Eliminate FOR_EACH_BB macro.
[gcc.git] / gcc / gcse.c
1 /* Partial redundancy elimination / Hoisting for RTL.
2 Copyright (C) 1997-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* TODO
21 - reordering of memory allocation and freeing to be more space efficient
22 - calc rough register pressure information and use the info to drive all
23 kinds of code motion (including code hoisting) in a unified way.
24 */
25
26 /* References searched while implementing this.
27
28 Compilers Principles, Techniques and Tools
29 Aho, Sethi, Ullman
30 Addison-Wesley, 1988
31
32 Global Optimization by Suppression of Partial Redundancies
33 E. Morel, C. Renvoise
34 communications of the acm, Vol. 22, Num. 2, Feb. 1979
35
36 A Portable Machine-Independent Global Optimizer - Design and Measurements
37 Frederick Chow
38 Stanford Ph.D. thesis, Dec. 1983
39
40 A Fast Algorithm for Code Movement Optimization
41 D.M. Dhamdhere
42 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
43
44 A Solution to a Problem with Morel and Renvoise's
45 Global Optimization by Suppression of Partial Redundancies
46 K-H Drechsler, M.P. Stadel
47 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
48
49 Practical Adaptation of the Global Optimization
50 Algorithm of Morel and Renvoise
51 D.M. Dhamdhere
52 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
53
54 Efficiently Computing Static Single Assignment Form and the Control
55 Dependence Graph
56 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
58
59 Lazy Code Motion
60 J. Knoop, O. Ruthing, B. Steffen
61 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
62
63 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
64 Time for Reducible Flow Control
65 Thomas Ball
66 ACM Letters on Programming Languages and Systems,
67 Vol. 2, Num. 1-4, Mar-Dec 1993
68
69 An Efficient Representation for Sparse Sets
70 Preston Briggs, Linda Torczon
71 ACM Letters on Programming Languages and Systems,
72 Vol. 2, Num. 1-4, Mar-Dec 1993
73
74 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75 K-H Drechsler, M.P. Stadel
76 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
77
78 Partial Dead Code Elimination
79 J. Knoop, O. Ruthing, B. Steffen
80 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
81
82 Effective Partial Redundancy Elimination
83 P. Briggs, K.D. Cooper
84 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
85
86 The Program Structure Tree: Computing Control Regions in Linear Time
87 R. Johnson, D. Pearson, K. Pingali
88 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
89
90 Optimal Code Motion: Theory and Practice
91 J. Knoop, O. Ruthing, B. Steffen
92 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
93
94 The power of assignment motion
95 J. Knoop, O. Ruthing, B. Steffen
96 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
97
98 Global code motion / global value numbering
99 C. Click
100 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
101
102 Value Driven Redundancy Elimination
103 L.T. Simpson
104 Rice University Ph.D. thesis, Apr. 1996
105
106 Value Numbering
107 L.T. Simpson
108 Massively Scalar Compiler Project, Rice University, Sep. 1996
109
110 High Performance Compilers for Parallel Computing
111 Michael Wolfe
112 Addison-Wesley, 1996
113
114 Advanced Compiler Design and Implementation
115 Steven Muchnick
116 Morgan Kaufmann, 1997
117
118 Building an Optimizing Compiler
119 Robert Morgan
120 Digital Press, 1998
121
122 People wishing to speed up the code here should read:
123 Elimination Algorithms for Data Flow Analysis
124 B.G. Ryder, M.C. Paull
125 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
126
127 How to Analyze Large Programs Efficiently and Informatively
128 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
130
131 People wishing to do something different can find various possibilities
132 in the above papers and elsewhere.
133 */
134
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "tm.h"
139 #include "diagnostic-core.h"
140 #include "toplev.h"
141
142 #include "hard-reg-set.h"
143 #include "rtl.h"
144 #include "tree.h"
145 #include "tm_p.h"
146 #include "regs.h"
147 #include "ira.h"
148 #include "flags.h"
149 #include "insn-config.h"
150 #include "recog.h"
151 #include "basic-block.h"
152 #include "function.h"
153 #include "expr.h"
154 #include "except.h"
155 #include "ggc.h"
156 #include "params.h"
157 #include "cselib.h"
158 #include "intl.h"
159 #include "obstack.h"
160 #include "tree-pass.h"
161 #include "hash-table.h"
162 #include "df.h"
163 #include "dbgcnt.h"
164 #include "target.h"
165 #include "gcse.h"
166
167 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
168 are a superset of those done by classic GCSE.
169
170 Two passes of copy/constant propagation are done around PRE or hoisting
171 because the first one enables more GCSE and the second one helps to clean
172 up the copies that PRE and HOIST create. This is needed more for PRE than
173 for HOIST because code hoisting will try to use an existing register
174 containing the common subexpression rather than create a new one. This is
175 harder to do for PRE because of the code motion (which HOIST doesn't do).
176
177 Expressions we are interested in GCSE-ing are of the form
178 (set (pseudo-reg) (expression)).
179 Function want_to_gcse_p says what these are.
180
181 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
182 This allows PRE to hoist expressions that are expressed in multiple insns,
183 such as complex address calculations (e.g. for PIC code, or loads with a
184 high part and a low part).
185
186 PRE handles moving invariant expressions out of loops (by treating them as
187 partially redundant).
188
189 **********************
190
191 We used to support multiple passes but there are diminishing returns in
192 doing so. The first pass usually makes 90% of the changes that are doable.
193 A second pass can make a few more changes made possible by the first pass.
194 Experiments show any further passes don't make enough changes to justify
195 the expense.
196
197 A study of spec92 using an unlimited number of passes:
198 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
199 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
200 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
201
202 It was found doing copy propagation between each pass enables further
203 substitutions.
204
205 This study was done before expressions in REG_EQUAL notes were added as
206 candidate expressions for optimization, and before the GIMPLE optimizers
207 were added. Probably, multiple passes is even less efficient now than
208 at the time when the study was conducted.
209
210 PRE is quite expensive in complicated functions because the DFA can take
211 a while to converge. Hence we only perform one pass.
212
213 **********************
214
215 The steps for PRE are:
216
217 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
218
219 2) Perform the data flow analysis for PRE.
220
221 3) Delete the redundant instructions
222
223 4) Insert the required copies [if any] that make the partially
224 redundant instructions fully redundant.
225
226 5) For other reaching expressions, insert an instruction to copy the value
227 to a newly created pseudo that will reach the redundant instruction.
228
229 The deletion is done first so that when we do insertions we
230 know which pseudo reg to use.
231
232 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
233 argue it is not. The number of iterations for the algorithm to converge
234 is typically 2-4 so I don't view it as that expensive (relatively speaking).
235
236 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
237 we create. To make an expression reach the place where it's redundant,
238 the result of the expression is copied to a new register, and the redundant
239 expression is deleted by replacing it with this new register. Classic GCSE
240 doesn't have this problem as much as it computes the reaching defs of
241 each register in each block and thus can try to use an existing
242 register. */
243 \f
244 /* GCSE global vars. */
245
246 struct target_gcse default_target_gcse;
247 #if SWITCHABLE_TARGET
248 struct target_gcse *this_target_gcse = &default_target_gcse;
249 #endif
250
251 /* Set to non-zero if CSE should run after all GCSE optimizations are done. */
252 int flag_rerun_cse_after_global_opts;
253
254 /* An obstack for our working variables. */
255 static struct obstack gcse_obstack;
256
257 /* Hash table of expressions. */
258
259 struct expr
260 {
261 /* The expression. */
262 rtx expr;
263 /* Index in the available expression bitmaps. */
264 int bitmap_index;
265 /* Next entry with the same hash. */
266 struct expr *next_same_hash;
267 /* List of anticipatable occurrences in basic blocks in the function.
268 An "anticipatable occurrence" is one that is the first occurrence in the
269 basic block, the operands are not modified in the basic block prior
270 to the occurrence and the output is not used between the start of
271 the block and the occurrence. */
272 struct occr *antic_occr;
273 /* List of available occurrence in basic blocks in the function.
274 An "available occurrence" is one that is the last occurrence in the
275 basic block and the operands are not modified by following statements in
276 the basic block [including this insn]. */
277 struct occr *avail_occr;
278 /* Non-null if the computation is PRE redundant.
279 The value is the newly created pseudo-reg to record a copy of the
280 expression in all the places that reach the redundant copy. */
281 rtx reaching_reg;
282 /* Maximum distance in instructions this expression can travel.
283 We avoid moving simple expressions for more than a few instructions
284 to keep register pressure under control.
285 A value of "0" removes restrictions on how far the expression can
286 travel. */
287 int max_distance;
288 };
289
290 /* Occurrence of an expression.
291 There is one per basic block. If a pattern appears more than once the
292 last appearance is used [or first for anticipatable expressions]. */
293
294 struct occr
295 {
296 /* Next occurrence of this expression. */
297 struct occr *next;
298 /* The insn that computes the expression. */
299 rtx insn;
300 /* Nonzero if this [anticipatable] occurrence has been deleted. */
301 char deleted_p;
302 /* Nonzero if this [available] occurrence has been copied to
303 reaching_reg. */
304 /* ??? This is mutually exclusive with deleted_p, so they could share
305 the same byte. */
306 char copied_p;
307 };
308
309 typedef struct occr *occr_t;
310
311 /* Expression hash tables.
312 Each hash table is an array of buckets.
313 ??? It is known that if it were an array of entries, structure elements
314 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
315 not clear whether in the final analysis a sufficient amount of memory would
316 be saved as the size of the available expression bitmaps would be larger
317 [one could build a mapping table without holes afterwards though].
318 Someday I'll perform the computation and figure it out. */
319
320 struct hash_table_d
321 {
322 /* The table itself.
323 This is an array of `expr_hash_table_size' elements. */
324 struct expr **table;
325
326 /* Size of the hash table, in elements. */
327 unsigned int size;
328
329 /* Number of hash table elements. */
330 unsigned int n_elems;
331 };
332
333 /* Expression hash table. */
334 static struct hash_table_d expr_hash_table;
335
336 /* This is a list of expressions which are MEMs and will be used by load
337 or store motion.
338 Load motion tracks MEMs which aren't killed by anything except itself,
339 i.e. loads and stores to a single location.
340 We can then allow movement of these MEM refs with a little special
341 allowance. (all stores copy the same value to the reaching reg used
342 for the loads). This means all values used to store into memory must have
343 no side effects so we can re-issue the setter value. */
344
345 struct ls_expr
346 {
347 struct expr * expr; /* Gcse expression reference for LM. */
348 rtx pattern; /* Pattern of this mem. */
349 rtx pattern_regs; /* List of registers mentioned by the mem. */
350 rtx loads; /* INSN list of loads seen. */
351 rtx stores; /* INSN list of stores seen. */
352 struct ls_expr * next; /* Next in the list. */
353 int invalid; /* Invalid for some reason. */
354 int index; /* If it maps to a bitmap index. */
355 unsigned int hash_index; /* Index when in a hash table. */
356 rtx reaching_reg; /* Register to use when re-writing. */
357 };
358
359 /* Head of the list of load/store memory refs. */
360 static struct ls_expr * pre_ldst_mems = NULL;
361
362 struct pre_ldst_expr_hasher : typed_noop_remove <ls_expr>
363 {
364 typedef ls_expr value_type;
365 typedef value_type compare_type;
366 static inline hashval_t hash (const value_type *);
367 static inline bool equal (const value_type *, const compare_type *);
368 };
369
370 /* Hashtable helpers. */
371 inline hashval_t
372 pre_ldst_expr_hasher::hash (const value_type *x)
373 {
374 int do_not_record_p = 0;
375 return
376 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
377 }
378
379 static int expr_equiv_p (const_rtx, const_rtx);
380
381 inline bool
382 pre_ldst_expr_hasher::equal (const value_type *ptr1,
383 const compare_type *ptr2)
384 {
385 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
386 }
387
388 /* Hashtable for the load/store memory refs. */
389 static hash_table <pre_ldst_expr_hasher> pre_ldst_table;
390
391 /* Bitmap containing one bit for each register in the program.
392 Used when performing GCSE to track which registers have been set since
393 the start of the basic block. */
394 static regset reg_set_bitmap;
395
396 /* Array, indexed by basic block number for a list of insns which modify
397 memory within that block. */
398 static vec<rtx> *modify_mem_list;
399 static bitmap modify_mem_list_set;
400
401 typedef struct modify_pair_s
402 {
403 rtx dest; /* A MEM. */
404 rtx dest_addr; /* The canonical address of `dest'. */
405 } modify_pair;
406
407
408 /* This array parallels modify_mem_list, except that it stores MEMs
409 being set and their canonicalized memory addresses. */
410 static vec<modify_pair> *canon_modify_mem_list;
411
412 /* Bitmap indexed by block numbers to record which blocks contain
413 function calls. */
414 static bitmap blocks_with_calls;
415
416 /* Various variables for statistics gathering. */
417
418 /* Memory used in a pass.
419 This isn't intended to be absolutely precise. Its intent is only
420 to keep an eye on memory usage. */
421 static int bytes_used;
422
423 /* GCSE substitutions made. */
424 static int gcse_subst_count;
425 /* Number of copy instructions created. */
426 static int gcse_create_count;
427 \f
428 /* Doing code hoisting. */
429 static bool doing_code_hoisting_p = false;
430 \f
431 /* For available exprs */
432 static sbitmap *ae_kill;
433 \f
434 /* Data stored for each basic block. */
435 struct bb_data
436 {
437 /* Maximal register pressure inside basic block for given register class
438 (defined only for the pressure classes). */
439 int max_reg_pressure[N_REG_CLASSES];
440 /* Recorded register pressure of basic block before trying to hoist
441 an expression. Will be used to restore the register pressure
442 if the expression should not be hoisted. */
443 int old_pressure;
444 /* Recorded register live_in info of basic block during code hoisting
445 process. BACKUP is used to record live_in info before trying to
446 hoist an expression, and will be used to restore LIVE_IN if the
447 expression should not be hoisted. */
448 bitmap live_in, backup;
449 };
450
451 #define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
452
453 static basic_block curr_bb;
454
455 /* Current register pressure for each pressure class. */
456 static int curr_reg_pressure[N_REG_CLASSES];
457 \f
458
459 static void compute_can_copy (void);
460 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
461 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
462 static void *gcse_alloc (unsigned long);
463 static void alloc_gcse_mem (void);
464 static void free_gcse_mem (void);
465 static void hash_scan_insn (rtx, struct hash_table_d *);
466 static void hash_scan_set (rtx, rtx, struct hash_table_d *);
467 static void hash_scan_clobber (rtx, rtx, struct hash_table_d *);
468 static void hash_scan_call (rtx, rtx, struct hash_table_d *);
469 static int want_to_gcse_p (rtx, int *);
470 static int oprs_unchanged_p (const_rtx, const_rtx, int);
471 static int oprs_anticipatable_p (const_rtx, const_rtx);
472 static int oprs_available_p (const_rtx, const_rtx);
473 static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int, int,
474 struct hash_table_d *);
475 static unsigned int hash_expr (const_rtx, enum machine_mode, int *, int);
476 static void record_last_reg_set_info (rtx, int);
477 static void record_last_mem_set_info (rtx);
478 static void record_last_set_info (rtx, const_rtx, void *);
479 static void compute_hash_table (struct hash_table_d *);
480 static void alloc_hash_table (struct hash_table_d *);
481 static void free_hash_table (struct hash_table_d *);
482 static void compute_hash_table_work (struct hash_table_d *);
483 static void dump_hash_table (FILE *, const char *, struct hash_table_d *);
484 static void compute_transp (const_rtx, int, sbitmap *);
485 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
486 struct hash_table_d *);
487 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
488 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
489 static void canon_list_insert (rtx, const_rtx, void *);
490 static void alloc_pre_mem (int, int);
491 static void free_pre_mem (void);
492 static struct edge_list *compute_pre_data (void);
493 static int pre_expr_reaches_here_p (basic_block, struct expr *,
494 basic_block);
495 static void insert_insn_end_basic_block (struct expr *, basic_block);
496 static void pre_insert_copy_insn (struct expr *, rtx);
497 static void pre_insert_copies (void);
498 static int pre_delete (void);
499 static int pre_gcse (struct edge_list *);
500 static int one_pre_gcse_pass (void);
501 static void add_label_notes (rtx, rtx);
502 static void alloc_code_hoist_mem (int, int);
503 static void free_code_hoist_mem (void);
504 static void compute_code_hoist_vbeinout (void);
505 static void compute_code_hoist_data (void);
506 static int should_hoist_expr_to_dom (basic_block, struct expr *, basic_block,
507 sbitmap, int, int *, enum reg_class,
508 int *, bitmap, rtx);
509 static int hoist_code (void);
510 static enum reg_class get_regno_pressure_class (int regno, int *nregs);
511 static enum reg_class get_pressure_class_and_nregs (rtx insn, int *nregs);
512 static int one_code_hoisting_pass (void);
513 static rtx process_insert_insn (struct expr *);
514 static int pre_edge_insert (struct edge_list *, struct expr **);
515 static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
516 basic_block, char *);
517 static struct ls_expr * ldst_entry (rtx);
518 static void free_ldst_entry (struct ls_expr *);
519 static void free_ld_motion_mems (void);
520 static void print_ldst_list (FILE *);
521 static struct ls_expr * find_rtx_in_ldst (rtx);
522 static int simple_mem (const_rtx);
523 static void invalidate_any_buried_refs (rtx);
524 static void compute_ld_motion_mems (void);
525 static void trim_ld_motion_mems (void);
526 static void update_ld_motion_stores (struct expr *);
527 static void clear_modify_mem_tables (void);
528 static void free_modify_mem_tables (void);
529 static rtx gcse_emit_move_after (rtx, rtx, rtx);
530 static bool is_too_expensive (const char *);
531
532 #define GNEW(T) ((T *) gmalloc (sizeof (T)))
533 #define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
534
535 #define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
536 #define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
537
538 #define GNEWVAR(T, S) ((T *) gmalloc ((S)))
539 #define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
540
541 #define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
542 #define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
543 \f
544 /* Misc. utilities. */
545
546 #define can_copy \
547 (this_target_gcse->x_can_copy)
548 #define can_copy_init_p \
549 (this_target_gcse->x_can_copy_init_p)
550
551 /* Compute which modes support reg/reg copy operations. */
552
553 static void
554 compute_can_copy (void)
555 {
556 int i;
557 #ifndef AVOID_CCMODE_COPIES
558 rtx reg, insn;
559 #endif
560 memset (can_copy, 0, NUM_MACHINE_MODES);
561
562 start_sequence ();
563 for (i = 0; i < NUM_MACHINE_MODES; i++)
564 if (GET_MODE_CLASS (i) == MODE_CC)
565 {
566 #ifdef AVOID_CCMODE_COPIES
567 can_copy[i] = 0;
568 #else
569 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
570 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
571 if (recog (PATTERN (insn), insn, NULL) >= 0)
572 can_copy[i] = 1;
573 #endif
574 }
575 else
576 can_copy[i] = 1;
577
578 end_sequence ();
579 }
580
581 /* Returns whether the mode supports reg/reg copy operations. */
582
583 bool
584 can_copy_p (enum machine_mode mode)
585 {
586 if (! can_copy_init_p)
587 {
588 compute_can_copy ();
589 can_copy_init_p = true;
590 }
591
592 return can_copy[mode] != 0;
593 }
594 \f
595 /* Cover function to xmalloc to record bytes allocated. */
596
597 static void *
598 gmalloc (size_t size)
599 {
600 bytes_used += size;
601 return xmalloc (size);
602 }
603
604 /* Cover function to xcalloc to record bytes allocated. */
605
606 static void *
607 gcalloc (size_t nelem, size_t elsize)
608 {
609 bytes_used += nelem * elsize;
610 return xcalloc (nelem, elsize);
611 }
612
613 /* Cover function to obstack_alloc. */
614
615 static void *
616 gcse_alloc (unsigned long size)
617 {
618 bytes_used += size;
619 return obstack_alloc (&gcse_obstack, size);
620 }
621
622 /* Allocate memory for the reg/memory set tracking tables.
623 This is called at the start of each pass. */
624
625 static void
626 alloc_gcse_mem (void)
627 {
628 /* Allocate vars to track sets of regs. */
629 reg_set_bitmap = ALLOC_REG_SET (NULL);
630
631 /* Allocate array to keep a list of insns which modify memory in each
632 basic block. The two typedefs are needed to work around the
633 pre-processor limitation with template types in macro arguments. */
634 typedef vec<rtx> vec_rtx_heap;
635 typedef vec<modify_pair> vec_modify_pair_heap;
636 modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block_for_fn (cfun));
637 canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap,
638 last_basic_block_for_fn (cfun));
639 modify_mem_list_set = BITMAP_ALLOC (NULL);
640 blocks_with_calls = BITMAP_ALLOC (NULL);
641 }
642
643 /* Free memory allocated by alloc_gcse_mem. */
644
645 static void
646 free_gcse_mem (void)
647 {
648 FREE_REG_SET (reg_set_bitmap);
649
650 free_modify_mem_tables ();
651 BITMAP_FREE (modify_mem_list_set);
652 BITMAP_FREE (blocks_with_calls);
653 }
654 \f
655 /* Compute the local properties of each recorded expression.
656
657 Local properties are those that are defined by the block, irrespective of
658 other blocks.
659
660 An expression is transparent in a block if its operands are not modified
661 in the block.
662
663 An expression is computed (locally available) in a block if it is computed
664 at least once and expression would contain the same value if the
665 computation was moved to the end of the block.
666
667 An expression is locally anticipatable in a block if it is computed at
668 least once and expression would contain the same value if the computation
669 was moved to the beginning of the block.
670
671 We call this routine for pre and code hoisting. They all compute
672 basically the same information and thus can easily share this code.
673
674 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
675 properties. If NULL, then it is not necessary to compute or record that
676 particular property.
677
678 TABLE controls which hash table to look at. */
679
680 static void
681 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
682 struct hash_table_d *table)
683 {
684 unsigned int i;
685
686 /* Initialize any bitmaps that were passed in. */
687 if (transp)
688 {
689 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
690 }
691
692 if (comp)
693 bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
694 if (antloc)
695 bitmap_vector_clear (antloc, last_basic_block_for_fn (cfun));
696
697 for (i = 0; i < table->size; i++)
698 {
699 struct expr *expr;
700
701 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
702 {
703 int indx = expr->bitmap_index;
704 struct occr *occr;
705
706 /* The expression is transparent in this block if it is not killed.
707 We start by assuming all are transparent [none are killed], and
708 then reset the bits for those that are. */
709 if (transp)
710 compute_transp (expr->expr, indx, transp);
711
712 /* The occurrences recorded in antic_occr are exactly those that
713 we want to set to nonzero in ANTLOC. */
714 if (antloc)
715 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
716 {
717 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
718
719 /* While we're scanning the table, this is a good place to
720 initialize this. */
721 occr->deleted_p = 0;
722 }
723
724 /* The occurrences recorded in avail_occr are exactly those that
725 we want to set to nonzero in COMP. */
726 if (comp)
727 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
728 {
729 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
730
731 /* While we're scanning the table, this is a good place to
732 initialize this. */
733 occr->copied_p = 0;
734 }
735
736 /* While we're scanning the table, this is a good place to
737 initialize this. */
738 expr->reaching_reg = 0;
739 }
740 }
741 }
742 \f
743 /* Hash table support. */
744
745 struct reg_avail_info
746 {
747 basic_block last_bb;
748 int first_set;
749 int last_set;
750 };
751
752 static struct reg_avail_info *reg_avail_info;
753 static basic_block current_bb;
754
755 /* See whether X, the source of a set, is something we want to consider for
756 GCSE. */
757
758 static int
759 want_to_gcse_p (rtx x, int *max_distance_ptr)
760 {
761 #ifdef STACK_REGS
762 /* On register stack architectures, don't GCSE constants from the
763 constant pool, as the benefits are often swamped by the overhead
764 of shuffling the register stack between basic blocks. */
765 if (IS_STACK_MODE (GET_MODE (x)))
766 x = avoid_constant_pool_reference (x);
767 #endif
768
769 /* GCSE'ing constants:
770
771 We do not specifically distinguish between constant and non-constant
772 expressions in PRE and Hoist. We use set_src_cost below to limit
773 the maximum distance simple expressions can travel.
774
775 Nevertheless, constants are much easier to GCSE, and, hence,
776 it is easy to overdo the optimizations. Usually, excessive PRE and
777 Hoisting of constant leads to increased register pressure.
778
779 RA can deal with this by rematerialing some of the constants.
780 Therefore, it is important that the back-end generates sets of constants
781 in a way that allows reload rematerialize them under high register
782 pressure, i.e., a pseudo register with REG_EQUAL to constant
783 is set only once. Failing to do so will result in IRA/reload
784 spilling such constants under high register pressure instead of
785 rematerializing them. */
786
787 switch (GET_CODE (x))
788 {
789 case REG:
790 case SUBREG:
791 case CALL:
792 return 0;
793
794 CASE_CONST_ANY:
795 if (!doing_code_hoisting_p)
796 /* Do not PRE constants. */
797 return 0;
798
799 /* FALLTHRU */
800
801 default:
802 if (doing_code_hoisting_p)
803 /* PRE doesn't implement max_distance restriction. */
804 {
805 int cost;
806 int max_distance;
807
808 gcc_assert (!optimize_function_for_speed_p (cfun)
809 && optimize_function_for_size_p (cfun));
810 cost = set_src_cost (x, 0);
811
812 if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
813 {
814 max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
815 if (max_distance == 0)
816 return 0;
817
818 gcc_assert (max_distance > 0);
819 }
820 else
821 max_distance = 0;
822
823 if (max_distance_ptr)
824 *max_distance_ptr = max_distance;
825 }
826
827 return can_assign_to_reg_without_clobbers_p (x);
828 }
829 }
830
831 /* Used internally by can_assign_to_reg_without_clobbers_p. */
832
833 static GTY(()) rtx test_insn;
834
835 /* Return true if we can assign X to a pseudo register such that the
836 resulting insn does not result in clobbering a hard register as a
837 side-effect.
838
839 Additionally, if the target requires it, check that the resulting insn
840 can be copied. If it cannot, this means that X is special and probably
841 has hidden side-effects we don't want to mess with.
842
843 This function is typically used by code motion passes, to verify
844 that it is safe to insert an insn without worrying about clobbering
845 maybe live hard regs. */
846
847 bool
848 can_assign_to_reg_without_clobbers_p (rtx x)
849 {
850 int num_clobbers = 0;
851 int icode;
852
853 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
854 if (general_operand (x, GET_MODE (x)))
855 return 1;
856 else if (GET_MODE (x) == VOIDmode)
857 return 0;
858
859 /* Otherwise, check if we can make a valid insn from it. First initialize
860 our test insn if we haven't already. */
861 if (test_insn == 0)
862 {
863 test_insn
864 = make_insn_raw (gen_rtx_SET (VOIDmode,
865 gen_rtx_REG (word_mode,
866 FIRST_PSEUDO_REGISTER * 2),
867 const0_rtx));
868 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
869 }
870
871 /* Now make an insn like the one we would make when GCSE'ing and see if
872 valid. */
873 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
874 SET_SRC (PATTERN (test_insn)) = x;
875
876 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
877 if (icode < 0)
878 return false;
879
880 if (num_clobbers > 0 && added_clobbers_hard_reg_p (icode))
881 return false;
882
883 if (targetm.cannot_copy_insn_p && targetm.cannot_copy_insn_p (test_insn))
884 return false;
885
886 return true;
887 }
888
889 /* Return nonzero if the operands of expression X are unchanged from the
890 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
891 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
892
893 static int
894 oprs_unchanged_p (const_rtx x, const_rtx insn, int avail_p)
895 {
896 int i, j;
897 enum rtx_code code;
898 const char *fmt;
899
900 if (x == 0)
901 return 1;
902
903 code = GET_CODE (x);
904 switch (code)
905 {
906 case REG:
907 {
908 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
909
910 if (info->last_bb != current_bb)
911 return 1;
912 if (avail_p)
913 return info->last_set < DF_INSN_LUID (insn);
914 else
915 return info->first_set >= DF_INSN_LUID (insn);
916 }
917
918 case MEM:
919 if (! flag_gcse_lm
920 || load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
921 x, avail_p))
922 return 0;
923 else
924 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
925
926 case PRE_DEC:
927 case PRE_INC:
928 case POST_DEC:
929 case POST_INC:
930 case PRE_MODIFY:
931 case POST_MODIFY:
932 return 0;
933
934 case PC:
935 case CC0: /*FIXME*/
936 case CONST:
937 CASE_CONST_ANY:
938 case SYMBOL_REF:
939 case LABEL_REF:
940 case ADDR_VEC:
941 case ADDR_DIFF_VEC:
942 return 1;
943
944 default:
945 break;
946 }
947
948 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
949 {
950 if (fmt[i] == 'e')
951 {
952 /* If we are about to do the last recursive call needed at this
953 level, change it into iteration. This function is called enough
954 to be worth it. */
955 if (i == 0)
956 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
957
958 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
959 return 0;
960 }
961 else if (fmt[i] == 'E')
962 for (j = 0; j < XVECLEN (x, i); j++)
963 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
964 return 0;
965 }
966
967 return 1;
968 }
969
970 /* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
971
972 struct mem_conflict_info
973 {
974 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
975 see if a memory store conflicts with this memory load. */
976 const_rtx mem;
977
978 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
979 references. */
980 bool conflict;
981 };
982
983 /* DEST is the output of an instruction. If it is a memory reference and
984 possibly conflicts with the load found in DATA, then communicate this
985 information back through DATA. */
986
987 static void
988 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
989 void *data)
990 {
991 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
992
993 while (GET_CODE (dest) == SUBREG
994 || GET_CODE (dest) == ZERO_EXTRACT
995 || GET_CODE (dest) == STRICT_LOW_PART)
996 dest = XEXP (dest, 0);
997
998 /* If DEST is not a MEM, then it will not conflict with the load. Note
999 that function calls are assumed to clobber memory, but are handled
1000 elsewhere. */
1001 if (! MEM_P (dest))
1002 return;
1003
1004 /* If we are setting a MEM in our list of specially recognized MEMs,
1005 don't mark as killed this time. */
1006 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
1007 {
1008 if (!find_rtx_in_ldst (dest))
1009 mci->conflict = true;
1010 return;
1011 }
1012
1013 if (true_dependence (dest, GET_MODE (dest), mci->mem))
1014 mci->conflict = true;
1015 }
1016
1017 /* Return nonzero if the expression in X (a memory reference) is killed
1018 in block BB before or after the insn with the LUID in UID_LIMIT.
1019 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1020 before UID_LIMIT.
1021
1022 To check the entire block, set UID_LIMIT to max_uid + 1 and
1023 AVAIL_P to 0. */
1024
1025 static int
1026 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1027 int avail_p)
1028 {
1029 vec<rtx> list = modify_mem_list[bb->index];
1030 rtx setter;
1031 unsigned ix;
1032
1033 /* If this is a readonly then we aren't going to be changing it. */
1034 if (MEM_READONLY_P (x))
1035 return 0;
1036
1037 FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
1038 {
1039 struct mem_conflict_info mci;
1040
1041 /* Ignore entries in the list that do not apply. */
1042 if ((avail_p
1043 && DF_INSN_LUID (setter) < uid_limit)
1044 || (! avail_p
1045 && DF_INSN_LUID (setter) > uid_limit))
1046 continue;
1047
1048 /* If SETTER is a call everything is clobbered. Note that calls
1049 to pure functions are never put on the list, so we need not
1050 worry about them. */
1051 if (CALL_P (setter))
1052 return 1;
1053
1054 /* SETTER must be an INSN of some kind that sets memory. Call
1055 note_stores to examine each hunk of memory that is modified. */
1056 mci.mem = x;
1057 mci.conflict = false;
1058 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1059 if (mci.conflict)
1060 return 1;
1061 }
1062 return 0;
1063 }
1064
1065 /* Return nonzero if the operands of expression X are unchanged from
1066 the start of INSN's basic block up to but not including INSN. */
1067
1068 static int
1069 oprs_anticipatable_p (const_rtx x, const_rtx insn)
1070 {
1071 return oprs_unchanged_p (x, insn, 0);
1072 }
1073
1074 /* Return nonzero if the operands of expression X are unchanged from
1075 INSN to the end of INSN's basic block. */
1076
1077 static int
1078 oprs_available_p (const_rtx x, const_rtx insn)
1079 {
1080 return oprs_unchanged_p (x, insn, 1);
1081 }
1082
1083 /* Hash expression X.
1084
1085 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1086 indicating if a volatile operand is found or if the expression contains
1087 something we don't want to insert in the table. HASH_TABLE_SIZE is
1088 the current size of the hash table to be probed. */
1089
1090 static unsigned int
1091 hash_expr (const_rtx x, enum machine_mode mode, int *do_not_record_p,
1092 int hash_table_size)
1093 {
1094 unsigned int hash;
1095
1096 *do_not_record_p = 0;
1097
1098 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
1099 return hash % hash_table_size;
1100 }
1101
1102 /* Return nonzero if exp1 is equivalent to exp2. */
1103
1104 static int
1105 expr_equiv_p (const_rtx x, const_rtx y)
1106 {
1107 return exp_equiv_p (x, y, 0, true);
1108 }
1109
1110 /* Insert expression X in INSN in the hash TABLE.
1111 If it is already present, record it as the last occurrence in INSN's
1112 basic block.
1113
1114 MODE is the mode of the value X is being stored into.
1115 It is only used if X is a CONST_INT.
1116
1117 ANTIC_P is nonzero if X is an anticipatable expression.
1118 AVAIL_P is nonzero if X is an available expression.
1119
1120 MAX_DISTANCE is the maximum distance in instructions this expression can
1121 be moved. */
1122
1123 static void
1124 insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
1125 int avail_p, int max_distance, struct hash_table_d *table)
1126 {
1127 int found, do_not_record_p;
1128 unsigned int hash;
1129 struct expr *cur_expr, *last_expr = NULL;
1130 struct occr *antic_occr, *avail_occr;
1131
1132 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1133
1134 /* Do not insert expression in table if it contains volatile operands,
1135 or if hash_expr determines the expression is something we don't want
1136 to or can't handle. */
1137 if (do_not_record_p)
1138 return;
1139
1140 cur_expr = table->table[hash];
1141 found = 0;
1142
1143 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1144 {
1145 /* If the expression isn't found, save a pointer to the end of
1146 the list. */
1147 last_expr = cur_expr;
1148 cur_expr = cur_expr->next_same_hash;
1149 }
1150
1151 if (! found)
1152 {
1153 cur_expr = GOBNEW (struct expr);
1154 bytes_used += sizeof (struct expr);
1155 if (table->table[hash] == NULL)
1156 /* This is the first pattern that hashed to this index. */
1157 table->table[hash] = cur_expr;
1158 else
1159 /* Add EXPR to end of this hash chain. */
1160 last_expr->next_same_hash = cur_expr;
1161
1162 /* Set the fields of the expr element. */
1163 cur_expr->expr = x;
1164 cur_expr->bitmap_index = table->n_elems++;
1165 cur_expr->next_same_hash = NULL;
1166 cur_expr->antic_occr = NULL;
1167 cur_expr->avail_occr = NULL;
1168 gcc_assert (max_distance >= 0);
1169 cur_expr->max_distance = max_distance;
1170 }
1171 else
1172 gcc_assert (cur_expr->max_distance == max_distance);
1173
1174 /* Now record the occurrence(s). */
1175 if (antic_p)
1176 {
1177 antic_occr = cur_expr->antic_occr;
1178
1179 if (antic_occr
1180 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
1181 antic_occr = NULL;
1182
1183 if (antic_occr)
1184 /* Found another instance of the expression in the same basic block.
1185 Prefer the currently recorded one. We want the first one in the
1186 block and the block is scanned from start to end. */
1187 ; /* nothing to do */
1188 else
1189 {
1190 /* First occurrence of this expression in this basic block. */
1191 antic_occr = GOBNEW (struct occr);
1192 bytes_used += sizeof (struct occr);
1193 antic_occr->insn = insn;
1194 antic_occr->next = cur_expr->antic_occr;
1195 antic_occr->deleted_p = 0;
1196 cur_expr->antic_occr = antic_occr;
1197 }
1198 }
1199
1200 if (avail_p)
1201 {
1202 avail_occr = cur_expr->avail_occr;
1203
1204 if (avail_occr
1205 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
1206 {
1207 /* Found another instance of the expression in the same basic block.
1208 Prefer this occurrence to the currently recorded one. We want
1209 the last one in the block and the block is scanned from start
1210 to end. */
1211 avail_occr->insn = insn;
1212 }
1213 else
1214 {
1215 /* First occurrence of this expression in this basic block. */
1216 avail_occr = GOBNEW (struct occr);
1217 bytes_used += sizeof (struct occr);
1218 avail_occr->insn = insn;
1219 avail_occr->next = cur_expr->avail_occr;
1220 avail_occr->deleted_p = 0;
1221 cur_expr->avail_occr = avail_occr;
1222 }
1223 }
1224 }
1225
1226 /* Scan SET present in INSN and add an entry to the hash TABLE. */
1227
1228 static void
1229 hash_scan_set (rtx set, rtx insn, struct hash_table_d *table)
1230 {
1231 rtx src = SET_SRC (set);
1232 rtx dest = SET_DEST (set);
1233 rtx note;
1234
1235 if (GET_CODE (src) == CALL)
1236 hash_scan_call (src, insn, table);
1237
1238 else if (REG_P (dest))
1239 {
1240 unsigned int regno = REGNO (dest);
1241 int max_distance = 0;
1242
1243 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1244
1245 This allows us to do a single GCSE pass and still eliminate
1246 redundant constants, addresses or other expressions that are
1247 constructed with multiple instructions.
1248
1249 However, keep the original SRC if INSN is a simple reg-reg move.
1250 In this case, there will almost always be a REG_EQUAL note on the
1251 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1252 for INSN, we miss copy propagation opportunities and we perform the
1253 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1254 do more than one PRE GCSE pass.
1255
1256 Note that this does not impede profitable constant propagations. We
1257 "look through" reg-reg sets in lookup_avail_set. */
1258 note = find_reg_equal_equiv_note (insn);
1259 if (note != 0
1260 && REG_NOTE_KIND (note) == REG_EQUAL
1261 && !REG_P (src)
1262 && want_to_gcse_p (XEXP (note, 0), NULL))
1263 src = XEXP (note, 0), set = gen_rtx_SET (VOIDmode, dest, src);
1264
1265 /* Only record sets of pseudo-regs in the hash table. */
1266 if (regno >= FIRST_PSEUDO_REGISTER
1267 /* Don't GCSE something if we can't do a reg/reg copy. */
1268 && can_copy_p (GET_MODE (dest))
1269 /* GCSE commonly inserts instruction after the insn. We can't
1270 do that easily for EH edges so disable GCSE on these for now. */
1271 /* ??? We can now easily create new EH landing pads at the
1272 gimple level, for splitting edges; there's no reason we
1273 can't do the same thing at the rtl level. */
1274 && !can_throw_internal (insn)
1275 /* Is SET_SRC something we want to gcse? */
1276 && want_to_gcse_p (src, &max_distance)
1277 /* Don't CSE a nop. */
1278 && ! set_noop_p (set)
1279 /* Don't GCSE if it has attached REG_EQUIV note.
1280 At this point this only function parameters should have
1281 REG_EQUIV notes and if the argument slot is used somewhere
1282 explicitly, it means address of parameter has been taken,
1283 so we should not extend the lifetime of the pseudo. */
1284 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1285 {
1286 /* An expression is not anticipatable if its operands are
1287 modified before this insn or if this is not the only SET in
1288 this insn. The latter condition does not have to mean that
1289 SRC itself is not anticipatable, but we just will not be
1290 able to handle code motion of insns with multiple sets. */
1291 int antic_p = oprs_anticipatable_p (src, insn)
1292 && !multiple_sets (insn);
1293 /* An expression is not available if its operands are
1294 subsequently modified, including this insn. It's also not
1295 available if this is a branch, because we can't insert
1296 a set after the branch. */
1297 int avail_p = (oprs_available_p (src, insn)
1298 && ! JUMP_P (insn));
1299
1300 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1301 max_distance, table);
1302 }
1303 }
1304 /* In case of store we want to consider the memory value as available in
1305 the REG stored in that memory. This makes it possible to remove
1306 redundant loads from due to stores to the same location. */
1307 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1308 {
1309 unsigned int regno = REGNO (src);
1310 int max_distance = 0;
1311
1312 /* Only record sets of pseudo-regs in the hash table. */
1313 if (regno >= FIRST_PSEUDO_REGISTER
1314 /* Don't GCSE something if we can't do a reg/reg copy. */
1315 && can_copy_p (GET_MODE (src))
1316 /* GCSE commonly inserts instruction after the insn. We can't
1317 do that easily for EH edges so disable GCSE on these for now. */
1318 && !can_throw_internal (insn)
1319 /* Is SET_DEST something we want to gcse? */
1320 && want_to_gcse_p (dest, &max_distance)
1321 /* Don't CSE a nop. */
1322 && ! set_noop_p (set)
1323 /* Don't GCSE if it has attached REG_EQUIV note.
1324 At this point this only function parameters should have
1325 REG_EQUIV notes and if the argument slot is used somewhere
1326 explicitly, it means address of parameter has been taken,
1327 so we should not extend the lifetime of the pseudo. */
1328 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1329 || ! MEM_P (XEXP (note, 0))))
1330 {
1331 /* Stores are never anticipatable. */
1332 int antic_p = 0;
1333 /* An expression is not available if its operands are
1334 subsequently modified, including this insn. It's also not
1335 available if this is a branch, because we can't insert
1336 a set after the branch. */
1337 int avail_p = oprs_available_p (dest, insn)
1338 && ! JUMP_P (insn);
1339
1340 /* Record the memory expression (DEST) in the hash table. */
1341 insert_expr_in_table (dest, GET_MODE (dest), insn,
1342 antic_p, avail_p, max_distance, table);
1343 }
1344 }
1345 }
1346
1347 static void
1348 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1349 struct hash_table_d *table ATTRIBUTE_UNUSED)
1350 {
1351 /* Currently nothing to do. */
1352 }
1353
1354 static void
1355 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1356 struct hash_table_d *table ATTRIBUTE_UNUSED)
1357 {
1358 /* Currently nothing to do. */
1359 }
1360
1361 /* Process INSN and add hash table entries as appropriate. */
1362
1363 static void
1364 hash_scan_insn (rtx insn, struct hash_table_d *table)
1365 {
1366 rtx pat = PATTERN (insn);
1367 int i;
1368
1369 /* Pick out the sets of INSN and for other forms of instructions record
1370 what's been modified. */
1371
1372 if (GET_CODE (pat) == SET)
1373 hash_scan_set (pat, insn, table);
1374
1375 else if (GET_CODE (pat) == CLOBBER)
1376 hash_scan_clobber (pat, insn, table);
1377
1378 else if (GET_CODE (pat) == CALL)
1379 hash_scan_call (pat, insn, table);
1380
1381 else if (GET_CODE (pat) == PARALLEL)
1382 for (i = 0; i < XVECLEN (pat, 0); i++)
1383 {
1384 rtx x = XVECEXP (pat, 0, i);
1385
1386 if (GET_CODE (x) == SET)
1387 hash_scan_set (x, insn, table);
1388 else if (GET_CODE (x) == CLOBBER)
1389 hash_scan_clobber (x, insn, table);
1390 else if (GET_CODE (x) == CALL)
1391 hash_scan_call (x, insn, table);
1392 }
1393 }
1394
1395 /* Dump the hash table TABLE to file FILE under the name NAME. */
1396
1397 static void
1398 dump_hash_table (FILE *file, const char *name, struct hash_table_d *table)
1399 {
1400 int i;
1401 /* Flattened out table, so it's printed in proper order. */
1402 struct expr **flat_table;
1403 unsigned int *hash_val;
1404 struct expr *expr;
1405
1406 flat_table = XCNEWVEC (struct expr *, table->n_elems);
1407 hash_val = XNEWVEC (unsigned int, table->n_elems);
1408
1409 for (i = 0; i < (int) table->size; i++)
1410 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1411 {
1412 flat_table[expr->bitmap_index] = expr;
1413 hash_val[expr->bitmap_index] = i;
1414 }
1415
1416 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1417 name, table->size, table->n_elems);
1418
1419 for (i = 0; i < (int) table->n_elems; i++)
1420 if (flat_table[i] != 0)
1421 {
1422 expr = flat_table[i];
1423 fprintf (file, "Index %d (hash value %d; max distance %d)\n ",
1424 expr->bitmap_index, hash_val[i], expr->max_distance);
1425 print_rtl (file, expr->expr);
1426 fprintf (file, "\n");
1427 }
1428
1429 fprintf (file, "\n");
1430
1431 free (flat_table);
1432 free (hash_val);
1433 }
1434
1435 /* Record register first/last/block set information for REGNO in INSN.
1436
1437 first_set records the first place in the block where the register
1438 is set and is used to compute "anticipatability".
1439
1440 last_set records the last place in the block where the register
1441 is set and is used to compute "availability".
1442
1443 last_bb records the block for which first_set and last_set are
1444 valid, as a quick test to invalidate them. */
1445
1446 static void
1447 record_last_reg_set_info (rtx insn, int regno)
1448 {
1449 struct reg_avail_info *info = &reg_avail_info[regno];
1450 int luid = DF_INSN_LUID (insn);
1451
1452 info->last_set = luid;
1453 if (info->last_bb != current_bb)
1454 {
1455 info->last_bb = current_bb;
1456 info->first_set = luid;
1457 }
1458 }
1459
1460 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1461 Note we store a pair of elements in the list, so they have to be
1462 taken off pairwise. */
1463
1464 static void
1465 canon_list_insert (rtx dest ATTRIBUTE_UNUSED, const_rtx x ATTRIBUTE_UNUSED,
1466 void * v_insn)
1467 {
1468 rtx dest_addr, insn;
1469 int bb;
1470 modify_pair pair;
1471
1472 while (GET_CODE (dest) == SUBREG
1473 || GET_CODE (dest) == ZERO_EXTRACT
1474 || GET_CODE (dest) == STRICT_LOW_PART)
1475 dest = XEXP (dest, 0);
1476
1477 /* If DEST is not a MEM, then it will not conflict with a load. Note
1478 that function calls are assumed to clobber memory, but are handled
1479 elsewhere. */
1480
1481 if (! MEM_P (dest))
1482 return;
1483
1484 dest_addr = get_addr (XEXP (dest, 0));
1485 dest_addr = canon_rtx (dest_addr);
1486 insn = (rtx) v_insn;
1487 bb = BLOCK_FOR_INSN (insn)->index;
1488
1489 pair.dest = dest;
1490 pair.dest_addr = dest_addr;
1491 canon_modify_mem_list[bb].safe_push (pair);
1492 }
1493
1494 /* Record memory modification information for INSN. We do not actually care
1495 about the memory location(s) that are set, or even how they are set (consider
1496 a CALL_INSN). We merely need to record which insns modify memory. */
1497
1498 static void
1499 record_last_mem_set_info (rtx insn)
1500 {
1501 int bb;
1502
1503 if (! flag_gcse_lm)
1504 return;
1505
1506 /* load_killed_in_block_p will handle the case of calls clobbering
1507 everything. */
1508 bb = BLOCK_FOR_INSN (insn)->index;
1509 modify_mem_list[bb].safe_push (insn);
1510 bitmap_set_bit (modify_mem_list_set, bb);
1511
1512 if (CALL_P (insn))
1513 bitmap_set_bit (blocks_with_calls, bb);
1514 else
1515 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
1516 }
1517
1518 /* Called from compute_hash_table via note_stores to handle one
1519 SET or CLOBBER in an insn. DATA is really the instruction in which
1520 the SET is taking place. */
1521
1522 static void
1523 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1524 {
1525 rtx last_set_insn = (rtx) data;
1526
1527 if (GET_CODE (dest) == SUBREG)
1528 dest = SUBREG_REG (dest);
1529
1530 if (REG_P (dest))
1531 record_last_reg_set_info (last_set_insn, REGNO (dest));
1532 else if (MEM_P (dest)
1533 /* Ignore pushes, they clobber nothing. */
1534 && ! push_operand (dest, GET_MODE (dest)))
1535 record_last_mem_set_info (last_set_insn);
1536 }
1537
1538 /* Top level function to create an expression hash table.
1539
1540 Expression entries are placed in the hash table if
1541 - they are of the form (set (pseudo-reg) src),
1542 - src is something we want to perform GCSE on,
1543 - none of the operands are subsequently modified in the block
1544
1545 Currently src must be a pseudo-reg or a const_int.
1546
1547 TABLE is the table computed. */
1548
1549 static void
1550 compute_hash_table_work (struct hash_table_d *table)
1551 {
1552 int i;
1553
1554 /* re-Cache any INSN_LIST nodes we have allocated. */
1555 clear_modify_mem_tables ();
1556 /* Some working arrays used to track first and last set in each block. */
1557 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
1558
1559 for (i = 0; i < max_reg_num (); ++i)
1560 reg_avail_info[i].last_bb = NULL;
1561
1562 FOR_EACH_BB_FN (current_bb, cfun)
1563 {
1564 rtx insn;
1565 unsigned int regno;
1566
1567 /* First pass over the instructions records information used to
1568 determine when registers and memory are first and last set. */
1569 FOR_BB_INSNS (current_bb, insn)
1570 {
1571 if (!NONDEBUG_INSN_P (insn))
1572 continue;
1573
1574 if (CALL_P (insn))
1575 {
1576 hard_reg_set_iterator hrsi;
1577 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1578 0, regno, hrsi)
1579 record_last_reg_set_info (insn, regno);
1580
1581 if (! RTL_CONST_OR_PURE_CALL_P (insn))
1582 record_last_mem_set_info (insn);
1583 }
1584
1585 note_stores (PATTERN (insn), record_last_set_info, insn);
1586 }
1587
1588 /* The next pass builds the hash table. */
1589 FOR_BB_INSNS (current_bb, insn)
1590 if (NONDEBUG_INSN_P (insn))
1591 hash_scan_insn (insn, table);
1592 }
1593
1594 free (reg_avail_info);
1595 reg_avail_info = NULL;
1596 }
1597
1598 /* Allocate space for the set/expr hash TABLE.
1599 It is used to determine the number of buckets to use. */
1600
1601 static void
1602 alloc_hash_table (struct hash_table_d *table)
1603 {
1604 int n;
1605
1606 n = get_max_insn_count ();
1607
1608 table->size = n / 4;
1609 if (table->size < 11)
1610 table->size = 11;
1611
1612 /* Attempt to maintain efficient use of hash table.
1613 Making it an odd number is simplest for now.
1614 ??? Later take some measurements. */
1615 table->size |= 1;
1616 n = table->size * sizeof (struct expr *);
1617 table->table = GNEWVAR (struct expr *, n);
1618 }
1619
1620 /* Free things allocated by alloc_hash_table. */
1621
1622 static void
1623 free_hash_table (struct hash_table_d *table)
1624 {
1625 free (table->table);
1626 }
1627
1628 /* Compute the expression hash table TABLE. */
1629
1630 static void
1631 compute_hash_table (struct hash_table_d *table)
1632 {
1633 /* Initialize count of number of entries in hash table. */
1634 table->n_elems = 0;
1635 memset (table->table, 0, table->size * sizeof (struct expr *));
1636
1637 compute_hash_table_work (table);
1638 }
1639 \f
1640 /* Expression tracking support. */
1641
1642 /* Clear canon_modify_mem_list and modify_mem_list tables. */
1643 static void
1644 clear_modify_mem_tables (void)
1645 {
1646 unsigned i;
1647 bitmap_iterator bi;
1648
1649 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
1650 {
1651 modify_mem_list[i].release ();
1652 canon_modify_mem_list[i].release ();
1653 }
1654 bitmap_clear (modify_mem_list_set);
1655 bitmap_clear (blocks_with_calls);
1656 }
1657
1658 /* Release memory used by modify_mem_list_set. */
1659
1660 static void
1661 free_modify_mem_tables (void)
1662 {
1663 clear_modify_mem_tables ();
1664 free (modify_mem_list);
1665 free (canon_modify_mem_list);
1666 modify_mem_list = 0;
1667 canon_modify_mem_list = 0;
1668 }
1669 \f
1670 /* For each block, compute whether X is transparent. X is either an
1671 expression or an assignment [though we don't care which, for this context
1672 an assignment is treated as an expression]. For each block where an
1673 element of X is modified, reset the INDX bit in BMAP. */
1674
1675 static void
1676 compute_transp (const_rtx x, int indx, sbitmap *bmap)
1677 {
1678 int i, j;
1679 enum rtx_code code;
1680 const char *fmt;
1681
1682 /* repeat is used to turn tail-recursion into iteration since GCC
1683 can't do it when there's no return value. */
1684 repeat:
1685
1686 if (x == 0)
1687 return;
1688
1689 code = GET_CODE (x);
1690 switch (code)
1691 {
1692 case REG:
1693 {
1694 df_ref def;
1695 for (def = DF_REG_DEF_CHAIN (REGNO (x));
1696 def;
1697 def = DF_REF_NEXT_REG (def))
1698 bitmap_clear_bit (bmap[DF_REF_BB (def)->index], indx);
1699 }
1700
1701 return;
1702
1703 case MEM:
1704 if (! MEM_READONLY_P (x))
1705 {
1706 bitmap_iterator bi;
1707 unsigned bb_index;
1708 rtx x_addr;
1709
1710 x_addr = get_addr (XEXP (x, 0));
1711 x_addr = canon_rtx (x_addr);
1712
1713 /* First handle all the blocks with calls. We don't need to
1714 do any list walking for them. */
1715 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
1716 {
1717 bitmap_clear_bit (bmap[bb_index], indx);
1718 }
1719
1720 /* Now iterate over the blocks which have memory modifications
1721 but which do not have any calls. */
1722 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set,
1723 blocks_with_calls,
1724 0, bb_index, bi)
1725 {
1726 vec<modify_pair> list
1727 = canon_modify_mem_list[bb_index];
1728 modify_pair *pair;
1729 unsigned ix;
1730
1731 FOR_EACH_VEC_ELT_REVERSE (list, ix, pair)
1732 {
1733 rtx dest = pair->dest;
1734 rtx dest_addr = pair->dest_addr;
1735
1736 if (canon_true_dependence (dest, GET_MODE (dest),
1737 dest_addr, x, x_addr))
1738 bitmap_clear_bit (bmap[bb_index], indx);
1739 }
1740 }
1741 }
1742
1743 x = XEXP (x, 0);
1744 goto repeat;
1745
1746 case PC:
1747 case CC0: /*FIXME*/
1748 case CONST:
1749 CASE_CONST_ANY:
1750 case SYMBOL_REF:
1751 case LABEL_REF:
1752 case ADDR_VEC:
1753 case ADDR_DIFF_VEC:
1754 return;
1755
1756 default:
1757 break;
1758 }
1759
1760 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1761 {
1762 if (fmt[i] == 'e')
1763 {
1764 /* If we are about to do the last recursive call
1765 needed at this level, change it into iteration.
1766 This function is called enough to be worth it. */
1767 if (i == 0)
1768 {
1769 x = XEXP (x, i);
1770 goto repeat;
1771 }
1772
1773 compute_transp (XEXP (x, i), indx, bmap);
1774 }
1775 else if (fmt[i] == 'E')
1776 for (j = 0; j < XVECLEN (x, i); j++)
1777 compute_transp (XVECEXP (x, i, j), indx, bmap);
1778 }
1779 }
1780 \f
1781 /* Compute PRE+LCM working variables. */
1782
1783 /* Local properties of expressions. */
1784
1785 /* Nonzero for expressions that are transparent in the block. */
1786 static sbitmap *transp;
1787
1788 /* Nonzero for expressions that are computed (available) in the block. */
1789 static sbitmap *comp;
1790
1791 /* Nonzero for expressions that are locally anticipatable in the block. */
1792 static sbitmap *antloc;
1793
1794 /* Nonzero for expressions where this block is an optimal computation
1795 point. */
1796 static sbitmap *pre_optimal;
1797
1798 /* Nonzero for expressions which are redundant in a particular block. */
1799 static sbitmap *pre_redundant;
1800
1801 /* Nonzero for expressions which should be inserted on a specific edge. */
1802 static sbitmap *pre_insert_map;
1803
1804 /* Nonzero for expressions which should be deleted in a specific block. */
1805 static sbitmap *pre_delete_map;
1806
1807 /* Allocate vars used for PRE analysis. */
1808
1809 static void
1810 alloc_pre_mem (int n_blocks, int n_exprs)
1811 {
1812 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1813 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1814 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
1815
1816 pre_optimal = NULL;
1817 pre_redundant = NULL;
1818 pre_insert_map = NULL;
1819 pre_delete_map = NULL;
1820 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
1821
1822 /* pre_insert and pre_delete are allocated later. */
1823 }
1824
1825 /* Free vars used for PRE analysis. */
1826
1827 static void
1828 free_pre_mem (void)
1829 {
1830 sbitmap_vector_free (transp);
1831 sbitmap_vector_free (comp);
1832
1833 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
1834
1835 if (pre_optimal)
1836 sbitmap_vector_free (pre_optimal);
1837 if (pre_redundant)
1838 sbitmap_vector_free (pre_redundant);
1839 if (pre_insert_map)
1840 sbitmap_vector_free (pre_insert_map);
1841 if (pre_delete_map)
1842 sbitmap_vector_free (pre_delete_map);
1843
1844 transp = comp = NULL;
1845 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
1846 }
1847
1848 /* Remove certain expressions from anticipatable and transparent
1849 sets of basic blocks that have incoming abnormal edge.
1850 For PRE remove potentially trapping expressions to avoid placing
1851 them on abnormal edges. For hoisting remove memory references that
1852 can be clobbered by calls. */
1853
1854 static void
1855 prune_expressions (bool pre_p)
1856 {
1857 sbitmap prune_exprs;
1858 struct expr *expr;
1859 unsigned int ui;
1860 basic_block bb;
1861
1862 prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
1863 bitmap_clear (prune_exprs);
1864 for (ui = 0; ui < expr_hash_table.size; ui++)
1865 {
1866 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
1867 {
1868 /* Note potentially trapping expressions. */
1869 if (may_trap_p (expr->expr))
1870 {
1871 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1872 continue;
1873 }
1874
1875 if (!pre_p && MEM_P (expr->expr))
1876 /* Note memory references that can be clobbered by a call.
1877 We do not split abnormal edges in hoisting, so would
1878 a memory reference get hoisted along an abnormal edge,
1879 it would be placed /before/ the call. Therefore, only
1880 constant memory references can be hoisted along abnormal
1881 edges. */
1882 {
1883 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
1884 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
1885 continue;
1886
1887 if (MEM_READONLY_P (expr->expr)
1888 && !MEM_VOLATILE_P (expr->expr)
1889 && MEM_NOTRAP_P (expr->expr))
1890 /* Constant memory reference, e.g., a PIC address. */
1891 continue;
1892
1893 /* ??? Optimally, we would use interprocedural alias
1894 analysis to determine if this mem is actually killed
1895 by this call. */
1896
1897 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1898 }
1899 }
1900 }
1901
1902 FOR_EACH_BB_FN (bb, cfun)
1903 {
1904 edge e;
1905 edge_iterator ei;
1906
1907 /* If the current block is the destination of an abnormal edge, we
1908 kill all trapping (for PRE) and memory (for hoist) expressions
1909 because we won't be able to properly place the instruction on
1910 the edge. So make them neither anticipatable nor transparent.
1911 This is fairly conservative.
1912
1913 ??? For hoisting it may be necessary to check for set-and-jump
1914 instructions here, not just for abnormal edges. The general problem
1915 is that when an expression cannot not be placed right at the end of
1916 a basic block we should account for any side-effects of a subsequent
1917 jump instructions that could clobber the expression. It would
1918 be best to implement this check along the lines of
1919 should_hoist_expr_to_dom where the target block is already known
1920 and, hence, there's no need to conservatively prune expressions on
1921 "intermediate" set-and-jump instructions. */
1922 FOR_EACH_EDGE (e, ei, bb->preds)
1923 if ((e->flags & EDGE_ABNORMAL)
1924 && (pre_p || CALL_P (BB_END (e->src))))
1925 {
1926 bitmap_and_compl (antloc[bb->index],
1927 antloc[bb->index], prune_exprs);
1928 bitmap_and_compl (transp[bb->index],
1929 transp[bb->index], prune_exprs);
1930 break;
1931 }
1932 }
1933
1934 sbitmap_free (prune_exprs);
1935 }
1936
1937 /* It may be necessary to insert a large number of insns on edges to
1938 make the existing occurrences of expressions fully redundant. This
1939 routine examines the set of insertions and deletions and if the ratio
1940 of insertions to deletions is too high for a particular expression, then
1941 the expression is removed from the insertion/deletion sets.
1942
1943 N_ELEMS is the number of elements in the hash table. */
1944
1945 static void
1946 prune_insertions_deletions (int n_elems)
1947 {
1948 sbitmap_iterator sbi;
1949 sbitmap prune_exprs;
1950
1951 /* We always use I to iterate over blocks/edges and J to iterate over
1952 expressions. */
1953 unsigned int i, j;
1954
1955 /* Counts for the number of times an expression needs to be inserted and
1956 number of times an expression can be removed as a result. */
1957 int *insertions = GCNEWVEC (int, n_elems);
1958 int *deletions = GCNEWVEC (int, n_elems);
1959
1960 /* Set of expressions which require too many insertions relative to
1961 the number of deletions achieved. We will prune these out of the
1962 insertion/deletion sets. */
1963 prune_exprs = sbitmap_alloc (n_elems);
1964 bitmap_clear (prune_exprs);
1965
1966 /* Iterate over the edges counting the number of times each expression
1967 needs to be inserted. */
1968 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1969 {
1970 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
1971 insertions[j]++;
1972 }
1973
1974 /* Similarly for deletions, but those occur in blocks rather than on
1975 edges. */
1976 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1977 {
1978 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
1979 deletions[j]++;
1980 }
1981
1982 /* Now that we have accurate counts, iterate over the elements in the
1983 hash table and see if any need too many insertions relative to the
1984 number of evaluations that can be removed. If so, mark them in
1985 PRUNE_EXPRS. */
1986 for (j = 0; j < (unsigned) n_elems; j++)
1987 if (deletions[j]
1988 && ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
1989 bitmap_set_bit (prune_exprs, j);
1990
1991 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
1992 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
1993 {
1994 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1995 bitmap_clear_bit (pre_insert_map[i], j);
1996
1997 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1998 bitmap_clear_bit (pre_delete_map[i], j);
1999 }
2000
2001 sbitmap_free (prune_exprs);
2002 free (insertions);
2003 free (deletions);
2004 }
2005
2006 /* Top level routine to do the dataflow analysis needed by PRE. */
2007
2008 static struct edge_list *
2009 compute_pre_data (void)
2010 {
2011 struct edge_list *edge_list;
2012 basic_block bb;
2013
2014 compute_local_properties (transp, comp, antloc, &expr_hash_table);
2015 prune_expressions (true);
2016 bitmap_vector_clear (ae_kill, last_basic_block_for_fn (cfun));
2017
2018 /* Compute ae_kill for each basic block using:
2019
2020 ~(TRANSP | COMP)
2021 */
2022
2023 FOR_EACH_BB_FN (bb, cfun)
2024 {
2025 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
2026 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
2027 }
2028
2029 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
2030 ae_kill, &pre_insert_map, &pre_delete_map);
2031 sbitmap_vector_free (antloc);
2032 antloc = NULL;
2033 sbitmap_vector_free (ae_kill);
2034 ae_kill = NULL;
2035
2036 prune_insertions_deletions (expr_hash_table.n_elems);
2037
2038 return edge_list;
2039 }
2040 \f
2041 /* PRE utilities */
2042
2043 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
2044 block BB.
2045
2046 VISITED is a pointer to a working buffer for tracking which BB's have
2047 been visited. It is NULL for the top-level call.
2048
2049 We treat reaching expressions that go through blocks containing the same
2050 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
2051 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
2052 2 as not reaching. The intent is to improve the probability of finding
2053 only one reaching expression and to reduce register lifetimes by picking
2054 the closest such expression. */
2055
2056 static int
2057 pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr,
2058 basic_block bb, char *visited)
2059 {
2060 edge pred;
2061 edge_iterator ei;
2062
2063 FOR_EACH_EDGE (pred, ei, bb->preds)
2064 {
2065 basic_block pred_bb = pred->src;
2066
2067 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
2068 /* Has predecessor has already been visited? */
2069 || visited[pred_bb->index])
2070 ;/* Nothing to do. */
2071
2072 /* Does this predecessor generate this expression? */
2073 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
2074 {
2075 /* Is this the occurrence we're looking for?
2076 Note that there's only one generating occurrence per block
2077 so we just need to check the block number. */
2078 if (occr_bb == pred_bb)
2079 return 1;
2080
2081 visited[pred_bb->index] = 1;
2082 }
2083 /* Ignore this predecessor if it kills the expression. */
2084 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
2085 visited[pred_bb->index] = 1;
2086
2087 /* Neither gen nor kill. */
2088 else
2089 {
2090 visited[pred_bb->index] = 1;
2091 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
2092 return 1;
2093 }
2094 }
2095
2096 /* All paths have been checked. */
2097 return 0;
2098 }
2099
2100 /* The wrapper for pre_expr_reaches_here_work that ensures that any
2101 memory allocated for that function is returned. */
2102
2103 static int
2104 pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
2105 {
2106 int rval;
2107 char *visited = XCNEWVEC (char, last_basic_block_for_fn (cfun));
2108
2109 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
2110
2111 free (visited);
2112 return rval;
2113 }
2114 \f
2115 /* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
2116
2117 static rtx
2118 process_insert_insn (struct expr *expr)
2119 {
2120 rtx reg = expr->reaching_reg;
2121 /* Copy the expression to make sure we don't have any sharing issues. */
2122 rtx exp = copy_rtx (expr->expr);
2123 rtx pat;
2124
2125 start_sequence ();
2126
2127 /* If the expression is something that's an operand, like a constant,
2128 just copy it to a register. */
2129 if (general_operand (exp, GET_MODE (reg)))
2130 emit_move_insn (reg, exp);
2131
2132 /* Otherwise, make a new insn to compute this expression and make sure the
2133 insn will be recognized (this also adds any needed CLOBBERs). */
2134 else
2135 {
2136 rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
2137
2138 if (insn_invalid_p (insn, false))
2139 gcc_unreachable ();
2140 }
2141
2142 pat = get_insns ();
2143 end_sequence ();
2144
2145 return pat;
2146 }
2147
2148 /* Add EXPR to the end of basic block BB.
2149
2150 This is used by both the PRE and code hoisting. */
2151
2152 static void
2153 insert_insn_end_basic_block (struct expr *expr, basic_block bb)
2154 {
2155 rtx insn = BB_END (bb);
2156 rtx new_insn;
2157 rtx reg = expr->reaching_reg;
2158 int regno = REGNO (reg);
2159 rtx pat, pat_end;
2160
2161 pat = process_insert_insn (expr);
2162 gcc_assert (pat && INSN_P (pat));
2163
2164 pat_end = pat;
2165 while (NEXT_INSN (pat_end) != NULL_RTX)
2166 pat_end = NEXT_INSN (pat_end);
2167
2168 /* If the last insn is a jump, insert EXPR in front [taking care to
2169 handle cc0, etc. properly]. Similarly we need to care trapping
2170 instructions in presence of non-call exceptions. */
2171
2172 if (JUMP_P (insn)
2173 || (NONJUMP_INSN_P (insn)
2174 && (!single_succ_p (bb)
2175 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
2176 {
2177 #ifdef HAVE_cc0
2178 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2179 if cc0 isn't set. */
2180 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2181 if (note)
2182 insn = XEXP (note, 0);
2183 else
2184 {
2185 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
2186 if (maybe_cc0_setter
2187 && INSN_P (maybe_cc0_setter)
2188 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2189 insn = maybe_cc0_setter;
2190 }
2191 #endif
2192 /* FIXME: What if something in cc0/jump uses value set in new insn? */
2193 new_insn = emit_insn_before_noloc (pat, insn, bb);
2194 }
2195
2196 /* Likewise if the last insn is a call, as will happen in the presence
2197 of exception handling. */
2198 else if (CALL_P (insn)
2199 && (!single_succ_p (bb)
2200 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
2201 {
2202 /* Keeping in mind targets with small register classes and parameters
2203 in registers, we search backward and place the instructions before
2204 the first parameter is loaded. Do this for everyone for consistency
2205 and a presumption that we'll get better code elsewhere as well. */
2206
2207 /* Since different machines initialize their parameter registers
2208 in different orders, assume nothing. Collect the set of all
2209 parameter registers. */
2210 insn = find_first_parameter_load (insn, BB_HEAD (bb));
2211
2212 /* If we found all the parameter loads, then we want to insert
2213 before the first parameter load.
2214
2215 If we did not find all the parameter loads, then we might have
2216 stopped on the head of the block, which could be a CODE_LABEL.
2217 If we inserted before the CODE_LABEL, then we would be putting
2218 the insn in the wrong basic block. In that case, put the insn
2219 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
2220 while (LABEL_P (insn)
2221 || NOTE_INSN_BASIC_BLOCK_P (insn))
2222 insn = NEXT_INSN (insn);
2223
2224 new_insn = emit_insn_before_noloc (pat, insn, bb);
2225 }
2226 else
2227 new_insn = emit_insn_after_noloc (pat, insn, bb);
2228
2229 while (1)
2230 {
2231 if (INSN_P (pat))
2232 add_label_notes (PATTERN (pat), new_insn);
2233 if (pat == pat_end)
2234 break;
2235 pat = NEXT_INSN (pat);
2236 }
2237
2238 gcse_create_count++;
2239
2240 if (dump_file)
2241 {
2242 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
2243 bb->index, INSN_UID (new_insn));
2244 fprintf (dump_file, "copying expression %d to reg %d\n",
2245 expr->bitmap_index, regno);
2246 }
2247 }
2248
2249 /* Insert partially redundant expressions on edges in the CFG to make
2250 the expressions fully redundant. */
2251
2252 static int
2253 pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
2254 {
2255 int e, i, j, num_edges, set_size, did_insert = 0;
2256 sbitmap *inserted;
2257
2258 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2259 if it reaches any of the deleted expressions. */
2260
2261 set_size = pre_insert_map[0]->size;
2262 num_edges = NUM_EDGES (edge_list);
2263 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
2264 bitmap_vector_clear (inserted, num_edges);
2265
2266 for (e = 0; e < num_edges; e++)
2267 {
2268 int indx;
2269 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
2270
2271 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
2272 {
2273 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
2274
2275 for (j = indx;
2276 insert && j < (int) expr_hash_table.n_elems;
2277 j++, insert >>= 1)
2278 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2279 {
2280 struct expr *expr = index_map[j];
2281 struct occr *occr;
2282
2283 /* Now look at each deleted occurrence of this expression. */
2284 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2285 {
2286 if (! occr->deleted_p)
2287 continue;
2288
2289 /* Insert this expression on this edge if it would
2290 reach the deleted occurrence in BB. */
2291 if (!bitmap_bit_p (inserted[e], j))
2292 {
2293 rtx insn;
2294 edge eg = INDEX_EDGE (edge_list, e);
2295
2296 /* We can't insert anything on an abnormal and
2297 critical edge, so we insert the insn at the end of
2298 the previous block. There are several alternatives
2299 detailed in Morgans book P277 (sec 10.5) for
2300 handling this situation. This one is easiest for
2301 now. */
2302
2303 if (eg->flags & EDGE_ABNORMAL)
2304 insert_insn_end_basic_block (index_map[j], bb);
2305 else
2306 {
2307 insn = process_insert_insn (index_map[j]);
2308 insert_insn_on_edge (insn, eg);
2309 }
2310
2311 if (dump_file)
2312 {
2313 fprintf (dump_file, "PRE: edge (%d,%d), ",
2314 bb->index,
2315 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
2316 fprintf (dump_file, "copy expression %d\n",
2317 expr->bitmap_index);
2318 }
2319
2320 update_ld_motion_stores (expr);
2321 bitmap_set_bit (inserted[e], j);
2322 did_insert = 1;
2323 gcse_create_count++;
2324 }
2325 }
2326 }
2327 }
2328 }
2329
2330 sbitmap_vector_free (inserted);
2331 return did_insert;
2332 }
2333
2334 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
2335 Given "old_reg <- expr" (INSN), instead of adding after it
2336 reaching_reg <- old_reg
2337 it's better to do the following:
2338 reaching_reg <- expr
2339 old_reg <- reaching_reg
2340 because this way copy propagation can discover additional PRE
2341 opportunities. But if this fails, we try the old way.
2342 When "expr" is a store, i.e.
2343 given "MEM <- old_reg", instead of adding after it
2344 reaching_reg <- old_reg
2345 it's better to add it before as follows:
2346 reaching_reg <- old_reg
2347 MEM <- reaching_reg. */
2348
2349 static void
2350 pre_insert_copy_insn (struct expr *expr, rtx insn)
2351 {
2352 rtx reg = expr->reaching_reg;
2353 int regno = REGNO (reg);
2354 int indx = expr->bitmap_index;
2355 rtx pat = PATTERN (insn);
2356 rtx set, first_set, new_insn;
2357 rtx old_reg;
2358 int i;
2359
2360 /* This block matches the logic in hash_scan_insn. */
2361 switch (GET_CODE (pat))
2362 {
2363 case SET:
2364 set = pat;
2365 break;
2366
2367 case PARALLEL:
2368 /* Search through the parallel looking for the set whose
2369 source was the expression that we're interested in. */
2370 first_set = NULL_RTX;
2371 set = NULL_RTX;
2372 for (i = 0; i < XVECLEN (pat, 0); i++)
2373 {
2374 rtx x = XVECEXP (pat, 0, i);
2375 if (GET_CODE (x) == SET)
2376 {
2377 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2378 may not find an equivalent expression, but in this
2379 case the PARALLEL will have a single set. */
2380 if (first_set == NULL_RTX)
2381 first_set = x;
2382 if (expr_equiv_p (SET_SRC (x), expr->expr))
2383 {
2384 set = x;
2385 break;
2386 }
2387 }
2388 }
2389
2390 gcc_assert (first_set);
2391 if (set == NULL_RTX)
2392 set = first_set;
2393 break;
2394
2395 default:
2396 gcc_unreachable ();
2397 }
2398
2399 if (REG_P (SET_DEST (set)))
2400 {
2401 old_reg = SET_DEST (set);
2402 /* Check if we can modify the set destination in the original insn. */
2403 if (validate_change (insn, &SET_DEST (set), reg, 0))
2404 {
2405 new_insn = gen_move_insn (old_reg, reg);
2406 new_insn = emit_insn_after (new_insn, insn);
2407 }
2408 else
2409 {
2410 new_insn = gen_move_insn (reg, old_reg);
2411 new_insn = emit_insn_after (new_insn, insn);
2412 }
2413 }
2414 else /* This is possible only in case of a store to memory. */
2415 {
2416 old_reg = SET_SRC (set);
2417 new_insn = gen_move_insn (reg, old_reg);
2418
2419 /* Check if we can modify the set source in the original insn. */
2420 if (validate_change (insn, &SET_SRC (set), reg, 0))
2421 new_insn = emit_insn_before (new_insn, insn);
2422 else
2423 new_insn = emit_insn_after (new_insn, insn);
2424 }
2425
2426 gcse_create_count++;
2427
2428 if (dump_file)
2429 fprintf (dump_file,
2430 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
2431 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
2432 INSN_UID (insn), regno);
2433 }
2434
2435 /* Copy available expressions that reach the redundant expression
2436 to `reaching_reg'. */
2437
2438 static void
2439 pre_insert_copies (void)
2440 {
2441 unsigned int i, added_copy;
2442 struct expr *expr;
2443 struct occr *occr;
2444 struct occr *avail;
2445
2446 /* For each available expression in the table, copy the result to
2447 `reaching_reg' if the expression reaches a deleted one.
2448
2449 ??? The current algorithm is rather brute force.
2450 Need to do some profiling. */
2451
2452 for (i = 0; i < expr_hash_table.size; i++)
2453 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2454 {
2455 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2456 we don't want to insert a copy here because the expression may not
2457 really be redundant. So only insert an insn if the expression was
2458 deleted. This test also avoids further processing if the
2459 expression wasn't deleted anywhere. */
2460 if (expr->reaching_reg == NULL)
2461 continue;
2462
2463 /* Set when we add a copy for that expression. */
2464 added_copy = 0;
2465
2466 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2467 {
2468 if (! occr->deleted_p)
2469 continue;
2470
2471 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2472 {
2473 rtx insn = avail->insn;
2474
2475 /* No need to handle this one if handled already. */
2476 if (avail->copied_p)
2477 continue;
2478
2479 /* Don't handle this one if it's a redundant one. */
2480 if (INSN_DELETED_P (insn))
2481 continue;
2482
2483 /* Or if the expression doesn't reach the deleted one. */
2484 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
2485 expr,
2486 BLOCK_FOR_INSN (occr->insn)))
2487 continue;
2488
2489 added_copy = 1;
2490
2491 /* Copy the result of avail to reaching_reg. */
2492 pre_insert_copy_insn (expr, insn);
2493 avail->copied_p = 1;
2494 }
2495 }
2496
2497 if (added_copy)
2498 update_ld_motion_stores (expr);
2499 }
2500 }
2501
2502 /* Emit move from SRC to DEST noting the equivalence with expression computed
2503 in INSN. */
2504
2505 static rtx
2506 gcse_emit_move_after (rtx dest, rtx src, rtx insn)
2507 {
2508 rtx new_rtx;
2509 rtx set = single_set (insn), set2;
2510 rtx note;
2511 rtx eqv = NULL_RTX;
2512
2513 /* This should never fail since we're creating a reg->reg copy
2514 we've verified to be valid. */
2515
2516 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
2517
2518 /* Note the equivalence for local CSE pass. Take the note from the old
2519 set if there was one. Otherwise record the SET_SRC from the old set
2520 unless DEST is also an operand of the SET_SRC. */
2521 set2 = single_set (new_rtx);
2522 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
2523 return new_rtx;
2524 if ((note = find_reg_equal_equiv_note (insn)))
2525 eqv = XEXP (note, 0);
2526 else if (! REG_P (dest)
2527 || ! reg_mentioned_p (dest, SET_SRC (set)))
2528 eqv = SET_SRC (set);
2529
2530 if (eqv != NULL_RTX)
2531 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
2532
2533 return new_rtx;
2534 }
2535
2536 /* Delete redundant computations.
2537 Deletion is done by changing the insn to copy the `reaching_reg' of
2538 the expression into the result of the SET. It is left to later passes
2539 to propagate the copy or eliminate it.
2540
2541 Return nonzero if a change is made. */
2542
2543 static int
2544 pre_delete (void)
2545 {
2546 unsigned int i;
2547 int changed;
2548 struct expr *expr;
2549 struct occr *occr;
2550
2551 changed = 0;
2552 for (i = 0; i < expr_hash_table.size; i++)
2553 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2554 {
2555 int indx = expr->bitmap_index;
2556
2557 /* We only need to search antic_occr since we require ANTLOC != 0. */
2558 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2559 {
2560 rtx insn = occr->insn;
2561 rtx set;
2562 basic_block bb = BLOCK_FOR_INSN (insn);
2563
2564 /* We only delete insns that have a single_set. */
2565 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
2566 && (set = single_set (insn)) != 0
2567 && dbg_cnt (pre_insn))
2568 {
2569 /* Create a pseudo-reg to store the result of reaching
2570 expressions into. Get the mode for the new pseudo from
2571 the mode of the original destination pseudo. */
2572 if (expr->reaching_reg == NULL)
2573 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
2574
2575 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
2576 delete_insn (insn);
2577 occr->deleted_p = 1;
2578 changed = 1;
2579 gcse_subst_count++;
2580
2581 if (dump_file)
2582 {
2583 fprintf (dump_file,
2584 "PRE: redundant insn %d (expression %d) in ",
2585 INSN_UID (insn), indx);
2586 fprintf (dump_file, "bb %d, reaching reg is %d\n",
2587 bb->index, REGNO (expr->reaching_reg));
2588 }
2589 }
2590 }
2591 }
2592
2593 return changed;
2594 }
2595
2596 /* Perform GCSE optimizations using PRE.
2597 This is called by one_pre_gcse_pass after all the dataflow analysis
2598 has been done.
2599
2600 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2601 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2602 Compiler Design and Implementation.
2603
2604 ??? A new pseudo reg is created to hold the reaching expression. The nice
2605 thing about the classical approach is that it would try to use an existing
2606 reg. If the register can't be adequately optimized [i.e. we introduce
2607 reload problems], one could add a pass here to propagate the new register
2608 through the block.
2609
2610 ??? We don't handle single sets in PARALLELs because we're [currently] not
2611 able to copy the rest of the parallel when we insert copies to create full
2612 redundancies from partial redundancies. However, there's no reason why we
2613 can't handle PARALLELs in the cases where there are no partial
2614 redundancies. */
2615
2616 static int
2617 pre_gcse (struct edge_list *edge_list)
2618 {
2619 unsigned int i;
2620 int did_insert, changed;
2621 struct expr **index_map;
2622 struct expr *expr;
2623
2624 /* Compute a mapping from expression number (`bitmap_index') to
2625 hash table entry. */
2626
2627 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
2628 for (i = 0; i < expr_hash_table.size; i++)
2629 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2630 index_map[expr->bitmap_index] = expr;
2631
2632 /* Delete the redundant insns first so that
2633 - we know what register to use for the new insns and for the other
2634 ones with reaching expressions
2635 - we know which insns are redundant when we go to create copies */
2636
2637 changed = pre_delete ();
2638 did_insert = pre_edge_insert (edge_list, index_map);
2639
2640 /* In other places with reaching expressions, copy the expression to the
2641 specially allocated pseudo-reg that reaches the redundant expr. */
2642 pre_insert_copies ();
2643 if (did_insert)
2644 {
2645 commit_edge_insertions ();
2646 changed = 1;
2647 }
2648
2649 free (index_map);
2650 return changed;
2651 }
2652
2653 /* Top level routine to perform one PRE GCSE pass.
2654
2655 Return nonzero if a change was made. */
2656
2657 static int
2658 one_pre_gcse_pass (void)
2659 {
2660 int changed = 0;
2661
2662 gcse_subst_count = 0;
2663 gcse_create_count = 0;
2664
2665 /* Return if there's nothing to do, or it is too expensive. */
2666 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
2667 || is_too_expensive (_("PRE disabled")))
2668 return 0;
2669
2670 /* We need alias. */
2671 init_alias_analysis ();
2672
2673 bytes_used = 0;
2674 gcc_obstack_init (&gcse_obstack);
2675 alloc_gcse_mem ();
2676
2677 alloc_hash_table (&expr_hash_table);
2678 add_noreturn_fake_exit_edges ();
2679 if (flag_gcse_lm)
2680 compute_ld_motion_mems ();
2681
2682 compute_hash_table (&expr_hash_table);
2683 if (flag_gcse_lm)
2684 trim_ld_motion_mems ();
2685 if (dump_file)
2686 dump_hash_table (dump_file, "Expression", &expr_hash_table);
2687
2688 if (expr_hash_table.n_elems > 0)
2689 {
2690 struct edge_list *edge_list;
2691 alloc_pre_mem (last_basic_block_for_fn (cfun), expr_hash_table.n_elems);
2692 edge_list = compute_pre_data ();
2693 changed |= pre_gcse (edge_list);
2694 free_edge_list (edge_list);
2695 free_pre_mem ();
2696 }
2697
2698 if (flag_gcse_lm)
2699 free_ld_motion_mems ();
2700 remove_fake_exit_edges ();
2701 free_hash_table (&expr_hash_table);
2702
2703 free_gcse_mem ();
2704 obstack_free (&gcse_obstack, NULL);
2705
2706 /* We are finished with alias. */
2707 end_alias_analysis ();
2708
2709 if (dump_file)
2710 {
2711 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
2712 current_function_name (), n_basic_blocks_for_fn (cfun),
2713 bytes_used);
2714 fprintf (dump_file, "%d substs, %d insns created\n",
2715 gcse_subst_count, gcse_create_count);
2716 }
2717
2718 return changed;
2719 }
2720 \f
2721 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2722 to INSN. If such notes are added to an insn which references a
2723 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2724 that note, because the following loop optimization pass requires
2725 them. */
2726
2727 /* ??? If there was a jump optimization pass after gcse and before loop,
2728 then we would not need to do this here, because jump would add the
2729 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
2730
2731 static void
2732 add_label_notes (rtx x, rtx insn)
2733 {
2734 enum rtx_code code = GET_CODE (x);
2735 int i, j;
2736 const char *fmt;
2737
2738 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2739 {
2740 /* This code used to ignore labels that referred to dispatch tables to
2741 avoid flow generating (slightly) worse code.
2742
2743 We no longer ignore such label references (see LABEL_REF handling in
2744 mark_jump_label for additional information). */
2745
2746 /* There's no reason for current users to emit jump-insns with
2747 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2748 notes. */
2749 gcc_assert (!JUMP_P (insn));
2750 add_reg_note (insn, REG_LABEL_OPERAND, XEXP (x, 0));
2751
2752 if (LABEL_P (XEXP (x, 0)))
2753 LABEL_NUSES (XEXP (x, 0))++;
2754
2755 return;
2756 }
2757
2758 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2759 {
2760 if (fmt[i] == 'e')
2761 add_label_notes (XEXP (x, i), insn);
2762 else if (fmt[i] == 'E')
2763 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2764 add_label_notes (XVECEXP (x, i, j), insn);
2765 }
2766 }
2767
2768 /* Code Hoisting variables and subroutines. */
2769
2770 /* Very busy expressions. */
2771 static sbitmap *hoist_vbein;
2772 static sbitmap *hoist_vbeout;
2773
2774 /* ??? We could compute post dominators and run this algorithm in
2775 reverse to perform tail merging, doing so would probably be
2776 more effective than the tail merging code in jump.c.
2777
2778 It's unclear if tail merging could be run in parallel with
2779 code hoisting. It would be nice. */
2780
2781 /* Allocate vars used for code hoisting analysis. */
2782
2783 static void
2784 alloc_code_hoist_mem (int n_blocks, int n_exprs)
2785 {
2786 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2787 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2788 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2789
2790 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2791 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
2792 }
2793
2794 /* Free vars used for code hoisting analysis. */
2795
2796 static void
2797 free_code_hoist_mem (void)
2798 {
2799 sbitmap_vector_free (antloc);
2800 sbitmap_vector_free (transp);
2801 sbitmap_vector_free (comp);
2802
2803 sbitmap_vector_free (hoist_vbein);
2804 sbitmap_vector_free (hoist_vbeout);
2805
2806 free_dominance_info (CDI_DOMINATORS);
2807 }
2808
2809 /* Compute the very busy expressions at entry/exit from each block.
2810
2811 An expression is very busy if all paths from a given point
2812 compute the expression. */
2813
2814 static void
2815 compute_code_hoist_vbeinout (void)
2816 {
2817 int changed, passes;
2818 basic_block bb;
2819
2820 bitmap_vector_clear (hoist_vbeout, last_basic_block_for_fn (cfun));
2821 bitmap_vector_clear (hoist_vbein, last_basic_block_for_fn (cfun));
2822
2823 passes = 0;
2824 changed = 1;
2825
2826 while (changed)
2827 {
2828 changed = 0;
2829
2830 /* We scan the blocks in the reverse order to speed up
2831 the convergence. */
2832 FOR_EACH_BB_REVERSE (bb)
2833 {
2834 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
2835 {
2836 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2837 hoist_vbein, bb);
2838
2839 /* Include expressions in VBEout that are calculated
2840 in BB and available at its end. */
2841 bitmap_ior (hoist_vbeout[bb->index],
2842 hoist_vbeout[bb->index], comp[bb->index]);
2843 }
2844
2845 changed |= bitmap_or_and (hoist_vbein[bb->index],
2846 antloc[bb->index],
2847 hoist_vbeout[bb->index],
2848 transp[bb->index]);
2849 }
2850
2851 passes++;
2852 }
2853
2854 if (dump_file)
2855 {
2856 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2857
2858 FOR_EACH_BB_FN (bb, cfun)
2859 {
2860 fprintf (dump_file, "vbein (%d): ", bb->index);
2861 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
2862 fprintf (dump_file, "vbeout(%d): ", bb->index);
2863 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
2864 }
2865 }
2866 }
2867
2868 /* Top level routine to do the dataflow analysis needed by code hoisting. */
2869
2870 static void
2871 compute_code_hoist_data (void)
2872 {
2873 compute_local_properties (transp, comp, antloc, &expr_hash_table);
2874 prune_expressions (false);
2875 compute_code_hoist_vbeinout ();
2876 calculate_dominance_info (CDI_DOMINATORS);
2877 if (dump_file)
2878 fprintf (dump_file, "\n");
2879 }
2880
2881 /* Update register pressure for BB when hoisting an expression from
2882 instruction FROM, if live ranges of inputs are shrunk. Also
2883 maintain live_in information if live range of register referred
2884 in FROM is shrunk.
2885
2886 Return 0 if register pressure doesn't change, otherwise return
2887 the number by which register pressure is decreased.
2888
2889 NOTE: Register pressure won't be increased in this function. */
2890
2891 static int
2892 update_bb_reg_pressure (basic_block bb, rtx from)
2893 {
2894 rtx dreg, insn;
2895 basic_block succ_bb;
2896 df_ref *op, op_ref;
2897 edge succ;
2898 edge_iterator ei;
2899 int decreased_pressure = 0;
2900 int nregs;
2901 enum reg_class pressure_class;
2902
2903 for (op = DF_INSN_USES (from); *op; op++)
2904 {
2905 dreg = DF_REF_REAL_REG (*op);
2906 /* The live range of register is shrunk only if it isn't:
2907 1. referred on any path from the end of this block to EXIT, or
2908 2. referred by insns other than FROM in this block. */
2909 FOR_EACH_EDGE (succ, ei, bb->succs)
2910 {
2911 succ_bb = succ->dest;
2912 if (succ_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2913 continue;
2914
2915 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2916 break;
2917 }
2918 if (succ != NULL)
2919 continue;
2920
2921 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2922 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2923 {
2924 if (!DF_REF_INSN_INFO (op_ref))
2925 continue;
2926
2927 insn = DF_REF_INSN (op_ref);
2928 if (BLOCK_FOR_INSN (insn) == bb
2929 && NONDEBUG_INSN_P (insn) && insn != from)
2930 break;
2931 }
2932
2933 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2934 /* Decrease register pressure and update live_in information for
2935 this block. */
2936 if (!op_ref && pressure_class != NO_REGS)
2937 {
2938 decreased_pressure += nregs;
2939 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2940 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2941 }
2942 }
2943 return decreased_pressure;
2944 }
2945
2946 /* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2947 flow graph, if it can reach BB unimpared. Stop the search if the
2948 expression would need to be moved more than DISTANCE instructions.
2949
2950 DISTANCE is the number of instructions through which EXPR can be
2951 hoisted up in flow graph.
2952
2953 BB_SIZE points to an array which contains the number of instructions
2954 for each basic block.
2955
2956 PRESSURE_CLASS and NREGS are register class and number of hard registers
2957 for storing EXPR.
2958
2959 HOISTED_BBS points to a bitmap indicating basic blocks through which
2960 EXPR is hoisted.
2961
2962 FROM is the instruction from which EXPR is hoisted.
2963
2964 It's unclear exactly what Muchnick meant by "unimpared". It seems
2965 to me that the expression must either be computed or transparent in
2966 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2967 would allow the expression to be hoisted out of loops, even if
2968 the expression wasn't a loop invariant.
2969
2970 Contrast this to reachability for PRE where an expression is
2971 considered reachable if *any* path reaches instead of *all*
2972 paths. */
2973
2974 static int
2975 should_hoist_expr_to_dom (basic_block expr_bb, struct expr *expr,
2976 basic_block bb, sbitmap visited, int distance,
2977 int *bb_size, enum reg_class pressure_class,
2978 int *nregs, bitmap hoisted_bbs, rtx from)
2979 {
2980 unsigned int i;
2981 edge pred;
2982 edge_iterator ei;
2983 sbitmap_iterator sbi;
2984 int visited_allocated_locally = 0;
2985 int decreased_pressure = 0;
2986
2987 if (flag_ira_hoist_pressure)
2988 {
2989 /* Record old information of basic block BB when it is visited
2990 at the first time. */
2991 if (!bitmap_bit_p (hoisted_bbs, bb->index))
2992 {
2993 struct bb_data *data = BB_DATA (bb);
2994 bitmap_copy (data->backup, data->live_in);
2995 data->old_pressure = data->max_reg_pressure[pressure_class];
2996 }
2997 decreased_pressure = update_bb_reg_pressure (bb, from);
2998 }
2999 /* Terminate the search if distance, for which EXPR is allowed to move,
3000 is exhausted. */
3001 if (distance > 0)
3002 {
3003 if (flag_ira_hoist_pressure)
3004 {
3005 /* Prefer to hoist EXPR if register pressure is decreased. */
3006 if (decreased_pressure > *nregs)
3007 distance += bb_size[bb->index];
3008 /* Let EXPR be hoisted through basic block at no cost if one
3009 of following conditions is satisfied:
3010
3011 1. The basic block has low register pressure.
3012 2. Register pressure won't be increases after hoisting EXPR.
3013
3014 Constant expressions is handled conservatively, because
3015 hoisting constant expression aggressively results in worse
3016 code. This decision is made by the observation of CSiBE
3017 on ARM target, while it has no obvious effect on other
3018 targets like x86, x86_64, mips and powerpc. */
3019 else if (CONST_INT_P (expr->expr)
3020 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
3021 >= ira_class_hard_regs_num[pressure_class]
3022 && decreased_pressure < *nregs))
3023 distance -= bb_size[bb->index];
3024 }
3025 else
3026 distance -= bb_size[bb->index];
3027
3028 if (distance <= 0)
3029 return 0;
3030 }
3031 else
3032 gcc_assert (distance == 0);
3033
3034 if (visited == NULL)
3035 {
3036 visited_allocated_locally = 1;
3037 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
3038 bitmap_clear (visited);
3039 }
3040
3041 FOR_EACH_EDGE (pred, ei, bb->preds)
3042 {
3043 basic_block pred_bb = pred->src;
3044
3045 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
3046 break;
3047 else if (pred_bb == expr_bb)
3048 continue;
3049 else if (bitmap_bit_p (visited, pred_bb->index))
3050 continue;
3051 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
3052 break;
3053 /* Not killed. */
3054 else
3055 {
3056 bitmap_set_bit (visited, pred_bb->index);
3057 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
3058 visited, distance, bb_size,
3059 pressure_class, nregs,
3060 hoisted_bbs, from))
3061 break;
3062 }
3063 }
3064 if (visited_allocated_locally)
3065 {
3066 /* If EXPR can be hoisted to expr_bb, record basic blocks through
3067 which EXPR is hoisted in hoisted_bbs. */
3068 if (flag_ira_hoist_pressure && !pred)
3069 {
3070 /* Record the basic block from which EXPR is hoisted. */
3071 bitmap_set_bit (visited, bb->index);
3072 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
3073 bitmap_set_bit (hoisted_bbs, i);
3074 }
3075 sbitmap_free (visited);
3076 }
3077
3078 return (pred == NULL);
3079 }
3080 \f
3081 /* Find occurrence in BB. */
3082
3083 static struct occr *
3084 find_occr_in_bb (struct occr *occr, basic_block bb)
3085 {
3086 /* Find the right occurrence of this expression. */
3087 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
3088 occr = occr->next;
3089
3090 return occr;
3091 }
3092
3093 /* Actually perform code hoisting.
3094
3095 The code hoisting pass can hoist multiple computations of the same
3096 expression along dominated path to a dominating basic block, like
3097 from b2/b3 to b1 as depicted below:
3098
3099 b1 ------
3100 /\ |
3101 / \ |
3102 bx by distance
3103 / \ |
3104 / \ |
3105 b2 b3 ------
3106
3107 Unfortunately code hoisting generally extends the live range of an
3108 output pseudo register, which increases register pressure and hurts
3109 register allocation. To address this issue, an attribute MAX_DISTANCE
3110 is computed and attached to each expression. The attribute is computed
3111 from rtx cost of the corresponding expression and it's used to control
3112 how long the expression can be hoisted up in flow graph. As the
3113 expression is hoisted up in flow graph, GCC decreases its DISTANCE
3114 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3115 register pressure if live ranges of inputs are shrunk.
3116
3117 Option "-fira-hoist-pressure" implements register pressure directed
3118 hoist based on upper method. The rationale is:
3119 1. Calculate register pressure for each basic block by reusing IRA
3120 facility.
3121 2. When expression is hoisted through one basic block, GCC checks
3122 the change of live ranges for inputs/output. The basic block's
3123 register pressure will be increased because of extended live
3124 range of output. However, register pressure will be decreased
3125 if the live ranges of inputs are shrunk.
3126 3. After knowing how hoisting affects register pressure, GCC prefers
3127 to hoist the expression if it can decrease register pressure, by
3128 increasing DISTANCE of the corresponding expression.
3129 4. If hoisting the expression increases register pressure, GCC checks
3130 register pressure of the basic block and decrease DISTANCE only if
3131 the register pressure is high. In other words, expression will be
3132 hoisted through at no cost if the basic block has low register
3133 pressure.
3134 5. Update register pressure information for basic blocks through
3135 which expression is hoisted. */
3136
3137 static int
3138 hoist_code (void)
3139 {
3140 basic_block bb, dominated;
3141 vec<basic_block> dom_tree_walk;
3142 unsigned int dom_tree_walk_index;
3143 vec<basic_block> domby;
3144 unsigned int i, j, k;
3145 struct expr **index_map;
3146 struct expr *expr;
3147 int *to_bb_head;
3148 int *bb_size;
3149 int changed = 0;
3150 struct bb_data *data;
3151 /* Basic blocks that have occurrences reachable from BB. */
3152 bitmap from_bbs;
3153 /* Basic blocks through which expr is hoisted. */
3154 bitmap hoisted_bbs = NULL;
3155 bitmap_iterator bi;
3156
3157 /* Compute a mapping from expression number (`bitmap_index') to
3158 hash table entry. */
3159
3160 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
3161 for (i = 0; i < expr_hash_table.size; i++)
3162 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
3163 index_map[expr->bitmap_index] = expr;
3164
3165 /* Calculate sizes of basic blocks and note how far
3166 each instruction is from the start of its block. We then use this
3167 data to restrict distance an expression can travel. */
3168
3169 to_bb_head = XCNEWVEC (int, get_max_uid ());
3170 bb_size = XCNEWVEC (int, last_basic_block_for_fn (cfun));
3171
3172 FOR_EACH_BB_FN (bb, cfun)
3173 {
3174 rtx insn;
3175 int to_head;
3176
3177 to_head = 0;
3178 FOR_BB_INSNS (bb, insn)
3179 {
3180 /* Don't count debug instructions to avoid them affecting
3181 decision choices. */
3182 if (NONDEBUG_INSN_P (insn))
3183 to_bb_head[INSN_UID (insn)] = to_head++;
3184 }
3185
3186 bb_size[bb->index] = to_head;
3187 }
3188
3189 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) == 1
3190 && (EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
3191 == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb));
3192
3193 from_bbs = BITMAP_ALLOC (NULL);
3194 if (flag_ira_hoist_pressure)
3195 hoisted_bbs = BITMAP_ALLOC (NULL);
3196
3197 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
3198 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb);
3199
3200 /* Walk over each basic block looking for potentially hoistable
3201 expressions, nothing gets hoisted from the entry block. */
3202 FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
3203 {
3204 domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3205
3206 if (domby.length () == 0)
3207 continue;
3208
3209 /* Examine each expression that is very busy at the exit of this
3210 block. These are the potentially hoistable expressions. */
3211 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
3212 {
3213 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
3214 {
3215 int nregs = 0;
3216 enum reg_class pressure_class = NO_REGS;
3217 /* Current expression. */
3218 struct expr *expr = index_map[i];
3219 /* Number of occurrences of EXPR that can be hoisted to BB. */
3220 int hoistable = 0;
3221 /* Occurrences reachable from BB. */
3222 vec<occr_t> occrs_to_hoist = vNULL;
3223 /* We want to insert the expression into BB only once, so
3224 note when we've inserted it. */
3225 int insn_inserted_p;
3226 occr_t occr;
3227
3228 /* If an expression is computed in BB and is available at end of
3229 BB, hoist all occurrences dominated by BB to BB. */
3230 if (bitmap_bit_p (comp[bb->index], i))
3231 {
3232 occr = find_occr_in_bb (expr->antic_occr, bb);
3233
3234 if (occr)
3235 {
3236 /* An occurrence might've been already deleted
3237 while processing a dominator of BB. */
3238 if (!occr->deleted_p)
3239 {
3240 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3241 hoistable++;
3242 }
3243 }
3244 else
3245 hoistable++;
3246 }
3247
3248 /* We've found a potentially hoistable expression, now
3249 we look at every block BB dominates to see if it
3250 computes the expression. */
3251 FOR_EACH_VEC_ELT (domby, j, dominated)
3252 {
3253 int max_distance;
3254
3255 /* Ignore self dominance. */
3256 if (bb == dominated)
3257 continue;
3258 /* We've found a dominated block, now see if it computes
3259 the busy expression and whether or not moving that
3260 expression to the "beginning" of that block is safe. */
3261 if (!bitmap_bit_p (antloc[dominated->index], i))
3262 continue;
3263
3264 occr = find_occr_in_bb (expr->antic_occr, dominated);
3265 gcc_assert (occr);
3266
3267 /* An occurrence might've been already deleted
3268 while processing a dominator of BB. */
3269 if (occr->deleted_p)
3270 continue;
3271 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3272
3273 max_distance = expr->max_distance;
3274 if (max_distance > 0)
3275 /* Adjust MAX_DISTANCE to account for the fact that
3276 OCCR won't have to travel all of DOMINATED, but
3277 only part of it. */
3278 max_distance += (bb_size[dominated->index]
3279 - to_bb_head[INSN_UID (occr->insn)]);
3280
3281 pressure_class = get_pressure_class_and_nregs (occr->insn,
3282 &nregs);
3283
3284 /* Note if the expression should be hoisted from the dominated
3285 block to BB if it can reach DOMINATED unimpared.
3286
3287 Keep track of how many times this expression is hoistable
3288 from a dominated block into BB. */
3289 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3290 max_distance, bb_size,
3291 pressure_class, &nregs,
3292 hoisted_bbs, occr->insn))
3293 {
3294 hoistable++;
3295 occrs_to_hoist.safe_push (occr);
3296 bitmap_set_bit (from_bbs, dominated->index);
3297 }
3298 }
3299
3300 /* If we found more than one hoistable occurrence of this
3301 expression, then note it in the vector of expressions to
3302 hoist. It makes no sense to hoist things which are computed
3303 in only one BB, and doing so tends to pessimize register
3304 allocation. One could increase this value to try harder
3305 to avoid any possible code expansion due to register
3306 allocation issues; however experiments have shown that
3307 the vast majority of hoistable expressions are only movable
3308 from two successors, so raising this threshold is likely
3309 to nullify any benefit we get from code hoisting. */
3310 if (hoistable > 1 && dbg_cnt (hoist_insn))
3311 {
3312 /* If (hoistable != vec::length), then there is
3313 an occurrence of EXPR in BB itself. Don't waste
3314 time looking for LCA in this case. */
3315 if ((unsigned) hoistable == occrs_to_hoist.length ())
3316 {
3317 basic_block lca;
3318
3319 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3320 from_bbs);
3321 if (lca != bb)
3322 /* Punt, it's better to hoist these occurrences to
3323 LCA. */
3324 occrs_to_hoist.release ();
3325 }
3326 }
3327 else
3328 /* Punt, no point hoisting a single occurrence. */
3329 occrs_to_hoist.release ();
3330
3331 if (flag_ira_hoist_pressure
3332 && !occrs_to_hoist.is_empty ())
3333 {
3334 /* Increase register pressure of basic blocks to which
3335 expr is hoisted because of extended live range of
3336 output. */
3337 data = BB_DATA (bb);
3338 data->max_reg_pressure[pressure_class] += nregs;
3339 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3340 {
3341 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3342 data->max_reg_pressure[pressure_class] += nregs;
3343 }
3344 }
3345 else if (flag_ira_hoist_pressure)
3346 {
3347 /* Restore register pressure and live_in info for basic
3348 blocks recorded in hoisted_bbs when expr will not be
3349 hoisted. */
3350 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3351 {
3352 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3353 bitmap_copy (data->live_in, data->backup);
3354 data->max_reg_pressure[pressure_class]
3355 = data->old_pressure;
3356 }
3357 }
3358
3359 if (flag_ira_hoist_pressure)
3360 bitmap_clear (hoisted_bbs);
3361
3362 insn_inserted_p = 0;
3363
3364 /* Walk through occurrences of I'th expressions we want
3365 to hoist to BB and make the transformations. */
3366 FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
3367 {
3368 rtx insn;
3369 rtx set;
3370
3371 gcc_assert (!occr->deleted_p);
3372
3373 insn = occr->insn;
3374 set = single_set (insn);
3375 gcc_assert (set);
3376
3377 /* Create a pseudo-reg to store the result of reaching
3378 expressions into. Get the mode for the new pseudo
3379 from the mode of the original destination pseudo.
3380
3381 It is important to use new pseudos whenever we
3382 emit a set. This will allow reload to use
3383 rematerialization for such registers. */
3384 if (!insn_inserted_p)
3385 expr->reaching_reg
3386 = gen_reg_rtx_and_attrs (SET_DEST (set));
3387
3388 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
3389 insn);
3390 delete_insn (insn);
3391 occr->deleted_p = 1;
3392 changed = 1;
3393 gcse_subst_count++;
3394
3395 if (!insn_inserted_p)
3396 {
3397 insert_insn_end_basic_block (expr, bb);
3398 insn_inserted_p = 1;
3399 }
3400 }
3401
3402 occrs_to_hoist.release ();
3403 bitmap_clear (from_bbs);
3404 }
3405 }
3406 domby.release ();
3407 }
3408
3409 dom_tree_walk.release ();
3410 BITMAP_FREE (from_bbs);
3411 if (flag_ira_hoist_pressure)
3412 BITMAP_FREE (hoisted_bbs);
3413
3414 free (bb_size);
3415 free (to_bb_head);
3416 free (index_map);
3417
3418 return changed;
3419 }
3420
3421 /* Return pressure class and number of needed hard registers (through
3422 *NREGS) of register REGNO. */
3423 static enum reg_class
3424 get_regno_pressure_class (int regno, int *nregs)
3425 {
3426 if (regno >= FIRST_PSEUDO_REGISTER)
3427 {
3428 enum reg_class pressure_class;
3429
3430 pressure_class = reg_allocno_class (regno);
3431 pressure_class = ira_pressure_class_translate[pressure_class];
3432 *nregs
3433 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3434 return pressure_class;
3435 }
3436 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3437 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3438 {
3439 *nregs = 1;
3440 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3441 }
3442 else
3443 {
3444 *nregs = 0;
3445 return NO_REGS;
3446 }
3447 }
3448
3449 /* Return pressure class and number of hard registers (through *NREGS)
3450 for destination of INSN. */
3451 static enum reg_class
3452 get_pressure_class_and_nregs (rtx insn, int *nregs)
3453 {
3454 rtx reg;
3455 enum reg_class pressure_class;
3456 rtx set = single_set (insn);
3457
3458 /* Considered invariant insns have only one set. */
3459 gcc_assert (set != NULL_RTX);
3460 reg = SET_DEST (set);
3461 if (GET_CODE (reg) == SUBREG)
3462 reg = SUBREG_REG (reg);
3463 if (MEM_P (reg))
3464 {
3465 *nregs = 0;
3466 pressure_class = NO_REGS;
3467 }
3468 else
3469 {
3470 gcc_assert (REG_P (reg));
3471 pressure_class = reg_allocno_class (REGNO (reg));
3472 pressure_class = ira_pressure_class_translate[pressure_class];
3473 *nregs
3474 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3475 }
3476 return pressure_class;
3477 }
3478
3479 /* Increase (if INCR_P) or decrease current register pressure for
3480 register REGNO. */
3481 static void
3482 change_pressure (int regno, bool incr_p)
3483 {
3484 int nregs;
3485 enum reg_class pressure_class;
3486
3487 pressure_class = get_regno_pressure_class (regno, &nregs);
3488 if (! incr_p)
3489 curr_reg_pressure[pressure_class] -= nregs;
3490 else
3491 {
3492 curr_reg_pressure[pressure_class] += nregs;
3493 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3494 < curr_reg_pressure[pressure_class])
3495 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3496 = curr_reg_pressure[pressure_class];
3497 }
3498 }
3499
3500 /* Calculate register pressure for each basic block by walking insns
3501 from last to first. */
3502 static void
3503 calculate_bb_reg_pressure (void)
3504 {
3505 int i;
3506 unsigned int j;
3507 rtx insn;
3508 basic_block bb;
3509 bitmap curr_regs_live;
3510 bitmap_iterator bi;
3511
3512
3513 ira_setup_eliminable_regset ();
3514 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
3515 FOR_EACH_BB_FN (bb, cfun)
3516 {
3517 curr_bb = bb;
3518 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3519 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3520 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3521 bitmap_copy (curr_regs_live, df_get_live_out (bb));
3522 for (i = 0; i < ira_pressure_classes_num; i++)
3523 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3524 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3525 change_pressure (j, true);
3526
3527 FOR_BB_INSNS_REVERSE (bb, insn)
3528 {
3529 rtx dreg;
3530 int regno;
3531 df_ref *def_rec, *use_rec;
3532
3533 if (! NONDEBUG_INSN_P (insn))
3534 continue;
3535
3536 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
3537 {
3538 dreg = DF_REF_REAL_REG (*def_rec);
3539 gcc_assert (REG_P (dreg));
3540 regno = REGNO (dreg);
3541 if (!(DF_REF_FLAGS (*def_rec)
3542 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3543 {
3544 if (bitmap_clear_bit (curr_regs_live, regno))
3545 change_pressure (regno, false);
3546 }
3547 }
3548
3549 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
3550 {
3551 dreg = DF_REF_REAL_REG (*use_rec);
3552 gcc_assert (REG_P (dreg));
3553 regno = REGNO (dreg);
3554 if (bitmap_set_bit (curr_regs_live, regno))
3555 change_pressure (regno, true);
3556 }
3557 }
3558 }
3559 BITMAP_FREE (curr_regs_live);
3560
3561 if (dump_file == NULL)
3562 return;
3563
3564 fprintf (dump_file, "\nRegister Pressure: \n");
3565 FOR_EACH_BB_FN (bb, cfun)
3566 {
3567 fprintf (dump_file, " Basic block %d: \n", bb->index);
3568 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3569 {
3570 enum reg_class pressure_class;
3571
3572 pressure_class = ira_pressure_classes[i];
3573 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3574 continue;
3575
3576 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3577 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3578 }
3579 }
3580 fprintf (dump_file, "\n");
3581 }
3582
3583 /* Top level routine to perform one code hoisting (aka unification) pass
3584
3585 Return nonzero if a change was made. */
3586
3587 static int
3588 one_code_hoisting_pass (void)
3589 {
3590 int changed = 0;
3591
3592 gcse_subst_count = 0;
3593 gcse_create_count = 0;
3594
3595 /* Return if there's nothing to do, or it is too expensive. */
3596 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
3597 || is_too_expensive (_("GCSE disabled")))
3598 return 0;
3599
3600 doing_code_hoisting_p = true;
3601
3602 /* Calculate register pressure for each basic block. */
3603 if (flag_ira_hoist_pressure)
3604 {
3605 regstat_init_n_sets_and_refs ();
3606 ira_set_pseudo_classes (false, dump_file);
3607 alloc_aux_for_blocks (sizeof (struct bb_data));
3608 calculate_bb_reg_pressure ();
3609 regstat_free_n_sets_and_refs ();
3610 }
3611
3612 /* We need alias. */
3613 init_alias_analysis ();
3614
3615 bytes_used = 0;
3616 gcc_obstack_init (&gcse_obstack);
3617 alloc_gcse_mem ();
3618
3619 alloc_hash_table (&expr_hash_table);
3620 compute_hash_table (&expr_hash_table);
3621 if (dump_file)
3622 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
3623
3624 if (expr_hash_table.n_elems > 0)
3625 {
3626 alloc_code_hoist_mem (last_basic_block_for_fn (cfun),
3627 expr_hash_table.n_elems);
3628 compute_code_hoist_data ();
3629 changed = hoist_code ();
3630 free_code_hoist_mem ();
3631 }
3632
3633 if (flag_ira_hoist_pressure)
3634 {
3635 free_aux_for_blocks ();
3636 free_reg_info ();
3637 }
3638 free_hash_table (&expr_hash_table);
3639 free_gcse_mem ();
3640 obstack_free (&gcse_obstack, NULL);
3641
3642 /* We are finished with alias. */
3643 end_alias_analysis ();
3644
3645 if (dump_file)
3646 {
3647 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
3648 current_function_name (), n_basic_blocks_for_fn (cfun),
3649 bytes_used);
3650 fprintf (dump_file, "%d substs, %d insns created\n",
3651 gcse_subst_count, gcse_create_count);
3652 }
3653
3654 doing_code_hoisting_p = false;
3655
3656 return changed;
3657 }
3658 \f
3659 /* Here we provide the things required to do store motion towards the exit.
3660 In order for this to be effective, gcse also needed to be taught how to
3661 move a load when it is killed only by a store to itself.
3662
3663 int i;
3664 float a[10];
3665
3666 void foo(float scale)
3667 {
3668 for (i=0; i<10; i++)
3669 a[i] *= scale;
3670 }
3671
3672 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3673 the load out since its live around the loop, and stored at the bottom
3674 of the loop.
3675
3676 The 'Load Motion' referred to and implemented in this file is
3677 an enhancement to gcse which when using edge based LCM, recognizes
3678 this situation and allows gcse to move the load out of the loop.
3679
3680 Once gcse has hoisted the load, store motion can then push this
3681 load towards the exit, and we end up with no loads or stores of 'i'
3682 in the loop. */
3683
3684 /* This will search the ldst list for a matching expression. If it
3685 doesn't find one, we create one and initialize it. */
3686
3687 static struct ls_expr *
3688 ldst_entry (rtx x)
3689 {
3690 int do_not_record_p = 0;
3691 struct ls_expr * ptr;
3692 unsigned int hash;
3693 ls_expr **slot;
3694 struct ls_expr e;
3695
3696 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3697 NULL, /*have_reg_qty=*/false);
3698
3699 e.pattern = x;
3700 slot = pre_ldst_table.find_slot_with_hash (&e, hash, INSERT);
3701 if (*slot)
3702 return *slot;
3703
3704 ptr = XNEW (struct ls_expr);
3705
3706 ptr->next = pre_ldst_mems;
3707 ptr->expr = NULL;
3708 ptr->pattern = x;
3709 ptr->pattern_regs = NULL_RTX;
3710 ptr->loads = NULL_RTX;
3711 ptr->stores = NULL_RTX;
3712 ptr->reaching_reg = NULL_RTX;
3713 ptr->invalid = 0;
3714 ptr->index = 0;
3715 ptr->hash_index = hash;
3716 pre_ldst_mems = ptr;
3717 *slot = ptr;
3718
3719 return ptr;
3720 }
3721
3722 /* Free up an individual ldst entry. */
3723
3724 static void
3725 free_ldst_entry (struct ls_expr * ptr)
3726 {
3727 free_INSN_LIST_list (& ptr->loads);
3728 free_INSN_LIST_list (& ptr->stores);
3729
3730 free (ptr);
3731 }
3732
3733 /* Free up all memory associated with the ldst list. */
3734
3735 static void
3736 free_ld_motion_mems (void)
3737 {
3738 if (pre_ldst_table.is_created ())
3739 pre_ldst_table.dispose ();
3740
3741 while (pre_ldst_mems)
3742 {
3743 struct ls_expr * tmp = pre_ldst_mems;
3744
3745 pre_ldst_mems = pre_ldst_mems->next;
3746
3747 free_ldst_entry (tmp);
3748 }
3749
3750 pre_ldst_mems = NULL;
3751 }
3752
3753 /* Dump debugging info about the ldst list. */
3754
3755 static void
3756 print_ldst_list (FILE * file)
3757 {
3758 struct ls_expr * ptr;
3759
3760 fprintf (file, "LDST list: \n");
3761
3762 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
3763 {
3764 fprintf (file, " Pattern (%3d): ", ptr->index);
3765
3766 print_rtl (file, ptr->pattern);
3767
3768 fprintf (file, "\n Loads : ");
3769
3770 if (ptr->loads)
3771 print_rtl (file, ptr->loads);
3772 else
3773 fprintf (file, "(nil)");
3774
3775 fprintf (file, "\n Stores : ");
3776
3777 if (ptr->stores)
3778 print_rtl (file, ptr->stores);
3779 else
3780 fprintf (file, "(nil)");
3781
3782 fprintf (file, "\n\n");
3783 }
3784
3785 fprintf (file, "\n");
3786 }
3787
3788 /* Returns 1 if X is in the list of ldst only expressions. */
3789
3790 static struct ls_expr *
3791 find_rtx_in_ldst (rtx x)
3792 {
3793 struct ls_expr e;
3794 ls_expr **slot;
3795 if (!pre_ldst_table.is_created ())
3796 return NULL;
3797 e.pattern = x;
3798 slot = pre_ldst_table.find_slot (&e, NO_INSERT);
3799 if (!slot || (*slot)->invalid)
3800 return NULL;
3801 return *slot;
3802 }
3803 \f
3804 /* Load Motion for loads which only kill themselves. */
3805
3806 /* Return true if x, a MEM, is a simple access with no side effects.
3807 These are the types of loads we consider for the ld_motion list,
3808 otherwise we let the usual aliasing take care of it. */
3809
3810 static int
3811 simple_mem (const_rtx x)
3812 {
3813 if (MEM_VOLATILE_P (x))
3814 return 0;
3815
3816 if (GET_MODE (x) == BLKmode)
3817 return 0;
3818
3819 /* If we are handling exceptions, we must be careful with memory references
3820 that may trap. If we are not, the behavior is undefined, so we may just
3821 continue. */
3822 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
3823 return 0;
3824
3825 if (side_effects_p (x))
3826 return 0;
3827
3828 /* Do not consider function arguments passed on stack. */
3829 if (reg_mentioned_p (stack_pointer_rtx, x))
3830 return 0;
3831
3832 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3833 return 0;
3834
3835 return 1;
3836 }
3837
3838 /* Make sure there isn't a buried reference in this pattern anywhere.
3839 If there is, invalidate the entry for it since we're not capable
3840 of fixing it up just yet.. We have to be sure we know about ALL
3841 loads since the aliasing code will allow all entries in the
3842 ld_motion list to not-alias itself. If we miss a load, we will get
3843 the wrong value since gcse might common it and we won't know to
3844 fix it up. */
3845
3846 static void
3847 invalidate_any_buried_refs (rtx x)
3848 {
3849 const char * fmt;
3850 int i, j;
3851 struct ls_expr * ptr;
3852
3853 /* Invalidate it in the list. */
3854 if (MEM_P (x) && simple_mem (x))
3855 {
3856 ptr = ldst_entry (x);
3857 ptr->invalid = 1;
3858 }
3859
3860 /* Recursively process the insn. */
3861 fmt = GET_RTX_FORMAT (GET_CODE (x));
3862
3863 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3864 {
3865 if (fmt[i] == 'e')
3866 invalidate_any_buried_refs (XEXP (x, i));
3867 else if (fmt[i] == 'E')
3868 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3869 invalidate_any_buried_refs (XVECEXP (x, i, j));
3870 }
3871 }
3872
3873 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3874 being defined as MEM loads and stores to symbols, with no side effects
3875 and no registers in the expression. For a MEM destination, we also
3876 check that the insn is still valid if we replace the destination with a
3877 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3878 which don't match this criteria, they are invalidated and trimmed out
3879 later. */
3880
3881 static void
3882 compute_ld_motion_mems (void)
3883 {
3884 struct ls_expr * ptr;
3885 basic_block bb;
3886 rtx insn;
3887
3888 pre_ldst_mems = NULL;
3889 pre_ldst_table.create (13);
3890
3891 FOR_EACH_BB_FN (bb, cfun)
3892 {
3893 FOR_BB_INSNS (bb, insn)
3894 {
3895 if (NONDEBUG_INSN_P (insn))
3896 {
3897 if (GET_CODE (PATTERN (insn)) == SET)
3898 {
3899 rtx src = SET_SRC (PATTERN (insn));
3900 rtx dest = SET_DEST (PATTERN (insn));
3901 rtx note = find_reg_equal_equiv_note (insn);
3902 rtx src_eq;
3903
3904 /* Check for a simple LOAD... */
3905 if (MEM_P (src) && simple_mem (src))
3906 {
3907 ptr = ldst_entry (src);
3908 if (REG_P (dest))
3909 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
3910 else
3911 ptr->invalid = 1;
3912 }
3913 else
3914 {
3915 /* Make sure there isn't a buried load somewhere. */
3916 invalidate_any_buried_refs (src);
3917 }
3918
3919 if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL)
3920 src_eq = XEXP (note, 0);
3921 else
3922 src_eq = NULL_RTX;
3923
3924 if (src_eq != NULL_RTX
3925 && !(MEM_P (src_eq) && simple_mem (src_eq)))
3926 invalidate_any_buried_refs (src_eq);
3927
3928 /* Check for stores. Don't worry about aliased ones, they
3929 will block any movement we might do later. We only care
3930 about this exact pattern since those are the only
3931 circumstance that we will ignore the aliasing info. */
3932 if (MEM_P (dest) && simple_mem (dest))
3933 {
3934 ptr = ldst_entry (dest);
3935
3936 if (! MEM_P (src)
3937 && GET_CODE (src) != ASM_OPERANDS
3938 /* Check for REG manually since want_to_gcse_p
3939 returns 0 for all REGs. */
3940 && can_assign_to_reg_without_clobbers_p (src))
3941 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
3942 else
3943 ptr->invalid = 1;
3944 }
3945 }
3946 else
3947 invalidate_any_buried_refs (PATTERN (insn));
3948 }
3949 }
3950 }
3951 }
3952
3953 /* Remove any references that have been either invalidated or are not in the
3954 expression list for pre gcse. */
3955
3956 static void
3957 trim_ld_motion_mems (void)
3958 {
3959 struct ls_expr * * last = & pre_ldst_mems;
3960 struct ls_expr * ptr = pre_ldst_mems;
3961
3962 while (ptr != NULL)
3963 {
3964 struct expr * expr;
3965
3966 /* Delete if entry has been made invalid. */
3967 if (! ptr->invalid)
3968 {
3969 /* Delete if we cannot find this mem in the expression list. */
3970 unsigned int hash = ptr->hash_index % expr_hash_table.size;
3971
3972 for (expr = expr_hash_table.table[hash];
3973 expr != NULL;
3974 expr = expr->next_same_hash)
3975 if (expr_equiv_p (expr->expr, ptr->pattern))
3976 break;
3977 }
3978 else
3979 expr = (struct expr *) 0;
3980
3981 if (expr)
3982 {
3983 /* Set the expression field if we are keeping it. */
3984 ptr->expr = expr;
3985 last = & ptr->next;
3986 ptr = ptr->next;
3987 }
3988 else
3989 {
3990 *last = ptr->next;
3991 pre_ldst_table.remove_elt_with_hash (ptr, ptr->hash_index);
3992 free_ldst_entry (ptr);
3993 ptr = * last;
3994 }
3995 }
3996
3997 /* Show the world what we've found. */
3998 if (dump_file && pre_ldst_mems != NULL)
3999 print_ldst_list (dump_file);
4000 }
4001
4002 /* This routine will take an expression which we are replacing with
4003 a reaching register, and update any stores that are needed if
4004 that expression is in the ld_motion list. Stores are updated by
4005 copying their SRC to the reaching register, and then storing
4006 the reaching register into the store location. These keeps the
4007 correct value in the reaching register for the loads. */
4008
4009 static void
4010 update_ld_motion_stores (struct expr * expr)
4011 {
4012 struct ls_expr * mem_ptr;
4013
4014 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
4015 {
4016 /* We can try to find just the REACHED stores, but is shouldn't
4017 matter to set the reaching reg everywhere... some might be
4018 dead and should be eliminated later. */
4019
4020 /* We replace (set mem expr) with (set reg expr) (set mem reg)
4021 where reg is the reaching reg used in the load. We checked in
4022 compute_ld_motion_mems that we can replace (set mem expr) with
4023 (set reg expr) in that insn. */
4024 rtx list = mem_ptr->stores;
4025
4026 for ( ; list != NULL_RTX; list = XEXP (list, 1))
4027 {
4028 rtx insn = XEXP (list, 0);
4029 rtx pat = PATTERN (insn);
4030 rtx src = SET_SRC (pat);
4031 rtx reg = expr->reaching_reg;
4032 rtx copy;
4033
4034 /* If we've already copied it, continue. */
4035 if (expr->reaching_reg == src)
4036 continue;
4037
4038 if (dump_file)
4039 {
4040 fprintf (dump_file, "PRE: store updated with reaching reg ");
4041 print_rtl (dump_file, reg);
4042 fprintf (dump_file, ":\n ");
4043 print_inline_rtx (dump_file, insn, 8);
4044 fprintf (dump_file, "\n");
4045 }
4046
4047 copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
4048 emit_insn_before (copy, insn);
4049 SET_SRC (pat) = reg;
4050 df_insn_rescan (insn);
4051
4052 /* un-recognize this pattern since it's probably different now. */
4053 INSN_CODE (insn) = -1;
4054 gcse_create_count++;
4055 }
4056 }
4057 }
4058 \f
4059 /* Return true if the graph is too expensive to optimize. PASS is the
4060 optimization about to be performed. */
4061
4062 static bool
4063 is_too_expensive (const char *pass)
4064 {
4065 /* Trying to perform global optimizations on flow graphs which have
4066 a high connectivity will take a long time and is unlikely to be
4067 particularly useful.
4068
4069 In normal circumstances a cfg should have about twice as many
4070 edges as blocks. But we do not want to punish small functions
4071 which have a couple switch statements. Rather than simply
4072 threshold the number of blocks, uses something with a more
4073 graceful degradation. */
4074 if (n_edges_for_fn (cfun) > 20000 + n_basic_blocks_for_fn (cfun) * 4)
4075 {
4076 warning (OPT_Wdisabled_optimization,
4077 "%s: %d basic blocks and %d edges/basic block",
4078 pass, n_basic_blocks_for_fn (cfun),
4079 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun));
4080
4081 return true;
4082 }
4083
4084 /* If allocating memory for the dataflow bitmaps would take up too much
4085 storage it's better just to disable the optimization. */
4086 if ((n_basic_blocks_for_fn (cfun)
4087 * SBITMAP_SET_SIZE (max_reg_num ())
4088 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
4089 {
4090 warning (OPT_Wdisabled_optimization,
4091 "%s: %d basic blocks and %d registers",
4092 pass, n_basic_blocks_for_fn (cfun), max_reg_num ());
4093
4094 return true;
4095 }
4096
4097 return false;
4098 }
4099 \f
4100 /* All the passes implemented in this file. Each pass has its
4101 own gate and execute function, and at the end of the file a
4102 pass definition for passes.c.
4103
4104 We do not construct an accurate cfg in functions which call
4105 setjmp, so none of these passes runs if the function calls
4106 setjmp.
4107 FIXME: Should just handle setjmp via REG_SETJMP notes. */
4108
4109 static bool
4110 gate_rtl_pre (void)
4111 {
4112 return optimize > 0 && flag_gcse
4113 && !cfun->calls_setjmp
4114 && optimize_function_for_speed_p (cfun)
4115 && dbg_cnt (pre);
4116 }
4117
4118 static unsigned int
4119 execute_rtl_pre (void)
4120 {
4121 int changed;
4122 delete_unreachable_blocks ();
4123 df_analyze ();
4124 changed = one_pre_gcse_pass ();
4125 flag_rerun_cse_after_global_opts |= changed;
4126 if (changed)
4127 cleanup_cfg (0);
4128 return 0;
4129 }
4130
4131 static bool
4132 gate_rtl_hoist (void)
4133 {
4134 return optimize > 0 && flag_gcse
4135 && !cfun->calls_setjmp
4136 /* It does not make sense to run code hoisting unless we are optimizing
4137 for code size -- it rarely makes programs faster, and can make then
4138 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4139 && optimize_function_for_size_p (cfun)
4140 && dbg_cnt (hoist);
4141 }
4142
4143 static unsigned int
4144 execute_rtl_hoist (void)
4145 {
4146 int changed;
4147 delete_unreachable_blocks ();
4148 df_analyze ();
4149 changed = one_code_hoisting_pass ();
4150 flag_rerun_cse_after_global_opts |= changed;
4151 if (changed)
4152 cleanup_cfg (0);
4153 return 0;
4154 }
4155
4156 namespace {
4157
4158 const pass_data pass_data_rtl_pre =
4159 {
4160 RTL_PASS, /* type */
4161 "rtl pre", /* name */
4162 OPTGROUP_NONE, /* optinfo_flags */
4163 true, /* has_gate */
4164 true, /* has_execute */
4165 TV_PRE, /* tv_id */
4166 PROP_cfglayout, /* properties_required */
4167 0, /* properties_provided */
4168 0, /* properties_destroyed */
4169 0, /* todo_flags_start */
4170 ( TODO_df_finish | TODO_verify_rtl_sharing
4171 | TODO_verify_flow ), /* todo_flags_finish */
4172 };
4173
4174 class pass_rtl_pre : public rtl_opt_pass
4175 {
4176 public:
4177 pass_rtl_pre (gcc::context *ctxt)
4178 : rtl_opt_pass (pass_data_rtl_pre, ctxt)
4179 {}
4180
4181 /* opt_pass methods: */
4182 bool gate () { return gate_rtl_pre (); }
4183 unsigned int execute () { return execute_rtl_pre (); }
4184
4185 }; // class pass_rtl_pre
4186
4187 } // anon namespace
4188
4189 rtl_opt_pass *
4190 make_pass_rtl_pre (gcc::context *ctxt)
4191 {
4192 return new pass_rtl_pre (ctxt);
4193 }
4194
4195 namespace {
4196
4197 const pass_data pass_data_rtl_hoist =
4198 {
4199 RTL_PASS, /* type */
4200 "hoist", /* name */
4201 OPTGROUP_NONE, /* optinfo_flags */
4202 true, /* has_gate */
4203 true, /* has_execute */
4204 TV_HOIST, /* tv_id */
4205 PROP_cfglayout, /* properties_required */
4206 0, /* properties_provided */
4207 0, /* properties_destroyed */
4208 0, /* todo_flags_start */
4209 ( TODO_df_finish | TODO_verify_rtl_sharing
4210 | TODO_verify_flow ), /* todo_flags_finish */
4211 };
4212
4213 class pass_rtl_hoist : public rtl_opt_pass
4214 {
4215 public:
4216 pass_rtl_hoist (gcc::context *ctxt)
4217 : rtl_opt_pass (pass_data_rtl_hoist, ctxt)
4218 {}
4219
4220 /* opt_pass methods: */
4221 bool gate () { return gate_rtl_hoist (); }
4222 unsigned int execute () { return execute_rtl_hoist (); }
4223
4224 }; // class pass_rtl_hoist
4225
4226 } // anon namespace
4227
4228 rtl_opt_pass *
4229 make_pass_rtl_hoist (gcc::context *ctxt)
4230 {
4231 return new pass_rtl_hoist (ctxt);
4232 }
4233
4234 #include "gt-gcse.h"