make stores rtx_insn_list a vec
[gcc.git] / gcc / gcse.c
1 /* Partial redundancy elimination / Hoisting for RTL.
2 Copyright (C) 1997-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* TODO
21 - reordering of memory allocation and freeing to be more space efficient
22 - calc rough register pressure information and use the info to drive all
23 kinds of code motion (including code hoisting) in a unified way.
24 */
25
26 /* References searched while implementing this.
27
28 Compilers Principles, Techniques and Tools
29 Aho, Sethi, Ullman
30 Addison-Wesley, 1988
31
32 Global Optimization by Suppression of Partial Redundancies
33 E. Morel, C. Renvoise
34 communications of the acm, Vol. 22, Num. 2, Feb. 1979
35
36 A Portable Machine-Independent Global Optimizer - Design and Measurements
37 Frederick Chow
38 Stanford Ph.D. thesis, Dec. 1983
39
40 A Fast Algorithm for Code Movement Optimization
41 D.M. Dhamdhere
42 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
43
44 A Solution to a Problem with Morel and Renvoise's
45 Global Optimization by Suppression of Partial Redundancies
46 K-H Drechsler, M.P. Stadel
47 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
48
49 Practical Adaptation of the Global Optimization
50 Algorithm of Morel and Renvoise
51 D.M. Dhamdhere
52 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
53
54 Efficiently Computing Static Single Assignment Form and the Control
55 Dependence Graph
56 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
58
59 Lazy Code Motion
60 J. Knoop, O. Ruthing, B. Steffen
61 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
62
63 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
64 Time for Reducible Flow Control
65 Thomas Ball
66 ACM Letters on Programming Languages and Systems,
67 Vol. 2, Num. 1-4, Mar-Dec 1993
68
69 An Efficient Representation for Sparse Sets
70 Preston Briggs, Linda Torczon
71 ACM Letters on Programming Languages and Systems,
72 Vol. 2, Num. 1-4, Mar-Dec 1993
73
74 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75 K-H Drechsler, M.P. Stadel
76 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
77
78 Partial Dead Code Elimination
79 J. Knoop, O. Ruthing, B. Steffen
80 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
81
82 Effective Partial Redundancy Elimination
83 P. Briggs, K.D. Cooper
84 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
85
86 The Program Structure Tree: Computing Control Regions in Linear Time
87 R. Johnson, D. Pearson, K. Pingali
88 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
89
90 Optimal Code Motion: Theory and Practice
91 J. Knoop, O. Ruthing, B. Steffen
92 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
93
94 The power of assignment motion
95 J. Knoop, O. Ruthing, B. Steffen
96 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
97
98 Global code motion / global value numbering
99 C. Click
100 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
101
102 Value Driven Redundancy Elimination
103 L.T. Simpson
104 Rice University Ph.D. thesis, Apr. 1996
105
106 Value Numbering
107 L.T. Simpson
108 Massively Scalar Compiler Project, Rice University, Sep. 1996
109
110 High Performance Compilers for Parallel Computing
111 Michael Wolfe
112 Addison-Wesley, 1996
113
114 Advanced Compiler Design and Implementation
115 Steven Muchnick
116 Morgan Kaufmann, 1997
117
118 Building an Optimizing Compiler
119 Robert Morgan
120 Digital Press, 1998
121
122 People wishing to speed up the code here should read:
123 Elimination Algorithms for Data Flow Analysis
124 B.G. Ryder, M.C. Paull
125 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
126
127 How to Analyze Large Programs Efficiently and Informatively
128 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
130
131 People wishing to do something different can find various possibilities
132 in the above papers and elsewhere.
133 */
134
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "backend.h"
139 #include "target.h"
140 #include "rtl.h"
141 #include "tree.h"
142 #include "predict.h"
143 #include "df.h"
144 #include "tm_p.h"
145 #include "insn-config.h"
146 #include "print-rtl.h"
147 #include "regs.h"
148 #include "ira.h"
149 #include "recog.h"
150 #include "diagnostic-core.h"
151 #include "cfgrtl.h"
152 #include "cfganal.h"
153 #include "lcm.h"
154 #include "cfgcleanup.h"
155 #include "expr.h"
156 #include "params.h"
157 #include "intl.h"
158 #include "tree-pass.h"
159 #include "dbgcnt.h"
160 #include "gcse.h"
161 #include "gcse-common.h"
162
163 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
164 are a superset of those done by classic GCSE.
165
166 Two passes of copy/constant propagation are done around PRE or hoisting
167 because the first one enables more GCSE and the second one helps to clean
168 up the copies that PRE and HOIST create. This is needed more for PRE than
169 for HOIST because code hoisting will try to use an existing register
170 containing the common subexpression rather than create a new one. This is
171 harder to do for PRE because of the code motion (which HOIST doesn't do).
172
173 Expressions we are interested in GCSE-ing are of the form
174 (set (pseudo-reg) (expression)).
175 Function want_to_gcse_p says what these are.
176
177 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
178 This allows PRE to hoist expressions that are expressed in multiple insns,
179 such as complex address calculations (e.g. for PIC code, or loads with a
180 high part and a low part).
181
182 PRE handles moving invariant expressions out of loops (by treating them as
183 partially redundant).
184
185 **********************
186
187 We used to support multiple passes but there are diminishing returns in
188 doing so. The first pass usually makes 90% of the changes that are doable.
189 A second pass can make a few more changes made possible by the first pass.
190 Experiments show any further passes don't make enough changes to justify
191 the expense.
192
193 A study of spec92 using an unlimited number of passes:
194 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
195 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
196 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
197
198 It was found doing copy propagation between each pass enables further
199 substitutions.
200
201 This study was done before expressions in REG_EQUAL notes were added as
202 candidate expressions for optimization, and before the GIMPLE optimizers
203 were added. Probably, multiple passes is even less efficient now than
204 at the time when the study was conducted.
205
206 PRE is quite expensive in complicated functions because the DFA can take
207 a while to converge. Hence we only perform one pass.
208
209 **********************
210
211 The steps for PRE are:
212
213 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
214
215 2) Perform the data flow analysis for PRE.
216
217 3) Delete the redundant instructions
218
219 4) Insert the required copies [if any] that make the partially
220 redundant instructions fully redundant.
221
222 5) For other reaching expressions, insert an instruction to copy the value
223 to a newly created pseudo that will reach the redundant instruction.
224
225 The deletion is done first so that when we do insertions we
226 know which pseudo reg to use.
227
228 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
229 argue it is not. The number of iterations for the algorithm to converge
230 is typically 2-4 so I don't view it as that expensive (relatively speaking).
231
232 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
233 we create. To make an expression reach the place where it's redundant,
234 the result of the expression is copied to a new register, and the redundant
235 expression is deleted by replacing it with this new register. Classic GCSE
236 doesn't have this problem as much as it computes the reaching defs of
237 each register in each block and thus can try to use an existing
238 register. */
239 \f
240 /* GCSE global vars. */
241
242 struct target_gcse default_target_gcse;
243 #if SWITCHABLE_TARGET
244 struct target_gcse *this_target_gcse = &default_target_gcse;
245 #endif
246
247 /* Set to non-zero if CSE should run after all GCSE optimizations are done. */
248 int flag_rerun_cse_after_global_opts;
249
250 /* An obstack for our working variables. */
251 static struct obstack gcse_obstack;
252
253 /* Hash table of expressions. */
254
255 struct gcse_expr
256 {
257 /* The expression. */
258 rtx expr;
259 /* Index in the available expression bitmaps. */
260 int bitmap_index;
261 /* Next entry with the same hash. */
262 struct gcse_expr *next_same_hash;
263 /* List of anticipatable occurrences in basic blocks in the function.
264 An "anticipatable occurrence" is one that is the first occurrence in the
265 basic block, the operands are not modified in the basic block prior
266 to the occurrence and the output is not used between the start of
267 the block and the occurrence. */
268 struct gcse_occr *antic_occr;
269 /* List of available occurrence in basic blocks in the function.
270 An "available occurrence" is one that is the last occurrence in the
271 basic block and the operands are not modified by following statements in
272 the basic block [including this insn]. */
273 struct gcse_occr *avail_occr;
274 /* Non-null if the computation is PRE redundant.
275 The value is the newly created pseudo-reg to record a copy of the
276 expression in all the places that reach the redundant copy. */
277 rtx reaching_reg;
278 /* Maximum distance in instructions this expression can travel.
279 We avoid moving simple expressions for more than a few instructions
280 to keep register pressure under control.
281 A value of "0" removes restrictions on how far the expression can
282 travel. */
283 int max_distance;
284 };
285
286 /* Occurrence of an expression.
287 There is one per basic block. If a pattern appears more than once the
288 last appearance is used [or first for anticipatable expressions]. */
289
290 struct gcse_occr
291 {
292 /* Next occurrence of this expression. */
293 struct gcse_occr *next;
294 /* The insn that computes the expression. */
295 rtx_insn *insn;
296 /* Nonzero if this [anticipatable] occurrence has been deleted. */
297 char deleted_p;
298 /* Nonzero if this [available] occurrence has been copied to
299 reaching_reg. */
300 /* ??? This is mutually exclusive with deleted_p, so they could share
301 the same byte. */
302 char copied_p;
303 };
304
305 typedef struct gcse_occr *occr_t;
306
307 /* Expression hash tables.
308 Each hash table is an array of buckets.
309 ??? It is known that if it were an array of entries, structure elements
310 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
311 not clear whether in the final analysis a sufficient amount of memory would
312 be saved as the size of the available expression bitmaps would be larger
313 [one could build a mapping table without holes afterwards though].
314 Someday I'll perform the computation and figure it out. */
315
316 struct gcse_hash_table_d
317 {
318 /* The table itself.
319 This is an array of `expr_hash_table_size' elements. */
320 struct gcse_expr **table;
321
322 /* Size of the hash table, in elements. */
323 unsigned int size;
324
325 /* Number of hash table elements. */
326 unsigned int n_elems;
327 };
328
329 /* Expression hash table. */
330 static struct gcse_hash_table_d expr_hash_table;
331
332 /* This is a list of expressions which are MEMs and will be used by load
333 or store motion.
334 Load motion tracks MEMs which aren't killed by anything except itself,
335 i.e. loads and stores to a single location.
336 We can then allow movement of these MEM refs with a little special
337 allowance. (all stores copy the same value to the reaching reg used
338 for the loads). This means all values used to store into memory must have
339 no side effects so we can re-issue the setter value. */
340
341 struct ls_expr
342 {
343 struct gcse_expr * expr; /* Gcse expression reference for LM. */
344 rtx pattern; /* Pattern of this mem. */
345 rtx pattern_regs; /* List of registers mentioned by the mem. */
346 vec<rtx_insn *> stores; /* INSN list of stores seen. */
347 struct ls_expr * next; /* Next in the list. */
348 int invalid; /* Invalid for some reason. */
349 int index; /* If it maps to a bitmap index. */
350 unsigned int hash_index; /* Index when in a hash table. */
351 rtx reaching_reg; /* Register to use when re-writing. */
352 };
353
354 /* Head of the list of load/store memory refs. */
355 static struct ls_expr * pre_ldst_mems = NULL;
356
357 struct pre_ldst_expr_hasher : nofree_ptr_hash <ls_expr>
358 {
359 typedef value_type compare_type;
360 static inline hashval_t hash (const ls_expr *);
361 static inline bool equal (const ls_expr *, const ls_expr *);
362 };
363
364 /* Hashtable helpers. */
365 inline hashval_t
366 pre_ldst_expr_hasher::hash (const ls_expr *x)
367 {
368 int do_not_record_p = 0;
369 return
370 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
371 }
372
373 static int expr_equiv_p (const_rtx, const_rtx);
374
375 inline bool
376 pre_ldst_expr_hasher::equal (const ls_expr *ptr1,
377 const ls_expr *ptr2)
378 {
379 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
380 }
381
382 /* Hashtable for the load/store memory refs. */
383 static hash_table<pre_ldst_expr_hasher> *pre_ldst_table;
384
385 /* Bitmap containing one bit for each register in the program.
386 Used when performing GCSE to track which registers have been set since
387 the start of the basic block. */
388 static regset reg_set_bitmap;
389
390 /* Array, indexed by basic block number for a list of insns which modify
391 memory within that block. */
392 static vec<rtx_insn *> *modify_mem_list;
393 static bitmap modify_mem_list_set;
394
395 /* This array parallels modify_mem_list, except that it stores MEMs
396 being set and their canonicalized memory addresses. */
397 static vec<modify_pair> *canon_modify_mem_list;
398
399 /* Bitmap indexed by block numbers to record which blocks contain
400 function calls. */
401 static bitmap blocks_with_calls;
402
403 /* Various variables for statistics gathering. */
404
405 /* Memory used in a pass.
406 This isn't intended to be absolutely precise. Its intent is only
407 to keep an eye on memory usage. */
408 static int bytes_used;
409
410 /* GCSE substitutions made. */
411 static int gcse_subst_count;
412 /* Number of copy instructions created. */
413 static int gcse_create_count;
414 \f
415 /* Doing code hoisting. */
416 static bool doing_code_hoisting_p = false;
417 \f
418 /* For available exprs */
419 static sbitmap *ae_kill;
420 \f
421 /* Data stored for each basic block. */
422 struct bb_data
423 {
424 /* Maximal register pressure inside basic block for given register class
425 (defined only for the pressure classes). */
426 int max_reg_pressure[N_REG_CLASSES];
427 /* Recorded register pressure of basic block before trying to hoist
428 an expression. Will be used to restore the register pressure
429 if the expression should not be hoisted. */
430 int old_pressure;
431 /* Recorded register live_in info of basic block during code hoisting
432 process. BACKUP is used to record live_in info before trying to
433 hoist an expression, and will be used to restore LIVE_IN if the
434 expression should not be hoisted. */
435 bitmap live_in, backup;
436 };
437
438 #define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
439
440 static basic_block curr_bb;
441
442 /* Current register pressure for each pressure class. */
443 static int curr_reg_pressure[N_REG_CLASSES];
444 \f
445
446 static void compute_can_copy (void);
447 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
448 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
449 static void *gcse_alloc (unsigned long);
450 static void alloc_gcse_mem (void);
451 static void free_gcse_mem (void);
452 static void hash_scan_insn (rtx_insn *, struct gcse_hash_table_d *);
453 static void hash_scan_set (rtx, rtx_insn *, struct gcse_hash_table_d *);
454 static void hash_scan_clobber (rtx, rtx_insn *, struct gcse_hash_table_d *);
455 static void hash_scan_call (rtx, rtx_insn *, struct gcse_hash_table_d *);
456 static int oprs_unchanged_p (const_rtx, const rtx_insn *, int);
457 static int oprs_anticipatable_p (const_rtx, const rtx_insn *);
458 static int oprs_available_p (const_rtx, const rtx_insn *);
459 static void insert_expr_in_table (rtx, machine_mode, rtx_insn *, int, int,
460 int, struct gcse_hash_table_d *);
461 static unsigned int hash_expr (const_rtx, machine_mode, int *, int);
462 static void record_last_reg_set_info (rtx_insn *, int);
463 static void record_last_mem_set_info (rtx_insn *);
464 static void record_last_set_info (rtx, const_rtx, void *);
465 static void compute_hash_table (struct gcse_hash_table_d *);
466 static void alloc_hash_table (struct gcse_hash_table_d *);
467 static void free_hash_table (struct gcse_hash_table_d *);
468 static void compute_hash_table_work (struct gcse_hash_table_d *);
469 static void dump_hash_table (FILE *, const char *, struct gcse_hash_table_d *);
470 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
471 struct gcse_hash_table_d *);
472 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
473 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
474 static void alloc_pre_mem (int, int);
475 static void free_pre_mem (void);
476 static struct edge_list *compute_pre_data (void);
477 static int pre_expr_reaches_here_p (basic_block, struct gcse_expr *,
478 basic_block);
479 static void insert_insn_end_basic_block (struct gcse_expr *, basic_block);
480 static void pre_insert_copy_insn (struct gcse_expr *, rtx_insn *);
481 static void pre_insert_copies (void);
482 static int pre_delete (void);
483 static int pre_gcse (struct edge_list *);
484 static int one_pre_gcse_pass (void);
485 static void add_label_notes (rtx, rtx_insn *);
486 static void alloc_code_hoist_mem (int, int);
487 static void free_code_hoist_mem (void);
488 static void compute_code_hoist_vbeinout (void);
489 static void compute_code_hoist_data (void);
490 static int should_hoist_expr_to_dom (basic_block, struct gcse_expr *, basic_block,
491 sbitmap, int, int *, enum reg_class,
492 int *, bitmap, rtx_insn *);
493 static int hoist_code (void);
494 static enum reg_class get_regno_pressure_class (int regno, int *nregs);
495 static enum reg_class get_pressure_class_and_nregs (rtx_insn *insn, int *nregs);
496 static int one_code_hoisting_pass (void);
497 static rtx_insn *process_insert_insn (struct gcse_expr *);
498 static int pre_edge_insert (struct edge_list *, struct gcse_expr **);
499 static int pre_expr_reaches_here_p_work (basic_block, struct gcse_expr *,
500 basic_block, char *);
501 static struct ls_expr * ldst_entry (rtx);
502 static void free_ldst_entry (struct ls_expr *);
503 static void free_ld_motion_mems (void);
504 static void print_ldst_list (FILE *);
505 static struct ls_expr * find_rtx_in_ldst (rtx);
506 static int simple_mem (const_rtx);
507 static void invalidate_any_buried_refs (rtx);
508 static void compute_ld_motion_mems (void);
509 static void trim_ld_motion_mems (void);
510 static void update_ld_motion_stores (struct gcse_expr *);
511 static void clear_modify_mem_tables (void);
512 static void free_modify_mem_tables (void);
513
514 #define GNEW(T) ((T *) gmalloc (sizeof (T)))
515 #define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
516
517 #define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
518 #define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
519
520 #define GNEWVAR(T, S) ((T *) gmalloc ((S)))
521 #define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
522
523 #define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
524 #define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
525 \f
526 /* Misc. utilities. */
527
528 #define can_copy \
529 (this_target_gcse->x_can_copy)
530 #define can_copy_init_p \
531 (this_target_gcse->x_can_copy_init_p)
532
533 /* Compute which modes support reg/reg copy operations. */
534
535 static void
536 compute_can_copy (void)
537 {
538 int i;
539 #ifndef AVOID_CCMODE_COPIES
540 rtx reg;
541 rtx_insn *insn;
542 #endif
543 memset (can_copy, 0, NUM_MACHINE_MODES);
544
545 start_sequence ();
546 for (i = 0; i < NUM_MACHINE_MODES; i++)
547 if (GET_MODE_CLASS (i) == MODE_CC)
548 {
549 #ifdef AVOID_CCMODE_COPIES
550 can_copy[i] = 0;
551 #else
552 reg = gen_rtx_REG ((machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
553 insn = emit_insn (gen_rtx_SET (reg, reg));
554 if (recog (PATTERN (insn), insn, NULL) >= 0)
555 can_copy[i] = 1;
556 #endif
557 }
558 else
559 can_copy[i] = 1;
560
561 end_sequence ();
562 }
563
564 /* Returns whether the mode supports reg/reg copy operations. */
565
566 bool
567 can_copy_p (machine_mode mode)
568 {
569 if (! can_copy_init_p)
570 {
571 compute_can_copy ();
572 can_copy_init_p = true;
573 }
574
575 return can_copy[mode] != 0;
576 }
577 \f
578 /* Cover function to xmalloc to record bytes allocated. */
579
580 static void *
581 gmalloc (size_t size)
582 {
583 bytes_used += size;
584 return xmalloc (size);
585 }
586
587 /* Cover function to xcalloc to record bytes allocated. */
588
589 static void *
590 gcalloc (size_t nelem, size_t elsize)
591 {
592 bytes_used += nelem * elsize;
593 return xcalloc (nelem, elsize);
594 }
595
596 /* Cover function to obstack_alloc. */
597
598 static void *
599 gcse_alloc (unsigned long size)
600 {
601 bytes_used += size;
602 return obstack_alloc (&gcse_obstack, size);
603 }
604
605 /* Allocate memory for the reg/memory set tracking tables.
606 This is called at the start of each pass. */
607
608 static void
609 alloc_gcse_mem (void)
610 {
611 /* Allocate vars to track sets of regs. */
612 reg_set_bitmap = ALLOC_REG_SET (NULL);
613
614 /* Allocate array to keep a list of insns which modify memory in each
615 basic block. The two typedefs are needed to work around the
616 pre-processor limitation with template types in macro arguments. */
617 typedef vec<rtx_insn *> vec_rtx_heap;
618 typedef vec<modify_pair> vec_modify_pair_heap;
619 modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block_for_fn (cfun));
620 canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap,
621 last_basic_block_for_fn (cfun));
622 modify_mem_list_set = BITMAP_ALLOC (NULL);
623 blocks_with_calls = BITMAP_ALLOC (NULL);
624 }
625
626 /* Free memory allocated by alloc_gcse_mem. */
627
628 static void
629 free_gcse_mem (void)
630 {
631 FREE_REG_SET (reg_set_bitmap);
632
633 free_modify_mem_tables ();
634 BITMAP_FREE (modify_mem_list_set);
635 BITMAP_FREE (blocks_with_calls);
636 }
637 \f
638 /* Compute the local properties of each recorded expression.
639
640 Local properties are those that are defined by the block, irrespective of
641 other blocks.
642
643 An expression is transparent in a block if its operands are not modified
644 in the block.
645
646 An expression is computed (locally available) in a block if it is computed
647 at least once and expression would contain the same value if the
648 computation was moved to the end of the block.
649
650 An expression is locally anticipatable in a block if it is computed at
651 least once and expression would contain the same value if the computation
652 was moved to the beginning of the block.
653
654 We call this routine for pre and code hoisting. They all compute
655 basically the same information and thus can easily share this code.
656
657 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
658 properties. If NULL, then it is not necessary to compute or record that
659 particular property.
660
661 TABLE controls which hash table to look at. */
662
663 static void
664 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
665 struct gcse_hash_table_d *table)
666 {
667 unsigned int i;
668
669 /* Initialize any bitmaps that were passed in. */
670 if (transp)
671 {
672 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
673 }
674
675 if (comp)
676 bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
677 if (antloc)
678 bitmap_vector_clear (antloc, last_basic_block_for_fn (cfun));
679
680 for (i = 0; i < table->size; i++)
681 {
682 struct gcse_expr *expr;
683
684 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
685 {
686 int indx = expr->bitmap_index;
687 struct gcse_occr *occr;
688
689 /* The expression is transparent in this block if it is not killed.
690 We start by assuming all are transparent [none are killed], and
691 then reset the bits for those that are. */
692 if (transp)
693 compute_transp (expr->expr, indx, transp,
694 blocks_with_calls,
695 modify_mem_list_set,
696 canon_modify_mem_list);
697
698 /* The occurrences recorded in antic_occr are exactly those that
699 we want to set to nonzero in ANTLOC. */
700 if (antloc)
701 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
702 {
703 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
704
705 /* While we're scanning the table, this is a good place to
706 initialize this. */
707 occr->deleted_p = 0;
708 }
709
710 /* The occurrences recorded in avail_occr are exactly those that
711 we want to set to nonzero in COMP. */
712 if (comp)
713 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
714 {
715 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
716
717 /* While we're scanning the table, this is a good place to
718 initialize this. */
719 occr->copied_p = 0;
720 }
721
722 /* While we're scanning the table, this is a good place to
723 initialize this. */
724 expr->reaching_reg = 0;
725 }
726 }
727 }
728 \f
729 /* Hash table support. */
730
731 struct reg_avail_info
732 {
733 basic_block last_bb;
734 int first_set;
735 int last_set;
736 };
737
738 static struct reg_avail_info *reg_avail_info;
739 static basic_block current_bb;
740
741 /* See whether X, the source of a set, is something we want to consider for
742 GCSE. */
743
744 static int
745 want_to_gcse_p (rtx x, machine_mode mode, int *max_distance_ptr)
746 {
747 #ifdef STACK_REGS
748 /* On register stack architectures, don't GCSE constants from the
749 constant pool, as the benefits are often swamped by the overhead
750 of shuffling the register stack between basic blocks. */
751 if (IS_STACK_MODE (GET_MODE (x)))
752 x = avoid_constant_pool_reference (x);
753 #endif
754
755 /* GCSE'ing constants:
756
757 We do not specifically distinguish between constant and non-constant
758 expressions in PRE and Hoist. We use set_src_cost below to limit
759 the maximum distance simple expressions can travel.
760
761 Nevertheless, constants are much easier to GCSE, and, hence,
762 it is easy to overdo the optimizations. Usually, excessive PRE and
763 Hoisting of constant leads to increased register pressure.
764
765 RA can deal with this by rematerialing some of the constants.
766 Therefore, it is important that the back-end generates sets of constants
767 in a way that allows reload rematerialize them under high register
768 pressure, i.e., a pseudo register with REG_EQUAL to constant
769 is set only once. Failing to do so will result in IRA/reload
770 spilling such constants under high register pressure instead of
771 rematerializing them. */
772
773 switch (GET_CODE (x))
774 {
775 case REG:
776 case SUBREG:
777 case CALL:
778 return 0;
779
780 CASE_CONST_ANY:
781 if (!doing_code_hoisting_p)
782 /* Do not PRE constants. */
783 return 0;
784
785 /* FALLTHRU */
786
787 default:
788 if (doing_code_hoisting_p)
789 /* PRE doesn't implement max_distance restriction. */
790 {
791 int cost;
792 int max_distance;
793
794 gcc_assert (!optimize_function_for_speed_p (cfun)
795 && optimize_function_for_size_p (cfun));
796 cost = set_src_cost (x, mode, 0);
797
798 if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
799 {
800 max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
801 if (max_distance == 0)
802 return 0;
803
804 gcc_assert (max_distance > 0);
805 }
806 else
807 max_distance = 0;
808
809 if (max_distance_ptr)
810 *max_distance_ptr = max_distance;
811 }
812
813 return can_assign_to_reg_without_clobbers_p (x, mode);
814 }
815 }
816
817 /* Used internally by can_assign_to_reg_without_clobbers_p. */
818
819 static GTY(()) rtx_insn *test_insn;
820
821 /* Return true if we can assign X to a pseudo register of mode MODE
822 such that the resulting insn does not result in clobbering a hard
823 register as a side-effect.
824
825 Additionally, if the target requires it, check that the resulting insn
826 can be copied. If it cannot, this means that X is special and probably
827 has hidden side-effects we don't want to mess with.
828
829 This function is typically used by code motion passes, to verify
830 that it is safe to insert an insn without worrying about clobbering
831 maybe live hard regs. */
832
833 bool
834 can_assign_to_reg_without_clobbers_p (rtx x, machine_mode mode)
835 {
836 int num_clobbers = 0;
837 int icode;
838 bool can_assign = false;
839
840 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
841 if (general_operand (x, mode))
842 return 1;
843 else if (GET_MODE (x) == VOIDmode)
844 return 0;
845
846 /* Otherwise, check if we can make a valid insn from it. First initialize
847 our test insn if we haven't already. */
848 if (test_insn == 0)
849 {
850 test_insn
851 = make_insn_raw (gen_rtx_SET (gen_rtx_REG (word_mode,
852 FIRST_PSEUDO_REGISTER * 2),
853 const0_rtx));
854 SET_NEXT_INSN (test_insn) = SET_PREV_INSN (test_insn) = 0;
855 INSN_LOCATION (test_insn) = UNKNOWN_LOCATION;
856 }
857
858 /* Now make an insn like the one we would make when GCSE'ing and see if
859 valid. */
860 PUT_MODE (SET_DEST (PATTERN (test_insn)), mode);
861 SET_SRC (PATTERN (test_insn)) = x;
862
863 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
864
865 /* If the test insn is valid and doesn't need clobbers, and the target also
866 has no objections, we're good. */
867 if (icode >= 0
868 && (num_clobbers == 0 || !added_clobbers_hard_reg_p (icode))
869 && ! (targetm.cannot_copy_insn_p
870 && targetm.cannot_copy_insn_p (test_insn)))
871 can_assign = true;
872
873 /* Make sure test_insn doesn't have any pointers into GC space. */
874 SET_SRC (PATTERN (test_insn)) = NULL_RTX;
875
876 return can_assign;
877 }
878
879 /* Return nonzero if the operands of expression X are unchanged from the
880 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
881 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
882
883 static int
884 oprs_unchanged_p (const_rtx x, const rtx_insn *insn, int avail_p)
885 {
886 int i, j;
887 enum rtx_code code;
888 const char *fmt;
889
890 if (x == 0)
891 return 1;
892
893 code = GET_CODE (x);
894 switch (code)
895 {
896 case REG:
897 {
898 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
899
900 if (info->last_bb != current_bb)
901 return 1;
902 if (avail_p)
903 return info->last_set < DF_INSN_LUID (insn);
904 else
905 return info->first_set >= DF_INSN_LUID (insn);
906 }
907
908 case MEM:
909 if (! flag_gcse_lm
910 || load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
911 x, avail_p))
912 return 0;
913 else
914 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
915
916 case PRE_DEC:
917 case PRE_INC:
918 case POST_DEC:
919 case POST_INC:
920 case PRE_MODIFY:
921 case POST_MODIFY:
922 return 0;
923
924 case PC:
925 case CC0: /*FIXME*/
926 case CONST:
927 CASE_CONST_ANY:
928 case SYMBOL_REF:
929 case LABEL_REF:
930 case ADDR_VEC:
931 case ADDR_DIFF_VEC:
932 return 1;
933
934 default:
935 break;
936 }
937
938 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
939 {
940 if (fmt[i] == 'e')
941 {
942 /* If we are about to do the last recursive call needed at this
943 level, change it into iteration. This function is called enough
944 to be worth it. */
945 if (i == 0)
946 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
947
948 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
949 return 0;
950 }
951 else if (fmt[i] == 'E')
952 for (j = 0; j < XVECLEN (x, i); j++)
953 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
954 return 0;
955 }
956
957 return 1;
958 }
959
960 /* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
961
962 struct mem_conflict_info
963 {
964 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
965 see if a memory store conflicts with this memory load. */
966 const_rtx mem;
967
968 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
969 references. */
970 bool conflict;
971 };
972
973 /* DEST is the output of an instruction. If it is a memory reference and
974 possibly conflicts with the load found in DATA, then communicate this
975 information back through DATA. */
976
977 static void
978 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
979 void *data)
980 {
981 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
982
983 while (GET_CODE (dest) == SUBREG
984 || GET_CODE (dest) == ZERO_EXTRACT
985 || GET_CODE (dest) == STRICT_LOW_PART)
986 dest = XEXP (dest, 0);
987
988 /* If DEST is not a MEM, then it will not conflict with the load. Note
989 that function calls are assumed to clobber memory, but are handled
990 elsewhere. */
991 if (! MEM_P (dest))
992 return;
993
994 /* If we are setting a MEM in our list of specially recognized MEMs,
995 don't mark as killed this time. */
996 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
997 {
998 if (!find_rtx_in_ldst (dest))
999 mci->conflict = true;
1000 return;
1001 }
1002
1003 if (true_dependence (dest, GET_MODE (dest), mci->mem))
1004 mci->conflict = true;
1005 }
1006
1007 /* Return nonzero if the expression in X (a memory reference) is killed
1008 in block BB before or after the insn with the LUID in UID_LIMIT.
1009 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1010 before UID_LIMIT.
1011
1012 To check the entire block, set UID_LIMIT to max_uid + 1 and
1013 AVAIL_P to 0. */
1014
1015 static int
1016 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1017 int avail_p)
1018 {
1019 vec<rtx_insn *> list = modify_mem_list[bb->index];
1020 rtx_insn *setter;
1021 unsigned ix;
1022
1023 /* If this is a readonly then we aren't going to be changing it. */
1024 if (MEM_READONLY_P (x))
1025 return 0;
1026
1027 FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
1028 {
1029 struct mem_conflict_info mci;
1030
1031 /* Ignore entries in the list that do not apply. */
1032 if ((avail_p
1033 && DF_INSN_LUID (setter) < uid_limit)
1034 || (! avail_p
1035 && DF_INSN_LUID (setter) > uid_limit))
1036 continue;
1037
1038 /* If SETTER is a call everything is clobbered. Note that calls
1039 to pure functions are never put on the list, so we need not
1040 worry about them. */
1041 if (CALL_P (setter))
1042 return 1;
1043
1044 /* SETTER must be an INSN of some kind that sets memory. Call
1045 note_stores to examine each hunk of memory that is modified. */
1046 mci.mem = x;
1047 mci.conflict = false;
1048 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1049 if (mci.conflict)
1050 return 1;
1051 }
1052 return 0;
1053 }
1054
1055 /* Return nonzero if the operands of expression X are unchanged from
1056 the start of INSN's basic block up to but not including INSN. */
1057
1058 static int
1059 oprs_anticipatable_p (const_rtx x, const rtx_insn *insn)
1060 {
1061 return oprs_unchanged_p (x, insn, 0);
1062 }
1063
1064 /* Return nonzero if the operands of expression X are unchanged from
1065 INSN to the end of INSN's basic block. */
1066
1067 static int
1068 oprs_available_p (const_rtx x, const rtx_insn *insn)
1069 {
1070 return oprs_unchanged_p (x, insn, 1);
1071 }
1072
1073 /* Hash expression X.
1074
1075 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1076 indicating if a volatile operand is found or if the expression contains
1077 something we don't want to insert in the table. HASH_TABLE_SIZE is
1078 the current size of the hash table to be probed. */
1079
1080 static unsigned int
1081 hash_expr (const_rtx x, machine_mode mode, int *do_not_record_p,
1082 int hash_table_size)
1083 {
1084 unsigned int hash;
1085
1086 *do_not_record_p = 0;
1087
1088 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
1089 return hash % hash_table_size;
1090 }
1091
1092 /* Return nonzero if exp1 is equivalent to exp2. */
1093
1094 static int
1095 expr_equiv_p (const_rtx x, const_rtx y)
1096 {
1097 return exp_equiv_p (x, y, 0, true);
1098 }
1099
1100 /* Insert expression X in INSN in the hash TABLE.
1101 If it is already present, record it as the last occurrence in INSN's
1102 basic block.
1103
1104 MODE is the mode of the value X is being stored into.
1105 It is only used if X is a CONST_INT.
1106
1107 ANTIC_P is nonzero if X is an anticipatable expression.
1108 AVAIL_P is nonzero if X is an available expression.
1109
1110 MAX_DISTANCE is the maximum distance in instructions this expression can
1111 be moved. */
1112
1113 static void
1114 insert_expr_in_table (rtx x, machine_mode mode, rtx_insn *insn,
1115 int antic_p,
1116 int avail_p, int max_distance, struct gcse_hash_table_d *table)
1117 {
1118 int found, do_not_record_p;
1119 unsigned int hash;
1120 struct gcse_expr *cur_expr, *last_expr = NULL;
1121 struct gcse_occr *antic_occr, *avail_occr;
1122
1123 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1124
1125 /* Do not insert expression in table if it contains volatile operands,
1126 or if hash_expr determines the expression is something we don't want
1127 to or can't handle. */
1128 if (do_not_record_p)
1129 return;
1130
1131 cur_expr = table->table[hash];
1132 found = 0;
1133
1134 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1135 {
1136 /* If the expression isn't found, save a pointer to the end of
1137 the list. */
1138 last_expr = cur_expr;
1139 cur_expr = cur_expr->next_same_hash;
1140 }
1141
1142 if (! found)
1143 {
1144 cur_expr = GOBNEW (struct gcse_expr);
1145 bytes_used += sizeof (struct gcse_expr);
1146 if (table->table[hash] == NULL)
1147 /* This is the first pattern that hashed to this index. */
1148 table->table[hash] = cur_expr;
1149 else
1150 /* Add EXPR to end of this hash chain. */
1151 last_expr->next_same_hash = cur_expr;
1152
1153 /* Set the fields of the expr element. */
1154 cur_expr->expr = x;
1155 cur_expr->bitmap_index = table->n_elems++;
1156 cur_expr->next_same_hash = NULL;
1157 cur_expr->antic_occr = NULL;
1158 cur_expr->avail_occr = NULL;
1159 gcc_assert (max_distance >= 0);
1160 cur_expr->max_distance = max_distance;
1161 }
1162 else
1163 gcc_assert (cur_expr->max_distance == max_distance);
1164
1165 /* Now record the occurrence(s). */
1166 if (antic_p)
1167 {
1168 antic_occr = cur_expr->antic_occr;
1169
1170 if (antic_occr
1171 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
1172 antic_occr = NULL;
1173
1174 if (antic_occr)
1175 /* Found another instance of the expression in the same basic block.
1176 Prefer the currently recorded one. We want the first one in the
1177 block and the block is scanned from start to end. */
1178 ; /* nothing to do */
1179 else
1180 {
1181 /* First occurrence of this expression in this basic block. */
1182 antic_occr = GOBNEW (struct gcse_occr);
1183 bytes_used += sizeof (struct gcse_occr);
1184 antic_occr->insn = insn;
1185 antic_occr->next = cur_expr->antic_occr;
1186 antic_occr->deleted_p = 0;
1187 cur_expr->antic_occr = antic_occr;
1188 }
1189 }
1190
1191 if (avail_p)
1192 {
1193 avail_occr = cur_expr->avail_occr;
1194
1195 if (avail_occr
1196 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
1197 {
1198 /* Found another instance of the expression in the same basic block.
1199 Prefer this occurrence to the currently recorded one. We want
1200 the last one in the block and the block is scanned from start
1201 to end. */
1202 avail_occr->insn = insn;
1203 }
1204 else
1205 {
1206 /* First occurrence of this expression in this basic block. */
1207 avail_occr = GOBNEW (struct gcse_occr);
1208 bytes_used += sizeof (struct gcse_occr);
1209 avail_occr->insn = insn;
1210 avail_occr->next = cur_expr->avail_occr;
1211 avail_occr->deleted_p = 0;
1212 cur_expr->avail_occr = avail_occr;
1213 }
1214 }
1215 }
1216
1217 /* Scan SET present in INSN and add an entry to the hash TABLE. */
1218
1219 static void
1220 hash_scan_set (rtx set, rtx_insn *insn, struct gcse_hash_table_d *table)
1221 {
1222 rtx src = SET_SRC (set);
1223 rtx dest = SET_DEST (set);
1224 rtx note;
1225
1226 if (GET_CODE (src) == CALL)
1227 hash_scan_call (src, insn, table);
1228
1229 else if (REG_P (dest))
1230 {
1231 unsigned int regno = REGNO (dest);
1232 int max_distance = 0;
1233
1234 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1235
1236 This allows us to do a single GCSE pass and still eliminate
1237 redundant constants, addresses or other expressions that are
1238 constructed with multiple instructions.
1239
1240 However, keep the original SRC if INSN is a simple reg-reg move.
1241 In this case, there will almost always be a REG_EQUAL note on the
1242 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1243 for INSN, we miss copy propagation opportunities and we perform the
1244 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1245 do more than one PRE GCSE pass.
1246
1247 Note that this does not impede profitable constant propagations. We
1248 "look through" reg-reg sets in lookup_avail_set. */
1249 note = find_reg_equal_equiv_note (insn);
1250 if (note != 0
1251 && REG_NOTE_KIND (note) == REG_EQUAL
1252 && !REG_P (src)
1253 && want_to_gcse_p (XEXP (note, 0), GET_MODE (dest), NULL))
1254 src = XEXP (note, 0), set = gen_rtx_SET (dest, src);
1255
1256 /* Only record sets of pseudo-regs in the hash table. */
1257 if (regno >= FIRST_PSEUDO_REGISTER
1258 /* Don't GCSE something if we can't do a reg/reg copy. */
1259 && can_copy_p (GET_MODE (dest))
1260 /* GCSE commonly inserts instruction after the insn. We can't
1261 do that easily for EH edges so disable GCSE on these for now. */
1262 /* ??? We can now easily create new EH landing pads at the
1263 gimple level, for splitting edges; there's no reason we
1264 can't do the same thing at the rtl level. */
1265 && !can_throw_internal (insn)
1266 /* Is SET_SRC something we want to gcse? */
1267 && want_to_gcse_p (src, GET_MODE (dest), &max_distance)
1268 /* Don't CSE a nop. */
1269 && ! set_noop_p (set)
1270 /* Don't GCSE if it has attached REG_EQUIV note.
1271 At this point this only function parameters should have
1272 REG_EQUIV notes and if the argument slot is used somewhere
1273 explicitly, it means address of parameter has been taken,
1274 so we should not extend the lifetime of the pseudo. */
1275 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1276 {
1277 /* An expression is not anticipatable if its operands are
1278 modified before this insn or if this is not the only SET in
1279 this insn. The latter condition does not have to mean that
1280 SRC itself is not anticipatable, but we just will not be
1281 able to handle code motion of insns with multiple sets. */
1282 int antic_p = oprs_anticipatable_p (src, insn)
1283 && !multiple_sets (insn);
1284 /* An expression is not available if its operands are
1285 subsequently modified, including this insn. It's also not
1286 available if this is a branch, because we can't insert
1287 a set after the branch. */
1288 int avail_p = (oprs_available_p (src, insn)
1289 && ! JUMP_P (insn));
1290
1291 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1292 max_distance, table);
1293 }
1294 }
1295 /* In case of store we want to consider the memory value as available in
1296 the REG stored in that memory. This makes it possible to remove
1297 redundant loads from due to stores to the same location. */
1298 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1299 {
1300 unsigned int regno = REGNO (src);
1301 int max_distance = 0;
1302
1303 /* Only record sets of pseudo-regs in the hash table. */
1304 if (regno >= FIRST_PSEUDO_REGISTER
1305 /* Don't GCSE something if we can't do a reg/reg copy. */
1306 && can_copy_p (GET_MODE (src))
1307 /* GCSE commonly inserts instruction after the insn. We can't
1308 do that easily for EH edges so disable GCSE on these for now. */
1309 && !can_throw_internal (insn)
1310 /* Is SET_DEST something we want to gcse? */
1311 && want_to_gcse_p (dest, GET_MODE (dest), &max_distance)
1312 /* Don't CSE a nop. */
1313 && ! set_noop_p (set)
1314 /* Don't GCSE if it has attached REG_EQUIV note.
1315 At this point this only function parameters should have
1316 REG_EQUIV notes and if the argument slot is used somewhere
1317 explicitly, it means address of parameter has been taken,
1318 so we should not extend the lifetime of the pseudo. */
1319 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1320 || ! MEM_P (XEXP (note, 0))))
1321 {
1322 /* Stores are never anticipatable. */
1323 int antic_p = 0;
1324 /* An expression is not available if its operands are
1325 subsequently modified, including this insn. It's also not
1326 available if this is a branch, because we can't insert
1327 a set after the branch. */
1328 int avail_p = oprs_available_p (dest, insn) && ! JUMP_P (insn);
1329
1330 /* Record the memory expression (DEST) in the hash table. */
1331 insert_expr_in_table (dest, GET_MODE (dest), insn,
1332 antic_p, avail_p, max_distance, table);
1333 }
1334 }
1335 }
1336
1337 static void
1338 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1339 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1340 {
1341 /* Currently nothing to do. */
1342 }
1343
1344 static void
1345 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1346 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1347 {
1348 /* Currently nothing to do. */
1349 }
1350
1351 /* Process INSN and add hash table entries as appropriate. */
1352
1353 static void
1354 hash_scan_insn (rtx_insn *insn, struct gcse_hash_table_d *table)
1355 {
1356 rtx pat = PATTERN (insn);
1357 int i;
1358
1359 /* Pick out the sets of INSN and for other forms of instructions record
1360 what's been modified. */
1361
1362 if (GET_CODE (pat) == SET)
1363 hash_scan_set (pat, insn, table);
1364
1365 else if (GET_CODE (pat) == CLOBBER)
1366 hash_scan_clobber (pat, insn, table);
1367
1368 else if (GET_CODE (pat) == CALL)
1369 hash_scan_call (pat, insn, table);
1370
1371 else if (GET_CODE (pat) == PARALLEL)
1372 for (i = 0; i < XVECLEN (pat, 0); i++)
1373 {
1374 rtx x = XVECEXP (pat, 0, i);
1375
1376 if (GET_CODE (x) == SET)
1377 hash_scan_set (x, insn, table);
1378 else if (GET_CODE (x) == CLOBBER)
1379 hash_scan_clobber (x, insn, table);
1380 else if (GET_CODE (x) == CALL)
1381 hash_scan_call (x, insn, table);
1382 }
1383 }
1384
1385 /* Dump the hash table TABLE to file FILE under the name NAME. */
1386
1387 static void
1388 dump_hash_table (FILE *file, const char *name, struct gcse_hash_table_d *table)
1389 {
1390 int i;
1391 /* Flattened out table, so it's printed in proper order. */
1392 struct gcse_expr **flat_table;
1393 unsigned int *hash_val;
1394 struct gcse_expr *expr;
1395
1396 flat_table = XCNEWVEC (struct gcse_expr *, table->n_elems);
1397 hash_val = XNEWVEC (unsigned int, table->n_elems);
1398
1399 for (i = 0; i < (int) table->size; i++)
1400 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1401 {
1402 flat_table[expr->bitmap_index] = expr;
1403 hash_val[expr->bitmap_index] = i;
1404 }
1405
1406 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1407 name, table->size, table->n_elems);
1408
1409 for (i = 0; i < (int) table->n_elems; i++)
1410 if (flat_table[i] != 0)
1411 {
1412 expr = flat_table[i];
1413 fprintf (file, "Index %d (hash value %d; max distance %d)\n ",
1414 expr->bitmap_index, hash_val[i], expr->max_distance);
1415 print_rtl (file, expr->expr);
1416 fprintf (file, "\n");
1417 }
1418
1419 fprintf (file, "\n");
1420
1421 free (flat_table);
1422 free (hash_val);
1423 }
1424
1425 /* Record register first/last/block set information for REGNO in INSN.
1426
1427 first_set records the first place in the block where the register
1428 is set and is used to compute "anticipatability".
1429
1430 last_set records the last place in the block where the register
1431 is set and is used to compute "availability".
1432
1433 last_bb records the block for which first_set and last_set are
1434 valid, as a quick test to invalidate them. */
1435
1436 static void
1437 record_last_reg_set_info (rtx_insn *insn, int regno)
1438 {
1439 struct reg_avail_info *info = &reg_avail_info[regno];
1440 int luid = DF_INSN_LUID (insn);
1441
1442 info->last_set = luid;
1443 if (info->last_bb != current_bb)
1444 {
1445 info->last_bb = current_bb;
1446 info->first_set = luid;
1447 }
1448 }
1449
1450 /* Record memory modification information for INSN. We do not actually care
1451 about the memory location(s) that are set, or even how they are set (consider
1452 a CALL_INSN). We merely need to record which insns modify memory. */
1453
1454 static void
1455 record_last_mem_set_info (rtx_insn *insn)
1456 {
1457 if (! flag_gcse_lm)
1458 return;
1459
1460 record_last_mem_set_info_common (insn, modify_mem_list,
1461 canon_modify_mem_list,
1462 modify_mem_list_set,
1463 blocks_with_calls);
1464 }
1465
1466 /* Called from compute_hash_table via note_stores to handle one
1467 SET or CLOBBER in an insn. DATA is really the instruction in which
1468 the SET is taking place. */
1469
1470 static void
1471 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1472 {
1473 rtx_insn *last_set_insn = (rtx_insn *) data;
1474
1475 if (GET_CODE (dest) == SUBREG)
1476 dest = SUBREG_REG (dest);
1477
1478 if (REG_P (dest))
1479 record_last_reg_set_info (last_set_insn, REGNO (dest));
1480 else if (MEM_P (dest)
1481 /* Ignore pushes, they clobber nothing. */
1482 && ! push_operand (dest, GET_MODE (dest)))
1483 record_last_mem_set_info (last_set_insn);
1484 }
1485
1486 /* Top level function to create an expression hash table.
1487
1488 Expression entries are placed in the hash table if
1489 - they are of the form (set (pseudo-reg) src),
1490 - src is something we want to perform GCSE on,
1491 - none of the operands are subsequently modified in the block
1492
1493 Currently src must be a pseudo-reg or a const_int.
1494
1495 TABLE is the table computed. */
1496
1497 static void
1498 compute_hash_table_work (struct gcse_hash_table_d *table)
1499 {
1500 int i;
1501
1502 /* re-Cache any INSN_LIST nodes we have allocated. */
1503 clear_modify_mem_tables ();
1504 /* Some working arrays used to track first and last set in each block. */
1505 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
1506
1507 for (i = 0; i < max_reg_num (); ++i)
1508 reg_avail_info[i].last_bb = NULL;
1509
1510 FOR_EACH_BB_FN (current_bb, cfun)
1511 {
1512 rtx_insn *insn;
1513 unsigned int regno;
1514
1515 /* First pass over the instructions records information used to
1516 determine when registers and memory are first and last set. */
1517 FOR_BB_INSNS (current_bb, insn)
1518 {
1519 if (!NONDEBUG_INSN_P (insn))
1520 continue;
1521
1522 if (CALL_P (insn))
1523 {
1524 hard_reg_set_iterator hrsi;
1525 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1526 0, regno, hrsi)
1527 record_last_reg_set_info (insn, regno);
1528
1529 if (! RTL_CONST_OR_PURE_CALL_P (insn))
1530 record_last_mem_set_info (insn);
1531 }
1532
1533 note_stores (PATTERN (insn), record_last_set_info, insn);
1534 }
1535
1536 /* The next pass builds the hash table. */
1537 FOR_BB_INSNS (current_bb, insn)
1538 if (NONDEBUG_INSN_P (insn))
1539 hash_scan_insn (insn, table);
1540 }
1541
1542 free (reg_avail_info);
1543 reg_avail_info = NULL;
1544 }
1545
1546 /* Allocate space for the set/expr hash TABLE.
1547 It is used to determine the number of buckets to use. */
1548
1549 static void
1550 alloc_hash_table (struct gcse_hash_table_d *table)
1551 {
1552 int n;
1553
1554 n = get_max_insn_count ();
1555
1556 table->size = n / 4;
1557 if (table->size < 11)
1558 table->size = 11;
1559
1560 /* Attempt to maintain efficient use of hash table.
1561 Making it an odd number is simplest for now.
1562 ??? Later take some measurements. */
1563 table->size |= 1;
1564 n = table->size * sizeof (struct gcse_expr *);
1565 table->table = GNEWVAR (struct gcse_expr *, n);
1566 }
1567
1568 /* Free things allocated by alloc_hash_table. */
1569
1570 static void
1571 free_hash_table (struct gcse_hash_table_d *table)
1572 {
1573 free (table->table);
1574 }
1575
1576 /* Compute the expression hash table TABLE. */
1577
1578 static void
1579 compute_hash_table (struct gcse_hash_table_d *table)
1580 {
1581 /* Initialize count of number of entries in hash table. */
1582 table->n_elems = 0;
1583 memset (table->table, 0, table->size * sizeof (struct gcse_expr *));
1584
1585 compute_hash_table_work (table);
1586 }
1587 \f
1588 /* Expression tracking support. */
1589
1590 /* Clear canon_modify_mem_list and modify_mem_list tables. */
1591 static void
1592 clear_modify_mem_tables (void)
1593 {
1594 unsigned i;
1595 bitmap_iterator bi;
1596
1597 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
1598 {
1599 modify_mem_list[i].release ();
1600 canon_modify_mem_list[i].release ();
1601 }
1602 bitmap_clear (modify_mem_list_set);
1603 bitmap_clear (blocks_with_calls);
1604 }
1605
1606 /* Release memory used by modify_mem_list_set. */
1607
1608 static void
1609 free_modify_mem_tables (void)
1610 {
1611 clear_modify_mem_tables ();
1612 free (modify_mem_list);
1613 free (canon_modify_mem_list);
1614 modify_mem_list = 0;
1615 canon_modify_mem_list = 0;
1616 }
1617 \f
1618 /* Compute PRE+LCM working variables. */
1619
1620 /* Local properties of expressions. */
1621
1622 /* Nonzero for expressions that are transparent in the block. */
1623 static sbitmap *transp;
1624
1625 /* Nonzero for expressions that are computed (available) in the block. */
1626 static sbitmap *comp;
1627
1628 /* Nonzero for expressions that are locally anticipatable in the block. */
1629 static sbitmap *antloc;
1630
1631 /* Nonzero for expressions where this block is an optimal computation
1632 point. */
1633 static sbitmap *pre_optimal;
1634
1635 /* Nonzero for expressions which are redundant in a particular block. */
1636 static sbitmap *pre_redundant;
1637
1638 /* Nonzero for expressions which should be inserted on a specific edge. */
1639 static sbitmap *pre_insert_map;
1640
1641 /* Nonzero for expressions which should be deleted in a specific block. */
1642 static sbitmap *pre_delete_map;
1643
1644 /* Allocate vars used for PRE analysis. */
1645
1646 static void
1647 alloc_pre_mem (int n_blocks, int n_exprs)
1648 {
1649 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1650 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1651 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
1652
1653 pre_optimal = NULL;
1654 pre_redundant = NULL;
1655 pre_insert_map = NULL;
1656 pre_delete_map = NULL;
1657 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
1658
1659 /* pre_insert and pre_delete are allocated later. */
1660 }
1661
1662 /* Free vars used for PRE analysis. */
1663
1664 static void
1665 free_pre_mem (void)
1666 {
1667 sbitmap_vector_free (transp);
1668 sbitmap_vector_free (comp);
1669
1670 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
1671
1672 if (pre_optimal)
1673 sbitmap_vector_free (pre_optimal);
1674 if (pre_redundant)
1675 sbitmap_vector_free (pre_redundant);
1676 if (pre_insert_map)
1677 sbitmap_vector_free (pre_insert_map);
1678 if (pre_delete_map)
1679 sbitmap_vector_free (pre_delete_map);
1680
1681 transp = comp = NULL;
1682 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
1683 }
1684
1685 /* Remove certain expressions from anticipatable and transparent
1686 sets of basic blocks that have incoming abnormal edge.
1687 For PRE remove potentially trapping expressions to avoid placing
1688 them on abnormal edges. For hoisting remove memory references that
1689 can be clobbered by calls. */
1690
1691 static void
1692 prune_expressions (bool pre_p)
1693 {
1694 sbitmap prune_exprs;
1695 struct gcse_expr *expr;
1696 unsigned int ui;
1697 basic_block bb;
1698
1699 prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
1700 bitmap_clear (prune_exprs);
1701 for (ui = 0; ui < expr_hash_table.size; ui++)
1702 {
1703 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
1704 {
1705 /* Note potentially trapping expressions. */
1706 if (may_trap_p (expr->expr))
1707 {
1708 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1709 continue;
1710 }
1711
1712 if (!pre_p && MEM_P (expr->expr))
1713 /* Note memory references that can be clobbered by a call.
1714 We do not split abnormal edges in hoisting, so would
1715 a memory reference get hoisted along an abnormal edge,
1716 it would be placed /before/ the call. Therefore, only
1717 constant memory references can be hoisted along abnormal
1718 edges. */
1719 {
1720 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
1721 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
1722 continue;
1723
1724 if (MEM_READONLY_P (expr->expr)
1725 && !MEM_VOLATILE_P (expr->expr)
1726 && MEM_NOTRAP_P (expr->expr))
1727 /* Constant memory reference, e.g., a PIC address. */
1728 continue;
1729
1730 /* ??? Optimally, we would use interprocedural alias
1731 analysis to determine if this mem is actually killed
1732 by this call. */
1733
1734 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1735 }
1736 }
1737 }
1738
1739 FOR_EACH_BB_FN (bb, cfun)
1740 {
1741 edge e;
1742 edge_iterator ei;
1743
1744 /* If the current block is the destination of an abnormal edge, we
1745 kill all trapping (for PRE) and memory (for hoist) expressions
1746 because we won't be able to properly place the instruction on
1747 the edge. So make them neither anticipatable nor transparent.
1748 This is fairly conservative.
1749
1750 ??? For hoisting it may be necessary to check for set-and-jump
1751 instructions here, not just for abnormal edges. The general problem
1752 is that when an expression cannot not be placed right at the end of
1753 a basic block we should account for any side-effects of a subsequent
1754 jump instructions that could clobber the expression. It would
1755 be best to implement this check along the lines of
1756 should_hoist_expr_to_dom where the target block is already known
1757 and, hence, there's no need to conservatively prune expressions on
1758 "intermediate" set-and-jump instructions. */
1759 FOR_EACH_EDGE (e, ei, bb->preds)
1760 if ((e->flags & EDGE_ABNORMAL)
1761 && (pre_p || CALL_P (BB_END (e->src))))
1762 {
1763 bitmap_and_compl (antloc[bb->index],
1764 antloc[bb->index], prune_exprs);
1765 bitmap_and_compl (transp[bb->index],
1766 transp[bb->index], prune_exprs);
1767 break;
1768 }
1769 }
1770
1771 sbitmap_free (prune_exprs);
1772 }
1773
1774 /* It may be necessary to insert a large number of insns on edges to
1775 make the existing occurrences of expressions fully redundant. This
1776 routine examines the set of insertions and deletions and if the ratio
1777 of insertions to deletions is too high for a particular expression, then
1778 the expression is removed from the insertion/deletion sets.
1779
1780 N_ELEMS is the number of elements in the hash table. */
1781
1782 static void
1783 prune_insertions_deletions (int n_elems)
1784 {
1785 sbitmap_iterator sbi;
1786 sbitmap prune_exprs;
1787
1788 /* We always use I to iterate over blocks/edges and J to iterate over
1789 expressions. */
1790 unsigned int i, j;
1791
1792 /* Counts for the number of times an expression needs to be inserted and
1793 number of times an expression can be removed as a result. */
1794 int *insertions = GCNEWVEC (int, n_elems);
1795 int *deletions = GCNEWVEC (int, n_elems);
1796
1797 /* Set of expressions which require too many insertions relative to
1798 the number of deletions achieved. We will prune these out of the
1799 insertion/deletion sets. */
1800 prune_exprs = sbitmap_alloc (n_elems);
1801 bitmap_clear (prune_exprs);
1802
1803 /* Iterate over the edges counting the number of times each expression
1804 needs to be inserted. */
1805 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1806 {
1807 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
1808 insertions[j]++;
1809 }
1810
1811 /* Similarly for deletions, but those occur in blocks rather than on
1812 edges. */
1813 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1814 {
1815 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
1816 deletions[j]++;
1817 }
1818
1819 /* Now that we have accurate counts, iterate over the elements in the
1820 hash table and see if any need too many insertions relative to the
1821 number of evaluations that can be removed. If so, mark them in
1822 PRUNE_EXPRS. */
1823 for (j = 0; j < (unsigned) n_elems; j++)
1824 if (deletions[j]
1825 && ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
1826 bitmap_set_bit (prune_exprs, j);
1827
1828 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
1829 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
1830 {
1831 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1832 bitmap_clear_bit (pre_insert_map[i], j);
1833
1834 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1835 bitmap_clear_bit (pre_delete_map[i], j);
1836 }
1837
1838 sbitmap_free (prune_exprs);
1839 free (insertions);
1840 free (deletions);
1841 }
1842
1843 /* Top level routine to do the dataflow analysis needed by PRE. */
1844
1845 static struct edge_list *
1846 compute_pre_data (void)
1847 {
1848 struct edge_list *edge_list;
1849 basic_block bb;
1850
1851 compute_local_properties (transp, comp, antloc, &expr_hash_table);
1852 prune_expressions (true);
1853 bitmap_vector_clear (ae_kill, last_basic_block_for_fn (cfun));
1854
1855 /* Compute ae_kill for each basic block using:
1856
1857 ~(TRANSP | COMP)
1858 */
1859
1860 FOR_EACH_BB_FN (bb, cfun)
1861 {
1862 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
1863 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
1864 }
1865
1866 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
1867 ae_kill, &pre_insert_map, &pre_delete_map);
1868 sbitmap_vector_free (antloc);
1869 antloc = NULL;
1870 sbitmap_vector_free (ae_kill);
1871 ae_kill = NULL;
1872
1873 prune_insertions_deletions (expr_hash_table.n_elems);
1874
1875 return edge_list;
1876 }
1877 \f
1878 /* PRE utilities */
1879
1880 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
1881 block BB.
1882
1883 VISITED is a pointer to a working buffer for tracking which BB's have
1884 been visited. It is NULL for the top-level call.
1885
1886 We treat reaching expressions that go through blocks containing the same
1887 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
1888 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
1889 2 as not reaching. The intent is to improve the probability of finding
1890 only one reaching expression and to reduce register lifetimes by picking
1891 the closest such expression. */
1892
1893 static int
1894 pre_expr_reaches_here_p_work (basic_block occr_bb, struct gcse_expr *expr,
1895 basic_block bb, char *visited)
1896 {
1897 edge pred;
1898 edge_iterator ei;
1899
1900 FOR_EACH_EDGE (pred, ei, bb->preds)
1901 {
1902 basic_block pred_bb = pred->src;
1903
1904 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1905 /* Has predecessor has already been visited? */
1906 || visited[pred_bb->index])
1907 ;/* Nothing to do. */
1908
1909 /* Does this predecessor generate this expression? */
1910 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
1911 {
1912 /* Is this the occurrence we're looking for?
1913 Note that there's only one generating occurrence per block
1914 so we just need to check the block number. */
1915 if (occr_bb == pred_bb)
1916 return 1;
1917
1918 visited[pred_bb->index] = 1;
1919 }
1920 /* Ignore this predecessor if it kills the expression. */
1921 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
1922 visited[pred_bb->index] = 1;
1923
1924 /* Neither gen nor kill. */
1925 else
1926 {
1927 visited[pred_bb->index] = 1;
1928 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
1929 return 1;
1930 }
1931 }
1932
1933 /* All paths have been checked. */
1934 return 0;
1935 }
1936
1937 /* The wrapper for pre_expr_reaches_here_work that ensures that any
1938 memory allocated for that function is returned. */
1939
1940 static int
1941 pre_expr_reaches_here_p (basic_block occr_bb, struct gcse_expr *expr, basic_block bb)
1942 {
1943 int rval;
1944 char *visited = XCNEWVEC (char, last_basic_block_for_fn (cfun));
1945
1946 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
1947
1948 free (visited);
1949 return rval;
1950 }
1951 \f
1952 /* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
1953
1954 static rtx_insn *
1955 process_insert_insn (struct gcse_expr *expr)
1956 {
1957 rtx reg = expr->reaching_reg;
1958 /* Copy the expression to make sure we don't have any sharing issues. */
1959 rtx exp = copy_rtx (expr->expr);
1960 rtx_insn *pat;
1961
1962 start_sequence ();
1963
1964 /* If the expression is something that's an operand, like a constant,
1965 just copy it to a register. */
1966 if (general_operand (exp, GET_MODE (reg)))
1967 emit_move_insn (reg, exp);
1968
1969 /* Otherwise, make a new insn to compute this expression and make sure the
1970 insn will be recognized (this also adds any needed CLOBBERs). */
1971 else
1972 {
1973 rtx_insn *insn = emit_insn (gen_rtx_SET (reg, exp));
1974
1975 if (insn_invalid_p (insn, false))
1976 gcc_unreachable ();
1977 }
1978
1979 pat = get_insns ();
1980 end_sequence ();
1981
1982 return pat;
1983 }
1984
1985 /* Add EXPR to the end of basic block BB.
1986
1987 This is used by both the PRE and code hoisting. */
1988
1989 static void
1990 insert_insn_end_basic_block (struct gcse_expr *expr, basic_block bb)
1991 {
1992 rtx_insn *insn = BB_END (bb);
1993 rtx_insn *new_insn;
1994 rtx reg = expr->reaching_reg;
1995 int regno = REGNO (reg);
1996 rtx_insn *pat, *pat_end;
1997
1998 pat = process_insert_insn (expr);
1999 gcc_assert (pat && INSN_P (pat));
2000
2001 pat_end = pat;
2002 while (NEXT_INSN (pat_end) != NULL_RTX)
2003 pat_end = NEXT_INSN (pat_end);
2004
2005 /* If the last insn is a jump, insert EXPR in front [taking care to
2006 handle cc0, etc. properly]. Similarly we need to care trapping
2007 instructions in presence of non-call exceptions. */
2008
2009 if (JUMP_P (insn)
2010 || (NONJUMP_INSN_P (insn)
2011 && (!single_succ_p (bb)
2012 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
2013 {
2014 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2015 if cc0 isn't set. */
2016 if (HAVE_cc0)
2017 {
2018 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2019 if (note)
2020 insn = safe_as_a <rtx_insn *> (XEXP (note, 0));
2021 else
2022 {
2023 rtx_insn *maybe_cc0_setter = prev_nonnote_insn (insn);
2024 if (maybe_cc0_setter
2025 && INSN_P (maybe_cc0_setter)
2026 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2027 insn = maybe_cc0_setter;
2028 }
2029 }
2030
2031 /* FIXME: What if something in cc0/jump uses value set in new insn? */
2032 new_insn = emit_insn_before_noloc (pat, insn, bb);
2033 }
2034
2035 /* Likewise if the last insn is a call, as will happen in the presence
2036 of exception handling. */
2037 else if (CALL_P (insn)
2038 && (!single_succ_p (bb)
2039 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
2040 {
2041 /* Keeping in mind targets with small register classes and parameters
2042 in registers, we search backward and place the instructions before
2043 the first parameter is loaded. Do this for everyone for consistency
2044 and a presumption that we'll get better code elsewhere as well. */
2045
2046 /* Since different machines initialize their parameter registers
2047 in different orders, assume nothing. Collect the set of all
2048 parameter registers. */
2049 insn = find_first_parameter_load (insn, BB_HEAD (bb));
2050
2051 /* If we found all the parameter loads, then we want to insert
2052 before the first parameter load.
2053
2054 If we did not find all the parameter loads, then we might have
2055 stopped on the head of the block, which could be a CODE_LABEL.
2056 If we inserted before the CODE_LABEL, then we would be putting
2057 the insn in the wrong basic block. In that case, put the insn
2058 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
2059 while (LABEL_P (insn)
2060 || NOTE_INSN_BASIC_BLOCK_P (insn))
2061 insn = NEXT_INSN (insn);
2062
2063 new_insn = emit_insn_before_noloc (pat, insn, bb);
2064 }
2065 else
2066 new_insn = emit_insn_after_noloc (pat, insn, bb);
2067
2068 while (1)
2069 {
2070 if (INSN_P (pat))
2071 add_label_notes (PATTERN (pat), new_insn);
2072 if (pat == pat_end)
2073 break;
2074 pat = NEXT_INSN (pat);
2075 }
2076
2077 gcse_create_count++;
2078
2079 if (dump_file)
2080 {
2081 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
2082 bb->index, INSN_UID (new_insn));
2083 fprintf (dump_file, "copying expression %d to reg %d\n",
2084 expr->bitmap_index, regno);
2085 }
2086 }
2087
2088 /* Insert partially redundant expressions on edges in the CFG to make
2089 the expressions fully redundant. */
2090
2091 static int
2092 pre_edge_insert (struct edge_list *edge_list, struct gcse_expr **index_map)
2093 {
2094 int e, i, j, num_edges, set_size, did_insert = 0;
2095 sbitmap *inserted;
2096
2097 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2098 if it reaches any of the deleted expressions. */
2099
2100 set_size = pre_insert_map[0]->size;
2101 num_edges = NUM_EDGES (edge_list);
2102 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
2103 bitmap_vector_clear (inserted, num_edges);
2104
2105 for (e = 0; e < num_edges; e++)
2106 {
2107 int indx;
2108 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
2109
2110 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
2111 {
2112 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
2113
2114 for (j = indx;
2115 insert && j < (int) expr_hash_table.n_elems;
2116 j++, insert >>= 1)
2117 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2118 {
2119 struct gcse_expr *expr = index_map[j];
2120 struct gcse_occr *occr;
2121
2122 /* Now look at each deleted occurrence of this expression. */
2123 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2124 {
2125 if (! occr->deleted_p)
2126 continue;
2127
2128 /* Insert this expression on this edge if it would
2129 reach the deleted occurrence in BB. */
2130 if (!bitmap_bit_p (inserted[e], j))
2131 {
2132 rtx_insn *insn;
2133 edge eg = INDEX_EDGE (edge_list, e);
2134
2135 /* We can't insert anything on an abnormal and
2136 critical edge, so we insert the insn at the end of
2137 the previous block. There are several alternatives
2138 detailed in Morgans book P277 (sec 10.5) for
2139 handling this situation. This one is easiest for
2140 now. */
2141
2142 if (eg->flags & EDGE_ABNORMAL)
2143 insert_insn_end_basic_block (index_map[j], bb);
2144 else
2145 {
2146 insn = process_insert_insn (index_map[j]);
2147 insert_insn_on_edge (insn, eg);
2148 }
2149
2150 if (dump_file)
2151 {
2152 fprintf (dump_file, "PRE: edge (%d,%d), ",
2153 bb->index,
2154 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
2155 fprintf (dump_file, "copy expression %d\n",
2156 expr->bitmap_index);
2157 }
2158
2159 update_ld_motion_stores (expr);
2160 bitmap_set_bit (inserted[e], j);
2161 did_insert = 1;
2162 gcse_create_count++;
2163 }
2164 }
2165 }
2166 }
2167 }
2168
2169 sbitmap_vector_free (inserted);
2170 return did_insert;
2171 }
2172
2173 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
2174 Given "old_reg <- expr" (INSN), instead of adding after it
2175 reaching_reg <- old_reg
2176 it's better to do the following:
2177 reaching_reg <- expr
2178 old_reg <- reaching_reg
2179 because this way copy propagation can discover additional PRE
2180 opportunities. But if this fails, we try the old way.
2181 When "expr" is a store, i.e.
2182 given "MEM <- old_reg", instead of adding after it
2183 reaching_reg <- old_reg
2184 it's better to add it before as follows:
2185 reaching_reg <- old_reg
2186 MEM <- reaching_reg. */
2187
2188 static void
2189 pre_insert_copy_insn (struct gcse_expr *expr, rtx_insn *insn)
2190 {
2191 rtx reg = expr->reaching_reg;
2192 int regno = REGNO (reg);
2193 int indx = expr->bitmap_index;
2194 rtx pat = PATTERN (insn);
2195 rtx set, first_set;
2196 rtx_insn *new_insn;
2197 rtx old_reg;
2198 int i;
2199
2200 /* This block matches the logic in hash_scan_insn. */
2201 switch (GET_CODE (pat))
2202 {
2203 case SET:
2204 set = pat;
2205 break;
2206
2207 case PARALLEL:
2208 /* Search through the parallel looking for the set whose
2209 source was the expression that we're interested in. */
2210 first_set = NULL_RTX;
2211 set = NULL_RTX;
2212 for (i = 0; i < XVECLEN (pat, 0); i++)
2213 {
2214 rtx x = XVECEXP (pat, 0, i);
2215 if (GET_CODE (x) == SET)
2216 {
2217 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2218 may not find an equivalent expression, but in this
2219 case the PARALLEL will have a single set. */
2220 if (first_set == NULL_RTX)
2221 first_set = x;
2222 if (expr_equiv_p (SET_SRC (x), expr->expr))
2223 {
2224 set = x;
2225 break;
2226 }
2227 }
2228 }
2229
2230 gcc_assert (first_set);
2231 if (set == NULL_RTX)
2232 set = first_set;
2233 break;
2234
2235 default:
2236 gcc_unreachable ();
2237 }
2238
2239 if (REG_P (SET_DEST (set)))
2240 {
2241 old_reg = SET_DEST (set);
2242 /* Check if we can modify the set destination in the original insn. */
2243 if (validate_change (insn, &SET_DEST (set), reg, 0))
2244 {
2245 new_insn = gen_move_insn (old_reg, reg);
2246 new_insn = emit_insn_after (new_insn, insn);
2247 }
2248 else
2249 {
2250 new_insn = gen_move_insn (reg, old_reg);
2251 new_insn = emit_insn_after (new_insn, insn);
2252 }
2253 }
2254 else /* This is possible only in case of a store to memory. */
2255 {
2256 old_reg = SET_SRC (set);
2257 new_insn = gen_move_insn (reg, old_reg);
2258
2259 /* Check if we can modify the set source in the original insn. */
2260 if (validate_change (insn, &SET_SRC (set), reg, 0))
2261 new_insn = emit_insn_before (new_insn, insn);
2262 else
2263 new_insn = emit_insn_after (new_insn, insn);
2264 }
2265
2266 gcse_create_count++;
2267
2268 if (dump_file)
2269 fprintf (dump_file,
2270 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
2271 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
2272 INSN_UID (insn), regno);
2273 }
2274
2275 /* Copy available expressions that reach the redundant expression
2276 to `reaching_reg'. */
2277
2278 static void
2279 pre_insert_copies (void)
2280 {
2281 unsigned int i, added_copy;
2282 struct gcse_expr *expr;
2283 struct gcse_occr *occr;
2284 struct gcse_occr *avail;
2285
2286 /* For each available expression in the table, copy the result to
2287 `reaching_reg' if the expression reaches a deleted one.
2288
2289 ??? The current algorithm is rather brute force.
2290 Need to do some profiling. */
2291
2292 for (i = 0; i < expr_hash_table.size; i++)
2293 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2294 {
2295 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2296 we don't want to insert a copy here because the expression may not
2297 really be redundant. So only insert an insn if the expression was
2298 deleted. This test also avoids further processing if the
2299 expression wasn't deleted anywhere. */
2300 if (expr->reaching_reg == NULL)
2301 continue;
2302
2303 /* Set when we add a copy for that expression. */
2304 added_copy = 0;
2305
2306 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2307 {
2308 if (! occr->deleted_p)
2309 continue;
2310
2311 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2312 {
2313 rtx_insn *insn = avail->insn;
2314
2315 /* No need to handle this one if handled already. */
2316 if (avail->copied_p)
2317 continue;
2318
2319 /* Don't handle this one if it's a redundant one. */
2320 if (insn->deleted ())
2321 continue;
2322
2323 /* Or if the expression doesn't reach the deleted one. */
2324 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
2325 expr,
2326 BLOCK_FOR_INSN (occr->insn)))
2327 continue;
2328
2329 added_copy = 1;
2330
2331 /* Copy the result of avail to reaching_reg. */
2332 pre_insert_copy_insn (expr, insn);
2333 avail->copied_p = 1;
2334 }
2335 }
2336
2337 if (added_copy)
2338 update_ld_motion_stores (expr);
2339 }
2340 }
2341
2342 struct set_data
2343 {
2344 rtx_insn *insn;
2345 const_rtx set;
2346 int nsets;
2347 };
2348
2349 /* Increment number of sets and record set in DATA. */
2350
2351 static void
2352 record_set_data (rtx dest, const_rtx set, void *data)
2353 {
2354 struct set_data *s = (struct set_data *)data;
2355
2356 if (GET_CODE (set) == SET)
2357 {
2358 /* We allow insns having multiple sets, where all but one are
2359 dead as single set insns. In the common case only a single
2360 set is present, so we want to avoid checking for REG_UNUSED
2361 notes unless necessary. */
2362 if (s->nsets == 1
2363 && find_reg_note (s->insn, REG_UNUSED, SET_DEST (s->set))
2364 && !side_effects_p (s->set))
2365 s->nsets = 0;
2366
2367 if (!s->nsets)
2368 {
2369 /* Record this set. */
2370 s->nsets += 1;
2371 s->set = set;
2372 }
2373 else if (!find_reg_note (s->insn, REG_UNUSED, dest)
2374 || side_effects_p (set))
2375 s->nsets += 1;
2376 }
2377 }
2378
2379 static const_rtx
2380 single_set_gcse (rtx_insn *insn)
2381 {
2382 struct set_data s;
2383 rtx pattern;
2384
2385 gcc_assert (INSN_P (insn));
2386
2387 /* Optimize common case. */
2388 pattern = PATTERN (insn);
2389 if (GET_CODE (pattern) == SET)
2390 return pattern;
2391
2392 s.insn = insn;
2393 s.nsets = 0;
2394 note_stores (pattern, record_set_data, &s);
2395
2396 /* Considered invariant insns have exactly one set. */
2397 gcc_assert (s.nsets == 1);
2398 return s.set;
2399 }
2400
2401 /* Emit move from SRC to DEST noting the equivalence with expression computed
2402 in INSN. */
2403
2404 static rtx_insn *
2405 gcse_emit_move_after (rtx dest, rtx src, rtx_insn *insn)
2406 {
2407 rtx_insn *new_rtx;
2408 const_rtx set = single_set_gcse (insn);
2409 rtx set2;
2410 rtx note;
2411 rtx eqv = NULL_RTX;
2412
2413 /* This should never fail since we're creating a reg->reg copy
2414 we've verified to be valid. */
2415
2416 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
2417
2418 /* Note the equivalence for local CSE pass. Take the note from the old
2419 set if there was one. Otherwise record the SET_SRC from the old set
2420 unless DEST is also an operand of the SET_SRC. */
2421 set2 = single_set (new_rtx);
2422 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
2423 return new_rtx;
2424 if ((note = find_reg_equal_equiv_note (insn)))
2425 eqv = XEXP (note, 0);
2426 else if (! REG_P (dest)
2427 || ! reg_mentioned_p (dest, SET_SRC (set)))
2428 eqv = SET_SRC (set);
2429
2430 if (eqv != NULL_RTX)
2431 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
2432
2433 return new_rtx;
2434 }
2435
2436 /* Delete redundant computations.
2437 Deletion is done by changing the insn to copy the `reaching_reg' of
2438 the expression into the result of the SET. It is left to later passes
2439 to propagate the copy or eliminate it.
2440
2441 Return nonzero if a change is made. */
2442
2443 static int
2444 pre_delete (void)
2445 {
2446 unsigned int i;
2447 int changed;
2448 struct gcse_expr *expr;
2449 struct gcse_occr *occr;
2450
2451 changed = 0;
2452 for (i = 0; i < expr_hash_table.size; i++)
2453 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2454 {
2455 int indx = expr->bitmap_index;
2456
2457 /* We only need to search antic_occr since we require ANTLOC != 0. */
2458 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2459 {
2460 rtx_insn *insn = occr->insn;
2461 rtx set;
2462 basic_block bb = BLOCK_FOR_INSN (insn);
2463
2464 /* We only delete insns that have a single_set. */
2465 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
2466 && (set = single_set (insn)) != 0
2467 && dbg_cnt (pre_insn))
2468 {
2469 /* Create a pseudo-reg to store the result of reaching
2470 expressions into. Get the mode for the new pseudo from
2471 the mode of the original destination pseudo. */
2472 if (expr->reaching_reg == NULL)
2473 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
2474
2475 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
2476 delete_insn (insn);
2477 occr->deleted_p = 1;
2478 changed = 1;
2479 gcse_subst_count++;
2480
2481 if (dump_file)
2482 {
2483 fprintf (dump_file,
2484 "PRE: redundant insn %d (expression %d) in ",
2485 INSN_UID (insn), indx);
2486 fprintf (dump_file, "bb %d, reaching reg is %d\n",
2487 bb->index, REGNO (expr->reaching_reg));
2488 }
2489 }
2490 }
2491 }
2492
2493 return changed;
2494 }
2495
2496 /* Perform GCSE optimizations using PRE.
2497 This is called by one_pre_gcse_pass after all the dataflow analysis
2498 has been done.
2499
2500 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2501 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2502 Compiler Design and Implementation.
2503
2504 ??? A new pseudo reg is created to hold the reaching expression. The nice
2505 thing about the classical approach is that it would try to use an existing
2506 reg. If the register can't be adequately optimized [i.e. we introduce
2507 reload problems], one could add a pass here to propagate the new register
2508 through the block.
2509
2510 ??? We don't handle single sets in PARALLELs because we're [currently] not
2511 able to copy the rest of the parallel when we insert copies to create full
2512 redundancies from partial redundancies. However, there's no reason why we
2513 can't handle PARALLELs in the cases where there are no partial
2514 redundancies. */
2515
2516 static int
2517 pre_gcse (struct edge_list *edge_list)
2518 {
2519 unsigned int i;
2520 int did_insert, changed;
2521 struct gcse_expr **index_map;
2522 struct gcse_expr *expr;
2523
2524 /* Compute a mapping from expression number (`bitmap_index') to
2525 hash table entry. */
2526
2527 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
2528 for (i = 0; i < expr_hash_table.size; i++)
2529 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2530 index_map[expr->bitmap_index] = expr;
2531
2532 /* Delete the redundant insns first so that
2533 - we know what register to use for the new insns and for the other
2534 ones with reaching expressions
2535 - we know which insns are redundant when we go to create copies */
2536
2537 changed = pre_delete ();
2538 did_insert = pre_edge_insert (edge_list, index_map);
2539
2540 /* In other places with reaching expressions, copy the expression to the
2541 specially allocated pseudo-reg that reaches the redundant expr. */
2542 pre_insert_copies ();
2543 if (did_insert)
2544 {
2545 commit_edge_insertions ();
2546 changed = 1;
2547 }
2548
2549 free (index_map);
2550 return changed;
2551 }
2552
2553 /* Top level routine to perform one PRE GCSE pass.
2554
2555 Return nonzero if a change was made. */
2556
2557 static int
2558 one_pre_gcse_pass (void)
2559 {
2560 int changed = 0;
2561
2562 gcse_subst_count = 0;
2563 gcse_create_count = 0;
2564
2565 /* Return if there's nothing to do, or it is too expensive. */
2566 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
2567 || gcse_or_cprop_is_too_expensive (_("PRE disabled")))
2568 return 0;
2569
2570 /* We need alias. */
2571 init_alias_analysis ();
2572
2573 bytes_used = 0;
2574 gcc_obstack_init (&gcse_obstack);
2575 alloc_gcse_mem ();
2576
2577 alloc_hash_table (&expr_hash_table);
2578 add_noreturn_fake_exit_edges ();
2579 if (flag_gcse_lm)
2580 compute_ld_motion_mems ();
2581
2582 compute_hash_table (&expr_hash_table);
2583 if (flag_gcse_lm)
2584 trim_ld_motion_mems ();
2585 if (dump_file)
2586 dump_hash_table (dump_file, "Expression", &expr_hash_table);
2587
2588 if (expr_hash_table.n_elems > 0)
2589 {
2590 struct edge_list *edge_list;
2591 alloc_pre_mem (last_basic_block_for_fn (cfun), expr_hash_table.n_elems);
2592 edge_list = compute_pre_data ();
2593 changed |= pre_gcse (edge_list);
2594 free_edge_list (edge_list);
2595 free_pre_mem ();
2596 }
2597
2598 if (flag_gcse_lm)
2599 free_ld_motion_mems ();
2600 remove_fake_exit_edges ();
2601 free_hash_table (&expr_hash_table);
2602
2603 free_gcse_mem ();
2604 obstack_free (&gcse_obstack, NULL);
2605
2606 /* We are finished with alias. */
2607 end_alias_analysis ();
2608
2609 if (dump_file)
2610 {
2611 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
2612 current_function_name (), n_basic_blocks_for_fn (cfun),
2613 bytes_used);
2614 fprintf (dump_file, "%d substs, %d insns created\n",
2615 gcse_subst_count, gcse_create_count);
2616 }
2617
2618 return changed;
2619 }
2620 \f
2621 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2622 to INSN. If such notes are added to an insn which references a
2623 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2624 that note, because the following loop optimization pass requires
2625 them. */
2626
2627 /* ??? If there was a jump optimization pass after gcse and before loop,
2628 then we would not need to do this here, because jump would add the
2629 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
2630
2631 static void
2632 add_label_notes (rtx x, rtx_insn *insn)
2633 {
2634 enum rtx_code code = GET_CODE (x);
2635 int i, j;
2636 const char *fmt;
2637
2638 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2639 {
2640 /* This code used to ignore labels that referred to dispatch tables to
2641 avoid flow generating (slightly) worse code.
2642
2643 We no longer ignore such label references (see LABEL_REF handling in
2644 mark_jump_label for additional information). */
2645
2646 /* There's no reason for current users to emit jump-insns with
2647 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2648 notes. */
2649 gcc_assert (!JUMP_P (insn));
2650 add_reg_note (insn, REG_LABEL_OPERAND, LABEL_REF_LABEL (x));
2651
2652 if (LABEL_P (LABEL_REF_LABEL (x)))
2653 LABEL_NUSES (LABEL_REF_LABEL (x))++;
2654
2655 return;
2656 }
2657
2658 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2659 {
2660 if (fmt[i] == 'e')
2661 add_label_notes (XEXP (x, i), insn);
2662 else if (fmt[i] == 'E')
2663 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2664 add_label_notes (XVECEXP (x, i, j), insn);
2665 }
2666 }
2667
2668 /* Code Hoisting variables and subroutines. */
2669
2670 /* Very busy expressions. */
2671 static sbitmap *hoist_vbein;
2672 static sbitmap *hoist_vbeout;
2673
2674 /* ??? We could compute post dominators and run this algorithm in
2675 reverse to perform tail merging, doing so would probably be
2676 more effective than the tail merging code in jump.c.
2677
2678 It's unclear if tail merging could be run in parallel with
2679 code hoisting. It would be nice. */
2680
2681 /* Allocate vars used for code hoisting analysis. */
2682
2683 static void
2684 alloc_code_hoist_mem (int n_blocks, int n_exprs)
2685 {
2686 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2687 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2688 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2689
2690 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2691 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
2692 }
2693
2694 /* Free vars used for code hoisting analysis. */
2695
2696 static void
2697 free_code_hoist_mem (void)
2698 {
2699 sbitmap_vector_free (antloc);
2700 sbitmap_vector_free (transp);
2701 sbitmap_vector_free (comp);
2702
2703 sbitmap_vector_free (hoist_vbein);
2704 sbitmap_vector_free (hoist_vbeout);
2705
2706 free_dominance_info (CDI_DOMINATORS);
2707 }
2708
2709 /* Compute the very busy expressions at entry/exit from each block.
2710
2711 An expression is very busy if all paths from a given point
2712 compute the expression. */
2713
2714 static void
2715 compute_code_hoist_vbeinout (void)
2716 {
2717 int changed, passes;
2718 basic_block bb;
2719
2720 bitmap_vector_clear (hoist_vbeout, last_basic_block_for_fn (cfun));
2721 bitmap_vector_clear (hoist_vbein, last_basic_block_for_fn (cfun));
2722
2723 passes = 0;
2724 changed = 1;
2725
2726 while (changed)
2727 {
2728 changed = 0;
2729
2730 /* We scan the blocks in the reverse order to speed up
2731 the convergence. */
2732 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2733 {
2734 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
2735 {
2736 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2737 hoist_vbein, bb);
2738
2739 /* Include expressions in VBEout that are calculated
2740 in BB and available at its end. */
2741 bitmap_ior (hoist_vbeout[bb->index],
2742 hoist_vbeout[bb->index], comp[bb->index]);
2743 }
2744
2745 changed |= bitmap_or_and (hoist_vbein[bb->index],
2746 antloc[bb->index],
2747 hoist_vbeout[bb->index],
2748 transp[bb->index]);
2749 }
2750
2751 passes++;
2752 }
2753
2754 if (dump_file)
2755 {
2756 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2757
2758 FOR_EACH_BB_FN (bb, cfun)
2759 {
2760 fprintf (dump_file, "vbein (%d): ", bb->index);
2761 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
2762 fprintf (dump_file, "vbeout(%d): ", bb->index);
2763 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
2764 }
2765 }
2766 }
2767
2768 /* Top level routine to do the dataflow analysis needed by code hoisting. */
2769
2770 static void
2771 compute_code_hoist_data (void)
2772 {
2773 compute_local_properties (transp, comp, antloc, &expr_hash_table);
2774 prune_expressions (false);
2775 compute_code_hoist_vbeinout ();
2776 calculate_dominance_info (CDI_DOMINATORS);
2777 if (dump_file)
2778 fprintf (dump_file, "\n");
2779 }
2780
2781 /* Update register pressure for BB when hoisting an expression from
2782 instruction FROM, if live ranges of inputs are shrunk. Also
2783 maintain live_in information if live range of register referred
2784 in FROM is shrunk.
2785
2786 Return 0 if register pressure doesn't change, otherwise return
2787 the number by which register pressure is decreased.
2788
2789 NOTE: Register pressure won't be increased in this function. */
2790
2791 static int
2792 update_bb_reg_pressure (basic_block bb, rtx_insn *from)
2793 {
2794 rtx dreg;
2795 rtx_insn *insn;
2796 basic_block succ_bb;
2797 df_ref use, op_ref;
2798 edge succ;
2799 edge_iterator ei;
2800 int decreased_pressure = 0;
2801 int nregs;
2802 enum reg_class pressure_class;
2803
2804 FOR_EACH_INSN_USE (use, from)
2805 {
2806 dreg = DF_REF_REAL_REG (use);
2807 /* The live range of register is shrunk only if it isn't:
2808 1. referred on any path from the end of this block to EXIT, or
2809 2. referred by insns other than FROM in this block. */
2810 FOR_EACH_EDGE (succ, ei, bb->succs)
2811 {
2812 succ_bb = succ->dest;
2813 if (succ_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2814 continue;
2815
2816 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2817 break;
2818 }
2819 if (succ != NULL)
2820 continue;
2821
2822 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2823 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2824 {
2825 if (!DF_REF_INSN_INFO (op_ref))
2826 continue;
2827
2828 insn = DF_REF_INSN (op_ref);
2829 if (BLOCK_FOR_INSN (insn) == bb
2830 && NONDEBUG_INSN_P (insn) && insn != from)
2831 break;
2832 }
2833
2834 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2835 /* Decrease register pressure and update live_in information for
2836 this block. */
2837 if (!op_ref && pressure_class != NO_REGS)
2838 {
2839 decreased_pressure += nregs;
2840 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2841 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2842 }
2843 }
2844 return decreased_pressure;
2845 }
2846
2847 /* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2848 flow graph, if it can reach BB unimpared. Stop the search if the
2849 expression would need to be moved more than DISTANCE instructions.
2850
2851 DISTANCE is the number of instructions through which EXPR can be
2852 hoisted up in flow graph.
2853
2854 BB_SIZE points to an array which contains the number of instructions
2855 for each basic block.
2856
2857 PRESSURE_CLASS and NREGS are register class and number of hard registers
2858 for storing EXPR.
2859
2860 HOISTED_BBS points to a bitmap indicating basic blocks through which
2861 EXPR is hoisted.
2862
2863 FROM is the instruction from which EXPR is hoisted.
2864
2865 It's unclear exactly what Muchnick meant by "unimpared". It seems
2866 to me that the expression must either be computed or transparent in
2867 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2868 would allow the expression to be hoisted out of loops, even if
2869 the expression wasn't a loop invariant.
2870
2871 Contrast this to reachability for PRE where an expression is
2872 considered reachable if *any* path reaches instead of *all*
2873 paths. */
2874
2875 static int
2876 should_hoist_expr_to_dom (basic_block expr_bb, struct gcse_expr *expr,
2877 basic_block bb, sbitmap visited, int distance,
2878 int *bb_size, enum reg_class pressure_class,
2879 int *nregs, bitmap hoisted_bbs, rtx_insn *from)
2880 {
2881 unsigned int i;
2882 edge pred;
2883 edge_iterator ei;
2884 sbitmap_iterator sbi;
2885 int visited_allocated_locally = 0;
2886 int decreased_pressure = 0;
2887
2888 if (flag_ira_hoist_pressure)
2889 {
2890 /* Record old information of basic block BB when it is visited
2891 at the first time. */
2892 if (!bitmap_bit_p (hoisted_bbs, bb->index))
2893 {
2894 struct bb_data *data = BB_DATA (bb);
2895 bitmap_copy (data->backup, data->live_in);
2896 data->old_pressure = data->max_reg_pressure[pressure_class];
2897 }
2898 decreased_pressure = update_bb_reg_pressure (bb, from);
2899 }
2900 /* Terminate the search if distance, for which EXPR is allowed to move,
2901 is exhausted. */
2902 if (distance > 0)
2903 {
2904 if (flag_ira_hoist_pressure)
2905 {
2906 /* Prefer to hoist EXPR if register pressure is decreased. */
2907 if (decreased_pressure > *nregs)
2908 distance += bb_size[bb->index];
2909 /* Let EXPR be hoisted through basic block at no cost if one
2910 of following conditions is satisfied:
2911
2912 1. The basic block has low register pressure.
2913 2. Register pressure won't be increases after hoisting EXPR.
2914
2915 Constant expressions is handled conservatively, because
2916 hoisting constant expression aggressively results in worse
2917 code. This decision is made by the observation of CSiBE
2918 on ARM target, while it has no obvious effect on other
2919 targets like x86, x86_64, mips and powerpc. */
2920 else if (CONST_INT_P (expr->expr)
2921 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
2922 >= ira_class_hard_regs_num[pressure_class]
2923 && decreased_pressure < *nregs))
2924 distance -= bb_size[bb->index];
2925 }
2926 else
2927 distance -= bb_size[bb->index];
2928
2929 if (distance <= 0)
2930 return 0;
2931 }
2932 else
2933 gcc_assert (distance == 0);
2934
2935 if (visited == NULL)
2936 {
2937 visited_allocated_locally = 1;
2938 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
2939 bitmap_clear (visited);
2940 }
2941
2942 FOR_EACH_EDGE (pred, ei, bb->preds)
2943 {
2944 basic_block pred_bb = pred->src;
2945
2946 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2947 break;
2948 else if (pred_bb == expr_bb)
2949 continue;
2950 else if (bitmap_bit_p (visited, pred_bb->index))
2951 continue;
2952 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
2953 break;
2954 /* Not killed. */
2955 else
2956 {
2957 bitmap_set_bit (visited, pred_bb->index);
2958 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
2959 visited, distance, bb_size,
2960 pressure_class, nregs,
2961 hoisted_bbs, from))
2962 break;
2963 }
2964 }
2965 if (visited_allocated_locally)
2966 {
2967 /* If EXPR can be hoisted to expr_bb, record basic blocks through
2968 which EXPR is hoisted in hoisted_bbs. */
2969 if (flag_ira_hoist_pressure && !pred)
2970 {
2971 /* Record the basic block from which EXPR is hoisted. */
2972 bitmap_set_bit (visited, bb->index);
2973 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
2974 bitmap_set_bit (hoisted_bbs, i);
2975 }
2976 sbitmap_free (visited);
2977 }
2978
2979 return (pred == NULL);
2980 }
2981 \f
2982 /* Find occurrence in BB. */
2983
2984 static struct gcse_occr *
2985 find_occr_in_bb (struct gcse_occr *occr, basic_block bb)
2986 {
2987 /* Find the right occurrence of this expression. */
2988 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
2989 occr = occr->next;
2990
2991 return occr;
2992 }
2993
2994 /* Actually perform code hoisting.
2995
2996 The code hoisting pass can hoist multiple computations of the same
2997 expression along dominated path to a dominating basic block, like
2998 from b2/b3 to b1 as depicted below:
2999
3000 b1 ------
3001 /\ |
3002 / \ |
3003 bx by distance
3004 / \ |
3005 / \ |
3006 b2 b3 ------
3007
3008 Unfortunately code hoisting generally extends the live range of an
3009 output pseudo register, which increases register pressure and hurts
3010 register allocation. To address this issue, an attribute MAX_DISTANCE
3011 is computed and attached to each expression. The attribute is computed
3012 from rtx cost of the corresponding expression and it's used to control
3013 how long the expression can be hoisted up in flow graph. As the
3014 expression is hoisted up in flow graph, GCC decreases its DISTANCE
3015 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3016 register pressure if live ranges of inputs are shrunk.
3017
3018 Option "-fira-hoist-pressure" implements register pressure directed
3019 hoist based on upper method. The rationale is:
3020 1. Calculate register pressure for each basic block by reusing IRA
3021 facility.
3022 2. When expression is hoisted through one basic block, GCC checks
3023 the change of live ranges for inputs/output. The basic block's
3024 register pressure will be increased because of extended live
3025 range of output. However, register pressure will be decreased
3026 if the live ranges of inputs are shrunk.
3027 3. After knowing how hoisting affects register pressure, GCC prefers
3028 to hoist the expression if it can decrease register pressure, by
3029 increasing DISTANCE of the corresponding expression.
3030 4. If hoisting the expression increases register pressure, GCC checks
3031 register pressure of the basic block and decrease DISTANCE only if
3032 the register pressure is high. In other words, expression will be
3033 hoisted through at no cost if the basic block has low register
3034 pressure.
3035 5. Update register pressure information for basic blocks through
3036 which expression is hoisted. */
3037
3038 static int
3039 hoist_code (void)
3040 {
3041 basic_block bb, dominated;
3042 vec<basic_block> dom_tree_walk;
3043 unsigned int dom_tree_walk_index;
3044 vec<basic_block> domby;
3045 unsigned int i, j, k;
3046 struct gcse_expr **index_map;
3047 struct gcse_expr *expr;
3048 int *to_bb_head;
3049 int *bb_size;
3050 int changed = 0;
3051 struct bb_data *data;
3052 /* Basic blocks that have occurrences reachable from BB. */
3053 bitmap from_bbs;
3054 /* Basic blocks through which expr is hoisted. */
3055 bitmap hoisted_bbs = NULL;
3056 bitmap_iterator bi;
3057
3058 /* Compute a mapping from expression number (`bitmap_index') to
3059 hash table entry. */
3060
3061 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
3062 for (i = 0; i < expr_hash_table.size; i++)
3063 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
3064 index_map[expr->bitmap_index] = expr;
3065
3066 /* Calculate sizes of basic blocks and note how far
3067 each instruction is from the start of its block. We then use this
3068 data to restrict distance an expression can travel. */
3069
3070 to_bb_head = XCNEWVEC (int, get_max_uid ());
3071 bb_size = XCNEWVEC (int, last_basic_block_for_fn (cfun));
3072
3073 FOR_EACH_BB_FN (bb, cfun)
3074 {
3075 rtx_insn *insn;
3076 int to_head;
3077
3078 to_head = 0;
3079 FOR_BB_INSNS (bb, insn)
3080 {
3081 /* Don't count debug instructions to avoid them affecting
3082 decision choices. */
3083 if (NONDEBUG_INSN_P (insn))
3084 to_bb_head[INSN_UID (insn)] = to_head++;
3085 }
3086
3087 bb_size[bb->index] = to_head;
3088 }
3089
3090 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) == 1
3091 && (EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
3092 == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb));
3093
3094 from_bbs = BITMAP_ALLOC (NULL);
3095 if (flag_ira_hoist_pressure)
3096 hoisted_bbs = BITMAP_ALLOC (NULL);
3097
3098 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
3099 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb);
3100
3101 /* Walk over each basic block looking for potentially hoistable
3102 expressions, nothing gets hoisted from the entry block. */
3103 FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
3104 {
3105 domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3106
3107 if (domby.length () == 0)
3108 continue;
3109
3110 /* Examine each expression that is very busy at the exit of this
3111 block. These are the potentially hoistable expressions. */
3112 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
3113 {
3114 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
3115 {
3116 int nregs = 0;
3117 enum reg_class pressure_class = NO_REGS;
3118 /* Current expression. */
3119 struct gcse_expr *expr = index_map[i];
3120 /* Number of occurrences of EXPR that can be hoisted to BB. */
3121 int hoistable = 0;
3122 /* Occurrences reachable from BB. */
3123 vec<occr_t> occrs_to_hoist = vNULL;
3124 /* We want to insert the expression into BB only once, so
3125 note when we've inserted it. */
3126 int insn_inserted_p;
3127 occr_t occr;
3128
3129 /* If an expression is computed in BB and is available at end of
3130 BB, hoist all occurrences dominated by BB to BB. */
3131 if (bitmap_bit_p (comp[bb->index], i))
3132 {
3133 occr = find_occr_in_bb (expr->antic_occr, bb);
3134
3135 if (occr)
3136 {
3137 /* An occurrence might've been already deleted
3138 while processing a dominator of BB. */
3139 if (!occr->deleted_p)
3140 {
3141 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3142 hoistable++;
3143 }
3144 }
3145 else
3146 hoistable++;
3147 }
3148
3149 /* We've found a potentially hoistable expression, now
3150 we look at every block BB dominates to see if it
3151 computes the expression. */
3152 FOR_EACH_VEC_ELT (domby, j, dominated)
3153 {
3154 int max_distance;
3155
3156 /* Ignore self dominance. */
3157 if (bb == dominated)
3158 continue;
3159 /* We've found a dominated block, now see if it computes
3160 the busy expression and whether or not moving that
3161 expression to the "beginning" of that block is safe. */
3162 if (!bitmap_bit_p (antloc[dominated->index], i))
3163 continue;
3164
3165 occr = find_occr_in_bb (expr->antic_occr, dominated);
3166 gcc_assert (occr);
3167
3168 /* An occurrence might've been already deleted
3169 while processing a dominator of BB. */
3170 if (occr->deleted_p)
3171 continue;
3172 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3173
3174 max_distance = expr->max_distance;
3175 if (max_distance > 0)
3176 /* Adjust MAX_DISTANCE to account for the fact that
3177 OCCR won't have to travel all of DOMINATED, but
3178 only part of it. */
3179 max_distance += (bb_size[dominated->index]
3180 - to_bb_head[INSN_UID (occr->insn)]);
3181
3182 pressure_class = get_pressure_class_and_nregs (occr->insn,
3183 &nregs);
3184
3185 /* Note if the expression should be hoisted from the dominated
3186 block to BB if it can reach DOMINATED unimpared.
3187
3188 Keep track of how many times this expression is hoistable
3189 from a dominated block into BB. */
3190 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3191 max_distance, bb_size,
3192 pressure_class, &nregs,
3193 hoisted_bbs, occr->insn))
3194 {
3195 hoistable++;
3196 occrs_to_hoist.safe_push (occr);
3197 bitmap_set_bit (from_bbs, dominated->index);
3198 }
3199 }
3200
3201 /* If we found more than one hoistable occurrence of this
3202 expression, then note it in the vector of expressions to
3203 hoist. It makes no sense to hoist things which are computed
3204 in only one BB, and doing so tends to pessimize register
3205 allocation. One could increase this value to try harder
3206 to avoid any possible code expansion due to register
3207 allocation issues; however experiments have shown that
3208 the vast majority of hoistable expressions are only movable
3209 from two successors, so raising this threshold is likely
3210 to nullify any benefit we get from code hoisting. */
3211 if (hoistable > 1 && dbg_cnt (hoist_insn))
3212 {
3213 /* If (hoistable != vec::length), then there is
3214 an occurrence of EXPR in BB itself. Don't waste
3215 time looking for LCA in this case. */
3216 if ((unsigned) hoistable == occrs_to_hoist.length ())
3217 {
3218 basic_block lca;
3219
3220 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3221 from_bbs);
3222 if (lca != bb)
3223 /* Punt, it's better to hoist these occurrences to
3224 LCA. */
3225 occrs_to_hoist.release ();
3226 }
3227 }
3228 else
3229 /* Punt, no point hoisting a single occurrence. */
3230 occrs_to_hoist.release ();
3231
3232 if (flag_ira_hoist_pressure
3233 && !occrs_to_hoist.is_empty ())
3234 {
3235 /* Increase register pressure of basic blocks to which
3236 expr is hoisted because of extended live range of
3237 output. */
3238 data = BB_DATA (bb);
3239 data->max_reg_pressure[pressure_class] += nregs;
3240 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3241 {
3242 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3243 data->max_reg_pressure[pressure_class] += nregs;
3244 }
3245 }
3246 else if (flag_ira_hoist_pressure)
3247 {
3248 /* Restore register pressure and live_in info for basic
3249 blocks recorded in hoisted_bbs when expr will not be
3250 hoisted. */
3251 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3252 {
3253 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3254 bitmap_copy (data->live_in, data->backup);
3255 data->max_reg_pressure[pressure_class]
3256 = data->old_pressure;
3257 }
3258 }
3259
3260 if (flag_ira_hoist_pressure)
3261 bitmap_clear (hoisted_bbs);
3262
3263 insn_inserted_p = 0;
3264
3265 /* Walk through occurrences of I'th expressions we want
3266 to hoist to BB and make the transformations. */
3267 FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
3268 {
3269 rtx_insn *insn;
3270 const_rtx set;
3271
3272 gcc_assert (!occr->deleted_p);
3273
3274 insn = occr->insn;
3275 set = single_set_gcse (insn);
3276
3277 /* Create a pseudo-reg to store the result of reaching
3278 expressions into. Get the mode for the new pseudo
3279 from the mode of the original destination pseudo.
3280
3281 It is important to use new pseudos whenever we
3282 emit a set. This will allow reload to use
3283 rematerialization for such registers. */
3284 if (!insn_inserted_p)
3285 expr->reaching_reg
3286 = gen_reg_rtx_and_attrs (SET_DEST (set));
3287
3288 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
3289 insn);
3290 delete_insn (insn);
3291 occr->deleted_p = 1;
3292 changed = 1;
3293 gcse_subst_count++;
3294
3295 if (!insn_inserted_p)
3296 {
3297 insert_insn_end_basic_block (expr, bb);
3298 insn_inserted_p = 1;
3299 }
3300 }
3301
3302 occrs_to_hoist.release ();
3303 bitmap_clear (from_bbs);
3304 }
3305 }
3306 domby.release ();
3307 }
3308
3309 dom_tree_walk.release ();
3310 BITMAP_FREE (from_bbs);
3311 if (flag_ira_hoist_pressure)
3312 BITMAP_FREE (hoisted_bbs);
3313
3314 free (bb_size);
3315 free (to_bb_head);
3316 free (index_map);
3317
3318 return changed;
3319 }
3320
3321 /* Return pressure class and number of needed hard registers (through
3322 *NREGS) of register REGNO. */
3323 static enum reg_class
3324 get_regno_pressure_class (int regno, int *nregs)
3325 {
3326 if (regno >= FIRST_PSEUDO_REGISTER)
3327 {
3328 enum reg_class pressure_class;
3329
3330 pressure_class = reg_allocno_class (regno);
3331 pressure_class = ira_pressure_class_translate[pressure_class];
3332 *nregs
3333 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3334 return pressure_class;
3335 }
3336 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3337 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3338 {
3339 *nregs = 1;
3340 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3341 }
3342 else
3343 {
3344 *nregs = 0;
3345 return NO_REGS;
3346 }
3347 }
3348
3349 /* Return pressure class and number of hard registers (through *NREGS)
3350 for destination of INSN. */
3351 static enum reg_class
3352 get_pressure_class_and_nregs (rtx_insn *insn, int *nregs)
3353 {
3354 rtx reg;
3355 enum reg_class pressure_class;
3356 const_rtx set = single_set_gcse (insn);
3357
3358 reg = SET_DEST (set);
3359 if (GET_CODE (reg) == SUBREG)
3360 reg = SUBREG_REG (reg);
3361 if (MEM_P (reg))
3362 {
3363 *nregs = 0;
3364 pressure_class = NO_REGS;
3365 }
3366 else
3367 {
3368 gcc_assert (REG_P (reg));
3369 pressure_class = reg_allocno_class (REGNO (reg));
3370 pressure_class = ira_pressure_class_translate[pressure_class];
3371 *nregs
3372 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3373 }
3374 return pressure_class;
3375 }
3376
3377 /* Increase (if INCR_P) or decrease current register pressure for
3378 register REGNO. */
3379 static void
3380 change_pressure (int regno, bool incr_p)
3381 {
3382 int nregs;
3383 enum reg_class pressure_class;
3384
3385 pressure_class = get_regno_pressure_class (regno, &nregs);
3386 if (! incr_p)
3387 curr_reg_pressure[pressure_class] -= nregs;
3388 else
3389 {
3390 curr_reg_pressure[pressure_class] += nregs;
3391 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3392 < curr_reg_pressure[pressure_class])
3393 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3394 = curr_reg_pressure[pressure_class];
3395 }
3396 }
3397
3398 /* Calculate register pressure for each basic block by walking insns
3399 from last to first. */
3400 static void
3401 calculate_bb_reg_pressure (void)
3402 {
3403 int i;
3404 unsigned int j;
3405 rtx_insn *insn;
3406 basic_block bb;
3407 bitmap curr_regs_live;
3408 bitmap_iterator bi;
3409
3410
3411 ira_setup_eliminable_regset ();
3412 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
3413 FOR_EACH_BB_FN (bb, cfun)
3414 {
3415 curr_bb = bb;
3416 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3417 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3418 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3419 bitmap_copy (curr_regs_live, df_get_live_out (bb));
3420 for (i = 0; i < ira_pressure_classes_num; i++)
3421 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3422 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3423 change_pressure (j, true);
3424
3425 FOR_BB_INSNS_REVERSE (bb, insn)
3426 {
3427 rtx dreg;
3428 int regno;
3429 df_ref def, use;
3430
3431 if (! NONDEBUG_INSN_P (insn))
3432 continue;
3433
3434 FOR_EACH_INSN_DEF (def, insn)
3435 {
3436 dreg = DF_REF_REAL_REG (def);
3437 gcc_assert (REG_P (dreg));
3438 regno = REGNO (dreg);
3439 if (!(DF_REF_FLAGS (def)
3440 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3441 {
3442 if (bitmap_clear_bit (curr_regs_live, regno))
3443 change_pressure (regno, false);
3444 }
3445 }
3446
3447 FOR_EACH_INSN_USE (use, insn)
3448 {
3449 dreg = DF_REF_REAL_REG (use);
3450 gcc_assert (REG_P (dreg));
3451 regno = REGNO (dreg);
3452 if (bitmap_set_bit (curr_regs_live, regno))
3453 change_pressure (regno, true);
3454 }
3455 }
3456 }
3457 BITMAP_FREE (curr_regs_live);
3458
3459 if (dump_file == NULL)
3460 return;
3461
3462 fprintf (dump_file, "\nRegister Pressure: \n");
3463 FOR_EACH_BB_FN (bb, cfun)
3464 {
3465 fprintf (dump_file, " Basic block %d: \n", bb->index);
3466 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3467 {
3468 enum reg_class pressure_class;
3469
3470 pressure_class = ira_pressure_classes[i];
3471 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3472 continue;
3473
3474 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3475 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3476 }
3477 }
3478 fprintf (dump_file, "\n");
3479 }
3480
3481 /* Top level routine to perform one code hoisting (aka unification) pass
3482
3483 Return nonzero if a change was made. */
3484
3485 static int
3486 one_code_hoisting_pass (void)
3487 {
3488 int changed = 0;
3489
3490 gcse_subst_count = 0;
3491 gcse_create_count = 0;
3492
3493 /* Return if there's nothing to do, or it is too expensive. */
3494 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
3495 || gcse_or_cprop_is_too_expensive (_("GCSE disabled")))
3496 return 0;
3497
3498 doing_code_hoisting_p = true;
3499
3500 /* Calculate register pressure for each basic block. */
3501 if (flag_ira_hoist_pressure)
3502 {
3503 regstat_init_n_sets_and_refs ();
3504 ira_set_pseudo_classes (false, dump_file);
3505 alloc_aux_for_blocks (sizeof (struct bb_data));
3506 calculate_bb_reg_pressure ();
3507 regstat_free_n_sets_and_refs ();
3508 }
3509
3510 /* We need alias. */
3511 init_alias_analysis ();
3512
3513 bytes_used = 0;
3514 gcc_obstack_init (&gcse_obstack);
3515 alloc_gcse_mem ();
3516
3517 alloc_hash_table (&expr_hash_table);
3518 compute_hash_table (&expr_hash_table);
3519 if (dump_file)
3520 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
3521
3522 if (expr_hash_table.n_elems > 0)
3523 {
3524 alloc_code_hoist_mem (last_basic_block_for_fn (cfun),
3525 expr_hash_table.n_elems);
3526 compute_code_hoist_data ();
3527 changed = hoist_code ();
3528 free_code_hoist_mem ();
3529 }
3530
3531 if (flag_ira_hoist_pressure)
3532 {
3533 free_aux_for_blocks ();
3534 free_reg_info ();
3535 }
3536 free_hash_table (&expr_hash_table);
3537 free_gcse_mem ();
3538 obstack_free (&gcse_obstack, NULL);
3539
3540 /* We are finished with alias. */
3541 end_alias_analysis ();
3542
3543 if (dump_file)
3544 {
3545 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
3546 current_function_name (), n_basic_blocks_for_fn (cfun),
3547 bytes_used);
3548 fprintf (dump_file, "%d substs, %d insns created\n",
3549 gcse_subst_count, gcse_create_count);
3550 }
3551
3552 doing_code_hoisting_p = false;
3553
3554 return changed;
3555 }
3556 \f
3557 /* Here we provide the things required to do store motion towards the exit.
3558 In order for this to be effective, gcse also needed to be taught how to
3559 move a load when it is killed only by a store to itself.
3560
3561 int i;
3562 float a[10];
3563
3564 void foo(float scale)
3565 {
3566 for (i=0; i<10; i++)
3567 a[i] *= scale;
3568 }
3569
3570 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3571 the load out since its live around the loop, and stored at the bottom
3572 of the loop.
3573
3574 The 'Load Motion' referred to and implemented in this file is
3575 an enhancement to gcse which when using edge based LCM, recognizes
3576 this situation and allows gcse to move the load out of the loop.
3577
3578 Once gcse has hoisted the load, store motion can then push this
3579 load towards the exit, and we end up with no loads or stores of 'i'
3580 in the loop. */
3581
3582 /* This will search the ldst list for a matching expression. If it
3583 doesn't find one, we create one and initialize it. */
3584
3585 static struct ls_expr *
3586 ldst_entry (rtx x)
3587 {
3588 int do_not_record_p = 0;
3589 struct ls_expr * ptr;
3590 unsigned int hash;
3591 ls_expr **slot;
3592 struct ls_expr e;
3593
3594 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3595 NULL, /*have_reg_qty=*/false);
3596
3597 e.pattern = x;
3598 slot = pre_ldst_table->find_slot_with_hash (&e, hash, INSERT);
3599 if (*slot)
3600 return *slot;
3601
3602 ptr = XNEW (struct ls_expr);
3603
3604 ptr->next = pre_ldst_mems;
3605 ptr->expr = NULL;
3606 ptr->pattern = x;
3607 ptr->pattern_regs = NULL_RTX;
3608 ptr->stores.create (0);
3609 ptr->reaching_reg = NULL_RTX;
3610 ptr->invalid = 0;
3611 ptr->index = 0;
3612 ptr->hash_index = hash;
3613 pre_ldst_mems = ptr;
3614 *slot = ptr;
3615
3616 return ptr;
3617 }
3618
3619 /* Free up an individual ldst entry. */
3620
3621 static void
3622 free_ldst_entry (struct ls_expr * ptr)
3623 {
3624 ptr->stores.release ();
3625
3626 free (ptr);
3627 }
3628
3629 /* Free up all memory associated with the ldst list. */
3630
3631 static void
3632 free_ld_motion_mems (void)
3633 {
3634 delete pre_ldst_table;
3635 pre_ldst_table = NULL;
3636
3637 while (pre_ldst_mems)
3638 {
3639 struct ls_expr * tmp = pre_ldst_mems;
3640
3641 pre_ldst_mems = pre_ldst_mems->next;
3642
3643 free_ldst_entry (tmp);
3644 }
3645
3646 pre_ldst_mems = NULL;
3647 }
3648
3649 /* Dump debugging info about the ldst list. */
3650
3651 static void
3652 print_ldst_list (FILE * file)
3653 {
3654 struct ls_expr * ptr;
3655
3656 fprintf (file, "LDST list: \n");
3657
3658 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
3659 {
3660 fprintf (file, " Pattern (%3d): ", ptr->index);
3661
3662 print_rtl (file, ptr->pattern);
3663
3664 fprintf (file, "\n Stores : ");
3665 print_rtx_insn_vec (file, ptr->stores);
3666
3667 fprintf (file, "\n\n");
3668 }
3669
3670 fprintf (file, "\n");
3671 }
3672
3673 /* Returns 1 if X is in the list of ldst only expressions. */
3674
3675 static struct ls_expr *
3676 find_rtx_in_ldst (rtx x)
3677 {
3678 struct ls_expr e;
3679 ls_expr **slot;
3680 if (!pre_ldst_table)
3681 return NULL;
3682 e.pattern = x;
3683 slot = pre_ldst_table->find_slot (&e, NO_INSERT);
3684 if (!slot || (*slot)->invalid)
3685 return NULL;
3686 return *slot;
3687 }
3688 \f
3689 /* Load Motion for loads which only kill themselves. */
3690
3691 /* Return true if x, a MEM, is a simple access with no side effects.
3692 These are the types of loads we consider for the ld_motion list,
3693 otherwise we let the usual aliasing take care of it. */
3694
3695 static int
3696 simple_mem (const_rtx x)
3697 {
3698 if (MEM_VOLATILE_P (x))
3699 return 0;
3700
3701 if (GET_MODE (x) == BLKmode)
3702 return 0;
3703
3704 /* If we are handling exceptions, we must be careful with memory references
3705 that may trap. If we are not, the behavior is undefined, so we may just
3706 continue. */
3707 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
3708 return 0;
3709
3710 if (side_effects_p (x))
3711 return 0;
3712
3713 /* Do not consider function arguments passed on stack. */
3714 if (reg_mentioned_p (stack_pointer_rtx, x))
3715 return 0;
3716
3717 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3718 return 0;
3719
3720 return 1;
3721 }
3722
3723 /* Make sure there isn't a buried reference in this pattern anywhere.
3724 If there is, invalidate the entry for it since we're not capable
3725 of fixing it up just yet.. We have to be sure we know about ALL
3726 loads since the aliasing code will allow all entries in the
3727 ld_motion list to not-alias itself. If we miss a load, we will get
3728 the wrong value since gcse might common it and we won't know to
3729 fix it up. */
3730
3731 static void
3732 invalidate_any_buried_refs (rtx x)
3733 {
3734 const char * fmt;
3735 int i, j;
3736 struct ls_expr * ptr;
3737
3738 /* Invalidate it in the list. */
3739 if (MEM_P (x) && simple_mem (x))
3740 {
3741 ptr = ldst_entry (x);
3742 ptr->invalid = 1;
3743 }
3744
3745 /* Recursively process the insn. */
3746 fmt = GET_RTX_FORMAT (GET_CODE (x));
3747
3748 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3749 {
3750 if (fmt[i] == 'e')
3751 invalidate_any_buried_refs (XEXP (x, i));
3752 else if (fmt[i] == 'E')
3753 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3754 invalidate_any_buried_refs (XVECEXP (x, i, j));
3755 }
3756 }
3757
3758 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3759 being defined as MEM loads and stores to symbols, with no side effects
3760 and no registers in the expression. For a MEM destination, we also
3761 check that the insn is still valid if we replace the destination with a
3762 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3763 which don't match this criteria, they are invalidated and trimmed out
3764 later. */
3765
3766 static void
3767 compute_ld_motion_mems (void)
3768 {
3769 struct ls_expr * ptr;
3770 basic_block bb;
3771 rtx_insn *insn;
3772
3773 pre_ldst_mems = NULL;
3774 pre_ldst_table = new hash_table<pre_ldst_expr_hasher> (13);
3775
3776 FOR_EACH_BB_FN (bb, cfun)
3777 {
3778 FOR_BB_INSNS (bb, insn)
3779 {
3780 if (NONDEBUG_INSN_P (insn))
3781 {
3782 if (GET_CODE (PATTERN (insn)) == SET)
3783 {
3784 rtx src = SET_SRC (PATTERN (insn));
3785 rtx dest = SET_DEST (PATTERN (insn));
3786
3787 /* Check for a simple load. */
3788 if (MEM_P (src) && simple_mem (src))
3789 {
3790 ptr = ldst_entry (src);
3791 if (!REG_P (dest))
3792 ptr->invalid = 1;
3793 }
3794 else
3795 {
3796 /* Make sure there isn't a buried load somewhere. */
3797 invalidate_any_buried_refs (src);
3798 }
3799
3800 /* Check for a simple load through a REG_EQUAL note. */
3801 rtx note = find_reg_equal_equiv_note (insn), src_eq;
3802 if (note
3803 && REG_NOTE_KIND (note) == REG_EQUAL
3804 && (src_eq = XEXP (note, 0))
3805 && !(MEM_P (src_eq) && simple_mem (src_eq)))
3806 invalidate_any_buried_refs (src_eq);
3807
3808 /* Check for stores. Don't worry about aliased ones, they
3809 will block any movement we might do later. We only care
3810 about this exact pattern since those are the only
3811 circumstance that we will ignore the aliasing info. */
3812 if (MEM_P (dest) && simple_mem (dest))
3813 {
3814 ptr = ldst_entry (dest);
3815 machine_mode src_mode = GET_MODE (src);
3816 if (! MEM_P (src)
3817 && GET_CODE (src) != ASM_OPERANDS
3818 /* Check for REG manually since want_to_gcse_p
3819 returns 0 for all REGs. */
3820 && can_assign_to_reg_without_clobbers_p (src,
3821 src_mode))
3822 ptr->stores.safe_push (insn);
3823 else
3824 ptr->invalid = 1;
3825 }
3826 }
3827 else
3828 {
3829 /* Invalidate all MEMs in the pattern and... */
3830 invalidate_any_buried_refs (PATTERN (insn));
3831
3832 /* ...in REG_EQUAL notes for PARALLELs with single SET. */
3833 rtx note = find_reg_equal_equiv_note (insn), src_eq;
3834 if (note
3835 && REG_NOTE_KIND (note) == REG_EQUAL
3836 && (src_eq = XEXP (note, 0)))
3837 invalidate_any_buried_refs (src_eq);
3838 }
3839 }
3840 }
3841 }
3842 }
3843
3844 /* Remove any references that have been either invalidated or are not in the
3845 expression list for pre gcse. */
3846
3847 static void
3848 trim_ld_motion_mems (void)
3849 {
3850 struct ls_expr * * last = & pre_ldst_mems;
3851 struct ls_expr * ptr = pre_ldst_mems;
3852
3853 while (ptr != NULL)
3854 {
3855 struct gcse_expr * expr;
3856
3857 /* Delete if entry has been made invalid. */
3858 if (! ptr->invalid)
3859 {
3860 /* Delete if we cannot find this mem in the expression list. */
3861 unsigned int hash = ptr->hash_index % expr_hash_table.size;
3862
3863 for (expr = expr_hash_table.table[hash];
3864 expr != NULL;
3865 expr = expr->next_same_hash)
3866 if (expr_equiv_p (expr->expr, ptr->pattern))
3867 break;
3868 }
3869 else
3870 expr = (struct gcse_expr *) 0;
3871
3872 if (expr)
3873 {
3874 /* Set the expression field if we are keeping it. */
3875 ptr->expr = expr;
3876 last = & ptr->next;
3877 ptr = ptr->next;
3878 }
3879 else
3880 {
3881 *last = ptr->next;
3882 pre_ldst_table->remove_elt_with_hash (ptr, ptr->hash_index);
3883 free_ldst_entry (ptr);
3884 ptr = * last;
3885 }
3886 }
3887
3888 /* Show the world what we've found. */
3889 if (dump_file && pre_ldst_mems != NULL)
3890 print_ldst_list (dump_file);
3891 }
3892
3893 /* This routine will take an expression which we are replacing with
3894 a reaching register, and update any stores that are needed if
3895 that expression is in the ld_motion list. Stores are updated by
3896 copying their SRC to the reaching register, and then storing
3897 the reaching register into the store location. These keeps the
3898 correct value in the reaching register for the loads. */
3899
3900 static void
3901 update_ld_motion_stores (struct gcse_expr * expr)
3902 {
3903 struct ls_expr * mem_ptr;
3904
3905 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
3906 {
3907 /* We can try to find just the REACHED stores, but is shouldn't
3908 matter to set the reaching reg everywhere... some might be
3909 dead and should be eliminated later. */
3910
3911 /* We replace (set mem expr) with (set reg expr) (set mem reg)
3912 where reg is the reaching reg used in the load. We checked in
3913 compute_ld_motion_mems that we can replace (set mem expr) with
3914 (set reg expr) in that insn. */
3915 rtx_insn *insn;
3916 unsigned int i;
3917 FOR_EACH_VEC_ELT_REVERSE (mem_ptr->stores, i, insn)
3918 {
3919 rtx pat = PATTERN (insn);
3920 rtx src = SET_SRC (pat);
3921 rtx reg = expr->reaching_reg;
3922
3923 /* If we've already copied it, continue. */
3924 if (expr->reaching_reg == src)
3925 continue;
3926
3927 if (dump_file)
3928 {
3929 fprintf (dump_file, "PRE: store updated with reaching reg ");
3930 print_rtl (dump_file, reg);
3931 fprintf (dump_file, ":\n ");
3932 print_inline_rtx (dump_file, insn, 8);
3933 fprintf (dump_file, "\n");
3934 }
3935
3936 rtx_insn *copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
3937 emit_insn_before (copy, insn);
3938 SET_SRC (pat) = reg;
3939 df_insn_rescan (insn);
3940
3941 /* un-recognize this pattern since it's probably different now. */
3942 INSN_CODE (insn) = -1;
3943 gcse_create_count++;
3944 }
3945 }
3946 }
3947 \f
3948 /* Return true if the graph is too expensive to optimize. PASS is the
3949 optimization about to be performed. */
3950
3951 bool
3952 gcse_or_cprop_is_too_expensive (const char *pass)
3953 {
3954 unsigned int memory_request = (n_basic_blocks_for_fn (cfun)
3955 * SBITMAP_SET_SIZE (max_reg_num ())
3956 * sizeof (SBITMAP_ELT_TYPE));
3957
3958 /* Trying to perform global optimizations on flow graphs which have
3959 a high connectivity will take a long time and is unlikely to be
3960 particularly useful.
3961
3962 In normal circumstances a cfg should have about twice as many
3963 edges as blocks. But we do not want to punish small functions
3964 which have a couple switch statements. Rather than simply
3965 threshold the number of blocks, uses something with a more
3966 graceful degradation. */
3967 if (n_edges_for_fn (cfun) > 20000 + n_basic_blocks_for_fn (cfun) * 4)
3968 {
3969 warning (OPT_Wdisabled_optimization,
3970 "%s: %d basic blocks and %d edges/basic block",
3971 pass, n_basic_blocks_for_fn (cfun),
3972 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun));
3973
3974 return true;
3975 }
3976
3977 /* If allocating memory for the dataflow bitmaps would take up too much
3978 storage it's better just to disable the optimization. */
3979 if (memory_request > MAX_GCSE_MEMORY)
3980 {
3981 warning (OPT_Wdisabled_optimization,
3982 "%s: %d basic blocks and %d registers; increase --param max-gcse-memory above %d",
3983 pass, n_basic_blocks_for_fn (cfun), max_reg_num (),
3984 memory_request);
3985
3986 return true;
3987 }
3988
3989 return false;
3990 }
3991 \f
3992 static unsigned int
3993 execute_rtl_pre (void)
3994 {
3995 int changed;
3996 delete_unreachable_blocks ();
3997 df_analyze ();
3998 changed = one_pre_gcse_pass ();
3999 flag_rerun_cse_after_global_opts |= changed;
4000 if (changed)
4001 cleanup_cfg (0);
4002 return 0;
4003 }
4004
4005 static unsigned int
4006 execute_rtl_hoist (void)
4007 {
4008 int changed;
4009 delete_unreachable_blocks ();
4010 df_analyze ();
4011 changed = one_code_hoisting_pass ();
4012 flag_rerun_cse_after_global_opts |= changed;
4013 if (changed)
4014 cleanup_cfg (0);
4015 return 0;
4016 }
4017
4018 namespace {
4019
4020 const pass_data pass_data_rtl_pre =
4021 {
4022 RTL_PASS, /* type */
4023 "rtl pre", /* name */
4024 OPTGROUP_NONE, /* optinfo_flags */
4025 TV_PRE, /* tv_id */
4026 PROP_cfglayout, /* properties_required */
4027 0, /* properties_provided */
4028 0, /* properties_destroyed */
4029 0, /* todo_flags_start */
4030 TODO_df_finish, /* todo_flags_finish */
4031 };
4032
4033 class pass_rtl_pre : public rtl_opt_pass
4034 {
4035 public:
4036 pass_rtl_pre (gcc::context *ctxt)
4037 : rtl_opt_pass (pass_data_rtl_pre, ctxt)
4038 {}
4039
4040 /* opt_pass methods: */
4041 virtual bool gate (function *);
4042 virtual unsigned int execute (function *) { return execute_rtl_pre (); }
4043
4044 }; // class pass_rtl_pre
4045
4046 /* We do not construct an accurate cfg in functions which call
4047 setjmp, so none of these passes runs if the function calls
4048 setjmp.
4049 FIXME: Should just handle setjmp via REG_SETJMP notes. */
4050
4051 bool
4052 pass_rtl_pre::gate (function *fun)
4053 {
4054 return optimize > 0 && flag_gcse
4055 && !fun->calls_setjmp
4056 && optimize_function_for_speed_p (fun)
4057 && dbg_cnt (pre);
4058 }
4059
4060 } // anon namespace
4061
4062 rtl_opt_pass *
4063 make_pass_rtl_pre (gcc::context *ctxt)
4064 {
4065 return new pass_rtl_pre (ctxt);
4066 }
4067
4068 namespace {
4069
4070 const pass_data pass_data_rtl_hoist =
4071 {
4072 RTL_PASS, /* type */
4073 "hoist", /* name */
4074 OPTGROUP_NONE, /* optinfo_flags */
4075 TV_HOIST, /* tv_id */
4076 PROP_cfglayout, /* properties_required */
4077 0, /* properties_provided */
4078 0, /* properties_destroyed */
4079 0, /* todo_flags_start */
4080 TODO_df_finish, /* todo_flags_finish */
4081 };
4082
4083 class pass_rtl_hoist : public rtl_opt_pass
4084 {
4085 public:
4086 pass_rtl_hoist (gcc::context *ctxt)
4087 : rtl_opt_pass (pass_data_rtl_hoist, ctxt)
4088 {}
4089
4090 /* opt_pass methods: */
4091 virtual bool gate (function *);
4092 virtual unsigned int execute (function *) { return execute_rtl_hoist (); }
4093
4094 }; // class pass_rtl_hoist
4095
4096 bool
4097 pass_rtl_hoist::gate (function *)
4098 {
4099 return optimize > 0 && flag_gcse
4100 && !cfun->calls_setjmp
4101 /* It does not make sense to run code hoisting unless we are optimizing
4102 for code size -- it rarely makes programs faster, and can make then
4103 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4104 && optimize_function_for_size_p (cfun)
4105 && dbg_cnt (hoist);
4106 }
4107
4108 } // anon namespace
4109
4110 rtl_opt_pass *
4111 make_pass_rtl_hoist (gcc::context *ctxt)
4112 {
4113 return new pass_rtl_hoist (ctxt);
4114 }
4115
4116 /* Reset all state within gcse.c so that we can rerun the compiler
4117 within the same process. For use by toplev::finalize. */
4118
4119 void
4120 gcse_c_finalize (void)
4121 {
4122 test_insn = NULL;
4123 }
4124
4125 #include "gt-gcse.h"