This patch rewrites the old VEC macro-based interface into a new one based on the...
[gcc.git] / gcc / gcse.c
1 /* Partial redundancy elimination / Hoisting for RTL.
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
3 2006, 2007, 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* TODO
22 - reordering of memory allocation and freeing to be more space efficient
23 - calc rough register pressure information and use the info to drive all
24 kinds of code motion (including code hoisting) in a unified way.
25 */
26
27 /* References searched while implementing this.
28
29 Compilers Principles, Techniques and Tools
30 Aho, Sethi, Ullman
31 Addison-Wesley, 1988
32
33 Global Optimization by Suppression of Partial Redundancies
34 E. Morel, C. Renvoise
35 communications of the acm, Vol. 22, Num. 2, Feb. 1979
36
37 A Portable Machine-Independent Global Optimizer - Design and Measurements
38 Frederick Chow
39 Stanford Ph.D. thesis, Dec. 1983
40
41 A Fast Algorithm for Code Movement Optimization
42 D.M. Dhamdhere
43 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
44
45 A Solution to a Problem with Morel and Renvoise's
46 Global Optimization by Suppression of Partial Redundancies
47 K-H Drechsler, M.P. Stadel
48 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
49
50 Practical Adaptation of the Global Optimization
51 Algorithm of Morel and Renvoise
52 D.M. Dhamdhere
53 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
54
55 Efficiently Computing Static Single Assignment Form and the Control
56 Dependence Graph
57 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
58 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
59
60 Lazy Code Motion
61 J. Knoop, O. Ruthing, B. Steffen
62 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
63
64 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
65 Time for Reducible Flow Control
66 Thomas Ball
67 ACM Letters on Programming Languages and Systems,
68 Vol. 2, Num. 1-4, Mar-Dec 1993
69
70 An Efficient Representation for Sparse Sets
71 Preston Briggs, Linda Torczon
72 ACM Letters on Programming Languages and Systems,
73 Vol. 2, Num. 1-4, Mar-Dec 1993
74
75 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
76 K-H Drechsler, M.P. Stadel
77 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
78
79 Partial Dead Code Elimination
80 J. Knoop, O. Ruthing, B. Steffen
81 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
82
83 Effective Partial Redundancy Elimination
84 P. Briggs, K.D. Cooper
85 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
86
87 The Program Structure Tree: Computing Control Regions in Linear Time
88 R. Johnson, D. Pearson, K. Pingali
89 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
90
91 Optimal Code Motion: Theory and Practice
92 J. Knoop, O. Ruthing, B. Steffen
93 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
94
95 The power of assignment motion
96 J. Knoop, O. Ruthing, B. Steffen
97 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
98
99 Global code motion / global value numbering
100 C. Click
101 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
102
103 Value Driven Redundancy Elimination
104 L.T. Simpson
105 Rice University Ph.D. thesis, Apr. 1996
106
107 Value Numbering
108 L.T. Simpson
109 Massively Scalar Compiler Project, Rice University, Sep. 1996
110
111 High Performance Compilers for Parallel Computing
112 Michael Wolfe
113 Addison-Wesley, 1996
114
115 Advanced Compiler Design and Implementation
116 Steven Muchnick
117 Morgan Kaufmann, 1997
118
119 Building an Optimizing Compiler
120 Robert Morgan
121 Digital Press, 1998
122
123 People wishing to speed up the code here should read:
124 Elimination Algorithms for Data Flow Analysis
125 B.G. Ryder, M.C. Paull
126 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
127
128 How to Analyze Large Programs Efficiently and Informatively
129 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
130 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
131
132 People wishing to do something different can find various possibilities
133 in the above papers and elsewhere.
134 */
135
136 #include "config.h"
137 #include "system.h"
138 #include "coretypes.h"
139 #include "tm.h"
140 #include "diagnostic-core.h"
141 #include "toplev.h"
142
143 #include "hard-reg-set.h"
144 #include "rtl.h"
145 #include "tree.h"
146 #include "tm_p.h"
147 #include "regs.h"
148 #include "ira.h"
149 #include "flags.h"
150 #include "insn-config.h"
151 #include "recog.h"
152 #include "basic-block.h"
153 #include "function.h"
154 #include "expr.h"
155 #include "except.h"
156 #include "ggc.h"
157 #include "params.h"
158 #include "cselib.h"
159 #include "intl.h"
160 #include "obstack.h"
161 #include "tree-pass.h"
162 #include "hashtab.h"
163 #include "df.h"
164 #include "dbgcnt.h"
165 #include "target.h"
166 #include "gcse.h"
167
168 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
169 are a superset of those done by classic GCSE.
170
171 Two passes of copy/constant propagation are done around PRE or hoisting
172 because the first one enables more GCSE and the second one helps to clean
173 up the copies that PRE and HOIST create. This is needed more for PRE than
174 for HOIST because code hoisting will try to use an existing register
175 containing the common subexpression rather than create a new one. This is
176 harder to do for PRE because of the code motion (which HOIST doesn't do).
177
178 Expressions we are interested in GCSE-ing are of the form
179 (set (pseudo-reg) (expression)).
180 Function want_to_gcse_p says what these are.
181
182 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
183 This allows PRE to hoist expressions that are expressed in multiple insns,
184 such as complex address calculations (e.g. for PIC code, or loads with a
185 high part and a low part).
186
187 PRE handles moving invariant expressions out of loops (by treating them as
188 partially redundant).
189
190 **********************
191
192 We used to support multiple passes but there are diminishing returns in
193 doing so. The first pass usually makes 90% of the changes that are doable.
194 A second pass can make a few more changes made possible by the first pass.
195 Experiments show any further passes don't make enough changes to justify
196 the expense.
197
198 A study of spec92 using an unlimited number of passes:
199 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
200 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
201 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
202
203 It was found doing copy propagation between each pass enables further
204 substitutions.
205
206 This study was done before expressions in REG_EQUAL notes were added as
207 candidate expressions for optimization, and before the GIMPLE optimizers
208 were added. Probably, multiple passes is even less efficient now than
209 at the time when the study was conducted.
210
211 PRE is quite expensive in complicated functions because the DFA can take
212 a while to converge. Hence we only perform one pass.
213
214 **********************
215
216 The steps for PRE are:
217
218 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
219
220 2) Perform the data flow analysis for PRE.
221
222 3) Delete the redundant instructions
223
224 4) Insert the required copies [if any] that make the partially
225 redundant instructions fully redundant.
226
227 5) For other reaching expressions, insert an instruction to copy the value
228 to a newly created pseudo that will reach the redundant instruction.
229
230 The deletion is done first so that when we do insertions we
231 know which pseudo reg to use.
232
233 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
234 argue it is not. The number of iterations for the algorithm to converge
235 is typically 2-4 so I don't view it as that expensive (relatively speaking).
236
237 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
238 we create. To make an expression reach the place where it's redundant,
239 the result of the expression is copied to a new register, and the redundant
240 expression is deleted by replacing it with this new register. Classic GCSE
241 doesn't have this problem as much as it computes the reaching defs of
242 each register in each block and thus can try to use an existing
243 register. */
244 \f
245 /* GCSE global vars. */
246
247 struct target_gcse default_target_gcse;
248 #if SWITCHABLE_TARGET
249 struct target_gcse *this_target_gcse = &default_target_gcse;
250 #endif
251
252 /* Set to non-zero if CSE should run after all GCSE optimizations are done. */
253 int flag_rerun_cse_after_global_opts;
254
255 /* An obstack for our working variables. */
256 static struct obstack gcse_obstack;
257
258 struct reg_use {rtx reg_rtx; };
259
260 /* Hash table of expressions. */
261
262 struct expr
263 {
264 /* The expression. */
265 rtx expr;
266 /* Index in the available expression bitmaps. */
267 int bitmap_index;
268 /* Next entry with the same hash. */
269 struct expr *next_same_hash;
270 /* List of anticipatable occurrences in basic blocks in the function.
271 An "anticipatable occurrence" is one that is the first occurrence in the
272 basic block, the operands are not modified in the basic block prior
273 to the occurrence and the output is not used between the start of
274 the block and the occurrence. */
275 struct occr *antic_occr;
276 /* List of available occurrence in basic blocks in the function.
277 An "available occurrence" is one that is the last occurrence in the
278 basic block and the operands are not modified by following statements in
279 the basic block [including this insn]. */
280 struct occr *avail_occr;
281 /* Non-null if the computation is PRE redundant.
282 The value is the newly created pseudo-reg to record a copy of the
283 expression in all the places that reach the redundant copy. */
284 rtx reaching_reg;
285 /* Maximum distance in instructions this expression can travel.
286 We avoid moving simple expressions for more than a few instructions
287 to keep register pressure under control.
288 A value of "0" removes restrictions on how far the expression can
289 travel. */
290 int max_distance;
291 };
292
293 /* Occurrence of an expression.
294 There is one per basic block. If a pattern appears more than once the
295 last appearance is used [or first for anticipatable expressions]. */
296
297 struct occr
298 {
299 /* Next occurrence of this expression. */
300 struct occr *next;
301 /* The insn that computes the expression. */
302 rtx insn;
303 /* Nonzero if this [anticipatable] occurrence has been deleted. */
304 char deleted_p;
305 /* Nonzero if this [available] occurrence has been copied to
306 reaching_reg. */
307 /* ??? This is mutually exclusive with deleted_p, so they could share
308 the same byte. */
309 char copied_p;
310 };
311
312 typedef struct occr *occr_t;
313
314 /* Expression hash tables.
315 Each hash table is an array of buckets.
316 ??? It is known that if it were an array of entries, structure elements
317 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
318 not clear whether in the final analysis a sufficient amount of memory would
319 be saved as the size of the available expression bitmaps would be larger
320 [one could build a mapping table without holes afterwards though].
321 Someday I'll perform the computation and figure it out. */
322
323 struct hash_table_d
324 {
325 /* The table itself.
326 This is an array of `expr_hash_table_size' elements. */
327 struct expr **table;
328
329 /* Size of the hash table, in elements. */
330 unsigned int size;
331
332 /* Number of hash table elements. */
333 unsigned int n_elems;
334 };
335
336 /* Expression hash table. */
337 static struct hash_table_d expr_hash_table;
338
339 /* This is a list of expressions which are MEMs and will be used by load
340 or store motion.
341 Load motion tracks MEMs which aren't killed by anything except itself,
342 i.e. loads and stores to a single location.
343 We can then allow movement of these MEM refs with a little special
344 allowance. (all stores copy the same value to the reaching reg used
345 for the loads). This means all values used to store into memory must have
346 no side effects so we can re-issue the setter value. */
347
348 struct ls_expr
349 {
350 struct expr * expr; /* Gcse expression reference for LM. */
351 rtx pattern; /* Pattern of this mem. */
352 rtx pattern_regs; /* List of registers mentioned by the mem. */
353 rtx loads; /* INSN list of loads seen. */
354 rtx stores; /* INSN list of stores seen. */
355 struct ls_expr * next; /* Next in the list. */
356 int invalid; /* Invalid for some reason. */
357 int index; /* If it maps to a bitmap index. */
358 unsigned int hash_index; /* Index when in a hash table. */
359 rtx reaching_reg; /* Register to use when re-writing. */
360 };
361
362 /* Head of the list of load/store memory refs. */
363 static struct ls_expr * pre_ldst_mems = NULL;
364
365 /* Hashtable for the load/store memory refs. */
366 static htab_t pre_ldst_table = NULL;
367
368 /* Bitmap containing one bit for each register in the program.
369 Used when performing GCSE to track which registers have been set since
370 the start of the basic block. */
371 static regset reg_set_bitmap;
372
373 /* Array, indexed by basic block number for a list of insns which modify
374 memory within that block. */
375 static vec<rtx> *modify_mem_list;
376 static bitmap modify_mem_list_set;
377
378 typedef struct modify_pair_s
379 {
380 rtx dest; /* A MEM. */
381 rtx dest_addr; /* The canonical address of `dest'. */
382 } modify_pair;
383
384
385 /* This array parallels modify_mem_list, except that it stores MEMs
386 being set and their canonicalized memory addresses. */
387 static vec<modify_pair> *canon_modify_mem_list;
388
389 /* Bitmap indexed by block numbers to record which blocks contain
390 function calls. */
391 static bitmap blocks_with_calls;
392
393 /* Various variables for statistics gathering. */
394
395 /* Memory used in a pass.
396 This isn't intended to be absolutely precise. Its intent is only
397 to keep an eye on memory usage. */
398 static int bytes_used;
399
400 /* GCSE substitutions made. */
401 static int gcse_subst_count;
402 /* Number of copy instructions created. */
403 static int gcse_create_count;
404 \f
405 /* Doing code hoisting. */
406 static bool doing_code_hoisting_p = false;
407 \f
408 /* For available exprs */
409 static sbitmap *ae_kill;
410 \f
411 /* Data stored for each basic block. */
412 struct bb_data
413 {
414 /* Maximal register pressure inside basic block for given register class
415 (defined only for the pressure classes). */
416 int max_reg_pressure[N_REG_CLASSES];
417 /* Recorded register pressure of basic block before trying to hoist
418 an expression. Will be used to restore the register pressure
419 if the expression should not be hoisted. */
420 int old_pressure;
421 /* Recorded register live_in info of basic block during code hoisting
422 process. BACKUP is used to record live_in info before trying to
423 hoist an expression, and will be used to restore LIVE_IN if the
424 expression should not be hoisted. */
425 bitmap live_in, backup;
426 };
427
428 #define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
429
430 static basic_block curr_bb;
431
432 /* Current register pressure for each pressure class. */
433 static int curr_reg_pressure[N_REG_CLASSES];
434 \f
435
436 static void compute_can_copy (void);
437 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
438 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
439 static void *gcse_alloc (unsigned long);
440 static void alloc_gcse_mem (void);
441 static void free_gcse_mem (void);
442 static void hash_scan_insn (rtx, struct hash_table_d *);
443 static void hash_scan_set (rtx, rtx, struct hash_table_d *);
444 static void hash_scan_clobber (rtx, rtx, struct hash_table_d *);
445 static void hash_scan_call (rtx, rtx, struct hash_table_d *);
446 static int want_to_gcse_p (rtx, int *);
447 static int oprs_unchanged_p (const_rtx, const_rtx, int);
448 static int oprs_anticipatable_p (const_rtx, const_rtx);
449 static int oprs_available_p (const_rtx, const_rtx);
450 static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int, int,
451 struct hash_table_d *);
452 static unsigned int hash_expr (const_rtx, enum machine_mode, int *, int);
453 static int expr_equiv_p (const_rtx, const_rtx);
454 static void record_last_reg_set_info (rtx, int);
455 static void record_last_mem_set_info (rtx);
456 static void record_last_set_info (rtx, const_rtx, void *);
457 static void compute_hash_table (struct hash_table_d *);
458 static void alloc_hash_table (struct hash_table_d *);
459 static void free_hash_table (struct hash_table_d *);
460 static void compute_hash_table_work (struct hash_table_d *);
461 static void dump_hash_table (FILE *, const char *, struct hash_table_d *);
462 static void compute_transp (const_rtx, int, sbitmap *);
463 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
464 struct hash_table_d *);
465 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
466 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
467 static void canon_list_insert (rtx, const_rtx, void *);
468 static void alloc_pre_mem (int, int);
469 static void free_pre_mem (void);
470 static struct edge_list *compute_pre_data (void);
471 static int pre_expr_reaches_here_p (basic_block, struct expr *,
472 basic_block);
473 static void insert_insn_end_basic_block (struct expr *, basic_block);
474 static void pre_insert_copy_insn (struct expr *, rtx);
475 static void pre_insert_copies (void);
476 static int pre_delete (void);
477 static int pre_gcse (struct edge_list *);
478 static int one_pre_gcse_pass (void);
479 static void add_label_notes (rtx, rtx);
480 static void alloc_code_hoist_mem (int, int);
481 static void free_code_hoist_mem (void);
482 static void compute_code_hoist_vbeinout (void);
483 static void compute_code_hoist_data (void);
484 static int should_hoist_expr_to_dom (basic_block, struct expr *, basic_block,
485 sbitmap, int, int *, enum reg_class,
486 int *, bitmap, rtx);
487 static int hoist_code (void);
488 static enum reg_class get_regno_pressure_class (int regno, int *nregs);
489 static enum reg_class get_pressure_class_and_nregs (rtx insn, int *nregs);
490 static int one_code_hoisting_pass (void);
491 static rtx process_insert_insn (struct expr *);
492 static int pre_edge_insert (struct edge_list *, struct expr **);
493 static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
494 basic_block, char *);
495 static struct ls_expr * ldst_entry (rtx);
496 static void free_ldst_entry (struct ls_expr *);
497 static void free_ld_motion_mems (void);
498 static void print_ldst_list (FILE *);
499 static struct ls_expr * find_rtx_in_ldst (rtx);
500 static int simple_mem (const_rtx);
501 static void invalidate_any_buried_refs (rtx);
502 static void compute_ld_motion_mems (void);
503 static void trim_ld_motion_mems (void);
504 static void update_ld_motion_stores (struct expr *);
505 static void clear_modify_mem_tables (void);
506 static void free_modify_mem_tables (void);
507 static rtx gcse_emit_move_after (rtx, rtx, rtx);
508 static bool is_too_expensive (const char *);
509
510 #define GNEW(T) ((T *) gmalloc (sizeof (T)))
511 #define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
512
513 #define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
514 #define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
515
516 #define GNEWVAR(T, S) ((T *) gmalloc ((S)))
517 #define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
518
519 #define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
520 #define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
521 \f
522 /* Misc. utilities. */
523
524 #define can_copy \
525 (this_target_gcse->x_can_copy)
526 #define can_copy_init_p \
527 (this_target_gcse->x_can_copy_init_p)
528
529 /* Compute which modes support reg/reg copy operations. */
530
531 static void
532 compute_can_copy (void)
533 {
534 int i;
535 #ifndef AVOID_CCMODE_COPIES
536 rtx reg, insn;
537 #endif
538 memset (can_copy, 0, NUM_MACHINE_MODES);
539
540 start_sequence ();
541 for (i = 0; i < NUM_MACHINE_MODES; i++)
542 if (GET_MODE_CLASS (i) == MODE_CC)
543 {
544 #ifdef AVOID_CCMODE_COPIES
545 can_copy[i] = 0;
546 #else
547 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
548 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
549 if (recog (PATTERN (insn), insn, NULL) >= 0)
550 can_copy[i] = 1;
551 #endif
552 }
553 else
554 can_copy[i] = 1;
555
556 end_sequence ();
557 }
558
559 /* Returns whether the mode supports reg/reg copy operations. */
560
561 bool
562 can_copy_p (enum machine_mode mode)
563 {
564 if (! can_copy_init_p)
565 {
566 compute_can_copy ();
567 can_copy_init_p = true;
568 }
569
570 return can_copy[mode] != 0;
571 }
572 \f
573 /* Cover function to xmalloc to record bytes allocated. */
574
575 static void *
576 gmalloc (size_t size)
577 {
578 bytes_used += size;
579 return xmalloc (size);
580 }
581
582 /* Cover function to xcalloc to record bytes allocated. */
583
584 static void *
585 gcalloc (size_t nelem, size_t elsize)
586 {
587 bytes_used += nelem * elsize;
588 return xcalloc (nelem, elsize);
589 }
590
591 /* Cover function to obstack_alloc. */
592
593 static void *
594 gcse_alloc (unsigned long size)
595 {
596 bytes_used += size;
597 return obstack_alloc (&gcse_obstack, size);
598 }
599
600 /* Allocate memory for the reg/memory set tracking tables.
601 This is called at the start of each pass. */
602
603 static void
604 alloc_gcse_mem (void)
605 {
606 /* Allocate vars to track sets of regs. */
607 reg_set_bitmap = ALLOC_REG_SET (NULL);
608
609 /* Allocate array to keep a list of insns which modify memory in each
610 basic block. The two typedefs are needed to work around the
611 pre-processor limitation with template types in macro arguments. */
612 typedef vec<rtx> vec_rtx_heap;
613 typedef vec<modify_pair> vec_modify_pair_heap;
614 modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block);
615 canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap, last_basic_block);
616 modify_mem_list_set = BITMAP_ALLOC (NULL);
617 blocks_with_calls = BITMAP_ALLOC (NULL);
618 }
619
620 /* Free memory allocated by alloc_gcse_mem. */
621
622 static void
623 free_gcse_mem (void)
624 {
625 FREE_REG_SET (reg_set_bitmap);
626
627 free_modify_mem_tables ();
628 BITMAP_FREE (modify_mem_list_set);
629 BITMAP_FREE (blocks_with_calls);
630 }
631 \f
632 /* Compute the local properties of each recorded expression.
633
634 Local properties are those that are defined by the block, irrespective of
635 other blocks.
636
637 An expression is transparent in a block if its operands are not modified
638 in the block.
639
640 An expression is computed (locally available) in a block if it is computed
641 at least once and expression would contain the same value if the
642 computation was moved to the end of the block.
643
644 An expression is locally anticipatable in a block if it is computed at
645 least once and expression would contain the same value if the computation
646 was moved to the beginning of the block.
647
648 We call this routine for pre and code hoisting. They all compute
649 basically the same information and thus can easily share this code.
650
651 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
652 properties. If NULL, then it is not necessary to compute or record that
653 particular property.
654
655 TABLE controls which hash table to look at. */
656
657 static void
658 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
659 struct hash_table_d *table)
660 {
661 unsigned int i;
662
663 /* Initialize any bitmaps that were passed in. */
664 if (transp)
665 {
666 bitmap_vector_ones (transp, last_basic_block);
667 }
668
669 if (comp)
670 bitmap_vector_clear (comp, last_basic_block);
671 if (antloc)
672 bitmap_vector_clear (antloc, last_basic_block);
673
674 for (i = 0; i < table->size; i++)
675 {
676 struct expr *expr;
677
678 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
679 {
680 int indx = expr->bitmap_index;
681 struct occr *occr;
682
683 /* The expression is transparent in this block if it is not killed.
684 We start by assuming all are transparent [none are killed], and
685 then reset the bits for those that are. */
686 if (transp)
687 compute_transp (expr->expr, indx, transp);
688
689 /* The occurrences recorded in antic_occr are exactly those that
690 we want to set to nonzero in ANTLOC. */
691 if (antloc)
692 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
693 {
694 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
695
696 /* While we're scanning the table, this is a good place to
697 initialize this. */
698 occr->deleted_p = 0;
699 }
700
701 /* The occurrences recorded in avail_occr are exactly those that
702 we want to set to nonzero in COMP. */
703 if (comp)
704 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
705 {
706 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
707
708 /* While we're scanning the table, this is a good place to
709 initialize this. */
710 occr->copied_p = 0;
711 }
712
713 /* While we're scanning the table, this is a good place to
714 initialize this. */
715 expr->reaching_reg = 0;
716 }
717 }
718 }
719 \f
720 /* Hash table support. */
721
722 struct reg_avail_info
723 {
724 basic_block last_bb;
725 int first_set;
726 int last_set;
727 };
728
729 static struct reg_avail_info *reg_avail_info;
730 static basic_block current_bb;
731
732 /* See whether X, the source of a set, is something we want to consider for
733 GCSE. */
734
735 static int
736 want_to_gcse_p (rtx x, int *max_distance_ptr)
737 {
738 #ifdef STACK_REGS
739 /* On register stack architectures, don't GCSE constants from the
740 constant pool, as the benefits are often swamped by the overhead
741 of shuffling the register stack between basic blocks. */
742 if (IS_STACK_MODE (GET_MODE (x)))
743 x = avoid_constant_pool_reference (x);
744 #endif
745
746 /* GCSE'ing constants:
747
748 We do not specifically distinguish between constant and non-constant
749 expressions in PRE and Hoist. We use set_src_cost below to limit
750 the maximum distance simple expressions can travel.
751
752 Nevertheless, constants are much easier to GCSE, and, hence,
753 it is easy to overdo the optimizations. Usually, excessive PRE and
754 Hoisting of constant leads to increased register pressure.
755
756 RA can deal with this by rematerialing some of the constants.
757 Therefore, it is important that the back-end generates sets of constants
758 in a way that allows reload rematerialize them under high register
759 pressure, i.e., a pseudo register with REG_EQUAL to constant
760 is set only once. Failing to do so will result in IRA/reload
761 spilling such constants under high register pressure instead of
762 rematerializing them. */
763
764 switch (GET_CODE (x))
765 {
766 case REG:
767 case SUBREG:
768 case CALL:
769 return 0;
770
771 CASE_CONST_ANY:
772 if (!doing_code_hoisting_p)
773 /* Do not PRE constants. */
774 return 0;
775
776 /* FALLTHRU */
777
778 default:
779 if (doing_code_hoisting_p)
780 /* PRE doesn't implement max_distance restriction. */
781 {
782 int cost;
783 int max_distance;
784
785 gcc_assert (!optimize_function_for_speed_p (cfun)
786 && optimize_function_for_size_p (cfun));
787 cost = set_src_cost (x, 0);
788
789 if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
790 {
791 max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
792 if (max_distance == 0)
793 return 0;
794
795 gcc_assert (max_distance > 0);
796 }
797 else
798 max_distance = 0;
799
800 if (max_distance_ptr)
801 *max_distance_ptr = max_distance;
802 }
803
804 return can_assign_to_reg_without_clobbers_p (x);
805 }
806 }
807
808 /* Used internally by can_assign_to_reg_without_clobbers_p. */
809
810 static GTY(()) rtx test_insn;
811
812 /* Return true if we can assign X to a pseudo register such that the
813 resulting insn does not result in clobbering a hard register as a
814 side-effect.
815
816 Additionally, if the target requires it, check that the resulting insn
817 can be copied. If it cannot, this means that X is special and probably
818 has hidden side-effects we don't want to mess with.
819
820 This function is typically used by code motion passes, to verify
821 that it is safe to insert an insn without worrying about clobbering
822 maybe live hard regs. */
823
824 bool
825 can_assign_to_reg_without_clobbers_p (rtx x)
826 {
827 int num_clobbers = 0;
828 int icode;
829
830 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
831 if (general_operand (x, GET_MODE (x)))
832 return 1;
833 else if (GET_MODE (x) == VOIDmode)
834 return 0;
835
836 /* Otherwise, check if we can make a valid insn from it. First initialize
837 our test insn if we haven't already. */
838 if (test_insn == 0)
839 {
840 test_insn
841 = make_insn_raw (gen_rtx_SET (VOIDmode,
842 gen_rtx_REG (word_mode,
843 FIRST_PSEUDO_REGISTER * 2),
844 const0_rtx));
845 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
846 }
847
848 /* Now make an insn like the one we would make when GCSE'ing and see if
849 valid. */
850 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
851 SET_SRC (PATTERN (test_insn)) = x;
852
853 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
854 if (icode < 0)
855 return false;
856
857 if (num_clobbers > 0 && added_clobbers_hard_reg_p (icode))
858 return false;
859
860 if (targetm.cannot_copy_insn_p && targetm.cannot_copy_insn_p (test_insn))
861 return false;
862
863 return true;
864 }
865
866 /* Return nonzero if the operands of expression X are unchanged from the
867 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
868 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
869
870 static int
871 oprs_unchanged_p (const_rtx x, const_rtx insn, int avail_p)
872 {
873 int i, j;
874 enum rtx_code code;
875 const char *fmt;
876
877 if (x == 0)
878 return 1;
879
880 code = GET_CODE (x);
881 switch (code)
882 {
883 case REG:
884 {
885 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
886
887 if (info->last_bb != current_bb)
888 return 1;
889 if (avail_p)
890 return info->last_set < DF_INSN_LUID (insn);
891 else
892 return info->first_set >= DF_INSN_LUID (insn);
893 }
894
895 case MEM:
896 if (load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
897 x, avail_p))
898 return 0;
899 else
900 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
901
902 case PRE_DEC:
903 case PRE_INC:
904 case POST_DEC:
905 case POST_INC:
906 case PRE_MODIFY:
907 case POST_MODIFY:
908 return 0;
909
910 case PC:
911 case CC0: /*FIXME*/
912 case CONST:
913 CASE_CONST_ANY:
914 case SYMBOL_REF:
915 case LABEL_REF:
916 case ADDR_VEC:
917 case ADDR_DIFF_VEC:
918 return 1;
919
920 default:
921 break;
922 }
923
924 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
925 {
926 if (fmt[i] == 'e')
927 {
928 /* If we are about to do the last recursive call needed at this
929 level, change it into iteration. This function is called enough
930 to be worth it. */
931 if (i == 0)
932 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
933
934 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
935 return 0;
936 }
937 else if (fmt[i] == 'E')
938 for (j = 0; j < XVECLEN (x, i); j++)
939 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
940 return 0;
941 }
942
943 return 1;
944 }
945
946 /* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
947
948 struct mem_conflict_info
949 {
950 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
951 see if a memory store conflicts with this memory load. */
952 const_rtx mem;
953
954 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
955 references. */
956 bool conflict;
957 };
958
959 /* DEST is the output of an instruction. If it is a memory reference and
960 possibly conflicts with the load found in DATA, then communicate this
961 information back through DATA. */
962
963 static void
964 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
965 void *data)
966 {
967 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
968
969 while (GET_CODE (dest) == SUBREG
970 || GET_CODE (dest) == ZERO_EXTRACT
971 || GET_CODE (dest) == STRICT_LOW_PART)
972 dest = XEXP (dest, 0);
973
974 /* If DEST is not a MEM, then it will not conflict with the load. Note
975 that function calls are assumed to clobber memory, but are handled
976 elsewhere. */
977 if (! MEM_P (dest))
978 return;
979
980 /* If we are setting a MEM in our list of specially recognized MEMs,
981 don't mark as killed this time. */
982 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
983 {
984 if (!find_rtx_in_ldst (dest))
985 mci->conflict = true;
986 return;
987 }
988
989 if (true_dependence (dest, GET_MODE (dest), mci->mem))
990 mci->conflict = true;
991 }
992
993 /* Return nonzero if the expression in X (a memory reference) is killed
994 in block BB before or after the insn with the LUID in UID_LIMIT.
995 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
996 before UID_LIMIT.
997
998 To check the entire block, set UID_LIMIT to max_uid + 1 and
999 AVAIL_P to 0. */
1000
1001 static int
1002 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1003 int avail_p)
1004 {
1005 vec<rtx> list = modify_mem_list[bb->index];
1006 rtx setter;
1007 unsigned ix;
1008
1009 /* If this is a readonly then we aren't going to be changing it. */
1010 if (MEM_READONLY_P (x))
1011 return 0;
1012
1013 FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
1014 {
1015 struct mem_conflict_info mci;
1016
1017 /* Ignore entries in the list that do not apply. */
1018 if ((avail_p
1019 && DF_INSN_LUID (setter) < uid_limit)
1020 || (! avail_p
1021 && DF_INSN_LUID (setter) > uid_limit))
1022 continue;
1023
1024 /* If SETTER is a call everything is clobbered. Note that calls
1025 to pure functions are never put on the list, so we need not
1026 worry about them. */
1027 if (CALL_P (setter))
1028 return 1;
1029
1030 /* SETTER must be an INSN of some kind that sets memory. Call
1031 note_stores to examine each hunk of memory that is modified. */
1032 mci.mem = x;
1033 mci.conflict = false;
1034 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1035 if (mci.conflict)
1036 return 1;
1037 }
1038 return 0;
1039 }
1040
1041 /* Return nonzero if the operands of expression X are unchanged from
1042 the start of INSN's basic block up to but not including INSN. */
1043
1044 static int
1045 oprs_anticipatable_p (const_rtx x, const_rtx insn)
1046 {
1047 return oprs_unchanged_p (x, insn, 0);
1048 }
1049
1050 /* Return nonzero if the operands of expression X are unchanged from
1051 INSN to the end of INSN's basic block. */
1052
1053 static int
1054 oprs_available_p (const_rtx x, const_rtx insn)
1055 {
1056 return oprs_unchanged_p (x, insn, 1);
1057 }
1058
1059 /* Hash expression X.
1060
1061 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1062 indicating if a volatile operand is found or if the expression contains
1063 something we don't want to insert in the table. HASH_TABLE_SIZE is
1064 the current size of the hash table to be probed. */
1065
1066 static unsigned int
1067 hash_expr (const_rtx x, enum machine_mode mode, int *do_not_record_p,
1068 int hash_table_size)
1069 {
1070 unsigned int hash;
1071
1072 *do_not_record_p = 0;
1073
1074 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
1075 return hash % hash_table_size;
1076 }
1077
1078 /* Return nonzero if exp1 is equivalent to exp2. */
1079
1080 static int
1081 expr_equiv_p (const_rtx x, const_rtx y)
1082 {
1083 return exp_equiv_p (x, y, 0, true);
1084 }
1085
1086 /* Insert expression X in INSN in the hash TABLE.
1087 If it is already present, record it as the last occurrence in INSN's
1088 basic block.
1089
1090 MODE is the mode of the value X is being stored into.
1091 It is only used if X is a CONST_INT.
1092
1093 ANTIC_P is nonzero if X is an anticipatable expression.
1094 AVAIL_P is nonzero if X is an available expression.
1095
1096 MAX_DISTANCE is the maximum distance in instructions this expression can
1097 be moved. */
1098
1099 static void
1100 insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
1101 int avail_p, int max_distance, struct hash_table_d *table)
1102 {
1103 int found, do_not_record_p;
1104 unsigned int hash;
1105 struct expr *cur_expr, *last_expr = NULL;
1106 struct occr *antic_occr, *avail_occr;
1107
1108 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1109
1110 /* Do not insert expression in table if it contains volatile operands,
1111 or if hash_expr determines the expression is something we don't want
1112 to or can't handle. */
1113 if (do_not_record_p)
1114 return;
1115
1116 cur_expr = table->table[hash];
1117 found = 0;
1118
1119 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1120 {
1121 /* If the expression isn't found, save a pointer to the end of
1122 the list. */
1123 last_expr = cur_expr;
1124 cur_expr = cur_expr->next_same_hash;
1125 }
1126
1127 if (! found)
1128 {
1129 cur_expr = GOBNEW (struct expr);
1130 bytes_used += sizeof (struct expr);
1131 if (table->table[hash] == NULL)
1132 /* This is the first pattern that hashed to this index. */
1133 table->table[hash] = cur_expr;
1134 else
1135 /* Add EXPR to end of this hash chain. */
1136 last_expr->next_same_hash = cur_expr;
1137
1138 /* Set the fields of the expr element. */
1139 cur_expr->expr = x;
1140 cur_expr->bitmap_index = table->n_elems++;
1141 cur_expr->next_same_hash = NULL;
1142 cur_expr->antic_occr = NULL;
1143 cur_expr->avail_occr = NULL;
1144 gcc_assert (max_distance >= 0);
1145 cur_expr->max_distance = max_distance;
1146 }
1147 else
1148 gcc_assert (cur_expr->max_distance == max_distance);
1149
1150 /* Now record the occurrence(s). */
1151 if (antic_p)
1152 {
1153 antic_occr = cur_expr->antic_occr;
1154
1155 if (antic_occr
1156 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
1157 antic_occr = NULL;
1158
1159 if (antic_occr)
1160 /* Found another instance of the expression in the same basic block.
1161 Prefer the currently recorded one. We want the first one in the
1162 block and the block is scanned from start to end. */
1163 ; /* nothing to do */
1164 else
1165 {
1166 /* First occurrence of this expression in this basic block. */
1167 antic_occr = GOBNEW (struct occr);
1168 bytes_used += sizeof (struct occr);
1169 antic_occr->insn = insn;
1170 antic_occr->next = cur_expr->antic_occr;
1171 antic_occr->deleted_p = 0;
1172 cur_expr->antic_occr = antic_occr;
1173 }
1174 }
1175
1176 if (avail_p)
1177 {
1178 avail_occr = cur_expr->avail_occr;
1179
1180 if (avail_occr
1181 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
1182 {
1183 /* Found another instance of the expression in the same basic block.
1184 Prefer this occurrence to the currently recorded one. We want
1185 the last one in the block and the block is scanned from start
1186 to end. */
1187 avail_occr->insn = insn;
1188 }
1189 else
1190 {
1191 /* First occurrence of this expression in this basic block. */
1192 avail_occr = GOBNEW (struct occr);
1193 bytes_used += sizeof (struct occr);
1194 avail_occr->insn = insn;
1195 avail_occr->next = cur_expr->avail_occr;
1196 avail_occr->deleted_p = 0;
1197 cur_expr->avail_occr = avail_occr;
1198 }
1199 }
1200 }
1201
1202 /* Scan SET present in INSN and add an entry to the hash TABLE. */
1203
1204 static void
1205 hash_scan_set (rtx set, rtx insn, struct hash_table_d *table)
1206 {
1207 rtx src = SET_SRC (set);
1208 rtx dest = SET_DEST (set);
1209 rtx note;
1210
1211 if (GET_CODE (src) == CALL)
1212 hash_scan_call (src, insn, table);
1213
1214 else if (REG_P (dest))
1215 {
1216 unsigned int regno = REGNO (dest);
1217 int max_distance = 0;
1218
1219 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1220
1221 This allows us to do a single GCSE pass and still eliminate
1222 redundant constants, addresses or other expressions that are
1223 constructed with multiple instructions.
1224
1225 However, keep the original SRC if INSN is a simple reg-reg move.
1226 In this case, there will almost always be a REG_EQUAL note on the
1227 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1228 for INSN, we miss copy propagation opportunities and we perform the
1229 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1230 do more than one PRE GCSE pass.
1231
1232 Note that this does not impede profitable constant propagations. We
1233 "look through" reg-reg sets in lookup_avail_set. */
1234 note = find_reg_equal_equiv_note (insn);
1235 if (note != 0
1236 && REG_NOTE_KIND (note) == REG_EQUAL
1237 && !REG_P (src)
1238 && want_to_gcse_p (XEXP (note, 0), NULL))
1239 src = XEXP (note, 0), set = gen_rtx_SET (VOIDmode, dest, src);
1240
1241 /* Only record sets of pseudo-regs in the hash table. */
1242 if (regno >= FIRST_PSEUDO_REGISTER
1243 /* Don't GCSE something if we can't do a reg/reg copy. */
1244 && can_copy_p (GET_MODE (dest))
1245 /* GCSE commonly inserts instruction after the insn. We can't
1246 do that easily for EH edges so disable GCSE on these for now. */
1247 /* ??? We can now easily create new EH landing pads at the
1248 gimple level, for splitting edges; there's no reason we
1249 can't do the same thing at the rtl level. */
1250 && !can_throw_internal (insn)
1251 /* Is SET_SRC something we want to gcse? */
1252 && want_to_gcse_p (src, &max_distance)
1253 /* Don't CSE a nop. */
1254 && ! set_noop_p (set)
1255 /* Don't GCSE if it has attached REG_EQUIV note.
1256 At this point this only function parameters should have
1257 REG_EQUIV notes and if the argument slot is used somewhere
1258 explicitly, it means address of parameter has been taken,
1259 so we should not extend the lifetime of the pseudo. */
1260 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1261 {
1262 /* An expression is not anticipatable if its operands are
1263 modified before this insn or if this is not the only SET in
1264 this insn. The latter condition does not have to mean that
1265 SRC itself is not anticipatable, but we just will not be
1266 able to handle code motion of insns with multiple sets. */
1267 int antic_p = oprs_anticipatable_p (src, insn)
1268 && !multiple_sets (insn);
1269 /* An expression is not available if its operands are
1270 subsequently modified, including this insn. It's also not
1271 available if this is a branch, because we can't insert
1272 a set after the branch. */
1273 int avail_p = (oprs_available_p (src, insn)
1274 && ! JUMP_P (insn));
1275
1276 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1277 max_distance, table);
1278 }
1279 }
1280 /* In case of store we want to consider the memory value as available in
1281 the REG stored in that memory. This makes it possible to remove
1282 redundant loads from due to stores to the same location. */
1283 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1284 {
1285 unsigned int regno = REGNO (src);
1286 int max_distance = 0;
1287
1288 /* Only record sets of pseudo-regs in the hash table. */
1289 if (regno >= FIRST_PSEUDO_REGISTER
1290 /* Don't GCSE something if we can't do a reg/reg copy. */
1291 && can_copy_p (GET_MODE (src))
1292 /* GCSE commonly inserts instruction after the insn. We can't
1293 do that easily for EH edges so disable GCSE on these for now. */
1294 && !can_throw_internal (insn)
1295 /* Is SET_DEST something we want to gcse? */
1296 && want_to_gcse_p (dest, &max_distance)
1297 /* Don't CSE a nop. */
1298 && ! set_noop_p (set)
1299 /* Don't GCSE if it has attached REG_EQUIV note.
1300 At this point this only function parameters should have
1301 REG_EQUIV notes and if the argument slot is used somewhere
1302 explicitly, it means address of parameter has been taken,
1303 so we should not extend the lifetime of the pseudo. */
1304 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1305 || ! MEM_P (XEXP (note, 0))))
1306 {
1307 /* Stores are never anticipatable. */
1308 int antic_p = 0;
1309 /* An expression is not available if its operands are
1310 subsequently modified, including this insn. It's also not
1311 available if this is a branch, because we can't insert
1312 a set after the branch. */
1313 int avail_p = oprs_available_p (dest, insn)
1314 && ! JUMP_P (insn);
1315
1316 /* Record the memory expression (DEST) in the hash table. */
1317 insert_expr_in_table (dest, GET_MODE (dest), insn,
1318 antic_p, avail_p, max_distance, table);
1319 }
1320 }
1321 }
1322
1323 static void
1324 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1325 struct hash_table_d *table ATTRIBUTE_UNUSED)
1326 {
1327 /* Currently nothing to do. */
1328 }
1329
1330 static void
1331 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1332 struct hash_table_d *table ATTRIBUTE_UNUSED)
1333 {
1334 /* Currently nothing to do. */
1335 }
1336
1337 /* Process INSN and add hash table entries as appropriate. */
1338
1339 static void
1340 hash_scan_insn (rtx insn, struct hash_table_d *table)
1341 {
1342 rtx pat = PATTERN (insn);
1343 int i;
1344
1345 /* Pick out the sets of INSN and for other forms of instructions record
1346 what's been modified. */
1347
1348 if (GET_CODE (pat) == SET)
1349 hash_scan_set (pat, insn, table);
1350
1351 else if (GET_CODE (pat) == CLOBBER)
1352 hash_scan_clobber (pat, insn, table);
1353
1354 else if (GET_CODE (pat) == CALL)
1355 hash_scan_call (pat, insn, table);
1356
1357 else if (GET_CODE (pat) == PARALLEL)
1358 for (i = 0; i < XVECLEN (pat, 0); i++)
1359 {
1360 rtx x = XVECEXP (pat, 0, i);
1361
1362 if (GET_CODE (x) == SET)
1363 hash_scan_set (x, insn, table);
1364 else if (GET_CODE (x) == CLOBBER)
1365 hash_scan_clobber (x, insn, table);
1366 else if (GET_CODE (x) == CALL)
1367 hash_scan_call (x, insn, table);
1368 }
1369 }
1370
1371 /* Dump the hash table TABLE to file FILE under the name NAME. */
1372
1373 static void
1374 dump_hash_table (FILE *file, const char *name, struct hash_table_d *table)
1375 {
1376 int i;
1377 /* Flattened out table, so it's printed in proper order. */
1378 struct expr **flat_table;
1379 unsigned int *hash_val;
1380 struct expr *expr;
1381
1382 flat_table = XCNEWVEC (struct expr *, table->n_elems);
1383 hash_val = XNEWVEC (unsigned int, table->n_elems);
1384
1385 for (i = 0; i < (int) table->size; i++)
1386 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1387 {
1388 flat_table[expr->bitmap_index] = expr;
1389 hash_val[expr->bitmap_index] = i;
1390 }
1391
1392 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1393 name, table->size, table->n_elems);
1394
1395 for (i = 0; i < (int) table->n_elems; i++)
1396 if (flat_table[i] != 0)
1397 {
1398 expr = flat_table[i];
1399 fprintf (file, "Index %d (hash value %d; max distance %d)\n ",
1400 expr->bitmap_index, hash_val[i], expr->max_distance);
1401 print_rtl (file, expr->expr);
1402 fprintf (file, "\n");
1403 }
1404
1405 fprintf (file, "\n");
1406
1407 free (flat_table);
1408 free (hash_val);
1409 }
1410
1411 /* Record register first/last/block set information for REGNO in INSN.
1412
1413 first_set records the first place in the block where the register
1414 is set and is used to compute "anticipatability".
1415
1416 last_set records the last place in the block where the register
1417 is set and is used to compute "availability".
1418
1419 last_bb records the block for which first_set and last_set are
1420 valid, as a quick test to invalidate them. */
1421
1422 static void
1423 record_last_reg_set_info (rtx insn, int regno)
1424 {
1425 struct reg_avail_info *info = &reg_avail_info[regno];
1426 int luid = DF_INSN_LUID (insn);
1427
1428 info->last_set = luid;
1429 if (info->last_bb != current_bb)
1430 {
1431 info->last_bb = current_bb;
1432 info->first_set = luid;
1433 }
1434 }
1435
1436 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1437 Note we store a pair of elements in the list, so they have to be
1438 taken off pairwise. */
1439
1440 static void
1441 canon_list_insert (rtx dest ATTRIBUTE_UNUSED, const_rtx x ATTRIBUTE_UNUSED,
1442 void * v_insn)
1443 {
1444 rtx dest_addr, insn;
1445 int bb;
1446 modify_pair pair;
1447
1448 while (GET_CODE (dest) == SUBREG
1449 || GET_CODE (dest) == ZERO_EXTRACT
1450 || GET_CODE (dest) == STRICT_LOW_PART)
1451 dest = XEXP (dest, 0);
1452
1453 /* If DEST is not a MEM, then it will not conflict with a load. Note
1454 that function calls are assumed to clobber memory, but are handled
1455 elsewhere. */
1456
1457 if (! MEM_P (dest))
1458 return;
1459
1460 dest_addr = get_addr (XEXP (dest, 0));
1461 dest_addr = canon_rtx (dest_addr);
1462 insn = (rtx) v_insn;
1463 bb = BLOCK_FOR_INSN (insn)->index;
1464
1465 pair.dest = dest;
1466 pair.dest_addr = dest_addr;
1467 canon_modify_mem_list[bb].safe_push (pair);
1468 }
1469
1470 /* Record memory modification information for INSN. We do not actually care
1471 about the memory location(s) that are set, or even how they are set (consider
1472 a CALL_INSN). We merely need to record which insns modify memory. */
1473
1474 static void
1475 record_last_mem_set_info (rtx insn)
1476 {
1477 int bb = BLOCK_FOR_INSN (insn)->index;
1478
1479 /* load_killed_in_block_p will handle the case of calls clobbering
1480 everything. */
1481 modify_mem_list[bb].safe_push (insn);
1482 bitmap_set_bit (modify_mem_list_set, bb);
1483
1484 if (CALL_P (insn))
1485 bitmap_set_bit (blocks_with_calls, bb);
1486 else
1487 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
1488 }
1489
1490 /* Called from compute_hash_table via note_stores to handle one
1491 SET or CLOBBER in an insn. DATA is really the instruction in which
1492 the SET is taking place. */
1493
1494 static void
1495 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1496 {
1497 rtx last_set_insn = (rtx) data;
1498
1499 if (GET_CODE (dest) == SUBREG)
1500 dest = SUBREG_REG (dest);
1501
1502 if (REG_P (dest))
1503 record_last_reg_set_info (last_set_insn, REGNO (dest));
1504 else if (MEM_P (dest)
1505 /* Ignore pushes, they clobber nothing. */
1506 && ! push_operand (dest, GET_MODE (dest)))
1507 record_last_mem_set_info (last_set_insn);
1508 }
1509
1510 /* Top level function to create an expression hash table.
1511
1512 Expression entries are placed in the hash table if
1513 - they are of the form (set (pseudo-reg) src),
1514 - src is something we want to perform GCSE on,
1515 - none of the operands are subsequently modified in the block
1516
1517 Currently src must be a pseudo-reg or a const_int.
1518
1519 TABLE is the table computed. */
1520
1521 static void
1522 compute_hash_table_work (struct hash_table_d *table)
1523 {
1524 int i;
1525
1526 /* re-Cache any INSN_LIST nodes we have allocated. */
1527 clear_modify_mem_tables ();
1528 /* Some working arrays used to track first and last set in each block. */
1529 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
1530
1531 for (i = 0; i < max_reg_num (); ++i)
1532 reg_avail_info[i].last_bb = NULL;
1533
1534 FOR_EACH_BB (current_bb)
1535 {
1536 rtx insn;
1537 unsigned int regno;
1538
1539 /* First pass over the instructions records information used to
1540 determine when registers and memory are first and last set. */
1541 FOR_BB_INSNS (current_bb, insn)
1542 {
1543 if (!NONDEBUG_INSN_P (insn))
1544 continue;
1545
1546 if (CALL_P (insn))
1547 {
1548 hard_reg_set_iterator hrsi;
1549 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1550 0, regno, hrsi)
1551 record_last_reg_set_info (insn, regno);
1552
1553 if (! RTL_CONST_OR_PURE_CALL_P (insn))
1554 record_last_mem_set_info (insn);
1555 }
1556
1557 note_stores (PATTERN (insn), record_last_set_info, insn);
1558 }
1559
1560 /* The next pass builds the hash table. */
1561 FOR_BB_INSNS (current_bb, insn)
1562 if (NONDEBUG_INSN_P (insn))
1563 hash_scan_insn (insn, table);
1564 }
1565
1566 free (reg_avail_info);
1567 reg_avail_info = NULL;
1568 }
1569
1570 /* Allocate space for the set/expr hash TABLE.
1571 It is used to determine the number of buckets to use. */
1572
1573 static void
1574 alloc_hash_table (struct hash_table_d *table)
1575 {
1576 int n;
1577
1578 n = get_max_insn_count ();
1579
1580 table->size = n / 4;
1581 if (table->size < 11)
1582 table->size = 11;
1583
1584 /* Attempt to maintain efficient use of hash table.
1585 Making it an odd number is simplest for now.
1586 ??? Later take some measurements. */
1587 table->size |= 1;
1588 n = table->size * sizeof (struct expr *);
1589 table->table = GNEWVAR (struct expr *, n);
1590 }
1591
1592 /* Free things allocated by alloc_hash_table. */
1593
1594 static void
1595 free_hash_table (struct hash_table_d *table)
1596 {
1597 free (table->table);
1598 }
1599
1600 /* Compute the expression hash table TABLE. */
1601
1602 static void
1603 compute_hash_table (struct hash_table_d *table)
1604 {
1605 /* Initialize count of number of entries in hash table. */
1606 table->n_elems = 0;
1607 memset (table->table, 0, table->size * sizeof (struct expr *));
1608
1609 compute_hash_table_work (table);
1610 }
1611 \f
1612 /* Expression tracking support. */
1613
1614 /* Clear canon_modify_mem_list and modify_mem_list tables. */
1615 static void
1616 clear_modify_mem_tables (void)
1617 {
1618 unsigned i;
1619 bitmap_iterator bi;
1620
1621 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
1622 {
1623 modify_mem_list[i].release ();
1624 canon_modify_mem_list[i].release ();
1625 }
1626 bitmap_clear (modify_mem_list_set);
1627 bitmap_clear (blocks_with_calls);
1628 }
1629
1630 /* Release memory used by modify_mem_list_set. */
1631
1632 static void
1633 free_modify_mem_tables (void)
1634 {
1635 clear_modify_mem_tables ();
1636 free (modify_mem_list);
1637 free (canon_modify_mem_list);
1638 modify_mem_list = 0;
1639 canon_modify_mem_list = 0;
1640 }
1641 \f
1642 /* For each block, compute whether X is transparent. X is either an
1643 expression or an assignment [though we don't care which, for this context
1644 an assignment is treated as an expression]. For each block where an
1645 element of X is modified, reset the INDX bit in BMAP. */
1646
1647 static void
1648 compute_transp (const_rtx x, int indx, sbitmap *bmap)
1649 {
1650 int i, j;
1651 enum rtx_code code;
1652 const char *fmt;
1653
1654 /* repeat is used to turn tail-recursion into iteration since GCC
1655 can't do it when there's no return value. */
1656 repeat:
1657
1658 if (x == 0)
1659 return;
1660
1661 code = GET_CODE (x);
1662 switch (code)
1663 {
1664 case REG:
1665 {
1666 df_ref def;
1667 for (def = DF_REG_DEF_CHAIN (REGNO (x));
1668 def;
1669 def = DF_REF_NEXT_REG (def))
1670 bitmap_clear_bit (bmap[DF_REF_BB (def)->index], indx);
1671 }
1672
1673 return;
1674
1675 case MEM:
1676 if (! MEM_READONLY_P (x))
1677 {
1678 bitmap_iterator bi;
1679 unsigned bb_index;
1680
1681 /* First handle all the blocks with calls. We don't need to
1682 do any list walking for them. */
1683 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
1684 {
1685 bitmap_clear_bit (bmap[bb_index], indx);
1686 }
1687
1688 /* Now iterate over the blocks which have memory modifications
1689 but which do not have any calls. */
1690 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set,
1691 blocks_with_calls,
1692 0, bb_index, bi)
1693 {
1694 vec<modify_pair> list
1695 = canon_modify_mem_list[bb_index];
1696 modify_pair *pair;
1697 unsigned ix;
1698
1699 FOR_EACH_VEC_ELT_REVERSE (list, ix, pair)
1700 {
1701 rtx dest = pair->dest;
1702 rtx dest_addr = pair->dest_addr;
1703
1704 if (canon_true_dependence (dest, GET_MODE (dest),
1705 dest_addr, x, NULL_RTX))
1706 bitmap_clear_bit (bmap[bb_index], indx);
1707 }
1708 }
1709 }
1710
1711 x = XEXP (x, 0);
1712 goto repeat;
1713
1714 case PC:
1715 case CC0: /*FIXME*/
1716 case CONST:
1717 CASE_CONST_ANY:
1718 case SYMBOL_REF:
1719 case LABEL_REF:
1720 case ADDR_VEC:
1721 case ADDR_DIFF_VEC:
1722 return;
1723
1724 default:
1725 break;
1726 }
1727
1728 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1729 {
1730 if (fmt[i] == 'e')
1731 {
1732 /* If we are about to do the last recursive call
1733 needed at this level, change it into iteration.
1734 This function is called enough to be worth it. */
1735 if (i == 0)
1736 {
1737 x = XEXP (x, i);
1738 goto repeat;
1739 }
1740
1741 compute_transp (XEXP (x, i), indx, bmap);
1742 }
1743 else if (fmt[i] == 'E')
1744 for (j = 0; j < XVECLEN (x, i); j++)
1745 compute_transp (XVECEXP (x, i, j), indx, bmap);
1746 }
1747 }
1748 \f
1749 /* Compute PRE+LCM working variables. */
1750
1751 /* Local properties of expressions. */
1752
1753 /* Nonzero for expressions that are transparent in the block. */
1754 static sbitmap *transp;
1755
1756 /* Nonzero for expressions that are computed (available) in the block. */
1757 static sbitmap *comp;
1758
1759 /* Nonzero for expressions that are locally anticipatable in the block. */
1760 static sbitmap *antloc;
1761
1762 /* Nonzero for expressions where this block is an optimal computation
1763 point. */
1764 static sbitmap *pre_optimal;
1765
1766 /* Nonzero for expressions which are redundant in a particular block. */
1767 static sbitmap *pre_redundant;
1768
1769 /* Nonzero for expressions which should be inserted on a specific edge. */
1770 static sbitmap *pre_insert_map;
1771
1772 /* Nonzero for expressions which should be deleted in a specific block. */
1773 static sbitmap *pre_delete_map;
1774
1775 /* Allocate vars used for PRE analysis. */
1776
1777 static void
1778 alloc_pre_mem (int n_blocks, int n_exprs)
1779 {
1780 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1781 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1782 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
1783
1784 pre_optimal = NULL;
1785 pre_redundant = NULL;
1786 pre_insert_map = NULL;
1787 pre_delete_map = NULL;
1788 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
1789
1790 /* pre_insert and pre_delete are allocated later. */
1791 }
1792
1793 /* Free vars used for PRE analysis. */
1794
1795 static void
1796 free_pre_mem (void)
1797 {
1798 sbitmap_vector_free (transp);
1799 sbitmap_vector_free (comp);
1800
1801 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
1802
1803 if (pre_optimal)
1804 sbitmap_vector_free (pre_optimal);
1805 if (pre_redundant)
1806 sbitmap_vector_free (pre_redundant);
1807 if (pre_insert_map)
1808 sbitmap_vector_free (pre_insert_map);
1809 if (pre_delete_map)
1810 sbitmap_vector_free (pre_delete_map);
1811
1812 transp = comp = NULL;
1813 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
1814 }
1815
1816 /* Remove certain expressions from anticipatable and transparent
1817 sets of basic blocks that have incoming abnormal edge.
1818 For PRE remove potentially trapping expressions to avoid placing
1819 them on abnormal edges. For hoisting remove memory references that
1820 can be clobbered by calls. */
1821
1822 static void
1823 prune_expressions (bool pre_p)
1824 {
1825 sbitmap prune_exprs;
1826 struct expr *expr;
1827 unsigned int ui;
1828 basic_block bb;
1829
1830 prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
1831 bitmap_clear (prune_exprs);
1832 for (ui = 0; ui < expr_hash_table.size; ui++)
1833 {
1834 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
1835 {
1836 /* Note potentially trapping expressions. */
1837 if (may_trap_p (expr->expr))
1838 {
1839 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1840 continue;
1841 }
1842
1843 if (!pre_p && MEM_P (expr->expr))
1844 /* Note memory references that can be clobbered by a call.
1845 We do not split abnormal edges in hoisting, so would
1846 a memory reference get hoisted along an abnormal edge,
1847 it would be placed /before/ the call. Therefore, only
1848 constant memory references can be hoisted along abnormal
1849 edges. */
1850 {
1851 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
1852 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
1853 continue;
1854
1855 if (MEM_READONLY_P (expr->expr)
1856 && !MEM_VOLATILE_P (expr->expr)
1857 && MEM_NOTRAP_P (expr->expr))
1858 /* Constant memory reference, e.g., a PIC address. */
1859 continue;
1860
1861 /* ??? Optimally, we would use interprocedural alias
1862 analysis to determine if this mem is actually killed
1863 by this call. */
1864
1865 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1866 }
1867 }
1868 }
1869
1870 FOR_EACH_BB (bb)
1871 {
1872 edge e;
1873 edge_iterator ei;
1874
1875 /* If the current block is the destination of an abnormal edge, we
1876 kill all trapping (for PRE) and memory (for hoist) expressions
1877 because we won't be able to properly place the instruction on
1878 the edge. So make them neither anticipatable nor transparent.
1879 This is fairly conservative.
1880
1881 ??? For hoisting it may be necessary to check for set-and-jump
1882 instructions here, not just for abnormal edges. The general problem
1883 is that when an expression cannot not be placed right at the end of
1884 a basic block we should account for any side-effects of a subsequent
1885 jump instructions that could clobber the expression. It would
1886 be best to implement this check along the lines of
1887 should_hoist_expr_to_dom where the target block is already known
1888 and, hence, there's no need to conservatively prune expressions on
1889 "intermediate" set-and-jump instructions. */
1890 FOR_EACH_EDGE (e, ei, bb->preds)
1891 if ((e->flags & EDGE_ABNORMAL)
1892 && (pre_p || CALL_P (BB_END (e->src))))
1893 {
1894 bitmap_and_compl (antloc[bb->index],
1895 antloc[bb->index], prune_exprs);
1896 bitmap_and_compl (transp[bb->index],
1897 transp[bb->index], prune_exprs);
1898 break;
1899 }
1900 }
1901
1902 sbitmap_free (prune_exprs);
1903 }
1904
1905 /* It may be necessary to insert a large number of insns on edges to
1906 make the existing occurrences of expressions fully redundant. This
1907 routine examines the set of insertions and deletions and if the ratio
1908 of insertions to deletions is too high for a particular expression, then
1909 the expression is removed from the insertion/deletion sets.
1910
1911 N_ELEMS is the number of elements in the hash table. */
1912
1913 static void
1914 prune_insertions_deletions (int n_elems)
1915 {
1916 sbitmap_iterator sbi;
1917 sbitmap prune_exprs;
1918
1919 /* We always use I to iterate over blocks/edges and J to iterate over
1920 expressions. */
1921 unsigned int i, j;
1922
1923 /* Counts for the number of times an expression needs to be inserted and
1924 number of times an expression can be removed as a result. */
1925 int *insertions = GCNEWVEC (int, n_elems);
1926 int *deletions = GCNEWVEC (int, n_elems);
1927
1928 /* Set of expressions which require too many insertions relative to
1929 the number of deletions achieved. We will prune these out of the
1930 insertion/deletion sets. */
1931 prune_exprs = sbitmap_alloc (n_elems);
1932 bitmap_clear (prune_exprs);
1933
1934 /* Iterate over the edges counting the number of times each expression
1935 needs to be inserted. */
1936 for (i = 0; i < (unsigned) n_edges; i++)
1937 {
1938 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
1939 insertions[j]++;
1940 }
1941
1942 /* Similarly for deletions, but those occur in blocks rather than on
1943 edges. */
1944 for (i = 0; i < (unsigned) last_basic_block; i++)
1945 {
1946 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
1947 deletions[j]++;
1948 }
1949
1950 /* Now that we have accurate counts, iterate over the elements in the
1951 hash table and see if any need too many insertions relative to the
1952 number of evaluations that can be removed. If so, mark them in
1953 PRUNE_EXPRS. */
1954 for (j = 0; j < (unsigned) n_elems; j++)
1955 if (deletions[j]
1956 && ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
1957 bitmap_set_bit (prune_exprs, j);
1958
1959 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
1960 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
1961 {
1962 for (i = 0; i < (unsigned) n_edges; i++)
1963 bitmap_clear_bit (pre_insert_map[i], j);
1964
1965 for (i = 0; i < (unsigned) last_basic_block; i++)
1966 bitmap_clear_bit (pre_delete_map[i], j);
1967 }
1968
1969 sbitmap_free (prune_exprs);
1970 free (insertions);
1971 free (deletions);
1972 }
1973
1974 /* Top level routine to do the dataflow analysis needed by PRE. */
1975
1976 static struct edge_list *
1977 compute_pre_data (void)
1978 {
1979 struct edge_list *edge_list;
1980 basic_block bb;
1981
1982 compute_local_properties (transp, comp, antloc, &expr_hash_table);
1983 prune_expressions (true);
1984 bitmap_vector_clear (ae_kill, last_basic_block);
1985
1986 /* Compute ae_kill for each basic block using:
1987
1988 ~(TRANSP | COMP)
1989 */
1990
1991 FOR_EACH_BB (bb)
1992 {
1993 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
1994 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
1995 }
1996
1997 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
1998 ae_kill, &pre_insert_map, &pre_delete_map);
1999 sbitmap_vector_free (antloc);
2000 antloc = NULL;
2001 sbitmap_vector_free (ae_kill);
2002 ae_kill = NULL;
2003
2004 prune_insertions_deletions (expr_hash_table.n_elems);
2005
2006 return edge_list;
2007 }
2008 \f
2009 /* PRE utilities */
2010
2011 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
2012 block BB.
2013
2014 VISITED is a pointer to a working buffer for tracking which BB's have
2015 been visited. It is NULL for the top-level call.
2016
2017 We treat reaching expressions that go through blocks containing the same
2018 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
2019 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
2020 2 as not reaching. The intent is to improve the probability of finding
2021 only one reaching expression and to reduce register lifetimes by picking
2022 the closest such expression. */
2023
2024 static int
2025 pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr,
2026 basic_block bb, char *visited)
2027 {
2028 edge pred;
2029 edge_iterator ei;
2030
2031 FOR_EACH_EDGE (pred, ei, bb->preds)
2032 {
2033 basic_block pred_bb = pred->src;
2034
2035 if (pred->src == ENTRY_BLOCK_PTR
2036 /* Has predecessor has already been visited? */
2037 || visited[pred_bb->index])
2038 ;/* Nothing to do. */
2039
2040 /* Does this predecessor generate this expression? */
2041 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
2042 {
2043 /* Is this the occurrence we're looking for?
2044 Note that there's only one generating occurrence per block
2045 so we just need to check the block number. */
2046 if (occr_bb == pred_bb)
2047 return 1;
2048
2049 visited[pred_bb->index] = 1;
2050 }
2051 /* Ignore this predecessor if it kills the expression. */
2052 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
2053 visited[pred_bb->index] = 1;
2054
2055 /* Neither gen nor kill. */
2056 else
2057 {
2058 visited[pred_bb->index] = 1;
2059 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
2060 return 1;
2061 }
2062 }
2063
2064 /* All paths have been checked. */
2065 return 0;
2066 }
2067
2068 /* The wrapper for pre_expr_reaches_here_work that ensures that any
2069 memory allocated for that function is returned. */
2070
2071 static int
2072 pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
2073 {
2074 int rval;
2075 char *visited = XCNEWVEC (char, last_basic_block);
2076
2077 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
2078
2079 free (visited);
2080 return rval;
2081 }
2082 \f
2083 /* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
2084
2085 static rtx
2086 process_insert_insn (struct expr *expr)
2087 {
2088 rtx reg = expr->reaching_reg;
2089 /* Copy the expression to make sure we don't have any sharing issues. */
2090 rtx exp = copy_rtx (expr->expr);
2091 rtx pat;
2092
2093 start_sequence ();
2094
2095 /* If the expression is something that's an operand, like a constant,
2096 just copy it to a register. */
2097 if (general_operand (exp, GET_MODE (reg)))
2098 emit_move_insn (reg, exp);
2099
2100 /* Otherwise, make a new insn to compute this expression and make sure the
2101 insn will be recognized (this also adds any needed CLOBBERs). */
2102 else
2103 {
2104 rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
2105
2106 if (insn_invalid_p (insn, false))
2107 gcc_unreachable ();
2108 }
2109
2110 pat = get_insns ();
2111 end_sequence ();
2112
2113 return pat;
2114 }
2115
2116 /* Add EXPR to the end of basic block BB.
2117
2118 This is used by both the PRE and code hoisting. */
2119
2120 static void
2121 insert_insn_end_basic_block (struct expr *expr, basic_block bb)
2122 {
2123 rtx insn = BB_END (bb);
2124 rtx new_insn;
2125 rtx reg = expr->reaching_reg;
2126 int regno = REGNO (reg);
2127 rtx pat, pat_end;
2128
2129 pat = process_insert_insn (expr);
2130 gcc_assert (pat && INSN_P (pat));
2131
2132 pat_end = pat;
2133 while (NEXT_INSN (pat_end) != NULL_RTX)
2134 pat_end = NEXT_INSN (pat_end);
2135
2136 /* If the last insn is a jump, insert EXPR in front [taking care to
2137 handle cc0, etc. properly]. Similarly we need to care trapping
2138 instructions in presence of non-call exceptions. */
2139
2140 if (JUMP_P (insn)
2141 || (NONJUMP_INSN_P (insn)
2142 && (!single_succ_p (bb)
2143 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
2144 {
2145 #ifdef HAVE_cc0
2146 rtx note;
2147 #endif
2148
2149 /* If this is a jump table, then we can't insert stuff here. Since
2150 we know the previous real insn must be the tablejump, we insert
2151 the new instruction just before the tablejump. */
2152 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
2153 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
2154 insn = prev_active_insn (insn);
2155
2156 #ifdef HAVE_cc0
2157 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2158 if cc0 isn't set. */
2159 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2160 if (note)
2161 insn = XEXP (note, 0);
2162 else
2163 {
2164 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
2165 if (maybe_cc0_setter
2166 && INSN_P (maybe_cc0_setter)
2167 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2168 insn = maybe_cc0_setter;
2169 }
2170 #endif
2171 /* FIXME: What if something in cc0/jump uses value set in new insn? */
2172 new_insn = emit_insn_before_noloc (pat, insn, bb);
2173 }
2174
2175 /* Likewise if the last insn is a call, as will happen in the presence
2176 of exception handling. */
2177 else if (CALL_P (insn)
2178 && (!single_succ_p (bb)
2179 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
2180 {
2181 /* Keeping in mind targets with small register classes and parameters
2182 in registers, we search backward and place the instructions before
2183 the first parameter is loaded. Do this for everyone for consistency
2184 and a presumption that we'll get better code elsewhere as well. */
2185
2186 /* Since different machines initialize their parameter registers
2187 in different orders, assume nothing. Collect the set of all
2188 parameter registers. */
2189 insn = find_first_parameter_load (insn, BB_HEAD (bb));
2190
2191 /* If we found all the parameter loads, then we want to insert
2192 before the first parameter load.
2193
2194 If we did not find all the parameter loads, then we might have
2195 stopped on the head of the block, which could be a CODE_LABEL.
2196 If we inserted before the CODE_LABEL, then we would be putting
2197 the insn in the wrong basic block. In that case, put the insn
2198 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
2199 while (LABEL_P (insn)
2200 || NOTE_INSN_BASIC_BLOCK_P (insn))
2201 insn = NEXT_INSN (insn);
2202
2203 new_insn = emit_insn_before_noloc (pat, insn, bb);
2204 }
2205 else
2206 new_insn = emit_insn_after_noloc (pat, insn, bb);
2207
2208 while (1)
2209 {
2210 if (INSN_P (pat))
2211 add_label_notes (PATTERN (pat), new_insn);
2212 if (pat == pat_end)
2213 break;
2214 pat = NEXT_INSN (pat);
2215 }
2216
2217 gcse_create_count++;
2218
2219 if (dump_file)
2220 {
2221 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
2222 bb->index, INSN_UID (new_insn));
2223 fprintf (dump_file, "copying expression %d to reg %d\n",
2224 expr->bitmap_index, regno);
2225 }
2226 }
2227
2228 /* Insert partially redundant expressions on edges in the CFG to make
2229 the expressions fully redundant. */
2230
2231 static int
2232 pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
2233 {
2234 int e, i, j, num_edges, set_size, did_insert = 0;
2235 sbitmap *inserted;
2236
2237 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2238 if it reaches any of the deleted expressions. */
2239
2240 set_size = pre_insert_map[0]->size;
2241 num_edges = NUM_EDGES (edge_list);
2242 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
2243 bitmap_vector_clear (inserted, num_edges);
2244
2245 for (e = 0; e < num_edges; e++)
2246 {
2247 int indx;
2248 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
2249
2250 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
2251 {
2252 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
2253
2254 for (j = indx;
2255 insert && j < (int) expr_hash_table.n_elems;
2256 j++, insert >>= 1)
2257 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2258 {
2259 struct expr *expr = index_map[j];
2260 struct occr *occr;
2261
2262 /* Now look at each deleted occurrence of this expression. */
2263 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2264 {
2265 if (! occr->deleted_p)
2266 continue;
2267
2268 /* Insert this expression on this edge if it would
2269 reach the deleted occurrence in BB. */
2270 if (!bitmap_bit_p (inserted[e], j))
2271 {
2272 rtx insn;
2273 edge eg = INDEX_EDGE (edge_list, e);
2274
2275 /* We can't insert anything on an abnormal and
2276 critical edge, so we insert the insn at the end of
2277 the previous block. There are several alternatives
2278 detailed in Morgans book P277 (sec 10.5) for
2279 handling this situation. This one is easiest for
2280 now. */
2281
2282 if (eg->flags & EDGE_ABNORMAL)
2283 insert_insn_end_basic_block (index_map[j], bb);
2284 else
2285 {
2286 insn = process_insert_insn (index_map[j]);
2287 insert_insn_on_edge (insn, eg);
2288 }
2289
2290 if (dump_file)
2291 {
2292 fprintf (dump_file, "PRE: edge (%d,%d), ",
2293 bb->index,
2294 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
2295 fprintf (dump_file, "copy expression %d\n",
2296 expr->bitmap_index);
2297 }
2298
2299 update_ld_motion_stores (expr);
2300 bitmap_set_bit (inserted[e], j);
2301 did_insert = 1;
2302 gcse_create_count++;
2303 }
2304 }
2305 }
2306 }
2307 }
2308
2309 sbitmap_vector_free (inserted);
2310 return did_insert;
2311 }
2312
2313 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
2314 Given "old_reg <- expr" (INSN), instead of adding after it
2315 reaching_reg <- old_reg
2316 it's better to do the following:
2317 reaching_reg <- expr
2318 old_reg <- reaching_reg
2319 because this way copy propagation can discover additional PRE
2320 opportunities. But if this fails, we try the old way.
2321 When "expr" is a store, i.e.
2322 given "MEM <- old_reg", instead of adding after it
2323 reaching_reg <- old_reg
2324 it's better to add it before as follows:
2325 reaching_reg <- old_reg
2326 MEM <- reaching_reg. */
2327
2328 static void
2329 pre_insert_copy_insn (struct expr *expr, rtx insn)
2330 {
2331 rtx reg = expr->reaching_reg;
2332 int regno = REGNO (reg);
2333 int indx = expr->bitmap_index;
2334 rtx pat = PATTERN (insn);
2335 rtx set, first_set, new_insn;
2336 rtx old_reg;
2337 int i;
2338
2339 /* This block matches the logic in hash_scan_insn. */
2340 switch (GET_CODE (pat))
2341 {
2342 case SET:
2343 set = pat;
2344 break;
2345
2346 case PARALLEL:
2347 /* Search through the parallel looking for the set whose
2348 source was the expression that we're interested in. */
2349 first_set = NULL_RTX;
2350 set = NULL_RTX;
2351 for (i = 0; i < XVECLEN (pat, 0); i++)
2352 {
2353 rtx x = XVECEXP (pat, 0, i);
2354 if (GET_CODE (x) == SET)
2355 {
2356 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2357 may not find an equivalent expression, but in this
2358 case the PARALLEL will have a single set. */
2359 if (first_set == NULL_RTX)
2360 first_set = x;
2361 if (expr_equiv_p (SET_SRC (x), expr->expr))
2362 {
2363 set = x;
2364 break;
2365 }
2366 }
2367 }
2368
2369 gcc_assert (first_set);
2370 if (set == NULL_RTX)
2371 set = first_set;
2372 break;
2373
2374 default:
2375 gcc_unreachable ();
2376 }
2377
2378 if (REG_P (SET_DEST (set)))
2379 {
2380 old_reg = SET_DEST (set);
2381 /* Check if we can modify the set destination in the original insn. */
2382 if (validate_change (insn, &SET_DEST (set), reg, 0))
2383 {
2384 new_insn = gen_move_insn (old_reg, reg);
2385 new_insn = emit_insn_after (new_insn, insn);
2386 }
2387 else
2388 {
2389 new_insn = gen_move_insn (reg, old_reg);
2390 new_insn = emit_insn_after (new_insn, insn);
2391 }
2392 }
2393 else /* This is possible only in case of a store to memory. */
2394 {
2395 old_reg = SET_SRC (set);
2396 new_insn = gen_move_insn (reg, old_reg);
2397
2398 /* Check if we can modify the set source in the original insn. */
2399 if (validate_change (insn, &SET_SRC (set), reg, 0))
2400 new_insn = emit_insn_before (new_insn, insn);
2401 else
2402 new_insn = emit_insn_after (new_insn, insn);
2403 }
2404
2405 gcse_create_count++;
2406
2407 if (dump_file)
2408 fprintf (dump_file,
2409 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
2410 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
2411 INSN_UID (insn), regno);
2412 }
2413
2414 /* Copy available expressions that reach the redundant expression
2415 to `reaching_reg'. */
2416
2417 static void
2418 pre_insert_copies (void)
2419 {
2420 unsigned int i, added_copy;
2421 struct expr *expr;
2422 struct occr *occr;
2423 struct occr *avail;
2424
2425 /* For each available expression in the table, copy the result to
2426 `reaching_reg' if the expression reaches a deleted one.
2427
2428 ??? The current algorithm is rather brute force.
2429 Need to do some profiling. */
2430
2431 for (i = 0; i < expr_hash_table.size; i++)
2432 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2433 {
2434 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2435 we don't want to insert a copy here because the expression may not
2436 really be redundant. So only insert an insn if the expression was
2437 deleted. This test also avoids further processing if the
2438 expression wasn't deleted anywhere. */
2439 if (expr->reaching_reg == NULL)
2440 continue;
2441
2442 /* Set when we add a copy for that expression. */
2443 added_copy = 0;
2444
2445 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2446 {
2447 if (! occr->deleted_p)
2448 continue;
2449
2450 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2451 {
2452 rtx insn = avail->insn;
2453
2454 /* No need to handle this one if handled already. */
2455 if (avail->copied_p)
2456 continue;
2457
2458 /* Don't handle this one if it's a redundant one. */
2459 if (INSN_DELETED_P (insn))
2460 continue;
2461
2462 /* Or if the expression doesn't reach the deleted one. */
2463 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
2464 expr,
2465 BLOCK_FOR_INSN (occr->insn)))
2466 continue;
2467
2468 added_copy = 1;
2469
2470 /* Copy the result of avail to reaching_reg. */
2471 pre_insert_copy_insn (expr, insn);
2472 avail->copied_p = 1;
2473 }
2474 }
2475
2476 if (added_copy)
2477 update_ld_motion_stores (expr);
2478 }
2479 }
2480
2481 /* Emit move from SRC to DEST noting the equivalence with expression computed
2482 in INSN. */
2483
2484 static rtx
2485 gcse_emit_move_after (rtx dest, rtx src, rtx insn)
2486 {
2487 rtx new_rtx;
2488 rtx set = single_set (insn), set2;
2489 rtx note;
2490 rtx eqv;
2491
2492 /* This should never fail since we're creating a reg->reg copy
2493 we've verified to be valid. */
2494
2495 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
2496
2497 /* Note the equivalence for local CSE pass. */
2498 set2 = single_set (new_rtx);
2499 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
2500 return new_rtx;
2501 if ((note = find_reg_equal_equiv_note (insn)))
2502 eqv = XEXP (note, 0);
2503 else
2504 eqv = SET_SRC (set);
2505
2506 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
2507
2508 return new_rtx;
2509 }
2510
2511 /* Delete redundant computations.
2512 Deletion is done by changing the insn to copy the `reaching_reg' of
2513 the expression into the result of the SET. It is left to later passes
2514 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
2515
2516 Return nonzero if a change is made. */
2517
2518 static int
2519 pre_delete (void)
2520 {
2521 unsigned int i;
2522 int changed;
2523 struct expr *expr;
2524 struct occr *occr;
2525
2526 changed = 0;
2527 for (i = 0; i < expr_hash_table.size; i++)
2528 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2529 {
2530 int indx = expr->bitmap_index;
2531
2532 /* We only need to search antic_occr since we require ANTLOC != 0. */
2533 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2534 {
2535 rtx insn = occr->insn;
2536 rtx set;
2537 basic_block bb = BLOCK_FOR_INSN (insn);
2538
2539 /* We only delete insns that have a single_set. */
2540 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
2541 && (set = single_set (insn)) != 0
2542 && dbg_cnt (pre_insn))
2543 {
2544 /* Create a pseudo-reg to store the result of reaching
2545 expressions into. Get the mode for the new pseudo from
2546 the mode of the original destination pseudo. */
2547 if (expr->reaching_reg == NULL)
2548 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
2549
2550 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
2551 delete_insn (insn);
2552 occr->deleted_p = 1;
2553 changed = 1;
2554 gcse_subst_count++;
2555
2556 if (dump_file)
2557 {
2558 fprintf (dump_file,
2559 "PRE: redundant insn %d (expression %d) in ",
2560 INSN_UID (insn), indx);
2561 fprintf (dump_file, "bb %d, reaching reg is %d\n",
2562 bb->index, REGNO (expr->reaching_reg));
2563 }
2564 }
2565 }
2566 }
2567
2568 return changed;
2569 }
2570
2571 /* Perform GCSE optimizations using PRE.
2572 This is called by one_pre_gcse_pass after all the dataflow analysis
2573 has been done.
2574
2575 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2576 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2577 Compiler Design and Implementation.
2578
2579 ??? A new pseudo reg is created to hold the reaching expression. The nice
2580 thing about the classical approach is that it would try to use an existing
2581 reg. If the register can't be adequately optimized [i.e. we introduce
2582 reload problems], one could add a pass here to propagate the new register
2583 through the block.
2584
2585 ??? We don't handle single sets in PARALLELs because we're [currently] not
2586 able to copy the rest of the parallel when we insert copies to create full
2587 redundancies from partial redundancies. However, there's no reason why we
2588 can't handle PARALLELs in the cases where there are no partial
2589 redundancies. */
2590
2591 static int
2592 pre_gcse (struct edge_list *edge_list)
2593 {
2594 unsigned int i;
2595 int did_insert, changed;
2596 struct expr **index_map;
2597 struct expr *expr;
2598
2599 /* Compute a mapping from expression number (`bitmap_index') to
2600 hash table entry. */
2601
2602 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
2603 for (i = 0; i < expr_hash_table.size; i++)
2604 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2605 index_map[expr->bitmap_index] = expr;
2606
2607 /* Delete the redundant insns first so that
2608 - we know what register to use for the new insns and for the other
2609 ones with reaching expressions
2610 - we know which insns are redundant when we go to create copies */
2611
2612 changed = pre_delete ();
2613 did_insert = pre_edge_insert (edge_list, index_map);
2614
2615 /* In other places with reaching expressions, copy the expression to the
2616 specially allocated pseudo-reg that reaches the redundant expr. */
2617 pre_insert_copies ();
2618 if (did_insert)
2619 {
2620 commit_edge_insertions ();
2621 changed = 1;
2622 }
2623
2624 free (index_map);
2625 return changed;
2626 }
2627
2628 /* Top level routine to perform one PRE GCSE pass.
2629
2630 Return nonzero if a change was made. */
2631
2632 static int
2633 one_pre_gcse_pass (void)
2634 {
2635 int changed = 0;
2636
2637 gcse_subst_count = 0;
2638 gcse_create_count = 0;
2639
2640 /* Return if there's nothing to do, or it is too expensive. */
2641 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
2642 || is_too_expensive (_("PRE disabled")))
2643 return 0;
2644
2645 /* We need alias. */
2646 init_alias_analysis ();
2647
2648 bytes_used = 0;
2649 gcc_obstack_init (&gcse_obstack);
2650 alloc_gcse_mem ();
2651
2652 alloc_hash_table (&expr_hash_table);
2653 add_noreturn_fake_exit_edges ();
2654 if (flag_gcse_lm)
2655 compute_ld_motion_mems ();
2656
2657 compute_hash_table (&expr_hash_table);
2658 if (flag_gcse_lm)
2659 trim_ld_motion_mems ();
2660 if (dump_file)
2661 dump_hash_table (dump_file, "Expression", &expr_hash_table);
2662
2663 if (expr_hash_table.n_elems > 0)
2664 {
2665 struct edge_list *edge_list;
2666 alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
2667 edge_list = compute_pre_data ();
2668 changed |= pre_gcse (edge_list);
2669 free_edge_list (edge_list);
2670 free_pre_mem ();
2671 }
2672
2673 if (flag_gcse_lm)
2674 free_ld_motion_mems ();
2675 remove_fake_exit_edges ();
2676 free_hash_table (&expr_hash_table);
2677
2678 free_gcse_mem ();
2679 obstack_free (&gcse_obstack, NULL);
2680
2681 /* We are finished with alias. */
2682 end_alias_analysis ();
2683
2684 if (dump_file)
2685 {
2686 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
2687 current_function_name (), n_basic_blocks, bytes_used);
2688 fprintf (dump_file, "%d substs, %d insns created\n",
2689 gcse_subst_count, gcse_create_count);
2690 }
2691
2692 return changed;
2693 }
2694 \f
2695 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2696 to INSN. If such notes are added to an insn which references a
2697 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2698 that note, because the following loop optimization pass requires
2699 them. */
2700
2701 /* ??? If there was a jump optimization pass after gcse and before loop,
2702 then we would not need to do this here, because jump would add the
2703 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
2704
2705 static void
2706 add_label_notes (rtx x, rtx insn)
2707 {
2708 enum rtx_code code = GET_CODE (x);
2709 int i, j;
2710 const char *fmt;
2711
2712 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2713 {
2714 /* This code used to ignore labels that referred to dispatch tables to
2715 avoid flow generating (slightly) worse code.
2716
2717 We no longer ignore such label references (see LABEL_REF handling in
2718 mark_jump_label for additional information). */
2719
2720 /* There's no reason for current users to emit jump-insns with
2721 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2722 notes. */
2723 gcc_assert (!JUMP_P (insn));
2724 add_reg_note (insn, REG_LABEL_OPERAND, XEXP (x, 0));
2725
2726 if (LABEL_P (XEXP (x, 0)))
2727 LABEL_NUSES (XEXP (x, 0))++;
2728
2729 return;
2730 }
2731
2732 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2733 {
2734 if (fmt[i] == 'e')
2735 add_label_notes (XEXP (x, i), insn);
2736 else if (fmt[i] == 'E')
2737 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2738 add_label_notes (XVECEXP (x, i, j), insn);
2739 }
2740 }
2741
2742 /* Code Hoisting variables and subroutines. */
2743
2744 /* Very busy expressions. */
2745 static sbitmap *hoist_vbein;
2746 static sbitmap *hoist_vbeout;
2747
2748 /* ??? We could compute post dominators and run this algorithm in
2749 reverse to perform tail merging, doing so would probably be
2750 more effective than the tail merging code in jump.c.
2751
2752 It's unclear if tail merging could be run in parallel with
2753 code hoisting. It would be nice. */
2754
2755 /* Allocate vars used for code hoisting analysis. */
2756
2757 static void
2758 alloc_code_hoist_mem (int n_blocks, int n_exprs)
2759 {
2760 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2761 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2762 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2763
2764 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2765 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
2766 }
2767
2768 /* Free vars used for code hoisting analysis. */
2769
2770 static void
2771 free_code_hoist_mem (void)
2772 {
2773 sbitmap_vector_free (antloc);
2774 sbitmap_vector_free (transp);
2775 sbitmap_vector_free (comp);
2776
2777 sbitmap_vector_free (hoist_vbein);
2778 sbitmap_vector_free (hoist_vbeout);
2779
2780 free_dominance_info (CDI_DOMINATORS);
2781 }
2782
2783 /* Compute the very busy expressions at entry/exit from each block.
2784
2785 An expression is very busy if all paths from a given point
2786 compute the expression. */
2787
2788 static void
2789 compute_code_hoist_vbeinout (void)
2790 {
2791 int changed, passes;
2792 basic_block bb;
2793
2794 bitmap_vector_clear (hoist_vbeout, last_basic_block);
2795 bitmap_vector_clear (hoist_vbein, last_basic_block);
2796
2797 passes = 0;
2798 changed = 1;
2799
2800 while (changed)
2801 {
2802 changed = 0;
2803
2804 /* We scan the blocks in the reverse order to speed up
2805 the convergence. */
2806 FOR_EACH_BB_REVERSE (bb)
2807 {
2808 if (bb->next_bb != EXIT_BLOCK_PTR)
2809 {
2810 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2811 hoist_vbein, bb);
2812
2813 /* Include expressions in VBEout that are calculated
2814 in BB and available at its end. */
2815 bitmap_ior (hoist_vbeout[bb->index],
2816 hoist_vbeout[bb->index], comp[bb->index]);
2817 }
2818
2819 changed |= bitmap_or_and (hoist_vbein[bb->index],
2820 antloc[bb->index],
2821 hoist_vbeout[bb->index],
2822 transp[bb->index]);
2823 }
2824
2825 passes++;
2826 }
2827
2828 if (dump_file)
2829 {
2830 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2831
2832 FOR_EACH_BB (bb)
2833 {
2834 fprintf (dump_file, "vbein (%d): ", bb->index);
2835 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
2836 fprintf (dump_file, "vbeout(%d): ", bb->index);
2837 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
2838 }
2839 }
2840 }
2841
2842 /* Top level routine to do the dataflow analysis needed by code hoisting. */
2843
2844 static void
2845 compute_code_hoist_data (void)
2846 {
2847 compute_local_properties (transp, comp, antloc, &expr_hash_table);
2848 prune_expressions (false);
2849 compute_code_hoist_vbeinout ();
2850 calculate_dominance_info (CDI_DOMINATORS);
2851 if (dump_file)
2852 fprintf (dump_file, "\n");
2853 }
2854
2855 /* Update register pressure for BB when hoisting an expression from
2856 instruction FROM, if live ranges of inputs are shrunk. Also
2857 maintain live_in information if live range of register referred
2858 in FROM is shrunk.
2859
2860 Return 0 if register pressure doesn't change, otherwise return
2861 the number by which register pressure is decreased.
2862
2863 NOTE: Register pressure won't be increased in this function. */
2864
2865 static int
2866 update_bb_reg_pressure (basic_block bb, rtx from)
2867 {
2868 rtx dreg, insn;
2869 basic_block succ_bb;
2870 df_ref *op, op_ref;
2871 edge succ;
2872 edge_iterator ei;
2873 int decreased_pressure = 0;
2874 int nregs;
2875 enum reg_class pressure_class;
2876
2877 for (op = DF_INSN_USES (from); *op; op++)
2878 {
2879 dreg = DF_REF_REAL_REG (*op);
2880 /* The live range of register is shrunk only if it isn't:
2881 1. referred on any path from the end of this block to EXIT, or
2882 2. referred by insns other than FROM in this block. */
2883 FOR_EACH_EDGE (succ, ei, bb->succs)
2884 {
2885 succ_bb = succ->dest;
2886 if (succ_bb == EXIT_BLOCK_PTR)
2887 continue;
2888
2889 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2890 break;
2891 }
2892 if (succ != NULL)
2893 continue;
2894
2895 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2896 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2897 {
2898 if (!DF_REF_INSN_INFO (op_ref))
2899 continue;
2900
2901 insn = DF_REF_INSN (op_ref);
2902 if (BLOCK_FOR_INSN (insn) == bb
2903 && NONDEBUG_INSN_P (insn) && insn != from)
2904 break;
2905 }
2906
2907 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2908 /* Decrease register pressure and update live_in information for
2909 this block. */
2910 if (!op_ref && pressure_class != NO_REGS)
2911 {
2912 decreased_pressure += nregs;
2913 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2914 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2915 }
2916 }
2917 return decreased_pressure;
2918 }
2919
2920 /* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2921 flow graph, if it can reach BB unimpared. Stop the search if the
2922 expression would need to be moved more than DISTANCE instructions.
2923
2924 DISTANCE is the number of instructions through which EXPR can be
2925 hoisted up in flow graph.
2926
2927 BB_SIZE points to an array which contains the number of instructions
2928 for each basic block.
2929
2930 PRESSURE_CLASS and NREGS are register class and number of hard registers
2931 for storing EXPR.
2932
2933 HOISTED_BBS points to a bitmap indicating basic blocks through which
2934 EXPR is hoisted.
2935
2936 FROM is the instruction from which EXPR is hoisted.
2937
2938 It's unclear exactly what Muchnick meant by "unimpared". It seems
2939 to me that the expression must either be computed or transparent in
2940 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2941 would allow the expression to be hoisted out of loops, even if
2942 the expression wasn't a loop invariant.
2943
2944 Contrast this to reachability for PRE where an expression is
2945 considered reachable if *any* path reaches instead of *all*
2946 paths. */
2947
2948 static int
2949 should_hoist_expr_to_dom (basic_block expr_bb, struct expr *expr,
2950 basic_block bb, sbitmap visited, int distance,
2951 int *bb_size, enum reg_class pressure_class,
2952 int *nregs, bitmap hoisted_bbs, rtx from)
2953 {
2954 unsigned int i;
2955 edge pred;
2956 edge_iterator ei;
2957 sbitmap_iterator sbi;
2958 int visited_allocated_locally = 0;
2959 int decreased_pressure = 0;
2960
2961 if (flag_ira_hoist_pressure)
2962 {
2963 /* Record old information of basic block BB when it is visited
2964 at the first time. */
2965 if (!bitmap_bit_p (hoisted_bbs, bb->index))
2966 {
2967 struct bb_data *data = BB_DATA (bb);
2968 bitmap_copy (data->backup, data->live_in);
2969 data->old_pressure = data->max_reg_pressure[pressure_class];
2970 }
2971 decreased_pressure = update_bb_reg_pressure (bb, from);
2972 }
2973 /* Terminate the search if distance, for which EXPR is allowed to move,
2974 is exhausted. */
2975 if (distance > 0)
2976 {
2977 if (flag_ira_hoist_pressure)
2978 {
2979 /* Prefer to hoist EXPR if register pressure is decreased. */
2980 if (decreased_pressure > *nregs)
2981 distance += bb_size[bb->index];
2982 /* Let EXPR be hoisted through basic block at no cost if one
2983 of following conditions is satisfied:
2984
2985 1. The basic block has low register pressure.
2986 2. Register pressure won't be increases after hoisting EXPR.
2987
2988 Constant expressions is handled conservatively, because
2989 hoisting constant expression aggressively results in worse
2990 code. This decision is made by the observation of CSiBE
2991 on ARM target, while it has no obvious effect on other
2992 targets like x86, x86_64, mips and powerpc. */
2993 else if (CONST_INT_P (expr->expr)
2994 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
2995 >= ira_class_hard_regs_num[pressure_class]
2996 && decreased_pressure < *nregs))
2997 distance -= bb_size[bb->index];
2998 }
2999 else
3000 distance -= bb_size[bb->index];
3001
3002 if (distance <= 0)
3003 return 0;
3004 }
3005 else
3006 gcc_assert (distance == 0);
3007
3008 if (visited == NULL)
3009 {
3010 visited_allocated_locally = 1;
3011 visited = sbitmap_alloc (last_basic_block);
3012 bitmap_clear (visited);
3013 }
3014
3015 FOR_EACH_EDGE (pred, ei, bb->preds)
3016 {
3017 basic_block pred_bb = pred->src;
3018
3019 if (pred->src == ENTRY_BLOCK_PTR)
3020 break;
3021 else if (pred_bb == expr_bb)
3022 continue;
3023 else if (bitmap_bit_p (visited, pred_bb->index))
3024 continue;
3025 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
3026 break;
3027 /* Not killed. */
3028 else
3029 {
3030 bitmap_set_bit (visited, pred_bb->index);
3031 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
3032 visited, distance, bb_size,
3033 pressure_class, nregs,
3034 hoisted_bbs, from))
3035 break;
3036 }
3037 }
3038 if (visited_allocated_locally)
3039 {
3040 /* If EXPR can be hoisted to expr_bb, record basic blocks through
3041 which EXPR is hoisted in hoisted_bbs. */
3042 if (flag_ira_hoist_pressure && !pred)
3043 {
3044 /* Record the basic block from which EXPR is hoisted. */
3045 bitmap_set_bit (visited, bb->index);
3046 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
3047 bitmap_set_bit (hoisted_bbs, i);
3048 }
3049 sbitmap_free (visited);
3050 }
3051
3052 return (pred == NULL);
3053 }
3054 \f
3055 /* Find occurrence in BB. */
3056
3057 static struct occr *
3058 find_occr_in_bb (struct occr *occr, basic_block bb)
3059 {
3060 /* Find the right occurrence of this expression. */
3061 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
3062 occr = occr->next;
3063
3064 return occr;
3065 }
3066
3067 /* Actually perform code hoisting.
3068
3069 The code hoisting pass can hoist multiple computations of the same
3070 expression along dominated path to a dominating basic block, like
3071 from b2/b3 to b1 as depicted below:
3072
3073 b1 ------
3074 /\ |
3075 / \ |
3076 bx by distance
3077 / \ |
3078 / \ |
3079 b2 b3 ------
3080
3081 Unfortunately code hoisting generally extends the live range of an
3082 output pseudo register, which increases register pressure and hurts
3083 register allocation. To address this issue, an attribute MAX_DISTANCE
3084 is computed and attached to each expression. The attribute is computed
3085 from rtx cost of the corresponding expression and it's used to control
3086 how long the expression can be hoisted up in flow graph. As the
3087 expression is hoisted up in flow graph, GCC decreases its DISTANCE
3088 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3089 register pressure if live ranges of inputs are shrunk.
3090
3091 Option "-fira-hoist-pressure" implements register pressure directed
3092 hoist based on upper method. The rationale is:
3093 1. Calculate register pressure for each basic block by reusing IRA
3094 facility.
3095 2. When expression is hoisted through one basic block, GCC checks
3096 the change of live ranges for inputs/output. The basic block's
3097 register pressure will be increased because of extended live
3098 range of output. However, register pressure will be decreased
3099 if the live ranges of inputs are shrunk.
3100 3. After knowing how hoisting affects register pressure, GCC prefers
3101 to hoist the expression if it can decrease register pressure, by
3102 increasing DISTANCE of the corresponding expression.
3103 4. If hoisting the expression increases register pressure, GCC checks
3104 register pressure of the basic block and decrease DISTANCE only if
3105 the register pressure is high. In other words, expression will be
3106 hoisted through at no cost if the basic block has low register
3107 pressure.
3108 5. Update register pressure information for basic blocks through
3109 which expression is hoisted. */
3110
3111 static int
3112 hoist_code (void)
3113 {
3114 basic_block bb, dominated;
3115 vec<basic_block> dom_tree_walk;
3116 unsigned int dom_tree_walk_index;
3117 vec<basic_block> domby;
3118 unsigned int i, j, k;
3119 struct expr **index_map;
3120 struct expr *expr;
3121 int *to_bb_head;
3122 int *bb_size;
3123 int changed = 0;
3124 struct bb_data *data;
3125 /* Basic blocks that have occurrences reachable from BB. */
3126 bitmap from_bbs;
3127 /* Basic blocks through which expr is hoisted. */
3128 bitmap hoisted_bbs = NULL;
3129 bitmap_iterator bi;
3130
3131 /* Compute a mapping from expression number (`bitmap_index') to
3132 hash table entry. */
3133
3134 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
3135 for (i = 0; i < expr_hash_table.size; i++)
3136 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
3137 index_map[expr->bitmap_index] = expr;
3138
3139 /* Calculate sizes of basic blocks and note how far
3140 each instruction is from the start of its block. We then use this
3141 data to restrict distance an expression can travel. */
3142
3143 to_bb_head = XCNEWVEC (int, get_max_uid ());
3144 bb_size = XCNEWVEC (int, last_basic_block);
3145
3146 FOR_EACH_BB (bb)
3147 {
3148 rtx insn;
3149 int to_head;
3150
3151 to_head = 0;
3152 FOR_BB_INSNS (bb, insn)
3153 {
3154 /* Don't count debug instructions to avoid them affecting
3155 decision choices. */
3156 if (NONDEBUG_INSN_P (insn))
3157 to_bb_head[INSN_UID (insn)] = to_head++;
3158 }
3159
3160 bb_size[bb->index] = to_head;
3161 }
3162
3163 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR->succs) == 1
3164 && (EDGE_SUCC (ENTRY_BLOCK_PTR, 0)->dest
3165 == ENTRY_BLOCK_PTR->next_bb));
3166
3167 from_bbs = BITMAP_ALLOC (NULL);
3168 if (flag_ira_hoist_pressure)
3169 hoisted_bbs = BITMAP_ALLOC (NULL);
3170
3171 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
3172 ENTRY_BLOCK_PTR->next_bb);
3173
3174 /* Walk over each basic block looking for potentially hoistable
3175 expressions, nothing gets hoisted from the entry block. */
3176 FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
3177 {
3178 domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3179
3180 if (domby.length () == 0)
3181 continue;
3182
3183 /* Examine each expression that is very busy at the exit of this
3184 block. These are the potentially hoistable expressions. */
3185 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
3186 {
3187 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
3188 {
3189 int nregs = 0;
3190 enum reg_class pressure_class = NO_REGS;
3191 /* Current expression. */
3192 struct expr *expr = index_map[i];
3193 /* Number of occurrences of EXPR that can be hoisted to BB. */
3194 int hoistable = 0;
3195 /* Occurrences reachable from BB. */
3196 vec<occr_t> occrs_to_hoist = vec<occr_t>();
3197 /* We want to insert the expression into BB only once, so
3198 note when we've inserted it. */
3199 int insn_inserted_p;
3200 occr_t occr;
3201
3202 /* If an expression is computed in BB and is available at end of
3203 BB, hoist all occurrences dominated by BB to BB. */
3204 if (bitmap_bit_p (comp[bb->index], i))
3205 {
3206 occr = find_occr_in_bb (expr->antic_occr, bb);
3207
3208 if (occr)
3209 {
3210 /* An occurrence might've been already deleted
3211 while processing a dominator of BB. */
3212 if (!occr->deleted_p)
3213 {
3214 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3215 hoistable++;
3216 }
3217 }
3218 else
3219 hoistable++;
3220 }
3221
3222 /* We've found a potentially hoistable expression, now
3223 we look at every block BB dominates to see if it
3224 computes the expression. */
3225 FOR_EACH_VEC_ELT (domby, j, dominated)
3226 {
3227 int max_distance;
3228
3229 /* Ignore self dominance. */
3230 if (bb == dominated)
3231 continue;
3232 /* We've found a dominated block, now see if it computes
3233 the busy expression and whether or not moving that
3234 expression to the "beginning" of that block is safe. */
3235 if (!bitmap_bit_p (antloc[dominated->index], i))
3236 continue;
3237
3238 occr = find_occr_in_bb (expr->antic_occr, dominated);
3239 gcc_assert (occr);
3240
3241 /* An occurrence might've been already deleted
3242 while processing a dominator of BB. */
3243 if (occr->deleted_p)
3244 continue;
3245 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3246
3247 max_distance = expr->max_distance;
3248 if (max_distance > 0)
3249 /* Adjust MAX_DISTANCE to account for the fact that
3250 OCCR won't have to travel all of DOMINATED, but
3251 only part of it. */
3252 max_distance += (bb_size[dominated->index]
3253 - to_bb_head[INSN_UID (occr->insn)]);
3254
3255 pressure_class = get_pressure_class_and_nregs (occr->insn,
3256 &nregs);
3257
3258 /* Note if the expression should be hoisted from the dominated
3259 block to BB if it can reach DOMINATED unimpared.
3260
3261 Keep track of how many times this expression is hoistable
3262 from a dominated block into BB. */
3263 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3264 max_distance, bb_size,
3265 pressure_class, &nregs,
3266 hoisted_bbs, occr->insn))
3267 {
3268 hoistable++;
3269 occrs_to_hoist.safe_push (occr);
3270 bitmap_set_bit (from_bbs, dominated->index);
3271 }
3272 }
3273
3274 /* If we found more than one hoistable occurrence of this
3275 expression, then note it in the vector of expressions to
3276 hoist. It makes no sense to hoist things which are computed
3277 in only one BB, and doing so tends to pessimize register
3278 allocation. One could increase this value to try harder
3279 to avoid any possible code expansion due to register
3280 allocation issues; however experiments have shown that
3281 the vast majority of hoistable expressions are only movable
3282 from two successors, so raising this threshold is likely
3283 to nullify any benefit we get from code hoisting. */
3284 if (hoistable > 1 && dbg_cnt (hoist_insn))
3285 {
3286 /* If (hoistable != vec::length), then there is
3287 an occurrence of EXPR in BB itself. Don't waste
3288 time looking for LCA in this case. */
3289 if ((unsigned) hoistable == occrs_to_hoist.length ())
3290 {
3291 basic_block lca;
3292
3293 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3294 from_bbs);
3295 if (lca != bb)
3296 /* Punt, it's better to hoist these occurrences to
3297 LCA. */
3298 occrs_to_hoist.release ();
3299 }
3300 }
3301 else
3302 /* Punt, no point hoisting a single occurence. */
3303 occrs_to_hoist.release ();
3304
3305 if (flag_ira_hoist_pressure
3306 && !occrs_to_hoist.is_empty ())
3307 {
3308 /* Increase register pressure of basic blocks to which
3309 expr is hoisted because of extended live range of
3310 output. */
3311 data = BB_DATA (bb);
3312 data->max_reg_pressure[pressure_class] += nregs;
3313 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3314 {
3315 data = BB_DATA (BASIC_BLOCK (k));
3316 data->max_reg_pressure[pressure_class] += nregs;
3317 }
3318 }
3319 else if (flag_ira_hoist_pressure)
3320 {
3321 /* Restore register pressure and live_in info for basic
3322 blocks recorded in hoisted_bbs when expr will not be
3323 hoisted. */
3324 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3325 {
3326 data = BB_DATA (BASIC_BLOCK (k));
3327 bitmap_copy (data->live_in, data->backup);
3328 data->max_reg_pressure[pressure_class]
3329 = data->old_pressure;
3330 }
3331 }
3332
3333 if (flag_ira_hoist_pressure)
3334 bitmap_clear (hoisted_bbs);
3335
3336 insn_inserted_p = 0;
3337
3338 /* Walk through occurrences of I'th expressions we want
3339 to hoist to BB and make the transformations. */
3340 FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
3341 {
3342 rtx insn;
3343 rtx set;
3344
3345 gcc_assert (!occr->deleted_p);
3346
3347 insn = occr->insn;
3348 set = single_set (insn);
3349 gcc_assert (set);
3350
3351 /* Create a pseudo-reg to store the result of reaching
3352 expressions into. Get the mode for the new pseudo
3353 from the mode of the original destination pseudo.
3354
3355 It is important to use new pseudos whenever we
3356 emit a set. This will allow reload to use
3357 rematerialization for such registers. */
3358 if (!insn_inserted_p)
3359 expr->reaching_reg
3360 = gen_reg_rtx_and_attrs (SET_DEST (set));
3361
3362 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
3363 insn);
3364 delete_insn (insn);
3365 occr->deleted_p = 1;
3366 changed = 1;
3367 gcse_subst_count++;
3368
3369 if (!insn_inserted_p)
3370 {
3371 insert_insn_end_basic_block (expr, bb);
3372 insn_inserted_p = 1;
3373 }
3374 }
3375
3376 occrs_to_hoist.release ();
3377 bitmap_clear (from_bbs);
3378 }
3379 }
3380 domby.release ();
3381 }
3382
3383 dom_tree_walk.release ();
3384 BITMAP_FREE (from_bbs);
3385 if (flag_ira_hoist_pressure)
3386 BITMAP_FREE (hoisted_bbs);
3387
3388 free (bb_size);
3389 free (to_bb_head);
3390 free (index_map);
3391
3392 return changed;
3393 }
3394
3395 /* Return pressure class and number of needed hard registers (through
3396 *NREGS) of register REGNO. */
3397 static enum reg_class
3398 get_regno_pressure_class (int regno, int *nregs)
3399 {
3400 if (regno >= FIRST_PSEUDO_REGISTER)
3401 {
3402 enum reg_class pressure_class;
3403
3404 pressure_class = reg_allocno_class (regno);
3405 pressure_class = ira_pressure_class_translate[pressure_class];
3406 *nregs
3407 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3408 return pressure_class;
3409 }
3410 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3411 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3412 {
3413 *nregs = 1;
3414 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3415 }
3416 else
3417 {
3418 *nregs = 0;
3419 return NO_REGS;
3420 }
3421 }
3422
3423 /* Return pressure class and number of hard registers (through *NREGS)
3424 for destination of INSN. */
3425 static enum reg_class
3426 get_pressure_class_and_nregs (rtx insn, int *nregs)
3427 {
3428 rtx reg;
3429 enum reg_class pressure_class;
3430 rtx set = single_set (insn);
3431
3432 /* Considered invariant insns have only one set. */
3433 gcc_assert (set != NULL_RTX);
3434 reg = SET_DEST (set);
3435 if (GET_CODE (reg) == SUBREG)
3436 reg = SUBREG_REG (reg);
3437 if (MEM_P (reg))
3438 {
3439 *nregs = 0;
3440 pressure_class = NO_REGS;
3441 }
3442 else
3443 {
3444 gcc_assert (REG_P (reg));
3445 pressure_class = reg_allocno_class (REGNO (reg));
3446 pressure_class = ira_pressure_class_translate[pressure_class];
3447 *nregs
3448 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3449 }
3450 return pressure_class;
3451 }
3452
3453 /* Increase (if INCR_P) or decrease current register pressure for
3454 register REGNO. */
3455 static void
3456 change_pressure (int regno, bool incr_p)
3457 {
3458 int nregs;
3459 enum reg_class pressure_class;
3460
3461 pressure_class = get_regno_pressure_class (regno, &nregs);
3462 if (! incr_p)
3463 curr_reg_pressure[pressure_class] -= nregs;
3464 else
3465 {
3466 curr_reg_pressure[pressure_class] += nregs;
3467 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3468 < curr_reg_pressure[pressure_class])
3469 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3470 = curr_reg_pressure[pressure_class];
3471 }
3472 }
3473
3474 /* Calculate register pressure for each basic block by walking insns
3475 from last to first. */
3476 static void
3477 calculate_bb_reg_pressure (void)
3478 {
3479 int i;
3480 unsigned int j;
3481 rtx insn;
3482 basic_block bb;
3483 bitmap curr_regs_live;
3484 bitmap_iterator bi;
3485
3486
3487 ira_setup_eliminable_regset (false);
3488 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
3489 FOR_EACH_BB (bb)
3490 {
3491 curr_bb = bb;
3492 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3493 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3494 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3495 bitmap_copy (curr_regs_live, df_get_live_out (bb));
3496 for (i = 0; i < ira_pressure_classes_num; i++)
3497 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3498 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3499 change_pressure (j, true);
3500
3501 FOR_BB_INSNS_REVERSE (bb, insn)
3502 {
3503 rtx dreg;
3504 int regno;
3505 df_ref *def_rec, *use_rec;
3506
3507 if (! NONDEBUG_INSN_P (insn))
3508 continue;
3509
3510 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
3511 {
3512 dreg = DF_REF_REAL_REG (*def_rec);
3513 gcc_assert (REG_P (dreg));
3514 regno = REGNO (dreg);
3515 if (!(DF_REF_FLAGS (*def_rec)
3516 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3517 {
3518 if (bitmap_clear_bit (curr_regs_live, regno))
3519 change_pressure (regno, false);
3520 }
3521 }
3522
3523 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
3524 {
3525 dreg = DF_REF_REAL_REG (*use_rec);
3526 gcc_assert (REG_P (dreg));
3527 regno = REGNO (dreg);
3528 if (bitmap_set_bit (curr_regs_live, regno))
3529 change_pressure (regno, true);
3530 }
3531 }
3532 }
3533 BITMAP_FREE (curr_regs_live);
3534
3535 if (dump_file == NULL)
3536 return;
3537
3538 fprintf (dump_file, "\nRegister Pressure: \n");
3539 FOR_EACH_BB (bb)
3540 {
3541 fprintf (dump_file, " Basic block %d: \n", bb->index);
3542 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3543 {
3544 enum reg_class pressure_class;
3545
3546 pressure_class = ira_pressure_classes[i];
3547 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3548 continue;
3549
3550 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3551 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3552 }
3553 }
3554 fprintf (dump_file, "\n");
3555 }
3556
3557 /* Top level routine to perform one code hoisting (aka unification) pass
3558
3559 Return nonzero if a change was made. */
3560
3561 static int
3562 one_code_hoisting_pass (void)
3563 {
3564 int changed = 0;
3565
3566 gcse_subst_count = 0;
3567 gcse_create_count = 0;
3568
3569 /* Return if there's nothing to do, or it is too expensive. */
3570 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
3571 || is_too_expensive (_("GCSE disabled")))
3572 return 0;
3573
3574 doing_code_hoisting_p = true;
3575
3576 /* Calculate register pressure for each basic block. */
3577 if (flag_ira_hoist_pressure)
3578 {
3579 regstat_init_n_sets_and_refs ();
3580 ira_set_pseudo_classes (false, dump_file);
3581 alloc_aux_for_blocks (sizeof (struct bb_data));
3582 calculate_bb_reg_pressure ();
3583 regstat_free_n_sets_and_refs ();
3584 }
3585
3586 /* We need alias. */
3587 init_alias_analysis ();
3588
3589 bytes_used = 0;
3590 gcc_obstack_init (&gcse_obstack);
3591 alloc_gcse_mem ();
3592
3593 alloc_hash_table (&expr_hash_table);
3594 compute_hash_table (&expr_hash_table);
3595 if (dump_file)
3596 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
3597
3598 if (expr_hash_table.n_elems > 0)
3599 {
3600 alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
3601 compute_code_hoist_data ();
3602 changed = hoist_code ();
3603 free_code_hoist_mem ();
3604 }
3605
3606 if (flag_ira_hoist_pressure)
3607 {
3608 free_aux_for_blocks ();
3609 free_reg_info ();
3610 }
3611 free_hash_table (&expr_hash_table);
3612 free_gcse_mem ();
3613 obstack_free (&gcse_obstack, NULL);
3614
3615 /* We are finished with alias. */
3616 end_alias_analysis ();
3617
3618 if (dump_file)
3619 {
3620 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
3621 current_function_name (), n_basic_blocks, bytes_used);
3622 fprintf (dump_file, "%d substs, %d insns created\n",
3623 gcse_subst_count, gcse_create_count);
3624 }
3625
3626 doing_code_hoisting_p = false;
3627
3628 return changed;
3629 }
3630 \f
3631 /* Here we provide the things required to do store motion towards the exit.
3632 In order for this to be effective, gcse also needed to be taught how to
3633 move a load when it is killed only by a store to itself.
3634
3635 int i;
3636 float a[10];
3637
3638 void foo(float scale)
3639 {
3640 for (i=0; i<10; i++)
3641 a[i] *= scale;
3642 }
3643
3644 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3645 the load out since its live around the loop, and stored at the bottom
3646 of the loop.
3647
3648 The 'Load Motion' referred to and implemented in this file is
3649 an enhancement to gcse which when using edge based LCM, recognizes
3650 this situation and allows gcse to move the load out of the loop.
3651
3652 Once gcse has hoisted the load, store motion can then push this
3653 load towards the exit, and we end up with no loads or stores of 'i'
3654 in the loop. */
3655
3656 static hashval_t
3657 pre_ldst_expr_hash (const void *p)
3658 {
3659 int do_not_record_p = 0;
3660 const struct ls_expr *const x = (const struct ls_expr *) p;
3661 return
3662 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
3663 }
3664
3665 static int
3666 pre_ldst_expr_eq (const void *p1, const void *p2)
3667 {
3668 const struct ls_expr *const ptr1 = (const struct ls_expr *) p1,
3669 *const ptr2 = (const struct ls_expr *) p2;
3670 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
3671 }
3672
3673 /* This will search the ldst list for a matching expression. If it
3674 doesn't find one, we create one and initialize it. */
3675
3676 static struct ls_expr *
3677 ldst_entry (rtx x)
3678 {
3679 int do_not_record_p = 0;
3680 struct ls_expr * ptr;
3681 unsigned int hash;
3682 void **slot;
3683 struct ls_expr e;
3684
3685 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3686 NULL, /*have_reg_qty=*/false);
3687
3688 e.pattern = x;
3689 slot = htab_find_slot_with_hash (pre_ldst_table, &e, hash, INSERT);
3690 if (*slot)
3691 return (struct ls_expr *)*slot;
3692
3693 ptr = XNEW (struct ls_expr);
3694
3695 ptr->next = pre_ldst_mems;
3696 ptr->expr = NULL;
3697 ptr->pattern = x;
3698 ptr->pattern_regs = NULL_RTX;
3699 ptr->loads = NULL_RTX;
3700 ptr->stores = NULL_RTX;
3701 ptr->reaching_reg = NULL_RTX;
3702 ptr->invalid = 0;
3703 ptr->index = 0;
3704 ptr->hash_index = hash;
3705 pre_ldst_mems = ptr;
3706 *slot = ptr;
3707
3708 return ptr;
3709 }
3710
3711 /* Free up an individual ldst entry. */
3712
3713 static void
3714 free_ldst_entry (struct ls_expr * ptr)
3715 {
3716 free_INSN_LIST_list (& ptr->loads);
3717 free_INSN_LIST_list (& ptr->stores);
3718
3719 free (ptr);
3720 }
3721
3722 /* Free up all memory associated with the ldst list. */
3723
3724 static void
3725 free_ld_motion_mems (void)
3726 {
3727 if (pre_ldst_table)
3728 htab_delete (pre_ldst_table);
3729 pre_ldst_table = NULL;
3730
3731 while (pre_ldst_mems)
3732 {
3733 struct ls_expr * tmp = pre_ldst_mems;
3734
3735 pre_ldst_mems = pre_ldst_mems->next;
3736
3737 free_ldst_entry (tmp);
3738 }
3739
3740 pre_ldst_mems = NULL;
3741 }
3742
3743 /* Dump debugging info about the ldst list. */
3744
3745 static void
3746 print_ldst_list (FILE * file)
3747 {
3748 struct ls_expr * ptr;
3749
3750 fprintf (file, "LDST list: \n");
3751
3752 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
3753 {
3754 fprintf (file, " Pattern (%3d): ", ptr->index);
3755
3756 print_rtl (file, ptr->pattern);
3757
3758 fprintf (file, "\n Loads : ");
3759
3760 if (ptr->loads)
3761 print_rtl (file, ptr->loads);
3762 else
3763 fprintf (file, "(nil)");
3764
3765 fprintf (file, "\n Stores : ");
3766
3767 if (ptr->stores)
3768 print_rtl (file, ptr->stores);
3769 else
3770 fprintf (file, "(nil)");
3771
3772 fprintf (file, "\n\n");
3773 }
3774
3775 fprintf (file, "\n");
3776 }
3777
3778 /* Returns 1 if X is in the list of ldst only expressions. */
3779
3780 static struct ls_expr *
3781 find_rtx_in_ldst (rtx x)
3782 {
3783 struct ls_expr e;
3784 void **slot;
3785 if (!pre_ldst_table)
3786 return NULL;
3787 e.pattern = x;
3788 slot = htab_find_slot (pre_ldst_table, &e, NO_INSERT);
3789 if (!slot || ((struct ls_expr *)*slot)->invalid)
3790 return NULL;
3791 return (struct ls_expr *) *slot;
3792 }
3793 \f
3794 /* Load Motion for loads which only kill themselves. */
3795
3796 /* Return true if x, a MEM, is a simple access with no side effects.
3797 These are the types of loads we consider for the ld_motion list,
3798 otherwise we let the usual aliasing take care of it. */
3799
3800 static int
3801 simple_mem (const_rtx x)
3802 {
3803 if (MEM_VOLATILE_P (x))
3804 return 0;
3805
3806 if (GET_MODE (x) == BLKmode)
3807 return 0;
3808
3809 /* If we are handling exceptions, we must be careful with memory references
3810 that may trap. If we are not, the behavior is undefined, so we may just
3811 continue. */
3812 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
3813 return 0;
3814
3815 if (side_effects_p (x))
3816 return 0;
3817
3818 /* Do not consider function arguments passed on stack. */
3819 if (reg_mentioned_p (stack_pointer_rtx, x))
3820 return 0;
3821
3822 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3823 return 0;
3824
3825 return 1;
3826 }
3827
3828 /* Make sure there isn't a buried reference in this pattern anywhere.
3829 If there is, invalidate the entry for it since we're not capable
3830 of fixing it up just yet.. We have to be sure we know about ALL
3831 loads since the aliasing code will allow all entries in the
3832 ld_motion list to not-alias itself. If we miss a load, we will get
3833 the wrong value since gcse might common it and we won't know to
3834 fix it up. */
3835
3836 static void
3837 invalidate_any_buried_refs (rtx x)
3838 {
3839 const char * fmt;
3840 int i, j;
3841 struct ls_expr * ptr;
3842
3843 /* Invalidate it in the list. */
3844 if (MEM_P (x) && simple_mem (x))
3845 {
3846 ptr = ldst_entry (x);
3847 ptr->invalid = 1;
3848 }
3849
3850 /* Recursively process the insn. */
3851 fmt = GET_RTX_FORMAT (GET_CODE (x));
3852
3853 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3854 {
3855 if (fmt[i] == 'e')
3856 invalidate_any_buried_refs (XEXP (x, i));
3857 else if (fmt[i] == 'E')
3858 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3859 invalidate_any_buried_refs (XVECEXP (x, i, j));
3860 }
3861 }
3862
3863 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3864 being defined as MEM loads and stores to symbols, with no side effects
3865 and no registers in the expression. For a MEM destination, we also
3866 check that the insn is still valid if we replace the destination with a
3867 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3868 which don't match this criteria, they are invalidated and trimmed out
3869 later. */
3870
3871 static void
3872 compute_ld_motion_mems (void)
3873 {
3874 struct ls_expr * ptr;
3875 basic_block bb;
3876 rtx insn;
3877
3878 pre_ldst_mems = NULL;
3879 pre_ldst_table
3880 = htab_create (13, pre_ldst_expr_hash, pre_ldst_expr_eq, NULL);
3881
3882 FOR_EACH_BB (bb)
3883 {
3884 FOR_BB_INSNS (bb, insn)
3885 {
3886 if (NONDEBUG_INSN_P (insn))
3887 {
3888 if (GET_CODE (PATTERN (insn)) == SET)
3889 {
3890 rtx src = SET_SRC (PATTERN (insn));
3891 rtx dest = SET_DEST (PATTERN (insn));
3892
3893 /* Check for a simple LOAD... */
3894 if (MEM_P (src) && simple_mem (src))
3895 {
3896 ptr = ldst_entry (src);
3897 if (REG_P (dest))
3898 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
3899 else
3900 ptr->invalid = 1;
3901 }
3902 else
3903 {
3904 /* Make sure there isn't a buried load somewhere. */
3905 invalidate_any_buried_refs (src);
3906 }
3907
3908 /* Check for stores. Don't worry about aliased ones, they
3909 will block any movement we might do later. We only care
3910 about this exact pattern since those are the only
3911 circumstance that we will ignore the aliasing info. */
3912 if (MEM_P (dest) && simple_mem (dest))
3913 {
3914 ptr = ldst_entry (dest);
3915
3916 if (! MEM_P (src)
3917 && GET_CODE (src) != ASM_OPERANDS
3918 /* Check for REG manually since want_to_gcse_p
3919 returns 0 for all REGs. */
3920 && can_assign_to_reg_without_clobbers_p (src))
3921 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
3922 else
3923 ptr->invalid = 1;
3924 }
3925 }
3926 else
3927 invalidate_any_buried_refs (PATTERN (insn));
3928 }
3929 }
3930 }
3931 }
3932
3933 /* Remove any references that have been either invalidated or are not in the
3934 expression list for pre gcse. */
3935
3936 static void
3937 trim_ld_motion_mems (void)
3938 {
3939 struct ls_expr * * last = & pre_ldst_mems;
3940 struct ls_expr * ptr = pre_ldst_mems;
3941
3942 while (ptr != NULL)
3943 {
3944 struct expr * expr;
3945
3946 /* Delete if entry has been made invalid. */
3947 if (! ptr->invalid)
3948 {
3949 /* Delete if we cannot find this mem in the expression list. */
3950 unsigned int hash = ptr->hash_index % expr_hash_table.size;
3951
3952 for (expr = expr_hash_table.table[hash];
3953 expr != NULL;
3954 expr = expr->next_same_hash)
3955 if (expr_equiv_p (expr->expr, ptr->pattern))
3956 break;
3957 }
3958 else
3959 expr = (struct expr *) 0;
3960
3961 if (expr)
3962 {
3963 /* Set the expression field if we are keeping it. */
3964 ptr->expr = expr;
3965 last = & ptr->next;
3966 ptr = ptr->next;
3967 }
3968 else
3969 {
3970 *last = ptr->next;
3971 htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
3972 free_ldst_entry (ptr);
3973 ptr = * last;
3974 }
3975 }
3976
3977 /* Show the world what we've found. */
3978 if (dump_file && pre_ldst_mems != NULL)
3979 print_ldst_list (dump_file);
3980 }
3981
3982 /* This routine will take an expression which we are replacing with
3983 a reaching register, and update any stores that are needed if
3984 that expression is in the ld_motion list. Stores are updated by
3985 copying their SRC to the reaching register, and then storing
3986 the reaching register into the store location. These keeps the
3987 correct value in the reaching register for the loads. */
3988
3989 static void
3990 update_ld_motion_stores (struct expr * expr)
3991 {
3992 struct ls_expr * mem_ptr;
3993
3994 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
3995 {
3996 /* We can try to find just the REACHED stores, but is shouldn't
3997 matter to set the reaching reg everywhere... some might be
3998 dead and should be eliminated later. */
3999
4000 /* We replace (set mem expr) with (set reg expr) (set mem reg)
4001 where reg is the reaching reg used in the load. We checked in
4002 compute_ld_motion_mems that we can replace (set mem expr) with
4003 (set reg expr) in that insn. */
4004 rtx list = mem_ptr->stores;
4005
4006 for ( ; list != NULL_RTX; list = XEXP (list, 1))
4007 {
4008 rtx insn = XEXP (list, 0);
4009 rtx pat = PATTERN (insn);
4010 rtx src = SET_SRC (pat);
4011 rtx reg = expr->reaching_reg;
4012 rtx copy;
4013
4014 /* If we've already copied it, continue. */
4015 if (expr->reaching_reg == src)
4016 continue;
4017
4018 if (dump_file)
4019 {
4020 fprintf (dump_file, "PRE: store updated with reaching reg ");
4021 print_rtl (dump_file, reg);
4022 fprintf (dump_file, ":\n ");
4023 print_inline_rtx (dump_file, insn, 8);
4024 fprintf (dump_file, "\n");
4025 }
4026
4027 copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
4028 emit_insn_before (copy, insn);
4029 SET_SRC (pat) = reg;
4030 df_insn_rescan (insn);
4031
4032 /* un-recognize this pattern since it's probably different now. */
4033 INSN_CODE (insn) = -1;
4034 gcse_create_count++;
4035 }
4036 }
4037 }
4038 \f
4039 /* Return true if the graph is too expensive to optimize. PASS is the
4040 optimization about to be performed. */
4041
4042 static bool
4043 is_too_expensive (const char *pass)
4044 {
4045 /* Trying to perform global optimizations on flow graphs which have
4046 a high connectivity will take a long time and is unlikely to be
4047 particularly useful.
4048
4049 In normal circumstances a cfg should have about twice as many
4050 edges as blocks. But we do not want to punish small functions
4051 which have a couple switch statements. Rather than simply
4052 threshold the number of blocks, uses something with a more
4053 graceful degradation. */
4054 if (n_edges > 20000 + n_basic_blocks * 4)
4055 {
4056 warning (OPT_Wdisabled_optimization,
4057 "%s: %d basic blocks and %d edges/basic block",
4058 pass, n_basic_blocks, n_edges / n_basic_blocks);
4059
4060 return true;
4061 }
4062
4063 /* If allocating memory for the dataflow bitmaps would take up too much
4064 storage it's better just to disable the optimization. */
4065 if ((n_basic_blocks
4066 * SBITMAP_SET_SIZE (max_reg_num ())
4067 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
4068 {
4069 warning (OPT_Wdisabled_optimization,
4070 "%s: %d basic blocks and %d registers",
4071 pass, n_basic_blocks, max_reg_num ());
4072
4073 return true;
4074 }
4075
4076 return false;
4077 }
4078 \f
4079 /* All the passes implemented in this file. Each pass has its
4080 own gate and execute function, and at the end of the file a
4081 pass definition for passes.c.
4082
4083 We do not construct an accurate cfg in functions which call
4084 setjmp, so none of these passes runs if the function calls
4085 setjmp.
4086 FIXME: Should just handle setjmp via REG_SETJMP notes. */
4087
4088 static bool
4089 gate_rtl_pre (void)
4090 {
4091 return optimize > 0 && flag_gcse
4092 && !cfun->calls_setjmp
4093 && optimize_function_for_speed_p (cfun)
4094 && dbg_cnt (pre);
4095 }
4096
4097 static unsigned int
4098 execute_rtl_pre (void)
4099 {
4100 int changed;
4101 delete_unreachable_blocks ();
4102 df_analyze ();
4103 changed = one_pre_gcse_pass ();
4104 flag_rerun_cse_after_global_opts |= changed;
4105 if (changed)
4106 cleanup_cfg (0);
4107 return 0;
4108 }
4109
4110 static bool
4111 gate_rtl_hoist (void)
4112 {
4113 return optimize > 0 && flag_gcse
4114 && !cfun->calls_setjmp
4115 /* It does not make sense to run code hoisting unless we are optimizing
4116 for code size -- it rarely makes programs faster, and can make then
4117 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4118 && optimize_function_for_size_p (cfun)
4119 && dbg_cnt (hoist);
4120 }
4121
4122 static unsigned int
4123 execute_rtl_hoist (void)
4124 {
4125 int changed;
4126 delete_unreachable_blocks ();
4127 df_analyze ();
4128 changed = one_code_hoisting_pass ();
4129 flag_rerun_cse_after_global_opts |= changed;
4130 if (changed)
4131 cleanup_cfg (0);
4132 return 0;
4133 }
4134
4135 struct rtl_opt_pass pass_rtl_pre =
4136 {
4137 {
4138 RTL_PASS,
4139 "rtl pre", /* name */
4140 OPTGROUP_NONE, /* optinfo_flags */
4141 gate_rtl_pre, /* gate */
4142 execute_rtl_pre, /* execute */
4143 NULL, /* sub */
4144 NULL, /* next */
4145 0, /* static_pass_number */
4146 TV_PRE, /* tv_id */
4147 PROP_cfglayout, /* properties_required */
4148 0, /* properties_provided */
4149 0, /* properties_destroyed */
4150 0, /* todo_flags_start */
4151 TODO_df_finish | TODO_verify_rtl_sharing |
4152 TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */
4153 }
4154 };
4155
4156 struct rtl_opt_pass pass_rtl_hoist =
4157 {
4158 {
4159 RTL_PASS,
4160 "hoist", /* name */
4161 OPTGROUP_NONE, /* optinfo_flags */
4162 gate_rtl_hoist, /* gate */
4163 execute_rtl_hoist, /* execute */
4164 NULL, /* sub */
4165 NULL, /* next */
4166 0, /* static_pass_number */
4167 TV_HOIST, /* tv_id */
4168 PROP_cfglayout, /* properties_required */
4169 0, /* properties_provided */
4170 0, /* properties_destroyed */
4171 0, /* todo_flags_start */
4172 TODO_df_finish | TODO_verify_rtl_sharing |
4173 TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */
4174 }
4175 };
4176
4177 #include "gt-gcse.h"