Promote types of RTL expressions to more derived ones.
[gcc.git] / gcc / gcse.c
1 /* Partial redundancy elimination / Hoisting for RTL.
2 Copyright (C) 1997-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* TODO
21 - reordering of memory allocation and freeing to be more space efficient
22 - calc rough register pressure information and use the info to drive all
23 kinds of code motion (including code hoisting) in a unified way.
24 */
25
26 /* References searched while implementing this.
27
28 Compilers Principles, Techniques and Tools
29 Aho, Sethi, Ullman
30 Addison-Wesley, 1988
31
32 Global Optimization by Suppression of Partial Redundancies
33 E. Morel, C. Renvoise
34 communications of the acm, Vol. 22, Num. 2, Feb. 1979
35
36 A Portable Machine-Independent Global Optimizer - Design and Measurements
37 Frederick Chow
38 Stanford Ph.D. thesis, Dec. 1983
39
40 A Fast Algorithm for Code Movement Optimization
41 D.M. Dhamdhere
42 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
43
44 A Solution to a Problem with Morel and Renvoise's
45 Global Optimization by Suppression of Partial Redundancies
46 K-H Drechsler, M.P. Stadel
47 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
48
49 Practical Adaptation of the Global Optimization
50 Algorithm of Morel and Renvoise
51 D.M. Dhamdhere
52 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
53
54 Efficiently Computing Static Single Assignment Form and the Control
55 Dependence Graph
56 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
58
59 Lazy Code Motion
60 J. Knoop, O. Ruthing, B. Steffen
61 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
62
63 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
64 Time for Reducible Flow Control
65 Thomas Ball
66 ACM Letters on Programming Languages and Systems,
67 Vol. 2, Num. 1-4, Mar-Dec 1993
68
69 An Efficient Representation for Sparse Sets
70 Preston Briggs, Linda Torczon
71 ACM Letters on Programming Languages and Systems,
72 Vol. 2, Num. 1-4, Mar-Dec 1993
73
74 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75 K-H Drechsler, M.P. Stadel
76 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
77
78 Partial Dead Code Elimination
79 J. Knoop, O. Ruthing, B. Steffen
80 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
81
82 Effective Partial Redundancy Elimination
83 P. Briggs, K.D. Cooper
84 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
85
86 The Program Structure Tree: Computing Control Regions in Linear Time
87 R. Johnson, D. Pearson, K. Pingali
88 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
89
90 Optimal Code Motion: Theory and Practice
91 J. Knoop, O. Ruthing, B. Steffen
92 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
93
94 The power of assignment motion
95 J. Knoop, O. Ruthing, B. Steffen
96 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
97
98 Global code motion / global value numbering
99 C. Click
100 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
101
102 Value Driven Redundancy Elimination
103 L.T. Simpson
104 Rice University Ph.D. thesis, Apr. 1996
105
106 Value Numbering
107 L.T. Simpson
108 Massively Scalar Compiler Project, Rice University, Sep. 1996
109
110 High Performance Compilers for Parallel Computing
111 Michael Wolfe
112 Addison-Wesley, 1996
113
114 Advanced Compiler Design and Implementation
115 Steven Muchnick
116 Morgan Kaufmann, 1997
117
118 Building an Optimizing Compiler
119 Robert Morgan
120 Digital Press, 1998
121
122 People wishing to speed up the code here should read:
123 Elimination Algorithms for Data Flow Analysis
124 B.G. Ryder, M.C. Paull
125 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
126
127 How to Analyze Large Programs Efficiently and Informatively
128 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
130
131 People wishing to do something different can find various possibilities
132 in the above papers and elsewhere.
133 */
134
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "tm.h"
139 #include "diagnostic-core.h"
140 #include "toplev.h"
141 #include "hard-reg-set.h"
142 #include "rtl.h"
143 #include "hash-set.h"
144 #include "machmode.h"
145 #include "vec.h"
146 #include "double-int.h"
147 #include "input.h"
148 #include "alias.h"
149 #include "symtab.h"
150 #include "wide-int.h"
151 #include "inchash.h"
152 #include "tree.h"
153 #include "tm_p.h"
154 #include "regs.h"
155 #include "ira.h"
156 #include "flags.h"
157 #include "insn-config.h"
158 #include "recog.h"
159 #include "predict.h"
160 #include "function.h"
161 #include "dominance.h"
162 #include "cfg.h"
163 #include "cfgrtl.h"
164 #include "cfganal.h"
165 #include "lcm.h"
166 #include "cfgcleanup.h"
167 #include "basic-block.h"
168 #include "hashtab.h"
169 #include "statistics.h"
170 #include "real.h"
171 #include "fixed-value.h"
172 #include "expmed.h"
173 #include "dojump.h"
174 #include "explow.h"
175 #include "calls.h"
176 #include "emit-rtl.h"
177 #include "varasm.h"
178 #include "stmt.h"
179 #include "expr.h"
180 #include "except.h"
181 #include "ggc.h"
182 #include "params.h"
183 #include "cselib.h"
184 #include "intl.h"
185 #include "obstack.h"
186 #include "tree-pass.h"
187 #include "hash-table.h"
188 #include "df.h"
189 #include "dbgcnt.h"
190 #include "target.h"
191 #include "gcse.h"
192 #include "gcse-common.h"
193
194 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
195 are a superset of those done by classic GCSE.
196
197 Two passes of copy/constant propagation are done around PRE or hoisting
198 because the first one enables more GCSE and the second one helps to clean
199 up the copies that PRE and HOIST create. This is needed more for PRE than
200 for HOIST because code hoisting will try to use an existing register
201 containing the common subexpression rather than create a new one. This is
202 harder to do for PRE because of the code motion (which HOIST doesn't do).
203
204 Expressions we are interested in GCSE-ing are of the form
205 (set (pseudo-reg) (expression)).
206 Function want_to_gcse_p says what these are.
207
208 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
209 This allows PRE to hoist expressions that are expressed in multiple insns,
210 such as complex address calculations (e.g. for PIC code, or loads with a
211 high part and a low part).
212
213 PRE handles moving invariant expressions out of loops (by treating them as
214 partially redundant).
215
216 **********************
217
218 We used to support multiple passes but there are diminishing returns in
219 doing so. The first pass usually makes 90% of the changes that are doable.
220 A second pass can make a few more changes made possible by the first pass.
221 Experiments show any further passes don't make enough changes to justify
222 the expense.
223
224 A study of spec92 using an unlimited number of passes:
225 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
226 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
227 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
228
229 It was found doing copy propagation between each pass enables further
230 substitutions.
231
232 This study was done before expressions in REG_EQUAL notes were added as
233 candidate expressions for optimization, and before the GIMPLE optimizers
234 were added. Probably, multiple passes is even less efficient now than
235 at the time when the study was conducted.
236
237 PRE is quite expensive in complicated functions because the DFA can take
238 a while to converge. Hence we only perform one pass.
239
240 **********************
241
242 The steps for PRE are:
243
244 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
245
246 2) Perform the data flow analysis for PRE.
247
248 3) Delete the redundant instructions
249
250 4) Insert the required copies [if any] that make the partially
251 redundant instructions fully redundant.
252
253 5) For other reaching expressions, insert an instruction to copy the value
254 to a newly created pseudo that will reach the redundant instruction.
255
256 The deletion is done first so that when we do insertions we
257 know which pseudo reg to use.
258
259 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
260 argue it is not. The number of iterations for the algorithm to converge
261 is typically 2-4 so I don't view it as that expensive (relatively speaking).
262
263 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
264 we create. To make an expression reach the place where it's redundant,
265 the result of the expression is copied to a new register, and the redundant
266 expression is deleted by replacing it with this new register. Classic GCSE
267 doesn't have this problem as much as it computes the reaching defs of
268 each register in each block and thus can try to use an existing
269 register. */
270 \f
271 /* GCSE global vars. */
272
273 struct target_gcse default_target_gcse;
274 #if SWITCHABLE_TARGET
275 struct target_gcse *this_target_gcse = &default_target_gcse;
276 #endif
277
278 /* Set to non-zero if CSE should run after all GCSE optimizations are done. */
279 int flag_rerun_cse_after_global_opts;
280
281 /* An obstack for our working variables. */
282 static struct obstack gcse_obstack;
283
284 /* Hash table of expressions. */
285
286 struct gcse_expr
287 {
288 /* The expression. */
289 rtx expr;
290 /* Index in the available expression bitmaps. */
291 int bitmap_index;
292 /* Next entry with the same hash. */
293 struct gcse_expr *next_same_hash;
294 /* List of anticipatable occurrences in basic blocks in the function.
295 An "anticipatable occurrence" is one that is the first occurrence in the
296 basic block, the operands are not modified in the basic block prior
297 to the occurrence and the output is not used between the start of
298 the block and the occurrence. */
299 struct gcse_occr *antic_occr;
300 /* List of available occurrence in basic blocks in the function.
301 An "available occurrence" is one that is the last occurrence in the
302 basic block and the operands are not modified by following statements in
303 the basic block [including this insn]. */
304 struct gcse_occr *avail_occr;
305 /* Non-null if the computation is PRE redundant.
306 The value is the newly created pseudo-reg to record a copy of the
307 expression in all the places that reach the redundant copy. */
308 rtx reaching_reg;
309 /* Maximum distance in instructions this expression can travel.
310 We avoid moving simple expressions for more than a few instructions
311 to keep register pressure under control.
312 A value of "0" removes restrictions on how far the expression can
313 travel. */
314 int max_distance;
315 };
316
317 /* Occurrence of an expression.
318 There is one per basic block. If a pattern appears more than once the
319 last appearance is used [or first for anticipatable expressions]. */
320
321 struct gcse_occr
322 {
323 /* Next occurrence of this expression. */
324 struct gcse_occr *next;
325 /* The insn that computes the expression. */
326 rtx_insn *insn;
327 /* Nonzero if this [anticipatable] occurrence has been deleted. */
328 char deleted_p;
329 /* Nonzero if this [available] occurrence has been copied to
330 reaching_reg. */
331 /* ??? This is mutually exclusive with deleted_p, so they could share
332 the same byte. */
333 char copied_p;
334 };
335
336 typedef struct gcse_occr *occr_t;
337
338 /* Expression hash tables.
339 Each hash table is an array of buckets.
340 ??? It is known that if it were an array of entries, structure elements
341 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
342 not clear whether in the final analysis a sufficient amount of memory would
343 be saved as the size of the available expression bitmaps would be larger
344 [one could build a mapping table without holes afterwards though].
345 Someday I'll perform the computation and figure it out. */
346
347 struct gcse_hash_table_d
348 {
349 /* The table itself.
350 This is an array of `expr_hash_table_size' elements. */
351 struct gcse_expr **table;
352
353 /* Size of the hash table, in elements. */
354 unsigned int size;
355
356 /* Number of hash table elements. */
357 unsigned int n_elems;
358 };
359
360 /* Expression hash table. */
361 static struct gcse_hash_table_d expr_hash_table;
362
363 /* This is a list of expressions which are MEMs and will be used by load
364 or store motion.
365 Load motion tracks MEMs which aren't killed by anything except itself,
366 i.e. loads and stores to a single location.
367 We can then allow movement of these MEM refs with a little special
368 allowance. (all stores copy the same value to the reaching reg used
369 for the loads). This means all values used to store into memory must have
370 no side effects so we can re-issue the setter value. */
371
372 struct ls_expr
373 {
374 struct gcse_expr * expr; /* Gcse expression reference for LM. */
375 rtx pattern; /* Pattern of this mem. */
376 rtx pattern_regs; /* List of registers mentioned by the mem. */
377 rtx_insn_list *loads; /* INSN list of loads seen. */
378 rtx_insn_list *stores; /* INSN list of stores seen. */
379 struct ls_expr * next; /* Next in the list. */
380 int invalid; /* Invalid for some reason. */
381 int index; /* If it maps to a bitmap index. */
382 unsigned int hash_index; /* Index when in a hash table. */
383 rtx reaching_reg; /* Register to use when re-writing. */
384 };
385
386 /* Head of the list of load/store memory refs. */
387 static struct ls_expr * pre_ldst_mems = NULL;
388
389 struct pre_ldst_expr_hasher : typed_noop_remove <ls_expr>
390 {
391 typedef ls_expr *value_type;
392 typedef value_type compare_type;
393 static inline hashval_t hash (const ls_expr *);
394 static inline bool equal (const ls_expr *, const ls_expr *);
395 };
396
397 /* Hashtable helpers. */
398 inline hashval_t
399 pre_ldst_expr_hasher::hash (const ls_expr *x)
400 {
401 int do_not_record_p = 0;
402 return
403 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
404 }
405
406 static int expr_equiv_p (const_rtx, const_rtx);
407
408 inline bool
409 pre_ldst_expr_hasher::equal (const ls_expr *ptr1,
410 const ls_expr *ptr2)
411 {
412 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
413 }
414
415 /* Hashtable for the load/store memory refs. */
416 static hash_table<pre_ldst_expr_hasher> *pre_ldst_table;
417
418 /* Bitmap containing one bit for each register in the program.
419 Used when performing GCSE to track which registers have been set since
420 the start of the basic block. */
421 static regset reg_set_bitmap;
422
423 /* Array, indexed by basic block number for a list of insns which modify
424 memory within that block. */
425 static vec<rtx_insn *> *modify_mem_list;
426 static bitmap modify_mem_list_set;
427
428 /* This array parallels modify_mem_list, except that it stores MEMs
429 being set and their canonicalized memory addresses. */
430 static vec<modify_pair> *canon_modify_mem_list;
431
432 /* Bitmap indexed by block numbers to record which blocks contain
433 function calls. */
434 static bitmap blocks_with_calls;
435
436 /* Various variables for statistics gathering. */
437
438 /* Memory used in a pass.
439 This isn't intended to be absolutely precise. Its intent is only
440 to keep an eye on memory usage. */
441 static int bytes_used;
442
443 /* GCSE substitutions made. */
444 static int gcse_subst_count;
445 /* Number of copy instructions created. */
446 static int gcse_create_count;
447 \f
448 /* Doing code hoisting. */
449 static bool doing_code_hoisting_p = false;
450 \f
451 /* For available exprs */
452 static sbitmap *ae_kill;
453 \f
454 /* Data stored for each basic block. */
455 struct bb_data
456 {
457 /* Maximal register pressure inside basic block for given register class
458 (defined only for the pressure classes). */
459 int max_reg_pressure[N_REG_CLASSES];
460 /* Recorded register pressure of basic block before trying to hoist
461 an expression. Will be used to restore the register pressure
462 if the expression should not be hoisted. */
463 int old_pressure;
464 /* Recorded register live_in info of basic block during code hoisting
465 process. BACKUP is used to record live_in info before trying to
466 hoist an expression, and will be used to restore LIVE_IN if the
467 expression should not be hoisted. */
468 bitmap live_in, backup;
469 };
470
471 #define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
472
473 static basic_block curr_bb;
474
475 /* Current register pressure for each pressure class. */
476 static int curr_reg_pressure[N_REG_CLASSES];
477 \f
478
479 static void compute_can_copy (void);
480 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
481 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
482 static void *gcse_alloc (unsigned long);
483 static void alloc_gcse_mem (void);
484 static void free_gcse_mem (void);
485 static void hash_scan_insn (rtx_insn *, struct gcse_hash_table_d *);
486 static void hash_scan_set (rtx, rtx_insn *, struct gcse_hash_table_d *);
487 static void hash_scan_clobber (rtx, rtx_insn *, struct gcse_hash_table_d *);
488 static void hash_scan_call (rtx, rtx_insn *, struct gcse_hash_table_d *);
489 static int want_to_gcse_p (rtx, int *);
490 static int oprs_unchanged_p (const_rtx, const rtx_insn *, int);
491 static int oprs_anticipatable_p (const_rtx, const rtx_insn *);
492 static int oprs_available_p (const_rtx, const rtx_insn *);
493 static void insert_expr_in_table (rtx, machine_mode, rtx_insn *, int, int,
494 int, struct gcse_hash_table_d *);
495 static unsigned int hash_expr (const_rtx, machine_mode, int *, int);
496 static void record_last_reg_set_info (rtx_insn *, int);
497 static void record_last_mem_set_info (rtx_insn *);
498 static void record_last_set_info (rtx, const_rtx, void *);
499 static void compute_hash_table (struct gcse_hash_table_d *);
500 static void alloc_hash_table (struct gcse_hash_table_d *);
501 static void free_hash_table (struct gcse_hash_table_d *);
502 static void compute_hash_table_work (struct gcse_hash_table_d *);
503 static void dump_hash_table (FILE *, const char *, struct gcse_hash_table_d *);
504 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
505 struct gcse_hash_table_d *);
506 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
507 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
508 static void alloc_pre_mem (int, int);
509 static void free_pre_mem (void);
510 static struct edge_list *compute_pre_data (void);
511 static int pre_expr_reaches_here_p (basic_block, struct gcse_expr *,
512 basic_block);
513 static void insert_insn_end_basic_block (struct gcse_expr *, basic_block);
514 static void pre_insert_copy_insn (struct gcse_expr *, rtx_insn *);
515 static void pre_insert_copies (void);
516 static int pre_delete (void);
517 static int pre_gcse (struct edge_list *);
518 static int one_pre_gcse_pass (void);
519 static void add_label_notes (rtx, rtx_insn *);
520 static void alloc_code_hoist_mem (int, int);
521 static void free_code_hoist_mem (void);
522 static void compute_code_hoist_vbeinout (void);
523 static void compute_code_hoist_data (void);
524 static int should_hoist_expr_to_dom (basic_block, struct gcse_expr *, basic_block,
525 sbitmap, int, int *, enum reg_class,
526 int *, bitmap, rtx_insn *);
527 static int hoist_code (void);
528 static enum reg_class get_regno_pressure_class (int regno, int *nregs);
529 static enum reg_class get_pressure_class_and_nregs (rtx_insn *insn, int *nregs);
530 static int one_code_hoisting_pass (void);
531 static rtx_insn *process_insert_insn (struct gcse_expr *);
532 static int pre_edge_insert (struct edge_list *, struct gcse_expr **);
533 static int pre_expr_reaches_here_p_work (basic_block, struct gcse_expr *,
534 basic_block, char *);
535 static struct ls_expr * ldst_entry (rtx);
536 static void free_ldst_entry (struct ls_expr *);
537 static void free_ld_motion_mems (void);
538 static void print_ldst_list (FILE *);
539 static struct ls_expr * find_rtx_in_ldst (rtx);
540 static int simple_mem (const_rtx);
541 static void invalidate_any_buried_refs (rtx);
542 static void compute_ld_motion_mems (void);
543 static void trim_ld_motion_mems (void);
544 static void update_ld_motion_stores (struct gcse_expr *);
545 static void clear_modify_mem_tables (void);
546 static void free_modify_mem_tables (void);
547 static rtx gcse_emit_move_after (rtx, rtx, rtx_insn *);
548 static bool is_too_expensive (const char *);
549
550 #define GNEW(T) ((T *) gmalloc (sizeof (T)))
551 #define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
552
553 #define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
554 #define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
555
556 #define GNEWVAR(T, S) ((T *) gmalloc ((S)))
557 #define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
558
559 #define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
560 #define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
561 \f
562 /* Misc. utilities. */
563
564 #define can_copy \
565 (this_target_gcse->x_can_copy)
566 #define can_copy_init_p \
567 (this_target_gcse->x_can_copy_init_p)
568
569 /* Compute which modes support reg/reg copy operations. */
570
571 static void
572 compute_can_copy (void)
573 {
574 int i;
575 #ifndef AVOID_CCMODE_COPIES
576 rtx reg;
577 rtx_insn *insn;
578 #endif
579 memset (can_copy, 0, NUM_MACHINE_MODES);
580
581 start_sequence ();
582 for (i = 0; i < NUM_MACHINE_MODES; i++)
583 if (GET_MODE_CLASS (i) == MODE_CC)
584 {
585 #ifdef AVOID_CCMODE_COPIES
586 can_copy[i] = 0;
587 #else
588 reg = gen_rtx_REG ((machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
589 insn = emit_insn (gen_rtx_SET (reg, reg));
590 if (recog (PATTERN (insn), insn, NULL) >= 0)
591 can_copy[i] = 1;
592 #endif
593 }
594 else
595 can_copy[i] = 1;
596
597 end_sequence ();
598 }
599
600 /* Returns whether the mode supports reg/reg copy operations. */
601
602 bool
603 can_copy_p (machine_mode mode)
604 {
605 if (! can_copy_init_p)
606 {
607 compute_can_copy ();
608 can_copy_init_p = true;
609 }
610
611 return can_copy[mode] != 0;
612 }
613 \f
614 /* Cover function to xmalloc to record bytes allocated. */
615
616 static void *
617 gmalloc (size_t size)
618 {
619 bytes_used += size;
620 return xmalloc (size);
621 }
622
623 /* Cover function to xcalloc to record bytes allocated. */
624
625 static void *
626 gcalloc (size_t nelem, size_t elsize)
627 {
628 bytes_used += nelem * elsize;
629 return xcalloc (nelem, elsize);
630 }
631
632 /* Cover function to obstack_alloc. */
633
634 static void *
635 gcse_alloc (unsigned long size)
636 {
637 bytes_used += size;
638 return obstack_alloc (&gcse_obstack, size);
639 }
640
641 /* Allocate memory for the reg/memory set tracking tables.
642 This is called at the start of each pass. */
643
644 static void
645 alloc_gcse_mem (void)
646 {
647 /* Allocate vars to track sets of regs. */
648 reg_set_bitmap = ALLOC_REG_SET (NULL);
649
650 /* Allocate array to keep a list of insns which modify memory in each
651 basic block. The two typedefs are needed to work around the
652 pre-processor limitation with template types in macro arguments. */
653 typedef vec<rtx_insn *> vec_rtx_heap;
654 typedef vec<modify_pair> vec_modify_pair_heap;
655 modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block_for_fn (cfun));
656 canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap,
657 last_basic_block_for_fn (cfun));
658 modify_mem_list_set = BITMAP_ALLOC (NULL);
659 blocks_with_calls = BITMAP_ALLOC (NULL);
660 }
661
662 /* Free memory allocated by alloc_gcse_mem. */
663
664 static void
665 free_gcse_mem (void)
666 {
667 FREE_REG_SET (reg_set_bitmap);
668
669 free_modify_mem_tables ();
670 BITMAP_FREE (modify_mem_list_set);
671 BITMAP_FREE (blocks_with_calls);
672 }
673 \f
674 /* Compute the local properties of each recorded expression.
675
676 Local properties are those that are defined by the block, irrespective of
677 other blocks.
678
679 An expression is transparent in a block if its operands are not modified
680 in the block.
681
682 An expression is computed (locally available) in a block if it is computed
683 at least once and expression would contain the same value if the
684 computation was moved to the end of the block.
685
686 An expression is locally anticipatable in a block if it is computed at
687 least once and expression would contain the same value if the computation
688 was moved to the beginning of the block.
689
690 We call this routine for pre and code hoisting. They all compute
691 basically the same information and thus can easily share this code.
692
693 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
694 properties. If NULL, then it is not necessary to compute or record that
695 particular property.
696
697 TABLE controls which hash table to look at. */
698
699 static void
700 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
701 struct gcse_hash_table_d *table)
702 {
703 unsigned int i;
704
705 /* Initialize any bitmaps that were passed in. */
706 if (transp)
707 {
708 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
709 }
710
711 if (comp)
712 bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
713 if (antloc)
714 bitmap_vector_clear (antloc, last_basic_block_for_fn (cfun));
715
716 for (i = 0; i < table->size; i++)
717 {
718 struct gcse_expr *expr;
719
720 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
721 {
722 int indx = expr->bitmap_index;
723 struct gcse_occr *occr;
724
725 /* The expression is transparent in this block if it is not killed.
726 We start by assuming all are transparent [none are killed], and
727 then reset the bits for those that are. */
728 if (transp)
729 compute_transp (expr->expr, indx, transp,
730 blocks_with_calls,
731 modify_mem_list_set,
732 canon_modify_mem_list);
733
734 /* The occurrences recorded in antic_occr are exactly those that
735 we want to set to nonzero in ANTLOC. */
736 if (antloc)
737 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
738 {
739 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
740
741 /* While we're scanning the table, this is a good place to
742 initialize this. */
743 occr->deleted_p = 0;
744 }
745
746 /* The occurrences recorded in avail_occr are exactly those that
747 we want to set to nonzero in COMP. */
748 if (comp)
749 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
750 {
751 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
752
753 /* While we're scanning the table, this is a good place to
754 initialize this. */
755 occr->copied_p = 0;
756 }
757
758 /* While we're scanning the table, this is a good place to
759 initialize this. */
760 expr->reaching_reg = 0;
761 }
762 }
763 }
764 \f
765 /* Hash table support. */
766
767 struct reg_avail_info
768 {
769 basic_block last_bb;
770 int first_set;
771 int last_set;
772 };
773
774 static struct reg_avail_info *reg_avail_info;
775 static basic_block current_bb;
776
777 /* See whether X, the source of a set, is something we want to consider for
778 GCSE. */
779
780 static int
781 want_to_gcse_p (rtx x, int *max_distance_ptr)
782 {
783 #ifdef STACK_REGS
784 /* On register stack architectures, don't GCSE constants from the
785 constant pool, as the benefits are often swamped by the overhead
786 of shuffling the register stack between basic blocks. */
787 if (IS_STACK_MODE (GET_MODE (x)))
788 x = avoid_constant_pool_reference (x);
789 #endif
790
791 /* GCSE'ing constants:
792
793 We do not specifically distinguish between constant and non-constant
794 expressions in PRE and Hoist. We use set_src_cost below to limit
795 the maximum distance simple expressions can travel.
796
797 Nevertheless, constants are much easier to GCSE, and, hence,
798 it is easy to overdo the optimizations. Usually, excessive PRE and
799 Hoisting of constant leads to increased register pressure.
800
801 RA can deal with this by rematerialing some of the constants.
802 Therefore, it is important that the back-end generates sets of constants
803 in a way that allows reload rematerialize them under high register
804 pressure, i.e., a pseudo register with REG_EQUAL to constant
805 is set only once. Failing to do so will result in IRA/reload
806 spilling such constants under high register pressure instead of
807 rematerializing them. */
808
809 switch (GET_CODE (x))
810 {
811 case REG:
812 case SUBREG:
813 case CALL:
814 return 0;
815
816 CASE_CONST_ANY:
817 if (!doing_code_hoisting_p)
818 /* Do not PRE constants. */
819 return 0;
820
821 /* FALLTHRU */
822
823 default:
824 if (doing_code_hoisting_p)
825 /* PRE doesn't implement max_distance restriction. */
826 {
827 int cost;
828 int max_distance;
829
830 gcc_assert (!optimize_function_for_speed_p (cfun)
831 && optimize_function_for_size_p (cfun));
832 cost = set_src_cost (x, 0);
833
834 if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
835 {
836 max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
837 if (max_distance == 0)
838 return 0;
839
840 gcc_assert (max_distance > 0);
841 }
842 else
843 max_distance = 0;
844
845 if (max_distance_ptr)
846 *max_distance_ptr = max_distance;
847 }
848
849 return can_assign_to_reg_without_clobbers_p (x);
850 }
851 }
852
853 /* Used internally by can_assign_to_reg_without_clobbers_p. */
854
855 static GTY(()) rtx_insn *test_insn;
856
857 /* Return true if we can assign X to a pseudo register such that the
858 resulting insn does not result in clobbering a hard register as a
859 side-effect.
860
861 Additionally, if the target requires it, check that the resulting insn
862 can be copied. If it cannot, this means that X is special and probably
863 has hidden side-effects we don't want to mess with.
864
865 This function is typically used by code motion passes, to verify
866 that it is safe to insert an insn without worrying about clobbering
867 maybe live hard regs. */
868
869 bool
870 can_assign_to_reg_without_clobbers_p (rtx x)
871 {
872 int num_clobbers = 0;
873 int icode;
874 bool can_assign = false;
875
876 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
877 if (general_operand (x, GET_MODE (x)))
878 return 1;
879 else if (GET_MODE (x) == VOIDmode)
880 return 0;
881
882 /* Otherwise, check if we can make a valid insn from it. First initialize
883 our test insn if we haven't already. */
884 if (test_insn == 0)
885 {
886 test_insn
887 = make_insn_raw (gen_rtx_SET (gen_rtx_REG (word_mode,
888 FIRST_PSEUDO_REGISTER * 2),
889 const0_rtx));
890 SET_NEXT_INSN (test_insn) = SET_PREV_INSN (test_insn) = 0;
891 INSN_LOCATION (test_insn) = UNKNOWN_LOCATION;
892 }
893
894 /* Now make an insn like the one we would make when GCSE'ing and see if
895 valid. */
896 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
897 SET_SRC (PATTERN (test_insn)) = x;
898
899 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
900
901 /* If the test insn is valid and doesn't need clobbers, and the target also
902 has no objections, we're good. */
903 if (icode >= 0
904 && (num_clobbers == 0 || !added_clobbers_hard_reg_p (icode))
905 && ! (targetm.cannot_copy_insn_p
906 && targetm.cannot_copy_insn_p (test_insn)))
907 can_assign = true;
908
909 /* Make sure test_insn doesn't have any pointers into GC space. */
910 SET_SRC (PATTERN (test_insn)) = NULL_RTX;
911
912 return can_assign;
913 }
914
915 /* Return nonzero if the operands of expression X are unchanged from the
916 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
917 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
918
919 static int
920 oprs_unchanged_p (const_rtx x, const rtx_insn *insn, int avail_p)
921 {
922 int i, j;
923 enum rtx_code code;
924 const char *fmt;
925
926 if (x == 0)
927 return 1;
928
929 code = GET_CODE (x);
930 switch (code)
931 {
932 case REG:
933 {
934 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
935
936 if (info->last_bb != current_bb)
937 return 1;
938 if (avail_p)
939 return info->last_set < DF_INSN_LUID (insn);
940 else
941 return info->first_set >= DF_INSN_LUID (insn);
942 }
943
944 case MEM:
945 if (! flag_gcse_lm
946 || load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
947 x, avail_p))
948 return 0;
949 else
950 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
951
952 case PRE_DEC:
953 case PRE_INC:
954 case POST_DEC:
955 case POST_INC:
956 case PRE_MODIFY:
957 case POST_MODIFY:
958 return 0;
959
960 case PC:
961 case CC0: /*FIXME*/
962 case CONST:
963 CASE_CONST_ANY:
964 case SYMBOL_REF:
965 case LABEL_REF:
966 case ADDR_VEC:
967 case ADDR_DIFF_VEC:
968 return 1;
969
970 default:
971 break;
972 }
973
974 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
975 {
976 if (fmt[i] == 'e')
977 {
978 /* If we are about to do the last recursive call needed at this
979 level, change it into iteration. This function is called enough
980 to be worth it. */
981 if (i == 0)
982 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
983
984 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
985 return 0;
986 }
987 else if (fmt[i] == 'E')
988 for (j = 0; j < XVECLEN (x, i); j++)
989 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
990 return 0;
991 }
992
993 return 1;
994 }
995
996 /* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
997
998 struct mem_conflict_info
999 {
1000 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
1001 see if a memory store conflicts with this memory load. */
1002 const_rtx mem;
1003
1004 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
1005 references. */
1006 bool conflict;
1007 };
1008
1009 /* DEST is the output of an instruction. If it is a memory reference and
1010 possibly conflicts with the load found in DATA, then communicate this
1011 information back through DATA. */
1012
1013 static void
1014 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
1015 void *data)
1016 {
1017 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
1018
1019 while (GET_CODE (dest) == SUBREG
1020 || GET_CODE (dest) == ZERO_EXTRACT
1021 || GET_CODE (dest) == STRICT_LOW_PART)
1022 dest = XEXP (dest, 0);
1023
1024 /* If DEST is not a MEM, then it will not conflict with the load. Note
1025 that function calls are assumed to clobber memory, but are handled
1026 elsewhere. */
1027 if (! MEM_P (dest))
1028 return;
1029
1030 /* If we are setting a MEM in our list of specially recognized MEMs,
1031 don't mark as killed this time. */
1032 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
1033 {
1034 if (!find_rtx_in_ldst (dest))
1035 mci->conflict = true;
1036 return;
1037 }
1038
1039 if (true_dependence (dest, GET_MODE (dest), mci->mem))
1040 mci->conflict = true;
1041 }
1042
1043 /* Return nonzero if the expression in X (a memory reference) is killed
1044 in block BB before or after the insn with the LUID in UID_LIMIT.
1045 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1046 before UID_LIMIT.
1047
1048 To check the entire block, set UID_LIMIT to max_uid + 1 and
1049 AVAIL_P to 0. */
1050
1051 static int
1052 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1053 int avail_p)
1054 {
1055 vec<rtx_insn *> list = modify_mem_list[bb->index];
1056 rtx_insn *setter;
1057 unsigned ix;
1058
1059 /* If this is a readonly then we aren't going to be changing it. */
1060 if (MEM_READONLY_P (x))
1061 return 0;
1062
1063 FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
1064 {
1065 struct mem_conflict_info mci;
1066
1067 /* Ignore entries in the list that do not apply. */
1068 if ((avail_p
1069 && DF_INSN_LUID (setter) < uid_limit)
1070 || (! avail_p
1071 && DF_INSN_LUID (setter) > uid_limit))
1072 continue;
1073
1074 /* If SETTER is a call everything is clobbered. Note that calls
1075 to pure functions are never put on the list, so we need not
1076 worry about them. */
1077 if (CALL_P (setter))
1078 return 1;
1079
1080 /* SETTER must be an INSN of some kind that sets memory. Call
1081 note_stores to examine each hunk of memory that is modified. */
1082 mci.mem = x;
1083 mci.conflict = false;
1084 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1085 if (mci.conflict)
1086 return 1;
1087 }
1088 return 0;
1089 }
1090
1091 /* Return nonzero if the operands of expression X are unchanged from
1092 the start of INSN's basic block up to but not including INSN. */
1093
1094 static int
1095 oprs_anticipatable_p (const_rtx x, const rtx_insn *insn)
1096 {
1097 return oprs_unchanged_p (x, insn, 0);
1098 }
1099
1100 /* Return nonzero if the operands of expression X are unchanged from
1101 INSN to the end of INSN's basic block. */
1102
1103 static int
1104 oprs_available_p (const_rtx x, const rtx_insn *insn)
1105 {
1106 return oprs_unchanged_p (x, insn, 1);
1107 }
1108
1109 /* Hash expression X.
1110
1111 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1112 indicating if a volatile operand is found or if the expression contains
1113 something we don't want to insert in the table. HASH_TABLE_SIZE is
1114 the current size of the hash table to be probed. */
1115
1116 static unsigned int
1117 hash_expr (const_rtx x, machine_mode mode, int *do_not_record_p,
1118 int hash_table_size)
1119 {
1120 unsigned int hash;
1121
1122 *do_not_record_p = 0;
1123
1124 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
1125 return hash % hash_table_size;
1126 }
1127
1128 /* Return nonzero if exp1 is equivalent to exp2. */
1129
1130 static int
1131 expr_equiv_p (const_rtx x, const_rtx y)
1132 {
1133 return exp_equiv_p (x, y, 0, true);
1134 }
1135
1136 /* Insert expression X in INSN in the hash TABLE.
1137 If it is already present, record it as the last occurrence in INSN's
1138 basic block.
1139
1140 MODE is the mode of the value X is being stored into.
1141 It is only used if X is a CONST_INT.
1142
1143 ANTIC_P is nonzero if X is an anticipatable expression.
1144 AVAIL_P is nonzero if X is an available expression.
1145
1146 MAX_DISTANCE is the maximum distance in instructions this expression can
1147 be moved. */
1148
1149 static void
1150 insert_expr_in_table (rtx x, machine_mode mode, rtx_insn *insn,
1151 int antic_p,
1152 int avail_p, int max_distance, struct gcse_hash_table_d *table)
1153 {
1154 int found, do_not_record_p;
1155 unsigned int hash;
1156 struct gcse_expr *cur_expr, *last_expr = NULL;
1157 struct gcse_occr *antic_occr, *avail_occr;
1158
1159 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1160
1161 /* Do not insert expression in table if it contains volatile operands,
1162 or if hash_expr determines the expression is something we don't want
1163 to or can't handle. */
1164 if (do_not_record_p)
1165 return;
1166
1167 cur_expr = table->table[hash];
1168 found = 0;
1169
1170 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1171 {
1172 /* If the expression isn't found, save a pointer to the end of
1173 the list. */
1174 last_expr = cur_expr;
1175 cur_expr = cur_expr->next_same_hash;
1176 }
1177
1178 if (! found)
1179 {
1180 cur_expr = GOBNEW (struct gcse_expr);
1181 bytes_used += sizeof (struct gcse_expr);
1182 if (table->table[hash] == NULL)
1183 /* This is the first pattern that hashed to this index. */
1184 table->table[hash] = cur_expr;
1185 else
1186 /* Add EXPR to end of this hash chain. */
1187 last_expr->next_same_hash = cur_expr;
1188
1189 /* Set the fields of the expr element. */
1190 cur_expr->expr = x;
1191 cur_expr->bitmap_index = table->n_elems++;
1192 cur_expr->next_same_hash = NULL;
1193 cur_expr->antic_occr = NULL;
1194 cur_expr->avail_occr = NULL;
1195 gcc_assert (max_distance >= 0);
1196 cur_expr->max_distance = max_distance;
1197 }
1198 else
1199 gcc_assert (cur_expr->max_distance == max_distance);
1200
1201 /* Now record the occurrence(s). */
1202 if (antic_p)
1203 {
1204 antic_occr = cur_expr->antic_occr;
1205
1206 if (antic_occr
1207 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
1208 antic_occr = NULL;
1209
1210 if (antic_occr)
1211 /* Found another instance of the expression in the same basic block.
1212 Prefer the currently recorded one. We want the first one in the
1213 block and the block is scanned from start to end. */
1214 ; /* nothing to do */
1215 else
1216 {
1217 /* First occurrence of this expression in this basic block. */
1218 antic_occr = GOBNEW (struct gcse_occr);
1219 bytes_used += sizeof (struct gcse_occr);
1220 antic_occr->insn = insn;
1221 antic_occr->next = cur_expr->antic_occr;
1222 antic_occr->deleted_p = 0;
1223 cur_expr->antic_occr = antic_occr;
1224 }
1225 }
1226
1227 if (avail_p)
1228 {
1229 avail_occr = cur_expr->avail_occr;
1230
1231 if (avail_occr
1232 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
1233 {
1234 /* Found another instance of the expression in the same basic block.
1235 Prefer this occurrence to the currently recorded one. We want
1236 the last one in the block and the block is scanned from start
1237 to end. */
1238 avail_occr->insn = insn;
1239 }
1240 else
1241 {
1242 /* First occurrence of this expression in this basic block. */
1243 avail_occr = GOBNEW (struct gcse_occr);
1244 bytes_used += sizeof (struct gcse_occr);
1245 avail_occr->insn = insn;
1246 avail_occr->next = cur_expr->avail_occr;
1247 avail_occr->deleted_p = 0;
1248 cur_expr->avail_occr = avail_occr;
1249 }
1250 }
1251 }
1252
1253 /* Scan SET present in INSN and add an entry to the hash TABLE. */
1254
1255 static void
1256 hash_scan_set (rtx set, rtx_insn *insn, struct gcse_hash_table_d *table)
1257 {
1258 rtx src = SET_SRC (set);
1259 rtx dest = SET_DEST (set);
1260 rtx note;
1261
1262 if (GET_CODE (src) == CALL)
1263 hash_scan_call (src, insn, table);
1264
1265 else if (REG_P (dest))
1266 {
1267 unsigned int regno = REGNO (dest);
1268 int max_distance = 0;
1269
1270 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1271
1272 This allows us to do a single GCSE pass and still eliminate
1273 redundant constants, addresses or other expressions that are
1274 constructed with multiple instructions.
1275
1276 However, keep the original SRC if INSN is a simple reg-reg move.
1277 In this case, there will almost always be a REG_EQUAL note on the
1278 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1279 for INSN, we miss copy propagation opportunities and we perform the
1280 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1281 do more than one PRE GCSE pass.
1282
1283 Note that this does not impede profitable constant propagations. We
1284 "look through" reg-reg sets in lookup_avail_set. */
1285 note = find_reg_equal_equiv_note (insn);
1286 if (note != 0
1287 && REG_NOTE_KIND (note) == REG_EQUAL
1288 && !REG_P (src)
1289 && want_to_gcse_p (XEXP (note, 0), NULL))
1290 src = XEXP (note, 0), set = gen_rtx_SET (dest, src);
1291
1292 /* Only record sets of pseudo-regs in the hash table. */
1293 if (regno >= FIRST_PSEUDO_REGISTER
1294 /* Don't GCSE something if we can't do a reg/reg copy. */
1295 && can_copy_p (GET_MODE (dest))
1296 /* GCSE commonly inserts instruction after the insn. We can't
1297 do that easily for EH edges so disable GCSE on these for now. */
1298 /* ??? We can now easily create new EH landing pads at the
1299 gimple level, for splitting edges; there's no reason we
1300 can't do the same thing at the rtl level. */
1301 && !can_throw_internal (insn)
1302 /* Is SET_SRC something we want to gcse? */
1303 && want_to_gcse_p (src, &max_distance)
1304 /* Don't CSE a nop. */
1305 && ! set_noop_p (set)
1306 /* Don't GCSE if it has attached REG_EQUIV note.
1307 At this point this only function parameters should have
1308 REG_EQUIV notes and if the argument slot is used somewhere
1309 explicitly, it means address of parameter has been taken,
1310 so we should not extend the lifetime of the pseudo. */
1311 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1312 {
1313 /* An expression is not anticipatable if its operands are
1314 modified before this insn or if this is not the only SET in
1315 this insn. The latter condition does not have to mean that
1316 SRC itself is not anticipatable, but we just will not be
1317 able to handle code motion of insns with multiple sets. */
1318 int antic_p = oprs_anticipatable_p (src, insn)
1319 && !multiple_sets (insn);
1320 /* An expression is not available if its operands are
1321 subsequently modified, including this insn. It's also not
1322 available if this is a branch, because we can't insert
1323 a set after the branch. */
1324 int avail_p = (oprs_available_p (src, insn)
1325 && ! JUMP_P (insn));
1326
1327 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1328 max_distance, table);
1329 }
1330 }
1331 /* In case of store we want to consider the memory value as available in
1332 the REG stored in that memory. This makes it possible to remove
1333 redundant loads from due to stores to the same location. */
1334 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1335 {
1336 unsigned int regno = REGNO (src);
1337 int max_distance = 0;
1338
1339 /* Only record sets of pseudo-regs in the hash table. */
1340 if (regno >= FIRST_PSEUDO_REGISTER
1341 /* Don't GCSE something if we can't do a reg/reg copy. */
1342 && can_copy_p (GET_MODE (src))
1343 /* GCSE commonly inserts instruction after the insn. We can't
1344 do that easily for EH edges so disable GCSE on these for now. */
1345 && !can_throw_internal (insn)
1346 /* Is SET_DEST something we want to gcse? */
1347 && want_to_gcse_p (dest, &max_distance)
1348 /* Don't CSE a nop. */
1349 && ! set_noop_p (set)
1350 /* Don't GCSE if it has attached REG_EQUIV note.
1351 At this point this only function parameters should have
1352 REG_EQUIV notes and if the argument slot is used somewhere
1353 explicitly, it means address of parameter has been taken,
1354 so we should not extend the lifetime of the pseudo. */
1355 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1356 || ! MEM_P (XEXP (note, 0))))
1357 {
1358 /* Stores are never anticipatable. */
1359 int antic_p = 0;
1360 /* An expression is not available if its operands are
1361 subsequently modified, including this insn. It's also not
1362 available if this is a branch, because we can't insert
1363 a set after the branch. */
1364 int avail_p = oprs_available_p (dest, insn)
1365 && ! JUMP_P (insn);
1366
1367 /* Record the memory expression (DEST) in the hash table. */
1368 insert_expr_in_table (dest, GET_MODE (dest), insn,
1369 antic_p, avail_p, max_distance, table);
1370 }
1371 }
1372 }
1373
1374 static void
1375 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1376 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1377 {
1378 /* Currently nothing to do. */
1379 }
1380
1381 static void
1382 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1383 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1384 {
1385 /* Currently nothing to do. */
1386 }
1387
1388 /* Process INSN and add hash table entries as appropriate. */
1389
1390 static void
1391 hash_scan_insn (rtx_insn *insn, struct gcse_hash_table_d *table)
1392 {
1393 rtx pat = PATTERN (insn);
1394 int i;
1395
1396 /* Pick out the sets of INSN and for other forms of instructions record
1397 what's been modified. */
1398
1399 if (GET_CODE (pat) == SET)
1400 hash_scan_set (pat, insn, table);
1401
1402 else if (GET_CODE (pat) == CLOBBER)
1403 hash_scan_clobber (pat, insn, table);
1404
1405 else if (GET_CODE (pat) == CALL)
1406 hash_scan_call (pat, insn, table);
1407
1408 else if (GET_CODE (pat) == PARALLEL)
1409 for (i = 0; i < XVECLEN (pat, 0); i++)
1410 {
1411 rtx x = XVECEXP (pat, 0, i);
1412
1413 if (GET_CODE (x) == SET)
1414 hash_scan_set (x, insn, table);
1415 else if (GET_CODE (x) == CLOBBER)
1416 hash_scan_clobber (x, insn, table);
1417 else if (GET_CODE (x) == CALL)
1418 hash_scan_call (x, insn, table);
1419 }
1420 }
1421
1422 /* Dump the hash table TABLE to file FILE under the name NAME. */
1423
1424 static void
1425 dump_hash_table (FILE *file, const char *name, struct gcse_hash_table_d *table)
1426 {
1427 int i;
1428 /* Flattened out table, so it's printed in proper order. */
1429 struct gcse_expr **flat_table;
1430 unsigned int *hash_val;
1431 struct gcse_expr *expr;
1432
1433 flat_table = XCNEWVEC (struct gcse_expr *, table->n_elems);
1434 hash_val = XNEWVEC (unsigned int, table->n_elems);
1435
1436 for (i = 0; i < (int) table->size; i++)
1437 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1438 {
1439 flat_table[expr->bitmap_index] = expr;
1440 hash_val[expr->bitmap_index] = i;
1441 }
1442
1443 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1444 name, table->size, table->n_elems);
1445
1446 for (i = 0; i < (int) table->n_elems; i++)
1447 if (flat_table[i] != 0)
1448 {
1449 expr = flat_table[i];
1450 fprintf (file, "Index %d (hash value %d; max distance %d)\n ",
1451 expr->bitmap_index, hash_val[i], expr->max_distance);
1452 print_rtl (file, expr->expr);
1453 fprintf (file, "\n");
1454 }
1455
1456 fprintf (file, "\n");
1457
1458 free (flat_table);
1459 free (hash_val);
1460 }
1461
1462 /* Record register first/last/block set information for REGNO in INSN.
1463
1464 first_set records the first place in the block where the register
1465 is set and is used to compute "anticipatability".
1466
1467 last_set records the last place in the block where the register
1468 is set and is used to compute "availability".
1469
1470 last_bb records the block for which first_set and last_set are
1471 valid, as a quick test to invalidate them. */
1472
1473 static void
1474 record_last_reg_set_info (rtx_insn *insn, int regno)
1475 {
1476 struct reg_avail_info *info = &reg_avail_info[regno];
1477 int luid = DF_INSN_LUID (insn);
1478
1479 info->last_set = luid;
1480 if (info->last_bb != current_bb)
1481 {
1482 info->last_bb = current_bb;
1483 info->first_set = luid;
1484 }
1485 }
1486
1487 /* Record memory modification information for INSN. We do not actually care
1488 about the memory location(s) that are set, or even how they are set (consider
1489 a CALL_INSN). We merely need to record which insns modify memory. */
1490
1491 static void
1492 record_last_mem_set_info (rtx_insn *insn)
1493 {
1494 if (! flag_gcse_lm)
1495 return;
1496
1497 record_last_mem_set_info_common (insn, modify_mem_list,
1498 canon_modify_mem_list,
1499 modify_mem_list_set,
1500 blocks_with_calls);
1501 }
1502
1503 /* Called from compute_hash_table via note_stores to handle one
1504 SET or CLOBBER in an insn. DATA is really the instruction in which
1505 the SET is taking place. */
1506
1507 static void
1508 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1509 {
1510 rtx_insn *last_set_insn = (rtx_insn *) data;
1511
1512 if (GET_CODE (dest) == SUBREG)
1513 dest = SUBREG_REG (dest);
1514
1515 if (REG_P (dest))
1516 record_last_reg_set_info (last_set_insn, REGNO (dest));
1517 else if (MEM_P (dest)
1518 /* Ignore pushes, they clobber nothing. */
1519 && ! push_operand (dest, GET_MODE (dest)))
1520 record_last_mem_set_info (last_set_insn);
1521 }
1522
1523 /* Top level function to create an expression hash table.
1524
1525 Expression entries are placed in the hash table if
1526 - they are of the form (set (pseudo-reg) src),
1527 - src is something we want to perform GCSE on,
1528 - none of the operands are subsequently modified in the block
1529
1530 Currently src must be a pseudo-reg or a const_int.
1531
1532 TABLE is the table computed. */
1533
1534 static void
1535 compute_hash_table_work (struct gcse_hash_table_d *table)
1536 {
1537 int i;
1538
1539 /* re-Cache any INSN_LIST nodes we have allocated. */
1540 clear_modify_mem_tables ();
1541 /* Some working arrays used to track first and last set in each block. */
1542 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
1543
1544 for (i = 0; i < max_reg_num (); ++i)
1545 reg_avail_info[i].last_bb = NULL;
1546
1547 FOR_EACH_BB_FN (current_bb, cfun)
1548 {
1549 rtx_insn *insn;
1550 unsigned int regno;
1551
1552 /* First pass over the instructions records information used to
1553 determine when registers and memory are first and last set. */
1554 FOR_BB_INSNS (current_bb, insn)
1555 {
1556 if (!NONDEBUG_INSN_P (insn))
1557 continue;
1558
1559 if (CALL_P (insn))
1560 {
1561 hard_reg_set_iterator hrsi;
1562 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1563 0, regno, hrsi)
1564 record_last_reg_set_info (insn, regno);
1565
1566 if (! RTL_CONST_OR_PURE_CALL_P (insn))
1567 record_last_mem_set_info (insn);
1568 }
1569
1570 note_stores (PATTERN (insn), record_last_set_info, insn);
1571 }
1572
1573 /* The next pass builds the hash table. */
1574 FOR_BB_INSNS (current_bb, insn)
1575 if (NONDEBUG_INSN_P (insn))
1576 hash_scan_insn (insn, table);
1577 }
1578
1579 free (reg_avail_info);
1580 reg_avail_info = NULL;
1581 }
1582
1583 /* Allocate space for the set/expr hash TABLE.
1584 It is used to determine the number of buckets to use. */
1585
1586 static void
1587 alloc_hash_table (struct gcse_hash_table_d *table)
1588 {
1589 int n;
1590
1591 n = get_max_insn_count ();
1592
1593 table->size = n / 4;
1594 if (table->size < 11)
1595 table->size = 11;
1596
1597 /* Attempt to maintain efficient use of hash table.
1598 Making it an odd number is simplest for now.
1599 ??? Later take some measurements. */
1600 table->size |= 1;
1601 n = table->size * sizeof (struct gcse_expr *);
1602 table->table = GNEWVAR (struct gcse_expr *, n);
1603 }
1604
1605 /* Free things allocated by alloc_hash_table. */
1606
1607 static void
1608 free_hash_table (struct gcse_hash_table_d *table)
1609 {
1610 free (table->table);
1611 }
1612
1613 /* Compute the expression hash table TABLE. */
1614
1615 static void
1616 compute_hash_table (struct gcse_hash_table_d *table)
1617 {
1618 /* Initialize count of number of entries in hash table. */
1619 table->n_elems = 0;
1620 memset (table->table, 0, table->size * sizeof (struct gcse_expr *));
1621
1622 compute_hash_table_work (table);
1623 }
1624 \f
1625 /* Expression tracking support. */
1626
1627 /* Clear canon_modify_mem_list and modify_mem_list tables. */
1628 static void
1629 clear_modify_mem_tables (void)
1630 {
1631 unsigned i;
1632 bitmap_iterator bi;
1633
1634 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
1635 {
1636 modify_mem_list[i].release ();
1637 canon_modify_mem_list[i].release ();
1638 }
1639 bitmap_clear (modify_mem_list_set);
1640 bitmap_clear (blocks_with_calls);
1641 }
1642
1643 /* Release memory used by modify_mem_list_set. */
1644
1645 static void
1646 free_modify_mem_tables (void)
1647 {
1648 clear_modify_mem_tables ();
1649 free (modify_mem_list);
1650 free (canon_modify_mem_list);
1651 modify_mem_list = 0;
1652 canon_modify_mem_list = 0;
1653 }
1654 \f
1655 /* Compute PRE+LCM working variables. */
1656
1657 /* Local properties of expressions. */
1658
1659 /* Nonzero for expressions that are transparent in the block. */
1660 static sbitmap *transp;
1661
1662 /* Nonzero for expressions that are computed (available) in the block. */
1663 static sbitmap *comp;
1664
1665 /* Nonzero for expressions that are locally anticipatable in the block. */
1666 static sbitmap *antloc;
1667
1668 /* Nonzero for expressions where this block is an optimal computation
1669 point. */
1670 static sbitmap *pre_optimal;
1671
1672 /* Nonzero for expressions which are redundant in a particular block. */
1673 static sbitmap *pre_redundant;
1674
1675 /* Nonzero for expressions which should be inserted on a specific edge. */
1676 static sbitmap *pre_insert_map;
1677
1678 /* Nonzero for expressions which should be deleted in a specific block. */
1679 static sbitmap *pre_delete_map;
1680
1681 /* Allocate vars used for PRE analysis. */
1682
1683 static void
1684 alloc_pre_mem (int n_blocks, int n_exprs)
1685 {
1686 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1687 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1688 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
1689
1690 pre_optimal = NULL;
1691 pre_redundant = NULL;
1692 pre_insert_map = NULL;
1693 pre_delete_map = NULL;
1694 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
1695
1696 /* pre_insert and pre_delete are allocated later. */
1697 }
1698
1699 /* Free vars used for PRE analysis. */
1700
1701 static void
1702 free_pre_mem (void)
1703 {
1704 sbitmap_vector_free (transp);
1705 sbitmap_vector_free (comp);
1706
1707 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
1708
1709 if (pre_optimal)
1710 sbitmap_vector_free (pre_optimal);
1711 if (pre_redundant)
1712 sbitmap_vector_free (pre_redundant);
1713 if (pre_insert_map)
1714 sbitmap_vector_free (pre_insert_map);
1715 if (pre_delete_map)
1716 sbitmap_vector_free (pre_delete_map);
1717
1718 transp = comp = NULL;
1719 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
1720 }
1721
1722 /* Remove certain expressions from anticipatable and transparent
1723 sets of basic blocks that have incoming abnormal edge.
1724 For PRE remove potentially trapping expressions to avoid placing
1725 them on abnormal edges. For hoisting remove memory references that
1726 can be clobbered by calls. */
1727
1728 static void
1729 prune_expressions (bool pre_p)
1730 {
1731 sbitmap prune_exprs;
1732 struct gcse_expr *expr;
1733 unsigned int ui;
1734 basic_block bb;
1735
1736 prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
1737 bitmap_clear (prune_exprs);
1738 for (ui = 0; ui < expr_hash_table.size; ui++)
1739 {
1740 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
1741 {
1742 /* Note potentially trapping expressions. */
1743 if (may_trap_p (expr->expr))
1744 {
1745 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1746 continue;
1747 }
1748
1749 if (!pre_p && MEM_P (expr->expr))
1750 /* Note memory references that can be clobbered by a call.
1751 We do not split abnormal edges in hoisting, so would
1752 a memory reference get hoisted along an abnormal edge,
1753 it would be placed /before/ the call. Therefore, only
1754 constant memory references can be hoisted along abnormal
1755 edges. */
1756 {
1757 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
1758 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
1759 continue;
1760
1761 if (MEM_READONLY_P (expr->expr)
1762 && !MEM_VOLATILE_P (expr->expr)
1763 && MEM_NOTRAP_P (expr->expr))
1764 /* Constant memory reference, e.g., a PIC address. */
1765 continue;
1766
1767 /* ??? Optimally, we would use interprocedural alias
1768 analysis to determine if this mem is actually killed
1769 by this call. */
1770
1771 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1772 }
1773 }
1774 }
1775
1776 FOR_EACH_BB_FN (bb, cfun)
1777 {
1778 edge e;
1779 edge_iterator ei;
1780
1781 /* If the current block is the destination of an abnormal edge, we
1782 kill all trapping (for PRE) and memory (for hoist) expressions
1783 because we won't be able to properly place the instruction on
1784 the edge. So make them neither anticipatable nor transparent.
1785 This is fairly conservative.
1786
1787 ??? For hoisting it may be necessary to check for set-and-jump
1788 instructions here, not just for abnormal edges. The general problem
1789 is that when an expression cannot not be placed right at the end of
1790 a basic block we should account for any side-effects of a subsequent
1791 jump instructions that could clobber the expression. It would
1792 be best to implement this check along the lines of
1793 should_hoist_expr_to_dom where the target block is already known
1794 and, hence, there's no need to conservatively prune expressions on
1795 "intermediate" set-and-jump instructions. */
1796 FOR_EACH_EDGE (e, ei, bb->preds)
1797 if ((e->flags & EDGE_ABNORMAL)
1798 && (pre_p || CALL_P (BB_END (e->src))))
1799 {
1800 bitmap_and_compl (antloc[bb->index],
1801 antloc[bb->index], prune_exprs);
1802 bitmap_and_compl (transp[bb->index],
1803 transp[bb->index], prune_exprs);
1804 break;
1805 }
1806 }
1807
1808 sbitmap_free (prune_exprs);
1809 }
1810
1811 /* It may be necessary to insert a large number of insns on edges to
1812 make the existing occurrences of expressions fully redundant. This
1813 routine examines the set of insertions and deletions and if the ratio
1814 of insertions to deletions is too high for a particular expression, then
1815 the expression is removed from the insertion/deletion sets.
1816
1817 N_ELEMS is the number of elements in the hash table. */
1818
1819 static void
1820 prune_insertions_deletions (int n_elems)
1821 {
1822 sbitmap_iterator sbi;
1823 sbitmap prune_exprs;
1824
1825 /* We always use I to iterate over blocks/edges and J to iterate over
1826 expressions. */
1827 unsigned int i, j;
1828
1829 /* Counts for the number of times an expression needs to be inserted and
1830 number of times an expression can be removed as a result. */
1831 int *insertions = GCNEWVEC (int, n_elems);
1832 int *deletions = GCNEWVEC (int, n_elems);
1833
1834 /* Set of expressions which require too many insertions relative to
1835 the number of deletions achieved. We will prune these out of the
1836 insertion/deletion sets. */
1837 prune_exprs = sbitmap_alloc (n_elems);
1838 bitmap_clear (prune_exprs);
1839
1840 /* Iterate over the edges counting the number of times each expression
1841 needs to be inserted. */
1842 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1843 {
1844 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
1845 insertions[j]++;
1846 }
1847
1848 /* Similarly for deletions, but those occur in blocks rather than on
1849 edges. */
1850 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1851 {
1852 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
1853 deletions[j]++;
1854 }
1855
1856 /* Now that we have accurate counts, iterate over the elements in the
1857 hash table and see if any need too many insertions relative to the
1858 number of evaluations that can be removed. If so, mark them in
1859 PRUNE_EXPRS. */
1860 for (j = 0; j < (unsigned) n_elems; j++)
1861 if (deletions[j]
1862 && ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
1863 bitmap_set_bit (prune_exprs, j);
1864
1865 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
1866 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
1867 {
1868 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1869 bitmap_clear_bit (pre_insert_map[i], j);
1870
1871 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1872 bitmap_clear_bit (pre_delete_map[i], j);
1873 }
1874
1875 sbitmap_free (prune_exprs);
1876 free (insertions);
1877 free (deletions);
1878 }
1879
1880 /* Top level routine to do the dataflow analysis needed by PRE. */
1881
1882 static struct edge_list *
1883 compute_pre_data (void)
1884 {
1885 struct edge_list *edge_list;
1886 basic_block bb;
1887
1888 compute_local_properties (transp, comp, antloc, &expr_hash_table);
1889 prune_expressions (true);
1890 bitmap_vector_clear (ae_kill, last_basic_block_for_fn (cfun));
1891
1892 /* Compute ae_kill for each basic block using:
1893
1894 ~(TRANSP | COMP)
1895 */
1896
1897 FOR_EACH_BB_FN (bb, cfun)
1898 {
1899 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
1900 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
1901 }
1902
1903 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
1904 ae_kill, &pre_insert_map, &pre_delete_map);
1905 sbitmap_vector_free (antloc);
1906 antloc = NULL;
1907 sbitmap_vector_free (ae_kill);
1908 ae_kill = NULL;
1909
1910 prune_insertions_deletions (expr_hash_table.n_elems);
1911
1912 return edge_list;
1913 }
1914 \f
1915 /* PRE utilities */
1916
1917 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
1918 block BB.
1919
1920 VISITED is a pointer to a working buffer for tracking which BB's have
1921 been visited. It is NULL for the top-level call.
1922
1923 We treat reaching expressions that go through blocks containing the same
1924 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
1925 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
1926 2 as not reaching. The intent is to improve the probability of finding
1927 only one reaching expression and to reduce register lifetimes by picking
1928 the closest such expression. */
1929
1930 static int
1931 pre_expr_reaches_here_p_work (basic_block occr_bb, struct gcse_expr *expr,
1932 basic_block bb, char *visited)
1933 {
1934 edge pred;
1935 edge_iterator ei;
1936
1937 FOR_EACH_EDGE (pred, ei, bb->preds)
1938 {
1939 basic_block pred_bb = pred->src;
1940
1941 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1942 /* Has predecessor has already been visited? */
1943 || visited[pred_bb->index])
1944 ;/* Nothing to do. */
1945
1946 /* Does this predecessor generate this expression? */
1947 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
1948 {
1949 /* Is this the occurrence we're looking for?
1950 Note that there's only one generating occurrence per block
1951 so we just need to check the block number. */
1952 if (occr_bb == pred_bb)
1953 return 1;
1954
1955 visited[pred_bb->index] = 1;
1956 }
1957 /* Ignore this predecessor if it kills the expression. */
1958 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
1959 visited[pred_bb->index] = 1;
1960
1961 /* Neither gen nor kill. */
1962 else
1963 {
1964 visited[pred_bb->index] = 1;
1965 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
1966 return 1;
1967 }
1968 }
1969
1970 /* All paths have been checked. */
1971 return 0;
1972 }
1973
1974 /* The wrapper for pre_expr_reaches_here_work that ensures that any
1975 memory allocated for that function is returned. */
1976
1977 static int
1978 pre_expr_reaches_here_p (basic_block occr_bb, struct gcse_expr *expr, basic_block bb)
1979 {
1980 int rval;
1981 char *visited = XCNEWVEC (char, last_basic_block_for_fn (cfun));
1982
1983 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
1984
1985 free (visited);
1986 return rval;
1987 }
1988 \f
1989 /* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
1990
1991 static rtx_insn *
1992 process_insert_insn (struct gcse_expr *expr)
1993 {
1994 rtx reg = expr->reaching_reg;
1995 /* Copy the expression to make sure we don't have any sharing issues. */
1996 rtx exp = copy_rtx (expr->expr);
1997 rtx_insn *pat;
1998
1999 start_sequence ();
2000
2001 /* If the expression is something that's an operand, like a constant,
2002 just copy it to a register. */
2003 if (general_operand (exp, GET_MODE (reg)))
2004 emit_move_insn (reg, exp);
2005
2006 /* Otherwise, make a new insn to compute this expression and make sure the
2007 insn will be recognized (this also adds any needed CLOBBERs). */
2008 else
2009 {
2010 rtx_insn *insn = emit_insn (gen_rtx_SET (reg, exp));
2011
2012 if (insn_invalid_p (insn, false))
2013 gcc_unreachable ();
2014 }
2015
2016 pat = get_insns ();
2017 end_sequence ();
2018
2019 return pat;
2020 }
2021
2022 /* Add EXPR to the end of basic block BB.
2023
2024 This is used by both the PRE and code hoisting. */
2025
2026 static void
2027 insert_insn_end_basic_block (struct gcse_expr *expr, basic_block bb)
2028 {
2029 rtx_insn *insn = BB_END (bb);
2030 rtx_insn *new_insn;
2031 rtx reg = expr->reaching_reg;
2032 int regno = REGNO (reg);
2033 rtx_insn *pat, *pat_end;
2034
2035 pat = process_insert_insn (expr);
2036 gcc_assert (pat && INSN_P (pat));
2037
2038 pat_end = pat;
2039 while (NEXT_INSN (pat_end) != NULL_RTX)
2040 pat_end = NEXT_INSN (pat_end);
2041
2042 /* If the last insn is a jump, insert EXPR in front [taking care to
2043 handle cc0, etc. properly]. Similarly we need to care trapping
2044 instructions in presence of non-call exceptions. */
2045
2046 if (JUMP_P (insn)
2047 || (NONJUMP_INSN_P (insn)
2048 && (!single_succ_p (bb)
2049 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
2050 {
2051 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2052 if cc0 isn't set. */
2053 if (HAVE_cc0)
2054 {
2055 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2056 if (note)
2057 insn = safe_as_a <rtx_insn *> (XEXP (note, 0));
2058 else
2059 {
2060 rtx_insn *maybe_cc0_setter = prev_nonnote_insn (insn);
2061 if (maybe_cc0_setter
2062 && INSN_P (maybe_cc0_setter)
2063 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2064 insn = maybe_cc0_setter;
2065 }
2066 }
2067
2068 /* FIXME: What if something in cc0/jump uses value set in new insn? */
2069 new_insn = emit_insn_before_noloc (pat, insn, bb);
2070 }
2071
2072 /* Likewise if the last insn is a call, as will happen in the presence
2073 of exception handling. */
2074 else if (CALL_P (insn)
2075 && (!single_succ_p (bb)
2076 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
2077 {
2078 /* Keeping in mind targets with small register classes and parameters
2079 in registers, we search backward and place the instructions before
2080 the first parameter is loaded. Do this for everyone for consistency
2081 and a presumption that we'll get better code elsewhere as well. */
2082
2083 /* Since different machines initialize their parameter registers
2084 in different orders, assume nothing. Collect the set of all
2085 parameter registers. */
2086 insn = find_first_parameter_load (insn, BB_HEAD (bb));
2087
2088 /* If we found all the parameter loads, then we want to insert
2089 before the first parameter load.
2090
2091 If we did not find all the parameter loads, then we might have
2092 stopped on the head of the block, which could be a CODE_LABEL.
2093 If we inserted before the CODE_LABEL, then we would be putting
2094 the insn in the wrong basic block. In that case, put the insn
2095 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
2096 while (LABEL_P (insn)
2097 || NOTE_INSN_BASIC_BLOCK_P (insn))
2098 insn = NEXT_INSN (insn);
2099
2100 new_insn = emit_insn_before_noloc (pat, insn, bb);
2101 }
2102 else
2103 new_insn = emit_insn_after_noloc (pat, insn, bb);
2104
2105 while (1)
2106 {
2107 if (INSN_P (pat))
2108 add_label_notes (PATTERN (pat), new_insn);
2109 if (pat == pat_end)
2110 break;
2111 pat = NEXT_INSN (pat);
2112 }
2113
2114 gcse_create_count++;
2115
2116 if (dump_file)
2117 {
2118 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
2119 bb->index, INSN_UID (new_insn));
2120 fprintf (dump_file, "copying expression %d to reg %d\n",
2121 expr->bitmap_index, regno);
2122 }
2123 }
2124
2125 /* Insert partially redundant expressions on edges in the CFG to make
2126 the expressions fully redundant. */
2127
2128 static int
2129 pre_edge_insert (struct edge_list *edge_list, struct gcse_expr **index_map)
2130 {
2131 int e, i, j, num_edges, set_size, did_insert = 0;
2132 sbitmap *inserted;
2133
2134 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2135 if it reaches any of the deleted expressions. */
2136
2137 set_size = pre_insert_map[0]->size;
2138 num_edges = NUM_EDGES (edge_list);
2139 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
2140 bitmap_vector_clear (inserted, num_edges);
2141
2142 for (e = 0; e < num_edges; e++)
2143 {
2144 int indx;
2145 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
2146
2147 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
2148 {
2149 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
2150
2151 for (j = indx;
2152 insert && j < (int) expr_hash_table.n_elems;
2153 j++, insert >>= 1)
2154 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2155 {
2156 struct gcse_expr *expr = index_map[j];
2157 struct gcse_occr *occr;
2158
2159 /* Now look at each deleted occurrence of this expression. */
2160 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2161 {
2162 if (! occr->deleted_p)
2163 continue;
2164
2165 /* Insert this expression on this edge if it would
2166 reach the deleted occurrence in BB. */
2167 if (!bitmap_bit_p (inserted[e], j))
2168 {
2169 rtx_insn *insn;
2170 edge eg = INDEX_EDGE (edge_list, e);
2171
2172 /* We can't insert anything on an abnormal and
2173 critical edge, so we insert the insn at the end of
2174 the previous block. There are several alternatives
2175 detailed in Morgans book P277 (sec 10.5) for
2176 handling this situation. This one is easiest for
2177 now. */
2178
2179 if (eg->flags & EDGE_ABNORMAL)
2180 insert_insn_end_basic_block (index_map[j], bb);
2181 else
2182 {
2183 insn = process_insert_insn (index_map[j]);
2184 insert_insn_on_edge (insn, eg);
2185 }
2186
2187 if (dump_file)
2188 {
2189 fprintf (dump_file, "PRE: edge (%d,%d), ",
2190 bb->index,
2191 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
2192 fprintf (dump_file, "copy expression %d\n",
2193 expr->bitmap_index);
2194 }
2195
2196 update_ld_motion_stores (expr);
2197 bitmap_set_bit (inserted[e], j);
2198 did_insert = 1;
2199 gcse_create_count++;
2200 }
2201 }
2202 }
2203 }
2204 }
2205
2206 sbitmap_vector_free (inserted);
2207 return did_insert;
2208 }
2209
2210 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
2211 Given "old_reg <- expr" (INSN), instead of adding after it
2212 reaching_reg <- old_reg
2213 it's better to do the following:
2214 reaching_reg <- expr
2215 old_reg <- reaching_reg
2216 because this way copy propagation can discover additional PRE
2217 opportunities. But if this fails, we try the old way.
2218 When "expr" is a store, i.e.
2219 given "MEM <- old_reg", instead of adding after it
2220 reaching_reg <- old_reg
2221 it's better to add it before as follows:
2222 reaching_reg <- old_reg
2223 MEM <- reaching_reg. */
2224
2225 static void
2226 pre_insert_copy_insn (struct gcse_expr *expr, rtx_insn *insn)
2227 {
2228 rtx reg = expr->reaching_reg;
2229 int regno = REGNO (reg);
2230 int indx = expr->bitmap_index;
2231 rtx pat = PATTERN (insn);
2232 rtx set, first_set;
2233 rtx_insn *new_insn;
2234 rtx old_reg;
2235 int i;
2236
2237 /* This block matches the logic in hash_scan_insn. */
2238 switch (GET_CODE (pat))
2239 {
2240 case SET:
2241 set = pat;
2242 break;
2243
2244 case PARALLEL:
2245 /* Search through the parallel looking for the set whose
2246 source was the expression that we're interested in. */
2247 first_set = NULL_RTX;
2248 set = NULL_RTX;
2249 for (i = 0; i < XVECLEN (pat, 0); i++)
2250 {
2251 rtx x = XVECEXP (pat, 0, i);
2252 if (GET_CODE (x) == SET)
2253 {
2254 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2255 may not find an equivalent expression, but in this
2256 case the PARALLEL will have a single set. */
2257 if (first_set == NULL_RTX)
2258 first_set = x;
2259 if (expr_equiv_p (SET_SRC (x), expr->expr))
2260 {
2261 set = x;
2262 break;
2263 }
2264 }
2265 }
2266
2267 gcc_assert (first_set);
2268 if (set == NULL_RTX)
2269 set = first_set;
2270 break;
2271
2272 default:
2273 gcc_unreachable ();
2274 }
2275
2276 if (REG_P (SET_DEST (set)))
2277 {
2278 old_reg = SET_DEST (set);
2279 /* Check if we can modify the set destination in the original insn. */
2280 if (validate_change (insn, &SET_DEST (set), reg, 0))
2281 {
2282 new_insn = gen_move_insn (old_reg, reg);
2283 new_insn = emit_insn_after (new_insn, insn);
2284 }
2285 else
2286 {
2287 new_insn = gen_move_insn (reg, old_reg);
2288 new_insn = emit_insn_after (new_insn, insn);
2289 }
2290 }
2291 else /* This is possible only in case of a store to memory. */
2292 {
2293 old_reg = SET_SRC (set);
2294 new_insn = gen_move_insn (reg, old_reg);
2295
2296 /* Check if we can modify the set source in the original insn. */
2297 if (validate_change (insn, &SET_SRC (set), reg, 0))
2298 new_insn = emit_insn_before (new_insn, insn);
2299 else
2300 new_insn = emit_insn_after (new_insn, insn);
2301 }
2302
2303 gcse_create_count++;
2304
2305 if (dump_file)
2306 fprintf (dump_file,
2307 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
2308 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
2309 INSN_UID (insn), regno);
2310 }
2311
2312 /* Copy available expressions that reach the redundant expression
2313 to `reaching_reg'. */
2314
2315 static void
2316 pre_insert_copies (void)
2317 {
2318 unsigned int i, added_copy;
2319 struct gcse_expr *expr;
2320 struct gcse_occr *occr;
2321 struct gcse_occr *avail;
2322
2323 /* For each available expression in the table, copy the result to
2324 `reaching_reg' if the expression reaches a deleted one.
2325
2326 ??? The current algorithm is rather brute force.
2327 Need to do some profiling. */
2328
2329 for (i = 0; i < expr_hash_table.size; i++)
2330 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2331 {
2332 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2333 we don't want to insert a copy here because the expression may not
2334 really be redundant. So only insert an insn if the expression was
2335 deleted. This test also avoids further processing if the
2336 expression wasn't deleted anywhere. */
2337 if (expr->reaching_reg == NULL)
2338 continue;
2339
2340 /* Set when we add a copy for that expression. */
2341 added_copy = 0;
2342
2343 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2344 {
2345 if (! occr->deleted_p)
2346 continue;
2347
2348 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2349 {
2350 rtx_insn *insn = avail->insn;
2351
2352 /* No need to handle this one if handled already. */
2353 if (avail->copied_p)
2354 continue;
2355
2356 /* Don't handle this one if it's a redundant one. */
2357 if (insn->deleted ())
2358 continue;
2359
2360 /* Or if the expression doesn't reach the deleted one. */
2361 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
2362 expr,
2363 BLOCK_FOR_INSN (occr->insn)))
2364 continue;
2365
2366 added_copy = 1;
2367
2368 /* Copy the result of avail to reaching_reg. */
2369 pre_insert_copy_insn (expr, insn);
2370 avail->copied_p = 1;
2371 }
2372 }
2373
2374 if (added_copy)
2375 update_ld_motion_stores (expr);
2376 }
2377 }
2378
2379 struct set_data
2380 {
2381 rtx_insn *insn;
2382 const_rtx set;
2383 int nsets;
2384 };
2385
2386 /* Increment number of sets and record set in DATA. */
2387
2388 static void
2389 record_set_data (rtx dest, const_rtx set, void *data)
2390 {
2391 struct set_data *s = (struct set_data *)data;
2392
2393 if (GET_CODE (set) == SET)
2394 {
2395 /* We allow insns having multiple sets, where all but one are
2396 dead as single set insns. In the common case only a single
2397 set is present, so we want to avoid checking for REG_UNUSED
2398 notes unless necessary. */
2399 if (s->nsets == 1
2400 && find_reg_note (s->insn, REG_UNUSED, SET_DEST (s->set))
2401 && !side_effects_p (s->set))
2402 s->nsets = 0;
2403
2404 if (!s->nsets)
2405 {
2406 /* Record this set. */
2407 s->nsets += 1;
2408 s->set = set;
2409 }
2410 else if (!find_reg_note (s->insn, REG_UNUSED, dest)
2411 || side_effects_p (set))
2412 s->nsets += 1;
2413 }
2414 }
2415
2416 static const_rtx
2417 single_set_gcse (rtx_insn *insn)
2418 {
2419 struct set_data s;
2420 rtx pattern;
2421
2422 gcc_assert (INSN_P (insn));
2423
2424 /* Optimize common case. */
2425 pattern = PATTERN (insn);
2426 if (GET_CODE (pattern) == SET)
2427 return pattern;
2428
2429 s.insn = insn;
2430 s.nsets = 0;
2431 note_stores (pattern, record_set_data, &s);
2432
2433 /* Considered invariant insns have exactly one set. */
2434 gcc_assert (s.nsets == 1);
2435 return s.set;
2436 }
2437
2438 /* Emit move from SRC to DEST noting the equivalence with expression computed
2439 in INSN. */
2440
2441 static rtx
2442 gcse_emit_move_after (rtx dest, rtx src, rtx_insn *insn)
2443 {
2444 rtx_insn *new_rtx;
2445 const_rtx set = single_set_gcse (insn);
2446 rtx set2;
2447 rtx note;
2448 rtx eqv = NULL_RTX;
2449
2450 /* This should never fail since we're creating a reg->reg copy
2451 we've verified to be valid. */
2452
2453 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
2454
2455 /* Note the equivalence for local CSE pass. Take the note from the old
2456 set if there was one. Otherwise record the SET_SRC from the old set
2457 unless DEST is also an operand of the SET_SRC. */
2458 set2 = single_set (new_rtx);
2459 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
2460 return new_rtx;
2461 if ((note = find_reg_equal_equiv_note (insn)))
2462 eqv = XEXP (note, 0);
2463 else if (! REG_P (dest)
2464 || ! reg_mentioned_p (dest, SET_SRC (set)))
2465 eqv = SET_SRC (set);
2466
2467 if (eqv != NULL_RTX)
2468 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
2469
2470 return new_rtx;
2471 }
2472
2473 /* Delete redundant computations.
2474 Deletion is done by changing the insn to copy the `reaching_reg' of
2475 the expression into the result of the SET. It is left to later passes
2476 to propagate the copy or eliminate it.
2477
2478 Return nonzero if a change is made. */
2479
2480 static int
2481 pre_delete (void)
2482 {
2483 unsigned int i;
2484 int changed;
2485 struct gcse_expr *expr;
2486 struct gcse_occr *occr;
2487
2488 changed = 0;
2489 for (i = 0; i < expr_hash_table.size; i++)
2490 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2491 {
2492 int indx = expr->bitmap_index;
2493
2494 /* We only need to search antic_occr since we require ANTLOC != 0. */
2495 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2496 {
2497 rtx_insn *insn = occr->insn;
2498 rtx set;
2499 basic_block bb = BLOCK_FOR_INSN (insn);
2500
2501 /* We only delete insns that have a single_set. */
2502 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
2503 && (set = single_set (insn)) != 0
2504 && dbg_cnt (pre_insn))
2505 {
2506 /* Create a pseudo-reg to store the result of reaching
2507 expressions into. Get the mode for the new pseudo from
2508 the mode of the original destination pseudo. */
2509 if (expr->reaching_reg == NULL)
2510 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
2511
2512 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
2513 delete_insn (insn);
2514 occr->deleted_p = 1;
2515 changed = 1;
2516 gcse_subst_count++;
2517
2518 if (dump_file)
2519 {
2520 fprintf (dump_file,
2521 "PRE: redundant insn %d (expression %d) in ",
2522 INSN_UID (insn), indx);
2523 fprintf (dump_file, "bb %d, reaching reg is %d\n",
2524 bb->index, REGNO (expr->reaching_reg));
2525 }
2526 }
2527 }
2528 }
2529
2530 return changed;
2531 }
2532
2533 /* Perform GCSE optimizations using PRE.
2534 This is called by one_pre_gcse_pass after all the dataflow analysis
2535 has been done.
2536
2537 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2538 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2539 Compiler Design and Implementation.
2540
2541 ??? A new pseudo reg is created to hold the reaching expression. The nice
2542 thing about the classical approach is that it would try to use an existing
2543 reg. If the register can't be adequately optimized [i.e. we introduce
2544 reload problems], one could add a pass here to propagate the new register
2545 through the block.
2546
2547 ??? We don't handle single sets in PARALLELs because we're [currently] not
2548 able to copy the rest of the parallel when we insert copies to create full
2549 redundancies from partial redundancies. However, there's no reason why we
2550 can't handle PARALLELs in the cases where there are no partial
2551 redundancies. */
2552
2553 static int
2554 pre_gcse (struct edge_list *edge_list)
2555 {
2556 unsigned int i;
2557 int did_insert, changed;
2558 struct gcse_expr **index_map;
2559 struct gcse_expr *expr;
2560
2561 /* Compute a mapping from expression number (`bitmap_index') to
2562 hash table entry. */
2563
2564 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
2565 for (i = 0; i < expr_hash_table.size; i++)
2566 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2567 index_map[expr->bitmap_index] = expr;
2568
2569 /* Delete the redundant insns first so that
2570 - we know what register to use for the new insns and for the other
2571 ones with reaching expressions
2572 - we know which insns are redundant when we go to create copies */
2573
2574 changed = pre_delete ();
2575 did_insert = pre_edge_insert (edge_list, index_map);
2576
2577 /* In other places with reaching expressions, copy the expression to the
2578 specially allocated pseudo-reg that reaches the redundant expr. */
2579 pre_insert_copies ();
2580 if (did_insert)
2581 {
2582 commit_edge_insertions ();
2583 changed = 1;
2584 }
2585
2586 free (index_map);
2587 return changed;
2588 }
2589
2590 /* Top level routine to perform one PRE GCSE pass.
2591
2592 Return nonzero if a change was made. */
2593
2594 static int
2595 one_pre_gcse_pass (void)
2596 {
2597 int changed = 0;
2598
2599 gcse_subst_count = 0;
2600 gcse_create_count = 0;
2601
2602 /* Return if there's nothing to do, or it is too expensive. */
2603 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
2604 || is_too_expensive (_("PRE disabled")))
2605 return 0;
2606
2607 /* We need alias. */
2608 init_alias_analysis ();
2609
2610 bytes_used = 0;
2611 gcc_obstack_init (&gcse_obstack);
2612 alloc_gcse_mem ();
2613
2614 alloc_hash_table (&expr_hash_table);
2615 add_noreturn_fake_exit_edges ();
2616 if (flag_gcse_lm)
2617 compute_ld_motion_mems ();
2618
2619 compute_hash_table (&expr_hash_table);
2620 if (flag_gcse_lm)
2621 trim_ld_motion_mems ();
2622 if (dump_file)
2623 dump_hash_table (dump_file, "Expression", &expr_hash_table);
2624
2625 if (expr_hash_table.n_elems > 0)
2626 {
2627 struct edge_list *edge_list;
2628 alloc_pre_mem (last_basic_block_for_fn (cfun), expr_hash_table.n_elems);
2629 edge_list = compute_pre_data ();
2630 changed |= pre_gcse (edge_list);
2631 free_edge_list (edge_list);
2632 free_pre_mem ();
2633 }
2634
2635 if (flag_gcse_lm)
2636 free_ld_motion_mems ();
2637 remove_fake_exit_edges ();
2638 free_hash_table (&expr_hash_table);
2639
2640 free_gcse_mem ();
2641 obstack_free (&gcse_obstack, NULL);
2642
2643 /* We are finished with alias. */
2644 end_alias_analysis ();
2645
2646 if (dump_file)
2647 {
2648 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
2649 current_function_name (), n_basic_blocks_for_fn (cfun),
2650 bytes_used);
2651 fprintf (dump_file, "%d substs, %d insns created\n",
2652 gcse_subst_count, gcse_create_count);
2653 }
2654
2655 return changed;
2656 }
2657 \f
2658 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2659 to INSN. If such notes are added to an insn which references a
2660 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2661 that note, because the following loop optimization pass requires
2662 them. */
2663
2664 /* ??? If there was a jump optimization pass after gcse and before loop,
2665 then we would not need to do this here, because jump would add the
2666 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
2667
2668 static void
2669 add_label_notes (rtx x, rtx_insn *insn)
2670 {
2671 enum rtx_code code = GET_CODE (x);
2672 int i, j;
2673 const char *fmt;
2674
2675 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2676 {
2677 /* This code used to ignore labels that referred to dispatch tables to
2678 avoid flow generating (slightly) worse code.
2679
2680 We no longer ignore such label references (see LABEL_REF handling in
2681 mark_jump_label for additional information). */
2682
2683 /* There's no reason for current users to emit jump-insns with
2684 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2685 notes. */
2686 gcc_assert (!JUMP_P (insn));
2687 add_reg_note (insn, REG_LABEL_OPERAND, LABEL_REF_LABEL (x));
2688
2689 if (LABEL_P (LABEL_REF_LABEL (x)))
2690 LABEL_NUSES (LABEL_REF_LABEL (x))++;
2691
2692 return;
2693 }
2694
2695 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2696 {
2697 if (fmt[i] == 'e')
2698 add_label_notes (XEXP (x, i), insn);
2699 else if (fmt[i] == 'E')
2700 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2701 add_label_notes (XVECEXP (x, i, j), insn);
2702 }
2703 }
2704
2705 /* Code Hoisting variables and subroutines. */
2706
2707 /* Very busy expressions. */
2708 static sbitmap *hoist_vbein;
2709 static sbitmap *hoist_vbeout;
2710
2711 /* ??? We could compute post dominators and run this algorithm in
2712 reverse to perform tail merging, doing so would probably be
2713 more effective than the tail merging code in jump.c.
2714
2715 It's unclear if tail merging could be run in parallel with
2716 code hoisting. It would be nice. */
2717
2718 /* Allocate vars used for code hoisting analysis. */
2719
2720 static void
2721 alloc_code_hoist_mem (int n_blocks, int n_exprs)
2722 {
2723 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2724 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2725 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2726
2727 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2728 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
2729 }
2730
2731 /* Free vars used for code hoisting analysis. */
2732
2733 static void
2734 free_code_hoist_mem (void)
2735 {
2736 sbitmap_vector_free (antloc);
2737 sbitmap_vector_free (transp);
2738 sbitmap_vector_free (comp);
2739
2740 sbitmap_vector_free (hoist_vbein);
2741 sbitmap_vector_free (hoist_vbeout);
2742
2743 free_dominance_info (CDI_DOMINATORS);
2744 }
2745
2746 /* Compute the very busy expressions at entry/exit from each block.
2747
2748 An expression is very busy if all paths from a given point
2749 compute the expression. */
2750
2751 static void
2752 compute_code_hoist_vbeinout (void)
2753 {
2754 int changed, passes;
2755 basic_block bb;
2756
2757 bitmap_vector_clear (hoist_vbeout, last_basic_block_for_fn (cfun));
2758 bitmap_vector_clear (hoist_vbein, last_basic_block_for_fn (cfun));
2759
2760 passes = 0;
2761 changed = 1;
2762
2763 while (changed)
2764 {
2765 changed = 0;
2766
2767 /* We scan the blocks in the reverse order to speed up
2768 the convergence. */
2769 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2770 {
2771 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
2772 {
2773 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2774 hoist_vbein, bb);
2775
2776 /* Include expressions in VBEout that are calculated
2777 in BB and available at its end. */
2778 bitmap_ior (hoist_vbeout[bb->index],
2779 hoist_vbeout[bb->index], comp[bb->index]);
2780 }
2781
2782 changed |= bitmap_or_and (hoist_vbein[bb->index],
2783 antloc[bb->index],
2784 hoist_vbeout[bb->index],
2785 transp[bb->index]);
2786 }
2787
2788 passes++;
2789 }
2790
2791 if (dump_file)
2792 {
2793 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2794
2795 FOR_EACH_BB_FN (bb, cfun)
2796 {
2797 fprintf (dump_file, "vbein (%d): ", bb->index);
2798 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
2799 fprintf (dump_file, "vbeout(%d): ", bb->index);
2800 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
2801 }
2802 }
2803 }
2804
2805 /* Top level routine to do the dataflow analysis needed by code hoisting. */
2806
2807 static void
2808 compute_code_hoist_data (void)
2809 {
2810 compute_local_properties (transp, comp, antloc, &expr_hash_table);
2811 prune_expressions (false);
2812 compute_code_hoist_vbeinout ();
2813 calculate_dominance_info (CDI_DOMINATORS);
2814 if (dump_file)
2815 fprintf (dump_file, "\n");
2816 }
2817
2818 /* Update register pressure for BB when hoisting an expression from
2819 instruction FROM, if live ranges of inputs are shrunk. Also
2820 maintain live_in information if live range of register referred
2821 in FROM is shrunk.
2822
2823 Return 0 if register pressure doesn't change, otherwise return
2824 the number by which register pressure is decreased.
2825
2826 NOTE: Register pressure won't be increased in this function. */
2827
2828 static int
2829 update_bb_reg_pressure (basic_block bb, rtx_insn *from)
2830 {
2831 rtx dreg;
2832 rtx_insn *insn;
2833 basic_block succ_bb;
2834 df_ref use, op_ref;
2835 edge succ;
2836 edge_iterator ei;
2837 int decreased_pressure = 0;
2838 int nregs;
2839 enum reg_class pressure_class;
2840
2841 FOR_EACH_INSN_USE (use, from)
2842 {
2843 dreg = DF_REF_REAL_REG (use);
2844 /* The live range of register is shrunk only if it isn't:
2845 1. referred on any path from the end of this block to EXIT, or
2846 2. referred by insns other than FROM in this block. */
2847 FOR_EACH_EDGE (succ, ei, bb->succs)
2848 {
2849 succ_bb = succ->dest;
2850 if (succ_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2851 continue;
2852
2853 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2854 break;
2855 }
2856 if (succ != NULL)
2857 continue;
2858
2859 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2860 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2861 {
2862 if (!DF_REF_INSN_INFO (op_ref))
2863 continue;
2864
2865 insn = DF_REF_INSN (op_ref);
2866 if (BLOCK_FOR_INSN (insn) == bb
2867 && NONDEBUG_INSN_P (insn) && insn != from)
2868 break;
2869 }
2870
2871 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2872 /* Decrease register pressure and update live_in information for
2873 this block. */
2874 if (!op_ref && pressure_class != NO_REGS)
2875 {
2876 decreased_pressure += nregs;
2877 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2878 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2879 }
2880 }
2881 return decreased_pressure;
2882 }
2883
2884 /* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2885 flow graph, if it can reach BB unimpared. Stop the search if the
2886 expression would need to be moved more than DISTANCE instructions.
2887
2888 DISTANCE is the number of instructions through which EXPR can be
2889 hoisted up in flow graph.
2890
2891 BB_SIZE points to an array which contains the number of instructions
2892 for each basic block.
2893
2894 PRESSURE_CLASS and NREGS are register class and number of hard registers
2895 for storing EXPR.
2896
2897 HOISTED_BBS points to a bitmap indicating basic blocks through which
2898 EXPR is hoisted.
2899
2900 FROM is the instruction from which EXPR is hoisted.
2901
2902 It's unclear exactly what Muchnick meant by "unimpared". It seems
2903 to me that the expression must either be computed or transparent in
2904 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2905 would allow the expression to be hoisted out of loops, even if
2906 the expression wasn't a loop invariant.
2907
2908 Contrast this to reachability for PRE where an expression is
2909 considered reachable if *any* path reaches instead of *all*
2910 paths. */
2911
2912 static int
2913 should_hoist_expr_to_dom (basic_block expr_bb, struct gcse_expr *expr,
2914 basic_block bb, sbitmap visited, int distance,
2915 int *bb_size, enum reg_class pressure_class,
2916 int *nregs, bitmap hoisted_bbs, rtx_insn *from)
2917 {
2918 unsigned int i;
2919 edge pred;
2920 edge_iterator ei;
2921 sbitmap_iterator sbi;
2922 int visited_allocated_locally = 0;
2923 int decreased_pressure = 0;
2924
2925 if (flag_ira_hoist_pressure)
2926 {
2927 /* Record old information of basic block BB when it is visited
2928 at the first time. */
2929 if (!bitmap_bit_p (hoisted_bbs, bb->index))
2930 {
2931 struct bb_data *data = BB_DATA (bb);
2932 bitmap_copy (data->backup, data->live_in);
2933 data->old_pressure = data->max_reg_pressure[pressure_class];
2934 }
2935 decreased_pressure = update_bb_reg_pressure (bb, from);
2936 }
2937 /* Terminate the search if distance, for which EXPR is allowed to move,
2938 is exhausted. */
2939 if (distance > 0)
2940 {
2941 if (flag_ira_hoist_pressure)
2942 {
2943 /* Prefer to hoist EXPR if register pressure is decreased. */
2944 if (decreased_pressure > *nregs)
2945 distance += bb_size[bb->index];
2946 /* Let EXPR be hoisted through basic block at no cost if one
2947 of following conditions is satisfied:
2948
2949 1. The basic block has low register pressure.
2950 2. Register pressure won't be increases after hoisting EXPR.
2951
2952 Constant expressions is handled conservatively, because
2953 hoisting constant expression aggressively results in worse
2954 code. This decision is made by the observation of CSiBE
2955 on ARM target, while it has no obvious effect on other
2956 targets like x86, x86_64, mips and powerpc. */
2957 else if (CONST_INT_P (expr->expr)
2958 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
2959 >= ira_class_hard_regs_num[pressure_class]
2960 && decreased_pressure < *nregs))
2961 distance -= bb_size[bb->index];
2962 }
2963 else
2964 distance -= bb_size[bb->index];
2965
2966 if (distance <= 0)
2967 return 0;
2968 }
2969 else
2970 gcc_assert (distance == 0);
2971
2972 if (visited == NULL)
2973 {
2974 visited_allocated_locally = 1;
2975 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
2976 bitmap_clear (visited);
2977 }
2978
2979 FOR_EACH_EDGE (pred, ei, bb->preds)
2980 {
2981 basic_block pred_bb = pred->src;
2982
2983 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2984 break;
2985 else if (pred_bb == expr_bb)
2986 continue;
2987 else if (bitmap_bit_p (visited, pred_bb->index))
2988 continue;
2989 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
2990 break;
2991 /* Not killed. */
2992 else
2993 {
2994 bitmap_set_bit (visited, pred_bb->index);
2995 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
2996 visited, distance, bb_size,
2997 pressure_class, nregs,
2998 hoisted_bbs, from))
2999 break;
3000 }
3001 }
3002 if (visited_allocated_locally)
3003 {
3004 /* If EXPR can be hoisted to expr_bb, record basic blocks through
3005 which EXPR is hoisted in hoisted_bbs. */
3006 if (flag_ira_hoist_pressure && !pred)
3007 {
3008 /* Record the basic block from which EXPR is hoisted. */
3009 bitmap_set_bit (visited, bb->index);
3010 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
3011 bitmap_set_bit (hoisted_bbs, i);
3012 }
3013 sbitmap_free (visited);
3014 }
3015
3016 return (pred == NULL);
3017 }
3018 \f
3019 /* Find occurrence in BB. */
3020
3021 static struct gcse_occr *
3022 find_occr_in_bb (struct gcse_occr *occr, basic_block bb)
3023 {
3024 /* Find the right occurrence of this expression. */
3025 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
3026 occr = occr->next;
3027
3028 return occr;
3029 }
3030
3031 /* Actually perform code hoisting.
3032
3033 The code hoisting pass can hoist multiple computations of the same
3034 expression along dominated path to a dominating basic block, like
3035 from b2/b3 to b1 as depicted below:
3036
3037 b1 ------
3038 /\ |
3039 / \ |
3040 bx by distance
3041 / \ |
3042 / \ |
3043 b2 b3 ------
3044
3045 Unfortunately code hoisting generally extends the live range of an
3046 output pseudo register, which increases register pressure and hurts
3047 register allocation. To address this issue, an attribute MAX_DISTANCE
3048 is computed and attached to each expression. The attribute is computed
3049 from rtx cost of the corresponding expression and it's used to control
3050 how long the expression can be hoisted up in flow graph. As the
3051 expression is hoisted up in flow graph, GCC decreases its DISTANCE
3052 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3053 register pressure if live ranges of inputs are shrunk.
3054
3055 Option "-fira-hoist-pressure" implements register pressure directed
3056 hoist based on upper method. The rationale is:
3057 1. Calculate register pressure for each basic block by reusing IRA
3058 facility.
3059 2. When expression is hoisted through one basic block, GCC checks
3060 the change of live ranges for inputs/output. The basic block's
3061 register pressure will be increased because of extended live
3062 range of output. However, register pressure will be decreased
3063 if the live ranges of inputs are shrunk.
3064 3. After knowing how hoisting affects register pressure, GCC prefers
3065 to hoist the expression if it can decrease register pressure, by
3066 increasing DISTANCE of the corresponding expression.
3067 4. If hoisting the expression increases register pressure, GCC checks
3068 register pressure of the basic block and decrease DISTANCE only if
3069 the register pressure is high. In other words, expression will be
3070 hoisted through at no cost if the basic block has low register
3071 pressure.
3072 5. Update register pressure information for basic blocks through
3073 which expression is hoisted. */
3074
3075 static int
3076 hoist_code (void)
3077 {
3078 basic_block bb, dominated;
3079 vec<basic_block> dom_tree_walk;
3080 unsigned int dom_tree_walk_index;
3081 vec<basic_block> domby;
3082 unsigned int i, j, k;
3083 struct gcse_expr **index_map;
3084 struct gcse_expr *expr;
3085 int *to_bb_head;
3086 int *bb_size;
3087 int changed = 0;
3088 struct bb_data *data;
3089 /* Basic blocks that have occurrences reachable from BB. */
3090 bitmap from_bbs;
3091 /* Basic blocks through which expr is hoisted. */
3092 bitmap hoisted_bbs = NULL;
3093 bitmap_iterator bi;
3094
3095 /* Compute a mapping from expression number (`bitmap_index') to
3096 hash table entry. */
3097
3098 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
3099 for (i = 0; i < expr_hash_table.size; i++)
3100 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
3101 index_map[expr->bitmap_index] = expr;
3102
3103 /* Calculate sizes of basic blocks and note how far
3104 each instruction is from the start of its block. We then use this
3105 data to restrict distance an expression can travel. */
3106
3107 to_bb_head = XCNEWVEC (int, get_max_uid ());
3108 bb_size = XCNEWVEC (int, last_basic_block_for_fn (cfun));
3109
3110 FOR_EACH_BB_FN (bb, cfun)
3111 {
3112 rtx_insn *insn;
3113 int to_head;
3114
3115 to_head = 0;
3116 FOR_BB_INSNS (bb, insn)
3117 {
3118 /* Don't count debug instructions to avoid them affecting
3119 decision choices. */
3120 if (NONDEBUG_INSN_P (insn))
3121 to_bb_head[INSN_UID (insn)] = to_head++;
3122 }
3123
3124 bb_size[bb->index] = to_head;
3125 }
3126
3127 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) == 1
3128 && (EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
3129 == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb));
3130
3131 from_bbs = BITMAP_ALLOC (NULL);
3132 if (flag_ira_hoist_pressure)
3133 hoisted_bbs = BITMAP_ALLOC (NULL);
3134
3135 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
3136 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb);
3137
3138 /* Walk over each basic block looking for potentially hoistable
3139 expressions, nothing gets hoisted from the entry block. */
3140 FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
3141 {
3142 domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3143
3144 if (domby.length () == 0)
3145 continue;
3146
3147 /* Examine each expression that is very busy at the exit of this
3148 block. These are the potentially hoistable expressions. */
3149 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
3150 {
3151 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
3152 {
3153 int nregs = 0;
3154 enum reg_class pressure_class = NO_REGS;
3155 /* Current expression. */
3156 struct gcse_expr *expr = index_map[i];
3157 /* Number of occurrences of EXPR that can be hoisted to BB. */
3158 int hoistable = 0;
3159 /* Occurrences reachable from BB. */
3160 vec<occr_t> occrs_to_hoist = vNULL;
3161 /* We want to insert the expression into BB only once, so
3162 note when we've inserted it. */
3163 int insn_inserted_p;
3164 occr_t occr;
3165
3166 /* If an expression is computed in BB and is available at end of
3167 BB, hoist all occurrences dominated by BB to BB. */
3168 if (bitmap_bit_p (comp[bb->index], i))
3169 {
3170 occr = find_occr_in_bb (expr->antic_occr, bb);
3171
3172 if (occr)
3173 {
3174 /* An occurrence might've been already deleted
3175 while processing a dominator of BB. */
3176 if (!occr->deleted_p)
3177 {
3178 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3179 hoistable++;
3180 }
3181 }
3182 else
3183 hoistable++;
3184 }
3185
3186 /* We've found a potentially hoistable expression, now
3187 we look at every block BB dominates to see if it
3188 computes the expression. */
3189 FOR_EACH_VEC_ELT (domby, j, dominated)
3190 {
3191 int max_distance;
3192
3193 /* Ignore self dominance. */
3194 if (bb == dominated)
3195 continue;
3196 /* We've found a dominated block, now see if it computes
3197 the busy expression and whether or not moving that
3198 expression to the "beginning" of that block is safe. */
3199 if (!bitmap_bit_p (antloc[dominated->index], i))
3200 continue;
3201
3202 occr = find_occr_in_bb (expr->antic_occr, dominated);
3203 gcc_assert (occr);
3204
3205 /* An occurrence might've been already deleted
3206 while processing a dominator of BB. */
3207 if (occr->deleted_p)
3208 continue;
3209 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3210
3211 max_distance = expr->max_distance;
3212 if (max_distance > 0)
3213 /* Adjust MAX_DISTANCE to account for the fact that
3214 OCCR won't have to travel all of DOMINATED, but
3215 only part of it. */
3216 max_distance += (bb_size[dominated->index]
3217 - to_bb_head[INSN_UID (occr->insn)]);
3218
3219 pressure_class = get_pressure_class_and_nregs (occr->insn,
3220 &nregs);
3221
3222 /* Note if the expression should be hoisted from the dominated
3223 block to BB if it can reach DOMINATED unimpared.
3224
3225 Keep track of how many times this expression is hoistable
3226 from a dominated block into BB. */
3227 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3228 max_distance, bb_size,
3229 pressure_class, &nregs,
3230 hoisted_bbs, occr->insn))
3231 {
3232 hoistable++;
3233 occrs_to_hoist.safe_push (occr);
3234 bitmap_set_bit (from_bbs, dominated->index);
3235 }
3236 }
3237
3238 /* If we found more than one hoistable occurrence of this
3239 expression, then note it in the vector of expressions to
3240 hoist. It makes no sense to hoist things which are computed
3241 in only one BB, and doing so tends to pessimize register
3242 allocation. One could increase this value to try harder
3243 to avoid any possible code expansion due to register
3244 allocation issues; however experiments have shown that
3245 the vast majority of hoistable expressions are only movable
3246 from two successors, so raising this threshold is likely
3247 to nullify any benefit we get from code hoisting. */
3248 if (hoistable > 1 && dbg_cnt (hoist_insn))
3249 {
3250 /* If (hoistable != vec::length), then there is
3251 an occurrence of EXPR in BB itself. Don't waste
3252 time looking for LCA in this case. */
3253 if ((unsigned) hoistable == occrs_to_hoist.length ())
3254 {
3255 basic_block lca;
3256
3257 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3258 from_bbs);
3259 if (lca != bb)
3260 /* Punt, it's better to hoist these occurrences to
3261 LCA. */
3262 occrs_to_hoist.release ();
3263 }
3264 }
3265 else
3266 /* Punt, no point hoisting a single occurrence. */
3267 occrs_to_hoist.release ();
3268
3269 if (flag_ira_hoist_pressure
3270 && !occrs_to_hoist.is_empty ())
3271 {
3272 /* Increase register pressure of basic blocks to which
3273 expr is hoisted because of extended live range of
3274 output. */
3275 data = BB_DATA (bb);
3276 data->max_reg_pressure[pressure_class] += nregs;
3277 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3278 {
3279 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3280 data->max_reg_pressure[pressure_class] += nregs;
3281 }
3282 }
3283 else if (flag_ira_hoist_pressure)
3284 {
3285 /* Restore register pressure and live_in info for basic
3286 blocks recorded in hoisted_bbs when expr will not be
3287 hoisted. */
3288 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3289 {
3290 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3291 bitmap_copy (data->live_in, data->backup);
3292 data->max_reg_pressure[pressure_class]
3293 = data->old_pressure;
3294 }
3295 }
3296
3297 if (flag_ira_hoist_pressure)
3298 bitmap_clear (hoisted_bbs);
3299
3300 insn_inserted_p = 0;
3301
3302 /* Walk through occurrences of I'th expressions we want
3303 to hoist to BB and make the transformations. */
3304 FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
3305 {
3306 rtx_insn *insn;
3307 const_rtx set;
3308
3309 gcc_assert (!occr->deleted_p);
3310
3311 insn = occr->insn;
3312 set = single_set_gcse (insn);
3313
3314 /* Create a pseudo-reg to store the result of reaching
3315 expressions into. Get the mode for the new pseudo
3316 from the mode of the original destination pseudo.
3317
3318 It is important to use new pseudos whenever we
3319 emit a set. This will allow reload to use
3320 rematerialization for such registers. */
3321 if (!insn_inserted_p)
3322 expr->reaching_reg
3323 = gen_reg_rtx_and_attrs (SET_DEST (set));
3324
3325 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
3326 insn);
3327 delete_insn (insn);
3328 occr->deleted_p = 1;
3329 changed = 1;
3330 gcse_subst_count++;
3331
3332 if (!insn_inserted_p)
3333 {
3334 insert_insn_end_basic_block (expr, bb);
3335 insn_inserted_p = 1;
3336 }
3337 }
3338
3339 occrs_to_hoist.release ();
3340 bitmap_clear (from_bbs);
3341 }
3342 }
3343 domby.release ();
3344 }
3345
3346 dom_tree_walk.release ();
3347 BITMAP_FREE (from_bbs);
3348 if (flag_ira_hoist_pressure)
3349 BITMAP_FREE (hoisted_bbs);
3350
3351 free (bb_size);
3352 free (to_bb_head);
3353 free (index_map);
3354
3355 return changed;
3356 }
3357
3358 /* Return pressure class and number of needed hard registers (through
3359 *NREGS) of register REGNO. */
3360 static enum reg_class
3361 get_regno_pressure_class (int regno, int *nregs)
3362 {
3363 if (regno >= FIRST_PSEUDO_REGISTER)
3364 {
3365 enum reg_class pressure_class;
3366
3367 pressure_class = reg_allocno_class (regno);
3368 pressure_class = ira_pressure_class_translate[pressure_class];
3369 *nregs
3370 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3371 return pressure_class;
3372 }
3373 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3374 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3375 {
3376 *nregs = 1;
3377 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3378 }
3379 else
3380 {
3381 *nregs = 0;
3382 return NO_REGS;
3383 }
3384 }
3385
3386 /* Return pressure class and number of hard registers (through *NREGS)
3387 for destination of INSN. */
3388 static enum reg_class
3389 get_pressure_class_and_nregs (rtx_insn *insn, int *nregs)
3390 {
3391 rtx reg;
3392 enum reg_class pressure_class;
3393 const_rtx set = single_set_gcse (insn);
3394
3395 reg = SET_DEST (set);
3396 if (GET_CODE (reg) == SUBREG)
3397 reg = SUBREG_REG (reg);
3398 if (MEM_P (reg))
3399 {
3400 *nregs = 0;
3401 pressure_class = NO_REGS;
3402 }
3403 else
3404 {
3405 gcc_assert (REG_P (reg));
3406 pressure_class = reg_allocno_class (REGNO (reg));
3407 pressure_class = ira_pressure_class_translate[pressure_class];
3408 *nregs
3409 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3410 }
3411 return pressure_class;
3412 }
3413
3414 /* Increase (if INCR_P) or decrease current register pressure for
3415 register REGNO. */
3416 static void
3417 change_pressure (int regno, bool incr_p)
3418 {
3419 int nregs;
3420 enum reg_class pressure_class;
3421
3422 pressure_class = get_regno_pressure_class (regno, &nregs);
3423 if (! incr_p)
3424 curr_reg_pressure[pressure_class] -= nregs;
3425 else
3426 {
3427 curr_reg_pressure[pressure_class] += nregs;
3428 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3429 < curr_reg_pressure[pressure_class])
3430 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3431 = curr_reg_pressure[pressure_class];
3432 }
3433 }
3434
3435 /* Calculate register pressure for each basic block by walking insns
3436 from last to first. */
3437 static void
3438 calculate_bb_reg_pressure (void)
3439 {
3440 int i;
3441 unsigned int j;
3442 rtx_insn *insn;
3443 basic_block bb;
3444 bitmap curr_regs_live;
3445 bitmap_iterator bi;
3446
3447
3448 ira_setup_eliminable_regset ();
3449 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
3450 FOR_EACH_BB_FN (bb, cfun)
3451 {
3452 curr_bb = bb;
3453 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3454 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3455 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3456 bitmap_copy (curr_regs_live, df_get_live_out (bb));
3457 for (i = 0; i < ira_pressure_classes_num; i++)
3458 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3459 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3460 change_pressure (j, true);
3461
3462 FOR_BB_INSNS_REVERSE (bb, insn)
3463 {
3464 rtx dreg;
3465 int regno;
3466 df_ref def, use;
3467
3468 if (! NONDEBUG_INSN_P (insn))
3469 continue;
3470
3471 FOR_EACH_INSN_DEF (def, insn)
3472 {
3473 dreg = DF_REF_REAL_REG (def);
3474 gcc_assert (REG_P (dreg));
3475 regno = REGNO (dreg);
3476 if (!(DF_REF_FLAGS (def)
3477 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3478 {
3479 if (bitmap_clear_bit (curr_regs_live, regno))
3480 change_pressure (regno, false);
3481 }
3482 }
3483
3484 FOR_EACH_INSN_USE (use, insn)
3485 {
3486 dreg = DF_REF_REAL_REG (use);
3487 gcc_assert (REG_P (dreg));
3488 regno = REGNO (dreg);
3489 if (bitmap_set_bit (curr_regs_live, regno))
3490 change_pressure (regno, true);
3491 }
3492 }
3493 }
3494 BITMAP_FREE (curr_regs_live);
3495
3496 if (dump_file == NULL)
3497 return;
3498
3499 fprintf (dump_file, "\nRegister Pressure: \n");
3500 FOR_EACH_BB_FN (bb, cfun)
3501 {
3502 fprintf (dump_file, " Basic block %d: \n", bb->index);
3503 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3504 {
3505 enum reg_class pressure_class;
3506
3507 pressure_class = ira_pressure_classes[i];
3508 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3509 continue;
3510
3511 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3512 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3513 }
3514 }
3515 fprintf (dump_file, "\n");
3516 }
3517
3518 /* Top level routine to perform one code hoisting (aka unification) pass
3519
3520 Return nonzero if a change was made. */
3521
3522 static int
3523 one_code_hoisting_pass (void)
3524 {
3525 int changed = 0;
3526
3527 gcse_subst_count = 0;
3528 gcse_create_count = 0;
3529
3530 /* Return if there's nothing to do, or it is too expensive. */
3531 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
3532 || is_too_expensive (_("GCSE disabled")))
3533 return 0;
3534
3535 doing_code_hoisting_p = true;
3536
3537 /* Calculate register pressure for each basic block. */
3538 if (flag_ira_hoist_pressure)
3539 {
3540 regstat_init_n_sets_and_refs ();
3541 ira_set_pseudo_classes (false, dump_file);
3542 alloc_aux_for_blocks (sizeof (struct bb_data));
3543 calculate_bb_reg_pressure ();
3544 regstat_free_n_sets_and_refs ();
3545 }
3546
3547 /* We need alias. */
3548 init_alias_analysis ();
3549
3550 bytes_used = 0;
3551 gcc_obstack_init (&gcse_obstack);
3552 alloc_gcse_mem ();
3553
3554 alloc_hash_table (&expr_hash_table);
3555 compute_hash_table (&expr_hash_table);
3556 if (dump_file)
3557 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
3558
3559 if (expr_hash_table.n_elems > 0)
3560 {
3561 alloc_code_hoist_mem (last_basic_block_for_fn (cfun),
3562 expr_hash_table.n_elems);
3563 compute_code_hoist_data ();
3564 changed = hoist_code ();
3565 free_code_hoist_mem ();
3566 }
3567
3568 if (flag_ira_hoist_pressure)
3569 {
3570 free_aux_for_blocks ();
3571 free_reg_info ();
3572 }
3573 free_hash_table (&expr_hash_table);
3574 free_gcse_mem ();
3575 obstack_free (&gcse_obstack, NULL);
3576
3577 /* We are finished with alias. */
3578 end_alias_analysis ();
3579
3580 if (dump_file)
3581 {
3582 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
3583 current_function_name (), n_basic_blocks_for_fn (cfun),
3584 bytes_used);
3585 fprintf (dump_file, "%d substs, %d insns created\n",
3586 gcse_subst_count, gcse_create_count);
3587 }
3588
3589 doing_code_hoisting_p = false;
3590
3591 return changed;
3592 }
3593 \f
3594 /* Here we provide the things required to do store motion towards the exit.
3595 In order for this to be effective, gcse also needed to be taught how to
3596 move a load when it is killed only by a store to itself.
3597
3598 int i;
3599 float a[10];
3600
3601 void foo(float scale)
3602 {
3603 for (i=0; i<10; i++)
3604 a[i] *= scale;
3605 }
3606
3607 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3608 the load out since its live around the loop, and stored at the bottom
3609 of the loop.
3610
3611 The 'Load Motion' referred to and implemented in this file is
3612 an enhancement to gcse which when using edge based LCM, recognizes
3613 this situation and allows gcse to move the load out of the loop.
3614
3615 Once gcse has hoisted the load, store motion can then push this
3616 load towards the exit, and we end up with no loads or stores of 'i'
3617 in the loop. */
3618
3619 /* This will search the ldst list for a matching expression. If it
3620 doesn't find one, we create one and initialize it. */
3621
3622 static struct ls_expr *
3623 ldst_entry (rtx x)
3624 {
3625 int do_not_record_p = 0;
3626 struct ls_expr * ptr;
3627 unsigned int hash;
3628 ls_expr **slot;
3629 struct ls_expr e;
3630
3631 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3632 NULL, /*have_reg_qty=*/false);
3633
3634 e.pattern = x;
3635 slot = pre_ldst_table->find_slot_with_hash (&e, hash, INSERT);
3636 if (*slot)
3637 return *slot;
3638
3639 ptr = XNEW (struct ls_expr);
3640
3641 ptr->next = pre_ldst_mems;
3642 ptr->expr = NULL;
3643 ptr->pattern = x;
3644 ptr->pattern_regs = NULL_RTX;
3645 ptr->loads = NULL;
3646 ptr->stores = NULL;
3647 ptr->reaching_reg = NULL_RTX;
3648 ptr->invalid = 0;
3649 ptr->index = 0;
3650 ptr->hash_index = hash;
3651 pre_ldst_mems = ptr;
3652 *slot = ptr;
3653
3654 return ptr;
3655 }
3656
3657 /* Free up an individual ldst entry. */
3658
3659 static void
3660 free_ldst_entry (struct ls_expr * ptr)
3661 {
3662 free_INSN_LIST_list (& ptr->loads);
3663 free_INSN_LIST_list (& ptr->stores);
3664
3665 free (ptr);
3666 }
3667
3668 /* Free up all memory associated with the ldst list. */
3669
3670 static void
3671 free_ld_motion_mems (void)
3672 {
3673 delete pre_ldst_table;
3674 pre_ldst_table = NULL;
3675
3676 while (pre_ldst_mems)
3677 {
3678 struct ls_expr * tmp = pre_ldst_mems;
3679
3680 pre_ldst_mems = pre_ldst_mems->next;
3681
3682 free_ldst_entry (tmp);
3683 }
3684
3685 pre_ldst_mems = NULL;
3686 }
3687
3688 /* Dump debugging info about the ldst list. */
3689
3690 static void
3691 print_ldst_list (FILE * file)
3692 {
3693 struct ls_expr * ptr;
3694
3695 fprintf (file, "LDST list: \n");
3696
3697 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
3698 {
3699 fprintf (file, " Pattern (%3d): ", ptr->index);
3700
3701 print_rtl (file, ptr->pattern);
3702
3703 fprintf (file, "\n Loads : ");
3704
3705 if (ptr->loads)
3706 print_rtl (file, ptr->loads);
3707 else
3708 fprintf (file, "(nil)");
3709
3710 fprintf (file, "\n Stores : ");
3711
3712 if (ptr->stores)
3713 print_rtl (file, ptr->stores);
3714 else
3715 fprintf (file, "(nil)");
3716
3717 fprintf (file, "\n\n");
3718 }
3719
3720 fprintf (file, "\n");
3721 }
3722
3723 /* Returns 1 if X is in the list of ldst only expressions. */
3724
3725 static struct ls_expr *
3726 find_rtx_in_ldst (rtx x)
3727 {
3728 struct ls_expr e;
3729 ls_expr **slot;
3730 if (!pre_ldst_table)
3731 return NULL;
3732 e.pattern = x;
3733 slot = pre_ldst_table->find_slot (&e, NO_INSERT);
3734 if (!slot || (*slot)->invalid)
3735 return NULL;
3736 return *slot;
3737 }
3738 \f
3739 /* Load Motion for loads which only kill themselves. */
3740
3741 /* Return true if x, a MEM, is a simple access with no side effects.
3742 These are the types of loads we consider for the ld_motion list,
3743 otherwise we let the usual aliasing take care of it. */
3744
3745 static int
3746 simple_mem (const_rtx x)
3747 {
3748 if (MEM_VOLATILE_P (x))
3749 return 0;
3750
3751 if (GET_MODE (x) == BLKmode)
3752 return 0;
3753
3754 /* If we are handling exceptions, we must be careful with memory references
3755 that may trap. If we are not, the behavior is undefined, so we may just
3756 continue. */
3757 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
3758 return 0;
3759
3760 if (side_effects_p (x))
3761 return 0;
3762
3763 /* Do not consider function arguments passed on stack. */
3764 if (reg_mentioned_p (stack_pointer_rtx, x))
3765 return 0;
3766
3767 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3768 return 0;
3769
3770 return 1;
3771 }
3772
3773 /* Make sure there isn't a buried reference in this pattern anywhere.
3774 If there is, invalidate the entry for it since we're not capable
3775 of fixing it up just yet.. We have to be sure we know about ALL
3776 loads since the aliasing code will allow all entries in the
3777 ld_motion list to not-alias itself. If we miss a load, we will get
3778 the wrong value since gcse might common it and we won't know to
3779 fix it up. */
3780
3781 static void
3782 invalidate_any_buried_refs (rtx x)
3783 {
3784 const char * fmt;
3785 int i, j;
3786 struct ls_expr * ptr;
3787
3788 /* Invalidate it in the list. */
3789 if (MEM_P (x) && simple_mem (x))
3790 {
3791 ptr = ldst_entry (x);
3792 ptr->invalid = 1;
3793 }
3794
3795 /* Recursively process the insn. */
3796 fmt = GET_RTX_FORMAT (GET_CODE (x));
3797
3798 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3799 {
3800 if (fmt[i] == 'e')
3801 invalidate_any_buried_refs (XEXP (x, i));
3802 else if (fmt[i] == 'E')
3803 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3804 invalidate_any_buried_refs (XVECEXP (x, i, j));
3805 }
3806 }
3807
3808 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3809 being defined as MEM loads and stores to symbols, with no side effects
3810 and no registers in the expression. For a MEM destination, we also
3811 check that the insn is still valid if we replace the destination with a
3812 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3813 which don't match this criteria, they are invalidated and trimmed out
3814 later. */
3815
3816 static void
3817 compute_ld_motion_mems (void)
3818 {
3819 struct ls_expr * ptr;
3820 basic_block bb;
3821 rtx_insn *insn;
3822
3823 pre_ldst_mems = NULL;
3824 pre_ldst_table = new hash_table<pre_ldst_expr_hasher> (13);
3825
3826 FOR_EACH_BB_FN (bb, cfun)
3827 {
3828 FOR_BB_INSNS (bb, insn)
3829 {
3830 if (NONDEBUG_INSN_P (insn))
3831 {
3832 if (GET_CODE (PATTERN (insn)) == SET)
3833 {
3834 rtx src = SET_SRC (PATTERN (insn));
3835 rtx dest = SET_DEST (PATTERN (insn));
3836 rtx note = find_reg_equal_equiv_note (insn);
3837 rtx src_eq;
3838
3839 /* Check for a simple LOAD... */
3840 if (MEM_P (src) && simple_mem (src))
3841 {
3842 ptr = ldst_entry (src);
3843 if (REG_P (dest))
3844 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
3845 else
3846 ptr->invalid = 1;
3847 }
3848 else
3849 {
3850 /* Make sure there isn't a buried load somewhere. */
3851 invalidate_any_buried_refs (src);
3852 }
3853
3854 if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL)
3855 src_eq = XEXP (note, 0);
3856 else
3857 src_eq = NULL_RTX;
3858
3859 if (src_eq != NULL_RTX
3860 && !(MEM_P (src_eq) && simple_mem (src_eq)))
3861 invalidate_any_buried_refs (src_eq);
3862
3863 /* Check for stores. Don't worry about aliased ones, they
3864 will block any movement we might do later. We only care
3865 about this exact pattern since those are the only
3866 circumstance that we will ignore the aliasing info. */
3867 if (MEM_P (dest) && simple_mem (dest))
3868 {
3869 ptr = ldst_entry (dest);
3870
3871 if (! MEM_P (src)
3872 && GET_CODE (src) != ASM_OPERANDS
3873 /* Check for REG manually since want_to_gcse_p
3874 returns 0 for all REGs. */
3875 && can_assign_to_reg_without_clobbers_p (src))
3876 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
3877 else
3878 ptr->invalid = 1;
3879 }
3880 }
3881 else
3882 invalidate_any_buried_refs (PATTERN (insn));
3883 }
3884 }
3885 }
3886 }
3887
3888 /* Remove any references that have been either invalidated or are not in the
3889 expression list for pre gcse. */
3890
3891 static void
3892 trim_ld_motion_mems (void)
3893 {
3894 struct ls_expr * * last = & pre_ldst_mems;
3895 struct ls_expr * ptr = pre_ldst_mems;
3896
3897 while (ptr != NULL)
3898 {
3899 struct gcse_expr * expr;
3900
3901 /* Delete if entry has been made invalid. */
3902 if (! ptr->invalid)
3903 {
3904 /* Delete if we cannot find this mem in the expression list. */
3905 unsigned int hash = ptr->hash_index % expr_hash_table.size;
3906
3907 for (expr = expr_hash_table.table[hash];
3908 expr != NULL;
3909 expr = expr->next_same_hash)
3910 if (expr_equiv_p (expr->expr, ptr->pattern))
3911 break;
3912 }
3913 else
3914 expr = (struct gcse_expr *) 0;
3915
3916 if (expr)
3917 {
3918 /* Set the expression field if we are keeping it. */
3919 ptr->expr = expr;
3920 last = & ptr->next;
3921 ptr = ptr->next;
3922 }
3923 else
3924 {
3925 *last = ptr->next;
3926 pre_ldst_table->remove_elt_with_hash (ptr, ptr->hash_index);
3927 free_ldst_entry (ptr);
3928 ptr = * last;
3929 }
3930 }
3931
3932 /* Show the world what we've found. */
3933 if (dump_file && pre_ldst_mems != NULL)
3934 print_ldst_list (dump_file);
3935 }
3936
3937 /* This routine will take an expression which we are replacing with
3938 a reaching register, and update any stores that are needed if
3939 that expression is in the ld_motion list. Stores are updated by
3940 copying their SRC to the reaching register, and then storing
3941 the reaching register into the store location. These keeps the
3942 correct value in the reaching register for the loads. */
3943
3944 static void
3945 update_ld_motion_stores (struct gcse_expr * expr)
3946 {
3947 struct ls_expr * mem_ptr;
3948
3949 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
3950 {
3951 /* We can try to find just the REACHED stores, but is shouldn't
3952 matter to set the reaching reg everywhere... some might be
3953 dead and should be eliminated later. */
3954
3955 /* We replace (set mem expr) with (set reg expr) (set mem reg)
3956 where reg is the reaching reg used in the load. We checked in
3957 compute_ld_motion_mems that we can replace (set mem expr) with
3958 (set reg expr) in that insn. */
3959 rtx list = mem_ptr->stores;
3960
3961 for ( ; list != NULL_RTX; list = XEXP (list, 1))
3962 {
3963 rtx_insn *insn = as_a <rtx_insn *> (XEXP (list, 0));
3964 rtx pat = PATTERN (insn);
3965 rtx src = SET_SRC (pat);
3966 rtx reg = expr->reaching_reg;
3967 rtx copy;
3968
3969 /* If we've already copied it, continue. */
3970 if (expr->reaching_reg == src)
3971 continue;
3972
3973 if (dump_file)
3974 {
3975 fprintf (dump_file, "PRE: store updated with reaching reg ");
3976 print_rtl (dump_file, reg);
3977 fprintf (dump_file, ":\n ");
3978 print_inline_rtx (dump_file, insn, 8);
3979 fprintf (dump_file, "\n");
3980 }
3981
3982 copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
3983 emit_insn_before (copy, insn);
3984 SET_SRC (pat) = reg;
3985 df_insn_rescan (insn);
3986
3987 /* un-recognize this pattern since it's probably different now. */
3988 INSN_CODE (insn) = -1;
3989 gcse_create_count++;
3990 }
3991 }
3992 }
3993 \f
3994 /* Return true if the graph is too expensive to optimize. PASS is the
3995 optimization about to be performed. */
3996
3997 static bool
3998 is_too_expensive (const char *pass)
3999 {
4000 /* Trying to perform global optimizations on flow graphs which have
4001 a high connectivity will take a long time and is unlikely to be
4002 particularly useful.
4003
4004 In normal circumstances a cfg should have about twice as many
4005 edges as blocks. But we do not want to punish small functions
4006 which have a couple switch statements. Rather than simply
4007 threshold the number of blocks, uses something with a more
4008 graceful degradation. */
4009 if (n_edges_for_fn (cfun) > 20000 + n_basic_blocks_for_fn (cfun) * 4)
4010 {
4011 warning (OPT_Wdisabled_optimization,
4012 "%s: %d basic blocks and %d edges/basic block",
4013 pass, n_basic_blocks_for_fn (cfun),
4014 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun));
4015
4016 return true;
4017 }
4018
4019 /* If allocating memory for the dataflow bitmaps would take up too much
4020 storage it's better just to disable the optimization. */
4021 if ((n_basic_blocks_for_fn (cfun)
4022 * SBITMAP_SET_SIZE (max_reg_num ())
4023 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
4024 {
4025 warning (OPT_Wdisabled_optimization,
4026 "%s: %d basic blocks and %d registers",
4027 pass, n_basic_blocks_for_fn (cfun), max_reg_num ());
4028
4029 return true;
4030 }
4031
4032 return false;
4033 }
4034 \f
4035 static unsigned int
4036 execute_rtl_pre (void)
4037 {
4038 int changed;
4039 delete_unreachable_blocks ();
4040 df_analyze ();
4041 changed = one_pre_gcse_pass ();
4042 flag_rerun_cse_after_global_opts |= changed;
4043 if (changed)
4044 cleanup_cfg (0);
4045 return 0;
4046 }
4047
4048 static unsigned int
4049 execute_rtl_hoist (void)
4050 {
4051 int changed;
4052 delete_unreachable_blocks ();
4053 df_analyze ();
4054 changed = one_code_hoisting_pass ();
4055 flag_rerun_cse_after_global_opts |= changed;
4056 if (changed)
4057 cleanup_cfg (0);
4058 return 0;
4059 }
4060
4061 namespace {
4062
4063 const pass_data pass_data_rtl_pre =
4064 {
4065 RTL_PASS, /* type */
4066 "rtl pre", /* name */
4067 OPTGROUP_NONE, /* optinfo_flags */
4068 TV_PRE, /* tv_id */
4069 PROP_cfglayout, /* properties_required */
4070 0, /* properties_provided */
4071 0, /* properties_destroyed */
4072 0, /* todo_flags_start */
4073 TODO_df_finish, /* todo_flags_finish */
4074 };
4075
4076 class pass_rtl_pre : public rtl_opt_pass
4077 {
4078 public:
4079 pass_rtl_pre (gcc::context *ctxt)
4080 : rtl_opt_pass (pass_data_rtl_pre, ctxt)
4081 {}
4082
4083 /* opt_pass methods: */
4084 virtual bool gate (function *);
4085 virtual unsigned int execute (function *) { return execute_rtl_pre (); }
4086
4087 }; // class pass_rtl_pre
4088
4089 /* We do not construct an accurate cfg in functions which call
4090 setjmp, so none of these passes runs if the function calls
4091 setjmp.
4092 FIXME: Should just handle setjmp via REG_SETJMP notes. */
4093
4094 bool
4095 pass_rtl_pre::gate (function *fun)
4096 {
4097 return optimize > 0 && flag_gcse
4098 && !fun->calls_setjmp
4099 && optimize_function_for_speed_p (fun)
4100 && dbg_cnt (pre);
4101 }
4102
4103 } // anon namespace
4104
4105 rtl_opt_pass *
4106 make_pass_rtl_pre (gcc::context *ctxt)
4107 {
4108 return new pass_rtl_pre (ctxt);
4109 }
4110
4111 namespace {
4112
4113 const pass_data pass_data_rtl_hoist =
4114 {
4115 RTL_PASS, /* type */
4116 "hoist", /* name */
4117 OPTGROUP_NONE, /* optinfo_flags */
4118 TV_HOIST, /* tv_id */
4119 PROP_cfglayout, /* properties_required */
4120 0, /* properties_provided */
4121 0, /* properties_destroyed */
4122 0, /* todo_flags_start */
4123 TODO_df_finish, /* todo_flags_finish */
4124 };
4125
4126 class pass_rtl_hoist : public rtl_opt_pass
4127 {
4128 public:
4129 pass_rtl_hoist (gcc::context *ctxt)
4130 : rtl_opt_pass (pass_data_rtl_hoist, ctxt)
4131 {}
4132
4133 /* opt_pass methods: */
4134 virtual bool gate (function *);
4135 virtual unsigned int execute (function *) { return execute_rtl_hoist (); }
4136
4137 }; // class pass_rtl_hoist
4138
4139 bool
4140 pass_rtl_hoist::gate (function *)
4141 {
4142 return optimize > 0 && flag_gcse
4143 && !cfun->calls_setjmp
4144 /* It does not make sense to run code hoisting unless we are optimizing
4145 for code size -- it rarely makes programs faster, and can make then
4146 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4147 && optimize_function_for_size_p (cfun)
4148 && dbg_cnt (hoist);
4149 }
4150
4151 } // anon namespace
4152
4153 rtl_opt_pass *
4154 make_pass_rtl_hoist (gcc::context *ctxt)
4155 {
4156 return new pass_rtl_hoist (ctxt);
4157 }
4158
4159 /* Reset all state within gcse.c so that we can rerun the compiler
4160 within the same process. For use by toplev::finalize. */
4161
4162 void
4163 gcse_c_finalize (void)
4164 {
4165 test_insn = NULL;
4166 }
4167
4168 #include "gt-gcse.h"