse_expr * expr; /* Gcse expression reference for LM. */
363 rtx pattern; /* Pattern of this mem. */
364 rtx pattern_regs; /* List of registers mentioned by the mem. */
365 rtx_insn_list *loads; /* INSN list of loads seen. */
366 rtx_insn_list *stores; /* INSN list of stores seen. */
367 struct ls_expr * next; /* Next in the list. */
368 int invalid; /* Invalid for some reason. */
369 int index; /* If it maps to a bitmap index. */
370 unsigned int hash_index; /* Index when in a hash table. */
371 rtx reaching_reg; /* Register to use when re-writing. */
372 };
373
374 /* Head of the list of load/store memory refs. */
375 static struct ls_expr * pre_ldst_mems = NULL;
376
377 struct pre_ldst_expr_hasher : typed_noop_remove <ls_expr>
378 {
379 typedef ls_expr *value_type;
380 typedef value_type compare_type;
381 static inline hashval_t hash (const ls_expr *);
382 static inline bool equal (const ls_expr *, const ls_expr *);
383 };
384
385 /* Hashtable helpers. */
386 inline hashval_t
387 pre_ldst_expr_hasher::hash (const ls_expr *x)
388 {
389 int do_not_record_p = 0;
390 return
391 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
392 }
393
394 static int expr_equiv_p (const_rtx, const_rtx);
395
396 inline bool
397 pre_ldst_expr_hasher::equal (const ls_expr *ptr1,
398 const ls_expr *ptr2)
399 {
400 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
401 }
402
403 /* Hashtable for the load/store memory refs. */
404 static hash_table<pre_ldst_expr_hasher> *pre_ldst_table;
405
406 /* Bitmap containing one bit for each register in the program.
407 Used when performing GCSE to track which registers have been set since
408 the start of the basic block. */
409 static regset reg_set_bitmap;
410
411 /* Array, indexed by basic block number for a list of insns which modify
412 memory within that block. */
413 static vec<rtx_insn *> *modify_mem_list;
414 static bitmap modify_mem_list_set;
415
416 /* This array parallels modify_mem_list, except that it stores MEMs
417 being set and their canonicalized memory addresses. */
418 static vec<modify_pair> *canon_modify_mem_list;
419
420 /* Bitmap indexed by block numbers to record which blocks contain
421 function calls. */
422 static bitmap blocks_with_calls;
423
424 /* Various variables for statistics gathering. */
425
426 /* Memory used in a pass.
427 This isn't intended to be absolutely precise. Its intent is only
428 to keep an eye on memory usage. */
429 static int bytes_used;
430
431 /* GCSE substitutions made. */
432 static int gcse_subst_count;
433 /* Number of copy instructions created. */
434 static int gcse_create_count;
435 \f
436 /* Doing code hoisting. */
437 static bool doing_code_hoisting_p = false;
438 \f
439 /* For available exprs */
440 static sbitmap *ae_kill;
441 \f
442 /* Data stored for each basic block. */
443 struct bb_data
444 {
445 /* Maximal register pressure inside basic block for given register class
446 (defined only for the pressure classes). */
447 int max_reg_pressure[N_REG_CLASSES];
448 /* Recorded register pressure of basic block before trying to hoist
449 an expression. Will be used to restore the register pressure
450 if the expression should not be hoisted. */
451 int old_pressure;
452 /* Recorded register live_in info of basic block during code hoisting
453 process. BACKUP is used to record live_in info before trying to
454 hoist an expression, and will be used to restore LIVE_IN if the
455 expression should not be hoisted. */
456 bitmap live_in, backup;
457 };
458
459 #define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
460
461 static basic_block curr_bb;
462
463 /* Current register pressure for each pressure class. */
464 static int curr_reg_pressure[N_REG_CLASSES];
465 \f
466
467 static void compute_can_copy (void);
468 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
469 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
470 static void *gcse_alloc (unsigned long);
471 static void alloc_gcse_mem (void);
472 static void free_gcse_mem (void);
473 static void hash_scan_insn (rtx_insn *, struct gcse_hash_table_d *);
474 static void hash_scan_set (rtx, rtx_insn *, struct gcse_hash_table_d *);
475 static void hash_scan_clobber (rtx, rtx_insn *, struct gcse_hash_table_d *);
476 static void hash_scan_call (rtx, rtx_insn *, struct gcse_hash_table_d *);
477 static int want_to_gcse_p (rtx, int *);
478 static int oprs_unchanged_p (const_rtx, const rtx_insn *, int);
479 static int oprs_anticipatable_p (const_rtx, const rtx_insn *);
480 static int oprs_available_p (const_rtx, const rtx_insn *);
481 static void insert_expr_in_table (rtx, machine_mode, rtx_insn *, int, int,
482 int, struct gcse_hash_table_d *);
483 static unsigned int hash_expr (const_rtx, machine_mode, int *, int);
484 static void record_last_reg_set_info (rtx_insn *, int);
485 static void record_last_mem_set_info (rtx_insn *);
486 static void record_last_set_info (rtx, const_rtx, void *);
487 static void compute_hash_table (struct gcse_hash_table_d *);
488 static void alloc_hash_table (struct gcse_hash_table_d *);
489 static void free_hash_table (struct gcse_hash_table_d *);
490 static void compute_hash_table_work (struct gcse_hash_table_d *);
491 static void dump_hash_table (FILE *, const char *, struct gcse_hash_table_d *);
492 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
493 struct gcse_hash_table_d *);
494 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
495 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
496 static void alloc_pre_mem (int, int);
497 static void free_pre_mem (void);
498 static struct edge_list *compute_pre_data (void);
499 static int pre_expr_reaches_here_p (basic_block, struct gcse_expr *,
500 basic_block);
501 static void insert_insn_end_basic_block (struct gcse_expr *, basic_block);
502 static void pre_insert_copy_insn (struct gcse_expr *, rtx_insn *);
503 static void pre_insert_copies (void);
504 static int pre_delete (void);
505 static int pre_gcse (struct edge_list *);
506 static int one_pre_gcse_pass (void);
507 static void add_label_notes (rtx, rtx_insn *);
508 static void alloc_code_hoist_mem (int, int);
509 static void free_code_hoist_mem (void);
510 static void compute_code_hoist_vbeinout (void);
511 static void compute_code_hoist_data (void);
512 static int should_hoist_expr_to_dom (basic_block, struct gcse_expr *, basic_block,
513 sbitmap, int, int *, enum reg_class,
514 int *, bitmap, rtx_insn *);
515 static int hoist_code (void);
516 static enum reg_class get_regno_pressure_class (int regno, int *nregs);
517 static enum reg_class get_pressure_class_and_nregs (rtx_insn *insn, int *nregs);
518 static int one_code_hoisting_pass (void);
519 static rtx_insn *process_insert_insn (struct gcse_expr *);
520 static int pre_edge_insert (struct edge_list *, struct gcse_expr **);
521 static int pre_expr_reaches_here_p_work (basic_block, struct gcse_expr *,
522 basic_block, char *);
523 static struct ls_expr * ldst_entry (rtx);
524 static void free_ldst_entry (struct ls_expr *);
525 static void free_ld_motion_mems (void);
526 static void print_ldst_list (FILE *);
527 static struct ls_expr * find_rtx_in_ldst (rtx);
528 static int simple_mem (const_rtx);
529 static void invalidate_any_buried_refs (rtx);
530 static void compute_ld_motion_mems (void);
531 static void trim_ld_motion_mems (void);
532 static void update_ld_motion_stores (struct gcse_expr *);
533 static void clear_modify_mem_tables (void);
534 static void free_modify_mem_tables (void);
535 static bool is_too_expensive (const char *);
536
537 #define GNEW(T) ((T *) gmalloc (sizeof (T)))
538 #define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
539
540 #define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
541 #define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
542
543 #define GNEWVAR(T, S) ((T *) gmalloc ((S)))
544 #define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
545
546 #define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
547 #define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
548 \f
549 /* Misc. utilities. */
550
551 #define can_copy \
552 (this_target_gcse->x_can_copy)
553 #define can_copy_init_p \
554 (this_target_gcse->x_can_copy_init_p)
555
556 /* Compute which modes support reg/reg copy operations. */
557
558 static void
559 compute_can_copy (void)
560 {
561 int i;
562 #ifndef AVOID_CCMODE_COPIES
563 rtx reg;
564 rtx_insn *insn;
565 #endif
566 memset (can_copy, 0, NUM_MACHINE_MODES);
567
568 start_sequence ();
569 for (i = 0; i < NUM_MACHINE_MODES; i++)
570 if (GET_MODE_CLASS (i) == MODE_CC)
571 {
572 #ifdef AVOID_CCMODE_COPIES
573 can_copy[i] = 0;
574 #else
575 reg = gen_rtx_REG ((machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
576 insn = emit_insn (gen_rtx_SET (reg, reg));
577 if (recog (PATTERN (insn), insn, NULL) >= 0)
578 can_copy[i] = 1;
579 #endif
580 }
581 else
582 can_copy[i] = 1;
583
584 end_sequence ();
585 }
586
587 /* Returns whether the mode supports reg/reg copy operations. */
588
589 bool
590 can_copy_p (machine_mode mode)
591 {
592 if (! can_copy_init_p)
593 {
594 compute_can_copy ();
595 can_copy_init_p = true;
596 }
597
598 return can_copy[mode] != 0;
599 }
600 \f
601 /* Cover function to xmalloc to record bytes allocated. */
602
603 static void *
604 gmalloc (size_t size)
605 {
606 bytes_used += size;
607 return xmalloc (size);
608 }
609
610 /* Cover function to xcalloc to record bytes allocated. */
611
612 static void *
613 gcalloc (size_t nelem, size_t elsize)
614 {
615 bytes_used += nelem * elsize;
616 return xcalloc (nelem, elsize);
617 }
618
619 /* Cover function to obstack_alloc. */
620
621 static void *
622 gcse_alloc (unsigned long size)
623 {
624 bytes_used += size;
625 return obstack_alloc (&gcse_obstack, size);
626 }
627
628 /* Allocate memory for the reg/memory set tracking tables.
629 This is called at the start of each pass. */
630
631 static void
632 alloc_gcse_mem (void)
633 {
634 /* Allocate vars to track sets of regs. */
635 reg_set_bitmap = ALLOC_REG_SET (NULL);
636
637 /* Allocate array to keep a list of insns which modify memory in each
638 basic block. The two typedefs are needed to work around the
639 pre-processor limitation with template types in macro arguments. */
640 typedef vec<rtx_insn *> vec_rtx_heap;
641 typedef vec<modify_pair> vec_modify_pair_heap;
642 modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block_for_fn (cfun));
643 canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap,
644 last_basic_block_for_fn (cfun));
645 modify_mem_list_set = BITMAP_ALLOC (NULL);
646 blocks_with_calls = BITMAP_ALLOC (NULL);
647 }
648
649 /* Free memory allocated by alloc_gcse_mem. */
650
651 static void
652 free_gcse_mem (void)
653 {
654 FREE_REG_SET (reg_set_bitmap);
655
656 free_modify_mem_tables ();
657 BITMAP_FREE (modify_mem_list_set);
658 BITMAP_FREE (blocks_with_calls);
659 }
660 \f
661 /* Compute the local properties of each recorded expression.
662
663 Local properties are those that are defined by the block, irrespective of
664 other blocks.
665
666 An expression is transparent in a block if its operands are not modified
667 in the block.
668
669 An expression is computed (locally available) in a block if it is computed
670 at least once and expression would contain the same value if the
671 computation was moved to the end of the block.
672
673 An expression is locally anticipatable in a block if it is computed at
674 least once and expression would contain the same value if the computation
675 was moved to the beginning of the block.
676
677 We call this routine for pre and code hoisting. They all compute
678 basically the same information and thus can easily share this code.
679
680 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
681 properties. If NULL, then it is not necessary to compute or record that
682 particular property.
683
684 TABLE controls which hash table to look at. */
685
686 static void
687 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
688 struct gcse_hash_table_d *table)
689 {
690 unsigned int i;
691
692 /* Initialize any bitmaps that were passed in. */
693 if (transp)
694 {
695 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
696 }
697
698 if (comp)
699 bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
700 if (antloc)
701 bitmap_vector_clear (antloc, last_basic_block_for_fn (cfun));
702
703 for (i = 0; i < table->size; i++)
704 {
705 struct gcse_expr *expr;
706
707 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
708 {
709 int indx = expr->bitmap_index;
710 struct gcse_occr *occr;
711
712 /* The expression is transparent in this block if it is not killed.
713 We start by assuming all are transparent [none are killed], and
714 then reset the bits for those that are. */
715 if (transp)
716 compute_transp (expr->expr, indx, transp,
717 blocks_with_calls,
718 modify_mem_list_set,
719 canon_modify_mem_list);
720
721 /* The occurrences recorded in antic_occr are exactly those that
722 we want to set to nonzero in ANTLOC. */
723 if (antloc)
724 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
725 {
726 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
727
728 /* While we're scanning the table, this is a good place to
729 initialize this. */
730 occr->deleted_p = 0;
731 }
732
733 /* The occurrences recorded in avail_occr are exactly those that
734 we want to set to nonzero in COMP. */
735 if (comp)
736 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
737 {
738 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
739
740 /* While we're scanning the table, this is a good place to
741 initialize this. */
742 occr->copied_p = 0;
743 }
744
745 /* While we're scanning the table, this is a good place to
746 initialize this. */
747 expr->reaching_reg = 0;
748 }
749 }
750 }
751 \f
752 /* Hash table support. */
753
754 struct reg_avail_info
755 {
756 basic_block last_bb;
757 int first_set;
758 int last_set;
759 };
760
761 static struct reg_avail_info *reg_avail_info;
762 static basic_block current_bb;
763
764 /* See whether X, the source of a set, is something we want to consider for
765 GCSE. */
766
767 static int
768 want_to_gcse_p (rtx x, int *max_distance_ptr)
769 {
770 #ifdef STACK_REGS
771 /* On register stack architectures, don't GCSE constants from the
772 constant pool, as the benefits are often swamped by the overhead
773 of shuffling the register stack between basic blocks. */
774 if (IS_STACK_MODE (GET_MODE (x)))
775 x = avoid_constant_pool_reference (x);
776 #endif
777
778 /* GCSE'ing constants:
779
780 We do not specifically distinguish between constant and non-constant
781 expressions in PRE and Hoist. We use set_src_cost below to limit
782 the maximum distance simple expressions can travel.
783
784 Nevertheless, constants are much easier to GCSE, and, hence,
785 it is easy to overdo the optimizations. Usually, excessive PRE and
786 Hoisting of constant leads to increased register pressure.
787
788 RA can deal with this by rematerialing some of the constants.
789 Therefore, it is important that the back-end generates sets of constants
790 in a way that allows reload rematerialize them under high register
791 pressure, i.e., a pseudo register with REG_EQUAL to constant
792 is set only once. Failing to do so will result in IRA/reload
793 spilling such constants under high register pressure instead of
794 rematerializing them. */
795
796 switch (GET_CODE (x))
797 {
798 case REG:
799 case SUBREG:
800 case CALL:
801 return 0;
802
803 CASE_CONST_ANY:
804 if (!doing_code_hoisting_p)
805 /* Do not PRE constants. */
806 return 0;
807
808 /* FALLTHRU */
809
810 default:
811 if (doing_code_hoisting_p)
812 /* PRE doesn't implement max_distance restriction. */
813 {
814 int cost;
815 int max_distance;
816
817 gcc_assert (!optimize_function_for_speed_p (cfun)
818 && optimize_function_for_size_p (cfun));
819 cost = set_src_cost (x, 0);
820
821 if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
822 {
823 max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
824 if (max_distance == 0)
825 return 0;
826
827 gcc_assert (max_distance > 0);
828 }
829 else
830 max_distance = 0;
831
832 if (max_distance_ptr)
833 *max_distance_ptr = max_distance;
834 }
835
836 return can_assign_to_reg_without_clobbers_p (x);
837 }
838 }
839
840 /* Used internally by can_assign_to_reg_without_clobbers_p. */
841
842 static GTY(()) rtx_insn *test_insn;
843
844 /* Return true if we can assign X to a pseudo register such that the
845 resulting insn does not result in clobbering a hard register as a
846 side-effect.
847
848 Additionally, if the target requires it, check that the resulting insn
849 can be copied. If it cannot, this means that X is special and probably
850 has hidden side-effects we don't want to mess with.
851
852 This function is typically used by code motion passes, to verify
853 that it is safe to insert an insn without worrying about clobbering
854 maybe live hard regs. */
855
856 bool
857 can_assign_to_reg_without_clobbers_p (rtx x)
858 {
859 int num_clobbers = 0;
860 int icode;
861 bool can_assign = false;
862
863 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
864 if (general_operand (x, GET_MODE (x)))
865 return 1;
866 else if (GET_MODE (x) == VOIDmode)
867 return 0;
868
869 /* Otherwise, check if we can make a valid insn from it. First initialize
870 our test insn if we haven't already. */
871 if (test_insn == 0)
872 {
873 test_insn
874 = make_insn_raw (gen_rtx_SET (gen_rtx_REG (word_mode,
875 FIRST_PSEUDO_REGISTER * 2),
876 const0_rtx));
877 SET_NEXT_INSN (test_insn) = SET_PREV_INSN (test_insn) = 0;
878 INSN_LOCATION (test_insn) = UNKNOWN_LOCATION;
879 }
880
881 /* Now make an insn like the one we would make when GCSE'ing and see if
882 valid. */
883 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
884 SET_SRC (PATTERN (test_insn)) = x;
885
886 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
887
888 /* If the test insn is valid and doesn't need clobbers, and the target also
889 has no objections, we're good. */
890 if (icode >= 0
891 && (num_clobbers == 0 || !added_clobbers_hard_reg_p (icode))
892 && ! (targetm.cannot_copy_insn_p
893 && targetm.cannot_copy_insn_p (test_insn)))
894 can_assign = true;
895
896 /* Make sure test_insn doesn't have any pointers into GC space. */
897 SET_SRC (PATTERN (test_insn)) = NULL_RTX;
898
899 return can_assign;
900 }
901
902 /* Return nonzero if the operands of expression X are unchanged from the
903 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
904 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
905
906 static int
907 oprs_unchanged_p (const_rtx x, const rtx_insn *insn, int avail_p)
908 {
909 int i, j;
910 enum rtx_code code;
911 const char *fmt;
912
913 if (x == 0)
914 return 1;
915
916 code = GET_CODE (x);
917 switch (code)
918 {
919 case REG:
920 {
921 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
922
923 if (info->last_bb != current_bb)
924 return 1;
925 if (avail_p)
926 return info->last_set < DF_INSN_LUID (insn);
927 else
928 return info->first_set >= DF_INSN_LUID (insn);
929 }
930
931 case MEM:
932 if (! flag_gcse_lm
933 || load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
934 x, avail_p))
935 return 0;
936 else
937 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
938
939 case PRE_DEC:
940 case PRE_INC:
941 case POST_DEC:
942 case POST_INC:
943 case PRE_MODIFY:
944 case POST_MODIFY:
945 return 0;
946
947 case PC:
948 case CC0: /*FIXME*/
949 case CONST:
950 CASE_CONST_ANY:
951 case SYMBOL_REF:
952 case LABEL_REF:
953 case ADDR_VEC:
954 case ADDR_DIFF_VEC:
955 return 1;
956
957 default:
958 break;
959 }
960
961 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
962 {
963 if (fmt[i] == 'e')
964 {
965 /* If we are about to do the last recursive call needed at this
966 level, change it into iteration. This function is called enough
967 to be worth it. */
968 if (i == 0)
969 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
970
971 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
972 return 0;
973 }
974 else if (fmt[i] == 'E')
975 for (j = 0; j < XVECLEN (x, i); j++)
976 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
977 return 0;
978 }
979
980 return 1;
981 }
982
983 /* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
984
985 struct mem_conflict_info
986 {
987 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
988 see if a memory store conflicts with this memory load. */
989 const_rtx mem;
990
991 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
992 references. */
993 bool conflict;
994 };
995
996 /* DEST is the output of an instruction. If it is a memory reference and
997 possibly conflicts with the load found in DATA, then communicate this
998 information back through DATA. */
999
1000 static void
1001 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
1002 void *data)
1003 {
1004 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
1005
1006 while (GET_CODE (dest) == SUBREG
1007 || GET_CODE (dest) == ZERO_EXTRACT
1008 || GET_CODE (dest) == STRICT_LOW_PART)
1009 dest = XEXP (dest, 0);
1010
1011 /* If DEST is not a MEM, then it will not conflict with the load. Note
1012 that function calls are assumed to clobber memory, but are handled
1013 elsewhere. */
1014 if (! MEM_P (dest))
1015 return;
1016
1017 /* If we are setting a MEM in our list of specially recognized MEMs,
1018 don't mark as killed this time. */
1019 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
1020 {
1021 if (!find_rtx_in_ldst (dest))
1022 mci->conflict = true;
1023 return;
1024 }
1025
1026 if (true_dependence (dest, GET_MODE (dest), mci->mem))
1027 mci->conflict = true;
1028 }
1029
1030 /* Return nonzero if the expression in X (a memory reference) is killed
1031 in block BB before or after the insn with the LUID in UID_LIMIT.
1032 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1033 before UID_LIMIT.
1034
1035 To check the entire block, set UID_LIMIT to max_uid + 1 and
1036 AVAIL_P to 0. */
1037
1038 static int
1039 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1040 int avail_p)
1041 {
1042 vec<rtx_insn *> list = modify_mem_list[bb->index];
1043 rtx_insn *setter;
1044 unsigned ix;
1045
1046 /* If this is a readonly then we aren't going to be changing it. */
1047 if (MEM_READONLY_P (x))
1048 return 0;
1049
1050 FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
1051 {
1052 struct mem_conflict_info mci;
1053
1054 /* Ignore entries in the list that do not apply. */
1055 if ((avail_p
1056 && DF_INSN_LUID (setter) < uid_limit)
1057 || (! avail_p
1058 && DF_INSN_LUID (setter) > uid_limit))
1059 continue;
1060
1061 /* If SETTER is a call everything is clobbered. Note that calls
1062 to pure functions are never put on the list, so we need not
1063 worry about them. */
1064 if (CALL_P (setter))
1065 return 1;
1066
1067 /* SETTER must be an INSN of some kind that sets memory. Call
1068 note_stores to examine each hunk of memory that is modified. */
1069 mci.mem = x;
1070 mci.conflict = false;
1071 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1072 if (mci.conflict)
1073 return 1;
1074 }
1075 return 0;
1076 }
1077
1078 /* Return nonzero if the operands of expression X are unchanged from
1079 the start of INSN's basic block up to but not including INSN. */
1080
1081 static int
1082 oprs_anticipatable_p (const_rtx x, const rtx_insn *insn)
1083 {
1084 return oprs_unchanged_p (x, insn, 0);
1085 }
1086
1087 /* Return nonzero if the operands of expression X are unchanged from
1088 INSN to the end of INSN's basic block. */
1089
1090 static int
1091 oprs_available_p (const_rtx x, const rtx_insn *insn)
1092 {
1093 return oprs_unchanged_p (x, insn, 1);
1094 }
1095
1096 /* Hash expression X.
1097
1098 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1099 indicating if a volatile operand is found or if the expression contains
1100 something we don't want to insert in the table. HASH_TABLE_SIZE is
1101 the current size of the hash table to be probed. */
1102
1103 static unsigned int
1104 hash_expr (const_rtx x, machine_mode mode, int *do_not_record_p,
1105 int hash_table_size)
1106 {
1107 unsigned int hash;
1108
1109 *do_not_record_p = 0;
1110
1111 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
1112 return hash % hash_table_size;
1113 }
1114
1115 /* Return nonzero if exp1 is equivalent to exp2. */
1116
1117 static int
1118 expr_equiv_p (const_rtx x, const_rtx y)
1119 {
1120 return exp_equiv_p (x, y, 0, true);
1121 }
1122
1123 /* Insert expression X in INSN in the hash TABLE.
1124 If it is already present, record it as the last occurrence in INSN's
1125 basic block.
1126
1127 MODE is the mode of the value X is being stored into.
1128 It is only used if X is a CONST_INT.
1129
1130 ANTIC_P is nonzero if X is an anticipatable expression.
1131 AVAIL_P is nonzero if X is an available expression.
1132
1133 MAX_DISTANCE is the maximum distance in instructions this expression can
1134 be moved. */
1135
1136 static void
1137 insert_expr_in_table (rtx x, machine_mode mode, rtx_insn *insn,
1138 int antic_p,
1139 int avail_p, int max_distance, struct gcse_hash_table_d *table)
1140 {
1141 int found, do_not_record_p;
1142 unsigned int hash;
1143 struct gcse_expr *cur_expr, *last_expr = NULL;
1144 struct gcse_occr *antic_occr, *avail_occr;
1145
1146 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1147
1148 /* Do not insert expression in table if it contains volatile operands,
1149 or if hash_expr determines the expression is something we don't want
1150 to or can't handle. */
1151 if (do_not_record_p)
1152 return;
1153
1154 cur_expr = table->table[hash];
1155 found = 0;
1156
1157 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1158 {
1159 /* If the expression isn't found, save a pointer to the end of
1160 the list. */
1161 last_expr = cur_expr;
1162 cur_expr = cur_expr->next_same_hash;
1163 }
1164
1165 if (! found)
1166 {
1167 cur_expr = GOBNEW (struct gcse_expr);
1168 bytes_used += sizeof (struct gcse_expr);
1169 if (table->table[hash] == NULL)
1170 /* This is the first pattern that hashed to this index. */
1171 table->table[hash] = cur_expr;
1172 else
1173 /* Add EXPR to end of this hash chain. */
1174 last_expr->next_same_hash = cur_expr;
1175
1176 /* Set the fields of the expr element. */
1177 cur_expr->expr = x;
1178 cur_expr->bitmap_index = table->n_elems++;
1179 cur_expr->next_same_hash = NULL;
1180 cur_expr->antic_occr = NULL;
1181 cur_expr->avail_occr = NULL;
1182 gcc_assert (max_distance >= 0);
1183 cur_expr->max_distance = max_distance;
1184 }
1185 else
1186 gcc_assert (cur_expr->max_distance == max_distance);
1187
1188 /* Now record the occurrence(s). */
1189 if (antic_p)
1190 {
1191 antic_occr = cur_expr->antic_occr;
1192
1193 if (antic_occr
1194 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
1195 antic_occr = NULL;
1196
1197 if (antic_occr)
1198 /* Found another instance of the expression in the same basic block.
1199 Prefer the currently recorded one. We want the first one in the
1200 block and the block is scanned from start to end. */
1201 ; /* nothing to do */
1202 else
1203 {
1204 /* First occurrence of this expression in this basic block. */
1205 antic_occr = GOBNEW (struct gcse_occr);
1206 bytes_used += sizeof (struct gcse_occr);
1207 antic_occr->insn = insn;
1208 antic_occr->next = cur_expr->antic_occr;
1209 antic_occr->deleted_p = 0;
1210 cur_expr->antic_occr = antic_occr;
1211 }
1212 }
1213
1214 if (avail_p)
1215 {
1216 avail_occr = cur_expr->avail_occr;
1217
1218 if (avail_occr
1219 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
1220 {
1221 /* Found another instance of the expression in the same basic block.
1222 Prefer this occurrence to the currently recorded one. We want
1223 the last one in the block and the block is scanned from start
1224 to end. */
1225 avail_occr->insn = insn;
1226 }
1227 else
1228 {
1229 /* First occurrence of this expression in this basic block. */
1230 avail_occr = GOBNEW (struct gcse_occr);
1231 bytes_used += sizeof (struct gcse_occr);
1232 avail_occr->insn = insn;
1233 avail_occr->next = cur_expr->avail_occr;
1234 avail_occr->deleted_p = 0;
1235 cur_expr->avail_occr = avail_occr;
1236 }
1237 }
1238 }
1239
1240 /* Scan SET present in INSN and add an entry to the hash TABLE. */
1241
1242 static void
1243 hash_scan_set (rtx set, rtx_insn *insn, struct gcse_hash_table_d *table)
1244 {
1245 rtx src = SET_SRC (set);
1246 rtx dest = SET_DEST (set);
1247 rtx note;
1248
1249 if (GET_CODE (src) == CALL)
1250 hash_scan_call (src, insn, table);
1251
1252 else if (REG_P (dest))
1253 {
1254 unsigned int regno = REGNO (dest);
1255 int max_distance = 0;
1256
1257 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1258
1259 This allows us to do a single GCSE pass and still eliminate
1260 redundant constants, addresses or other expressions that are
1261 constructed with multiple instructions.
1262
1263 However, keep the original SRC if INSN is a simple reg-reg move.
1264 In this case, there will almost always be a REG_EQUAL note on the
1265 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1266 for INSN, we miss copy propagation opportunities and we perform the
1267 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1268 do more than one PRE GCSE pass.
1269
1270 Note that this does not impede profitable constant propagations. We
1271 "look through" reg-reg sets in lookup_avail_set. */
1272 note = find_reg_equal_equiv_note (insn);
1273 if (note != 0
1274 && REG_NOTE_KIND (note) == REG_EQUAL
1275 && !REG_P (src)
1276 && want_to_gcse_p (XEXP (note, 0), NULL))
1277 src = XEXP (note, 0), set = gen_rtx_SET (dest, src);
1278
1279 /* Only record sets of pseudo-regs in the hash table. */
1280 if (regno >= FIRST_PSEUDO_REGISTER
1281 /* Don't GCSE something if we can't do a reg/reg copy. */
1282 && can_copy_p (GET_MODE (dest))
1283 /* GCSE commonly inserts instruction after the insn. We can't
1284 do that easily for EH edges so disable GCSE on these for now. */
1285 /* ??? We can now easily create new EH landing pads at the
1286 gimple level, for splitting edges; there's no reason we
1287 can't do the same thing at the rtl level. */
1288 && !can_throw_internal (insn)
1289 /* Is SET_SRC something we want to gcse? */
1290 && want_to_gcse_p (src, &max_distance)
1291 /* Don't CSE a nop. */
1292 && ! set_noop_p (set)
1293 /* Don't GCSE if it has attached REG_EQUIV note.
1294 At this point this only function parameters should have
1295 REG_EQUIV notes and if the argument slot is used somewhere
1296 explicitly, it means address of parameter has been taken,
1297 so we should not extend the lifetime of the pseudo. */
1298 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1299 {
1300 /* An expression is not anticipatable if its operands are
1301 modified before this insn or if this is not the only SET in
1302 this insn. The latter condition does not have to mean that
1303 SRC itself is not anticipatable, but we just will not be
1304 able to handle code motion of insns with multiple sets. */
1305 int antic_p = oprs_anticipatable_p (src, insn)
1306 && !multiple_sets (insn);
1307 /* An expression is not available if its operands are
1308 subsequently modified, including this insn. It's also not
1309 available if this is a branch, because we can't insert
1310 a set after the branch. */
1311 int avail_p = (oprs_available_p (src, insn)
1312 && ! JUMP_P (insn));
1313
1314 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1315 max_distance, table);
1316 }
1317 }
1318 /* In case of store we want to consider the memory value as available in
1319 the REG stored in that memory. This makes it possible to remove
1320 redundant loads from due to stores to the same location. */
1321 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1322 {
1323 unsigned int regno = REGNO (src);
1324 int max_distance = 0;
1325
1326 /* Only record sets of pseudo-regs in the hash table. */
1327 if (regno >= FIRST_PSEUDO_REGISTER
1328 /* Don't GCSE something if we can't do a reg/reg copy. */
1329 && can_copy_p (GET_MODE (src))
1330 /* GCSE commonly inserts instruction after the insn. We can't
1331 do that easily for EH edges so disable GCSE on these for now. */
1332 && !can_throw_internal (insn)
1333 /* Is SET_DEST something we want to gcse? */
1334 && want_to_gcse_p (dest, &max_distance)
1335 /* Don't CSE a nop. */
1336 && ! set_noop_p (set)
1337 /* Don't GCSE if it has attached REG_EQUIV note.
1338 At this point this only function parameters should have
1339 REG_EQUIV notes and if the argument slot is used somewhere
1340 explicitly, it means address of parameter has been taken,
1341 so we should not extend the lifetime of the pseudo. */
1342 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1343 || ! MEM_P (XEXP (note, 0))))
1344 {
1345 /* Stores are never anticipatable. */
1346 int antic_p = 0;
1347 /* An expression is not available if its operands are
1348 subsequently modified, including this insn. It's also not
1349 available if this is a branch, because we can't insert
1350 a set after the branch. */
1351 int avail_p = oprs_available_p (dest, insn)
1352 && ! JUMP_P (insn);
1353
1354 /* Record the memory expression (DEST) in the hash table. */
1355 insert_expr_in_table (dest, GET_MODE (dest), insn,
1356 antic_p, avail_p, max_distance, table);
1357 }
1358 }
1359 }
1360
1361 static void
1362 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1363 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1364 {
1365 /* Currently nothing to do. */
1366 }
1367
1368 static void
1369 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1370 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1371 {
1372 /* Currently nothing to do. */
1373 }
1374
1375 /* Process INSN and add hash table entries as appropriate. */
1376
1377 static void
1378 hash_scan_insn (rtx_insn *insn, struct gcse_hash_table_d *table)
1379 {
1380 rtx pat = PATTERN (insn);
1381 int i;
1382
1383 /* Pick out the sets of INSN and for other forms of instructions record
1384 what's been modified. */
1385
1386 if (GET_CODE (pat) == SET)
1387 hash_scan_set (pat, insn, table);
1388
1389 else if (GET_CODE (pat) == CLOBBER)
1390 hash_scan_clobber (pat, insn, table);
1391
1392 else if (GET_CODE (pat) == CALL)
1393 hash_scan_call (pat, insn, table);
1394
1395 else if (GET_CODE (pat) == PARALLEL)
1396 for (i = 0; i < XVECLEN (pat, 0); i++)
1397 {
1398 rtx x = XVECEXP (pat, 0, i);
1399
1400 if (GET_CODE (x) == SET)
1401 hash_scan_set (x, insn, table);
1402 else if (GET_CODE (x) == CLOBBER)
1403 hash_scan_clobber (x, insn, table);
1404 else if (GET_CODE (x) == CALL)
1405 hash_scan_call (x, insn, table);
1406 }
1407 }
1408
1409 /* Dump the hash table TABLE to file FILE under the name NAME. */
1410
1411 static void
1412 dump_hash_table (FILE *file, const char *name, struct gcse_hash_table_d *table)
1413 {
1414 int i;
1415 /* Flattened out table, so it's printed in proper order. */
1416 struct gcse_expr **flat_table;
1417 unsigned int *hash_val;
1418 struct gcse_expr *expr;
1419
1420 flat_table = XCNEWVEC (struct gcse_expr *, table->n_elems);
1421 hash_val = XNEWVEC (unsigned int, table->n_elems);
1422
1423 for (i = 0; i < (int) table->size; i++)
1424 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1425 {
1426 flat_table[expr->bitmap_index] = expr;
1427 hash_val[expr->bitmap_index] = i;
1428 }
1429
1430 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1431 name, table->size, table->n_elems);
1432
1433 for (i = 0; i < (int) table->n_elems; i++)
1434 if (flat_table[i] != 0)
1435 {
1436 expr = flat_table[i];
1437 fprintf (file, "Index %d (hash value %d; max distance %d)\n ",
1438 expr->bitmap_index, hash_val[i], expr->max_distance);
1439 print_rtl (file, expr->expr);
1440 fprintf (file, "\n");
1441 }
1442
1443 fprintf (file, "\n");
1444
1445 free (flat_table);
1446 free (hash_val);
1447 }
1448
1449 /* Record register first/last/block set information for REGNO in INSN.
1450
1451 first_set records the first place in the block where the register
1452 is set and is used to compute "anticipatability".
1453
1454 last_set records the last place in the block where the register
1455 is set and is used to compute "availability".
1456
1457 last_bb records the block for which first_set and last_set are
1458 valid, as a quick test to invalidate them. */
1459
1460 static void
1461 record_last_reg_set_info (rtx_insn *insn, int regno)
1462 {
1463 struct reg_avail_info *info = &reg_avail_info[regno];
1464 int luid = DF_INSN_LUID (insn);
1465
1466 info->last_set = luid;
1467 if (info->last_bb != current_bb)
1468 {
1469 info->last_bb = current_bb;
1470 info->first_set = luid;
1471 }
1472 }
1473
1474 /* Record memory modification information for INSN. We do not actually care
1475 about the memory location(s) that are set, or even how they are set (consider
1476 a CALL_INSN). We merely need to record which insns modify memory. */
1477
1478 static void
1479 record_last_mem_set_info (rtx_insn *insn)
1480 {
1481 if (! flag_gcse_lm)
1482 return;
1483
1484 record_last_mem_set_info_common (insn, modify_mem_list,
1485 canon_modify_mem_list,
1486 modify_mem_list_set,
1487 blocks_with_calls);
1488 }
1489
1490 /* Called from compute_hash_table via note_stores to handle one
1491 SET or CLOBBER in an insn. DATA is really the instruction in which
1492 the SET is taking place. */
1493
1494 static void
1495 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1496 {
1497 rtx_insn *last_set_insn = (rtx_insn *) data;
1498
1499 if (GET_CODE (dest) == SUBREG)
1500 dest = SUBREG_REG (dest);
1501
1502 if (REG_P (dest))
1503 record_last_reg_set_info (last_set_insn, REGNO (dest));
1504 else if (MEM_P (dest)
1505 /* Ignore pushes, they clobber nothing. */
1506 && ! push_operand (dest, GET_MODE (dest)))
1507 record_last_mem_set_info (last_set_insn);
1508 }
1509
1510 /* Top level function to create an expression hash table.
1511
1512 Expression entries are placed in the hash table if
1513 - they are of the form (set (pseudo-reg) src),
1514 - src is something we want to perform GCSE on,
1515 - none of the operands are subsequently modified in the block
1516
1517 Currently src must be a pseudo-reg or a const_int.
1518
1519 TABLE is the table computed. */
1520
1521 static void
1522 compute_hash_table_work (struct gcse_hash_table_d *table)
1523 {
1524 int i;
1525
1526 /* re-Cache any INSN_LIST nodes we have allocated. */
1527 clear_modify_mem_tables ();
1528 /* Some working arrays used to track first and last set in each block. */
1529 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
1530
1531 for (i = 0; i < max_reg_num (); ++i)
1532 reg_avail_info[i].last_bb = NULL;
1533
1534 FOR_EACH_BB_FN (current_bb, cfun)
1535 {
1536 rtx_insn *insn;
1537 unsigned int regno;
1538
1539 /* First pass over the instructions records information used to
1540 determine when registers and memory are first and last set. */
1541 FOR_BB_INSNS (current_bb, insn)
1542 {
1543 if (!NONDEBUG_INSN_P (insn))
1544 continue;
1545
1546 if (CALL_P (insn))
1547 {
1548 hard_reg_set_iterator hrsi;
1549 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1550 0, regno, hrsi)
1551 record_last_reg_set_info (insn, regno);
1552
1553 if (! RTL_CONST_OR_PURE_CALL_P (insn))
1554 record_last_mem_set_info (insn);
1555 }
1556
1557 note_stores (PATTERN (insn), record_last_set_info, insn);
1558 }
1559
1560 /* The next pass builds the hash table. */
1561 FOR_BB_INSNS (current_bb, insn)
1562 if (NONDEBUG_INSN_P (insn))
1563 hash_scan_insn (insn, table);
1564 }
1565
1566 free (reg_avail_info);
1567 reg_avail_info = NULL;
1568 }
1569
1570 /* Allocate space for the set/expr hash TABLE.
1571 It is used to determine the number of buckets to use. */
1572
1573 static void
1574 alloc_hash_table (struct gcse_hash_table_d *table)
1575 {
1576 int n;
1577
1578 n = get_max_insn_count ();
1579
1580 table->size = n / 4;
1581 if (table->size < 11)
1582 table->size = 11;
1583
1584 /* Attempt to maintain efficient use of hash table.
1585 Making it an odd number is simplest for now.
1586 ??? Later take some measurements. */
1587 table->size |= 1;
1588 n = table->size * sizeof (struct gcse_expr *);
1589 table->table = GNEWVAR (struct gcse_expr *, n);
1590 }
1591
1592 /* Free things allocated by alloc_hash_table. */
1593
1594 static void
1595 free_hash_table (struct gcse_hash_table_d *table)
1596 {
1597 free (table->table);
1598 }
1599
1600 /* Compute the expression hash table TABLE. */
1601
1602 static void
1603 compute_hash_table (struct gcse_hash_table_d *table)
1604 {
1605 /* Initialize count of number of entries in hash table. */
1606 table->n_elems = 0;
1607 memset (table->table, 0, table->size * sizeof (struct gcse_expr *));
1608
1609 compute_hash_table_work (table);
1610 }
1611 \f
1612 /* Expression tracking support. */
1613
1614 /* Clear canon_modify_mem_list and modify_mem_list tables. */
1615 static void
1616 clear_modify_mem_tables (void)
1617 {
1618 unsigned i;
1619 bitmap_iterator bi;
1620
1621 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
1622 {
1623 modify_mem_list[i].release ();
1624 canon_modify_mem_list[i].release ();
1625 }
1626 bitmap_clear (modify_mem_list_set);
1627 bitmap_clear (blocks_with_calls);
1628 }
1629
1630 /* Release memory used by modify_mem_list_set. */
1631
1632 static void
1633 free_modify_mem_tables (void)
1634 {
1635 clear_modify_mem_tables ();
1636 free (modify_mem_list);
1637 free (canon_modify_mem_list);
1638 modify_mem_list = 0;
1639 canon_modify_mem_list = 0;
1640 }
1641 \f
1642 /* Compute PRE+LCM working variables. */
1643
1644 /* Local properties of expressions. */
1645
1646 /* Nonzero for expressions that are transparent in the block. */
1647 static sbitmap *transp;
1648
1649 /* Nonzero for expressions that are computed (available) in the block. */
1650 static sbitmap *comp;
1651
1652 /* Nonzero for expressions that are locally anticipatable in the block. */
1653 static sbitmap *antloc;
1654
1655 /* Nonzero for expressions where this block is an optimal computation
1656 point. */
1657 static sbitmap *pre_optimal;
1658
1659 /* Nonzero for expressions which are redundant in a particular block. */
1660 static sbitmap *pre_redundant;
1661
1662 /* Nonzero for expressions which should be inserted on a specific edge. */
1663 static sbitmap *pre_insert_map;
1664
1665 /* Nonzero for expressions which should be deleted in a specific block. */
1666 static sbitmap *pre_delete_map;
1667
1668 /* Allocate vars used for PRE analysis. */
1669
1670 static void
1671 alloc_pre_mem (int n_blocks, int n_exprs)
1672 {
1673 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1674 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1675 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
1676
1677 pre_optimal = NULL;
1678 pre_redundant = NULL;
1679 pre_insert_map = NULL;
1680 pre_delete_map = NULL;
1681 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
1682
1683 /* pre_insert and pre_delete are allocated later. */
1684 }
1685
1686 /* Free vars used for PRE analysis. */
1687
1688 static void
1689 free_pre_mem (void)
1690 {
1691 sbitmap_vector_free (transp);
1692 sbitmap_vector_free (comp);
1693
1694 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
1695
1696 if (pre_optimal)
1697 sbitmap_vector_free (pre_optimal);
1698 if (pre_redundant)
1699 sbitmap_vector_free (pre_redundant);
1700 if (pre_insert_map)
1701 sbitmap_vector_free (pre_insert_map);
1702 if (pre_delete_map)
1703 sbitmap_vector_free (pre_delete_map);
1704
1705 transp = comp = NULL;
1706 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
1707 }
1708
1709 /* Remove certain expressions from anticipatable and transparent
1710 sets of basic blocks that have incoming abnormal edge.
1711 For PRE remove potentially trapping expressions to avoid placing
1712 them on abnormal edges. For hoisting remove memory references that
1713 can be clobbered by calls. */
1714
1715 static void
1716 prune_expressions (bool pre_p)
1717 {
1718 sbitmap prune_exprs;
1719 struct gcse_expr *expr;
1720 unsigned int ui;
1721 basic_block bb;
1722
1723 prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
1724 bitmap_clear (prune_exprs);
1725 for (ui = 0; ui < expr_hash_table.size; ui++)
1726 {
1727 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
1728 {
1729 /* Note potentially trapping expressions. */
1730 if (may_trap_p (expr->expr))
1731 {
1732 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1733 continue;
1734 }
1735
1736 if (!pre_p && MEM_P (expr->expr))
1737 /* Note memory references that can be clobbered by a call.
1738 We do not split abnormal edges in hoisting, so would
1739 a memory reference get hoisted along an abnormal edge,
1740 it would be placed /before/ the call. Therefore, only
1741 constant memory references can be hoisted along abnormal
1742 edges. */
1743 {
1744 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
1745 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
1746 continue;
1747
1748 if (MEM_READONLY_P (expr->expr)
1749 && !MEM_VOLATILE_P (expr->expr)
1750 && MEM_NOTRAP_P (expr->expr))
1751 /* Constant memory reference, e.g., a PIC address. */
1752 continue;
1753
1754 /* ??? Optimally, we would use interprocedural alias
1755 analysis to determine if this mem is actually killed
1756 by this call. */
1757
1758 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1759 }
1760 }
1761 }
1762
1763 FOR_EACH_BB_FN (bb, cfun)
1764 {
1765 edge e;
1766 edge_iterator ei;
1767
1768 /* If the current block is the destination of an abnormal edge, we
1769 kill all trapping (for PRE) and memory (for hoist) expressions
1770 because we won't be able to properly place the instruction on
1771 the edge. So make them neither anticipatable nor transparent.
1772 This is fairly conservative.
1773
1774 ??? For hoisting it may be necessary to check for set-and-jump
1775 instructions here, not just for abnormal edges. The general problem
1776 is that when an expression cannot not be placed right at the end of
1777 a basic block we should account for any side-effects of a subsequent
1778 jump instructions that could clobber the expression. It would
1779 be best to implement this check along the lines of
1780 should_hoist_expr_to_dom where the target block is already known
1781 and, hence, there's no need to conservatively prune expressions on
1782 "intermediate" set-and-jump instructions. */
1783 FOR_EACH_EDGE (e, ei, bb->preds)
1784 if ((e->flags & EDGE_ABNORMAL)
1785 && (pre_p || CALL_P (BB_END (e->src))))
1786 {
1787 bitmap_and_compl (antloc[bb->index],
1788 antloc[bb->index], prune_exprs);
1789 bitmap_and_compl (transp[bb->index],
1790 transp[bb->index], prune_exprs);
1791 break;
1792 }
1793 }
1794
1795 sbitmap_free (prune_exprs);
1796 }
1797
1798 /* It may be necessary to insert a large number of insns on edges to
1799 make the existing occurrences of expressions fully redundant. This
1800 routine examines the set of insertions and deletions and if the ratio
1801 of insertions to deletions is too high for a particular expression, then
1802 the expression is removed from the insertion/deletion sets.
1803
1804 N_ELEMS is the number of elements in the hash table. */
1805
1806 static void
1807 prune_insertions_deletions (int n_elems)
1808 {
1809 sbitmap_iterator sbi;
1810 sbitmap prune_exprs;
1811
1812 /* We always use I to iterate over blocks/edges and J to iterate over
1813 expressions. */
1814 unsigned int i, j;
1815
1816 /* Counts for the number of times an expression needs to be inserted and
1817 number of times an expression can be removed as a result. */
1818 int *insertions = GCNEWVEC (int, n_elems);
1819 int *deletions = GCNEWVEC (int, n_elems);
1820
1821 /* Set of expressions which require too many insertions relative to
1822 the number of deletions achieved. We will prune these out of the
1823 insertion/deletion sets. */
1824 prune_exprs = sbitmap_alloc (n_elems);
1825 bitmap_clear (prune_exprs);
1826
1827 /* Iterate over the edges counting the number of times each expression
1828 needs to be inserted. */
1829 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1830 {
1831 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
1832 insertions[j]++;
1833 }
1834
1835 /* Similarly for deletions, but those occur in blocks rather than on
1836 edges. */
1837 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1838 {
1839 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
1840 deletions[j]++;
1841 }
1842
1843 /* Now that we have accurate counts, iterate over the elements in the
1844 hash table and see if any need too many insertions relative to the
1845 number of evaluations that can be removed. If so, mark them in
1846 PRUNE_EXPRS. */
1847 for (j = 0; j < (unsigned) n_elems; j++)
1848 if (deletions[j]
1849 && ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
1850 bitmap_set_bit (prune_exprs, j);
1851
1852 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
1853 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
1854 {
1855 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1856 bitmap_clear_bit (pre_insert_map[i], j);
1857
1858 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1859 bitmap_clear_bit (pre_delete_map[i], j);
1860 }
1861
1862 sbitmap_free (prune_exprs);
1863 free (insertions);
1864 free (deletions);
1865 }
1866
1867 /* Top level routine to do the dataflow analysis needed by PRE. */
1868
1869 static struct edge_list *
1870 compute_pre_data (void)
1871 {
1872 struct edge_list *edge_list;
1873 basic_block bb;
1874
1875 compute_local_properties (transp, comp, antloc, &expr_hash_table);
1876 prune_expressions (true);
1877 bitmap_vector_clear (ae_kill, last_basic_block_for_fn (cfun));
1878
1879 /* Compute ae_kill for each basic block using:
1880
1881 ~(TRANSP | COMP)
1882 */
1883
1884 FOR_EACH_BB_FN (bb, cfun)
1885 {
1886 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
1887 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
1888 }
1889
1890 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
1891 ae_kill, &pre_insert_map, &pre_delete_map);
1892 sbitmap_vector_free (antloc);
1893 antloc = NULL;
1894 sbitmap_vector_free (ae_kill);
1895 ae_kill = NULL;
1896
1897 prune_insertions_deletions (expr_hash_table.n_elems);
1898
1899 return edge_list;
1900 }
1901 \f
1902 /* PRE utilities */
1903
1904 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
1905 block BB.
1906
1907 VISITED is a pointer to a working buffer for tracking which BB's have
1908 been visited. It is NULL for the top-level call.
1909
1910 We treat reaching expressions that go through blocks containing the same
1911 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
1912 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
1913 2 as not reaching. The intent is to improve the probability of finding
1914 only one reaching expression and to reduce register lifetimes by picking
1915 the closest such expression. */
1916
1917 static int
1918 pre_expr_reaches_here_p_work (basic_block occr_bb, struct gcse_expr *expr,
1919 basic_block bb, char *visited)
1920 {
1921 edge pred;
1922 edge_iterator ei;
1923
1924 FOR_EACH_EDGE (pred, ei, bb->preds)
1925 {
1926 basic_block pred_bb = pred->src;
1927
1928 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1929 /* Has predecessor has already been visited? */
1930 || visited[pred_bb->index])
1931 ;/* Nothing to do. */
1932
1933 /* Does this predecessor generate this expression? */
1934 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
1935 {
1936 /* Is this the occurrence we're looking for?
1937 Note that there's only one generating occurrence per block
1938 so we just need to check the block number. */
1939 if (occr_bb == pred_bb)
1940 return 1;
1941
1942 visited[pred_bb->index] = 1;
1943 }
1944 /* Ignore this predecessor if it kills the expression. */
1945 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
1946 visited[pred_bb->index] = 1;
1947
1948 /* Neither gen nor kill. */
1949 else
1950 {
1951 visited[pred_bb->index] = 1;
1952 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
1953 return 1;
1954 }
1955 }
1956
1957 /* All paths have been checked. */
1958 return 0;
1959 }
1960
1961 /* The wrapper for pre_expr_reaches_here_work that ensures that any
1962 memory allocated for that function is returned. */
1963
1964 static int
1965 pre_expr_reaches_here_p (basic_block occr_bb, struct gcse_expr *expr, basic_block bb)
1966 {
1967 int rval;
1968 char *visited = XCNEWVEC (char, last_basic_block_for_fn (cfun));
1969
1970 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
1971
1972 free (visited);
1973 return rval;
1974 }
1975 \f
1976 /* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
1977
1978 static rtx_insn *
1979 process_insert_insn (struct gcse_expr *expr)
1980 {
1981 rtx reg = expr->reaching_reg;
1982 /* Copy the expression to make sure we don't have any sharing issues. */
1983 rtx exp = copy_rtx (expr->expr);
1984 rtx_insn *pat;
1985
1986 start_sequence ();
1987
1988 /* If the expression is something that's an operand, like a constant,
1989 just copy it to a register. */
1990 if (general_operand (exp, GET_MODE (reg)))
1991 emit_move_insn (reg, exp);
1992
1993 /* Otherwise, make a new insn to compute this expression and make sure the
1994 insn will be recognized (this also adds any needed CLOBBERs). */
1995 else
1996 {
1997 rtx_insn *insn = emit_insn (gen_rtx_SET (reg, exp));
1998
1999 if (insn_invalid_p (insn, false))
2000 gcc_unreachable ();
2001 }
2002
2003 pat = get_insns ();
2004 end_sequence ();
2005
2006 return pat;
2007 }
2008
2009 /* Add EXPR to the end of basic block BB.
2010
2011 This is used by both the PRE and code hoisting. */
2012
2013 static void
2014 insert_insn_end_basic_block (struct gcse_expr *expr, basic_block bb)
2015 {
2016 rtx_insn *insn = BB_END (bb);
2017 rtx_insn *new_insn;
2018 rtx reg = expr->reaching_reg;
2019 int regno = REGNO (reg);
2020 rtx_insn *pat, *pat_end;
2021
2022 pat = process_insert_insn (expr);
2023 gcc_assert (pat && INSN_P (pat));
2024
2025 pat_end = pat;
2026 while (NEXT_INSN (pat_end) != NULL_RTX)
2027 pat_end = NEXT_INSN (pat_end);
2028
2029 /* If the last insn is a jump, insert EXPR in front [taking care to
2030 handle cc0, etc. properly]. Similarly we need to care trapping
2031 instructions in presence of non-call exceptions. */
2032
2033 if (JUMP_P (insn)
2034 || (NONJUMP_INSN_P (insn)
2035 && (!single_succ_p (bb)
2036 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
2037 {
2038 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2039 if cc0 isn't set. */
2040 if (HAVE_cc0)
2041 {
2042 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2043 if (note)
2044 insn = safe_as_a <rtx_insn *> (XEXP (note, 0));
2045 else
2046 {
2047 rtx_insn *maybe_cc0_setter = prev_nonnote_insn (insn);
2048 if (maybe_cc0_setter
2049 && INSN_P (maybe_cc0_setter)
2050 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2051 insn = maybe_cc0_setter;
2052 }
2053 }
2054
2055 /* FIXME: What if something in cc0/jump uses value set in new insn? */
2056 new_insn = emit_insn_before_noloc (pat, insn, bb);
2057 }
2058
2059 /* Likewise if the last insn is a call, as will happen in the presence
2060 of exception handling. */
2061 else if (CALL_P (insn)
2062 && (!single_succ_p (bb)
2063 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
2064 {
2065 /* Keeping in mind targets with small register classes and parameters
2066 in registers, we search backward and place the instructions before
2067 the first parameter is loaded. Do this for everyone for consistency
2068 and a presumption that we'll get better code elsewhere as well. */
2069
2070 /* Since different machines initialize their parameter registers
2071 in different orders, assume nothing. Collect the set of all
2072 parameter registers. */
2073 insn = find_first_parameter_load (insn, BB_HEAD (bb));
2074
2075 /* If we found all the parameter loads, then we want to insert
2076 before the first parameter load.
2077
2078 If we did not find all the parameter loads, then we might have
2079 stopped on the head of the block, which could be a CODE_LABEL.
2080 If we inserted before the CODE_LABEL, then we would be putting
2081 the insn in the wrong basic block. In that case, put the insn
2082 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
2083 while (LABEL_P (insn)
2084 || NOTE_INSN_BASIC_BLOCK_P (insn))
2085 insn = NEXT_INSN (insn);
2086
2087 new_insn = emit_insn_before_noloc (pat, insn, bb);
2088 }
2089 else
2090 new_insn = emit_insn_after_noloc (pat, insn, bb);
2091
2092 while (1)
2093 {
2094 if (INSN_P (pat))
2095 add_label_notes (PATTERN (pat), new_insn);
2096 if (pat == pat_end)
2097 break;
2098 pat = NEXT_INSN (pat);
2099 }
2100
2101 gcse_create_count++;
2102
2103 if (dump_file)
2104 {
2105 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
2106 bb->index, INSN_UID (new_insn));
2107 fprintf (dump_file, "copying expression %d to reg %d\n",
2108 expr->bitmap_index, regno);
2109 }
2110 }
2111
2112 /* Insert partially redundant expressions on edges in the CFG to make
2113 the expressions fully redundant. */
2114
2115 static int
2116 pre_edge_insert (struct edge_list *edge_list, struct gcse_expr **index_map)
2117 {
2118 int e, i, j, num_edges, set_size, did_insert = 0;
2119 sbitmap *inserted;
2120
2121 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2122 if it reaches any of the deleted expressions. */
2123
2124 set_size = pre_insert_map[0]->size;
2125 num_edges = NUM_EDGES (edge_list);
2126 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
2127 bitmap_vector_clear (inserted, num_edges);
2128
2129 for (e = 0; e < num_edges; e++)
2130 {
2131 int indx;
2132 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
2133
2134 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
2135 {
2136 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
2137
2138 for (j = indx;
2139 insert && j < (int) expr_hash_table.n_elems;
2140 j++, insert >>= 1)
2141 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2142 {
2143 struct gcse_expr *expr = index_map[j];
2144 struct gcse_occr *occr;
2145
2146 /* Now look at each deleted occurrence of this expression. */
2147 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2148 {
2149 if (! occr->deleted_p)
2150 continue;
2151
2152 /* Insert this expression on this edge if it would
2153 reach the deleted occurrence in BB. */
2154 if (!bitmap_bit_p (inserted[e], j))
2155 {
2156 rtx_insn *insn;
2157 edge eg = INDEX_EDGE (edge_list, e);
2158
2159 /* We can't insert anything on an abnormal and
2160 critical edge, so we insert the insn at the end of
2161 the previous block. There are several alternatives
2162 detailed in Morgans book P277 (sec 10.5) for
2163 handling this situation. This one is easiest for
2164 now. */
2165
2166 if (eg->flags & EDGE_ABNORMAL)
2167 insert_insn_end_basic_block (index_map[j], bb);
2168 else
2169 {
2170 insn = process_insert_insn (index_map[j]);
2171 insert_insn_on_edge (insn, eg);
2172 }
2173
2174 if (dump_file)
2175 {
2176 fprintf (dump_file, "PRE: edge (%d,%d), ",
2177 bb->index,
2178 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
2179 fprintf (dump_file, "copy expression %d\n",
2180 expr->bitmap_index);
2181 }
2182
2183 update_ld_motion_stores (expr);
2184 bitmap_set_bit (inserted[e], j);
2185 did_insert = 1;
2186 gcse_create_count++;
2187 }
2188 }
2189 }
2190 }
2191 }
2192
2193 sbitmap_vector_free (inserted);
2194 return did_insert;
2195 }
2196
2197 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
2198 Given "old_reg <- expr" (INSN), instead of adding after it
2199 reaching_reg <- old_reg
2200 it's better to do the following:
2201 reaching_reg <- expr
2202 old_reg <- reaching_reg
2203 because this way copy propagation can discover additional PRE
2204 opportunities. But if this fails, we try the old way.
2205 When "expr" is a store, i.e.
2206 given "MEM <- old_reg", instead of adding after it
2207 reaching_reg <- old_reg
2208 it's better to add it before as follows:
2209 reaching_reg <- old_reg
2210 MEM <- reaching_reg. */
2211
2212 static void
2213 pre_insert_copy_insn (struct gcse_expr *expr, rtx_insn *insn)
2214 {
2215 rtx reg = expr->reaching_reg;
2216 int regno = REGNO (reg);
2217 int indx = expr->bitmap_index;
2218 rtx pat = PATTERN (insn);
2219 rtx set, first_set;
2220 rtx_insn *new_insn;
2221 rtx old_reg;
2222 int i;
2223
2224 /* This block matches the logic in hash_scan_insn. */
2225 switch (GET_CODE (pat))
2226 {
2227 case SET:
2228 set = pat;
2229 break;
2230
2231 case PARALLEL:
2232 /* Search through the parallel looking for the set whose
2233 source was the expression that we're interested in. */
2234 first_set = NULL_RTX;
2235 set = NULL_RTX;
2236 for (i = 0; i < XVECLEN (pat, 0); i++)
2237 {
2238 rtx x = XVECEXP (pat, 0, i);
2239 if (GET_CODE (x) == SET)
2240 {
2241 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2242 may not find an equivalent expression, but in this
2243 case the PARALLEL will have a single set. */
2244 if (first_set == NULL_RTX)
2245 first_set = x;
2246 if (expr_equiv_p (SET_SRC (x), expr->expr))
2247 {
2248 set = x;
2249 break;
2250 }
2251 }
2252 }
2253
2254 gcc_assert (first_set);
2255 if (set == NULL_RTX)
2256 set = first_set;
2257 break;
2258
2259 default:
2260 gcc_unreachable ();
2261 }
2262
2263 if (REG_P (SET_DEST (set)))
2264 {
2265 old_reg = SET_DEST (set);
2266 /* Check if we can modify the set destination in the original insn. */
2267 if (validate_change (insn, &SET_DEST (set), reg, 0))
2268 {
2269 new_insn = gen_move_insn (old_reg, reg);
2270 new_insn = emit_insn_after (new_insn, insn);
2271 }
2272 else
2273 {
2274 new_insn = gen_move_insn (reg, old_reg);
2275 new_insn = emit_insn_after (new_insn, insn);
2276 }
2277 }
2278 else /* This is possible only in case of a store to memory. */
2279 {
2280 old_reg = SET_SRC (set);
2281 new_insn = gen_move_insn (reg, old_reg);
2282
2283 /* Check if we can modify the set source in the original insn. */
2284 if (validate_change (insn, &SET_SRC (set), reg, 0))
2285 new_insn = emit_insn_before (new_insn, insn);
2286 else
2287 new_insn = emit_insn_after (new_insn, insn);
2288 }
2289
2290 gcse_create_count++;
2291
2292 if (dump_file)
2293 fprintf (dump_file,
2294 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
2295 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
2296 INSN_UID (insn), regno);
2297 }
2298
2299 /* Copy available expressions that reach the redundant expression
2300 to `reaching_reg'. */
2301
2302 static void
2303 pre_insert_copies (void)
2304 {
2305 unsigned int i, added_copy;
2306 struct gcse_expr *expr;
2307 struct gcse_occr *occr;
2308 struct gcse_occr *avail;
2309
2310 /* For each available expression in the table, copy the result to
2311 `reaching_reg' if the expression reaches a deleted one.
2312
2313 ??? The current algorithm is rather brute force.
2314 Need to do some profiling. */
2315
2316 for (i = 0; i < expr_hash_table.size; i++)
2317 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2318 {
2319 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2320 we don't want to insert a copy here because the expression may not
2321 really be redundant. So only insert an insn if the expression was
2322 deleted. This test also avoids further processing if the
2323 expression wasn't deleted anywhere. */
2324 if (expr->reaching_reg == NULL)
2325 continue;
2326
2327 /* Set when we add a copy for that expression. */
2328 added_copy = 0;
2329
2330 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2331 {
2332 if (! occr->deleted_p)
2333 continue;
2334
2335 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2336 {
2337 rtx_insn *insn = avail->insn;
2338
2339 /* No need to handle this one if handled already. */
2340 if (avail->copied_p)
2341 continue;
2342
2343 /* Don't handle this one if it's a redundant one. */
2344 if (insn->deleted ())
2345 continue;
2346
2347 /* Or if the expression doesn't reach the deleted one. */
2348 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
2349 expr,
2350 BLOCK_FOR_INSN (occr->insn)))
2351 continue;
2352
2353 added_copy = 1;
2354
2355 /* Copy the result of avail to reaching_reg. */
2356 pre_insert_copy_insn (expr, insn);
2357 avail->copied_p = 1;
2358 }
2359 }
2360
2361 if (added_copy)
2362 update_ld_motion_stores (expr);
2363 }
2364 }
2365
2366 struct set_data
2367 {
2368 rtx_insn *insn;
2369 const_rtx set;
2370 int nsets;
2371 };
2372
2373 /* Increment number of sets and record set in DATA. */
2374
2375 static void
2376 record_set_data (rtx dest, const_rtx set, void *data)
2377 {
2378 struct set_data *s = (struct set_data *)data;
2379
2380 if (GET_CODE (set) == SET)
2381 {
2382 /* We allow insns having multiple sets, where all but one are
2383 dead as single set insns. In the common case only a single
2384 set is present, so we want to avoid checking for REG_UNUSED
2385 notes unless necessary. */
2386 if (s->nsets == 1
2387 && find_reg_note (s->insn, REG_UNUSED, SET_DEST (s->set))
2388 && !side_effects_p (s->set))
2389 s->nsets = 0;
2390
2391 if (!s->nsets)
2392 {
2393 /* Record this set. */
2394 s->nsets += 1;
2395 s->set = set;
2396 }
2397 else if (!find_reg_note (s->insn, REG_UNUSED, dest)
2398 || side_effects_p (set))
2399 s->nsets += 1;
2400 }
2401 }
2402
2403 static const_rtx
2404 single_set_gcse (rtx_insn *insn)
2405 {
2406 struct set_data s;
2407 rtx pattern;
2408
2409 gcc_assert (INSN_P (insn));
2410
2411 /* Optimize common case. */
2412 pattern = PATTERN (insn);
2413 if (GET_CODE (pattern) == SET)
2414 return pattern;
2415
2416 s.insn = insn;
2417 s.nsets = 0;
2418 note_stores (pattern, record_set_data, &s);
2419
2420 /* Considered invariant insns have exactly one set. */
2421 gcc_assert (s.nsets == 1);
2422 return s.set;
2423 }
2424
2425 /* Emit move from SRC to DEST noting the equivalence with expression computed
2426 in INSN. */
2427
2428 static rtx_insn *
2429 gcse_emit_move_after (rtx dest, rtx src, rtx_insn *insn)
2430 {
2431 rtx_insn *new_rtx;
2432 const_rtx set = single_set_gcse (insn);
2433 rtx set2;
2434 rtx note;
2435 rtx eqv = NULL_RTX;
2436
2437 /* This should never fail since we're creating a reg->reg copy
2438 we've verified to be valid. */
2439
2440 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
2441
2442 /* Note the equivalence for local CSE pass. Take the note from the old
2443 set if there was one. Otherwise record the SET_SRC from the old set
2444 unless DEST is also an operand of the SET_SRC. */
2445 set2 = single_set (new_rtx);
2446 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
2447 return new_rtx;
2448 if ((note = find_reg_equal_equiv_note (insn)))
2449 eqv = XEXP (note, 0);
2450 else if (! REG_P (dest)
2451 || ! reg_mentioned_p (dest, SET_SRC (set)))
2452 eqv = SET_SRC (set);
2453
2454 if (eqv != NULL_RTX)
2455 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
2456
2457 return new_rtx;
2458 }
2459
2460 /* Delete redundant computations.
2461 Deletion is done by changing the insn to copy the `reaching_reg' of
2462 the expression into the result of the SET. It is left to later passes
2463 to propagate the copy or eliminate it.
2464
2465 Return nonzero if a change is made. */
2466
2467 static int
2468 pre_delete (void)
2469 {
2470 unsigned int i;
2471 int changed;
2472 struct gcse_expr *expr;
2473 struct gcse_occr *occr;
2474
2475 changed = 0;
2476 for (i = 0; i < expr_hash_table.size; i++)
2477 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2478 {
2479 int indx = expr->bitmap_index;
2480
2481 /* We only need to search antic_occr since we require ANTLOC != 0. */
2482 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2483 {
2484 rtx_insn *insn = occr->insn;
2485 rtx set;
2486 basic_block bb = BLOCK_FOR_INSN (insn);
2487
2488 /* We only delete insns that have a single_set. */
2489 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
2490 && (set = single_set (insn)) != 0
2491 && dbg_cnt (pre_insn))
2492 {
2493 /* Create a pseudo-reg to store the result of reaching
2494 expressions into. Get the mode for the new pseudo from
2495 the mode of the original destination pseudo. */
2496 if (expr->reaching_reg == NULL)
2497 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
2498
2499 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
2500 delete_insn (insn);
2501 occr->deleted_p = 1;
2502 changed = 1;
2503 gcse_subst_count++;
2504
2505 if (dump_file)
2506 {
2507 fprintf (dump_file,
2508 "PRE: redundant insn %d (expression %d) in ",
2509 INSN_UID (insn), indx);
2510 fprintf (dump_file, "bb %d, reaching reg is %d\n",
2511 bb->index, REGNO (expr->reaching_reg));
2512 }
2513 }
2514 }
2515 }
2516
2517 return changed;
2518 }
2519
2520 /* Perform GCSE optimizations using PRE.
2521 This is called by one_pre_gcse_pass after all the dataflow analysis
2522 has been done.
2523
2524 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2525 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2526 Compiler Design and Implementation.
2527
2528 ??? A new pseudo reg is created to hold the reaching expression. The nice
2529 thing about the classical approach is that it would try to use an existing
2530 reg. If the register can't be adequately optimized [i.e. we introduce
2531 reload problems], one could add a pass here to propagate the new register
2532 through the block.
2533
2534 ??? We don't handle single sets in PARALLELs because we're [currently] not
2535 able to copy the rest of the parallel when we insert copies to create full
2536 redundancies from partial redundancies. However, there's no reason why we
2537 can't handle PARALLELs in the cases where there are no partial
2538 redundancies. */
2539
2540 static int
2541 pre_gcse (struct edge_list *edge_list)
2542 {
2543 unsigned int i;
2544 int did_insert, changed;
2545 struct gcse_expr **index_map;
2546 struct gcse_expr *expr;
2547
2548 /* Compute a mapping from expression number (`bitmap_index') to
2549 hash table entry. */
2550
2551 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
2552 for (i = 0; i < expr_hash_table.size; i++)
2553 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2554 index_map[expr->bitmap_index] = expr;
2555
2556 /* Delete the redundant insns first so that
2557 - we know what register to use for the new insns and for the other
2558 ones with reaching expressions
2559 - we know which insns are redundant when we go to create copies */
2560
2561 changed = pre_delete ();
2562 did_insert = pre_edge_insert (edge_list, index_map);
2563
2564 /* In other places with reaching expressions, copy the expression to the
2565 specially allocated pseudo-reg that reaches the redundant expr. */
2566 pre_insert_copies ();
2567 if (did_insert)
2568 {
2569 commit_edge_insertions ();
2570 changed = 1;
2571 }
2572
2573 free (index_map);
2574 return changed;
2575 }
2576
2577 /* Top level routine to perform one PRE GCSE pass.
2578
2579 Return nonzero if a change was made. */
2580
2581 static int
2582 one_pre_gcse_pass (void)
2583 {
2584 int changed = 0;
2585
2586 gcse_subst_count = 0;
2587 gcse_create_count = 0;
2588
2589 /* Return if there's nothing to do, or it is too expensive. */
2590 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
2591 || is_too_expensive (_("PRE disabled")))
2592 return 0;
2593
2594 /* We need alias. */
2595 init_alias_analysis ();
2596
2597 bytes_used = 0;
2598 gcc_obstack_init (&gcse_obstack);
2599 alloc_gcse_mem ();
2600
2601 alloc_hash_table (&expr_hash_table);
2602 add_noreturn_fake_exit_edges ();
2603 if (flag_gcse_lm)
2604 compute_ld_motion_mems ();
2605
2606 compute_hash_table (&expr_hash_table);
2607 if (flag_gcse_lm)
2608 trim_ld_motion_mems ();
2609 if (dump_file)
2610 dump_hash_table (dump_file, "Expression", &expr_hash_table);
2611
2612 if (expr_hash_table.n_elems > 0)
2613 {
2614 struct edge_list *edge_list;
2615 alloc_pre_mem (last_basic_block_for_fn (cfun), expr_hash_table.n_elems);
2616 edge_list = compute_pre_data ();
2617 changed |= pre_gcse (edge_list);
2618 free_edge_list (edge_list);
2619 free_pre_mem ();
2620 }
2621
2622 if (flag_gcse_lm)
2623 free_ld_motion_mems ();
2624 remove_fake_exit_edges ();
2625 free_hash_table (&expr_hash_table);
2626
2627 free_gcse_mem ();
2628 obstack_free (&gcse_obstack, NULL);
2629
2630 /* We are finished with alias. */
2631 end_alias_analysis ();
2632
2633 if (dump_file)
2634 {
2635 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
2636 current_function_name (), n_basic_blocks_for_fn (cfun),
2637 bytes_used);
2638 fprintf (dump_file, "%d substs, %d insns created\n",
2639 gcse_subst_count, gcse_create_count);
2640 }
2641
2642 return changed;
2643 }
2644 \f
2645 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2646 to INSN. If such notes are added to an insn which references a
2647 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2648 that note, because the following loop optimization pass requires
2649 them. */
2650
2651 /* ??? If there was a jump optimization pass after gcse and before loop,
2652 then we would not need to do this here, because jump would add the
2653 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
2654
2655 static void
2656 add_label_notes (rtx x, rtx_insn *insn)
2657 {
2658 enum rtx_code code = GET_CODE (x);
2659 int i, j;
2660 const char *fmt;
2661
2662 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2663 {
2664 /* This code used to ignore labels that referred to dispatch tables to
2665 avoid flow generating (slightly) worse code.
2666
2667 We no longer ignore such label references (see LABEL_REF handling in
2668 mark_jump_label for additional information). */
2669
2670 /* There's no reason for current users to emit jump-insns with
2671 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2672 notes. */
2673 gcc_assert (!JUMP_P (insn));
2674 add_reg_note (insn, REG_LABEL_OPERAND, LABEL_REF_LABEL (x));
2675
2676 if (LABEL_P (LABEL_REF_LABEL (x)))
2677 LABEL_NUSES (LABEL_REF_LABEL (x))++;
2678
2679 return;
2680 }
2681
2682 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2683 {
2684 if (fmt[i] == 'e')
2685 add_label_notes (XEXP (x, i), insn);
2686 else if (fmt[i] == 'E')
2687 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2688 add_label_notes (XVECEXP (x, i, j), insn);
2689 }
2690 }
2691
2692 /* Code Hoisting variables and subroutines. */
2693
2694 /* Very busy expressions. */
2695 static sbitmap *hoist_vbein;
2696 static sbitmap *hoist_vbeout;
2697
2698 /* ??? We could compute post dominators and run this algorithm in
2699 reverse to perform tail merging, doing so would probably be
2700 more effective than the tail merging code in jump.c.
2701
2702 It's unclear if tail merging could be run in parallel with
2703 code hoisting. It would be nice. */
2704
2705 /* Allocate vars used for code hoisting analysis. */
2706
2707 static void
2708 alloc_code_hoist_mem (int n_blocks, int n_exprs)
2709 {
2710 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2711 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2712 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2713
2714 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2715 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
2716 }
2717
2718 /* Free vars used for code hoisting analysis. */
2719
2720 static void
2721 free_code_hoist_mem (void)
2722 {
2723 sbitmap_vector_free (antloc);
2724 sbitmap_vector_free (transp);
2725 sbitmap_vector_free (comp);
2726
2727 sbitmap_vector_free (hoist_vbein);
2728 sbitmap_vector_free (hoist_vbeout);
2729
2730 free_dominance_info (CDI_DOMINATORS);
2731 }
2732
2733 /* Compute the very busy expressions at entry/exit from each block.
2734
2735 An expression is very busy if all paths from a given point
2736 compute the expression. */
2737
2738 static void
2739 compute_code_hoist_vbeinout (void)
2740 {
2741 int changed, passes;
2742 basic_block bb;
2743
2744 bitmap_vector_clear (hoist_vbeout, last_basic_block_for_fn (cfun));
2745 bitmap_vector_clear (hoist_vbein, last_basic_block_for_fn (cfun));
2746
2747 passes = 0;
2748 changed = 1;
2749
2750 while (changed)
2751 {
2752 changed = 0;
2753
2754 /* We scan the blocks in the reverse order to speed up
2755 the convergence. */
2756 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2757 {
2758 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
2759 {
2760 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2761 hoist_vbein, bb);
2762
2763 /* Include expressions in VBEout that are calculated
2764 in BB and available at its end. */
2765 bitmap_ior (hoist_vbeout[bb->index],
2766 hoist_vbeout[bb->index], comp[bb->index]);
2767 }
2768
2769 changed |= bitmap_or_and (hoist_vbein[bb->index],
2770 antloc[bb->index],
2771 hoist_vbeout[bb->index],
2772 transp[bb->index]);
2773 }
2774
2775 passes++;
2776 }
2777
2778 if (dump_file)
2779 {
2780 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2781
2782 FOR_EACH_BB_FN (bb, cfun)
2783 {
2784 fprintf (dump_file, "vbein (%d): ", bb->index);
2785 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
2786 fprintf (dump_file, "vbeout(%d): ", bb->index);
2787 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
2788 }
2789 }
2790 }
2791
2792 /* Top level routine to do the dataflow analysis needed by code hoisting. */
2793
2794 static void
2795 compute_code_hoist_data (void)
2796 {
2797 compute_local_properties (transp, comp, antloc, &expr_hash_table);
2798 prune_expressions (false);
2799 compute_code_hoist_vbeinout ();
2800 calculate_dominance_info (CDI_DOMINATORS);
2801 if (dump_file)
2802 fprintf (dump_file, "\n");
2803 }
2804
2805 /* Update register pressure for BB when hoisting an expression from
2806 instruction FROM, if live ranges of inputs are shrunk. Also
2807 maintain live_in information if live range of register referred
2808 in FROM is shrunk.
2809
2810 Return 0 if register pressure doesn't change, otherwise return
2811 the number by which register pressure is decreased.
2812
2813 NOTE: Register pressure won't be increased in this function. */
2814
2815 static int
2816 update_bb_reg_pressure (basic_block bb, rtx_insn *from)
2817 {
2818 rtx dreg;
2819 rtx_insn *insn;
2820 basic_block succ_bb;
2821 df_ref use, op_ref;
2822 edge succ;
2823 edge_iterator ei;
2824 int decreased_pressure = 0;
2825 int nregs;
2826 enum reg_class pressure_class;
2827
2828 FOR_EACH_INSN_USE (use, from)
2829 {
2830 dreg = DF_REF_REAL_REG (use);
2831 /* The live range of register is shrunk only if it isn't:
2832 1. referred on any path from the end of this block to EXIT, or
2833 2. referred by insns other than FROM in this block. */
2834 FOR_EACH_EDGE (succ, ei, bb->succs)
2835 {
2836 succ_bb = succ->dest;
2837 if (succ_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2838 continue;
2839
2840 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2841 break;
2842 }
2843 if (succ != NULL)
2844 continue;
2845
2846 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2847 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2848 {
2849 if (!DF_REF_INSN_INFO (op_ref))
2850 continue;
2851
2852 insn = DF_REF_INSN (op_ref);
2853 if (BLOCK_FOR_INSN (insn) == bb
2854 && NONDEBUG_INSN_P (insn) && insn != from)
2855 break;
2856 }
2857
2858 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2859 /* Decrease register pressure and update live_in information for
2860 this block. */
2861 if (!op_ref && pressure_class != NO_REGS)
2862 {
2863 decreased_pressure += nregs;
2864 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2865 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2866 }
2867 }
2868 return decreased_pressure;
2869 }
2870
2871 /* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2872 flow graph, if it can reach BB unimpared. Stop the search if the
2873 expression would need to be moved more than DISTANCE instructions.
2874
2875 DISTANCE is the number of instructions through which EXPR can be
2876 hoisted up in flow graph.
2877
2878 BB_SIZE points to an array which contains the number of instructions
2879 for each basic block.
2880
2881 PRESSURE_CLASS and NREGS are register class and number of hard registers
2882 for storing EXPR.
2883
2884 HOISTED_BBS points to a bitmap indicating basic blocks through which
2885 EXPR is hoisted.
2886
2887 FROM is the instruction from which EXPR is hoisted.
2888
2889 It's unclear exactly what Muchnick meant by "unimpared". It seems
2890 to me that the expression must either be computed or transparent in
2891 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2892 would allow the expression to be hoisted out of loops, even if
2893 the expression wasn't a loop invariant.
2894
2895 Contrast this to reachability for PRE where an expression is
2896 considered reachable if *any* path reaches instead of *all*
2897 paths. */
2898
2899 static int
2900 should_hoist_expr_to_dom (basic_block expr_bb, struct gcse_expr *expr,
2901 basic_block bb, sbitmap visited, int distance,
2902 int *bb_size, enum reg_class pressure_class,
2903 int *nregs, bitmap hoisted_bbs, rtx_insn *from)
2904 {
2905 unsigned int i;
2906 edge pred;
2907 edge_iterator ei;
2908 sbitmap_iterator sbi;
2909 int visited_allocated_locally = 0;
2910 int decreased_pressure = 0;
2911
2912 if (flag_ira_hoist_pressure)
2913 {
2914 /* Record old information of basic block BB when it is visited
2915 at the first time. */
2916 if (!bitmap_bit_p (hoisted_bbs, bb->index))
2917 {
2918 struct bb_data *data = BB_DATA (bb);
2919 bitmap_copy (data->backup, data->live_in);
2920 data->old_pressure = data->max_reg_pressure[pressure_class];
2921 }
2922 decreased_pressure = update_bb_reg_pressure (bb, from);
2923 }
2924 /* Terminate the search if distance, for which EXPR is allowed to move,
2925 is exhausted. */
2926 if (distance > 0)
2927 {
2928 if (flag_ira_hoist_pressure)
2929 {
2930 /* Prefer to hoist EXPR if register pressure is decreased. */
2931 if (decreased_pressure > *nregs)
2932 distance += bb_size[bb->index];
2933 /* Let EXPR be hoisted through basic block at no cost if one
2934 of following conditions is satisfied:
2935
2936 1. The basic block has low register pressure.
2937 2. Register pressure won't be increases after hoisting EXPR.
2938
2939 Constant expressions is handled conservatively, because
2940 hoisting constant expression aggressively results in worse
2941 code. This decision is made by the observation of CSiBE
2942 on ARM target, while it has no obvious effect on other
2943 targets like x86, x86_64, mips and powerpc. */
2944 else if (CONST_INT_P (expr->expr)
2945 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
2946 >= ira_class_hard_regs_num[pressure_class]
2947 && decreased_pressure < *nregs))
2948 distance -= bb_size[bb->index];
2949 }
2950 else
2951 distance -= bb_size[bb->index];
2952
2953 if (distance <= 0)
2954 return 0;
2955 }
2956 else
2957 gcc_assert (distance == 0);
2958
2959 if (visited == NULL)
2960 {
2961 visited_allocated_locally = 1;
2962 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
2963 bitmap_clear (visited);
2964 }
2965
2966 FOR_EACH_EDGE (pred, ei, bb->preds)
2967 {
2968 basic_block pred_bb = pred->src;
2969
2970 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2971 break;
2972 else if (pred_bb == expr_bb)
2973 continue;
2974 else if (bitmap_bit_p (visited, pred_bb->index))
2975 continue;
2976 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
2977 break;
2978 /* Not killed. */
2979 else
2980 {
2981 bitmap_set_bit (visited, pred_bb->index);
2982 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
2983 visited, distance, bb_size,
2984 pressure_class, nregs,
2985 hoisted_bbs, from))
2986 break;
2987 }
2988 }
2989 if (visited_allocated_locally)
2990 {
2991 /* If EXPR can be hoisted to expr_bb, record basic blocks through
2992 which EXPR is hoisted in hoisted_bbs. */
2993 if (flag_ira_hoist_pressure && !pred)
2994 {
2995 /* Record the basic block from which EXPR is hoisted. */
2996 bitmap_set_bit (visited, bb->index);
2997 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
2998 bitmap_set_bit (hoisted_bbs, i);
2999 }
3000 sbitmap_free (visited);
3001 }
3002
3003 return (pred == NULL);
3004 }
3005 \f
3006 /* Find occurrence in BB. */
3007
3008 static struct gcse_occr *
3009 find_occr_in_bb (struct gcse_occr *occr, basic_block bb)
3010 {
3011 /* Find the right occurrence of this expression. */
3012 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
3013 occr = occr->next;
3014
3015 return occr;
3016 }
3017
3018 /* Actually perform code hoisting.
3019
3020 The code hoisting pass can hoist multiple computations of the same
3021 expression along dominated path to a dominating basic block, like
3022 from b2/b3 to b1 as depicted below:
3023
3024 b1 ------
3025 /\ |
3026 / \ |
3027 bx by distance
3028 / \ |
3029 / \ |
3030 b2 b3 ------
3031
3032 Unfortunately code hoisting generally extends the live range of an
3033 output pseudo register, which increases register pressure and hurts
3034 register allocation. To address this issue, an attribute MAX_DISTANCE
3035 is computed and attached to each expression. The attribute is computed
3036 from rtx cost of the corresponding expression and it's used to control
3037 how long the expression can be hoisted up in flow graph. As the
3038 expression is hoisted up in flow graph, GCC decreases its DISTANCE
3039 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3040 register pressure if live ranges of inputs are shrunk.
3041
3042 Option "-fira-hoist-pressure" implements register pressure directed
3043 hoist based on upper method. The rationale is:
3044 1. Calculate register pressure for each basic block by reusing IRA
3045 facility.
3046 2. When expression is hoisted through one basic block, GCC checks
3047 the change of live ranges for inputs/output. The basic block's
3048 register pressure will be increased because of extended live
3049 range of output. However, register pressure will be decreased
3050 if the live ranges of inputs are shrunk.
3051 3. After knowing how hoisting affects register pressure, GCC prefers
3052 to hoist the expression if it can decrease register pressure, by
3053 increasing DISTANCE of the corresponding expression.
3054 4. If hoisting the expression increases register pressure, GCC checks
3055 register pressure of the basic block and decrease DISTANCE only if
3056 the register pressure is high. In other words, expression will be
3057 hoisted through at no cost if the basic block has low register
3058 pressure.
3059 5. Update register pressure information for basic blocks through
3060 which expression is hoisted. */
3061
3062 static int
3063 hoist_code (void)
3064 {
3065 basic_block bb, dominated;
3066 vec<basic_block> dom_tree_walk;
3067 unsigned int dom_tree_walk_index;
3068 vec<basic_block> domby;
3069 unsigned int i, j, k;
3070 struct gcse_expr **index_map;
3071 struct gcse_expr *expr;
3072 int *to_bb_head;
3073 int *bb_size;
3074 int changed = 0;
3075 struct bb_data *data;
3076 /* Basic blocks that have occurrences reachable from BB. */
3077 bitmap from_bbs;
3078 /* Basic blocks through which expr is hoisted. */
3079 bitmap hoisted_bbs = NULL;
3080 bitmap_iterator bi;
3081
3082 /* Compute a mapping from expression number (`bitmap_index') to
3083 hash table entry. */
3084
3085 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
3086 for (i = 0; i < expr_hash_table.size; i++)
3087 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
3088 index_map[expr->bitmap_index] = expr;
3089
3090 /* Calculate sizes of basic blocks and note how far
3091 each instruction is from the start of its block. We then use this
3092 data to restrict distance an expression can travel. */
3093
3094 to_bb_head = XCNEWVEC (int, get_max_uid ());
3095 bb_size = XCNEWVEC (int, last_basic_block_for_fn (cfun));
3096
3097 FOR_EACH_BB_FN (bb, cfun)
3098 {
3099 rtx_insn *insn;
3100 int to_head;
3101
3102 to_head = 0;
3103 FOR_BB_INSNS (bb, insn)
3104 {
3105 /* Don't count debug instructions to avoid them affecting
3106 decision choices. */
3107 if (NONDEBUG_INSN_P (insn))
3108 to_bb_head[INSN_UID (insn)] = to_head++;
3109 }
3110
3111 bb_size[bb->index] = to_head;
3112 }
3113
3114 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) == 1
3115 && (EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
3116 == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb));
3117
3118 from_bbs = BITMAP_ALLOC (NULL);
3119 if (flag_ira_hoist_pressure)
3120 hoisted_bbs = BITMAP_ALLOC (NULL);
3121
3122 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
3123 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb);
3124
3125 /* Walk over each basic block looking for potentially hoistable
3126 expressions, nothing gets hoisted from the entry block. */
3127 FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
3128 {
3129 domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3130
3131 if (domby.length () == 0)
3132 continue;
3133
3134 /* Examine each expression that is very busy at the exit of this
3135 block. These are the potentially hoistable expressions. */
3136 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
3137 {
3138 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
3139 {
3140 int nregs = 0;
3141 enum reg_class pressure_class = NO_REGS;
3142 /* Current expression. */
3143 struct gcse_expr *expr = index_map[i];
3144 /* Number of occurrences of EXPR that can be hoisted to BB. */
3145 int hoistable = 0;
3146 /* Occurrences reachable from BB. */
3147 vec<occr_t> occrs_to_hoist = vNULL;
3148 /* We want to insert the expression into BB only once, so
3149 note when we've inserted it. */
3150 int insn_inserted_p;
3151 occr_t occr;
3152
3153 /* If an expression is computed in BB and is available at end of
3154 BB, hoist all occurrences dominated by BB to BB. */
3155 if (bitmap_bit_p (comp[bb->index], i))
3156 {
3157 occr = find_occr_in_bb (expr->antic_occr, bb);
3158
3159 if (occr)
3160 {
3161 /* An occurrence might've been already deleted
3162 while processing a dominator of BB. */
3163 if (!occr->deleted_p)
3164 {
3165 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3166 hoistable++;
3167 }
3168 }
3169 else
3170 hoistable++;
3171 }
3172
3173 /* We've found a potentially hoistable expression, now
3174 we look at every block BB dominates to see if it
3175 computes the expression. */
3176 FOR_EACH_VEC_ELT (domby, j, dominated)
3177 {
3178 int max_distance;
3179
3180 /* Ignore self dominance. */
3181 if (bb == dominated)
3182 continue;
3183 /* We've found a dominated block, now see if it computes
3184 the busy expression and whether or not moving that
3185 expression to the "beginning" of that block is safe. */
3186 if (!bitmap_bit_p (antloc[dominated->index], i))
3187 continue;
3188
3189 occr = find_occr_in_bb (expr->antic_occr, dominated);
3190 gcc_assert (occr);
3191
3192 /* An occurrence might've been already deleted
3193 while processing a dominator of BB. */
3194 if (occr->deleted_p)
3195 continue;
3196 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3197
3198 max_distance = expr->max_distance;
3199 if (max_distance > 0)
3200 /* Adjust MAX_DISTANCE to account for the fact that
3201 OCCR won't have to travel all of DOMINATED, but
3202 only part of it. */
3203 max_distance += (bb_size[dominated->index]
3204 - to_bb_head[INSN_UID (occr->insn)]);
3205
3206 pressure_class = get_pressure_class_and_nregs (occr->insn,
3207 &nregs);
3208
3209 /* Note if the expression should be hoisted from the dominated
3210 block to BB if it can reach DOMINATED unimpared.
3211
3212 Keep track of how many times this expression is hoistable
3213 from a dominated block into BB. */
3214 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3215 max_distance, bb_size,
3216 pressure_class, &nregs,
3217 hoisted_bbs, occr->insn))
3218 {
3219 hoistable++;
3220 occrs_to_hoist.safe_push (occr);
3221 bitmap_set_bit (from_bbs, dominated->index);
3222 }
3223 }
3224
3225 /* If we found more than one hoistable occurrence of this
3226 expression, then note it in the vector of expressions to
3227 hoist. It makes no sense to hoist things which are computed
3228 in only one BB, and doing so tends to pessimize register
3229 allocation. One could increase this value to try harder
3230 to avoid any possible code expansion due to register
3231 allocation issues; however experiments have shown that
3232 the vast majority of hoistable expressions are only movable
3233 from two successors, so raising this threshold is likely
3234 to nullify any benefit we get from code hoisting. */
3235 if (hoistable > 1 && dbg_cnt (hoist_insn))
3236 {
3237 /* If (hoistable != vec::length), then there is
3238 an occurrence of EXPR in BB itself. Don't waste
3239 time looking for LCA in this case. */
3240 if ((unsigned) hoistable == occrs_to_hoist.length ())
3241 {
3242 basic_block lca;
3243
3244 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3245 from_bbs);
3246 if (lca != bb)
3247 /* Punt, it's better to hoist these occurrences to
3248 LCA. */
3249 occrs_to_hoist.release ();
3250 }
3251 }
3252 else
3253 /* Punt, no point hoisting a single occurrence. */
3254 occrs_to_hoist.release ();
3255
3256 if (flag_ira_hoist_pressure
3257 && !occrs_to_hoist.is_empty ())
3258 {
3259 /* Increase register pressure of basic blocks to which
3260 expr is hoisted because of extended live range of
3261 output. */
3262 data = BB_DATA (bb);
3263 data->max_reg_pressure[pressure_class] += nregs;
3264 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3265 {
3266 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3267 data->max_reg_pressure[pressure_class] += nregs;
3268 }
3269 }
3270 else if (flag_ira_hoist_pressure)
3271 {
3272 /* Restore register pressure and live_in info for basic
3273 blocks recorded in hoisted_bbs when expr will not be
3274 hoisted. */
3275 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3276 {
3277 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3278 bitmap_copy (data->live_in, data->backup);
3279 data->max_reg_pressure[pressure_class]
3280 = data->old_pressure;
3281 }
3282 }
3283
3284 if (flag_ira_hoist_pressure)
3285 bitmap_clear (hoisted_bbs);
3286
3287 insn_inserted_p = 0;
3288
3289 /* Walk through occurrences of I'th expressions we want
3290 to hoist to BB and make the transformations. */
3291 FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
3292 {
3293 rtx_insn *insn;
3294 const_rtx set;
3295
3296 gcc_assert (!occr->deleted_p);
3297
3298 insn = occr->insn;
3299 set = single_set_gcse (insn);
3300
3301 /* Create a pseudo-reg to store the result of reaching
3302 expressions into. Get the mode for the new pseudo
3303 from the mode of the original destination pseudo.
3304
3305 It is important to use new pseudos whenever we
3306 emit a set. This will allow reload to use
3307 rematerialization for such registers. */
3308 if (!insn_inserted_p)
3309 expr->reaching_reg
3310 = gen_reg_rtx_and_attrs (SET_DEST (set));
3311
3312 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
3313 insn);
3314 delete_insn (insn);
3315 occr->deleted_p = 1;
3316 changed = 1;
3317 gcse_subst_count++;
3318
3319 if (!insn_inserted_p)
3320 {
3321 insert_insn_end_basic_block (expr, bb);
3322 insn_inserted_p = 1;
3323 }
3324 }
3325
3326 occrs_to_hoist.release ();
3327 bitmap_clear (from_bbs);
3328 }
3329 }
3330 domby.release ();
3331 }
3332
3333 dom_tree_walk.release ();
3334 BITMAP_FREE (from_bbs);
3335 if (flag_ira_hoist_pressure)
3336 BITMAP_FREE (hoisted_bbs);
3337
3338 free (bb_size);
3339 free (to_bb_head);
3340 free (index_map);
3341
3342 return changed;
3343 }
3344
3345 /* Return pressure class and number of needed hard registers (through
3346 *NREGS) of register REGNO. */
3347 static enum reg_class
3348 get_regno_pressure_class (int regno, int *nregs)
3349 {
3350 if (regno >= FIRST_PSEUDO_REGISTER)
3351 {
3352 enum reg_class pressure_class;
3353
3354 pressure_class = reg_allocno_class (regno);
3355 pressure_class = ira_pressure_class_translate[pressure_class];
3356 *nregs
3357 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3358 return pressure_class;
3359 }
3360 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3361 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3362 {
3363 *nregs = 1;
3364 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3365 }
3366 else
3367 {
3368 *nregs = 0;
3369 return NO_REGS;
3370 }
3371 }
3372
3373 /* Return pressure class and number of hard registers (through *NREGS)
3374 for destination of INSN. */
3375 static enum reg_class
3376 get_pressure_class_and_nregs (rtx_insn *insn, int *nregs)
3377 {
3378 rtx reg;
3379 enum reg_class pressure_class;
3380 const_rtx set = single_set_gcse (insn);
3381
3382 reg = SET_DEST (set);
3383 if (GET_CODE (reg) == SUBREG)
3384 reg = SUBREG_REG (reg);
3385 if (MEM_P (reg))
3386 {
3387 *nregs = 0;
3388 pressure_class = NO_REGS;
3389 }
3390 else
3391 {
3392 gcc_assert (REG_P (reg));
3393 pressure_class = reg_allocno_class (REGNO (reg));
3394 pressure_class = ira_pressure_class_translate[pressure_class];
3395 *nregs
3396 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3397 }
3398 return pressure_class;
3399 }
3400
3401 /* Increase (if INCR_P) or decrease current register pressure for
3402 register REGNO. */
3403 static void
3404 change_pressure (int regno, bool incr_p)
3405 {
3406 int nregs;
3407 enum reg_class pressure_class;
3408
3409 pressure_class = get_regno_pressure_class (regno, &nregs);
3410 if (! incr_p)
3411 curr_reg_pressure[pressure_class] -= nregs;
3412 else
3413 {
3414 curr_reg_pressure[pressure_class] += nregs;
3415 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3416 < curr_reg_pressure[pressure_class])
3417 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3418 = curr_reg_pressure[pressure_class];
3419 }
3420 }
3421
3422 /* Calculate register pressure for each basic block by walking insns
3423 from last to first. */
3424 static void
3425 calculate_bb_reg_pressure (void)
3426 {
3427 int i;
3428 unsigned int j;
3429 rtx_insn *insn;
3430 basic_block bb;
3431 bitmap curr_regs_live;
3432 bitmap_iterator bi;
3433
3434
3435 ira_setup_eliminable_regset ();
3436 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
3437 FOR_EACH_BB_FN (bb, cfun)
3438 {
3439 curr_bb = bb;
3440 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3441 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3442 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3443 bitmap_copy (curr_regs_live, df_get_live_out (bb));
3444 for (i = 0; i < ira_pressure_classes_num; i++)
3445 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3446 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3447 change_pressure (j, true);
3448
3449 FOR_BB_INSNS_REVERSE (bb, insn)
3450 {
3451 rtx dreg;
3452 int regno;
3453 df_ref def, use;
3454
3455 if (! NONDEBUG_INSN_P (insn))
3456 continue;
3457
3458 FOR_EACH_INSN_DEF (def, insn)
3459 {
3460 dreg = DF_REF_REAL_REG (def);
3461 gcc_assert (REG_P (dreg));
3462 regno = REGNO (dreg);
3463 if (!(DF_REF_FLAGS (def)
3464 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3465 {
3466 if (bitmap_clear_bit (curr_regs_live, regno))
3467 change_pressure (regno, false);
3468 }
3469 }
3470
3471 FOR_EACH_INSN_USE (use, insn)
3472 {
3473 dreg = DF_REF_REAL_REG (use);
3474 gcc_assert (REG_P (dreg));
3475 regno = REGNO (dreg);
3476 if (bitmap_set_bit (curr_regs_live, regno))
3477 change_pressure (regno, true);
3478 }
3479 }
3480 }
3481 BITMAP_FREE (curr_regs_live);
3482
3483 if (dump_file == NULL)
3484 return;
3485
3486 fprintf (dump_file, "\nRegister Pressure: \n");
3487 FOR_EACH_BB_FN (bb, cfun)
3488 {
3489 fprintf (dump_file, " Basic block %d: \n", bb->index);
3490 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3491 {
3492 enum reg_class pressure_class;
3493
3494 pressure_class = ira_pressure_classes[i];
3495 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3496 continue;
3497
3498 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3499 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3500 }
3501 }
3502 fprintf (dump_file, "\n");
3503 }
3504
3505 /* Top level routine to perform one code hoisting (aka unification) pass
3506
3507 Return nonzero if a change was made. */
3508
3509 static int
3510 one_code_hoisting_pass (void)
3511 {
3512 int changed = 0;
3513
3514 gcse_subst_count = 0;
3515 gcse_create_count = 0;
3516
3517 /* Return if there's nothing to do, or it is too expensive. */
3518 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
3519 || is_too_expensive (_("GCSE disabled")))
3520 return 0;
3521
3522 doing_code_hoisting_p = true;
3523
3524 /* Calculate register pressure for each basic block. */
3525 if (flag_ira_hoist_pressure)
3526 {
3527 regstat_init_n_sets_and_refs ();
3528 ira_set_pseudo_classes (false, dump_file);
3529 alloc_aux_for_blocks (sizeof (struct bb_data));
3530 calculate_bb_reg_pressure ();
3531 regstat_free_n_sets_and_refs ();
3532 }
3533
3534 /* We need alias. */
3535 init_alias_analysis ();
3536
3537 bytes_used = 0;
3538 gcc_obstack_init (&gcse_obstack);
3539 alloc_gcse_mem ();
3540
3541 alloc_hash_table (&expr_hash_table);
3542 compute_hash_table (&expr_hash_table);
3543 if (dump_file)
3544 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
3545
3546 if (expr_hash_table.n_elems > 0)
3547 {
3548 alloc_code_hoist_mem (last_basic_block_for_fn (cfun),
3549 expr_hash_table.n_elems);
3550 compute_code_hoist_data ();
3551 changed = hoist_code ();
3552 free_code_hoist_mem ();
3553 }
3554
3555 if (flag_ira_hoist_pressure)
3556 {
3557 free_aux_for_blocks ();
3558 free_reg_info ();
3559 }
3560 free_hash_table (&expr_hash_table);
3561 free_gcse_mem ();
3562 obstack_free (&gcse_obstack, NULL);
3563
3564 /* We are finished with alias. */
3565 end_alias_analysis ();
3566
3567 if (dump_file)
3568 {
3569 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
3570 current_function_name (), n_basic_blocks_for_fn (cfun),
3571 bytes_used);
3572 fprintf (dump_file, "%d substs, %d insns created\n",
3573 gcse_subst_count, gcse_create_count);
3574 }
3575
3576 doing_code_hoisting_p = false;
3577
3578 return changed;
3579 }
3580 \f
3581 /* Here we provide the things required to do store motion towards the exit.
3582 In order for this to be effective, gcse also needed to be taught how to
3583 move a load when it is killed only by a store to itself.
3584
3585 int i;
3586 float a[10];
3587
3588 void foo(float scale)
3589 {
3590 for (i=0; i<10; i++)
3591 a[i] *= scale;
3592 }
3593
3594 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3595 the load out since its live around the loop, and stored at the bottom
3596 of the loop.
3597
3598 The 'Load Motion' referred to and implemented in this file is
3599 an enhancement to gcse which when using edge based LCM, recognizes
3600 this situation and allows gcse to move the load out of the loop.
3601
3602 Once gcse has hoisted the load, store motion can then push this
3603 load towards the exit, and we end up with no loads or stores of 'i'
3604 in the loop. */
3605
3606 /* This will search the ldst list for a matching expression. If it
3607 doesn't find one, we create one and initialize it. */
3608
3609 static struct ls_expr *
3610 ldst_entry (rtx x)
3611 {
3612 int do_not_record_p = 0;
3613 struct ls_expr * ptr;
3614 unsigned int hash;
3615 ls_expr **slot;
3616 struct ls_expr e;
3617
3618 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3619 NULL, /*have_reg_qty=*/false);
3620
3621 e.pattern = x;
3622 slot = pre_ldst_table->find_slot_with_hash (&e, hash, INSERT);
3623 if (*slot)
3624 return *slot;
3625
3626 ptr = XNEW (struct ls_expr);
3627
3628 ptr->next = pre_ldst_mems;
3629 ptr->expr = NULL;
3630 ptr->pattern = x;
3631 ptr->pattern_regs = NULL_RTX;
3632 ptr->loads = NULL;
3633 ptr->stores = NULL;
3634 ptr->reaching_reg = NULL_RTX;
3635 ptr->invalid = 0;
3636 ptr->index = 0;
3637 ptr->hash_index = hash;
3638 pre_ldst_mems = ptr;
3639 *slot = ptr;
3640
3641 return ptr;
3642 }
3643
3644 /* Free up an individual ldst entry. */
3645
3646 static void
3647 free_ldst_entry (struct ls_expr * ptr)
3648 {
3649 free_INSN_LIST_list (& ptr->loads);
3650 free_INSN_LIST_list (& ptr->stores);
3651
3652 free (ptr);
3653 }
3654
3655 /* Free up all memory associated with the ldst list. */
3656
3657 static void
3658 free_ld_motion_mems (void)
3659 {
3660 delete pre_ldst_table;
3661 pre_ldst_table = NULL;
3662
3663 while (pre_ldst_mems)
3664 {
3665 struct ls_expr * tmp = pre_ldst_mems;
3666
3667 pre_ldst_mems = pre_ldst_mems->next;
3668
3669 free_ldst_entry (tmp);
3670 }
3671
3672 pre_ldst_mems = NULL;
3673 }
3674
3675 /* Dump debugging info about the ldst list. */
3676
3677 static void
3678 print_ldst_list (FILE * file)
3679 {
3680 struct ls_expr * ptr;
3681
3682 fprintf (file, "LDST list: \n");
3683
3684 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
3685 {
3686 fprintf (file, " Pattern (%3d): ", ptr->index);
3687
3688 print_rtl (file, ptr->pattern);
3689
3690 fprintf (file, "\n Loads : ");
3691
3692 if (ptr->loads)
3693 print_rtl (file, ptr->loads);
3694 else
3695 fprintf (file, "(nil)");
3696
3697 fprintf (file, "\n Stores : ");
3698
3699 if (ptr->stores)
3700 print_rtl (file, ptr->stores);
3701 else
3702 fprintf (file, "(nil)");
3703
3704 fprintf (file, "\n\n");
3705 }
3706
3707 fprintf (file, "\n");
3708 }
3709
3710 /* Returns 1 if X is in the list of ldst only expressions. */
3711
3712 static struct ls_expr *
3713 find_rtx_in_ldst (rtx x)
3714 {
3715 struct ls_expr e;
3716 ls_expr **slot;
3717 if (!pre_ldst_table)
3718 return NULL;
3719 e.pattern = x;
3720 slot = pre_ldst_table->find_slot (&e, NO_INSERT);
3721 if (!slot || (*slot)->invalid)
3722 return NULL;
3723 return *slot;
3724 }
3725 \f
3726 /* Load Motion for loads which only kill themselves. */
3727
3728 /* Return true if x, a MEM, is a simple access with no side effects.
3729 These are the types of loads we consider for the ld_motion list,
3730 otherwise we let the usual aliasing take care of it. */
3731
3732 static int
3733 simple_mem (const_rtx x)
3734 {
3735 if (MEM_VOLATILE_P (x))
3736 return 0;
3737
3738 if (GET_MODE (x) == BLKmode)
3739 return 0;
3740
3741 /* If we are handling exceptions, we must be careful with memory references
3742 that may trap. If we are not, the behavior is undefined, so we may just
3743 continue. */
3744 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
3745 return 0;
3746
3747 if (side_effects_p (x))
3748 return 0;
3749
3750 /* Do not consider function arguments passed on stack. */
3751 if (reg_mentioned_p (stack_pointer_rtx, x))
3752 return 0;
3753
3754 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3755 return 0;
3756
3757 return 1;
3758 }
3759
3760 /* Make sure there isn't a buried reference in this pattern anywhere.
3761 If there is, invalidate the entry for it since we're not capable
3762 of fixing it up just yet.. We have to be sure we know about ALL
3763 loads since the aliasing code will allow all entries in the
3764 ld_motion list to not-alias itself. If we miss a load, we will get
3765 the wrong value since gcse might common it and we won't know to
3766 fix it up. */
3767
3768 static void
3769 invalidate_any_buried_refs (rtx x)
3770 {
3771 const char * fmt;
3772 int i, j;
3773 struct ls_expr * ptr;
3774
3775 /* Invalidate it in the list. */
3776 if (MEM_P (x) && simple_mem (x))
3777 {
3778 ptr = ldst_entry (x);
3779 ptr->invalid = 1;
3780 }
3781
3782 /* Recursively process the insn. */
3783 fmt = GET_RTX_FORMAT (GET_CODE (x));
3784
3785 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3786 {
3787 if (fmt[i] == 'e')
3788 invalidate_any_buried_refs (XEXP (x, i));
3789 else if (fmt[i] == 'E')
3790 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3791 invalidate_any_buried_refs (XVECEXP (x, i, j));
3792 }
3793 }
3794
3795 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3796 being defined as MEM loads and stores to symbols, with no side effects
3797 and no registers in the expression. For a MEM destination, we also
3798 check that the insn is still valid if we replace the destination with a
3799 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3800 which don't match this criteria, they are invalidated and trimmed out
3801 later. */
3802
3803 static void
3804 compute_ld_motion_mems (void)
3805 {
3806 struct ls_expr * ptr;
3807 basic_block bb;
3808 rtx_insn *insn;
3809
3810 pre_ldst_mems = NULL;
3811 pre_ldst_table = new hash_table<pre_ldst_expr_hasher> (13);
3812
3813 FOR_EACH_BB_FN (bb, cfun)
3814 {
3815 FOR_BB_INSNS (bb, insn)
3816 {
3817 if (NONDEBUG_INSN_P (insn))
3818 {
3819 if (GET_CODE (PATTERN (insn)) == SET)
3820 {
3821 rtx src = SET_SRC (PATTERN (insn));
3822 rtx dest = SET_DEST (PATTERN (insn));
3823 rtx note = find_reg_equal_equiv_note (insn);
3824 rtx src_eq;
3825
3826 /* Check for a simple LOAD... */
3827 if (MEM_P (src) && simple_mem (src))
3828 {
3829 ptr = ldst_entry (src);
3830 if (REG_P (dest))
3831 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
3832 else
3833 ptr->invalid = 1;
3834 }
3835 else
3836 {
3837 /* Make sure there isn't a buried load somewhere. */
3838 invalidate_any_buried_refs (src);
3839 }
3840
3841 if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL)
3842 src_eq = XEXP (note, 0);
3843 else
3844 src_eq = NULL_RTX;
3845
3846 if (src_eq != NULL_RTX
3847 && !(MEM_P (src_eq) && simple_mem (src_eq)))
3848 invalidate_any_buried_refs (src_eq);
3849
3850 /* Check for stores. Don't worry about aliased ones, they
3851 will block any movement we might do later. We only care
3852 about this exact pattern since those are the only
3853 circumstance that we will ignore the aliasing info. */
3854 if (MEM_P (dest) && simple_mem (dest))
3855 {
3856 ptr = ldst_entry (dest);
3857
3858 if (! MEM_P (src)
3859 && GET_CODE (src) != ASM_OPERANDS
3860 /* Check for REG manually since want_to_gcse_p
3861 returns 0 for all REGs. */
3862 && can_assign_to_reg_without_clobbers_p (src))
3863 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
3864 else
3865 ptr->invalid = 1;
3866 }
3867 }
3868 else
3869 invalidate_any_buried_refs (PATTERN (insn));
3870 }
3871 }
3872 }
3873 }
3874
3875 /* Remove any references that have been either invalidated or are not in the
3876 expression list for pre gcse. */
3877
3878 static void
3879 trim_ld_motion_mems (void)
3880 {
3881 struct ls_expr * * last = & pre_ldst_mems;
3882 struct ls_expr * ptr = pre_ldst_mems;
3883
3884 while (ptr != NULL)
3885 {
3886 struct gcse_expr * expr;
3887
3888 /* Delete if entry has been made invalid. */
3889 if (! ptr->invalid)
3890 {
3891 /* Delete if we cannot find this mem in the expression list. */
3892 unsigned int hash = ptr->hash_index % expr_hash_table.size;
3893
3894 for (expr = expr_hash_table.table[hash];
3895 expr != NULL;
3896 expr = expr->next_same_hash)
3897 if (expr_equiv_p (expr->expr, ptr->pattern))
3898 break;
3899 }
3900 else
3901 expr = (struct gcse_expr *) 0;
3902
3903 if (expr)
3904 {
3905 /* Set the expression field if we are keeping it. */
3906 ptr->expr = expr;
3907 last = & ptr->next;
3908 ptr = ptr->next;
3909 }
3910 else
3911 {
3912 *last = ptr->next;
3913 pre_ldst_table->remove_elt_with_hash (ptr, ptr->hash_index);
3914 free_ldst_entry (ptr);
3915 ptr = * last;
3916 }
3917 }
3918
3919 /* Show the world what we've found. */
3920 if (dump_file && pre_ldst_mems != NULL)
3921 print_ldst_list (dump_file);
3922 }
3923
3924 /* This routine will take an expression which we are replacing with
3925 a reaching register, and update any stores that are needed if
3926 that expression is in the ld_motion list. Stores are updated by
3927 copying their SRC to the reaching register, and then storing
3928 the reaching register into the store location. These keeps the
3929 correct value in the reaching register for the loads. */
3930
3931 static void
3932 update_ld_motion_stores (struct gcse_expr * expr)
3933 {
3934 struct ls_expr * mem_ptr;
3935
3936 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
3937 {
3938 /* We can try to find just the REACHED stores, but is shouldn't
3939 matter to set the reaching reg everywhere... some might be
3940 dead and should be eliminated later. */
3941
3942 /* We replace (set mem expr) with (set reg expr) (set mem reg)
3943 where reg is the reaching reg used in the load. We checked in
3944 compute_ld_motion_mems that we can replace (set mem expr) with
3945 (set reg expr) in that insn. */
3946 rtx list = mem_ptr->stores;
3947
3948 for ( ; list != NULL_RTX; list = XEXP (list, 1))
3949 {
3950 rtx_insn *insn = as_a <rtx_insn *> (XEXP (list, 0));
3951 rtx pat = PATTERN (insn);
3952 rtx src = SET_SRC (pat);
3953 rtx reg = expr->reaching_reg;
3954
3955 /* If we've already copied it, continue. */
3956 if (expr->reaching_reg == src)
3957 continue;
3958
3959 if (dump_file)
3960 {
3961 fprintf (dump_file, "PRE: store updated with reaching reg ");
3962 print_rtl (dump_file, reg);
3963 fprintf (dump_file, ":\n ");
3964 print_inline_rtx (dump_file, insn, 8);
3965 fprintf (dump_file, "\n");
3966 }
3967
3968 rtx_insn *copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
3969 emit_insn_before (copy, insn);
3970 SET_SRC (pat) = reg;
3971 df_insn_rescan (insn);
3972
3973 /* un-recognize this pattern since it's probably different now. */
3974 INSN_CODE (insn) = -1;
3975 gcse_create_count++;
3976 }
3977 }
3978 }
3979 \f
3980 /* Return true if the graph is too expensive to optimize. PASS is the
3981 optimization about to be performed. */
3982
3983 static bool
3984 is_too_expensive (const char *pass)
3985 {
3986 /* Trying to perform global optimizations on flow graphs which have
3987 a high connectivity will take a long time and is unlikely to be
3988 particularly useful.
3989
3990 In normal circumstances a cfg should have about twice as many
3991 edges as blocks. But we do not want to punish small functions
3992 which have a couple switch statements. Rather than simply
3993 threshold the number of blocks, uses something with a more
3994 graceful degradation. */
3995 if (n_edges_for_fn (cfun) > 20000 + n_basic_blocks_for_fn (cfun) * 4)
3996 {
3997 warning (OPT_Wdisabled_optimization,
3998 "%s: %d basic blocks and %d edges/basic block",
3999 pass, n_basic_blocks_for_fn (cfun),
4000 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun));
4001
4002 return true;
4003 }
4004
4005 /* If allocating memory for the dataflow bitmaps would take up too much
4006 storage it's better just to disable the optimization. */
4007 if ((n_basic_blocks_for_fn (cfun)
4008 * SBITMAP_SET_SIZE (max_reg_num ())
4009 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
4010 {
4011 warning (OPT_Wdisabled_optimization,
4012 "%s: %d basic blocks and %d registers",
4013 pass, n_basic_blocks_for_fn (cfun), max_reg_num ());
4014
4015 return true;
4016 }
4017
4018 return false;
4019 }
4020 \f
4021 static unsigned int
4022 execute_rtl_pre (void)
4023 {
4024 int changed;
4025 delete_unreachable_blocks ();
4026 df_analyze ();
4027 changed = one_pre_gcse_pass ();
4028 flag_rerun_cse_after_global_opts |= changed;
4029 if (changed)
4030 cleanup_cfg (0);
4031 return 0;
4032 }
4033
4034 static unsigned int
4035 execute_rtl_hoist (void)
4036 {
4037 int changed;
4038 delete_unreachable_blocks ();
4039 df_analyze ();
4040 changed = one_code_hoisting_pass ();
4041 flag_rerun_cse_after_global_opts |= changed;
4042 if (changed)
4043 cleanup_cfg (0);
4044 return 0;
4045 }
4046
4047 namespace {
4048
4049 const pass_data pass_data_rtl_pre =
4050 {
4051 RTL_PASS, /* type */
4052 "rtl pre", /* name */
4053 OPTGROUP_NONE, /* optinfo_flags */
4054 TV_PRE, /* tv_id */
4055 PROP_cfglayout, /* properties_required */
4056 0, /* properties_provided */
4057 0, /* properties_destroyed */
4058 0, /* todo_flags_start */
4059 TODO_df_finish, /* todo_flags_finish */
4060 };
4061
4062 class pass_rtl_pre : public rtl_opt_pass
4063 {
4064 public:
4065 pass_rtl_pre (gcc::context *ctxt)
4066 : rtl_opt_pass (pass_data_rtl_pre, ctxt)
4067 {}
4068
4069 /* opt_pass methods: */
4070 virtual bool gate (function *);
4071 virtual unsigned int execute (function *) { return execute_rtl_pre (); }
4072
4073 }; // class pass_rtl_pre
4074
4075 /* We do not construct an accurate cfg in functions which call
4076 setjmp, so none of these passes runs if the function calls
4077 setjmp.
4078 FIXME: Should just handle setjmp via REG_SETJMP notes. */
4079
4080 bool
4081 pass_rtl_pre::gate (function *fun)
4082 {
4083 return optimize > 0 && flag_gcse
4084 && !fun->calls_setjmp
4085 && optimize_function_for_speed_p (fun)
4086 && dbg_cnt (pre);
4087 }
4088
4089 } // anon namespace
4090
4091 rtl_opt_pass *
4092 make_pass_rtl_pre (gcc::context *ctxt)
4093 {
4094 return new pass_rtl_pre (ctxt);
4095 }
4096
4097 namespace {
4098
4099 const pass_data pass_data_rtl_hoist =
4100 {
4101 RTL_PASS, /* type */
4102 "hoist", /* name */
4103 OPTGROUP_NONE, /* optinfo_flags */
4104 TV_HOIST, /* tv_id */
4105 PROP_cfglayout, /* properties_required */
4106 0, /* properties_provided */
4107 0, /* properties_destroyed */
4108 0, /* todo_flags_start */
4109 TODO_df_finish, /* todo_flags_finish */
4110 };
4111
4112 class pass_rtl_hoist : public rtl_opt_pass
4113 {
4114 public:
4115 pass_rtl_hoist (gcc::context *ctxt)
4116 : rtl_opt_pass (pass_data_rtl_hoist, ctxt)
4117 {}
4118
4119 /* opt_pass methods: */
4120 virtual bool gate (function *);
4121 virtual unsigned int execute (function *) { return execute_rtl_hoist (); }
4122
4123 }; // class pass_rtl_hoist
4124
4125 bool
4126 pass_rtl_hoist::gate (function *)
4127 {
4128 return optimize > 0 && flag_gcse
4129 && !cfun->calls_setjmp
4130 /* It does not make sense to run code hoisting unless we are optimizing
4131 for code size -- it rarely makes programs faster, and can make then
4132 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4133 && optimize_function_for_size_p (cfun)
4134 && dbg_cnt (hoist);
4135 }
4136
4137 } // anon namespace
4138
4139 rtl_opt_pass *
4140 make_pass_rtl_hoist (gcc::context *ctxt)
4141 {
4142 return new pass_rtl_hoist (ctxt);
4143 }
4144
4145 /* Reset all state within gcse.c so that we can rerun the compiler
4146 within the same process. For use by toplev::finalize. */
4147
4148 void
4149 gcse_c_finalize (void)
4150 {
4151 test_insn = NULL;
4152 }
4153
4154 #include "gt-gcse.h"