re PR rtl-optimization/33673 (ICE in verify_flow_info, missing barrier, when multiple...
[gcc.git] / gcc / gcse.c
1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
4 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* TODO
23 - reordering of memory allocation and freeing to be more space efficient
24 - do rough calc of how many regs are needed in each block, and a rough
25 calc of how many regs are available in each class and use that to
26 throttle back the code in cases where RTX_COST is minimal.
27 - a store to the same address as a load does not kill the load if the
28 source of the store is also the destination of the load. Handling this
29 allows more load motion, particularly out of loops.
30 - ability to realloc sbitmap vectors would allow one initial computation
31 of reg_set_in_block with only subsequent additions, rather than
32 recomputing it for each pass
33
34 */
35
36 /* References searched while implementing this.
37
38 Compilers Principles, Techniques and Tools
39 Aho, Sethi, Ullman
40 Addison-Wesley, 1988
41
42 Global Optimization by Suppression of Partial Redundancies
43 E. Morel, C. Renvoise
44 communications of the acm, Vol. 22, Num. 2, Feb. 1979
45
46 A Portable Machine-Independent Global Optimizer - Design and Measurements
47 Frederick Chow
48 Stanford Ph.D. thesis, Dec. 1983
49
50 A Fast Algorithm for Code Movement Optimization
51 D.M. Dhamdhere
52 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
53
54 A Solution to a Problem with Morel and Renvoise's
55 Global Optimization by Suppression of Partial Redundancies
56 K-H Drechsler, M.P. Stadel
57 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
58
59 Practical Adaptation of the Global Optimization
60 Algorithm of Morel and Renvoise
61 D.M. Dhamdhere
62 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
63
64 Efficiently Computing Static Single Assignment Form and the Control
65 Dependence Graph
66 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
67 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
68
69 Lazy Code Motion
70 J. Knoop, O. Ruthing, B. Steffen
71 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
72
73 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
74 Time for Reducible Flow Control
75 Thomas Ball
76 ACM Letters on Programming Languages and Systems,
77 Vol. 2, Num. 1-4, Mar-Dec 1993
78
79 An Efficient Representation for Sparse Sets
80 Preston Briggs, Linda Torczon
81 ACM Letters on Programming Languages and Systems,
82 Vol. 2, Num. 1-4, Mar-Dec 1993
83
84 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
85 K-H Drechsler, M.P. Stadel
86 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
87
88 Partial Dead Code Elimination
89 J. Knoop, O. Ruthing, B. Steffen
90 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
91
92 Effective Partial Redundancy Elimination
93 P. Briggs, K.D. Cooper
94 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
95
96 The Program Structure Tree: Computing Control Regions in Linear Time
97 R. Johnson, D. Pearson, K. Pingali
98 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
99
100 Optimal Code Motion: Theory and Practice
101 J. Knoop, O. Ruthing, B. Steffen
102 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
103
104 The power of assignment motion
105 J. Knoop, O. Ruthing, B. Steffen
106 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
107
108 Global code motion / global value numbering
109 C. Click
110 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
111
112 Value Driven Redundancy Elimination
113 L.T. Simpson
114 Rice University Ph.D. thesis, Apr. 1996
115
116 Value Numbering
117 L.T. Simpson
118 Massively Scalar Compiler Project, Rice University, Sep. 1996
119
120 High Performance Compilers for Parallel Computing
121 Michael Wolfe
122 Addison-Wesley, 1996
123
124 Advanced Compiler Design and Implementation
125 Steven Muchnick
126 Morgan Kaufmann, 1997
127
128 Building an Optimizing Compiler
129 Robert Morgan
130 Digital Press, 1998
131
132 People wishing to speed up the code here should read:
133 Elimination Algorithms for Data Flow Analysis
134 B.G. Ryder, M.C. Paull
135 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
136
137 How to Analyze Large Programs Efficiently and Informatively
138 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
139 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
140
141 People wishing to do something different can find various possibilities
142 in the above papers and elsewhere.
143 */
144
145 #include "config.h"
146 #include "system.h"
147 #include "coretypes.h"
148 #include "tm.h"
149 #include "toplev.h"
150
151 #include "rtl.h"
152 #include "tree.h"
153 #include "tm_p.h"
154 #include "regs.h"
155 #include "hard-reg-set.h"
156 #include "flags.h"
157 #include "real.h"
158 #include "insn-config.h"
159 #include "recog.h"
160 #include "basic-block.h"
161 #include "output.h"
162 #include "function.h"
163 #include "expr.h"
164 #include "except.h"
165 #include "ggc.h"
166 #include "params.h"
167 #include "cselib.h"
168 #include "intl.h"
169 #include "obstack.h"
170 #include "timevar.h"
171 #include "tree-pass.h"
172 #include "hashtab.h"
173 #include "df.h"
174 #include "dbgcnt.h"
175
176 /* Propagate flow information through back edges and thus enable PRE's
177 moving loop invariant calculations out of loops.
178
179 Originally this tended to create worse overall code, but several
180 improvements during the development of PRE seem to have made following
181 back edges generally a win.
182
183 Note much of the loop invariant code motion done here would normally
184 be done by loop.c, which has more heuristics for when to move invariants
185 out of loops. At some point we might need to move some of those
186 heuristics into gcse.c. */
187
188 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
189 are a superset of those done by GCSE.
190
191 We perform the following steps:
192
193 1) Compute basic block information.
194
195 2) Compute table of places where registers are set.
196
197 3) Perform copy/constant propagation.
198
199 4) Perform global cse using lazy code motion if not optimizing
200 for size, or code hoisting if we are.
201
202 5) Perform another pass of copy/constant propagation.
203
204 Two passes of copy/constant propagation are done because the first one
205 enables more GCSE and the second one helps to clean up the copies that
206 GCSE creates. This is needed more for PRE than for Classic because Classic
207 GCSE will try to use an existing register containing the common
208 subexpression rather than create a new one. This is harder to do for PRE
209 because of the code motion (which Classic GCSE doesn't do).
210
211 Expressions we are interested in GCSE-ing are of the form
212 (set (pseudo-reg) (expression)).
213 Function want_to_gcse_p says what these are.
214
215 PRE handles moving invariant expressions out of loops (by treating them as
216 partially redundant).
217
218 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
219 assignment) based GVN (global value numbering). L. T. Simpson's paper
220 (Rice University) on value numbering is a useful reference for this.
221
222 **********************
223
224 We used to support multiple passes but there are diminishing returns in
225 doing so. The first pass usually makes 90% of the changes that are doable.
226 A second pass can make a few more changes made possible by the first pass.
227 Experiments show any further passes don't make enough changes to justify
228 the expense.
229
230 A study of spec92 using an unlimited number of passes:
231 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
232 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
233 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
234
235 It was found doing copy propagation between each pass enables further
236 substitutions.
237
238 PRE is quite expensive in complicated functions because the DFA can take
239 a while to converge. Hence we only perform one pass. The parameter
240 max-gcse-passes can be modified if one wants to experiment.
241
242 **********************
243
244 The steps for PRE are:
245
246 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
247
248 2) Perform the data flow analysis for PRE.
249
250 3) Delete the redundant instructions
251
252 4) Insert the required copies [if any] that make the partially
253 redundant instructions fully redundant.
254
255 5) For other reaching expressions, insert an instruction to copy the value
256 to a newly created pseudo that will reach the redundant instruction.
257
258 The deletion is done first so that when we do insertions we
259 know which pseudo reg to use.
260
261 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
262 argue it is not. The number of iterations for the algorithm to converge
263 is typically 2-4 so I don't view it as that expensive (relatively speaking).
264
265 PRE GCSE depends heavily on the second CSE pass to clean up the copies
266 we create. To make an expression reach the place where it's redundant,
267 the result of the expression is copied to a new register, and the redundant
268 expression is deleted by replacing it with this new register. Classic GCSE
269 doesn't have this problem as much as it computes the reaching defs of
270 each register in each block and thus can try to use an existing
271 register. */
272 \f
273 /* GCSE global vars. */
274
275 /* Note whether or not we should run jump optimization after gcse. We
276 want to do this for two cases.
277
278 * If we changed any jumps via cprop.
279
280 * If we added any labels via edge splitting. */
281 static int run_jump_opt_after_gcse;
282
283 /* An obstack for our working variables. */
284 static struct obstack gcse_obstack;
285
286 struct reg_use {rtx reg_rtx; };
287
288 /* Hash table of expressions. */
289
290 struct expr
291 {
292 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
293 rtx expr;
294 /* Index in the available expression bitmaps. */
295 int bitmap_index;
296 /* Next entry with the same hash. */
297 struct expr *next_same_hash;
298 /* List of anticipatable occurrences in basic blocks in the function.
299 An "anticipatable occurrence" is one that is the first occurrence in the
300 basic block, the operands are not modified in the basic block prior
301 to the occurrence and the output is not used between the start of
302 the block and the occurrence. */
303 struct occr *antic_occr;
304 /* List of available occurrence in basic blocks in the function.
305 An "available occurrence" is one that is the last occurrence in the
306 basic block and the operands are not modified by following statements in
307 the basic block [including this insn]. */
308 struct occr *avail_occr;
309 /* Non-null if the computation is PRE redundant.
310 The value is the newly created pseudo-reg to record a copy of the
311 expression in all the places that reach the redundant copy. */
312 rtx reaching_reg;
313 };
314
315 /* Occurrence of an expression.
316 There is one per basic block. If a pattern appears more than once the
317 last appearance is used [or first for anticipatable expressions]. */
318
319 struct occr
320 {
321 /* Next occurrence of this expression. */
322 struct occr *next;
323 /* The insn that computes the expression. */
324 rtx insn;
325 /* Nonzero if this [anticipatable] occurrence has been deleted. */
326 char deleted_p;
327 /* Nonzero if this [available] occurrence has been copied to
328 reaching_reg. */
329 /* ??? This is mutually exclusive with deleted_p, so they could share
330 the same byte. */
331 char copied_p;
332 };
333
334 /* Expression and copy propagation hash tables.
335 Each hash table is an array of buckets.
336 ??? It is known that if it were an array of entries, structure elements
337 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
338 not clear whether in the final analysis a sufficient amount of memory would
339 be saved as the size of the available expression bitmaps would be larger
340 [one could build a mapping table without holes afterwards though].
341 Someday I'll perform the computation and figure it out. */
342
343 struct hash_table
344 {
345 /* The table itself.
346 This is an array of `expr_hash_table_size' elements. */
347 struct expr **table;
348
349 /* Size of the hash table, in elements. */
350 unsigned int size;
351
352 /* Number of hash table elements. */
353 unsigned int n_elems;
354
355 /* Whether the table is expression of copy propagation one. */
356 int set_p;
357 };
358
359 /* Expression hash table. */
360 static struct hash_table expr_hash_table;
361
362 /* Copy propagation hash table. */
363 static struct hash_table set_hash_table;
364
365 /* Mapping of uids to cuids.
366 Only real insns get cuids. */
367 static int *uid_cuid;
368
369 /* Highest UID in UID_CUID. */
370 static int max_uid;
371
372 /* Get the cuid of an insn. */
373 #ifdef ENABLE_CHECKING
374 #define INSN_CUID(INSN) \
375 (gcc_assert (INSN_UID (INSN) <= max_uid), uid_cuid[INSN_UID (INSN)])
376 #else
377 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
378 #endif
379
380 /* Number of cuids. */
381 static int max_cuid;
382
383 /* Mapping of cuids to insns. */
384 static rtx *cuid_insn;
385
386 /* Get insn from cuid. */
387 #define CUID_INSN(CUID) (cuid_insn[CUID])
388
389 /* Maximum register number in function prior to doing gcse + 1.
390 Registers created during this pass have regno >= max_gcse_regno.
391 This is named with "gcse" to not collide with global of same name. */
392 static unsigned int max_gcse_regno;
393
394 /* Table of registers that are modified.
395
396 For each register, each element is a list of places where the pseudo-reg
397 is set.
398
399 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
400 requires knowledge of which blocks kill which regs [and thus could use
401 a bitmap instead of the lists `reg_set_table' uses].
402
403 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
404 num-regs) [however perhaps it may be useful to keep the data as is]. One
405 advantage of recording things this way is that `reg_set_table' is fairly
406 sparse with respect to pseudo regs but for hard regs could be fairly dense
407 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
408 up functions like compute_transp since in the case of pseudo-regs we only
409 need to iterate over the number of times a pseudo-reg is set, not over the
410 number of basic blocks [clearly there is a bit of a slow down in the cases
411 where a pseudo is set more than once in a block, however it is believed
412 that the net effect is to speed things up]. This isn't done for hard-regs
413 because recording call-clobbered hard-regs in `reg_set_table' at each
414 function call can consume a fair bit of memory, and iterating over
415 hard-regs stored this way in compute_transp will be more expensive. */
416
417 typedef struct reg_set
418 {
419 /* The next setting of this register. */
420 struct reg_set *next;
421 /* The index of the block where it was set. */
422 int bb_index;
423 } reg_set;
424
425 static reg_set **reg_set_table;
426
427 /* Size of `reg_set_table'.
428 The table starts out at max_gcse_regno + slop, and is enlarged as
429 necessary. */
430 static int reg_set_table_size;
431
432 /* Amount to grow `reg_set_table' by when it's full. */
433 #define REG_SET_TABLE_SLOP 100
434
435 /* This is a list of expressions which are MEMs and will be used by load
436 or store motion.
437 Load motion tracks MEMs which aren't killed by
438 anything except itself. (i.e., loads and stores to a single location).
439 We can then allow movement of these MEM refs with a little special
440 allowance. (all stores copy the same value to the reaching reg used
441 for the loads). This means all values used to store into memory must have
442 no side effects so we can re-issue the setter value.
443 Store Motion uses this structure as an expression table to track stores
444 which look interesting, and might be moveable towards the exit block. */
445
446 struct ls_expr
447 {
448 struct expr * expr; /* Gcse expression reference for LM. */
449 rtx pattern; /* Pattern of this mem. */
450 rtx pattern_regs; /* List of registers mentioned by the mem. */
451 rtx loads; /* INSN list of loads seen. */
452 rtx stores; /* INSN list of stores seen. */
453 struct ls_expr * next; /* Next in the list. */
454 int invalid; /* Invalid for some reason. */
455 int index; /* If it maps to a bitmap index. */
456 unsigned int hash_index; /* Index when in a hash table. */
457 rtx reaching_reg; /* Register to use when re-writing. */
458 };
459
460 /* Array of implicit set patterns indexed by basic block index. */
461 static rtx *implicit_sets;
462
463 /* Head of the list of load/store memory refs. */
464 static struct ls_expr * pre_ldst_mems = NULL;
465
466 /* Hashtable for the load/store memory refs. */
467 static htab_t pre_ldst_table = NULL;
468
469 /* Bitmap containing one bit for each register in the program.
470 Used when performing GCSE to track which registers have been set since
471 the start of the basic block. */
472 static regset reg_set_bitmap;
473
474 /* For each block, a bitmap of registers set in the block.
475 This is used by compute_transp.
476 It is computed during hash table computation and not by compute_sets
477 as it includes registers added since the last pass (or between cprop and
478 gcse) and it's currently not easy to realloc sbitmap vectors. */
479 static sbitmap *reg_set_in_block;
480
481 /* Array, indexed by basic block number for a list of insns which modify
482 memory within that block. */
483 static rtx * modify_mem_list;
484 static bitmap modify_mem_list_set;
485
486 /* This array parallels modify_mem_list, but is kept canonicalized. */
487 static rtx * canon_modify_mem_list;
488
489 /* Bitmap indexed by block numbers to record which blocks contain
490 function calls. */
491 static bitmap blocks_with_calls;
492
493 /* Various variables for statistics gathering. */
494
495 /* Memory used in a pass.
496 This isn't intended to be absolutely precise. Its intent is only
497 to keep an eye on memory usage. */
498 static int bytes_used;
499
500 /* GCSE substitutions made. */
501 static int gcse_subst_count;
502 /* Number of copy instructions created. */
503 static int gcse_create_count;
504 /* Number of local constants propagated. */
505 static int local_const_prop_count;
506 /* Number of local copies propagated. */
507 static int local_copy_prop_count;
508 /* Number of global constants propagated. */
509 static int global_const_prop_count;
510 /* Number of global copies propagated. */
511 static int global_copy_prop_count;
512 \f
513 /* For available exprs */
514 static sbitmap *ae_kill, *ae_gen;
515 \f
516 static void compute_can_copy (void);
517 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
518 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
519 static void *grealloc (void *, size_t);
520 static void *gcse_alloc (unsigned long);
521 static void alloc_gcse_mem (void);
522 static void free_gcse_mem (void);
523 static void alloc_reg_set_mem (int);
524 static void free_reg_set_mem (void);
525 static void record_one_set (int, rtx);
526 static void record_set_info (rtx, const_rtx, void *);
527 static void compute_sets (void);
528 static void hash_scan_insn (rtx, struct hash_table *, int);
529 static void hash_scan_set (rtx, rtx, struct hash_table *);
530 static void hash_scan_clobber (rtx, rtx, struct hash_table *);
531 static void hash_scan_call (rtx, rtx, struct hash_table *);
532 static int want_to_gcse_p (rtx);
533 static bool can_assign_to_reg_p (rtx);
534 static bool gcse_constant_p (const_rtx);
535 static int oprs_unchanged_p (const_rtx, const_rtx, int);
536 static int oprs_anticipatable_p (const_rtx, const_rtx);
537 static int oprs_available_p (const_rtx, const_rtx);
538 static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int,
539 struct hash_table *);
540 static void insert_set_in_table (rtx, rtx, struct hash_table *);
541 static unsigned int hash_expr (const_rtx, enum machine_mode, int *, int);
542 static unsigned int hash_set (int, int);
543 static int expr_equiv_p (const_rtx, const_rtx);
544 static void record_last_reg_set_info (rtx, int);
545 static void record_last_mem_set_info (rtx);
546 static void record_last_set_info (rtx, const_rtx, void *);
547 static void compute_hash_table (struct hash_table *);
548 static void alloc_hash_table (int, struct hash_table *, int);
549 static void free_hash_table (struct hash_table *);
550 static void compute_hash_table_work (struct hash_table *);
551 static void dump_hash_table (FILE *, const char *, struct hash_table *);
552 static struct expr *lookup_set (unsigned int, struct hash_table *);
553 static struct expr *next_set (unsigned int, struct expr *);
554 static void reset_opr_set_tables (void);
555 static int oprs_not_set_p (const_rtx, const_rtx);
556 static void mark_call (rtx);
557 static void mark_set (rtx, rtx);
558 static void mark_clobber (rtx, rtx);
559 static void mark_oprs_set (rtx);
560 static void alloc_cprop_mem (int, int);
561 static void free_cprop_mem (void);
562 static void compute_transp (const_rtx, int, sbitmap *, int);
563 static void compute_transpout (void);
564 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
565 struct hash_table *);
566 static void compute_cprop_data (void);
567 static void find_used_regs (rtx *, void *);
568 static int try_replace_reg (rtx, rtx, rtx);
569 static struct expr *find_avail_set (int, rtx);
570 static int cprop_jump (basic_block, rtx, rtx, rtx, rtx);
571 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
572 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
573 static void canon_list_insert (rtx, const_rtx, void *);
574 static int cprop_insn (rtx, int);
575 static int cprop (int);
576 static void find_implicit_sets (void);
577 static int one_cprop_pass (int, bool, bool);
578 static bool constprop_register (rtx, rtx, rtx, bool);
579 static struct expr *find_bypass_set (int, int);
580 static bool reg_killed_on_edge (const_rtx, const_edge);
581 static int bypass_block (basic_block, rtx, rtx);
582 static int bypass_conditional_jumps (void);
583 static void alloc_pre_mem (int, int);
584 static void free_pre_mem (void);
585 static void compute_pre_data (void);
586 static int pre_expr_reaches_here_p (basic_block, struct expr *,
587 basic_block);
588 static void insert_insn_end_basic_block (struct expr *, basic_block, int);
589 static void pre_insert_copy_insn (struct expr *, rtx);
590 static void pre_insert_copies (void);
591 static int pre_delete (void);
592 static int pre_gcse (void);
593 static int one_pre_gcse_pass (int);
594 static void add_label_notes (rtx, rtx);
595 static void alloc_code_hoist_mem (int, int);
596 static void free_code_hoist_mem (void);
597 static void compute_code_hoist_vbeinout (void);
598 static void compute_code_hoist_data (void);
599 static int hoist_expr_reaches_here_p (basic_block, int, basic_block, char *);
600 static void hoist_code (void);
601 static int one_code_hoisting_pass (void);
602 static rtx process_insert_insn (struct expr *);
603 static int pre_edge_insert (struct edge_list *, struct expr **);
604 static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
605 basic_block, char *);
606 static struct ls_expr * ldst_entry (rtx);
607 static void free_ldst_entry (struct ls_expr *);
608 static void free_ldst_mems (void);
609 static void print_ldst_list (FILE *);
610 static struct ls_expr * find_rtx_in_ldst (rtx);
611 static int enumerate_ldsts (void);
612 static inline struct ls_expr * first_ls_expr (void);
613 static inline struct ls_expr * next_ls_expr (struct ls_expr *);
614 static int simple_mem (const_rtx);
615 static void invalidate_any_buried_refs (rtx);
616 static void compute_ld_motion_mems (void);
617 static void trim_ld_motion_mems (void);
618 static void update_ld_motion_stores (struct expr *);
619 static void reg_set_info (rtx, const_rtx, void *);
620 static void reg_clear_last_set (rtx, const_rtx, void *);
621 static bool store_ops_ok (const_rtx, int *);
622 static rtx extract_mentioned_regs (rtx);
623 static rtx extract_mentioned_regs_helper (rtx, rtx);
624 static void find_moveable_store (rtx, int *, int *);
625 static int compute_store_table (void);
626 static bool load_kills_store (const_rtx, const_rtx, int);
627 static bool find_loads (const_rtx, const_rtx, int);
628 static bool store_killed_in_insn (const_rtx, const_rtx, const_rtx, int);
629 static bool store_killed_after (const_rtx, const_rtx, const_rtx, const_basic_block, int *, rtx *);
630 static bool store_killed_before (const_rtx, const_rtx, const_rtx, const_basic_block, int *);
631 static void build_store_vectors (void);
632 static void insert_insn_start_basic_block (rtx, basic_block);
633 static int insert_store (struct ls_expr *, edge);
634 static void remove_reachable_equiv_notes (basic_block, struct ls_expr *);
635 static void replace_store_insn (rtx, rtx, basic_block, struct ls_expr *);
636 static void delete_store (struct ls_expr *, basic_block);
637 static void free_store_memory (void);
638 static void store_motion (void);
639 static void free_insn_expr_list_list (rtx *);
640 static void clear_modify_mem_tables (void);
641 static void free_modify_mem_tables (void);
642 static rtx gcse_emit_move_after (rtx, rtx, rtx);
643 static void local_cprop_find_used_regs (rtx *, void *);
644 static bool do_local_cprop (rtx, rtx, bool, rtx*);
645 static bool adjust_libcall_notes (rtx, rtx, rtx, rtx*);
646 static void local_cprop_pass (bool);
647 static bool is_too_expensive (const char *);
648 \f
649
650 /* Entry point for global common subexpression elimination.
651 F is the first instruction in the function. Return nonzero if a
652 change is mode. */
653
654 static int
655 gcse_main (rtx f ATTRIBUTE_UNUSED)
656 {
657 int changed, pass;
658 /* Bytes used at start of pass. */
659 int initial_bytes_used;
660 /* Maximum number of bytes used by a pass. */
661 int max_pass_bytes;
662 /* Point to release obstack data from for each pass. */
663 char *gcse_obstack_bottom;
664
665 /* We do not construct an accurate cfg in functions which call
666 setjmp, so just punt to be safe. */
667 if (current_function_calls_setjmp)
668 return 0;
669
670 /* Assume that we do not need to run jump optimizations after gcse. */
671 run_jump_opt_after_gcse = 0;
672
673 /* Identify the basic block information for this function, including
674 successors and predecessors. */
675 max_gcse_regno = max_reg_num ();
676
677 df_note_add_problem ();
678 df_analyze ();
679
680 if (dump_file)
681 dump_flow_info (dump_file, dump_flags);
682
683 /* Return if there's nothing to do, or it is too expensive. */
684 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
685 || is_too_expensive (_("GCSE disabled")))
686 return 0;
687
688 gcc_obstack_init (&gcse_obstack);
689 bytes_used = 0;
690
691 /* We need alias. */
692 init_alias_analysis ();
693 /* Record where pseudo-registers are set. This data is kept accurate
694 during each pass. ??? We could also record hard-reg information here
695 [since it's unchanging], however it is currently done during hash table
696 computation.
697
698 It may be tempting to compute MEM set information here too, but MEM sets
699 will be subject to code motion one day and thus we need to compute
700 information about memory sets when we build the hash tables. */
701
702 alloc_reg_set_mem (max_gcse_regno);
703 compute_sets ();
704
705 pass = 0;
706 initial_bytes_used = bytes_used;
707 max_pass_bytes = 0;
708 gcse_obstack_bottom = gcse_alloc (1);
709 changed = 1;
710 while (changed && pass < MAX_GCSE_PASSES)
711 {
712 changed = 0;
713 if (dump_file)
714 fprintf (dump_file, "GCSE pass %d\n\n", pass + 1);
715
716 /* Initialize bytes_used to the space for the pred/succ lists,
717 and the reg_set_table data. */
718 bytes_used = initial_bytes_used;
719
720 /* Each pass may create new registers, so recalculate each time. */
721 max_gcse_regno = max_reg_num ();
722
723 alloc_gcse_mem ();
724
725 /* Don't allow constant propagation to modify jumps
726 during this pass. */
727 timevar_push (TV_CPROP1);
728 changed = one_cprop_pass (pass + 1, false, false);
729 timevar_pop (TV_CPROP1);
730
731 if (optimize_size)
732 /* Do nothing. */ ;
733 else
734 {
735 timevar_push (TV_PRE);
736 changed |= one_pre_gcse_pass (pass + 1);
737 /* We may have just created new basic blocks. Release and
738 recompute various things which are sized on the number of
739 basic blocks. */
740 if (changed)
741 {
742 free_modify_mem_tables ();
743 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
744 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
745 }
746 free_reg_set_mem ();
747 alloc_reg_set_mem (max_reg_num ());
748 compute_sets ();
749 run_jump_opt_after_gcse = 1;
750 timevar_pop (TV_PRE);
751 }
752
753 if (max_pass_bytes < bytes_used)
754 max_pass_bytes = bytes_used;
755
756 /* Free up memory, then reallocate for code hoisting. We can
757 not re-use the existing allocated memory because the tables
758 will not have info for the insns or registers created by
759 partial redundancy elimination. */
760 free_gcse_mem ();
761
762 /* It does not make sense to run code hoisting unless we are optimizing
763 for code size -- it rarely makes programs faster, and can make
764 them bigger if we did partial redundancy elimination (when optimizing
765 for space, we don't run the partial redundancy algorithms). */
766 if (optimize_size)
767 {
768 timevar_push (TV_HOIST);
769 max_gcse_regno = max_reg_num ();
770 alloc_gcse_mem ();
771 changed |= one_code_hoisting_pass ();
772 free_gcse_mem ();
773
774 if (max_pass_bytes < bytes_used)
775 max_pass_bytes = bytes_used;
776 timevar_pop (TV_HOIST);
777 }
778
779 if (dump_file)
780 {
781 fprintf (dump_file, "\n");
782 fflush (dump_file);
783 }
784
785 obstack_free (&gcse_obstack, gcse_obstack_bottom);
786 pass++;
787 }
788
789 /* Do one last pass of copy propagation, including cprop into
790 conditional jumps. */
791
792 max_gcse_regno = max_reg_num ();
793 alloc_gcse_mem ();
794 /* This time, go ahead and allow cprop to alter jumps. */
795 timevar_push (TV_CPROP2);
796 one_cprop_pass (pass + 1, true, true);
797 timevar_pop (TV_CPROP2);
798 free_gcse_mem ();
799
800 if (dump_file)
801 {
802 fprintf (dump_file, "GCSE of %s: %d basic blocks, ",
803 current_function_name (), n_basic_blocks);
804 fprintf (dump_file, "%d pass%s, %d bytes\n\n",
805 pass, pass > 1 ? "es" : "", max_pass_bytes);
806 }
807
808 obstack_free (&gcse_obstack, NULL);
809 free_reg_set_mem ();
810
811 /* We are finished with alias. */
812 end_alias_analysis ();
813
814 if (!optimize_size && flag_gcse_sm)
815 {
816 timevar_push (TV_LSM);
817 store_motion ();
818 timevar_pop (TV_LSM);
819 }
820
821 /* Record where pseudo-registers are set. */
822 return run_jump_opt_after_gcse;
823 }
824 \f
825 /* Misc. utilities. */
826
827 /* Nonzero for each mode that supports (set (reg) (reg)).
828 This is trivially true for integer and floating point values.
829 It may or may not be true for condition codes. */
830 static char can_copy[(int) NUM_MACHINE_MODES];
831
832 /* Compute which modes support reg/reg copy operations. */
833
834 static void
835 compute_can_copy (void)
836 {
837 int i;
838 #ifndef AVOID_CCMODE_COPIES
839 rtx reg, insn;
840 #endif
841 memset (can_copy, 0, NUM_MACHINE_MODES);
842
843 start_sequence ();
844 for (i = 0; i < NUM_MACHINE_MODES; i++)
845 if (GET_MODE_CLASS (i) == MODE_CC)
846 {
847 #ifdef AVOID_CCMODE_COPIES
848 can_copy[i] = 0;
849 #else
850 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
851 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
852 if (recog (PATTERN (insn), insn, NULL) >= 0)
853 can_copy[i] = 1;
854 #endif
855 }
856 else
857 can_copy[i] = 1;
858
859 end_sequence ();
860 }
861
862 /* Returns whether the mode supports reg/reg copy operations. */
863
864 bool
865 can_copy_p (enum machine_mode mode)
866 {
867 static bool can_copy_init_p = false;
868
869 if (! can_copy_init_p)
870 {
871 compute_can_copy ();
872 can_copy_init_p = true;
873 }
874
875 return can_copy[mode] != 0;
876 }
877 \f
878 /* Cover function to xmalloc to record bytes allocated. */
879
880 static void *
881 gmalloc (size_t size)
882 {
883 bytes_used += size;
884 return xmalloc (size);
885 }
886
887 /* Cover function to xcalloc to record bytes allocated. */
888
889 static void *
890 gcalloc (size_t nelem, size_t elsize)
891 {
892 bytes_used += nelem * elsize;
893 return xcalloc (nelem, elsize);
894 }
895
896 /* Cover function to xrealloc.
897 We don't record the additional size since we don't know it.
898 It won't affect memory usage stats much anyway. */
899
900 static void *
901 grealloc (void *ptr, size_t size)
902 {
903 return xrealloc (ptr, size);
904 }
905
906 /* Cover function to obstack_alloc. */
907
908 static void *
909 gcse_alloc (unsigned long size)
910 {
911 bytes_used += size;
912 return obstack_alloc (&gcse_obstack, size);
913 }
914
915 /* Allocate memory for the cuid mapping array,
916 and reg/memory set tracking tables.
917
918 This is called at the start of each pass. */
919
920 static void
921 alloc_gcse_mem (void)
922 {
923 int i;
924 basic_block bb;
925 rtx insn;
926
927 /* Find the largest UID and create a mapping from UIDs to CUIDs.
928 CUIDs are like UIDs except they increase monotonically, have no gaps,
929 and only apply to real insns.
930 (Actually, there are gaps, for insn that are not inside a basic block.
931 but we should never see those anyway, so this is OK.) */
932
933 max_uid = get_max_uid ();
934 uid_cuid = gcalloc (max_uid + 1, sizeof (int));
935 i = 0;
936 FOR_EACH_BB (bb)
937 FOR_BB_INSNS (bb, insn)
938 {
939 if (INSN_P (insn))
940 uid_cuid[INSN_UID (insn)] = i++;
941 else
942 uid_cuid[INSN_UID (insn)] = i;
943 }
944
945 /* Create a table mapping cuids to insns. */
946
947 max_cuid = i;
948 cuid_insn = gcalloc (max_cuid + 1, sizeof (rtx));
949 i = 0;
950 FOR_EACH_BB (bb)
951 FOR_BB_INSNS (bb, insn)
952 if (INSN_P (insn))
953 CUID_INSN (i++) = insn;
954
955 /* Allocate vars to track sets of regs. */
956 reg_set_bitmap = BITMAP_ALLOC (NULL);
957
958 /* Allocate vars to track sets of regs, memory per block. */
959 reg_set_in_block = sbitmap_vector_alloc (last_basic_block, max_gcse_regno);
960 /* Allocate array to keep a list of insns which modify memory in each
961 basic block. */
962 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
963 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
964 modify_mem_list_set = BITMAP_ALLOC (NULL);
965 blocks_with_calls = BITMAP_ALLOC (NULL);
966 }
967
968 /* Free memory allocated by alloc_gcse_mem. */
969
970 static void
971 free_gcse_mem (void)
972 {
973 free (uid_cuid);
974 free (cuid_insn);
975
976 BITMAP_FREE (reg_set_bitmap);
977
978 sbitmap_vector_free (reg_set_in_block);
979 free_modify_mem_tables ();
980 BITMAP_FREE (modify_mem_list_set);
981 BITMAP_FREE (blocks_with_calls);
982 }
983 \f
984 /* Compute the local properties of each recorded expression.
985
986 Local properties are those that are defined by the block, irrespective of
987 other blocks.
988
989 An expression is transparent in a block if its operands are not modified
990 in the block.
991
992 An expression is computed (locally available) in a block if it is computed
993 at least once and expression would contain the same value if the
994 computation was moved to the end of the block.
995
996 An expression is locally anticipatable in a block if it is computed at
997 least once and expression would contain the same value if the computation
998 was moved to the beginning of the block.
999
1000 We call this routine for cprop, pre and code hoisting. They all compute
1001 basically the same information and thus can easily share this code.
1002
1003 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1004 properties. If NULL, then it is not necessary to compute or record that
1005 particular property.
1006
1007 TABLE controls which hash table to look at. If it is set hash table,
1008 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1009 ABSALTERED. */
1010
1011 static void
1012 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
1013 struct hash_table *table)
1014 {
1015 unsigned int i;
1016
1017 /* Initialize any bitmaps that were passed in. */
1018 if (transp)
1019 {
1020 if (table->set_p)
1021 sbitmap_vector_zero (transp, last_basic_block);
1022 else
1023 sbitmap_vector_ones (transp, last_basic_block);
1024 }
1025
1026 if (comp)
1027 sbitmap_vector_zero (comp, last_basic_block);
1028 if (antloc)
1029 sbitmap_vector_zero (antloc, last_basic_block);
1030
1031 for (i = 0; i < table->size; i++)
1032 {
1033 struct expr *expr;
1034
1035 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1036 {
1037 int indx = expr->bitmap_index;
1038 struct occr *occr;
1039
1040 /* The expression is transparent in this block if it is not killed.
1041 We start by assuming all are transparent [none are killed], and
1042 then reset the bits for those that are. */
1043 if (transp)
1044 compute_transp (expr->expr, indx, transp, table->set_p);
1045
1046 /* The occurrences recorded in antic_occr are exactly those that
1047 we want to set to nonzero in ANTLOC. */
1048 if (antloc)
1049 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1050 {
1051 SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
1052
1053 /* While we're scanning the table, this is a good place to
1054 initialize this. */
1055 occr->deleted_p = 0;
1056 }
1057
1058 /* The occurrences recorded in avail_occr are exactly those that
1059 we want to set to nonzero in COMP. */
1060 if (comp)
1061 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1062 {
1063 SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
1064
1065 /* While we're scanning the table, this is a good place to
1066 initialize this. */
1067 occr->copied_p = 0;
1068 }
1069
1070 /* While we're scanning the table, this is a good place to
1071 initialize this. */
1072 expr->reaching_reg = 0;
1073 }
1074 }
1075 }
1076 \f
1077 /* Register set information.
1078
1079 `reg_set_table' records where each register is set or otherwise
1080 modified. */
1081
1082 static struct obstack reg_set_obstack;
1083
1084 static void
1085 alloc_reg_set_mem (int n_regs)
1086 {
1087 reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
1088 reg_set_table = gcalloc (reg_set_table_size, sizeof (struct reg_set *));
1089
1090 gcc_obstack_init (&reg_set_obstack);
1091 }
1092
1093 static void
1094 free_reg_set_mem (void)
1095 {
1096 free (reg_set_table);
1097 obstack_free (&reg_set_obstack, NULL);
1098 }
1099
1100 /* Record REGNO in the reg_set table. */
1101
1102 static void
1103 record_one_set (int regno, rtx insn)
1104 {
1105 /* Allocate a new reg_set element and link it onto the list. */
1106 struct reg_set *new_reg_info;
1107
1108 /* If the table isn't big enough, enlarge it. */
1109 if (regno >= reg_set_table_size)
1110 {
1111 int new_size = regno + REG_SET_TABLE_SLOP;
1112
1113 reg_set_table = grealloc (reg_set_table,
1114 new_size * sizeof (struct reg_set *));
1115 memset (reg_set_table + reg_set_table_size, 0,
1116 (new_size - reg_set_table_size) * sizeof (struct reg_set *));
1117 reg_set_table_size = new_size;
1118 }
1119
1120 new_reg_info = obstack_alloc (&reg_set_obstack, sizeof (struct reg_set));
1121 bytes_used += sizeof (struct reg_set);
1122 new_reg_info->bb_index = BLOCK_NUM (insn);
1123 new_reg_info->next = reg_set_table[regno];
1124 reg_set_table[regno] = new_reg_info;
1125 }
1126
1127 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1128 an insn. The DATA is really the instruction in which the SET is
1129 occurring. */
1130
1131 static void
1132 record_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1133 {
1134 rtx record_set_insn = (rtx) data;
1135
1136 if (REG_P (dest) && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
1137 record_one_set (REGNO (dest), record_set_insn);
1138 }
1139
1140 /* Scan the function and record each set of each pseudo-register.
1141
1142 This is called once, at the start of the gcse pass. See the comments for
1143 `reg_set_table' for further documentation. */
1144
1145 static void
1146 compute_sets (void)
1147 {
1148 basic_block bb;
1149 rtx insn;
1150
1151 FOR_EACH_BB (bb)
1152 FOR_BB_INSNS (bb, insn)
1153 if (INSN_P (insn))
1154 note_stores (PATTERN (insn), record_set_info, insn);
1155 }
1156 \f
1157 /* Hash table support. */
1158
1159 struct reg_avail_info
1160 {
1161 basic_block last_bb;
1162 int first_set;
1163 int last_set;
1164 };
1165
1166 static struct reg_avail_info *reg_avail_info;
1167 static basic_block current_bb;
1168
1169
1170 /* See whether X, the source of a set, is something we want to consider for
1171 GCSE. */
1172
1173 static int
1174 want_to_gcse_p (rtx x)
1175 {
1176 #ifdef STACK_REGS
1177 /* On register stack architectures, don't GCSE constants from the
1178 constant pool, as the benefits are often swamped by the overhead
1179 of shuffling the register stack between basic blocks. */
1180 if (IS_STACK_MODE (GET_MODE (x)))
1181 x = avoid_constant_pool_reference (x);
1182 #endif
1183
1184 switch (GET_CODE (x))
1185 {
1186 case REG:
1187 case SUBREG:
1188 case CONST_INT:
1189 case CONST_DOUBLE:
1190 case CONST_FIXED:
1191 case CONST_VECTOR:
1192 case CALL:
1193 return 0;
1194
1195 default:
1196 return can_assign_to_reg_p (x);
1197 }
1198 }
1199
1200 /* Used internally by can_assign_to_reg_p. */
1201
1202 static GTY(()) rtx test_insn;
1203
1204 /* Return true if we can assign X to a pseudo register. */
1205
1206 static bool
1207 can_assign_to_reg_p (rtx x)
1208 {
1209 int num_clobbers = 0;
1210 int icode;
1211
1212 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1213 if (general_operand (x, GET_MODE (x)))
1214 return 1;
1215 else if (GET_MODE (x) == VOIDmode)
1216 return 0;
1217
1218 /* Otherwise, check if we can make a valid insn from it. First initialize
1219 our test insn if we haven't already. */
1220 if (test_insn == 0)
1221 {
1222 test_insn
1223 = make_insn_raw (gen_rtx_SET (VOIDmode,
1224 gen_rtx_REG (word_mode,
1225 FIRST_PSEUDO_REGISTER * 2),
1226 const0_rtx));
1227 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
1228 }
1229
1230 /* Now make an insn like the one we would make when GCSE'ing and see if
1231 valid. */
1232 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
1233 SET_SRC (PATTERN (test_insn)) = x;
1234 return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
1235 && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
1236 }
1237
1238 /* Return nonzero if the operands of expression X are unchanged from the
1239 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1240 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1241
1242 static int
1243 oprs_unchanged_p (const_rtx x, const_rtx insn, int avail_p)
1244 {
1245 int i, j;
1246 enum rtx_code code;
1247 const char *fmt;
1248
1249 if (x == 0)
1250 return 1;
1251
1252 code = GET_CODE (x);
1253 switch (code)
1254 {
1255 case REG:
1256 {
1257 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
1258
1259 if (info->last_bb != current_bb)
1260 return 1;
1261 if (avail_p)
1262 return info->last_set < INSN_CUID (insn);
1263 else
1264 return info->first_set >= INSN_CUID (insn);
1265 }
1266
1267 case MEM:
1268 if (load_killed_in_block_p (current_bb, INSN_CUID (insn),
1269 x, avail_p))
1270 return 0;
1271 else
1272 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
1273
1274 case PRE_DEC:
1275 case PRE_INC:
1276 case POST_DEC:
1277 case POST_INC:
1278 case PRE_MODIFY:
1279 case POST_MODIFY:
1280 return 0;
1281
1282 case PC:
1283 case CC0: /*FIXME*/
1284 case CONST:
1285 case CONST_INT:
1286 case CONST_DOUBLE:
1287 case CONST_FIXED:
1288 case CONST_VECTOR:
1289 case SYMBOL_REF:
1290 case LABEL_REF:
1291 case ADDR_VEC:
1292 case ADDR_DIFF_VEC:
1293 return 1;
1294
1295 default:
1296 break;
1297 }
1298
1299 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1300 {
1301 if (fmt[i] == 'e')
1302 {
1303 /* If we are about to do the last recursive call needed at this
1304 level, change it into iteration. This function is called enough
1305 to be worth it. */
1306 if (i == 0)
1307 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
1308
1309 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
1310 return 0;
1311 }
1312 else if (fmt[i] == 'E')
1313 for (j = 0; j < XVECLEN (x, i); j++)
1314 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
1315 return 0;
1316 }
1317
1318 return 1;
1319 }
1320
1321 /* Used for communication between mems_conflict_for_gcse_p and
1322 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1323 conflict between two memory references. */
1324 static int gcse_mems_conflict_p;
1325
1326 /* Used for communication between mems_conflict_for_gcse_p and
1327 load_killed_in_block_p. A memory reference for a load instruction,
1328 mems_conflict_for_gcse_p will see if a memory store conflicts with
1329 this memory load. */
1330 static const_rtx gcse_mem_operand;
1331
1332 /* DEST is the output of an instruction. If it is a memory reference, and
1333 possibly conflicts with the load found in gcse_mem_operand, then set
1334 gcse_mems_conflict_p to a nonzero value. */
1335
1336 static void
1337 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
1338 void *data ATTRIBUTE_UNUSED)
1339 {
1340 while (GET_CODE (dest) == SUBREG
1341 || GET_CODE (dest) == ZERO_EXTRACT
1342 || GET_CODE (dest) == STRICT_LOW_PART)
1343 dest = XEXP (dest, 0);
1344
1345 /* If DEST is not a MEM, then it will not conflict with the load. Note
1346 that function calls are assumed to clobber memory, but are handled
1347 elsewhere. */
1348 if (! MEM_P (dest))
1349 return;
1350
1351 /* If we are setting a MEM in our list of specially recognized MEMs,
1352 don't mark as killed this time. */
1353
1354 if (expr_equiv_p (dest, gcse_mem_operand) && pre_ldst_mems != NULL)
1355 {
1356 if (!find_rtx_in_ldst (dest))
1357 gcse_mems_conflict_p = 1;
1358 return;
1359 }
1360
1361 if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
1362 rtx_addr_varies_p))
1363 gcse_mems_conflict_p = 1;
1364 }
1365
1366 /* Return nonzero if the expression in X (a memory reference) is killed
1367 in block BB before or after the insn with the CUID in UID_LIMIT.
1368 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1369 before UID_LIMIT.
1370
1371 To check the entire block, set UID_LIMIT to max_uid + 1 and
1372 AVAIL_P to 0. */
1373
1374 static int
1375 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x, int avail_p)
1376 {
1377 rtx list_entry = modify_mem_list[bb->index];
1378
1379 /* If this is a readonly then we aren't going to be changing it. */
1380 if (MEM_READONLY_P (x))
1381 return 0;
1382
1383 while (list_entry)
1384 {
1385 rtx setter;
1386 /* Ignore entries in the list that do not apply. */
1387 if ((avail_p
1388 && INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
1389 || (! avail_p
1390 && INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
1391 {
1392 list_entry = XEXP (list_entry, 1);
1393 continue;
1394 }
1395
1396 setter = XEXP (list_entry, 0);
1397
1398 /* If SETTER is a call everything is clobbered. Note that calls
1399 to pure functions are never put on the list, so we need not
1400 worry about them. */
1401 if (CALL_P (setter))
1402 return 1;
1403
1404 /* SETTER must be an INSN of some kind that sets memory. Call
1405 note_stores to examine each hunk of memory that is modified.
1406
1407 The note_stores interface is pretty limited, so we have to
1408 communicate via global variables. Yuk. */
1409 gcse_mem_operand = x;
1410 gcse_mems_conflict_p = 0;
1411 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1412 if (gcse_mems_conflict_p)
1413 return 1;
1414 list_entry = XEXP (list_entry, 1);
1415 }
1416 return 0;
1417 }
1418
1419 /* Return nonzero if the operands of expression X are unchanged from
1420 the start of INSN's basic block up to but not including INSN. */
1421
1422 static int
1423 oprs_anticipatable_p (const_rtx x, const_rtx insn)
1424 {
1425 return oprs_unchanged_p (x, insn, 0);
1426 }
1427
1428 /* Return nonzero if the operands of expression X are unchanged from
1429 INSN to the end of INSN's basic block. */
1430
1431 static int
1432 oprs_available_p (const_rtx x, const_rtx insn)
1433 {
1434 return oprs_unchanged_p (x, insn, 1);
1435 }
1436
1437 /* Hash expression X.
1438
1439 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1440 indicating if a volatile operand is found or if the expression contains
1441 something we don't want to insert in the table. HASH_TABLE_SIZE is
1442 the current size of the hash table to be probed. */
1443
1444 static unsigned int
1445 hash_expr (const_rtx x, enum machine_mode mode, int *do_not_record_p,
1446 int hash_table_size)
1447 {
1448 unsigned int hash;
1449
1450 *do_not_record_p = 0;
1451
1452 hash = hash_rtx (x, mode, do_not_record_p,
1453 NULL, /*have_reg_qty=*/false);
1454 return hash % hash_table_size;
1455 }
1456
1457 /* Hash a set of register REGNO.
1458
1459 Sets are hashed on the register that is set. This simplifies the PRE copy
1460 propagation code.
1461
1462 ??? May need to make things more elaborate. Later, as necessary. */
1463
1464 static unsigned int
1465 hash_set (int regno, int hash_table_size)
1466 {
1467 unsigned int hash;
1468
1469 hash = regno;
1470 return hash % hash_table_size;
1471 }
1472
1473 /* Return nonzero if exp1 is equivalent to exp2. */
1474
1475 static int
1476 expr_equiv_p (const_rtx x, const_rtx y)
1477 {
1478 return exp_equiv_p (x, y, 0, true);
1479 }
1480
1481 /* Insert expression X in INSN in the hash TABLE.
1482 If it is already present, record it as the last occurrence in INSN's
1483 basic block.
1484
1485 MODE is the mode of the value X is being stored into.
1486 It is only used if X is a CONST_INT.
1487
1488 ANTIC_P is nonzero if X is an anticipatable expression.
1489 AVAIL_P is nonzero if X is an available expression. */
1490
1491 static void
1492 insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
1493 int avail_p, struct hash_table *table)
1494 {
1495 int found, do_not_record_p;
1496 unsigned int hash;
1497 struct expr *cur_expr, *last_expr = NULL;
1498 struct occr *antic_occr, *avail_occr;
1499
1500 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1501
1502 /* Do not insert expression in table if it contains volatile operands,
1503 or if hash_expr determines the expression is something we don't want
1504 to or can't handle. */
1505 if (do_not_record_p)
1506 return;
1507
1508 cur_expr = table->table[hash];
1509 found = 0;
1510
1511 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1512 {
1513 /* If the expression isn't found, save a pointer to the end of
1514 the list. */
1515 last_expr = cur_expr;
1516 cur_expr = cur_expr->next_same_hash;
1517 }
1518
1519 if (! found)
1520 {
1521 cur_expr = gcse_alloc (sizeof (struct expr));
1522 bytes_used += sizeof (struct expr);
1523 if (table->table[hash] == NULL)
1524 /* This is the first pattern that hashed to this index. */
1525 table->table[hash] = cur_expr;
1526 else
1527 /* Add EXPR to end of this hash chain. */
1528 last_expr->next_same_hash = cur_expr;
1529
1530 /* Set the fields of the expr element. */
1531 cur_expr->expr = x;
1532 cur_expr->bitmap_index = table->n_elems++;
1533 cur_expr->next_same_hash = NULL;
1534 cur_expr->antic_occr = NULL;
1535 cur_expr->avail_occr = NULL;
1536 }
1537
1538 /* Now record the occurrence(s). */
1539 if (antic_p)
1540 {
1541 antic_occr = cur_expr->antic_occr;
1542
1543 if (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
1544 antic_occr = NULL;
1545
1546 if (antic_occr)
1547 /* Found another instance of the expression in the same basic block.
1548 Prefer the currently recorded one. We want the first one in the
1549 block and the block is scanned from start to end. */
1550 ; /* nothing to do */
1551 else
1552 {
1553 /* First occurrence of this expression in this basic block. */
1554 antic_occr = gcse_alloc (sizeof (struct occr));
1555 bytes_used += sizeof (struct occr);
1556 antic_occr->insn = insn;
1557 antic_occr->next = cur_expr->antic_occr;
1558 antic_occr->deleted_p = 0;
1559 cur_expr->antic_occr = antic_occr;
1560 }
1561 }
1562
1563 if (avail_p)
1564 {
1565 avail_occr = cur_expr->avail_occr;
1566
1567 if (avail_occr && BLOCK_NUM (avail_occr->insn) == BLOCK_NUM (insn))
1568 {
1569 /* Found another instance of the expression in the same basic block.
1570 Prefer this occurrence to the currently recorded one. We want
1571 the last one in the block and the block is scanned from start
1572 to end. */
1573 avail_occr->insn = insn;
1574 }
1575 else
1576 {
1577 /* First occurrence of this expression in this basic block. */
1578 avail_occr = gcse_alloc (sizeof (struct occr));
1579 bytes_used += sizeof (struct occr);
1580 avail_occr->insn = insn;
1581 avail_occr->next = cur_expr->avail_occr;
1582 avail_occr->deleted_p = 0;
1583 cur_expr->avail_occr = avail_occr;
1584 }
1585 }
1586 }
1587
1588 /* Insert pattern X in INSN in the hash table.
1589 X is a SET of a reg to either another reg or a constant.
1590 If it is already present, record it as the last occurrence in INSN's
1591 basic block. */
1592
1593 static void
1594 insert_set_in_table (rtx x, rtx insn, struct hash_table *table)
1595 {
1596 int found;
1597 unsigned int hash;
1598 struct expr *cur_expr, *last_expr = NULL;
1599 struct occr *cur_occr;
1600
1601 gcc_assert (GET_CODE (x) == SET && REG_P (SET_DEST (x)));
1602
1603 hash = hash_set (REGNO (SET_DEST (x)), table->size);
1604
1605 cur_expr = table->table[hash];
1606 found = 0;
1607
1608 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1609 {
1610 /* If the expression isn't found, save a pointer to the end of
1611 the list. */
1612 last_expr = cur_expr;
1613 cur_expr = cur_expr->next_same_hash;
1614 }
1615
1616 if (! found)
1617 {
1618 cur_expr = gcse_alloc (sizeof (struct expr));
1619 bytes_used += sizeof (struct expr);
1620 if (table->table[hash] == NULL)
1621 /* This is the first pattern that hashed to this index. */
1622 table->table[hash] = cur_expr;
1623 else
1624 /* Add EXPR to end of this hash chain. */
1625 last_expr->next_same_hash = cur_expr;
1626
1627 /* Set the fields of the expr element.
1628 We must copy X because it can be modified when copy propagation is
1629 performed on its operands. */
1630 cur_expr->expr = copy_rtx (x);
1631 cur_expr->bitmap_index = table->n_elems++;
1632 cur_expr->next_same_hash = NULL;
1633 cur_expr->antic_occr = NULL;
1634 cur_expr->avail_occr = NULL;
1635 }
1636
1637 /* Now record the occurrence. */
1638 cur_occr = cur_expr->avail_occr;
1639
1640 if (cur_occr && BLOCK_NUM (cur_occr->insn) == BLOCK_NUM (insn))
1641 {
1642 /* Found another instance of the expression in the same basic block.
1643 Prefer this occurrence to the currently recorded one. We want
1644 the last one in the block and the block is scanned from start
1645 to end. */
1646 cur_occr->insn = insn;
1647 }
1648 else
1649 {
1650 /* First occurrence of this expression in this basic block. */
1651 cur_occr = gcse_alloc (sizeof (struct occr));
1652 bytes_used += sizeof (struct occr);
1653
1654 cur_occr->insn = insn;
1655 cur_occr->next = cur_expr->avail_occr;
1656 cur_occr->deleted_p = 0;
1657 cur_expr->avail_occr = cur_occr;
1658 }
1659 }
1660
1661 /* Determine whether the rtx X should be treated as a constant for
1662 the purposes of GCSE's constant propagation. */
1663
1664 static bool
1665 gcse_constant_p (const_rtx x)
1666 {
1667 /* Consider a COMPARE of two integers constant. */
1668 if (GET_CODE (x) == COMPARE
1669 && GET_CODE (XEXP (x, 0)) == CONST_INT
1670 && GET_CODE (XEXP (x, 1)) == CONST_INT)
1671 return true;
1672
1673 /* Consider a COMPARE of the same registers is a constant
1674 if they are not floating point registers. */
1675 if (GET_CODE(x) == COMPARE
1676 && REG_P (XEXP (x, 0)) && REG_P (XEXP (x, 1))
1677 && REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 1))
1678 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
1679 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 1))))
1680 return true;
1681
1682 return CONSTANT_P (x);
1683 }
1684
1685 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
1686 expression one). */
1687
1688 static void
1689 hash_scan_set (rtx pat, rtx insn, struct hash_table *table)
1690 {
1691 rtx src = SET_SRC (pat);
1692 rtx dest = SET_DEST (pat);
1693 rtx note;
1694
1695 if (GET_CODE (src) == CALL)
1696 hash_scan_call (src, insn, table);
1697
1698 else if (REG_P (dest))
1699 {
1700 unsigned int regno = REGNO (dest);
1701 rtx tmp;
1702
1703 /* See if a REG_NOTE shows this equivalent to a simpler expression.
1704 This allows us to do a single GCSE pass and still eliminate
1705 redundant constants, addresses or other expressions that are
1706 constructed with multiple instructions. */
1707 note = find_reg_equal_equiv_note (insn);
1708 if (note != 0
1709 && (table->set_p
1710 ? gcse_constant_p (XEXP (note, 0))
1711 : want_to_gcse_p (XEXP (note, 0))))
1712 src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
1713
1714 /* Only record sets of pseudo-regs in the hash table. */
1715 if (! table->set_p
1716 && regno >= FIRST_PSEUDO_REGISTER
1717 /* Don't GCSE something if we can't do a reg/reg copy. */
1718 && can_copy_p (GET_MODE (dest))
1719 /* GCSE commonly inserts instruction after the insn. We can't
1720 do that easily for EH_REGION notes so disable GCSE on these
1721 for now. */
1722 && !find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1723 /* Is SET_SRC something we want to gcse? */
1724 && want_to_gcse_p (src)
1725 /* Don't CSE a nop. */
1726 && ! set_noop_p (pat)
1727 /* Don't GCSE if it has attached REG_EQUIV note.
1728 At this point this only function parameters should have
1729 REG_EQUIV notes and if the argument slot is used somewhere
1730 explicitly, it means address of parameter has been taken,
1731 so we should not extend the lifetime of the pseudo. */
1732 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1733 {
1734 /* An expression is not anticipatable if its operands are
1735 modified before this insn or if this is not the only SET in
1736 this insn. The latter condition does not have to mean that
1737 SRC itself is not anticipatable, but we just will not be
1738 able to handle code motion of insns with multiple sets. */
1739 int antic_p = oprs_anticipatable_p (src, insn)
1740 && !multiple_sets (insn);
1741 /* An expression is not available if its operands are
1742 subsequently modified, including this insn. It's also not
1743 available if this is a branch, because we can't insert
1744 a set after the branch. */
1745 int avail_p = (oprs_available_p (src, insn)
1746 && ! JUMP_P (insn));
1747
1748 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p, table);
1749 }
1750
1751 /* Record sets for constant/copy propagation. */
1752 else if (table->set_p
1753 && regno >= FIRST_PSEUDO_REGISTER
1754 && ((REG_P (src)
1755 && REGNO (src) >= FIRST_PSEUDO_REGISTER
1756 && can_copy_p (GET_MODE (dest))
1757 && REGNO (src) != regno)
1758 || gcse_constant_p (src))
1759 /* A copy is not available if its src or dest is subsequently
1760 modified. Here we want to search from INSN+1 on, but
1761 oprs_available_p searches from INSN on. */
1762 && (insn == BB_END (BLOCK_FOR_INSN (insn))
1763 || (tmp = next_nonnote_insn (insn)) == NULL_RTX
1764 || BLOCK_FOR_INSN (tmp) != BLOCK_FOR_INSN (insn)
1765 || oprs_available_p (pat, tmp)))
1766 insert_set_in_table (pat, insn, table);
1767 }
1768 /* In case of store we want to consider the memory value as available in
1769 the REG stored in that memory. This makes it possible to remove
1770 redundant loads from due to stores to the same location. */
1771 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1772 {
1773 unsigned int regno = REGNO (src);
1774
1775 /* Do not do this for constant/copy propagation. */
1776 if (! table->set_p
1777 /* Only record sets of pseudo-regs in the hash table. */
1778 && regno >= FIRST_PSEUDO_REGISTER
1779 /* Don't GCSE something if we can't do a reg/reg copy. */
1780 && can_copy_p (GET_MODE (src))
1781 /* GCSE commonly inserts instruction after the insn. We can't
1782 do that easily for EH_REGION notes so disable GCSE on these
1783 for now. */
1784 && ! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1785 /* Is SET_DEST something we want to gcse? */
1786 && want_to_gcse_p (dest)
1787 /* Don't CSE a nop. */
1788 && ! set_noop_p (pat)
1789 /* Don't GCSE if it has attached REG_EQUIV note.
1790 At this point this only function parameters should have
1791 REG_EQUIV notes and if the argument slot is used somewhere
1792 explicitly, it means address of parameter has been taken,
1793 so we should not extend the lifetime of the pseudo. */
1794 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1795 || ! MEM_P (XEXP (note, 0))))
1796 {
1797 /* Stores are never anticipatable. */
1798 int antic_p = 0;
1799 /* An expression is not available if its operands are
1800 subsequently modified, including this insn. It's also not
1801 available if this is a branch, because we can't insert
1802 a set after the branch. */
1803 int avail_p = oprs_available_p (dest, insn)
1804 && ! JUMP_P (insn);
1805
1806 /* Record the memory expression (DEST) in the hash table. */
1807 insert_expr_in_table (dest, GET_MODE (dest), insn,
1808 antic_p, avail_p, table);
1809 }
1810 }
1811 }
1812
1813 static void
1814 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1815 struct hash_table *table ATTRIBUTE_UNUSED)
1816 {
1817 /* Currently nothing to do. */
1818 }
1819
1820 static void
1821 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1822 struct hash_table *table ATTRIBUTE_UNUSED)
1823 {
1824 /* Currently nothing to do. */
1825 }
1826
1827 /* Process INSN and add hash table entries as appropriate.
1828
1829 Only available expressions that set a single pseudo-reg are recorded.
1830
1831 Single sets in a PARALLEL could be handled, but it's an extra complication
1832 that isn't dealt with right now. The trick is handling the CLOBBERs that
1833 are also in the PARALLEL. Later.
1834
1835 If SET_P is nonzero, this is for the assignment hash table,
1836 otherwise it is for the expression hash table.
1837 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
1838 not record any expressions. */
1839
1840 static void
1841 hash_scan_insn (rtx insn, struct hash_table *table, int in_libcall_block)
1842 {
1843 rtx pat = PATTERN (insn);
1844 int i;
1845
1846 if (in_libcall_block)
1847 return;
1848
1849 /* Pick out the sets of INSN and for other forms of instructions record
1850 what's been modified. */
1851
1852 if (GET_CODE (pat) == SET)
1853 hash_scan_set (pat, insn, table);
1854 else if (GET_CODE (pat) == PARALLEL)
1855 for (i = 0; i < XVECLEN (pat, 0); i++)
1856 {
1857 rtx x = XVECEXP (pat, 0, i);
1858
1859 if (GET_CODE (x) == SET)
1860 hash_scan_set (x, insn, table);
1861 else if (GET_CODE (x) == CLOBBER)
1862 hash_scan_clobber (x, insn, table);
1863 else if (GET_CODE (x) == CALL)
1864 hash_scan_call (x, insn, table);
1865 }
1866
1867 else if (GET_CODE (pat) == CLOBBER)
1868 hash_scan_clobber (pat, insn, table);
1869 else if (GET_CODE (pat) == CALL)
1870 hash_scan_call (pat, insn, table);
1871 }
1872
1873 static void
1874 dump_hash_table (FILE *file, const char *name, struct hash_table *table)
1875 {
1876 int i;
1877 /* Flattened out table, so it's printed in proper order. */
1878 struct expr **flat_table;
1879 unsigned int *hash_val;
1880 struct expr *expr;
1881
1882 flat_table = xcalloc (table->n_elems, sizeof (struct expr *));
1883 hash_val = xmalloc (table->n_elems * sizeof (unsigned int));
1884
1885 for (i = 0; i < (int) table->size; i++)
1886 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1887 {
1888 flat_table[expr->bitmap_index] = expr;
1889 hash_val[expr->bitmap_index] = i;
1890 }
1891
1892 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1893 name, table->size, table->n_elems);
1894
1895 for (i = 0; i < (int) table->n_elems; i++)
1896 if (flat_table[i] != 0)
1897 {
1898 expr = flat_table[i];
1899 fprintf (file, "Index %d (hash value %d)\n ",
1900 expr->bitmap_index, hash_val[i]);
1901 print_rtl (file, expr->expr);
1902 fprintf (file, "\n");
1903 }
1904
1905 fprintf (file, "\n");
1906
1907 free (flat_table);
1908 free (hash_val);
1909 }
1910
1911 /* Record register first/last/block set information for REGNO in INSN.
1912
1913 first_set records the first place in the block where the register
1914 is set and is used to compute "anticipatability".
1915
1916 last_set records the last place in the block where the register
1917 is set and is used to compute "availability".
1918
1919 last_bb records the block for which first_set and last_set are
1920 valid, as a quick test to invalidate them.
1921
1922 reg_set_in_block records whether the register is set in the block
1923 and is used to compute "transparency". */
1924
1925 static void
1926 record_last_reg_set_info (rtx insn, int regno)
1927 {
1928 struct reg_avail_info *info = &reg_avail_info[regno];
1929 int cuid = INSN_CUID (insn);
1930
1931 info->last_set = cuid;
1932 if (info->last_bb != current_bb)
1933 {
1934 info->last_bb = current_bb;
1935 info->first_set = cuid;
1936 SET_BIT (reg_set_in_block[current_bb->index], regno);
1937 }
1938 }
1939
1940
1941 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1942 Note we store a pair of elements in the list, so they have to be
1943 taken off pairwise. */
1944
1945 static void
1946 canon_list_insert (rtx dest ATTRIBUTE_UNUSED, const_rtx unused1 ATTRIBUTE_UNUSED,
1947 void * v_insn)
1948 {
1949 rtx dest_addr, insn;
1950 int bb;
1951
1952 while (GET_CODE (dest) == SUBREG
1953 || GET_CODE (dest) == ZERO_EXTRACT
1954 || GET_CODE (dest) == STRICT_LOW_PART)
1955 dest = XEXP (dest, 0);
1956
1957 /* If DEST is not a MEM, then it will not conflict with a load. Note
1958 that function calls are assumed to clobber memory, but are handled
1959 elsewhere. */
1960
1961 if (! MEM_P (dest))
1962 return;
1963
1964 dest_addr = get_addr (XEXP (dest, 0));
1965 dest_addr = canon_rtx (dest_addr);
1966 insn = (rtx) v_insn;
1967 bb = BLOCK_NUM (insn);
1968
1969 canon_modify_mem_list[bb] =
1970 alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
1971 canon_modify_mem_list[bb] =
1972 alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
1973 }
1974
1975 /* Record memory modification information for INSN. We do not actually care
1976 about the memory location(s) that are set, or even how they are set (consider
1977 a CALL_INSN). We merely need to record which insns modify memory. */
1978
1979 static void
1980 record_last_mem_set_info (rtx insn)
1981 {
1982 int bb = BLOCK_NUM (insn);
1983
1984 /* load_killed_in_block_p will handle the case of calls clobbering
1985 everything. */
1986 modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
1987 bitmap_set_bit (modify_mem_list_set, bb);
1988
1989 if (CALL_P (insn))
1990 {
1991 /* Note that traversals of this loop (other than for free-ing)
1992 will break after encountering a CALL_INSN. So, there's no
1993 need to insert a pair of items, as canon_list_insert does. */
1994 canon_modify_mem_list[bb] =
1995 alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
1996 bitmap_set_bit (blocks_with_calls, bb);
1997 }
1998 else
1999 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
2000 }
2001
2002 /* Called from compute_hash_table via note_stores to handle one
2003 SET or CLOBBER in an insn. DATA is really the instruction in which
2004 the SET is taking place. */
2005
2006 static void
2007 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
2008 {
2009 rtx last_set_insn = (rtx) data;
2010
2011 if (GET_CODE (dest) == SUBREG)
2012 dest = SUBREG_REG (dest);
2013
2014 if (REG_P (dest))
2015 record_last_reg_set_info (last_set_insn, REGNO (dest));
2016 else if (MEM_P (dest)
2017 /* Ignore pushes, they clobber nothing. */
2018 && ! push_operand (dest, GET_MODE (dest)))
2019 record_last_mem_set_info (last_set_insn);
2020 }
2021
2022 /* Top level function to create an expression or assignment hash table.
2023
2024 Expression entries are placed in the hash table if
2025 - they are of the form (set (pseudo-reg) src),
2026 - src is something we want to perform GCSE on,
2027 - none of the operands are subsequently modified in the block
2028
2029 Assignment entries are placed in the hash table if
2030 - they are of the form (set (pseudo-reg) src),
2031 - src is something we want to perform const/copy propagation on,
2032 - none of the operands or target are subsequently modified in the block
2033
2034 Currently src must be a pseudo-reg or a const_int.
2035
2036 TABLE is the table computed. */
2037
2038 static void
2039 compute_hash_table_work (struct hash_table *table)
2040 {
2041 unsigned int i;
2042
2043 /* While we compute the hash table we also compute a bit array of which
2044 registers are set in which blocks.
2045 ??? This isn't needed during const/copy propagation, but it's cheap to
2046 compute. Later. */
2047 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
2048
2049 /* re-Cache any INSN_LIST nodes we have allocated. */
2050 clear_modify_mem_tables ();
2051 /* Some working arrays used to track first and last set in each block. */
2052 reg_avail_info = gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));
2053
2054 for (i = 0; i < max_gcse_regno; ++i)
2055 reg_avail_info[i].last_bb = NULL;
2056
2057 FOR_EACH_BB (current_bb)
2058 {
2059 rtx insn;
2060 unsigned int regno;
2061 int in_libcall_block;
2062
2063 /* First pass over the instructions records information used to
2064 determine when registers and memory are first and last set.
2065 ??? hard-reg reg_set_in_block computation
2066 could be moved to compute_sets since they currently don't change. */
2067
2068 FOR_BB_INSNS (current_bb, insn)
2069 {
2070 if (! INSN_P (insn))
2071 continue;
2072
2073 if (CALL_P (insn))
2074 {
2075 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2076 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2077 record_last_reg_set_info (insn, regno);
2078
2079 mark_call (insn);
2080 }
2081
2082 note_stores (PATTERN (insn), record_last_set_info, insn);
2083 }
2084
2085 /* Insert implicit sets in the hash table. */
2086 if (table->set_p
2087 && implicit_sets[current_bb->index] != NULL_RTX)
2088 hash_scan_set (implicit_sets[current_bb->index],
2089 BB_HEAD (current_bb), table);
2090
2091 /* The next pass builds the hash table. */
2092 in_libcall_block = 0;
2093 FOR_BB_INSNS (current_bb, insn)
2094 if (INSN_P (insn))
2095 {
2096 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2097 in_libcall_block = 1;
2098 else if (table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2099 in_libcall_block = 0;
2100 hash_scan_insn (insn, table, in_libcall_block);
2101 if (!table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2102 in_libcall_block = 0;
2103 }
2104 }
2105
2106 free (reg_avail_info);
2107 reg_avail_info = NULL;
2108 }
2109
2110 /* Allocate space for the set/expr hash TABLE.
2111 N_INSNS is the number of instructions in the function.
2112 It is used to determine the number of buckets to use.
2113 SET_P determines whether set or expression table will
2114 be created. */
2115
2116 static void
2117 alloc_hash_table (int n_insns, struct hash_table *table, int set_p)
2118 {
2119 int n;
2120
2121 table->size = n_insns / 4;
2122 if (table->size < 11)
2123 table->size = 11;
2124
2125 /* Attempt to maintain efficient use of hash table.
2126 Making it an odd number is simplest for now.
2127 ??? Later take some measurements. */
2128 table->size |= 1;
2129 n = table->size * sizeof (struct expr *);
2130 table->table = gmalloc (n);
2131 table->set_p = set_p;
2132 }
2133
2134 /* Free things allocated by alloc_hash_table. */
2135
2136 static void
2137 free_hash_table (struct hash_table *table)
2138 {
2139 free (table->table);
2140 }
2141
2142 /* Compute the hash TABLE for doing copy/const propagation or
2143 expression hash table. */
2144
2145 static void
2146 compute_hash_table (struct hash_table *table)
2147 {
2148 /* Initialize count of number of entries in hash table. */
2149 table->n_elems = 0;
2150 memset (table->table, 0, table->size * sizeof (struct expr *));
2151
2152 compute_hash_table_work (table);
2153 }
2154 \f
2155 /* Expression tracking support. */
2156
2157 /* Lookup REGNO in the set TABLE. The result is a pointer to the
2158 table entry, or NULL if not found. */
2159
2160 static struct expr *
2161 lookup_set (unsigned int regno, struct hash_table *table)
2162 {
2163 unsigned int hash = hash_set (regno, table->size);
2164 struct expr *expr;
2165
2166 expr = table->table[hash];
2167
2168 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
2169 expr = expr->next_same_hash;
2170
2171 return expr;
2172 }
2173
2174 /* Return the next entry for REGNO in list EXPR. */
2175
2176 static struct expr *
2177 next_set (unsigned int regno, struct expr *expr)
2178 {
2179 do
2180 expr = expr->next_same_hash;
2181 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
2182
2183 return expr;
2184 }
2185
2186 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2187 types may be mixed. */
2188
2189 static void
2190 free_insn_expr_list_list (rtx *listp)
2191 {
2192 rtx list, next;
2193
2194 for (list = *listp; list ; list = next)
2195 {
2196 next = XEXP (list, 1);
2197 if (GET_CODE (list) == EXPR_LIST)
2198 free_EXPR_LIST_node (list);
2199 else
2200 free_INSN_LIST_node (list);
2201 }
2202
2203 *listp = NULL;
2204 }
2205
2206 /* Clear canon_modify_mem_list and modify_mem_list tables. */
2207 static void
2208 clear_modify_mem_tables (void)
2209 {
2210 unsigned i;
2211 bitmap_iterator bi;
2212
2213 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
2214 {
2215 free_INSN_LIST_list (modify_mem_list + i);
2216 free_insn_expr_list_list (canon_modify_mem_list + i);
2217 }
2218 bitmap_clear (modify_mem_list_set);
2219 bitmap_clear (blocks_with_calls);
2220 }
2221
2222 /* Release memory used by modify_mem_list_set. */
2223
2224 static void
2225 free_modify_mem_tables (void)
2226 {
2227 clear_modify_mem_tables ();
2228 free (modify_mem_list);
2229 free (canon_modify_mem_list);
2230 modify_mem_list = 0;
2231 canon_modify_mem_list = 0;
2232 }
2233
2234 /* Reset tables used to keep track of what's still available [since the
2235 start of the block]. */
2236
2237 static void
2238 reset_opr_set_tables (void)
2239 {
2240 /* Maintain a bitmap of which regs have been set since beginning of
2241 the block. */
2242 CLEAR_REG_SET (reg_set_bitmap);
2243
2244 /* Also keep a record of the last instruction to modify memory.
2245 For now this is very trivial, we only record whether any memory
2246 location has been modified. */
2247 clear_modify_mem_tables ();
2248 }
2249
2250 /* Return nonzero if the operands of X are not set before INSN in
2251 INSN's basic block. */
2252
2253 static int
2254 oprs_not_set_p (const_rtx x, const_rtx insn)
2255 {
2256 int i, j;
2257 enum rtx_code code;
2258 const char *fmt;
2259
2260 if (x == 0)
2261 return 1;
2262
2263 code = GET_CODE (x);
2264 switch (code)
2265 {
2266 case PC:
2267 case CC0:
2268 case CONST:
2269 case CONST_INT:
2270 case CONST_DOUBLE:
2271 case CONST_FIXED:
2272 case CONST_VECTOR:
2273 case SYMBOL_REF:
2274 case LABEL_REF:
2275 case ADDR_VEC:
2276 case ADDR_DIFF_VEC:
2277 return 1;
2278
2279 case MEM:
2280 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
2281 INSN_CUID (insn), x, 0))
2282 return 0;
2283 else
2284 return oprs_not_set_p (XEXP (x, 0), insn);
2285
2286 case REG:
2287 return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
2288
2289 default:
2290 break;
2291 }
2292
2293 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2294 {
2295 if (fmt[i] == 'e')
2296 {
2297 /* If we are about to do the last recursive call
2298 needed at this level, change it into iteration.
2299 This function is called enough to be worth it. */
2300 if (i == 0)
2301 return oprs_not_set_p (XEXP (x, i), insn);
2302
2303 if (! oprs_not_set_p (XEXP (x, i), insn))
2304 return 0;
2305 }
2306 else if (fmt[i] == 'E')
2307 for (j = 0; j < XVECLEN (x, i); j++)
2308 if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
2309 return 0;
2310 }
2311
2312 return 1;
2313 }
2314
2315 /* Mark things set by a CALL. */
2316
2317 static void
2318 mark_call (rtx insn)
2319 {
2320 if (! CONST_OR_PURE_CALL_P (insn))
2321 record_last_mem_set_info (insn);
2322 }
2323
2324 /* Mark things set by a SET. */
2325
2326 static void
2327 mark_set (rtx pat, rtx insn)
2328 {
2329 rtx dest = SET_DEST (pat);
2330
2331 while (GET_CODE (dest) == SUBREG
2332 || GET_CODE (dest) == ZERO_EXTRACT
2333 || GET_CODE (dest) == STRICT_LOW_PART)
2334 dest = XEXP (dest, 0);
2335
2336 if (REG_P (dest))
2337 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
2338 else if (MEM_P (dest))
2339 record_last_mem_set_info (insn);
2340
2341 if (GET_CODE (SET_SRC (pat)) == CALL)
2342 mark_call (insn);
2343 }
2344
2345 /* Record things set by a CLOBBER. */
2346
2347 static void
2348 mark_clobber (rtx pat, rtx insn)
2349 {
2350 rtx clob = XEXP (pat, 0);
2351
2352 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2353 clob = XEXP (clob, 0);
2354
2355 if (REG_P (clob))
2356 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
2357 else
2358 record_last_mem_set_info (insn);
2359 }
2360
2361 /* Record things set by INSN.
2362 This data is used by oprs_not_set_p. */
2363
2364 static void
2365 mark_oprs_set (rtx insn)
2366 {
2367 rtx pat = PATTERN (insn);
2368 int i;
2369
2370 if (GET_CODE (pat) == SET)
2371 mark_set (pat, insn);
2372 else if (GET_CODE (pat) == PARALLEL)
2373 for (i = 0; i < XVECLEN (pat, 0); i++)
2374 {
2375 rtx x = XVECEXP (pat, 0, i);
2376
2377 if (GET_CODE (x) == SET)
2378 mark_set (x, insn);
2379 else if (GET_CODE (x) == CLOBBER)
2380 mark_clobber (x, insn);
2381 else if (GET_CODE (x) == CALL)
2382 mark_call (insn);
2383 }
2384
2385 else if (GET_CODE (pat) == CLOBBER)
2386 mark_clobber (pat, insn);
2387 else if (GET_CODE (pat) == CALL)
2388 mark_call (insn);
2389 }
2390
2391 \f
2392 /* Compute copy/constant propagation working variables. */
2393
2394 /* Local properties of assignments. */
2395 static sbitmap *cprop_pavloc;
2396 static sbitmap *cprop_absaltered;
2397
2398 /* Global properties of assignments (computed from the local properties). */
2399 static sbitmap *cprop_avin;
2400 static sbitmap *cprop_avout;
2401
2402 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
2403 basic blocks. N_SETS is the number of sets. */
2404
2405 static void
2406 alloc_cprop_mem (int n_blocks, int n_sets)
2407 {
2408 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
2409 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
2410
2411 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
2412 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
2413 }
2414
2415 /* Free vars used by copy/const propagation. */
2416
2417 static void
2418 free_cprop_mem (void)
2419 {
2420 sbitmap_vector_free (cprop_pavloc);
2421 sbitmap_vector_free (cprop_absaltered);
2422 sbitmap_vector_free (cprop_avin);
2423 sbitmap_vector_free (cprop_avout);
2424 }
2425
2426 /* For each block, compute whether X is transparent. X is either an
2427 expression or an assignment [though we don't care which, for this context
2428 an assignment is treated as an expression]. For each block where an
2429 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
2430 bit in BMAP. */
2431
2432 static void
2433 compute_transp (const_rtx x, int indx, sbitmap *bmap, int set_p)
2434 {
2435 int i, j;
2436 basic_block bb;
2437 enum rtx_code code;
2438 reg_set *r;
2439 const char *fmt;
2440
2441 /* repeat is used to turn tail-recursion into iteration since GCC
2442 can't do it when there's no return value. */
2443 repeat:
2444
2445 if (x == 0)
2446 return;
2447
2448 code = GET_CODE (x);
2449 switch (code)
2450 {
2451 case REG:
2452 if (set_p)
2453 {
2454 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2455 {
2456 FOR_EACH_BB (bb)
2457 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2458 SET_BIT (bmap[bb->index], indx);
2459 }
2460 else
2461 {
2462 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2463 SET_BIT (bmap[r->bb_index], indx);
2464 }
2465 }
2466 else
2467 {
2468 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2469 {
2470 FOR_EACH_BB (bb)
2471 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2472 RESET_BIT (bmap[bb->index], indx);
2473 }
2474 else
2475 {
2476 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2477 RESET_BIT (bmap[r->bb_index], indx);
2478 }
2479 }
2480
2481 return;
2482
2483 case MEM:
2484 if (! MEM_READONLY_P (x))
2485 {
2486 bitmap_iterator bi;
2487 unsigned bb_index;
2488
2489 /* First handle all the blocks with calls. We don't need to
2490 do any list walking for them. */
2491 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
2492 {
2493 if (set_p)
2494 SET_BIT (bmap[bb_index], indx);
2495 else
2496 RESET_BIT (bmap[bb_index], indx);
2497 }
2498
2499 /* Now iterate over the blocks which have memory modifications
2500 but which do not have any calls. */
2501 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set,
2502 blocks_with_calls,
2503 0, bb_index, bi)
2504 {
2505 rtx list_entry = canon_modify_mem_list[bb_index];
2506
2507 while (list_entry)
2508 {
2509 rtx dest, dest_addr;
2510
2511 /* LIST_ENTRY must be an INSN of some kind that sets memory.
2512 Examine each hunk of memory that is modified. */
2513
2514 dest = XEXP (list_entry, 0);
2515 list_entry = XEXP (list_entry, 1);
2516 dest_addr = XEXP (list_entry, 0);
2517
2518 if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
2519 x, rtx_addr_varies_p))
2520 {
2521 if (set_p)
2522 SET_BIT (bmap[bb_index], indx);
2523 else
2524 RESET_BIT (bmap[bb_index], indx);
2525 break;
2526 }
2527 list_entry = XEXP (list_entry, 1);
2528 }
2529 }
2530 }
2531
2532 x = XEXP (x, 0);
2533 goto repeat;
2534
2535 case PC:
2536 case CC0: /*FIXME*/
2537 case CONST:
2538 case CONST_INT:
2539 case CONST_DOUBLE:
2540 case CONST_FIXED:
2541 case CONST_VECTOR:
2542 case SYMBOL_REF:
2543 case LABEL_REF:
2544 case ADDR_VEC:
2545 case ADDR_DIFF_VEC:
2546 return;
2547
2548 default:
2549 break;
2550 }
2551
2552 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2553 {
2554 if (fmt[i] == 'e')
2555 {
2556 /* If we are about to do the last recursive call
2557 needed at this level, change it into iteration.
2558 This function is called enough to be worth it. */
2559 if (i == 0)
2560 {
2561 x = XEXP (x, i);
2562 goto repeat;
2563 }
2564
2565 compute_transp (XEXP (x, i), indx, bmap, set_p);
2566 }
2567 else if (fmt[i] == 'E')
2568 for (j = 0; j < XVECLEN (x, i); j++)
2569 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
2570 }
2571 }
2572
2573 /* Top level routine to do the dataflow analysis needed by copy/const
2574 propagation. */
2575
2576 static void
2577 compute_cprop_data (void)
2578 {
2579 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, &set_hash_table);
2580 compute_available (cprop_pavloc, cprop_absaltered,
2581 cprop_avout, cprop_avin);
2582 }
2583 \f
2584 /* Copy/constant propagation. */
2585
2586 /* Maximum number of register uses in an insn that we handle. */
2587 #define MAX_USES 8
2588
2589 /* Table of uses found in an insn.
2590 Allocated statically to avoid alloc/free complexity and overhead. */
2591 static struct reg_use reg_use_table[MAX_USES];
2592
2593 /* Index into `reg_use_table' while building it. */
2594 static int reg_use_count;
2595
2596 /* Set up a list of register numbers used in INSN. The found uses are stored
2597 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
2598 and contains the number of uses in the table upon exit.
2599
2600 ??? If a register appears multiple times we will record it multiple times.
2601 This doesn't hurt anything but it will slow things down. */
2602
2603 static void
2604 find_used_regs (rtx *xptr, void *data ATTRIBUTE_UNUSED)
2605 {
2606 int i, j;
2607 enum rtx_code code;
2608 const char *fmt;
2609 rtx x = *xptr;
2610
2611 /* repeat is used to turn tail-recursion into iteration since GCC
2612 can't do it when there's no return value. */
2613 repeat:
2614 if (x == 0)
2615 return;
2616
2617 code = GET_CODE (x);
2618 if (REG_P (x))
2619 {
2620 if (reg_use_count == MAX_USES)
2621 return;
2622
2623 reg_use_table[reg_use_count].reg_rtx = x;
2624 reg_use_count++;
2625 }
2626
2627 /* Recursively scan the operands of this expression. */
2628
2629 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2630 {
2631 if (fmt[i] == 'e')
2632 {
2633 /* If we are about to do the last recursive call
2634 needed at this level, change it into iteration.
2635 This function is called enough to be worth it. */
2636 if (i == 0)
2637 {
2638 x = XEXP (x, 0);
2639 goto repeat;
2640 }
2641
2642 find_used_regs (&XEXP (x, i), data);
2643 }
2644 else if (fmt[i] == 'E')
2645 for (j = 0; j < XVECLEN (x, i); j++)
2646 find_used_regs (&XVECEXP (x, i, j), data);
2647 }
2648 }
2649
2650 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
2651 Returns nonzero is successful. */
2652
2653 static int
2654 try_replace_reg (rtx from, rtx to, rtx insn)
2655 {
2656 rtx note = find_reg_equal_equiv_note (insn);
2657 rtx src = 0;
2658 int success = 0;
2659 rtx set = single_set (insn);
2660
2661 /* Usually we substitute easy stuff, so we won't copy everything.
2662 We however need to take care to not duplicate non-trivial CONST
2663 expressions. */
2664 to = copy_rtx (to);
2665
2666 validate_replace_src_group (from, to, insn);
2667 if (num_changes_pending () && apply_change_group ())
2668 success = 1;
2669
2670 /* Try to simplify SET_SRC if we have substituted a constant. */
2671 if (success && set && CONSTANT_P (to))
2672 {
2673 src = simplify_rtx (SET_SRC (set));
2674
2675 if (src)
2676 validate_change (insn, &SET_SRC (set), src, 0);
2677 }
2678
2679 /* If there is already a REG_EQUAL note, update the expression in it
2680 with our replacement. */
2681 if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL)
2682 set_unique_reg_note (insn, REG_EQUAL,
2683 simplify_replace_rtx (XEXP (note, 0), from, to));
2684 if (!success && set && reg_mentioned_p (from, SET_SRC (set)))
2685 {
2686 /* If above failed and this is a single set, try to simplify the source of
2687 the set given our substitution. We could perhaps try this for multiple
2688 SETs, but it probably won't buy us anything. */
2689 src = simplify_replace_rtx (SET_SRC (set), from, to);
2690
2691 if (!rtx_equal_p (src, SET_SRC (set))
2692 && validate_change (insn, &SET_SRC (set), src, 0))
2693 success = 1;
2694
2695 /* If we've failed to do replacement, have a single SET, don't already
2696 have a note, and have no special SET, add a REG_EQUAL note to not
2697 lose information. */
2698 if (!success && note == 0 && set != 0
2699 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2700 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2701 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2702 }
2703
2704 /* REG_EQUAL may get simplified into register.
2705 We don't allow that. Remove that note. This code ought
2706 not to happen, because previous code ought to synthesize
2707 reg-reg move, but be on the safe side. */
2708 if (note && REG_NOTE_KIND (note) == REG_EQUAL && REG_P (XEXP (note, 0)))
2709 remove_note (insn, note);
2710
2711 return success;
2712 }
2713
2714 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
2715 NULL no such set is found. */
2716
2717 static struct expr *
2718 find_avail_set (int regno, rtx insn)
2719 {
2720 /* SET1 contains the last set found that can be returned to the caller for
2721 use in a substitution. */
2722 struct expr *set1 = 0;
2723
2724 /* Loops are not possible here. To get a loop we would need two sets
2725 available at the start of the block containing INSN. i.e. we would
2726 need two sets like this available at the start of the block:
2727
2728 (set (reg X) (reg Y))
2729 (set (reg Y) (reg X))
2730
2731 This can not happen since the set of (reg Y) would have killed the
2732 set of (reg X) making it unavailable at the start of this block. */
2733 while (1)
2734 {
2735 rtx src;
2736 struct expr *set = lookup_set (regno, &set_hash_table);
2737
2738 /* Find a set that is available at the start of the block
2739 which contains INSN. */
2740 while (set)
2741 {
2742 if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
2743 break;
2744 set = next_set (regno, set);
2745 }
2746
2747 /* If no available set was found we've reached the end of the
2748 (possibly empty) copy chain. */
2749 if (set == 0)
2750 break;
2751
2752 gcc_assert (GET_CODE (set->expr) == SET);
2753
2754 src = SET_SRC (set->expr);
2755
2756 /* We know the set is available.
2757 Now check that SRC is ANTLOC (i.e. none of the source operands
2758 have changed since the start of the block).
2759
2760 If the source operand changed, we may still use it for the next
2761 iteration of this loop, but we may not use it for substitutions. */
2762
2763 if (gcse_constant_p (src) || oprs_not_set_p (src, insn))
2764 set1 = set;
2765
2766 /* If the source of the set is anything except a register, then
2767 we have reached the end of the copy chain. */
2768 if (! REG_P (src))
2769 break;
2770
2771 /* Follow the copy chain, i.e. start another iteration of the loop
2772 and see if we have an available copy into SRC. */
2773 regno = REGNO (src);
2774 }
2775
2776 /* SET1 holds the last set that was available and anticipatable at
2777 INSN. */
2778 return set1;
2779 }
2780
2781 /* Subroutine of cprop_insn that tries to propagate constants into
2782 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
2783 it is the instruction that immediately precedes JUMP, and must be a
2784 single SET of a register. FROM is what we will try to replace,
2785 SRC is the constant we will try to substitute for it. Returns nonzero
2786 if a change was made. */
2787
2788 static int
2789 cprop_jump (basic_block bb, rtx setcc, rtx jump, rtx from, rtx src)
2790 {
2791 rtx new, set_src, note_src;
2792 rtx set = pc_set (jump);
2793 rtx note = find_reg_equal_equiv_note (jump);
2794
2795 if (note)
2796 {
2797 note_src = XEXP (note, 0);
2798 if (GET_CODE (note_src) == EXPR_LIST)
2799 note_src = NULL_RTX;
2800 }
2801 else note_src = NULL_RTX;
2802
2803 /* Prefer REG_EQUAL notes except those containing EXPR_LISTs. */
2804 set_src = note_src ? note_src : SET_SRC (set);
2805
2806 /* First substitute the SETCC condition into the JUMP instruction,
2807 then substitute that given values into this expanded JUMP. */
2808 if (setcc != NULL_RTX
2809 && !modified_between_p (from, setcc, jump)
2810 && !modified_between_p (src, setcc, jump))
2811 {
2812 rtx setcc_src;
2813 rtx setcc_set = single_set (setcc);
2814 rtx setcc_note = find_reg_equal_equiv_note (setcc);
2815 setcc_src = (setcc_note && GET_CODE (XEXP (setcc_note, 0)) != EXPR_LIST)
2816 ? XEXP (setcc_note, 0) : SET_SRC (setcc_set);
2817 set_src = simplify_replace_rtx (set_src, SET_DEST (setcc_set),
2818 setcc_src);
2819 }
2820 else
2821 setcc = NULL_RTX;
2822
2823 new = simplify_replace_rtx (set_src, from, src);
2824
2825 /* If no simplification can be made, then try the next register. */
2826 if (rtx_equal_p (new, SET_SRC (set)))
2827 return 0;
2828
2829 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
2830 if (new == pc_rtx)
2831 delete_insn (jump);
2832 else
2833 {
2834 /* Ensure the value computed inside the jump insn to be equivalent
2835 to one computed by setcc. */
2836 if (setcc && modified_in_p (new, setcc))
2837 return 0;
2838 if (! validate_change (jump, &SET_SRC (set), new, 0))
2839 {
2840 /* When (some) constants are not valid in a comparison, and there
2841 are two registers to be replaced by constants before the entire
2842 comparison can be folded into a constant, we need to keep
2843 intermediate information in REG_EQUAL notes. For targets with
2844 separate compare insns, such notes are added by try_replace_reg.
2845 When we have a combined compare-and-branch instruction, however,
2846 we need to attach a note to the branch itself to make this
2847 optimization work. */
2848
2849 if (!rtx_equal_p (new, note_src))
2850 set_unique_reg_note (jump, REG_EQUAL, copy_rtx (new));
2851 return 0;
2852 }
2853
2854 /* Remove REG_EQUAL note after simplification. */
2855 if (note_src)
2856 remove_note (jump, note);
2857 }
2858
2859 #ifdef HAVE_cc0
2860 /* Delete the cc0 setter. */
2861 if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc))))
2862 delete_insn (setcc);
2863 #endif
2864
2865 run_jump_opt_after_gcse = 1;
2866
2867 global_const_prop_count++;
2868 if (dump_file != NULL)
2869 {
2870 fprintf (dump_file,
2871 "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
2872 REGNO (from), INSN_UID (jump));
2873 print_rtl (dump_file, src);
2874 fprintf (dump_file, "\n");
2875 }
2876 purge_dead_edges (bb);
2877
2878 /* If a conditional jump has been changed into unconditional jump, remove
2879 the jump and make the edge fallthru - this is always called in
2880 cfglayout mode. */
2881 if (new != pc_rtx && simplejump_p (jump))
2882 {
2883 edge e;
2884 edge_iterator ei;
2885
2886 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); ei_next (&ei))
2887 if (e->dest != EXIT_BLOCK_PTR
2888 && BB_HEAD (e->dest) == JUMP_LABEL (jump))
2889 {
2890 e->flags |= EDGE_FALLTHRU;
2891 break;
2892 }
2893 delete_insn (jump);
2894 }
2895
2896 return 1;
2897 }
2898
2899 static bool
2900 constprop_register (rtx insn, rtx from, rtx to, bool alter_jumps)
2901 {
2902 rtx sset;
2903
2904 /* Check for reg or cc0 setting instructions followed by
2905 conditional branch instructions first. */
2906 if (alter_jumps
2907 && (sset = single_set (insn)) != NULL
2908 && NEXT_INSN (insn)
2909 && any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn)))
2910 {
2911 rtx dest = SET_DEST (sset);
2912 if ((REG_P (dest) || CC0_P (dest))
2913 && cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), from, to))
2914 return 1;
2915 }
2916
2917 /* Handle normal insns next. */
2918 if (NONJUMP_INSN_P (insn)
2919 && try_replace_reg (from, to, insn))
2920 return 1;
2921
2922 /* Try to propagate a CONST_INT into a conditional jump.
2923 We're pretty specific about what we will handle in this
2924 code, we can extend this as necessary over time.
2925
2926 Right now the insn in question must look like
2927 (set (pc) (if_then_else ...)) */
2928 else if (alter_jumps && any_condjump_p (insn) && onlyjump_p (insn))
2929 return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, to);
2930 return 0;
2931 }
2932
2933 /* Perform constant and copy propagation on INSN.
2934 The result is nonzero if a change was made. */
2935
2936 static int
2937 cprop_insn (rtx insn, int alter_jumps)
2938 {
2939 struct reg_use *reg_used;
2940 int changed = 0;
2941 rtx note;
2942
2943 if (!INSN_P (insn))
2944 return 0;
2945
2946 reg_use_count = 0;
2947 note_uses (&PATTERN (insn), find_used_regs, NULL);
2948
2949 note = find_reg_equal_equiv_note (insn);
2950
2951 /* We may win even when propagating constants into notes. */
2952 if (note)
2953 find_used_regs (&XEXP (note, 0), NULL);
2954
2955 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
2956 reg_used++, reg_use_count--)
2957 {
2958 unsigned int regno = REGNO (reg_used->reg_rtx);
2959 rtx pat, src;
2960 struct expr *set;
2961
2962 /* Ignore registers created by GCSE.
2963 We do this because ... */
2964 if (regno >= max_gcse_regno)
2965 continue;
2966
2967 /* If the register has already been set in this block, there's
2968 nothing we can do. */
2969 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
2970 continue;
2971
2972 /* Find an assignment that sets reg_used and is available
2973 at the start of the block. */
2974 set = find_avail_set (regno, insn);
2975 if (! set)
2976 continue;
2977
2978 pat = set->expr;
2979 /* ??? We might be able to handle PARALLELs. Later. */
2980 gcc_assert (GET_CODE (pat) == SET);
2981
2982 src = SET_SRC (pat);
2983
2984 /* Constant propagation. */
2985 if (gcse_constant_p (src))
2986 {
2987 if (constprop_register (insn, reg_used->reg_rtx, src, alter_jumps))
2988 {
2989 changed = 1;
2990 global_const_prop_count++;
2991 if (dump_file != NULL)
2992 {
2993 fprintf (dump_file, "GLOBAL CONST-PROP: Replacing reg %d in ", regno);
2994 fprintf (dump_file, "insn %d with constant ", INSN_UID (insn));
2995 print_rtl (dump_file, src);
2996 fprintf (dump_file, "\n");
2997 }
2998 if (INSN_DELETED_P (insn))
2999 return 1;
3000 }
3001 }
3002 else if (REG_P (src)
3003 && REGNO (src) >= FIRST_PSEUDO_REGISTER
3004 && REGNO (src) != regno)
3005 {
3006 if (try_replace_reg (reg_used->reg_rtx, src, insn))
3007 {
3008 changed = 1;
3009 global_copy_prop_count++;
3010 if (dump_file != NULL)
3011 {
3012 fprintf (dump_file, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
3013 regno, INSN_UID (insn));
3014 fprintf (dump_file, " with reg %d\n", REGNO (src));
3015 }
3016
3017 /* The original insn setting reg_used may or may not now be
3018 deletable. We leave the deletion to flow. */
3019 /* FIXME: If it turns out that the insn isn't deletable,
3020 then we may have unnecessarily extended register lifetimes
3021 and made things worse. */
3022 }
3023 }
3024 }
3025
3026 return changed;
3027 }
3028
3029 /* Like find_used_regs, but avoid recording uses that appear in
3030 input-output contexts such as zero_extract or pre_dec. This
3031 restricts the cases we consider to those for which local cprop
3032 can legitimately make replacements. */
3033
3034 static void
3035 local_cprop_find_used_regs (rtx *xptr, void *data)
3036 {
3037 rtx x = *xptr;
3038
3039 if (x == 0)
3040 return;
3041
3042 switch (GET_CODE (x))
3043 {
3044 case ZERO_EXTRACT:
3045 case SIGN_EXTRACT:
3046 case STRICT_LOW_PART:
3047 return;
3048
3049 case PRE_DEC:
3050 case PRE_INC:
3051 case POST_DEC:
3052 case POST_INC:
3053 case PRE_MODIFY:
3054 case POST_MODIFY:
3055 /* Can only legitimately appear this early in the context of
3056 stack pushes for function arguments, but handle all of the
3057 codes nonetheless. */
3058 return;
3059
3060 case SUBREG:
3061 /* Setting a subreg of a register larger than word_mode leaves
3062 the non-written words unchanged. */
3063 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) > BITS_PER_WORD)
3064 return;
3065 break;
3066
3067 default:
3068 break;
3069 }
3070
3071 find_used_regs (xptr, data);
3072 }
3073
3074 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3075 their REG_EQUAL notes need updating. */
3076
3077 static bool
3078 do_local_cprop (rtx x, rtx insn, bool alter_jumps, rtx *libcall_sp)
3079 {
3080 rtx newreg = NULL, newcnst = NULL;
3081
3082 /* Rule out USE instructions and ASM statements as we don't want to
3083 change the hard registers mentioned. */
3084 if (REG_P (x)
3085 && (REGNO (x) >= FIRST_PSEUDO_REGISTER
3086 || (GET_CODE (PATTERN (insn)) != USE
3087 && asm_noperands (PATTERN (insn)) < 0)))
3088 {
3089 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0);
3090 struct elt_loc_list *l;
3091
3092 if (!val)
3093 return false;
3094 for (l = val->locs; l; l = l->next)
3095 {
3096 rtx this_rtx = l->loc;
3097 rtx note;
3098
3099 /* Don't CSE non-constant values out of libcall blocks. */
3100 if (l->in_libcall && ! CONSTANT_P (this_rtx))
3101 continue;
3102
3103 if (gcse_constant_p (this_rtx))
3104 newcnst = this_rtx;
3105 if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER
3106 /* Don't copy propagate if it has attached REG_EQUIV note.
3107 At this point this only function parameters should have
3108 REG_EQUIV notes and if the argument slot is used somewhere
3109 explicitly, it means address of parameter has been taken,
3110 so we should not extend the lifetime of the pseudo. */
3111 && (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX))
3112 || ! MEM_P (XEXP (note, 0))))
3113 newreg = this_rtx;
3114 }
3115 if (newcnst && constprop_register (insn, x, newcnst, alter_jumps))
3116 {
3117 /* If we find a case where we can't fix the retval REG_EQUAL notes
3118 match the new register, we either have to abandon this replacement
3119 or fix delete_trivially_dead_insns to preserve the setting insn,
3120 or make it delete the REG_EQUAL note, and fix up all passes that
3121 require the REG_EQUAL note there. */
3122 bool adjusted;
3123
3124 adjusted = adjust_libcall_notes (x, newcnst, insn, libcall_sp);
3125 gcc_assert (adjusted);
3126
3127 if (dump_file != NULL)
3128 {
3129 fprintf (dump_file, "LOCAL CONST-PROP: Replacing reg %d in ",
3130 REGNO (x));
3131 fprintf (dump_file, "insn %d with constant ",
3132 INSN_UID (insn));
3133 print_rtl (dump_file, newcnst);
3134 fprintf (dump_file, "\n");
3135 }
3136 local_const_prop_count++;
3137 return true;
3138 }
3139 else if (newreg && newreg != x && try_replace_reg (x, newreg, insn))
3140 {
3141 adjust_libcall_notes (x, newreg, insn, libcall_sp);
3142 if (dump_file != NULL)
3143 {
3144 fprintf (dump_file,
3145 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
3146 REGNO (x), INSN_UID (insn));
3147 fprintf (dump_file, " with reg %d\n", REGNO (newreg));
3148 }
3149 local_copy_prop_count++;
3150 return true;
3151 }
3152 }
3153 return false;
3154 }
3155
3156 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3157 their REG_EQUAL notes need updating to reflect that OLDREG has been
3158 replaced with NEWVAL in INSN. Return true if all substitutions could
3159 be made. */
3160 static bool
3161 adjust_libcall_notes (rtx oldreg, rtx newval, rtx insn, rtx *libcall_sp)
3162 {
3163 rtx end;
3164
3165 while ((end = *libcall_sp++))
3166 {
3167 rtx note = find_reg_equal_equiv_note (end);
3168
3169 if (! note)
3170 continue;
3171
3172 if (REG_P (newval))
3173 {
3174 if (reg_set_between_p (newval, PREV_INSN (insn), end))
3175 {
3176 do
3177 {
3178 note = find_reg_equal_equiv_note (end);
3179 if (! note)
3180 continue;
3181 if (reg_mentioned_p (newval, XEXP (note, 0)))
3182 return false;
3183 }
3184 while ((end = *libcall_sp++));
3185 return true;
3186 }
3187 }
3188 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), oldreg, newval);
3189 df_notes_rescan (end);
3190 insn = end;
3191 }
3192 return true;
3193 }
3194
3195 #define MAX_NESTED_LIBCALLS 9
3196
3197 /* Do local const/copy propagation (i.e. within each basic block).
3198 If ALTER_JUMPS is true, allow propagating into jump insns, which
3199 could modify the CFG. */
3200
3201 static void
3202 local_cprop_pass (bool alter_jumps)
3203 {
3204 basic_block bb;
3205 rtx insn;
3206 struct reg_use *reg_used;
3207 rtx libcall_stack[MAX_NESTED_LIBCALLS + 1], *libcall_sp;
3208 bool changed = false;
3209
3210 cselib_init (false);
3211 libcall_sp = &libcall_stack[MAX_NESTED_LIBCALLS];
3212 *libcall_sp = 0;
3213 FOR_EACH_BB (bb)
3214 {
3215 FOR_BB_INSNS (bb, insn)
3216 {
3217 if (INSN_P (insn))
3218 {
3219 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
3220
3221 if (note)
3222 {
3223 gcc_assert (libcall_sp != libcall_stack);
3224 *--libcall_sp = XEXP (note, 0);
3225 }
3226 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
3227 if (note)
3228 libcall_sp++;
3229 note = find_reg_equal_equiv_note (insn);
3230 do
3231 {
3232 reg_use_count = 0;
3233 note_uses (&PATTERN (insn), local_cprop_find_used_regs,
3234 NULL);
3235 if (note)
3236 local_cprop_find_used_regs (&XEXP (note, 0), NULL);
3237
3238 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
3239 reg_used++, reg_use_count--)
3240 {
3241 if (do_local_cprop (reg_used->reg_rtx, insn, alter_jumps,
3242 libcall_sp))
3243 {
3244 changed = true;
3245 break;
3246 }
3247 }
3248 if (INSN_DELETED_P (insn))
3249 break;
3250 }
3251 while (reg_use_count);
3252 }
3253 cselib_process_insn (insn);
3254 }
3255
3256 /* Forget everything at the end of a basic block. Make sure we are
3257 not inside a libcall, they should never cross basic blocks. */
3258 cselib_clear_table ();
3259 gcc_assert (libcall_sp == &libcall_stack[MAX_NESTED_LIBCALLS]);
3260 }
3261
3262 cselib_finish ();
3263
3264 /* Global analysis may get into infinite loops for unreachable blocks. */
3265 if (changed && alter_jumps)
3266 {
3267 delete_unreachable_blocks ();
3268 free_reg_set_mem ();
3269 alloc_reg_set_mem (max_reg_num ());
3270 compute_sets ();
3271 }
3272 }
3273
3274 /* Forward propagate copies. This includes copies and constants. Return
3275 nonzero if a change was made. */
3276
3277 static int
3278 cprop (int alter_jumps)
3279 {
3280 int changed;
3281 basic_block bb;
3282 rtx insn;
3283
3284 /* Note we start at block 1. */
3285 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3286 {
3287 if (dump_file != NULL)
3288 fprintf (dump_file, "\n");
3289 return 0;
3290 }
3291
3292 changed = 0;
3293 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
3294 {
3295 /* Reset tables used to keep track of what's still valid [since the
3296 start of the block]. */
3297 reset_opr_set_tables ();
3298
3299 FOR_BB_INSNS (bb, insn)
3300 if (INSN_P (insn))
3301 {
3302 changed |= cprop_insn (insn, alter_jumps);
3303
3304 /* Keep track of everything modified by this insn. */
3305 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
3306 call mark_oprs_set if we turned the insn into a NOTE. */
3307 if (! NOTE_P (insn))
3308 mark_oprs_set (insn);
3309 }
3310 }
3311
3312 if (dump_file != NULL)
3313 fprintf (dump_file, "\n");
3314
3315 return changed;
3316 }
3317
3318 /* Similar to get_condition, only the resulting condition must be
3319 valid at JUMP, instead of at EARLIEST.
3320
3321 This differs from noce_get_condition in ifcvt.c in that we prefer not to
3322 settle for the condition variable in the jump instruction being integral.
3323 We prefer to be able to record the value of a user variable, rather than
3324 the value of a temporary used in a condition. This could be solved by
3325 recording the value of *every* register scanned by canonicalize_condition,
3326 but this would require some code reorganization. */
3327
3328 rtx
3329 fis_get_condition (rtx jump)
3330 {
3331 return get_condition (jump, NULL, false, true);
3332 }
3333
3334 /* Check the comparison COND to see if we can safely form an implicit set from
3335 it. COND is either an EQ or NE comparison. */
3336
3337 static bool
3338 implicit_set_cond_p (const_rtx cond)
3339 {
3340 const enum machine_mode mode = GET_MODE (XEXP (cond, 0));
3341 const_rtx cst = XEXP (cond, 1);
3342
3343 /* We can't perform this optimization if either operand might be or might
3344 contain a signed zero. */
3345 if (HONOR_SIGNED_ZEROS (mode))
3346 {
3347 /* It is sufficient to check if CST is or contains a zero. We must
3348 handle float, complex, and vector. If any subpart is a zero, then
3349 the optimization can't be performed. */
3350 /* ??? The complex and vector checks are not implemented yet. We just
3351 always return zero for them. */
3352 if (GET_CODE (cst) == CONST_DOUBLE)
3353 {
3354 REAL_VALUE_TYPE d;
3355 REAL_VALUE_FROM_CONST_DOUBLE (d, cst);
3356 if (REAL_VALUES_EQUAL (d, dconst0))
3357 return 0;
3358 }
3359 else
3360 return 0;
3361 }
3362
3363 return gcse_constant_p (cst);
3364 }
3365
3366 /* Find the implicit sets of a function. An "implicit set" is a constraint
3367 on the value of a variable, implied by a conditional jump. For example,
3368 following "if (x == 2)", the then branch may be optimized as though the
3369 conditional performed an "explicit set", in this example, "x = 2". This
3370 function records the set patterns that are implicit at the start of each
3371 basic block. */
3372
3373 static void
3374 find_implicit_sets (void)
3375 {
3376 basic_block bb, dest;
3377 unsigned int count;
3378 rtx cond, new;
3379
3380 count = 0;
3381 FOR_EACH_BB (bb)
3382 /* Check for more than one successor. */
3383 if (EDGE_COUNT (bb->succs) > 1)
3384 {
3385 cond = fis_get_condition (BB_END (bb));
3386
3387 if (cond
3388 && (GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
3389 && REG_P (XEXP (cond, 0))
3390 && REGNO (XEXP (cond, 0)) >= FIRST_PSEUDO_REGISTER
3391 && implicit_set_cond_p (cond))
3392 {
3393 dest = GET_CODE (cond) == EQ ? BRANCH_EDGE (bb)->dest
3394 : FALLTHRU_EDGE (bb)->dest;
3395
3396 if (dest && single_pred_p (dest)
3397 && dest != EXIT_BLOCK_PTR)
3398 {
3399 new = gen_rtx_SET (VOIDmode, XEXP (cond, 0),
3400 XEXP (cond, 1));
3401 implicit_sets[dest->index] = new;
3402 if (dump_file)
3403 {
3404 fprintf(dump_file, "Implicit set of reg %d in ",
3405 REGNO (XEXP (cond, 0)));
3406 fprintf(dump_file, "basic block %d\n", dest->index);
3407 }
3408 count++;
3409 }
3410 }
3411 }
3412
3413 if (dump_file)
3414 fprintf (dump_file, "Found %d implicit sets\n", count);
3415 }
3416
3417 /* Perform one copy/constant propagation pass.
3418 PASS is the pass count. If CPROP_JUMPS is true, perform constant
3419 propagation into conditional jumps. If BYPASS_JUMPS is true,
3420 perform conditional jump bypassing optimizations. */
3421
3422 static int
3423 one_cprop_pass (int pass, bool cprop_jumps, bool bypass_jumps)
3424 {
3425 int changed = 0;
3426
3427 global_const_prop_count = local_const_prop_count = 0;
3428 global_copy_prop_count = local_copy_prop_count = 0;
3429
3430 if (cprop_jumps)
3431 local_cprop_pass (cprop_jumps);
3432
3433 /* Determine implicit sets. */
3434 implicit_sets = XCNEWVEC (rtx, last_basic_block);
3435 find_implicit_sets ();
3436
3437 alloc_hash_table (max_cuid, &set_hash_table, 1);
3438 compute_hash_table (&set_hash_table);
3439
3440 /* Free implicit_sets before peak usage. */
3441 free (implicit_sets);
3442 implicit_sets = NULL;
3443
3444 if (dump_file)
3445 dump_hash_table (dump_file, "SET", &set_hash_table);
3446 if (set_hash_table.n_elems > 0)
3447 {
3448 alloc_cprop_mem (last_basic_block, set_hash_table.n_elems);
3449 compute_cprop_data ();
3450 changed = cprop (cprop_jumps);
3451 if (bypass_jumps)
3452 changed |= bypass_conditional_jumps ();
3453 free_cprop_mem ();
3454 }
3455
3456 free_hash_table (&set_hash_table);
3457
3458 if (dump_file)
3459 {
3460 fprintf (dump_file, "CPROP of %s, pass %d: %d bytes needed, ",
3461 current_function_name (), pass, bytes_used);
3462 fprintf (dump_file, "%d local const props, %d local copy props, ",
3463 local_const_prop_count, local_copy_prop_count);
3464 fprintf (dump_file, "%d global const props, %d global copy props\n\n",
3465 global_const_prop_count, global_copy_prop_count);
3466 }
3467 /* Global analysis may get into infinite loops for unreachable blocks. */
3468 if (changed && cprop_jumps)
3469 delete_unreachable_blocks ();
3470
3471 return changed;
3472 }
3473 \f
3474 /* Bypass conditional jumps. */
3475
3476 /* The value of last_basic_block at the beginning of the jump_bypass
3477 pass. The use of redirect_edge_and_branch_force may introduce new
3478 basic blocks, but the data flow analysis is only valid for basic
3479 block indices less than bypass_last_basic_block. */
3480
3481 static int bypass_last_basic_block;
3482
3483 /* Find a set of REGNO to a constant that is available at the end of basic
3484 block BB. Returns NULL if no such set is found. Based heavily upon
3485 find_avail_set. */
3486
3487 static struct expr *
3488 find_bypass_set (int regno, int bb)
3489 {
3490 struct expr *result = 0;
3491
3492 for (;;)
3493 {
3494 rtx src;
3495 struct expr *set = lookup_set (regno, &set_hash_table);
3496
3497 while (set)
3498 {
3499 if (TEST_BIT (cprop_avout[bb], set->bitmap_index))
3500 break;
3501 set = next_set (regno, set);
3502 }
3503
3504 if (set == 0)
3505 break;
3506
3507 gcc_assert (GET_CODE (set->expr) == SET);
3508
3509 src = SET_SRC (set->expr);
3510 if (gcse_constant_p (src))
3511 result = set;
3512
3513 if (! REG_P (src))
3514 break;
3515
3516 regno = REGNO (src);
3517 }
3518 return result;
3519 }
3520
3521
3522 /* Subroutine of bypass_block that checks whether a pseudo is killed by
3523 any of the instructions inserted on an edge. Jump bypassing places
3524 condition code setters on CFG edges using insert_insn_on_edge. This
3525 function is required to check that our data flow analysis is still
3526 valid prior to commit_edge_insertions. */
3527
3528 static bool
3529 reg_killed_on_edge (const_rtx reg, const_edge e)
3530 {
3531 rtx insn;
3532
3533 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
3534 if (INSN_P (insn) && reg_set_p (reg, insn))
3535 return true;
3536
3537 return false;
3538 }
3539
3540 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
3541 basic block BB which has more than one predecessor. If not NULL, SETCC
3542 is the first instruction of BB, which is immediately followed by JUMP_INSN
3543 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
3544 Returns nonzero if a change was made.
3545
3546 During the jump bypassing pass, we may place copies of SETCC instructions
3547 on CFG edges. The following routine must be careful to pay attention to
3548 these inserted insns when performing its transformations. */
3549
3550 static int
3551 bypass_block (basic_block bb, rtx setcc, rtx jump)
3552 {
3553 rtx insn, note;
3554 edge e, edest;
3555 int i, change;
3556 int may_be_loop_header;
3557 unsigned removed_p;
3558 edge_iterator ei;
3559
3560 insn = (setcc != NULL) ? setcc : jump;
3561
3562 /* Determine set of register uses in INSN. */
3563 reg_use_count = 0;
3564 note_uses (&PATTERN (insn), find_used_regs, NULL);
3565 note = find_reg_equal_equiv_note (insn);
3566 if (note)
3567 find_used_regs (&XEXP (note, 0), NULL);
3568
3569 may_be_loop_header = false;
3570 FOR_EACH_EDGE (e, ei, bb->preds)
3571 if (e->flags & EDGE_DFS_BACK)
3572 {
3573 may_be_loop_header = true;
3574 break;
3575 }
3576
3577 change = 0;
3578 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3579 {
3580 removed_p = 0;
3581
3582 if (e->flags & EDGE_COMPLEX)
3583 {
3584 ei_next (&ei);
3585 continue;
3586 }
3587
3588 /* We can't redirect edges from new basic blocks. */
3589 if (e->src->index >= bypass_last_basic_block)
3590 {
3591 ei_next (&ei);
3592 continue;
3593 }
3594
3595 /* The irreducible loops created by redirecting of edges entering the
3596 loop from outside would decrease effectiveness of some of the following
3597 optimizations, so prevent this. */
3598 if (may_be_loop_header
3599 && !(e->flags & EDGE_DFS_BACK))
3600 {
3601 ei_next (&ei);
3602 continue;
3603 }
3604
3605 for (i = 0; i < reg_use_count; i++)
3606 {
3607 struct reg_use *reg_used = &reg_use_table[i];
3608 unsigned int regno = REGNO (reg_used->reg_rtx);
3609 basic_block dest, old_dest;
3610 struct expr *set;
3611 rtx src, new;
3612
3613 if (regno >= max_gcse_regno)
3614 continue;
3615
3616 set = find_bypass_set (regno, e->src->index);
3617
3618 if (! set)
3619 continue;
3620
3621 /* Check the data flow is valid after edge insertions. */
3622 if (e->insns.r && reg_killed_on_edge (reg_used->reg_rtx, e))
3623 continue;
3624
3625 src = SET_SRC (pc_set (jump));
3626
3627 if (setcc != NULL)
3628 src = simplify_replace_rtx (src,
3629 SET_DEST (PATTERN (setcc)),
3630 SET_SRC (PATTERN (setcc)));
3631
3632 new = simplify_replace_rtx (src, reg_used->reg_rtx,
3633 SET_SRC (set->expr));
3634
3635 /* Jump bypassing may have already placed instructions on
3636 edges of the CFG. We can't bypass an outgoing edge that
3637 has instructions associated with it, as these insns won't
3638 get executed if the incoming edge is redirected. */
3639
3640 if (new == pc_rtx)
3641 {
3642 edest = FALLTHRU_EDGE (bb);
3643 dest = edest->insns.r ? NULL : edest->dest;
3644 }
3645 else if (GET_CODE (new) == LABEL_REF)
3646 {
3647 dest = BLOCK_FOR_INSN (XEXP (new, 0));
3648 /* Don't bypass edges containing instructions. */
3649 edest = find_edge (bb, dest);
3650 if (edest && edest->insns.r)
3651 dest = NULL;
3652 }
3653 else
3654 dest = NULL;
3655
3656 /* Avoid unification of the edge with other edges from original
3657 branch. We would end up emitting the instruction on "both"
3658 edges. */
3659
3660 if (dest && setcc && !CC0_P (SET_DEST (PATTERN (setcc)))
3661 && find_edge (e->src, dest))
3662 dest = NULL;
3663
3664 old_dest = e->dest;
3665 if (dest != NULL
3666 && dest != old_dest
3667 && dest != EXIT_BLOCK_PTR)
3668 {
3669 redirect_edge_and_branch_force (e, dest);
3670
3671 /* Copy the register setter to the redirected edge.
3672 Don't copy CC0 setters, as CC0 is dead after jump. */
3673 if (setcc)
3674 {
3675 rtx pat = PATTERN (setcc);
3676 if (!CC0_P (SET_DEST (pat)))
3677 insert_insn_on_edge (copy_insn (pat), e);
3678 }
3679
3680 if (dump_file != NULL)
3681 {
3682 fprintf (dump_file, "JUMP-BYPASS: Proved reg %d "
3683 "in jump_insn %d equals constant ",
3684 regno, INSN_UID (jump));
3685 print_rtl (dump_file, SET_SRC (set->expr));
3686 fprintf (dump_file, "\nBypass edge from %d->%d to %d\n",
3687 e->src->index, old_dest->index, dest->index);
3688 }
3689 change = 1;
3690 removed_p = 1;
3691 break;
3692 }
3693 }
3694 if (!removed_p)
3695 ei_next (&ei);
3696 }
3697 return change;
3698 }
3699
3700 /* Find basic blocks with more than one predecessor that only contain a
3701 single conditional jump. If the result of the comparison is known at
3702 compile-time from any incoming edge, redirect that edge to the
3703 appropriate target. Returns nonzero if a change was made.
3704
3705 This function is now mis-named, because we also handle indirect jumps. */
3706
3707 static int
3708 bypass_conditional_jumps (void)
3709 {
3710 basic_block bb;
3711 int changed;
3712 rtx setcc;
3713 rtx insn;
3714 rtx dest;
3715
3716 /* Note we start at block 1. */
3717 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3718 return 0;
3719
3720 bypass_last_basic_block = last_basic_block;
3721 mark_dfs_back_edges ();
3722
3723 changed = 0;
3724 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb,
3725 EXIT_BLOCK_PTR, next_bb)
3726 {
3727 /* Check for more than one predecessor. */
3728 if (!single_pred_p (bb))
3729 {
3730 setcc = NULL_RTX;
3731 FOR_BB_INSNS (bb, insn)
3732 if (NONJUMP_INSN_P (insn))
3733 {
3734 if (setcc)
3735 break;
3736 if (GET_CODE (PATTERN (insn)) != SET)
3737 break;
3738
3739 dest = SET_DEST (PATTERN (insn));
3740 if (REG_P (dest) || CC0_P (dest))
3741 setcc = insn;
3742 else
3743 break;
3744 }
3745 else if (JUMP_P (insn))
3746 {
3747 if ((any_condjump_p (insn) || computed_jump_p (insn))
3748 && onlyjump_p (insn))
3749 changed |= bypass_block (bb, setcc, insn);
3750 break;
3751 }
3752 else if (INSN_P (insn))
3753 break;
3754 }
3755 }
3756
3757 /* If we bypassed any register setting insns, we inserted a
3758 copy on the redirected edge. These need to be committed. */
3759 if (changed)
3760 commit_edge_insertions ();
3761
3762 return changed;
3763 }
3764 \f
3765 /* Compute PRE+LCM working variables. */
3766
3767 /* Local properties of expressions. */
3768 /* Nonzero for expressions that are transparent in the block. */
3769 static sbitmap *transp;
3770
3771 /* Nonzero for expressions that are transparent at the end of the block.
3772 This is only zero for expressions killed by abnormal critical edge
3773 created by a calls. */
3774 static sbitmap *transpout;
3775
3776 /* Nonzero for expressions that are computed (available) in the block. */
3777 static sbitmap *comp;
3778
3779 /* Nonzero for expressions that are locally anticipatable in the block. */
3780 static sbitmap *antloc;
3781
3782 /* Nonzero for expressions where this block is an optimal computation
3783 point. */
3784 static sbitmap *pre_optimal;
3785
3786 /* Nonzero for expressions which are redundant in a particular block. */
3787 static sbitmap *pre_redundant;
3788
3789 /* Nonzero for expressions which should be inserted on a specific edge. */
3790 static sbitmap *pre_insert_map;
3791
3792 /* Nonzero for expressions which should be deleted in a specific block. */
3793 static sbitmap *pre_delete_map;
3794
3795 /* Contains the edge_list returned by pre_edge_lcm. */
3796 static struct edge_list *edge_list;
3797
3798 /* Redundant insns. */
3799 static sbitmap pre_redundant_insns;
3800
3801 /* Allocate vars used for PRE analysis. */
3802
3803 static void
3804 alloc_pre_mem (int n_blocks, int n_exprs)
3805 {
3806 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
3807 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
3808 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
3809
3810 pre_optimal = NULL;
3811 pre_redundant = NULL;
3812 pre_insert_map = NULL;
3813 pre_delete_map = NULL;
3814 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
3815
3816 /* pre_insert and pre_delete are allocated later. */
3817 }
3818
3819 /* Free vars used for PRE analysis. */
3820
3821 static void
3822 free_pre_mem (void)
3823 {
3824 sbitmap_vector_free (transp);
3825 sbitmap_vector_free (comp);
3826
3827 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
3828
3829 if (pre_optimal)
3830 sbitmap_vector_free (pre_optimal);
3831 if (pre_redundant)
3832 sbitmap_vector_free (pre_redundant);
3833 if (pre_insert_map)
3834 sbitmap_vector_free (pre_insert_map);
3835 if (pre_delete_map)
3836 sbitmap_vector_free (pre_delete_map);
3837
3838 transp = comp = NULL;
3839 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
3840 }
3841
3842 /* Top level routine to do the dataflow analysis needed by PRE. */
3843
3844 static void
3845 compute_pre_data (void)
3846 {
3847 sbitmap trapping_expr;
3848 basic_block bb;
3849 unsigned int ui;
3850
3851 compute_local_properties (transp, comp, antloc, &expr_hash_table);
3852 sbitmap_vector_zero (ae_kill, last_basic_block);
3853
3854 /* Collect expressions which might trap. */
3855 trapping_expr = sbitmap_alloc (expr_hash_table.n_elems);
3856 sbitmap_zero (trapping_expr);
3857 for (ui = 0; ui < expr_hash_table.size; ui++)
3858 {
3859 struct expr *e;
3860 for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash)
3861 if (may_trap_p (e->expr))
3862 SET_BIT (trapping_expr, e->bitmap_index);
3863 }
3864
3865 /* Compute ae_kill for each basic block using:
3866
3867 ~(TRANSP | COMP)
3868 */
3869
3870 FOR_EACH_BB (bb)
3871 {
3872 edge e;
3873 edge_iterator ei;
3874
3875 /* If the current block is the destination of an abnormal edge, we
3876 kill all trapping expressions because we won't be able to properly
3877 place the instruction on the edge. So make them neither
3878 anticipatable nor transparent. This is fairly conservative. */
3879 FOR_EACH_EDGE (e, ei, bb->preds)
3880 if (e->flags & EDGE_ABNORMAL)
3881 {
3882 sbitmap_difference (antloc[bb->index], antloc[bb->index], trapping_expr);
3883 sbitmap_difference (transp[bb->index], transp[bb->index], trapping_expr);
3884 break;
3885 }
3886
3887 sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
3888 sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
3889 }
3890
3891 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
3892 ae_kill, &pre_insert_map, &pre_delete_map);
3893 sbitmap_vector_free (antloc);
3894 antloc = NULL;
3895 sbitmap_vector_free (ae_kill);
3896 ae_kill = NULL;
3897 sbitmap_free (trapping_expr);
3898 }
3899 \f
3900 /* PRE utilities */
3901
3902 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
3903 block BB.
3904
3905 VISITED is a pointer to a working buffer for tracking which BB's have
3906 been visited. It is NULL for the top-level call.
3907
3908 We treat reaching expressions that go through blocks containing the same
3909 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3910 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3911 2 as not reaching. The intent is to improve the probability of finding
3912 only one reaching expression and to reduce register lifetimes by picking
3913 the closest such expression. */
3914
3915 static int
3916 pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr, basic_block bb, char *visited)
3917 {
3918 edge pred;
3919 edge_iterator ei;
3920
3921 FOR_EACH_EDGE (pred, ei, bb->preds)
3922 {
3923 basic_block pred_bb = pred->src;
3924
3925 if (pred->src == ENTRY_BLOCK_PTR
3926 /* Has predecessor has already been visited? */
3927 || visited[pred_bb->index])
3928 ;/* Nothing to do. */
3929
3930 /* Does this predecessor generate this expression? */
3931 else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
3932 {
3933 /* Is this the occurrence we're looking for?
3934 Note that there's only one generating occurrence per block
3935 so we just need to check the block number. */
3936 if (occr_bb == pred_bb)
3937 return 1;
3938
3939 visited[pred_bb->index] = 1;
3940 }
3941 /* Ignore this predecessor if it kills the expression. */
3942 else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
3943 visited[pred_bb->index] = 1;
3944
3945 /* Neither gen nor kill. */
3946 else
3947 {
3948 visited[pred_bb->index] = 1;
3949 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
3950 return 1;
3951 }
3952 }
3953
3954 /* All paths have been checked. */
3955 return 0;
3956 }
3957
3958 /* The wrapper for pre_expr_reaches_here_work that ensures that any
3959 memory allocated for that function is returned. */
3960
3961 static int
3962 pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
3963 {
3964 int rval;
3965 char *visited = XCNEWVEC (char, last_basic_block);
3966
3967 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
3968
3969 free (visited);
3970 return rval;
3971 }
3972 \f
3973
3974 /* Given an expr, generate RTL which we can insert at the end of a BB,
3975 or on an edge. Set the block number of any insns generated to
3976 the value of BB. */
3977
3978 static rtx
3979 process_insert_insn (struct expr *expr)
3980 {
3981 rtx reg = expr->reaching_reg;
3982 rtx exp = copy_rtx (expr->expr);
3983 rtx pat;
3984
3985 start_sequence ();
3986
3987 /* If the expression is something that's an operand, like a constant,
3988 just copy it to a register. */
3989 if (general_operand (exp, GET_MODE (reg)))
3990 emit_move_insn (reg, exp);
3991
3992 /* Otherwise, make a new insn to compute this expression and make sure the
3993 insn will be recognized (this also adds any needed CLOBBERs). Copy the
3994 expression to make sure we don't have any sharing issues. */
3995 else
3996 {
3997 rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
3998
3999 if (insn_invalid_p (insn))
4000 gcc_unreachable ();
4001 }
4002
4003
4004 pat = get_insns ();
4005 end_sequence ();
4006
4007 return pat;
4008 }
4009
4010 /* Add EXPR to the end of basic block BB.
4011
4012 This is used by both the PRE and code hoisting.
4013
4014 For PRE, we want to verify that the expr is either transparent
4015 or locally anticipatable in the target block. This check makes
4016 no sense for code hoisting. */
4017
4018 static void
4019 insert_insn_end_basic_block (struct expr *expr, basic_block bb, int pre)
4020 {
4021 rtx insn = BB_END (bb);
4022 rtx new_insn;
4023 rtx reg = expr->reaching_reg;
4024 int regno = REGNO (reg);
4025 rtx pat, pat_end;
4026
4027 pat = process_insert_insn (expr);
4028 gcc_assert (pat && INSN_P (pat));
4029
4030 pat_end = pat;
4031 while (NEXT_INSN (pat_end) != NULL_RTX)
4032 pat_end = NEXT_INSN (pat_end);
4033
4034 /* If the last insn is a jump, insert EXPR in front [taking care to
4035 handle cc0, etc. properly]. Similarly we need to care trapping
4036 instructions in presence of non-call exceptions. */
4037
4038 if (JUMP_P (insn)
4039 || (NONJUMP_INSN_P (insn)
4040 && (!single_succ_p (bb)
4041 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
4042 {
4043 #ifdef HAVE_cc0
4044 rtx note;
4045 #endif
4046 /* It should always be the case that we can put these instructions
4047 anywhere in the basic block with performing PRE optimizations.
4048 Check this. */
4049 gcc_assert (!NONJUMP_INSN_P (insn) || !pre
4050 || TEST_BIT (antloc[bb->index], expr->bitmap_index)
4051 || TEST_BIT (transp[bb->index], expr->bitmap_index));
4052
4053 /* If this is a jump table, then we can't insert stuff here. Since
4054 we know the previous real insn must be the tablejump, we insert
4055 the new instruction just before the tablejump. */
4056 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
4057 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
4058 insn = prev_real_insn (insn);
4059
4060 #ifdef HAVE_cc0
4061 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
4062 if cc0 isn't set. */
4063 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
4064 if (note)
4065 insn = XEXP (note, 0);
4066 else
4067 {
4068 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
4069 if (maybe_cc0_setter
4070 && INSN_P (maybe_cc0_setter)
4071 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
4072 insn = maybe_cc0_setter;
4073 }
4074 #endif
4075 /* FIXME: What if something in cc0/jump uses value set in new insn? */
4076 new_insn = emit_insn_before_noloc (pat, insn, bb);
4077 }
4078
4079 /* Likewise if the last insn is a call, as will happen in the presence
4080 of exception handling. */
4081 else if (CALL_P (insn)
4082 && (!single_succ_p (bb)
4083 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
4084 {
4085 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4086 we search backward and place the instructions before the first
4087 parameter is loaded. Do this for everyone for consistency and a
4088 presumption that we'll get better code elsewhere as well.
4089
4090 It should always be the case that we can put these instructions
4091 anywhere in the basic block with performing PRE optimizations.
4092 Check this. */
4093
4094 gcc_assert (!pre
4095 || TEST_BIT (antloc[bb->index], expr->bitmap_index)
4096 || TEST_BIT (transp[bb->index], expr->bitmap_index));
4097
4098 /* Since different machines initialize their parameter registers
4099 in different orders, assume nothing. Collect the set of all
4100 parameter registers. */
4101 insn = find_first_parameter_load (insn, BB_HEAD (bb));
4102
4103 /* If we found all the parameter loads, then we want to insert
4104 before the first parameter load.
4105
4106 If we did not find all the parameter loads, then we might have
4107 stopped on the head of the block, which could be a CODE_LABEL.
4108 If we inserted before the CODE_LABEL, then we would be putting
4109 the insn in the wrong basic block. In that case, put the insn
4110 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
4111 while (LABEL_P (insn)
4112 || NOTE_INSN_BASIC_BLOCK_P (insn))
4113 insn = NEXT_INSN (insn);
4114
4115 new_insn = emit_insn_before_noloc (pat, insn, bb);
4116 }
4117 else
4118 new_insn = emit_insn_after_noloc (pat, insn, bb);
4119
4120 while (1)
4121 {
4122 if (INSN_P (pat))
4123 {
4124 add_label_notes (PATTERN (pat), new_insn);
4125 note_stores (PATTERN (pat), record_set_info, pat);
4126 }
4127 if (pat == pat_end)
4128 break;
4129 pat = NEXT_INSN (pat);
4130 }
4131
4132 gcse_create_count++;
4133
4134 if (dump_file)
4135 {
4136 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
4137 bb->index, INSN_UID (new_insn));
4138 fprintf (dump_file, "copying expression %d to reg %d\n",
4139 expr->bitmap_index, regno);
4140 }
4141 }
4142
4143 /* Insert partially redundant expressions on edges in the CFG to make
4144 the expressions fully redundant. */
4145
4146 static int
4147 pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
4148 {
4149 int e, i, j, num_edges, set_size, did_insert = 0;
4150 sbitmap *inserted;
4151
4152 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
4153 if it reaches any of the deleted expressions. */
4154
4155 set_size = pre_insert_map[0]->size;
4156 num_edges = NUM_EDGES (edge_list);
4157 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
4158 sbitmap_vector_zero (inserted, num_edges);
4159
4160 for (e = 0; e < num_edges; e++)
4161 {
4162 int indx;
4163 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
4164
4165 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
4166 {
4167 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
4168
4169 for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1)
4170 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
4171 {
4172 struct expr *expr = index_map[j];
4173 struct occr *occr;
4174
4175 /* Now look at each deleted occurrence of this expression. */
4176 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4177 {
4178 if (! occr->deleted_p)
4179 continue;
4180
4181 /* Insert this expression on this edge if it would
4182 reach the deleted occurrence in BB. */
4183 if (!TEST_BIT (inserted[e], j))
4184 {
4185 rtx insn;
4186 edge eg = INDEX_EDGE (edge_list, e);
4187
4188 /* We can't insert anything on an abnormal and
4189 critical edge, so we insert the insn at the end of
4190 the previous block. There are several alternatives
4191 detailed in Morgans book P277 (sec 10.5) for
4192 handling this situation. This one is easiest for
4193 now. */
4194
4195 if (eg->flags & EDGE_ABNORMAL)
4196 insert_insn_end_basic_block (index_map[j], bb, 0);
4197 else
4198 {
4199 insn = process_insert_insn (index_map[j]);
4200 insert_insn_on_edge (insn, eg);
4201 }
4202
4203 if (dump_file)
4204 {
4205 fprintf (dump_file, "PRE/HOIST: edge (%d,%d), ",
4206 bb->index,
4207 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
4208 fprintf (dump_file, "copy expression %d\n",
4209 expr->bitmap_index);
4210 }
4211
4212 update_ld_motion_stores (expr);
4213 SET_BIT (inserted[e], j);
4214 did_insert = 1;
4215 gcse_create_count++;
4216 }
4217 }
4218 }
4219 }
4220 }
4221
4222 sbitmap_vector_free (inserted);
4223 return did_insert;
4224 }
4225
4226 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
4227 Given "old_reg <- expr" (INSN), instead of adding after it
4228 reaching_reg <- old_reg
4229 it's better to do the following:
4230 reaching_reg <- expr
4231 old_reg <- reaching_reg
4232 because this way copy propagation can discover additional PRE
4233 opportunities. But if this fails, we try the old way.
4234 When "expr" is a store, i.e.
4235 given "MEM <- old_reg", instead of adding after it
4236 reaching_reg <- old_reg
4237 it's better to add it before as follows:
4238 reaching_reg <- old_reg
4239 MEM <- reaching_reg. */
4240
4241 static void
4242 pre_insert_copy_insn (struct expr *expr, rtx insn)
4243 {
4244 rtx reg = expr->reaching_reg;
4245 int regno = REGNO (reg);
4246 int indx = expr->bitmap_index;
4247 rtx pat = PATTERN (insn);
4248 rtx set, first_set, new_insn;
4249 rtx old_reg;
4250 int i;
4251
4252 /* This block matches the logic in hash_scan_insn. */
4253 switch (GET_CODE (pat))
4254 {
4255 case SET:
4256 set = pat;
4257 break;
4258
4259 case PARALLEL:
4260 /* Search through the parallel looking for the set whose
4261 source was the expression that we're interested in. */
4262 first_set = NULL_RTX;
4263 set = NULL_RTX;
4264 for (i = 0; i < XVECLEN (pat, 0); i++)
4265 {
4266 rtx x = XVECEXP (pat, 0, i);
4267 if (GET_CODE (x) == SET)
4268 {
4269 /* If the source was a REG_EQUAL or REG_EQUIV note, we
4270 may not find an equivalent expression, but in this
4271 case the PARALLEL will have a single set. */
4272 if (first_set == NULL_RTX)
4273 first_set = x;
4274 if (expr_equiv_p (SET_SRC (x), expr->expr))
4275 {
4276 set = x;
4277 break;
4278 }
4279 }
4280 }
4281
4282 gcc_assert (first_set);
4283 if (set == NULL_RTX)
4284 set = first_set;
4285 break;
4286
4287 default:
4288 gcc_unreachable ();
4289 }
4290
4291 if (REG_P (SET_DEST (set)))
4292 {
4293 old_reg = SET_DEST (set);
4294 /* Check if we can modify the set destination in the original insn. */
4295 if (validate_change (insn, &SET_DEST (set), reg, 0))
4296 {
4297 new_insn = gen_move_insn (old_reg, reg);
4298 new_insn = emit_insn_after (new_insn, insn);
4299
4300 /* Keep register set table up to date. */
4301 record_one_set (regno, insn);
4302 }
4303 else
4304 {
4305 new_insn = gen_move_insn (reg, old_reg);
4306 new_insn = emit_insn_after (new_insn, insn);
4307
4308 /* Keep register set table up to date. */
4309 record_one_set (regno, new_insn);
4310 }
4311 }
4312 else /* This is possible only in case of a store to memory. */
4313 {
4314 old_reg = SET_SRC (set);
4315 new_insn = gen_move_insn (reg, old_reg);
4316
4317 /* Check if we can modify the set source in the original insn. */
4318 if (validate_change (insn, &SET_SRC (set), reg, 0))
4319 new_insn = emit_insn_before (new_insn, insn);
4320 else
4321 new_insn = emit_insn_after (new_insn, insn);
4322
4323 /* Keep register set table up to date. */
4324 record_one_set (regno, new_insn);
4325 }
4326
4327 gcse_create_count++;
4328
4329 if (dump_file)
4330 fprintf (dump_file,
4331 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
4332 BLOCK_NUM (insn), INSN_UID (new_insn), indx,
4333 INSN_UID (insn), regno);
4334 }
4335
4336 /* Copy available expressions that reach the redundant expression
4337 to `reaching_reg'. */
4338
4339 static void
4340 pre_insert_copies (void)
4341 {
4342 unsigned int i, added_copy;
4343 struct expr *expr;
4344 struct occr *occr;
4345 struct occr *avail;
4346
4347 /* For each available expression in the table, copy the result to
4348 `reaching_reg' if the expression reaches a deleted one.
4349
4350 ??? The current algorithm is rather brute force.
4351 Need to do some profiling. */
4352
4353 for (i = 0; i < expr_hash_table.size; i++)
4354 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4355 {
4356 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
4357 we don't want to insert a copy here because the expression may not
4358 really be redundant. So only insert an insn if the expression was
4359 deleted. This test also avoids further processing if the
4360 expression wasn't deleted anywhere. */
4361 if (expr->reaching_reg == NULL)
4362 continue;
4363
4364 /* Set when we add a copy for that expression. */
4365 added_copy = 0;
4366
4367 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4368 {
4369 if (! occr->deleted_p)
4370 continue;
4371
4372 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
4373 {
4374 rtx insn = avail->insn;
4375
4376 /* No need to handle this one if handled already. */
4377 if (avail->copied_p)
4378 continue;
4379
4380 /* Don't handle this one if it's a redundant one. */
4381 if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
4382 continue;
4383
4384 /* Or if the expression doesn't reach the deleted one. */
4385 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
4386 expr,
4387 BLOCK_FOR_INSN (occr->insn)))
4388 continue;
4389
4390 added_copy = 1;
4391
4392 /* Copy the result of avail to reaching_reg. */
4393 pre_insert_copy_insn (expr, insn);
4394 avail->copied_p = 1;
4395 }
4396 }
4397
4398 if (added_copy)
4399 update_ld_motion_stores (expr);
4400 }
4401 }
4402
4403 /* Emit move from SRC to DEST noting the equivalence with expression computed
4404 in INSN. */
4405 static rtx
4406 gcse_emit_move_after (rtx src, rtx dest, rtx insn)
4407 {
4408 rtx new;
4409 rtx set = single_set (insn), set2;
4410 rtx note;
4411 rtx eqv;
4412
4413 /* This should never fail since we're creating a reg->reg copy
4414 we've verified to be valid. */
4415
4416 new = emit_insn_after (gen_move_insn (dest, src), insn);
4417
4418 /* Note the equivalence for local CSE pass. */
4419 set2 = single_set (new);
4420 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
4421 return new;
4422 if ((note = find_reg_equal_equiv_note (insn)))
4423 eqv = XEXP (note, 0);
4424 else
4425 eqv = SET_SRC (set);
4426
4427 set_unique_reg_note (new, REG_EQUAL, copy_insn_1 (eqv));
4428
4429 return new;
4430 }
4431
4432 /* Delete redundant computations.
4433 Deletion is done by changing the insn to copy the `reaching_reg' of
4434 the expression into the result of the SET. It is left to later passes
4435 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
4436
4437 Returns nonzero if a change is made. */
4438
4439 static int
4440 pre_delete (void)
4441 {
4442 unsigned int i;
4443 int changed;
4444 struct expr *expr;
4445 struct occr *occr;
4446
4447 changed = 0;
4448 for (i = 0; i < expr_hash_table.size; i++)
4449 for (expr = expr_hash_table.table[i];
4450 expr != NULL;
4451 expr = expr->next_same_hash)
4452 {
4453 int indx = expr->bitmap_index;
4454
4455 /* We only need to search antic_occr since we require
4456 ANTLOC != 0. */
4457
4458 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4459 {
4460 rtx insn = occr->insn;
4461 rtx set;
4462 basic_block bb = BLOCK_FOR_INSN (insn);
4463
4464 /* We only delete insns that have a single_set. */
4465 if (TEST_BIT (pre_delete_map[bb->index], indx)
4466 && (set = single_set (insn)) != 0
4467 && dbg_cnt (pre_insn))
4468 {
4469 /* Create a pseudo-reg to store the result of reaching
4470 expressions into. Get the mode for the new pseudo from
4471 the mode of the original destination pseudo. */
4472 if (expr->reaching_reg == NULL)
4473 expr->reaching_reg
4474 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4475
4476 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4477 delete_insn (insn);
4478 occr->deleted_p = 1;
4479 SET_BIT (pre_redundant_insns, INSN_CUID (insn));
4480 changed = 1;
4481 gcse_subst_count++;
4482
4483 if (dump_file)
4484 {
4485 fprintf (dump_file,
4486 "PRE: redundant insn %d (expression %d) in ",
4487 INSN_UID (insn), indx);
4488 fprintf (dump_file, "bb %d, reaching reg is %d\n",
4489 bb->index, REGNO (expr->reaching_reg));
4490 }
4491 }
4492 }
4493 }
4494
4495 return changed;
4496 }
4497
4498 /* Perform GCSE optimizations using PRE.
4499 This is called by one_pre_gcse_pass after all the dataflow analysis
4500 has been done.
4501
4502 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
4503 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
4504 Compiler Design and Implementation.
4505
4506 ??? A new pseudo reg is created to hold the reaching expression. The nice
4507 thing about the classical approach is that it would try to use an existing
4508 reg. If the register can't be adequately optimized [i.e. we introduce
4509 reload problems], one could add a pass here to propagate the new register
4510 through the block.
4511
4512 ??? We don't handle single sets in PARALLELs because we're [currently] not
4513 able to copy the rest of the parallel when we insert copies to create full
4514 redundancies from partial redundancies. However, there's no reason why we
4515 can't handle PARALLELs in the cases where there are no partial
4516 redundancies. */
4517
4518 static int
4519 pre_gcse (void)
4520 {
4521 unsigned int i;
4522 int did_insert, changed;
4523 struct expr **index_map;
4524 struct expr *expr;
4525
4526 /* Compute a mapping from expression number (`bitmap_index') to
4527 hash table entry. */
4528
4529 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
4530 for (i = 0; i < expr_hash_table.size; i++)
4531 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4532 index_map[expr->bitmap_index] = expr;
4533
4534 /* Reset bitmap used to track which insns are redundant. */
4535 pre_redundant_insns = sbitmap_alloc (max_cuid);
4536 sbitmap_zero (pre_redundant_insns);
4537
4538 /* Delete the redundant insns first so that
4539 - we know what register to use for the new insns and for the other
4540 ones with reaching expressions
4541 - we know which insns are redundant when we go to create copies */
4542
4543 changed = pre_delete ();
4544 did_insert = pre_edge_insert (edge_list, index_map);
4545
4546 /* In other places with reaching expressions, copy the expression to the
4547 specially allocated pseudo-reg that reaches the redundant expr. */
4548 pre_insert_copies ();
4549 if (did_insert)
4550 {
4551 commit_edge_insertions ();
4552 changed = 1;
4553 }
4554
4555 free (index_map);
4556 sbitmap_free (pre_redundant_insns);
4557 return changed;
4558 }
4559
4560 /* Top level routine to perform one PRE GCSE pass.
4561
4562 Return nonzero if a change was made. */
4563
4564 static int
4565 one_pre_gcse_pass (int pass)
4566 {
4567 int changed = 0;
4568
4569 gcse_subst_count = 0;
4570 gcse_create_count = 0;
4571
4572 alloc_hash_table (max_cuid, &expr_hash_table, 0);
4573 add_noreturn_fake_exit_edges ();
4574 if (flag_gcse_lm)
4575 compute_ld_motion_mems ();
4576
4577 compute_hash_table (&expr_hash_table);
4578 trim_ld_motion_mems ();
4579 if (dump_file)
4580 dump_hash_table (dump_file, "Expression", &expr_hash_table);
4581
4582 if (expr_hash_table.n_elems > 0)
4583 {
4584 alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
4585 compute_pre_data ();
4586 changed |= pre_gcse ();
4587 free_edge_list (edge_list);
4588 free_pre_mem ();
4589 }
4590
4591 free_ldst_mems ();
4592 remove_fake_exit_edges ();
4593 free_hash_table (&expr_hash_table);
4594
4595 if (dump_file)
4596 {
4597 fprintf (dump_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
4598 current_function_name (), pass, bytes_used);
4599 fprintf (dump_file, "%d substs, %d insns created\n",
4600 gcse_subst_count, gcse_create_count);
4601 }
4602
4603 return changed;
4604 }
4605 \f
4606 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
4607 to INSN. If such notes are added to an insn which references a
4608 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
4609 that note, because the following loop optimization pass requires
4610 them. */
4611
4612 /* ??? If there was a jump optimization pass after gcse and before loop,
4613 then we would not need to do this here, because jump would add the
4614 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
4615
4616 static void
4617 add_label_notes (rtx x, rtx insn)
4618 {
4619 enum rtx_code code = GET_CODE (x);
4620 int i, j;
4621 const char *fmt;
4622
4623 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
4624 {
4625 /* This code used to ignore labels that referred to dispatch tables to
4626 avoid flow generating (slightly) worse code.
4627
4628 We no longer ignore such label references (see LABEL_REF handling in
4629 mark_jump_label for additional information). */
4630
4631 if (reg_mentioned_p (XEXP (x, 0), insn))
4632 {
4633 /* There's no reason for current users to emit jump-insns
4634 with such a LABEL_REF, so we don't have to handle
4635 REG_LABEL_TARGET notes. */
4636 gcc_assert (!JUMP_P (insn));
4637 REG_NOTES (insn)
4638 = gen_rtx_INSN_LIST (REG_LABEL_OPERAND, XEXP (x, 0),
4639 REG_NOTES (insn));
4640 if (LABEL_P (XEXP (x, 0)))
4641 LABEL_NUSES (XEXP (x, 0))++;
4642 }
4643 return;
4644 }
4645
4646 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
4647 {
4648 if (fmt[i] == 'e')
4649 add_label_notes (XEXP (x, i), insn);
4650 else if (fmt[i] == 'E')
4651 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4652 add_label_notes (XVECEXP (x, i, j), insn);
4653 }
4654 }
4655
4656 /* Compute transparent outgoing information for each block.
4657
4658 An expression is transparent to an edge unless it is killed by
4659 the edge itself. This can only happen with abnormal control flow,
4660 when the edge is traversed through a call. This happens with
4661 non-local labels and exceptions.
4662
4663 This would not be necessary if we split the edge. While this is
4664 normally impossible for abnormal critical edges, with some effort
4665 it should be possible with exception handling, since we still have
4666 control over which handler should be invoked. But due to increased
4667 EH table sizes, this may not be worthwhile. */
4668
4669 static void
4670 compute_transpout (void)
4671 {
4672 basic_block bb;
4673 unsigned int i;
4674 struct expr *expr;
4675
4676 sbitmap_vector_ones (transpout, last_basic_block);
4677
4678 FOR_EACH_BB (bb)
4679 {
4680 /* Note that flow inserted a nop a the end of basic blocks that
4681 end in call instructions for reasons other than abnormal
4682 control flow. */
4683 if (! CALL_P (BB_END (bb)))
4684 continue;
4685
4686 for (i = 0; i < expr_hash_table.size; i++)
4687 for (expr = expr_hash_table.table[i]; expr ; expr = expr->next_same_hash)
4688 if (MEM_P (expr->expr))
4689 {
4690 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
4691 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
4692 continue;
4693
4694 /* ??? Optimally, we would use interprocedural alias
4695 analysis to determine if this mem is actually killed
4696 by this call. */
4697 RESET_BIT (transpout[bb->index], expr->bitmap_index);
4698 }
4699 }
4700 }
4701
4702 /* Code Hoisting variables and subroutines. */
4703
4704 /* Very busy expressions. */
4705 static sbitmap *hoist_vbein;
4706 static sbitmap *hoist_vbeout;
4707
4708 /* Hoistable expressions. */
4709 static sbitmap *hoist_exprs;
4710
4711 /* ??? We could compute post dominators and run this algorithm in
4712 reverse to perform tail merging, doing so would probably be
4713 more effective than the tail merging code in jump.c.
4714
4715 It's unclear if tail merging could be run in parallel with
4716 code hoisting. It would be nice. */
4717
4718 /* Allocate vars used for code hoisting analysis. */
4719
4720 static void
4721 alloc_code_hoist_mem (int n_blocks, int n_exprs)
4722 {
4723 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
4724 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4725 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4726
4727 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
4728 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
4729 hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
4730 transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
4731 }
4732
4733 /* Free vars used for code hoisting analysis. */
4734
4735 static void
4736 free_code_hoist_mem (void)
4737 {
4738 sbitmap_vector_free (antloc);
4739 sbitmap_vector_free (transp);
4740 sbitmap_vector_free (comp);
4741
4742 sbitmap_vector_free (hoist_vbein);
4743 sbitmap_vector_free (hoist_vbeout);
4744 sbitmap_vector_free (hoist_exprs);
4745 sbitmap_vector_free (transpout);
4746
4747 free_dominance_info (CDI_DOMINATORS);
4748 }
4749
4750 /* Compute the very busy expressions at entry/exit from each block.
4751
4752 An expression is very busy if all paths from a given point
4753 compute the expression. */
4754
4755 static void
4756 compute_code_hoist_vbeinout (void)
4757 {
4758 int changed, passes;
4759 basic_block bb;
4760
4761 sbitmap_vector_zero (hoist_vbeout, last_basic_block);
4762 sbitmap_vector_zero (hoist_vbein, last_basic_block);
4763
4764 passes = 0;
4765 changed = 1;
4766
4767 while (changed)
4768 {
4769 changed = 0;
4770
4771 /* We scan the blocks in the reverse order to speed up
4772 the convergence. */
4773 FOR_EACH_BB_REVERSE (bb)
4774 {
4775 changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index], antloc[bb->index],
4776 hoist_vbeout[bb->index], transp[bb->index]);
4777 if (bb->next_bb != EXIT_BLOCK_PTR)
4778 sbitmap_intersection_of_succs (hoist_vbeout[bb->index], hoist_vbein, bb->index);
4779 }
4780
4781 passes++;
4782 }
4783
4784 if (dump_file)
4785 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
4786 }
4787
4788 /* Top level routine to do the dataflow analysis needed by code hoisting. */
4789
4790 static void
4791 compute_code_hoist_data (void)
4792 {
4793 compute_local_properties (transp, comp, antloc, &expr_hash_table);
4794 compute_transpout ();
4795 compute_code_hoist_vbeinout ();
4796 calculate_dominance_info (CDI_DOMINATORS);
4797 if (dump_file)
4798 fprintf (dump_file, "\n");
4799 }
4800
4801 /* Determine if the expression identified by EXPR_INDEX would
4802 reach BB unimpared if it was placed at the end of EXPR_BB.
4803
4804 It's unclear exactly what Muchnick meant by "unimpared". It seems
4805 to me that the expression must either be computed or transparent in
4806 *every* block in the path(s) from EXPR_BB to BB. Any other definition
4807 would allow the expression to be hoisted out of loops, even if
4808 the expression wasn't a loop invariant.
4809
4810 Contrast this to reachability for PRE where an expression is
4811 considered reachable if *any* path reaches instead of *all*
4812 paths. */
4813
4814 static int
4815 hoist_expr_reaches_here_p (basic_block expr_bb, int expr_index, basic_block bb, char *visited)
4816 {
4817 edge pred;
4818 edge_iterator ei;
4819 int visited_allocated_locally = 0;
4820
4821
4822 if (visited == NULL)
4823 {
4824 visited_allocated_locally = 1;
4825 visited = XCNEWVEC (char, last_basic_block);
4826 }
4827
4828 FOR_EACH_EDGE (pred, ei, bb->preds)
4829 {
4830 basic_block pred_bb = pred->src;
4831
4832 if (pred->src == ENTRY_BLOCK_PTR)
4833 break;
4834 else if (pred_bb == expr_bb)
4835 continue;
4836 else if (visited[pred_bb->index])
4837 continue;
4838
4839 /* Does this predecessor generate this expression? */
4840 else if (TEST_BIT (comp[pred_bb->index], expr_index))
4841 break;
4842 else if (! TEST_BIT (transp[pred_bb->index], expr_index))
4843 break;
4844
4845 /* Not killed. */
4846 else
4847 {
4848 visited[pred_bb->index] = 1;
4849 if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
4850 pred_bb, visited))
4851 break;
4852 }
4853 }
4854 if (visited_allocated_locally)
4855 free (visited);
4856
4857 return (pred == NULL);
4858 }
4859 \f
4860 /* Actually perform code hoisting. */
4861
4862 static void
4863 hoist_code (void)
4864 {
4865 basic_block bb, dominated;
4866 VEC (basic_block, heap) *domby;
4867 unsigned int i,j;
4868 struct expr **index_map;
4869 struct expr *expr;
4870
4871 sbitmap_vector_zero (hoist_exprs, last_basic_block);
4872
4873 /* Compute a mapping from expression number (`bitmap_index') to
4874 hash table entry. */
4875
4876 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
4877 for (i = 0; i < expr_hash_table.size; i++)
4878 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4879 index_map[expr->bitmap_index] = expr;
4880
4881 /* Walk over each basic block looking for potentially hoistable
4882 expressions, nothing gets hoisted from the entry block. */
4883 FOR_EACH_BB (bb)
4884 {
4885 int found = 0;
4886 int insn_inserted_p;
4887
4888 domby = get_dominated_by (CDI_DOMINATORS, bb);
4889 /* Examine each expression that is very busy at the exit of this
4890 block. These are the potentially hoistable expressions. */
4891 for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
4892 {
4893 int hoistable = 0;
4894
4895 if (TEST_BIT (hoist_vbeout[bb->index], i)
4896 && TEST_BIT (transpout[bb->index], i))
4897 {
4898 /* We've found a potentially hoistable expression, now
4899 we look at every block BB dominates to see if it
4900 computes the expression. */
4901 for (j = 0; VEC_iterate (basic_block, domby, j, dominated); j++)
4902 {
4903 /* Ignore self dominance. */
4904 if (bb == dominated)
4905 continue;
4906 /* We've found a dominated block, now see if it computes
4907 the busy expression and whether or not moving that
4908 expression to the "beginning" of that block is safe. */
4909 if (!TEST_BIT (antloc[dominated->index], i))
4910 continue;
4911
4912 /* Note if the expression would reach the dominated block
4913 unimpared if it was placed at the end of BB.
4914
4915 Keep track of how many times this expression is hoistable
4916 from a dominated block into BB. */
4917 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4918 hoistable++;
4919 }
4920
4921 /* If we found more than one hoistable occurrence of this
4922 expression, then note it in the bitmap of expressions to
4923 hoist. It makes no sense to hoist things which are computed
4924 in only one BB, and doing so tends to pessimize register
4925 allocation. One could increase this value to try harder
4926 to avoid any possible code expansion due to register
4927 allocation issues; however experiments have shown that
4928 the vast majority of hoistable expressions are only movable
4929 from two successors, so raising this threshold is likely
4930 to nullify any benefit we get from code hoisting. */
4931 if (hoistable > 1)
4932 {
4933 SET_BIT (hoist_exprs[bb->index], i);
4934 found = 1;
4935 }
4936 }
4937 }
4938 /* If we found nothing to hoist, then quit now. */
4939 if (! found)
4940 {
4941 VEC_free (basic_block, heap, domby);
4942 continue;
4943 }
4944
4945 /* Loop over all the hoistable expressions. */
4946 for (i = 0; i < hoist_exprs[bb->index]->n_bits; i++)
4947 {
4948 /* We want to insert the expression into BB only once, so
4949 note when we've inserted it. */
4950 insn_inserted_p = 0;
4951
4952 /* These tests should be the same as the tests above. */
4953 if (TEST_BIT (hoist_exprs[bb->index], i))
4954 {
4955 /* We've found a potentially hoistable expression, now
4956 we look at every block BB dominates to see if it
4957 computes the expression. */
4958 for (j = 0; VEC_iterate (basic_block, domby, j, dominated); j++)
4959 {
4960 /* Ignore self dominance. */
4961 if (bb == dominated)
4962 continue;
4963
4964 /* We've found a dominated block, now see if it computes
4965 the busy expression and whether or not moving that
4966 expression to the "beginning" of that block is safe. */
4967 if (!TEST_BIT (antloc[dominated->index], i))
4968 continue;
4969
4970 /* The expression is computed in the dominated block and
4971 it would be safe to compute it at the start of the
4972 dominated block. Now we have to determine if the
4973 expression would reach the dominated block if it was
4974 placed at the end of BB. */
4975 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4976 {
4977 struct expr *expr = index_map[i];
4978 struct occr *occr = expr->antic_occr;
4979 rtx insn;
4980 rtx set;
4981
4982 /* Find the right occurrence of this expression. */
4983 while (BLOCK_FOR_INSN (occr->insn) != dominated && occr)
4984 occr = occr->next;
4985
4986 gcc_assert (occr);
4987 insn = occr->insn;
4988 set = single_set (insn);
4989 gcc_assert (set);
4990
4991 /* Create a pseudo-reg to store the result of reaching
4992 expressions into. Get the mode for the new pseudo
4993 from the mode of the original destination pseudo. */
4994 if (expr->reaching_reg == NULL)
4995 expr->reaching_reg
4996 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4997
4998 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4999 delete_insn (insn);
5000 occr->deleted_p = 1;
5001 if (!insn_inserted_p)
5002 {
5003 insert_insn_end_basic_block (index_map[i], bb, 0);
5004 insn_inserted_p = 1;
5005 }
5006 }
5007 }
5008 }
5009 }
5010 VEC_free (basic_block, heap, domby);
5011 }
5012
5013 free (index_map);
5014 }
5015
5016 /* Top level routine to perform one code hoisting (aka unification) pass
5017
5018 Return nonzero if a change was made. */
5019
5020 static int
5021 one_code_hoisting_pass (void)
5022 {
5023 int changed = 0;
5024
5025 alloc_hash_table (max_cuid, &expr_hash_table, 0);
5026 compute_hash_table (&expr_hash_table);
5027 if (dump_file)
5028 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
5029
5030 if (expr_hash_table.n_elems > 0)
5031 {
5032 alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
5033 compute_code_hoist_data ();
5034 hoist_code ();
5035 free_code_hoist_mem ();
5036 }
5037
5038 free_hash_table (&expr_hash_table);
5039
5040 return changed;
5041 }
5042 \f
5043 /* Here we provide the things required to do store motion towards
5044 the exit. In order for this to be effective, gcse also needed to
5045 be taught how to move a load when it is kill only by a store to itself.
5046
5047 int i;
5048 float a[10];
5049
5050 void foo(float scale)
5051 {
5052 for (i=0; i<10; i++)
5053 a[i] *= scale;
5054 }
5055
5056 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
5057 the load out since its live around the loop, and stored at the bottom
5058 of the loop.
5059
5060 The 'Load Motion' referred to and implemented in this file is
5061 an enhancement to gcse which when using edge based lcm, recognizes
5062 this situation and allows gcse to move the load out of the loop.
5063
5064 Once gcse has hoisted the load, store motion can then push this
5065 load towards the exit, and we end up with no loads or stores of 'i'
5066 in the loop. */
5067
5068 static hashval_t
5069 pre_ldst_expr_hash (const void *p)
5070 {
5071 int do_not_record_p = 0;
5072 const struct ls_expr *x = p;
5073 return hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
5074 }
5075
5076 static int
5077 pre_ldst_expr_eq (const void *p1, const void *p2)
5078 {
5079 const struct ls_expr *ptr1 = p1, *ptr2 = p2;
5080 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
5081 }
5082
5083 /* This will search the ldst list for a matching expression. If it
5084 doesn't find one, we create one and initialize it. */
5085
5086 static struct ls_expr *
5087 ldst_entry (rtx x)
5088 {
5089 int do_not_record_p = 0;
5090 struct ls_expr * ptr;
5091 unsigned int hash;
5092 void **slot;
5093 struct ls_expr e;
5094
5095 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
5096 NULL, /*have_reg_qty=*/false);
5097
5098 e.pattern = x;
5099 slot = htab_find_slot_with_hash (pre_ldst_table, &e, hash, INSERT);
5100 if (*slot)
5101 return (struct ls_expr *)*slot;
5102
5103 ptr = XNEW (struct ls_expr);
5104
5105 ptr->next = pre_ldst_mems;
5106 ptr->expr = NULL;
5107 ptr->pattern = x;
5108 ptr->pattern_regs = NULL_RTX;
5109 ptr->loads = NULL_RTX;
5110 ptr->stores = NULL_RTX;
5111 ptr->reaching_reg = NULL_RTX;
5112 ptr->invalid = 0;
5113 ptr->index = 0;
5114 ptr->hash_index = hash;
5115 pre_ldst_mems = ptr;
5116 *slot = ptr;
5117
5118 return ptr;
5119 }
5120
5121 /* Free up an individual ldst entry. */
5122
5123 static void
5124 free_ldst_entry (struct ls_expr * ptr)
5125 {
5126 free_INSN_LIST_list (& ptr->loads);
5127 free_INSN_LIST_list (& ptr->stores);
5128
5129 free (ptr);
5130 }
5131
5132 /* Free up all memory associated with the ldst list. */
5133
5134 static void
5135 free_ldst_mems (void)
5136 {
5137 if (pre_ldst_table)
5138 htab_delete (pre_ldst_table);
5139 pre_ldst_table = NULL;
5140
5141 while (pre_ldst_mems)
5142 {
5143 struct ls_expr * tmp = pre_ldst_mems;
5144
5145 pre_ldst_mems = pre_ldst_mems->next;
5146
5147 free_ldst_entry (tmp);
5148 }
5149
5150 pre_ldst_mems = NULL;
5151 }
5152
5153 /* Dump debugging info about the ldst list. */
5154
5155 static void
5156 print_ldst_list (FILE * file)
5157 {
5158 struct ls_expr * ptr;
5159
5160 fprintf (file, "LDST list: \n");
5161
5162 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
5163 {
5164 fprintf (file, " Pattern (%3d): ", ptr->index);
5165
5166 print_rtl (file, ptr->pattern);
5167
5168 fprintf (file, "\n Loads : ");
5169
5170 if (ptr->loads)
5171 print_rtl (file, ptr->loads);
5172 else
5173 fprintf (file, "(nil)");
5174
5175 fprintf (file, "\n Stores : ");
5176
5177 if (ptr->stores)
5178 print_rtl (file, ptr->stores);
5179 else
5180 fprintf (file, "(nil)");
5181
5182 fprintf (file, "\n\n");
5183 }
5184
5185 fprintf (file, "\n");
5186 }
5187
5188 /* Returns 1 if X is in the list of ldst only expressions. */
5189
5190 static struct ls_expr *
5191 find_rtx_in_ldst (rtx x)
5192 {
5193 struct ls_expr e;
5194 void **slot;
5195 if (!pre_ldst_table)
5196 return NULL;
5197 e.pattern = x;
5198 slot = htab_find_slot (pre_ldst_table, &e, NO_INSERT);
5199 if (!slot || ((struct ls_expr *)*slot)->invalid)
5200 return NULL;
5201 return *slot;
5202 }
5203
5204 /* Assign each element of the list of mems a monotonically increasing value. */
5205
5206 static int
5207 enumerate_ldsts (void)
5208 {
5209 struct ls_expr * ptr;
5210 int n = 0;
5211
5212 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5213 ptr->index = n++;
5214
5215 return n;
5216 }
5217
5218 /* Return first item in the list. */
5219
5220 static inline struct ls_expr *
5221 first_ls_expr (void)
5222 {
5223 return pre_ldst_mems;
5224 }
5225
5226 /* Return the next item in the list after the specified one. */
5227
5228 static inline struct ls_expr *
5229 next_ls_expr (struct ls_expr * ptr)
5230 {
5231 return ptr->next;
5232 }
5233 \f
5234 /* Load Motion for loads which only kill themselves. */
5235
5236 /* Return true if x is a simple MEM operation, with no registers or
5237 side effects. These are the types of loads we consider for the
5238 ld_motion list, otherwise we let the usual aliasing take care of it. */
5239
5240 static int
5241 simple_mem (const_rtx x)
5242 {
5243 if (! MEM_P (x))
5244 return 0;
5245
5246 if (MEM_VOLATILE_P (x))
5247 return 0;
5248
5249 if (GET_MODE (x) == BLKmode)
5250 return 0;
5251
5252 /* If we are handling exceptions, we must be careful with memory references
5253 that may trap. If we are not, the behavior is undefined, so we may just
5254 continue. */
5255 if (flag_non_call_exceptions && may_trap_p (x))
5256 return 0;
5257
5258 if (side_effects_p (x))
5259 return 0;
5260
5261 /* Do not consider function arguments passed on stack. */
5262 if (reg_mentioned_p (stack_pointer_rtx, x))
5263 return 0;
5264
5265 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
5266 return 0;
5267
5268 return 1;
5269 }
5270
5271 /* Make sure there isn't a buried reference in this pattern anywhere.
5272 If there is, invalidate the entry for it since we're not capable
5273 of fixing it up just yet.. We have to be sure we know about ALL
5274 loads since the aliasing code will allow all entries in the
5275 ld_motion list to not-alias itself. If we miss a load, we will get
5276 the wrong value since gcse might common it and we won't know to
5277 fix it up. */
5278
5279 static void
5280 invalidate_any_buried_refs (rtx x)
5281 {
5282 const char * fmt;
5283 int i, j;
5284 struct ls_expr * ptr;
5285
5286 /* Invalidate it in the list. */
5287 if (MEM_P (x) && simple_mem (x))
5288 {
5289 ptr = ldst_entry (x);
5290 ptr->invalid = 1;
5291 }
5292
5293 /* Recursively process the insn. */
5294 fmt = GET_RTX_FORMAT (GET_CODE (x));
5295
5296 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5297 {
5298 if (fmt[i] == 'e')
5299 invalidate_any_buried_refs (XEXP (x, i));
5300 else if (fmt[i] == 'E')
5301 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5302 invalidate_any_buried_refs (XVECEXP (x, i, j));
5303 }
5304 }
5305
5306 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
5307 being defined as MEM loads and stores to symbols, with no side effects
5308 and no registers in the expression. For a MEM destination, we also
5309 check that the insn is still valid if we replace the destination with a
5310 REG, as is done in update_ld_motion_stores. If there are any uses/defs
5311 which don't match this criteria, they are invalidated and trimmed out
5312 later. */
5313
5314 static void
5315 compute_ld_motion_mems (void)
5316 {
5317 struct ls_expr * ptr;
5318 basic_block bb;
5319 rtx insn;
5320
5321 pre_ldst_mems = NULL;
5322 pre_ldst_table = htab_create (13, pre_ldst_expr_hash,
5323 pre_ldst_expr_eq, NULL);
5324
5325 FOR_EACH_BB (bb)
5326 {
5327 FOR_BB_INSNS (bb, insn)
5328 {
5329 if (INSN_P (insn))
5330 {
5331 if (GET_CODE (PATTERN (insn)) == SET)
5332 {
5333 rtx src = SET_SRC (PATTERN (insn));
5334 rtx dest = SET_DEST (PATTERN (insn));
5335
5336 /* Check for a simple LOAD... */
5337 if (MEM_P (src) && simple_mem (src))
5338 {
5339 ptr = ldst_entry (src);
5340 if (REG_P (dest))
5341 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
5342 else
5343 ptr->invalid = 1;
5344 }
5345 else
5346 {
5347 /* Make sure there isn't a buried load somewhere. */
5348 invalidate_any_buried_refs (src);
5349 }
5350
5351 /* Check for stores. Don't worry about aliased ones, they
5352 will block any movement we might do later. We only care
5353 about this exact pattern since those are the only
5354 circumstance that we will ignore the aliasing info. */
5355 if (MEM_P (dest) && simple_mem (dest))
5356 {
5357 ptr = ldst_entry (dest);
5358
5359 if (! MEM_P (src)
5360 && GET_CODE (src) != ASM_OPERANDS
5361 /* Check for REG manually since want_to_gcse_p
5362 returns 0 for all REGs. */
5363 && can_assign_to_reg_p (src))
5364 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
5365 else
5366 ptr->invalid = 1;
5367 }
5368 }
5369 else
5370 invalidate_any_buried_refs (PATTERN (insn));
5371 }
5372 }
5373 }
5374 }
5375
5376 /* Remove any references that have been either invalidated or are not in the
5377 expression list for pre gcse. */
5378
5379 static void
5380 trim_ld_motion_mems (void)
5381 {
5382 struct ls_expr * * last = & pre_ldst_mems;
5383 struct ls_expr * ptr = pre_ldst_mems;
5384
5385 while (ptr != NULL)
5386 {
5387 struct expr * expr;
5388
5389 /* Delete if entry has been made invalid. */
5390 if (! ptr->invalid)
5391 {
5392 /* Delete if we cannot find this mem in the expression list. */
5393 unsigned int hash = ptr->hash_index % expr_hash_table.size;
5394
5395 for (expr = expr_hash_table.table[hash];
5396 expr != NULL;
5397 expr = expr->next_same_hash)
5398 if (expr_equiv_p (expr->expr, ptr->pattern))
5399 break;
5400 }
5401 else
5402 expr = (struct expr *) 0;
5403
5404 if (expr)
5405 {
5406 /* Set the expression field if we are keeping it. */
5407 ptr->expr = expr;
5408 last = & ptr->next;
5409 ptr = ptr->next;
5410 }
5411 else
5412 {
5413 *last = ptr->next;
5414 htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
5415 free_ldst_entry (ptr);
5416 ptr = * last;
5417 }
5418 }
5419
5420 /* Show the world what we've found. */
5421 if (dump_file && pre_ldst_mems != NULL)
5422 print_ldst_list (dump_file);
5423 }
5424
5425 /* This routine will take an expression which we are replacing with
5426 a reaching register, and update any stores that are needed if
5427 that expression is in the ld_motion list. Stores are updated by
5428 copying their SRC to the reaching register, and then storing
5429 the reaching register into the store location. These keeps the
5430 correct value in the reaching register for the loads. */
5431
5432 static void
5433 update_ld_motion_stores (struct expr * expr)
5434 {
5435 struct ls_expr * mem_ptr;
5436
5437 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
5438 {
5439 /* We can try to find just the REACHED stores, but is shouldn't
5440 matter to set the reaching reg everywhere... some might be
5441 dead and should be eliminated later. */
5442
5443 /* We replace (set mem expr) with (set reg expr) (set mem reg)
5444 where reg is the reaching reg used in the load. We checked in
5445 compute_ld_motion_mems that we can replace (set mem expr) with
5446 (set reg expr) in that insn. */
5447 rtx list = mem_ptr->stores;
5448
5449 for ( ; list != NULL_RTX; list = XEXP (list, 1))
5450 {
5451 rtx insn = XEXP (list, 0);
5452 rtx pat = PATTERN (insn);
5453 rtx src = SET_SRC (pat);
5454 rtx reg = expr->reaching_reg;
5455 rtx copy, new;
5456
5457 /* If we've already copied it, continue. */
5458 if (expr->reaching_reg == src)
5459 continue;
5460
5461 if (dump_file)
5462 {
5463 fprintf (dump_file, "PRE: store updated with reaching reg ");
5464 print_rtl (dump_file, expr->reaching_reg);
5465 fprintf (dump_file, ":\n ");
5466 print_inline_rtx (dump_file, insn, 8);
5467 fprintf (dump_file, "\n");
5468 }
5469
5470 copy = gen_move_insn ( reg, copy_rtx (SET_SRC (pat)));
5471 new = emit_insn_before (copy, insn);
5472 record_one_set (REGNO (reg), new);
5473 SET_SRC (pat) = reg;
5474 df_insn_rescan (insn);
5475
5476 /* un-recognize this pattern since it's probably different now. */
5477 INSN_CODE (insn) = -1;
5478 gcse_create_count++;
5479 }
5480 }
5481 }
5482 \f
5483 /* Store motion code. */
5484
5485 #define ANTIC_STORE_LIST(x) ((x)->loads)
5486 #define AVAIL_STORE_LIST(x) ((x)->stores)
5487 #define LAST_AVAIL_CHECK_FAILURE(x) ((x)->reaching_reg)
5488
5489 /* This is used to communicate the target bitvector we want to use in the
5490 reg_set_info routine when called via the note_stores mechanism. */
5491 static int * regvec;
5492
5493 /* And current insn, for the same routine. */
5494 static rtx compute_store_table_current_insn;
5495
5496 /* Used in computing the reverse edge graph bit vectors. */
5497 static sbitmap * st_antloc;
5498
5499 /* Global holding the number of store expressions we are dealing with. */
5500 static int num_stores;
5501
5502 /* Checks to set if we need to mark a register set. Called from
5503 note_stores. */
5504
5505 static void
5506 reg_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
5507 void *data)
5508 {
5509 sbitmap bb_reg = data;
5510
5511 if (GET_CODE (dest) == SUBREG)
5512 dest = SUBREG_REG (dest);
5513
5514 if (REG_P (dest))
5515 {
5516 regvec[REGNO (dest)] = INSN_UID (compute_store_table_current_insn);
5517 if (bb_reg)
5518 SET_BIT (bb_reg, REGNO (dest));
5519 }
5520 }
5521
5522 /* Clear any mark that says that this insn sets dest. Called from
5523 note_stores. */
5524
5525 static void
5526 reg_clear_last_set (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
5527 void *data)
5528 {
5529 int *dead_vec = data;
5530
5531 if (GET_CODE (dest) == SUBREG)
5532 dest = SUBREG_REG (dest);
5533
5534 if (REG_P (dest) &&
5535 dead_vec[REGNO (dest)] == INSN_UID (compute_store_table_current_insn))
5536 dead_vec[REGNO (dest)] = 0;
5537 }
5538
5539 /* Return zero if some of the registers in list X are killed
5540 due to set of registers in bitmap REGS_SET. */
5541
5542 static bool
5543 store_ops_ok (const_rtx x, int *regs_set)
5544 {
5545 const_rtx reg;
5546
5547 for (; x; x = XEXP (x, 1))
5548 {
5549 reg = XEXP (x, 0);
5550 if (regs_set[REGNO(reg)])
5551 return false;
5552 }
5553
5554 return true;
5555 }
5556
5557 /* Returns a list of registers mentioned in X. */
5558 static rtx
5559 extract_mentioned_regs (rtx x)
5560 {
5561 return extract_mentioned_regs_helper (x, NULL_RTX);
5562 }
5563
5564 /* Helper for extract_mentioned_regs; ACCUM is used to accumulate used
5565 registers. */
5566 static rtx
5567 extract_mentioned_regs_helper (rtx x, rtx accum)
5568 {
5569 int i;
5570 enum rtx_code code;
5571 const char * fmt;
5572
5573 /* Repeat is used to turn tail-recursion into iteration. */
5574 repeat:
5575
5576 if (x == 0)
5577 return accum;
5578
5579 code = GET_CODE (x);
5580 switch (code)
5581 {
5582 case REG:
5583 return alloc_EXPR_LIST (0, x, accum);
5584
5585 case MEM:
5586 x = XEXP (x, 0);
5587 goto repeat;
5588
5589 case PRE_DEC:
5590 case PRE_INC:
5591 case PRE_MODIFY:
5592 case POST_DEC:
5593 case POST_INC:
5594 case POST_MODIFY:
5595 /* We do not run this function with arguments having side effects. */
5596 gcc_unreachable ();
5597
5598 case PC:
5599 case CC0: /*FIXME*/
5600 case CONST:
5601 case CONST_INT:
5602 case CONST_DOUBLE:
5603 case CONST_FIXED:
5604 case CONST_VECTOR:
5605 case SYMBOL_REF:
5606 case LABEL_REF:
5607 case ADDR_VEC:
5608 case ADDR_DIFF_VEC:
5609 return accum;
5610
5611 default:
5612 break;
5613 }
5614
5615 i = GET_RTX_LENGTH (code) - 1;
5616 fmt = GET_RTX_FORMAT (code);
5617
5618 for (; i >= 0; i--)
5619 {
5620 if (fmt[i] == 'e')
5621 {
5622 rtx tem = XEXP (x, i);
5623
5624 /* If we are about to do the last recursive call
5625 needed at this level, change it into iteration. */
5626 if (i == 0)
5627 {
5628 x = tem;
5629 goto repeat;
5630 }
5631
5632 accum = extract_mentioned_regs_helper (tem, accum);
5633 }
5634 else if (fmt[i] == 'E')
5635 {
5636 int j;
5637
5638 for (j = 0; j < XVECLEN (x, i); j++)
5639 accum = extract_mentioned_regs_helper (XVECEXP (x, i, j), accum);
5640 }
5641 }
5642
5643 return accum;
5644 }
5645
5646 /* Determine whether INSN is MEM store pattern that we will consider moving.
5647 REGS_SET_BEFORE is bitmap of registers set before (and including) the
5648 current insn, REGS_SET_AFTER is bitmap of registers set after (and
5649 including) the insn in this basic block. We must be passing through BB from
5650 head to end, as we are using this fact to speed things up.
5651
5652 The results are stored this way:
5653
5654 -- the first anticipatable expression is added into ANTIC_STORE_LIST
5655 -- if the processed expression is not anticipatable, NULL_RTX is added
5656 there instead, so that we can use it as indicator that no further
5657 expression of this type may be anticipatable
5658 -- if the expression is available, it is added as head of AVAIL_STORE_LIST;
5659 consequently, all of them but this head are dead and may be deleted.
5660 -- if the expression is not available, the insn due to that it fails to be
5661 available is stored in reaching_reg.
5662
5663 The things are complicated a bit by fact that there already may be stores
5664 to the same MEM from other blocks; also caller must take care of the
5665 necessary cleanup of the temporary markers after end of the basic block.
5666 */
5667
5668 static void
5669 find_moveable_store (rtx insn, int *regs_set_before, int *regs_set_after)
5670 {
5671 struct ls_expr * ptr;
5672 rtx dest, set, tmp;
5673 int check_anticipatable, check_available;
5674 basic_block bb = BLOCK_FOR_INSN (insn);
5675
5676 set = single_set (insn);
5677 if (!set)
5678 return;
5679
5680 dest = SET_DEST (set);
5681
5682 if (! MEM_P (dest) || MEM_VOLATILE_P (dest)
5683 || GET_MODE (dest) == BLKmode)
5684 return;
5685
5686 if (side_effects_p (dest))
5687 return;
5688
5689 /* If we are handling exceptions, we must be careful with memory references
5690 that may trap. If we are not, the behavior is undefined, so we may just
5691 continue. */
5692 if (flag_non_call_exceptions && may_trap_p (dest))
5693 return;
5694
5695 /* Even if the destination cannot trap, the source may. In this case we'd
5696 need to handle updating the REG_EH_REGION note. */
5697 if (find_reg_note (insn, REG_EH_REGION, NULL_RTX))
5698 return;
5699
5700 /* Make sure that the SET_SRC of this store insns can be assigned to
5701 a register, or we will fail later on in replace_store_insn, which
5702 assumes that we can do this. But sometimes the target machine has
5703 oddities like MEM read-modify-write instruction. See for example
5704 PR24257. */
5705 if (!can_assign_to_reg_p (SET_SRC (set)))
5706 return;
5707
5708 ptr = ldst_entry (dest);
5709 if (!ptr->pattern_regs)
5710 ptr->pattern_regs = extract_mentioned_regs (dest);
5711
5712 /* Do not check for anticipatability if we either found one anticipatable
5713 store already, or tested for one and found out that it was killed. */
5714 check_anticipatable = 0;
5715 if (!ANTIC_STORE_LIST (ptr))
5716 check_anticipatable = 1;
5717 else
5718 {
5719 tmp = XEXP (ANTIC_STORE_LIST (ptr), 0);
5720 if (tmp != NULL_RTX
5721 && BLOCK_FOR_INSN (tmp) != bb)
5722 check_anticipatable = 1;
5723 }
5724 if (check_anticipatable)
5725 {
5726 if (store_killed_before (dest, ptr->pattern_regs, insn, bb, regs_set_before))
5727 tmp = NULL_RTX;
5728 else
5729 tmp = insn;
5730 ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (tmp,
5731 ANTIC_STORE_LIST (ptr));
5732 }
5733
5734 /* It is not necessary to check whether store is available if we did
5735 it successfully before; if we failed before, do not bother to check
5736 until we reach the insn that caused us to fail. */
5737 check_available = 0;
5738 if (!AVAIL_STORE_LIST (ptr))
5739 check_available = 1;
5740 else
5741 {
5742 tmp = XEXP (AVAIL_STORE_LIST (ptr), 0);
5743 if (BLOCK_FOR_INSN (tmp) != bb)
5744 check_available = 1;
5745 }
5746 if (check_available)
5747 {
5748 /* Check that we have already reached the insn at that the check
5749 failed last time. */
5750 if (LAST_AVAIL_CHECK_FAILURE (ptr))
5751 {
5752 for (tmp = BB_END (bb);
5753 tmp != insn && tmp != LAST_AVAIL_CHECK_FAILURE (ptr);
5754 tmp = PREV_INSN (tmp))
5755 continue;
5756 if (tmp == insn)
5757 check_available = 0;
5758 }
5759 else
5760 check_available = store_killed_after (dest, ptr->pattern_regs, insn,
5761 bb, regs_set_after,
5762 &LAST_AVAIL_CHECK_FAILURE (ptr));
5763 }
5764 if (!check_available)
5765 AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn, AVAIL_STORE_LIST (ptr));
5766 }
5767
5768 /* Find available and anticipatable stores. */
5769
5770 static int
5771 compute_store_table (void)
5772 {
5773 int ret;
5774 basic_block bb;
5775 unsigned regno;
5776 rtx insn, pat, tmp;
5777 int *last_set_in, *already_set;
5778 struct ls_expr * ptr, **prev_next_ptr_ptr;
5779
5780 max_gcse_regno = max_reg_num ();
5781
5782 reg_set_in_block = sbitmap_vector_alloc (last_basic_block,
5783 max_gcse_regno);
5784 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
5785 pre_ldst_mems = 0;
5786 pre_ldst_table = htab_create (13, pre_ldst_expr_hash,
5787 pre_ldst_expr_eq, NULL);
5788 last_set_in = XCNEWVEC (int, max_gcse_regno);
5789 already_set = XNEWVEC (int, max_gcse_regno);
5790
5791 /* Find all the stores we care about. */
5792 FOR_EACH_BB (bb)
5793 {
5794 /* First compute the registers set in this block. */
5795 regvec = last_set_in;
5796
5797 FOR_BB_INSNS (bb, insn)
5798 {
5799 if (! INSN_P (insn))
5800 continue;
5801
5802 if (CALL_P (insn))
5803 {
5804 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5805 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5806 {
5807 last_set_in[regno] = INSN_UID (insn);
5808 SET_BIT (reg_set_in_block[bb->index], regno);
5809 }
5810 }
5811
5812 pat = PATTERN (insn);
5813 compute_store_table_current_insn = insn;
5814 note_stores (pat, reg_set_info, reg_set_in_block[bb->index]);
5815 }
5816
5817 /* Now find the stores. */
5818 memset (already_set, 0, sizeof (int) * max_gcse_regno);
5819 regvec = already_set;
5820 FOR_BB_INSNS (bb, insn)
5821 {
5822 if (! INSN_P (insn))
5823 continue;
5824
5825 if (CALL_P (insn))
5826 {
5827 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5828 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5829 already_set[regno] = 1;
5830 }
5831
5832 pat = PATTERN (insn);
5833 note_stores (pat, reg_set_info, NULL);
5834
5835 /* Now that we've marked regs, look for stores. */
5836 find_moveable_store (insn, already_set, last_set_in);
5837
5838 /* Unmark regs that are no longer set. */
5839 compute_store_table_current_insn = insn;
5840 note_stores (pat, reg_clear_last_set, last_set_in);
5841 if (CALL_P (insn))
5842 {
5843 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5844 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
5845 && last_set_in[regno] == INSN_UID (insn))
5846 last_set_in[regno] = 0;
5847 }
5848 }
5849
5850 #ifdef ENABLE_CHECKING
5851 /* last_set_in should now be all-zero. */
5852 for (regno = 0; regno < max_gcse_regno; regno++)
5853 gcc_assert (!last_set_in[regno]);
5854 #endif
5855
5856 /* Clear temporary marks. */
5857 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
5858 {
5859 LAST_AVAIL_CHECK_FAILURE(ptr) = NULL_RTX;
5860 if (ANTIC_STORE_LIST (ptr)
5861 && (tmp = XEXP (ANTIC_STORE_LIST (ptr), 0)) == NULL_RTX)
5862 ANTIC_STORE_LIST (ptr) = XEXP (ANTIC_STORE_LIST (ptr), 1);
5863 }
5864 }
5865
5866 /* Remove the stores that are not available anywhere, as there will
5867 be no opportunity to optimize them. */
5868 for (ptr = pre_ldst_mems, prev_next_ptr_ptr = &pre_ldst_mems;
5869 ptr != NULL;
5870 ptr = *prev_next_ptr_ptr)
5871 {
5872 if (!AVAIL_STORE_LIST (ptr))
5873 {
5874 *prev_next_ptr_ptr = ptr->next;
5875 htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
5876 free_ldst_entry (ptr);
5877 }
5878 else
5879 prev_next_ptr_ptr = &ptr->next;
5880 }
5881
5882 ret = enumerate_ldsts ();
5883
5884 if (dump_file)
5885 {
5886 fprintf (dump_file, "ST_avail and ST_antic (shown under loads..)\n");
5887 print_ldst_list (dump_file);
5888 }
5889
5890 free (last_set_in);
5891 free (already_set);
5892 return ret;
5893 }
5894
5895 /* Check to see if the load X is aliased with STORE_PATTERN.
5896 AFTER is true if we are checking the case when STORE_PATTERN occurs
5897 after the X. */
5898
5899 static bool
5900 load_kills_store (const_rtx x, const_rtx store_pattern, int after)
5901 {
5902 if (after)
5903 return anti_dependence (x, store_pattern);
5904 else
5905 return true_dependence (store_pattern, GET_MODE (store_pattern), x,
5906 rtx_addr_varies_p);
5907 }
5908
5909 /* Go through the entire insn X, looking for any loads which might alias
5910 STORE_PATTERN. Return true if found.
5911 AFTER is true if we are checking the case when STORE_PATTERN occurs
5912 after the insn X. */
5913
5914 static bool
5915 find_loads (const_rtx x, const_rtx store_pattern, int after)
5916 {
5917 const char * fmt;
5918 int i, j;
5919 int ret = false;
5920
5921 if (!x)
5922 return false;
5923
5924 if (GET_CODE (x) == SET)
5925 x = SET_SRC (x);
5926
5927 if (MEM_P (x))
5928 {
5929 if (load_kills_store (x, store_pattern, after))
5930 return true;
5931 }
5932
5933 /* Recursively process the insn. */
5934 fmt = GET_RTX_FORMAT (GET_CODE (x));
5935
5936 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
5937 {
5938 if (fmt[i] == 'e')
5939 ret |= find_loads (XEXP (x, i), store_pattern, after);
5940 else if (fmt[i] == 'E')
5941 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5942 ret |= find_loads (XVECEXP (x, i, j), store_pattern, after);
5943 }
5944 return ret;
5945 }
5946
5947 static inline bool
5948 store_killed_in_pat (const_rtx x, const_rtx pat, int after)
5949 {
5950 if (GET_CODE (pat) == SET)
5951 {
5952 rtx dest = SET_DEST (pat);
5953
5954 if (GET_CODE (dest) == ZERO_EXTRACT)
5955 dest = XEXP (dest, 0);
5956
5957 /* Check for memory stores to aliased objects. */
5958 if (MEM_P (dest)
5959 && !expr_equiv_p (dest, x))
5960 {
5961 if (after)
5962 {
5963 if (output_dependence (dest, x))
5964 return true;
5965 }
5966 else
5967 {
5968 if (output_dependence (x, dest))
5969 return true;
5970 }
5971 }
5972 }
5973
5974 if (find_loads (pat, x, after))
5975 return true;
5976
5977 return false;
5978 }
5979
5980 /* Check if INSN kills the store pattern X (is aliased with it).
5981 AFTER is true if we are checking the case when store X occurs
5982 after the insn. Return true if it does. */
5983
5984 static bool
5985 store_killed_in_insn (const_rtx x, const_rtx x_regs, const_rtx insn, int after)
5986 {
5987 const_rtx reg, base, note, pat;
5988
5989 if (!INSN_P (insn))
5990 return false;
5991
5992 if (CALL_P (insn))
5993 {
5994 /* A normal or pure call might read from pattern,
5995 but a const call will not. */
5996 if (! CONST_OR_PURE_CALL_P (insn) || pure_call_p (insn))
5997 return true;
5998
5999 /* But even a const call reads its parameters. Check whether the
6000 base of some of registers used in mem is stack pointer. */
6001 for (reg = x_regs; reg; reg = XEXP (reg, 1))
6002 {
6003 base = find_base_term (XEXP (reg, 0));
6004 if (!base
6005 || (GET_CODE (base) == ADDRESS
6006 && GET_MODE (base) == Pmode
6007 && XEXP (base, 0) == stack_pointer_rtx))
6008 return true;
6009 }
6010
6011 return false;
6012 }
6013
6014 pat = PATTERN (insn);
6015 if (GET_CODE (pat) == SET)
6016 {
6017 if (store_killed_in_pat (x, pat, after))
6018 return true;
6019 }
6020 else if (GET_CODE (pat) == PARALLEL)
6021 {
6022 int i;
6023
6024 for (i = 0; i < XVECLEN (pat, 0); i++)
6025 if (store_killed_in_pat (x, XVECEXP (pat, 0, i), after))
6026 return true;
6027 }
6028 else if (find_loads (PATTERN (insn), x, after))
6029 return true;
6030
6031 /* If this insn has a REG_EQUAL or REG_EQUIV note referencing a memory
6032 location aliased with X, then this insn kills X. */
6033 note = find_reg_equal_equiv_note (insn);
6034 if (! note)
6035 return false;
6036 note = XEXP (note, 0);
6037
6038 /* However, if the note represents a must alias rather than a may
6039 alias relationship, then it does not kill X. */
6040 if (expr_equiv_p (note, x))
6041 return false;
6042
6043 /* See if there are any aliased loads in the note. */
6044 return find_loads (note, x, after);
6045 }
6046
6047 /* Returns true if the expression X is loaded or clobbered on or after INSN
6048 within basic block BB. REGS_SET_AFTER is bitmap of registers set in
6049 or after the insn. X_REGS is list of registers mentioned in X. If the store
6050 is killed, return the last insn in that it occurs in FAIL_INSN. */
6051
6052 static bool
6053 store_killed_after (const_rtx x, const_rtx x_regs, const_rtx insn, const_basic_block bb,
6054 int *regs_set_after, rtx *fail_insn)
6055 {
6056 rtx last = BB_END (bb), act;
6057
6058 if (!store_ops_ok (x_regs, regs_set_after))
6059 {
6060 /* We do not know where it will happen. */
6061 if (fail_insn)
6062 *fail_insn = NULL_RTX;
6063 return true;
6064 }
6065
6066 /* Scan from the end, so that fail_insn is determined correctly. */
6067 for (act = last; act != PREV_INSN (insn); act = PREV_INSN (act))
6068 if (store_killed_in_insn (x, x_regs, act, false))
6069 {
6070 if (fail_insn)
6071 *fail_insn = act;
6072 return true;
6073 }
6074
6075 return false;
6076 }
6077
6078 /* Returns true if the expression X is loaded or clobbered on or before INSN
6079 within basic block BB. X_REGS is list of registers mentioned in X.
6080 REGS_SET_BEFORE is bitmap of registers set before or in this insn. */
6081 static bool
6082 store_killed_before (const_rtx x, const_rtx x_regs, const_rtx insn, const_basic_block bb,
6083 int *regs_set_before)
6084 {
6085 rtx first = BB_HEAD (bb);
6086
6087 if (!store_ops_ok (x_regs, regs_set_before))
6088 return true;
6089
6090 for ( ; insn != PREV_INSN (first); insn = PREV_INSN (insn))
6091 if (store_killed_in_insn (x, x_regs, insn, true))
6092 return true;
6093
6094 return false;
6095 }
6096
6097 /* Fill in available, anticipatable, transparent and kill vectors in
6098 STORE_DATA, based on lists of available and anticipatable stores. */
6099 static void
6100 build_store_vectors (void)
6101 {
6102 basic_block bb;
6103 int *regs_set_in_block;
6104 rtx insn, st;
6105 struct ls_expr * ptr;
6106 unsigned regno;
6107
6108 /* Build the gen_vector. This is any store in the table which is not killed
6109 by aliasing later in its block. */
6110 ae_gen = sbitmap_vector_alloc (last_basic_block, num_stores);
6111 sbitmap_vector_zero (ae_gen, last_basic_block);
6112
6113 st_antloc = sbitmap_vector_alloc (last_basic_block, num_stores);
6114 sbitmap_vector_zero (st_antloc, last_basic_block);
6115
6116 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6117 {
6118 for (st = AVAIL_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6119 {
6120 insn = XEXP (st, 0);
6121 bb = BLOCK_FOR_INSN (insn);
6122
6123 /* If we've already seen an available expression in this block,
6124 we can delete this one (It occurs earlier in the block). We'll
6125 copy the SRC expression to an unused register in case there
6126 are any side effects. */
6127 if (TEST_BIT (ae_gen[bb->index], ptr->index))
6128 {
6129 rtx r = gen_reg_rtx (GET_MODE (ptr->pattern));
6130 if (dump_file)
6131 fprintf (dump_file, "Removing redundant store:\n");
6132 replace_store_insn (r, XEXP (st, 0), bb, ptr);
6133 continue;
6134 }
6135 SET_BIT (ae_gen[bb->index], ptr->index);
6136 }
6137
6138 for (st = ANTIC_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6139 {
6140 insn = XEXP (st, 0);
6141 bb = BLOCK_FOR_INSN (insn);
6142 SET_BIT (st_antloc[bb->index], ptr->index);
6143 }
6144 }
6145
6146 ae_kill = sbitmap_vector_alloc (last_basic_block, num_stores);
6147 sbitmap_vector_zero (ae_kill, last_basic_block);
6148
6149 transp = sbitmap_vector_alloc (last_basic_block, num_stores);
6150 sbitmap_vector_zero (transp, last_basic_block);
6151 regs_set_in_block = XNEWVEC (int, max_gcse_regno);
6152
6153 FOR_EACH_BB (bb)
6154 {
6155 for (regno = 0; regno < max_gcse_regno; regno++)
6156 regs_set_in_block[regno] = TEST_BIT (reg_set_in_block[bb->index], regno);
6157
6158 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6159 {
6160 if (store_killed_after (ptr->pattern, ptr->pattern_regs, BB_HEAD (bb),
6161 bb, regs_set_in_block, NULL))
6162 {
6163 /* It should not be necessary to consider the expression
6164 killed if it is both anticipatable and available. */
6165 if (!TEST_BIT (st_antloc[bb->index], ptr->index)
6166 || !TEST_BIT (ae_gen[bb->index], ptr->index))
6167 SET_BIT (ae_kill[bb->index], ptr->index);
6168 }
6169 else
6170 SET_BIT (transp[bb->index], ptr->index);
6171 }
6172 }
6173
6174 free (regs_set_in_block);
6175
6176 if (dump_file)
6177 {
6178 dump_sbitmap_vector (dump_file, "st_antloc", "", st_antloc, last_basic_block);
6179 dump_sbitmap_vector (dump_file, "st_kill", "", ae_kill, last_basic_block);
6180 dump_sbitmap_vector (dump_file, "Transpt", "", transp, last_basic_block);
6181 dump_sbitmap_vector (dump_file, "st_avloc", "", ae_gen, last_basic_block);
6182 }
6183 }
6184
6185 /* Insert an instruction at the beginning of a basic block, and update
6186 the BB_HEAD if needed. */
6187
6188 static void
6189 insert_insn_start_basic_block (rtx insn, basic_block bb)
6190 {
6191 /* Insert at start of successor block. */
6192 rtx prev = PREV_INSN (BB_HEAD (bb));
6193 rtx before = BB_HEAD (bb);
6194 while (before != 0)
6195 {
6196 if (! LABEL_P (before)
6197 && !NOTE_INSN_BASIC_BLOCK_P (before))
6198 break;
6199 prev = before;
6200 if (prev == BB_END (bb))
6201 break;
6202 before = NEXT_INSN (before);
6203 }
6204
6205 insn = emit_insn_after_noloc (insn, prev, bb);
6206
6207 if (dump_file)
6208 {
6209 fprintf (dump_file, "STORE_MOTION insert store at start of BB %d:\n",
6210 bb->index);
6211 print_inline_rtx (dump_file, insn, 6);
6212 fprintf (dump_file, "\n");
6213 }
6214 }
6215
6216 /* This routine will insert a store on an edge. EXPR is the ldst entry for
6217 the memory reference, and E is the edge to insert it on. Returns nonzero
6218 if an edge insertion was performed. */
6219
6220 static int
6221 insert_store (struct ls_expr * expr, edge e)
6222 {
6223 rtx reg, insn;
6224 basic_block bb;
6225 edge tmp;
6226 edge_iterator ei;
6227
6228 /* We did all the deleted before this insert, so if we didn't delete a
6229 store, then we haven't set the reaching reg yet either. */
6230 if (expr->reaching_reg == NULL_RTX)
6231 return 0;
6232
6233 if (e->flags & EDGE_FAKE)
6234 return 0;
6235
6236 reg = expr->reaching_reg;
6237 insn = gen_move_insn (copy_rtx (expr->pattern), reg);
6238
6239 /* If we are inserting this expression on ALL predecessor edges of a BB,
6240 insert it at the start of the BB, and reset the insert bits on the other
6241 edges so we don't try to insert it on the other edges. */
6242 bb = e->dest;
6243 FOR_EACH_EDGE (tmp, ei, e->dest->preds)
6244 if (!(tmp->flags & EDGE_FAKE))
6245 {
6246 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6247
6248 gcc_assert (index != EDGE_INDEX_NO_EDGE);
6249 if (! TEST_BIT (pre_insert_map[index], expr->index))
6250 break;
6251 }
6252
6253 /* If tmp is NULL, we found an insertion on every edge, blank the
6254 insertion vector for these edges, and insert at the start of the BB. */
6255 if (!tmp && bb != EXIT_BLOCK_PTR)
6256 {
6257 FOR_EACH_EDGE (tmp, ei, e->dest->preds)
6258 {
6259 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6260 RESET_BIT (pre_insert_map[index], expr->index);
6261 }
6262 insert_insn_start_basic_block (insn, bb);
6263 return 0;
6264 }
6265
6266 /* We can't put stores in the front of blocks pointed to by abnormal
6267 edges since that may put a store where one didn't used to be. */
6268 gcc_assert (!(e->flags & EDGE_ABNORMAL));
6269
6270 insert_insn_on_edge (insn, e);
6271
6272 if (dump_file)
6273 {
6274 fprintf (dump_file, "STORE_MOTION insert insn on edge (%d, %d):\n",
6275 e->src->index, e->dest->index);
6276 print_inline_rtx (dump_file, insn, 6);
6277 fprintf (dump_file, "\n");
6278 }
6279
6280 return 1;
6281 }
6282
6283 /* Remove any REG_EQUAL or REG_EQUIV notes containing a reference to the
6284 memory location in SMEXPR set in basic block BB.
6285
6286 This could be rather expensive. */
6287
6288 static void
6289 remove_reachable_equiv_notes (basic_block bb, struct ls_expr *smexpr)
6290 {
6291 edge_iterator *stack, ei;
6292 int sp;
6293 edge act;
6294 sbitmap visited = sbitmap_alloc (last_basic_block);
6295 rtx last, insn, note;
6296 rtx mem = smexpr->pattern;
6297
6298 stack = XNEWVEC (edge_iterator, n_basic_blocks);
6299 sp = 0;
6300 ei = ei_start (bb->succs);
6301
6302 sbitmap_zero (visited);
6303
6304 act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
6305 while (1)
6306 {
6307 if (!act)
6308 {
6309 if (!sp)
6310 {
6311 free (stack);
6312 sbitmap_free (visited);
6313 return;
6314 }
6315 act = ei_edge (stack[--sp]);
6316 }
6317 bb = act->dest;
6318
6319 if (bb == EXIT_BLOCK_PTR
6320 || TEST_BIT (visited, bb->index))
6321 {
6322 if (!ei_end_p (ei))
6323 ei_next (&ei);
6324 act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
6325 continue;
6326 }
6327 SET_BIT (visited, bb->index);
6328
6329 if (TEST_BIT (st_antloc[bb->index], smexpr->index))
6330 {
6331 for (last = ANTIC_STORE_LIST (smexpr);
6332 BLOCK_FOR_INSN (XEXP (last, 0)) != bb;
6333 last = XEXP (last, 1))
6334 continue;
6335 last = XEXP (last, 0);
6336 }
6337 else
6338 last = NEXT_INSN (BB_END (bb));
6339
6340 for (insn = BB_HEAD (bb); insn != last; insn = NEXT_INSN (insn))
6341 if (INSN_P (insn))
6342 {
6343 note = find_reg_equal_equiv_note (insn);
6344 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6345 continue;
6346
6347 if (dump_file)
6348 fprintf (dump_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6349 INSN_UID (insn));
6350 remove_note (insn, note);
6351 }
6352
6353 if (!ei_end_p (ei))
6354 ei_next (&ei);
6355 act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
6356
6357 if (EDGE_COUNT (bb->succs) > 0)
6358 {
6359 if (act)
6360 stack[sp++] = ei;
6361 ei = ei_start (bb->succs);
6362 act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
6363 }
6364 }
6365 }
6366
6367 /* This routine will replace a store with a SET to a specified register. */
6368
6369 static void
6370 replace_store_insn (rtx reg, rtx del, basic_block bb, struct ls_expr *smexpr)
6371 {
6372 rtx insn, mem, note, set, ptr, pair;
6373
6374 mem = smexpr->pattern;
6375 insn = gen_move_insn (reg, SET_SRC (single_set (del)));
6376
6377 for (ptr = ANTIC_STORE_LIST (smexpr); ptr; ptr = XEXP (ptr, 1))
6378 if (XEXP (ptr, 0) == del)
6379 {
6380 XEXP (ptr, 0) = insn;
6381 break;
6382 }
6383
6384 /* Move the notes from the deleted insn to its replacement, and patch
6385 up the LIBCALL notes. */
6386 REG_NOTES (insn) = REG_NOTES (del);
6387
6388 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
6389 if (note)
6390 {
6391 pair = XEXP (note, 0);
6392 note = find_reg_note (pair, REG_LIBCALL, NULL_RTX);
6393 XEXP (note, 0) = insn;
6394 }
6395 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
6396 if (note)
6397 {
6398 pair = XEXP (note, 0);
6399 note = find_reg_note (pair, REG_RETVAL, NULL_RTX);
6400 XEXP (note, 0) = insn;
6401 }
6402
6403 /* Emit the insn AFTER all the notes are transferred.
6404 This is cheaper since we avoid df rescanning for the note change. */
6405 insn = emit_insn_after (insn, del);
6406
6407 if (dump_file)
6408 {
6409 fprintf (dump_file,
6410 "STORE_MOTION delete insn in BB %d:\n ", bb->index);
6411 print_inline_rtx (dump_file, del, 6);
6412 fprintf (dump_file, "\nSTORE MOTION replaced with insn:\n ");
6413 print_inline_rtx (dump_file, insn, 6);
6414 fprintf (dump_file, "\n");
6415 }
6416
6417 delete_insn (del);
6418
6419 /* Now we must handle REG_EQUAL notes whose contents is equal to the mem;
6420 they are no longer accurate provided that they are reached by this
6421 definition, so drop them. */
6422 for (; insn != NEXT_INSN (BB_END (bb)); insn = NEXT_INSN (insn))
6423 if (INSN_P (insn))
6424 {
6425 set = single_set (insn);
6426 if (!set)
6427 continue;
6428 if (expr_equiv_p (SET_DEST (set), mem))
6429 return;
6430 note = find_reg_equal_equiv_note (insn);
6431 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6432 continue;
6433
6434 if (dump_file)
6435 fprintf (dump_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6436 INSN_UID (insn));
6437 remove_note (insn, note);
6438 }
6439 remove_reachable_equiv_notes (bb, smexpr);
6440 }
6441
6442
6443 /* Delete a store, but copy the value that would have been stored into
6444 the reaching_reg for later storing. */
6445
6446 static void
6447 delete_store (struct ls_expr * expr, basic_block bb)
6448 {
6449 rtx reg, i, del;
6450
6451 if (expr->reaching_reg == NULL_RTX)
6452 expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern));
6453
6454 reg = expr->reaching_reg;
6455
6456 for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1))
6457 {
6458 del = XEXP (i, 0);
6459 if (BLOCK_FOR_INSN (del) == bb)
6460 {
6461 /* We know there is only one since we deleted redundant
6462 ones during the available computation. */
6463 replace_store_insn (reg, del, bb, expr);
6464 break;
6465 }
6466 }
6467 }
6468
6469 /* Free memory used by store motion. */
6470
6471 static void
6472 free_store_memory (void)
6473 {
6474 free_ldst_mems ();
6475
6476 if (ae_gen)
6477 sbitmap_vector_free (ae_gen);
6478 if (ae_kill)
6479 sbitmap_vector_free (ae_kill);
6480 if (transp)
6481 sbitmap_vector_free (transp);
6482 if (st_antloc)
6483 sbitmap_vector_free (st_antloc);
6484 if (pre_insert_map)
6485 sbitmap_vector_free (pre_insert_map);
6486 if (pre_delete_map)
6487 sbitmap_vector_free (pre_delete_map);
6488 if (reg_set_in_block)
6489 sbitmap_vector_free (reg_set_in_block);
6490
6491 ae_gen = ae_kill = transp = st_antloc = NULL;
6492 pre_insert_map = pre_delete_map = reg_set_in_block = NULL;
6493 }
6494
6495 /* Perform store motion. Much like gcse, except we move expressions the
6496 other way by looking at the flowgraph in reverse. */
6497
6498 static void
6499 store_motion (void)
6500 {
6501 basic_block bb;
6502 int x;
6503 struct ls_expr * ptr;
6504 int update_flow = 0;
6505
6506 if (dump_file)
6507 {
6508 fprintf (dump_file, "before store motion\n");
6509 print_rtl (dump_file, get_insns ());
6510 }
6511
6512 init_alias_analysis ();
6513
6514 /* Find all the available and anticipatable stores. */
6515 num_stores = compute_store_table ();
6516 if (num_stores == 0)
6517 {
6518 htab_delete (pre_ldst_table);
6519 pre_ldst_table = NULL;
6520 sbitmap_vector_free (reg_set_in_block);
6521 end_alias_analysis ();
6522 return;
6523 }
6524
6525 /* Now compute kill & transp vectors. */
6526 build_store_vectors ();
6527 add_noreturn_fake_exit_edges ();
6528 connect_infinite_loops_to_exit ();
6529
6530 edge_list = pre_edge_rev_lcm (num_stores, transp, ae_gen,
6531 st_antloc, ae_kill, &pre_insert_map,
6532 &pre_delete_map);
6533
6534 /* Now we want to insert the new stores which are going to be needed. */
6535 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6536 {
6537 /* If any of the edges we have above are abnormal, we can't move this
6538 store. */
6539 for (x = NUM_EDGES (edge_list) - 1; x >= 0; x--)
6540 if (TEST_BIT (pre_insert_map[x], ptr->index)
6541 && (INDEX_EDGE (edge_list, x)->flags & EDGE_ABNORMAL))
6542 break;
6543
6544 if (x >= 0)
6545 {
6546 if (dump_file != NULL)
6547 fprintf (dump_file,
6548 "Can't replace store %d: abnormal edge from %d to %d\n",
6549 ptr->index, INDEX_EDGE (edge_list, x)->src->index,
6550 INDEX_EDGE (edge_list, x)->dest->index);
6551 continue;
6552 }
6553
6554 /* Now we want to insert the new stores which are going to be needed. */
6555
6556 FOR_EACH_BB (bb)
6557 if (TEST_BIT (pre_delete_map[bb->index], ptr->index))
6558 delete_store (ptr, bb);
6559
6560 for (x = 0; x < NUM_EDGES (edge_list); x++)
6561 if (TEST_BIT (pre_insert_map[x], ptr->index))
6562 update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x));
6563 }
6564
6565 if (update_flow)
6566 commit_edge_insertions ();
6567
6568 free_store_memory ();
6569 free_edge_list (edge_list);
6570 remove_fake_exit_edges ();
6571 end_alias_analysis ();
6572 }
6573
6574 \f
6575 /* Entry point for jump bypassing optimization pass. */
6576
6577 static int
6578 bypass_jumps (void)
6579 {
6580 int changed;
6581
6582 /* We do not construct an accurate cfg in functions which call
6583 setjmp, so just punt to be safe. */
6584 if (current_function_calls_setjmp)
6585 return 0;
6586
6587 /* Identify the basic block information for this function, including
6588 successors and predecessors. */
6589 max_gcse_regno = max_reg_num ();
6590
6591 if (dump_file)
6592 dump_flow_info (dump_file, dump_flags);
6593
6594 /* Return if there's nothing to do, or it is too expensive. */
6595 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
6596 || is_too_expensive (_ ("jump bypassing disabled")))
6597 return 0;
6598
6599 gcc_obstack_init (&gcse_obstack);
6600 bytes_used = 0;
6601
6602 /* We need alias. */
6603 init_alias_analysis ();
6604
6605 /* Record where pseudo-registers are set. This data is kept accurate
6606 during each pass. ??? We could also record hard-reg information here
6607 [since it's unchanging], however it is currently done during hash table
6608 computation.
6609
6610 It may be tempting to compute MEM set information here too, but MEM sets
6611 will be subject to code motion one day and thus we need to compute
6612 information about memory sets when we build the hash tables. */
6613
6614 alloc_reg_set_mem (max_gcse_regno);
6615 compute_sets ();
6616
6617 max_gcse_regno = max_reg_num ();
6618 alloc_gcse_mem ();
6619 changed = one_cprop_pass (MAX_GCSE_PASSES + 2, true, true);
6620 free_gcse_mem ();
6621
6622 if (dump_file)
6623 {
6624 fprintf (dump_file, "BYPASS of %s: %d basic blocks, ",
6625 current_function_name (), n_basic_blocks);
6626 fprintf (dump_file, "%d bytes\n\n", bytes_used);
6627 }
6628
6629 obstack_free (&gcse_obstack, NULL);
6630 free_reg_set_mem ();
6631
6632 /* We are finished with alias. */
6633 end_alias_analysis ();
6634
6635 return changed;
6636 }
6637
6638 /* Return true if the graph is too expensive to optimize. PASS is the
6639 optimization about to be performed. */
6640
6641 static bool
6642 is_too_expensive (const char *pass)
6643 {
6644 /* Trying to perform global optimizations on flow graphs which have
6645 a high connectivity will take a long time and is unlikely to be
6646 particularly useful.
6647
6648 In normal circumstances a cfg should have about twice as many
6649 edges as blocks. But we do not want to punish small functions
6650 which have a couple switch statements. Rather than simply
6651 threshold the number of blocks, uses something with a more
6652 graceful degradation. */
6653 if (n_edges > 20000 + n_basic_blocks * 4)
6654 {
6655 warning (OPT_Wdisabled_optimization,
6656 "%s: %d basic blocks and %d edges/basic block",
6657 pass, n_basic_blocks, n_edges / n_basic_blocks);
6658
6659 return true;
6660 }
6661
6662 /* If allocating memory for the cprop bitmap would take up too much
6663 storage it's better just to disable the optimization. */
6664 if ((n_basic_blocks
6665 * SBITMAP_SET_SIZE (max_reg_num ())
6666 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
6667 {
6668 warning (OPT_Wdisabled_optimization,
6669 "%s: %d basic blocks and %d registers",
6670 pass, n_basic_blocks, max_reg_num ());
6671
6672 return true;
6673 }
6674
6675 return false;
6676 }
6677 \f
6678 static bool
6679 gate_handle_jump_bypass (void)
6680 {
6681 return optimize > 0 && flag_gcse;
6682 }
6683
6684 /* Perform jump bypassing and control flow optimizations. */
6685 static unsigned int
6686 rest_of_handle_jump_bypass (void)
6687 {
6688 delete_unreachable_blocks ();
6689 if (bypass_jumps ())
6690 {
6691 delete_trivially_dead_insns (get_insns (), max_reg_num ());
6692 rebuild_jump_labels (get_insns ());
6693 cleanup_cfg (0);
6694 }
6695 return 0;
6696 }
6697
6698 struct tree_opt_pass pass_jump_bypass =
6699 {
6700 "bypass", /* name */
6701 gate_handle_jump_bypass, /* gate */
6702 rest_of_handle_jump_bypass, /* execute */
6703 NULL, /* sub */
6704 NULL, /* next */
6705 0, /* static_pass_number */
6706 TV_BYPASS, /* tv_id */
6707 0, /* properties_required */
6708 0, /* properties_provided */
6709 0, /* properties_destroyed */
6710 0, /* todo_flags_start */
6711 TODO_dump_func |
6712 TODO_ggc_collect | TODO_verify_flow, /* todo_flags_finish */
6713 'G' /* letter */
6714 };
6715
6716
6717 static bool
6718 gate_handle_gcse (void)
6719 {
6720 return optimize > 0 && flag_gcse;
6721 }
6722
6723
6724 static unsigned int
6725 rest_of_handle_gcse (void)
6726 {
6727 int save_csb, save_cfj;
6728 int tem2 = 0, tem;
6729 tem = gcse_main (get_insns ());
6730 delete_trivially_dead_insns (get_insns (), max_reg_num ());
6731 rebuild_jump_labels (get_insns ());
6732 save_csb = flag_cse_skip_blocks;
6733 save_cfj = flag_cse_follow_jumps;
6734 flag_cse_skip_blocks = flag_cse_follow_jumps = 0;
6735
6736 /* If -fexpensive-optimizations, re-run CSE to clean up things done
6737 by gcse. */
6738 if (flag_expensive_optimizations)
6739 {
6740 timevar_push (TV_CSE);
6741 tem2 = cse_main (get_insns (), max_reg_num ());
6742 df_finish_pass (false);
6743 purge_all_dead_edges ();
6744 delete_trivially_dead_insns (get_insns (), max_reg_num ());
6745 timevar_pop (TV_CSE);
6746 cse_not_expected = !flag_rerun_cse_after_loop;
6747 }
6748
6749 /* If gcse or cse altered any jumps, rerun jump optimizations to clean
6750 things up. */
6751 if (tem || tem2)
6752 {
6753 timevar_push (TV_JUMP);
6754 rebuild_jump_labels (get_insns ());
6755 cleanup_cfg (0);
6756 timevar_pop (TV_JUMP);
6757 }
6758
6759 flag_cse_skip_blocks = save_csb;
6760 flag_cse_follow_jumps = save_cfj;
6761 return 0;
6762 }
6763
6764 struct tree_opt_pass pass_gcse =
6765 {
6766 "gcse1", /* name */
6767 gate_handle_gcse, /* gate */
6768 rest_of_handle_gcse, /* execute */
6769 NULL, /* sub */
6770 NULL, /* next */
6771 0, /* static_pass_number */
6772 TV_GCSE, /* tv_id */
6773 0, /* properties_required */
6774 0, /* properties_provided */
6775 0, /* properties_destroyed */
6776 0, /* todo_flags_start */
6777 TODO_df_finish | TODO_verify_rtl_sharing |
6778 TODO_dump_func |
6779 TODO_verify_flow | TODO_ggc_collect, /* todo_flags_finish */
6780 'G' /* letter */
6781 };
6782
6783
6784 #include "gt-gcse.h"