Eliminate n_edges macro
[gcc.git] / gcc / gcse.c
1 /* Partial redundancy elimination / Hoisting for RTL.
2 Copyright (C) 1997-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* TODO
21 - reordering of memory allocation and freeing to be more space efficient
22 - calc rough register pressure information and use the info to drive all
23 kinds of code motion (including code hoisting) in a unified way.
24 */
25
26 /* References searched while implementing this.
27
28 Compilers Principles, Techniques and Tools
29 Aho, Sethi, Ullman
30 Addison-Wesley, 1988
31
32 Global Optimization by Suppression of Partial Redundancies
33 E. Morel, C. Renvoise
34 communications of the acm, Vol. 22, Num. 2, Feb. 1979
35
36 A Portable Machine-Independent Global Optimizer - Design and Measurements
37 Frederick Chow
38 Stanford Ph.D. thesis, Dec. 1983
39
40 A Fast Algorithm for Code Movement Optimization
41 D.M. Dhamdhere
42 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
43
44 A Solution to a Problem with Morel and Renvoise's
45 Global Optimization by Suppression of Partial Redundancies
46 K-H Drechsler, M.P. Stadel
47 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
48
49 Practical Adaptation of the Global Optimization
50 Algorithm of Morel and Renvoise
51 D.M. Dhamdhere
52 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
53
54 Efficiently Computing Static Single Assignment Form and the Control
55 Dependence Graph
56 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
58
59 Lazy Code Motion
60 J. Knoop, O. Ruthing, B. Steffen
61 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
62
63 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
64 Time for Reducible Flow Control
65 Thomas Ball
66 ACM Letters on Programming Languages and Systems,
67 Vol. 2, Num. 1-4, Mar-Dec 1993
68
69 An Efficient Representation for Sparse Sets
70 Preston Briggs, Linda Torczon
71 ACM Letters on Programming Languages and Systems,
72 Vol. 2, Num. 1-4, Mar-Dec 1993
73
74 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75 K-H Drechsler, M.P. Stadel
76 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
77
78 Partial Dead Code Elimination
79 J. Knoop, O. Ruthing, B. Steffen
80 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
81
82 Effective Partial Redundancy Elimination
83 P. Briggs, K.D. Cooper
84 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
85
86 The Program Structure Tree: Computing Control Regions in Linear Time
87 R. Johnson, D. Pearson, K. Pingali
88 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
89
90 Optimal Code Motion: Theory and Practice
91 J. Knoop, O. Ruthing, B. Steffen
92 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
93
94 The power of assignment motion
95 J. Knoop, O. Ruthing, B. Steffen
96 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
97
98 Global code motion / global value numbering
99 C. Click
100 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
101
102 Value Driven Redundancy Elimination
103 L.T. Simpson
104 Rice University Ph.D. thesis, Apr. 1996
105
106 Value Numbering
107 L.T. Simpson
108 Massively Scalar Compiler Project, Rice University, Sep. 1996
109
110 High Performance Compilers for Parallel Computing
111 Michael Wolfe
112 Addison-Wesley, 1996
113
114 Advanced Compiler Design and Implementation
115 Steven Muchnick
116 Morgan Kaufmann, 1997
117
118 Building an Optimizing Compiler
119 Robert Morgan
120 Digital Press, 1998
121
122 People wishing to speed up the code here should read:
123 Elimination Algorithms for Data Flow Analysis
124 B.G. Ryder, M.C. Paull
125 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
126
127 How to Analyze Large Programs Efficiently and Informatively
128 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
130
131 People wishing to do something different can find various possibilities
132 in the above papers and elsewhere.
133 */
134
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "tm.h"
139 #include "diagnostic-core.h"
140 #include "toplev.h"
141
142 #include "hard-reg-set.h"
143 #include "rtl.h"
144 #include "tree.h"
145 #include "tm_p.h"
146 #include "regs.h"
147 #include "ira.h"
148 #include "flags.h"
149 #include "insn-config.h"
150 #include "recog.h"
151 #include "basic-block.h"
152 #include "function.h"
153 #include "expr.h"
154 #include "except.h"
155 #include "ggc.h"
156 #include "params.h"
157 #include "cselib.h"
158 #include "intl.h"
159 #include "obstack.h"
160 #include "tree-pass.h"
161 #include "hash-table.h"
162 #include "df.h"
163 #include "dbgcnt.h"
164 #include "target.h"
165 #include "gcse.h"
166
167 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
168 are a superset of those done by classic GCSE.
169
170 Two passes of copy/constant propagation are done around PRE or hoisting
171 because the first one enables more GCSE and the second one helps to clean
172 up the copies that PRE and HOIST create. This is needed more for PRE than
173 for HOIST because code hoisting will try to use an existing register
174 containing the common subexpression rather than create a new one. This is
175 harder to do for PRE because of the code motion (which HOIST doesn't do).
176
177 Expressions we are interested in GCSE-ing are of the form
178 (set (pseudo-reg) (expression)).
179 Function want_to_gcse_p says what these are.
180
181 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
182 This allows PRE to hoist expressions that are expressed in multiple insns,
183 such as complex address calculations (e.g. for PIC code, or loads with a
184 high part and a low part).
185
186 PRE handles moving invariant expressions out of loops (by treating them as
187 partially redundant).
188
189 **********************
190
191 We used to support multiple passes but there are diminishing returns in
192 doing so. The first pass usually makes 90% of the changes that are doable.
193 A second pass can make a few more changes made possible by the first pass.
194 Experiments show any further passes don't make enough changes to justify
195 the expense.
196
197 A study of spec92 using an unlimited number of passes:
198 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
199 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
200 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
201
202 It was found doing copy propagation between each pass enables further
203 substitutions.
204
205 This study was done before expressions in REG_EQUAL notes were added as
206 candidate expressions for optimization, and before the GIMPLE optimizers
207 were added. Probably, multiple passes is even less efficient now than
208 at the time when the study was conducted.
209
210 PRE is quite expensive in complicated functions because the DFA can take
211 a while to converge. Hence we only perform one pass.
212
213 **********************
214
215 The steps for PRE are:
216
217 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
218
219 2) Perform the data flow analysis for PRE.
220
221 3) Delete the redundant instructions
222
223 4) Insert the required copies [if any] that make the partially
224 redundant instructions fully redundant.
225
226 5) For other reaching expressions, insert an instruction to copy the value
227 to a newly created pseudo that will reach the redundant instruction.
228
229 The deletion is done first so that when we do insertions we
230 know which pseudo reg to use.
231
232 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
233 argue it is not. The number of iterations for the algorithm to converge
234 is typically 2-4 so I don't view it as that expensive (relatively speaking).
235
236 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
237 we create. To make an expression reach the place where it's redundant,
238 the result of the expression is copied to a new register, and the redundant
239 expression is deleted by replacing it with this new register. Classic GCSE
240 doesn't have this problem as much as it computes the reaching defs of
241 each register in each block and thus can try to use an existing
242 register. */
243 \f
244 /* GCSE global vars. */
245
246 struct target_gcse default_target_gcse;
247 #if SWITCHABLE_TARGET
248 struct target_gcse *this_target_gcse = &default_target_gcse;
249 #endif
250
251 /* Set to non-zero if CSE should run after all GCSE optimizations are done. */
252 int flag_rerun_cse_after_global_opts;
253
254 /* An obstack for our working variables. */
255 static struct obstack gcse_obstack;
256
257 /* Hash table of expressions. */
258
259 struct expr
260 {
261 /* The expression. */
262 rtx expr;
263 /* Index in the available expression bitmaps. */
264 int bitmap_index;
265 /* Next entry with the same hash. */
266 struct expr *next_same_hash;
267 /* List of anticipatable occurrences in basic blocks in the function.
268 An "anticipatable occurrence" is one that is the first occurrence in the
269 basic block, the operands are not modified in the basic block prior
270 to the occurrence and the output is not used between the start of
271 the block and the occurrence. */
272 struct occr *antic_occr;
273 /* List of available occurrence in basic blocks in the function.
274 An "available occurrence" is one that is the last occurrence in the
275 basic block and the operands are not modified by following statements in
276 the basic block [including this insn]. */
277 struct occr *avail_occr;
278 /* Non-null if the computation is PRE redundant.
279 The value is the newly created pseudo-reg to record a copy of the
280 expression in all the places that reach the redundant copy. */
281 rtx reaching_reg;
282 /* Maximum distance in instructions this expression can travel.
283 We avoid moving simple expressions for more than a few instructions
284 to keep register pressure under control.
285 A value of "0" removes restrictions on how far the expression can
286 travel. */
287 int max_distance;
288 };
289
290 /* Occurrence of an expression.
291 There is one per basic block. If a pattern appears more than once the
292 last appearance is used [or first for anticipatable expressions]. */
293
294 struct occr
295 {
296 /* Next occurrence of this expression. */
297 struct occr *next;
298 /* The insn that computes the expression. */
299 rtx insn;
300 /* Nonzero if this [anticipatable] occurrence has been deleted. */
301 char deleted_p;
302 /* Nonzero if this [available] occurrence has been copied to
303 reaching_reg. */
304 /* ??? This is mutually exclusive with deleted_p, so they could share
305 the same byte. */
306 char copied_p;
307 };
308
309 typedef struct occr *occr_t;
310
311 /* Expression hash tables.
312 Each hash table is an array of buckets.
313 ??? It is known that if it were an array of entries, structure elements
314 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
315 not clear whether in the final analysis a sufficient amount of memory would
316 be saved as the size of the available expression bitmaps would be larger
317 [one could build a mapping table without holes afterwards though].
318 Someday I'll perform the computation and figure it out. */
319
320 struct hash_table_d
321 {
322 /* The table itself.
323 This is an array of `expr_hash_table_size' elements. */
324 struct expr **table;
325
326 /* Size of the hash table, in elements. */
327 unsigned int size;
328
329 /* Number of hash table elements. */
330 unsigned int n_elems;
331 };
332
333 /* Expression hash table. */
334 static struct hash_table_d expr_hash_table;
335
336 /* This is a list of expressions which are MEMs and will be used by load
337 or store motion.
338 Load motion tracks MEMs which aren't killed by anything except itself,
339 i.e. loads and stores to a single location.
340 We can then allow movement of these MEM refs with a little special
341 allowance. (all stores copy the same value to the reaching reg used
342 for the loads). This means all values used to store into memory must have
343 no side effects so we can re-issue the setter value. */
344
345 struct ls_expr
346 {
347 struct expr * expr; /* Gcse expression reference for LM. */
348 rtx pattern; /* Pattern of this mem. */
349 rtx pattern_regs; /* List of registers mentioned by the mem. */
350 rtx loads; /* INSN list of loads seen. */
351 rtx stores; /* INSN list of stores seen. */
352 struct ls_expr * next; /* Next in the list. */
353 int invalid; /* Invalid for some reason. */
354 int index; /* If it maps to a bitmap index. */
355 unsigned int hash_index; /* Index when in a hash table. */
356 rtx reaching_reg; /* Register to use when re-writing. */
357 };
358
359 /* Head of the list of load/store memory refs. */
360 static struct ls_expr * pre_ldst_mems = NULL;
361
362 struct pre_ldst_expr_hasher : typed_noop_remove <ls_expr>
363 {
364 typedef ls_expr value_type;
365 typedef value_type compare_type;
366 static inline hashval_t hash (const value_type *);
367 static inline bool equal (const value_type *, const compare_type *);
368 };
369
370 /* Hashtable helpers. */
371 inline hashval_t
372 pre_ldst_expr_hasher::hash (const value_type *x)
373 {
374 int do_not_record_p = 0;
375 return
376 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
377 }
378
379 static int expr_equiv_p (const_rtx, const_rtx);
380
381 inline bool
382 pre_ldst_expr_hasher::equal (const value_type *ptr1,
383 const compare_type *ptr2)
384 {
385 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
386 }
387
388 /* Hashtable for the load/store memory refs. */
389 static hash_table <pre_ldst_expr_hasher> pre_ldst_table;
390
391 /* Bitmap containing one bit for each register in the program.
392 Used when performing GCSE to track which registers have been set since
393 the start of the basic block. */
394 static regset reg_set_bitmap;
395
396 /* Array, indexed by basic block number for a list of insns which modify
397 memory within that block. */
398 static vec<rtx> *modify_mem_list;
399 static bitmap modify_mem_list_set;
400
401 typedef struct modify_pair_s
402 {
403 rtx dest; /* A MEM. */
404 rtx dest_addr; /* The canonical address of `dest'. */
405 } modify_pair;
406
407
408 /* This array parallels modify_mem_list, except that it stores MEMs
409 being set and their canonicalized memory addresses. */
410 static vec<modify_pair> *canon_modify_mem_list;
411
412 /* Bitmap indexed by block numbers to record which blocks contain
413 function calls. */
414 static bitmap blocks_with_calls;
415
416 /* Various variables for statistics gathering. */
417
418 /* Memory used in a pass.
419 This isn't intended to be absolutely precise. Its intent is only
420 to keep an eye on memory usage. */
421 static int bytes_used;
422
423 /* GCSE substitutions made. */
424 static int gcse_subst_count;
425 /* Number of copy instructions created. */
426 static int gcse_create_count;
427 \f
428 /* Doing code hoisting. */
429 static bool doing_code_hoisting_p = false;
430 \f
431 /* For available exprs */
432 static sbitmap *ae_kill;
433 \f
434 /* Data stored for each basic block. */
435 struct bb_data
436 {
437 /* Maximal register pressure inside basic block for given register class
438 (defined only for the pressure classes). */
439 int max_reg_pressure[N_REG_CLASSES];
440 /* Recorded register pressure of basic block before trying to hoist
441 an expression. Will be used to restore the register pressure
442 if the expression should not be hoisted. */
443 int old_pressure;
444 /* Recorded register live_in info of basic block during code hoisting
445 process. BACKUP is used to record live_in info before trying to
446 hoist an expression, and will be used to restore LIVE_IN if the
447 expression should not be hoisted. */
448 bitmap live_in, backup;
449 };
450
451 #define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
452
453 static basic_block curr_bb;
454
455 /* Current register pressure for each pressure class. */
456 static int curr_reg_pressure[N_REG_CLASSES];
457 \f
458
459 static void compute_can_copy (void);
460 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
461 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
462 static void *gcse_alloc (unsigned long);
463 static void alloc_gcse_mem (void);
464 static void free_gcse_mem (void);
465 static void hash_scan_insn (rtx, struct hash_table_d *);
466 static void hash_scan_set (rtx, rtx, struct hash_table_d *);
467 static void hash_scan_clobber (rtx, rtx, struct hash_table_d *);
468 static void hash_scan_call (rtx, rtx, struct hash_table_d *);
469 static int want_to_gcse_p (rtx, int *);
470 static int oprs_unchanged_p (const_rtx, const_rtx, int);
471 static int oprs_anticipatable_p (const_rtx, const_rtx);
472 static int oprs_available_p (const_rtx, const_rtx);
473 static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int, int,
474 struct hash_table_d *);
475 static unsigned int hash_expr (const_rtx, enum machine_mode, int *, int);
476 static void record_last_reg_set_info (rtx, int);
477 static void record_last_mem_set_info (rtx);
478 static void record_last_set_info (rtx, const_rtx, void *);
479 static void compute_hash_table (struct hash_table_d *);
480 static void alloc_hash_table (struct hash_table_d *);
481 static void free_hash_table (struct hash_table_d *);
482 static void compute_hash_table_work (struct hash_table_d *);
483 static void dump_hash_table (FILE *, const char *, struct hash_table_d *);
484 static void compute_transp (const_rtx, int, sbitmap *);
485 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
486 struct hash_table_d *);
487 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
488 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
489 static void canon_list_insert (rtx, const_rtx, void *);
490 static void alloc_pre_mem (int, int);
491 static void free_pre_mem (void);
492 static struct edge_list *compute_pre_data (void);
493 static int pre_expr_reaches_here_p (basic_block, struct expr *,
494 basic_block);
495 static void insert_insn_end_basic_block (struct expr *, basic_block);
496 static void pre_insert_copy_insn (struct expr *, rtx);
497 static void pre_insert_copies (void);
498 static int pre_delete (void);
499 static int pre_gcse (struct edge_list *);
500 static int one_pre_gcse_pass (void);
501 static void add_label_notes (rtx, rtx);
502 static void alloc_code_hoist_mem (int, int);
503 static void free_code_hoist_mem (void);
504 static void compute_code_hoist_vbeinout (void);
505 static void compute_code_hoist_data (void);
506 static int should_hoist_expr_to_dom (basic_block, struct expr *, basic_block,
507 sbitmap, int, int *, enum reg_class,
508 int *, bitmap, rtx);
509 static int hoist_code (void);
510 static enum reg_class get_regno_pressure_class (int regno, int *nregs);
511 static enum reg_class get_pressure_class_and_nregs (rtx insn, int *nregs);
512 static int one_code_hoisting_pass (void);
513 static rtx process_insert_insn (struct expr *);
514 static int pre_edge_insert (struct edge_list *, struct expr **);
515 static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
516 basic_block, char *);
517 static struct ls_expr * ldst_entry (rtx);
518 static void free_ldst_entry (struct ls_expr *);
519 static void free_ld_motion_mems (void);
520 static void print_ldst_list (FILE *);
521 static struct ls_expr * find_rtx_in_ldst (rtx);
522 static int simple_mem (const_rtx);
523 static void invalidate_any_buried_refs (rtx);
524 static void compute_ld_motion_mems (void);
525 static void trim_ld_motion_mems (void);
526 static void update_ld_motion_stores (struct expr *);
527 static void clear_modify_mem_tables (void);
528 static void free_modify_mem_tables (void);
529 static rtx gcse_emit_move_after (rtx, rtx, rtx);
530 static bool is_too_expensive (const char *);
531
532 #define GNEW(T) ((T *) gmalloc (sizeof (T)))
533 #define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
534
535 #define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
536 #define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
537
538 #define GNEWVAR(T, S) ((T *) gmalloc ((S)))
539 #define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
540
541 #define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
542 #define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
543 \f
544 /* Misc. utilities. */
545
546 #define can_copy \
547 (this_target_gcse->x_can_copy)
548 #define can_copy_init_p \
549 (this_target_gcse->x_can_copy_init_p)
550
551 /* Compute which modes support reg/reg copy operations. */
552
553 static void
554 compute_can_copy (void)
555 {
556 int i;
557 #ifndef AVOID_CCMODE_COPIES
558 rtx reg, insn;
559 #endif
560 memset (can_copy, 0, NUM_MACHINE_MODES);
561
562 start_sequence ();
563 for (i = 0; i < NUM_MACHINE_MODES; i++)
564 if (GET_MODE_CLASS (i) == MODE_CC)
565 {
566 #ifdef AVOID_CCMODE_COPIES
567 can_copy[i] = 0;
568 #else
569 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
570 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
571 if (recog (PATTERN (insn), insn, NULL) >= 0)
572 can_copy[i] = 1;
573 #endif
574 }
575 else
576 can_copy[i] = 1;
577
578 end_sequence ();
579 }
580
581 /* Returns whether the mode supports reg/reg copy operations. */
582
583 bool
584 can_copy_p (enum machine_mode mode)
585 {
586 if (! can_copy_init_p)
587 {
588 compute_can_copy ();
589 can_copy_init_p = true;
590 }
591
592 return can_copy[mode] != 0;
593 }
594 \f
595 /* Cover function to xmalloc to record bytes allocated. */
596
597 static void *
598 gmalloc (size_t size)
599 {
600 bytes_used += size;
601 return xmalloc (size);
602 }
603
604 /* Cover function to xcalloc to record bytes allocated. */
605
606 static void *
607 gcalloc (size_t nelem, size_t elsize)
608 {
609 bytes_used += nelem * elsize;
610 return xcalloc (nelem, elsize);
611 }
612
613 /* Cover function to obstack_alloc. */
614
615 static void *
616 gcse_alloc (unsigned long size)
617 {
618 bytes_used += size;
619 return obstack_alloc (&gcse_obstack, size);
620 }
621
622 /* Allocate memory for the reg/memory set tracking tables.
623 This is called at the start of each pass. */
624
625 static void
626 alloc_gcse_mem (void)
627 {
628 /* Allocate vars to track sets of regs. */
629 reg_set_bitmap = ALLOC_REG_SET (NULL);
630
631 /* Allocate array to keep a list of insns which modify memory in each
632 basic block. The two typedefs are needed to work around the
633 pre-processor limitation with template types in macro arguments. */
634 typedef vec<rtx> vec_rtx_heap;
635 typedef vec<modify_pair> vec_modify_pair_heap;
636 modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block);
637 canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap, last_basic_block);
638 modify_mem_list_set = BITMAP_ALLOC (NULL);
639 blocks_with_calls = BITMAP_ALLOC (NULL);
640 }
641
642 /* Free memory allocated by alloc_gcse_mem. */
643
644 static void
645 free_gcse_mem (void)
646 {
647 FREE_REG_SET (reg_set_bitmap);
648
649 free_modify_mem_tables ();
650 BITMAP_FREE (modify_mem_list_set);
651 BITMAP_FREE (blocks_with_calls);
652 }
653 \f
654 /* Compute the local properties of each recorded expression.
655
656 Local properties are those that are defined by the block, irrespective of
657 other blocks.
658
659 An expression is transparent in a block if its operands are not modified
660 in the block.
661
662 An expression is computed (locally available) in a block if it is computed
663 at least once and expression would contain the same value if the
664 computation was moved to the end of the block.
665
666 An expression is locally anticipatable in a block if it is computed at
667 least once and expression would contain the same value if the computation
668 was moved to the beginning of the block.
669
670 We call this routine for pre and code hoisting. They all compute
671 basically the same information and thus can easily share this code.
672
673 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
674 properties. If NULL, then it is not necessary to compute or record that
675 particular property.
676
677 TABLE controls which hash table to look at. */
678
679 static void
680 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
681 struct hash_table_d *table)
682 {
683 unsigned int i;
684
685 /* Initialize any bitmaps that were passed in. */
686 if (transp)
687 {
688 bitmap_vector_ones (transp, last_basic_block);
689 }
690
691 if (comp)
692 bitmap_vector_clear (comp, last_basic_block);
693 if (antloc)
694 bitmap_vector_clear (antloc, last_basic_block);
695
696 for (i = 0; i < table->size; i++)
697 {
698 struct expr *expr;
699
700 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
701 {
702 int indx = expr->bitmap_index;
703 struct occr *occr;
704
705 /* The expression is transparent in this block if it is not killed.
706 We start by assuming all are transparent [none are killed], and
707 then reset the bits for those that are. */
708 if (transp)
709 compute_transp (expr->expr, indx, transp);
710
711 /* The occurrences recorded in antic_occr are exactly those that
712 we want to set to nonzero in ANTLOC. */
713 if (antloc)
714 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
715 {
716 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
717
718 /* While we're scanning the table, this is a good place to
719 initialize this. */
720 occr->deleted_p = 0;
721 }
722
723 /* The occurrences recorded in avail_occr are exactly those that
724 we want to set to nonzero in COMP. */
725 if (comp)
726 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
727 {
728 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
729
730 /* While we're scanning the table, this is a good place to
731 initialize this. */
732 occr->copied_p = 0;
733 }
734
735 /* While we're scanning the table, this is a good place to
736 initialize this. */
737 expr->reaching_reg = 0;
738 }
739 }
740 }
741 \f
742 /* Hash table support. */
743
744 struct reg_avail_info
745 {
746 basic_block last_bb;
747 int first_set;
748 int last_set;
749 };
750
751 static struct reg_avail_info *reg_avail_info;
752 static basic_block current_bb;
753
754 /* See whether X, the source of a set, is something we want to consider for
755 GCSE. */
756
757 static int
758 want_to_gcse_p (rtx x, int *max_distance_ptr)
759 {
760 #ifdef STACK_REGS
761 /* On register stack architectures, don't GCSE constants from the
762 constant pool, as the benefits are often swamped by the overhead
763 of shuffling the register stack between basic blocks. */
764 if (IS_STACK_MODE (GET_MODE (x)))
765 x = avoid_constant_pool_reference (x);
766 #endif
767
768 /* GCSE'ing constants:
769
770 We do not specifically distinguish between constant and non-constant
771 expressions in PRE and Hoist. We use set_src_cost below to limit
772 the maximum distance simple expressions can travel.
773
774 Nevertheless, constants are much easier to GCSE, and, hence,
775 it is easy to overdo the optimizations. Usually, excessive PRE and
776 Hoisting of constant leads to increased register pressure.
777
778 RA can deal with this by rematerialing some of the constants.
779 Therefore, it is important that the back-end generates sets of constants
780 in a way that allows reload rematerialize them under high register
781 pressure, i.e., a pseudo register with REG_EQUAL to constant
782 is set only once. Failing to do so will result in IRA/reload
783 spilling such constants under high register pressure instead of
784 rematerializing them. */
785
786 switch (GET_CODE (x))
787 {
788 case REG:
789 case SUBREG:
790 case CALL:
791 return 0;
792
793 CASE_CONST_ANY:
794 if (!doing_code_hoisting_p)
795 /* Do not PRE constants. */
796 return 0;
797
798 /* FALLTHRU */
799
800 default:
801 if (doing_code_hoisting_p)
802 /* PRE doesn't implement max_distance restriction. */
803 {
804 int cost;
805 int max_distance;
806
807 gcc_assert (!optimize_function_for_speed_p (cfun)
808 && optimize_function_for_size_p (cfun));
809 cost = set_src_cost (x, 0);
810
811 if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
812 {
813 max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
814 if (max_distance == 0)
815 return 0;
816
817 gcc_assert (max_distance > 0);
818 }
819 else
820 max_distance = 0;
821
822 if (max_distance_ptr)
823 *max_distance_ptr = max_distance;
824 }
825
826 return can_assign_to_reg_without_clobbers_p (x);
827 }
828 }
829
830 /* Used internally by can_assign_to_reg_without_clobbers_p. */
831
832 static GTY(()) rtx test_insn;
833
834 /* Return true if we can assign X to a pseudo register such that the
835 resulting insn does not result in clobbering a hard register as a
836 side-effect.
837
838 Additionally, if the target requires it, check that the resulting insn
839 can be copied. If it cannot, this means that X is special and probably
840 has hidden side-effects we don't want to mess with.
841
842 This function is typically used by code motion passes, to verify
843 that it is safe to insert an insn without worrying about clobbering
844 maybe live hard regs. */
845
846 bool
847 can_assign_to_reg_without_clobbers_p (rtx x)
848 {
849 int num_clobbers = 0;
850 int icode;
851
852 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
853 if (general_operand (x, GET_MODE (x)))
854 return 1;
855 else if (GET_MODE (x) == VOIDmode)
856 return 0;
857
858 /* Otherwise, check if we can make a valid insn from it. First initialize
859 our test insn if we haven't already. */
860 if (test_insn == 0)
861 {
862 test_insn
863 = make_insn_raw (gen_rtx_SET (VOIDmode,
864 gen_rtx_REG (word_mode,
865 FIRST_PSEUDO_REGISTER * 2),
866 const0_rtx));
867 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
868 }
869
870 /* Now make an insn like the one we would make when GCSE'ing and see if
871 valid. */
872 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
873 SET_SRC (PATTERN (test_insn)) = x;
874
875 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
876 if (icode < 0)
877 return false;
878
879 if (num_clobbers > 0 && added_clobbers_hard_reg_p (icode))
880 return false;
881
882 if (targetm.cannot_copy_insn_p && targetm.cannot_copy_insn_p (test_insn))
883 return false;
884
885 return true;
886 }
887
888 /* Return nonzero if the operands of expression X are unchanged from the
889 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
890 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
891
892 static int
893 oprs_unchanged_p (const_rtx x, const_rtx insn, int avail_p)
894 {
895 int i, j;
896 enum rtx_code code;
897 const char *fmt;
898
899 if (x == 0)
900 return 1;
901
902 code = GET_CODE (x);
903 switch (code)
904 {
905 case REG:
906 {
907 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
908
909 if (info->last_bb != current_bb)
910 return 1;
911 if (avail_p)
912 return info->last_set < DF_INSN_LUID (insn);
913 else
914 return info->first_set >= DF_INSN_LUID (insn);
915 }
916
917 case MEM:
918 if (! flag_gcse_lm
919 || load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
920 x, avail_p))
921 return 0;
922 else
923 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
924
925 case PRE_DEC:
926 case PRE_INC:
927 case POST_DEC:
928 case POST_INC:
929 case PRE_MODIFY:
930 case POST_MODIFY:
931 return 0;
932
933 case PC:
934 case CC0: /*FIXME*/
935 case CONST:
936 CASE_CONST_ANY:
937 case SYMBOL_REF:
938 case LABEL_REF:
939 case ADDR_VEC:
940 case ADDR_DIFF_VEC:
941 return 1;
942
943 default:
944 break;
945 }
946
947 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
948 {
949 if (fmt[i] == 'e')
950 {
951 /* If we are about to do the last recursive call needed at this
952 level, change it into iteration. This function is called enough
953 to be worth it. */
954 if (i == 0)
955 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
956
957 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
958 return 0;
959 }
960 else if (fmt[i] == 'E')
961 for (j = 0; j < XVECLEN (x, i); j++)
962 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
963 return 0;
964 }
965
966 return 1;
967 }
968
969 /* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
970
971 struct mem_conflict_info
972 {
973 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
974 see if a memory store conflicts with this memory load. */
975 const_rtx mem;
976
977 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
978 references. */
979 bool conflict;
980 };
981
982 /* DEST is the output of an instruction. If it is a memory reference and
983 possibly conflicts with the load found in DATA, then communicate this
984 information back through DATA. */
985
986 static void
987 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
988 void *data)
989 {
990 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
991
992 while (GET_CODE (dest) == SUBREG
993 || GET_CODE (dest) == ZERO_EXTRACT
994 || GET_CODE (dest) == STRICT_LOW_PART)
995 dest = XEXP (dest, 0);
996
997 /* If DEST is not a MEM, then it will not conflict with the load. Note
998 that function calls are assumed to clobber memory, but are handled
999 elsewhere. */
1000 if (! MEM_P (dest))
1001 return;
1002
1003 /* If we are setting a MEM in our list of specially recognized MEMs,
1004 don't mark as killed this time. */
1005 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
1006 {
1007 if (!find_rtx_in_ldst (dest))
1008 mci->conflict = true;
1009 return;
1010 }
1011
1012 if (true_dependence (dest, GET_MODE (dest), mci->mem))
1013 mci->conflict = true;
1014 }
1015
1016 /* Return nonzero if the expression in X (a memory reference) is killed
1017 in block BB before or after the insn with the LUID in UID_LIMIT.
1018 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1019 before UID_LIMIT.
1020
1021 To check the entire block, set UID_LIMIT to max_uid + 1 and
1022 AVAIL_P to 0. */
1023
1024 static int
1025 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1026 int avail_p)
1027 {
1028 vec<rtx> list = modify_mem_list[bb->index];
1029 rtx setter;
1030 unsigned ix;
1031
1032 /* If this is a readonly then we aren't going to be changing it. */
1033 if (MEM_READONLY_P (x))
1034 return 0;
1035
1036 FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
1037 {
1038 struct mem_conflict_info mci;
1039
1040 /* Ignore entries in the list that do not apply. */
1041 if ((avail_p
1042 && DF_INSN_LUID (setter) < uid_limit)
1043 || (! avail_p
1044 && DF_INSN_LUID (setter) > uid_limit))
1045 continue;
1046
1047 /* If SETTER is a call everything is clobbered. Note that calls
1048 to pure functions are never put on the list, so we need not
1049 worry about them. */
1050 if (CALL_P (setter))
1051 return 1;
1052
1053 /* SETTER must be an INSN of some kind that sets memory. Call
1054 note_stores to examine each hunk of memory that is modified. */
1055 mci.mem = x;
1056 mci.conflict = false;
1057 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1058 if (mci.conflict)
1059 return 1;
1060 }
1061 return 0;
1062 }
1063
1064 /* Return nonzero if the operands of expression X are unchanged from
1065 the start of INSN's basic block up to but not including INSN. */
1066
1067 static int
1068 oprs_anticipatable_p (const_rtx x, const_rtx insn)
1069 {
1070 return oprs_unchanged_p (x, insn, 0);
1071 }
1072
1073 /* Return nonzero if the operands of expression X are unchanged from
1074 INSN to the end of INSN's basic block. */
1075
1076 static int
1077 oprs_available_p (const_rtx x, const_rtx insn)
1078 {
1079 return oprs_unchanged_p (x, insn, 1);
1080 }
1081
1082 /* Hash expression X.
1083
1084 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1085 indicating if a volatile operand is found or if the expression contains
1086 something we don't want to insert in the table. HASH_TABLE_SIZE is
1087 the current size of the hash table to be probed. */
1088
1089 static unsigned int
1090 hash_expr (const_rtx x, enum machine_mode mode, int *do_not_record_p,
1091 int hash_table_size)
1092 {
1093 unsigned int hash;
1094
1095 *do_not_record_p = 0;
1096
1097 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
1098 return hash % hash_table_size;
1099 }
1100
1101 /* Return nonzero if exp1 is equivalent to exp2. */
1102
1103 static int
1104 expr_equiv_p (const_rtx x, const_rtx y)
1105 {
1106 return exp_equiv_p (x, y, 0, true);
1107 }
1108
1109 /* Insert expression X in INSN in the hash TABLE.
1110 If it is already present, record it as the last occurrence in INSN's
1111 basic block.
1112
1113 MODE is the mode of the value X is being stored into.
1114 It is only used if X is a CONST_INT.
1115
1116 ANTIC_P is nonzero if X is an anticipatable expression.
1117 AVAIL_P is nonzero if X is an available expression.
1118
1119 MAX_DISTANCE is the maximum distance in instructions this expression can
1120 be moved. */
1121
1122 static void
1123 insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
1124 int avail_p, int max_distance, struct hash_table_d *table)
1125 {
1126 int found, do_not_record_p;
1127 unsigned int hash;
1128 struct expr *cur_expr, *last_expr = NULL;
1129 struct occr *antic_occr, *avail_occr;
1130
1131 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1132
1133 /* Do not insert expression in table if it contains volatile operands,
1134 or if hash_expr determines the expression is something we don't want
1135 to or can't handle. */
1136 if (do_not_record_p)
1137 return;
1138
1139 cur_expr = table->table[hash];
1140 found = 0;
1141
1142 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1143 {
1144 /* If the expression isn't found, save a pointer to the end of
1145 the list. */
1146 last_expr = cur_expr;
1147 cur_expr = cur_expr->next_same_hash;
1148 }
1149
1150 if (! found)
1151 {
1152 cur_expr = GOBNEW (struct expr);
1153 bytes_used += sizeof (struct expr);
1154 if (table->table[hash] == NULL)
1155 /* This is the first pattern that hashed to this index. */
1156 table->table[hash] = cur_expr;
1157 else
1158 /* Add EXPR to end of this hash chain. */
1159 last_expr->next_same_hash = cur_expr;
1160
1161 /* Set the fields of the expr element. */
1162 cur_expr->expr = x;
1163 cur_expr->bitmap_index = table->n_elems++;
1164 cur_expr->next_same_hash = NULL;
1165 cur_expr->antic_occr = NULL;
1166 cur_expr->avail_occr = NULL;
1167 gcc_assert (max_distance >= 0);
1168 cur_expr->max_distance = max_distance;
1169 }
1170 else
1171 gcc_assert (cur_expr->max_distance == max_distance);
1172
1173 /* Now record the occurrence(s). */
1174 if (antic_p)
1175 {
1176 antic_occr = cur_expr->antic_occr;
1177
1178 if (antic_occr
1179 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
1180 antic_occr = NULL;
1181
1182 if (antic_occr)
1183 /* Found another instance of the expression in the same basic block.
1184 Prefer the currently recorded one. We want the first one in the
1185 block and the block is scanned from start to end. */
1186 ; /* nothing to do */
1187 else
1188 {
1189 /* First occurrence of this expression in this basic block. */
1190 antic_occr = GOBNEW (struct occr);
1191 bytes_used += sizeof (struct occr);
1192 antic_occr->insn = insn;
1193 antic_occr->next = cur_expr->antic_occr;
1194 antic_occr->deleted_p = 0;
1195 cur_expr->antic_occr = antic_occr;
1196 }
1197 }
1198
1199 if (avail_p)
1200 {
1201 avail_occr = cur_expr->avail_occr;
1202
1203 if (avail_occr
1204 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
1205 {
1206 /* Found another instance of the expression in the same basic block.
1207 Prefer this occurrence to the currently recorded one. We want
1208 the last one in the block and the block is scanned from start
1209 to end. */
1210 avail_occr->insn = insn;
1211 }
1212 else
1213 {
1214 /* First occurrence of this expression in this basic block. */
1215 avail_occr = GOBNEW (struct occr);
1216 bytes_used += sizeof (struct occr);
1217 avail_occr->insn = insn;
1218 avail_occr->next = cur_expr->avail_occr;
1219 avail_occr->deleted_p = 0;
1220 cur_expr->avail_occr = avail_occr;
1221 }
1222 }
1223 }
1224
1225 /* Scan SET present in INSN and add an entry to the hash TABLE. */
1226
1227 static void
1228 hash_scan_set (rtx set, rtx insn, struct hash_table_d *table)
1229 {
1230 rtx src = SET_SRC (set);
1231 rtx dest = SET_DEST (set);
1232 rtx note;
1233
1234 if (GET_CODE (src) == CALL)
1235 hash_scan_call (src, insn, table);
1236
1237 else if (REG_P (dest))
1238 {
1239 unsigned int regno = REGNO (dest);
1240 int max_distance = 0;
1241
1242 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1243
1244 This allows us to do a single GCSE pass and still eliminate
1245 redundant constants, addresses or other expressions that are
1246 constructed with multiple instructions.
1247
1248 However, keep the original SRC if INSN is a simple reg-reg move.
1249 In this case, there will almost always be a REG_EQUAL note on the
1250 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1251 for INSN, we miss copy propagation opportunities and we perform the
1252 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1253 do more than one PRE GCSE pass.
1254
1255 Note that this does not impede profitable constant propagations. We
1256 "look through" reg-reg sets in lookup_avail_set. */
1257 note = find_reg_equal_equiv_note (insn);
1258 if (note != 0
1259 && REG_NOTE_KIND (note) == REG_EQUAL
1260 && !REG_P (src)
1261 && want_to_gcse_p (XEXP (note, 0), NULL))
1262 src = XEXP (note, 0), set = gen_rtx_SET (VOIDmode, dest, src);
1263
1264 /* Only record sets of pseudo-regs in the hash table. */
1265 if (regno >= FIRST_PSEUDO_REGISTER
1266 /* Don't GCSE something if we can't do a reg/reg copy. */
1267 && can_copy_p (GET_MODE (dest))
1268 /* GCSE commonly inserts instruction after the insn. We can't
1269 do that easily for EH edges so disable GCSE on these for now. */
1270 /* ??? We can now easily create new EH landing pads at the
1271 gimple level, for splitting edges; there's no reason we
1272 can't do the same thing at the rtl level. */
1273 && !can_throw_internal (insn)
1274 /* Is SET_SRC something we want to gcse? */
1275 && want_to_gcse_p (src, &max_distance)
1276 /* Don't CSE a nop. */
1277 && ! set_noop_p (set)
1278 /* Don't GCSE if it has attached REG_EQUIV note.
1279 At this point this only function parameters should have
1280 REG_EQUIV notes and if the argument slot is used somewhere
1281 explicitly, it means address of parameter has been taken,
1282 so we should not extend the lifetime of the pseudo. */
1283 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1284 {
1285 /* An expression is not anticipatable if its operands are
1286 modified before this insn or if this is not the only SET in
1287 this insn. The latter condition does not have to mean that
1288 SRC itself is not anticipatable, but we just will not be
1289 able to handle code motion of insns with multiple sets. */
1290 int antic_p = oprs_anticipatable_p (src, insn)
1291 && !multiple_sets (insn);
1292 /* An expression is not available if its operands are
1293 subsequently modified, including this insn. It's also not
1294 available if this is a branch, because we can't insert
1295 a set after the branch. */
1296 int avail_p = (oprs_available_p (src, insn)
1297 && ! JUMP_P (insn));
1298
1299 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1300 max_distance, table);
1301 }
1302 }
1303 /* In case of store we want to consider the memory value as available in
1304 the REG stored in that memory. This makes it possible to remove
1305 redundant loads from due to stores to the same location. */
1306 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1307 {
1308 unsigned int regno = REGNO (src);
1309 int max_distance = 0;
1310
1311 /* Only record sets of pseudo-regs in the hash table. */
1312 if (regno >= FIRST_PSEUDO_REGISTER
1313 /* Don't GCSE something if we can't do a reg/reg copy. */
1314 && can_copy_p (GET_MODE (src))
1315 /* GCSE commonly inserts instruction after the insn. We can't
1316 do that easily for EH edges so disable GCSE on these for now. */
1317 && !can_throw_internal (insn)
1318 /* Is SET_DEST something we want to gcse? */
1319 && want_to_gcse_p (dest, &max_distance)
1320 /* Don't CSE a nop. */
1321 && ! set_noop_p (set)
1322 /* Don't GCSE if it has attached REG_EQUIV note.
1323 At this point this only function parameters should have
1324 REG_EQUIV notes and if the argument slot is used somewhere
1325 explicitly, it means address of parameter has been taken,
1326 so we should not extend the lifetime of the pseudo. */
1327 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1328 || ! MEM_P (XEXP (note, 0))))
1329 {
1330 /* Stores are never anticipatable. */
1331 int antic_p = 0;
1332 /* An expression is not available if its operands are
1333 subsequently modified, including this insn. It's also not
1334 available if this is a branch, because we can't insert
1335 a set after the branch. */
1336 int avail_p = oprs_available_p (dest, insn)
1337 && ! JUMP_P (insn);
1338
1339 /* Record the memory expression (DEST) in the hash table. */
1340 insert_expr_in_table (dest, GET_MODE (dest), insn,
1341 antic_p, avail_p, max_distance, table);
1342 }
1343 }
1344 }
1345
1346 static void
1347 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1348 struct hash_table_d *table ATTRIBUTE_UNUSED)
1349 {
1350 /* Currently nothing to do. */
1351 }
1352
1353 static void
1354 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1355 struct hash_table_d *table ATTRIBUTE_UNUSED)
1356 {
1357 /* Currently nothing to do. */
1358 }
1359
1360 /* Process INSN and add hash table entries as appropriate. */
1361
1362 static void
1363 hash_scan_insn (rtx insn, struct hash_table_d *table)
1364 {
1365 rtx pat = PATTERN (insn);
1366 int i;
1367
1368 /* Pick out the sets of INSN and for other forms of instructions record
1369 what's been modified. */
1370
1371 if (GET_CODE (pat) == SET)
1372 hash_scan_set (pat, insn, table);
1373
1374 else if (GET_CODE (pat) == CLOBBER)
1375 hash_scan_clobber (pat, insn, table);
1376
1377 else if (GET_CODE (pat) == CALL)
1378 hash_scan_call (pat, insn, table);
1379
1380 else if (GET_CODE (pat) == PARALLEL)
1381 for (i = 0; i < XVECLEN (pat, 0); i++)
1382 {
1383 rtx x = XVECEXP (pat, 0, i);
1384
1385 if (GET_CODE (x) == SET)
1386 hash_scan_set (x, insn, table);
1387 else if (GET_CODE (x) == CLOBBER)
1388 hash_scan_clobber (x, insn, table);
1389 else if (GET_CODE (x) == CALL)
1390 hash_scan_call (x, insn, table);
1391 }
1392 }
1393
1394 /* Dump the hash table TABLE to file FILE under the name NAME. */
1395
1396 static void
1397 dump_hash_table (FILE *file, const char *name, struct hash_table_d *table)
1398 {
1399 int i;
1400 /* Flattened out table, so it's printed in proper order. */
1401 struct expr **flat_table;
1402 unsigned int *hash_val;
1403 struct expr *expr;
1404
1405 flat_table = XCNEWVEC (struct expr *, table->n_elems);
1406 hash_val = XNEWVEC (unsigned int, table->n_elems);
1407
1408 for (i = 0; i < (int) table->size; i++)
1409 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1410 {
1411 flat_table[expr->bitmap_index] = expr;
1412 hash_val[expr->bitmap_index] = i;
1413 }
1414
1415 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1416 name, table->size, table->n_elems);
1417
1418 for (i = 0; i < (int) table->n_elems; i++)
1419 if (flat_table[i] != 0)
1420 {
1421 expr = flat_table[i];
1422 fprintf (file, "Index %d (hash value %d; max distance %d)\n ",
1423 expr->bitmap_index, hash_val[i], expr->max_distance);
1424 print_rtl (file, expr->expr);
1425 fprintf (file, "\n");
1426 }
1427
1428 fprintf (file, "\n");
1429
1430 free (flat_table);
1431 free (hash_val);
1432 }
1433
1434 /* Record register first/last/block set information for REGNO in INSN.
1435
1436 first_set records the first place in the block where the register
1437 is set and is used to compute "anticipatability".
1438
1439 last_set records the last place in the block where the register
1440 is set and is used to compute "availability".
1441
1442 last_bb records the block for which first_set and last_set are
1443 valid, as a quick test to invalidate them. */
1444
1445 static void
1446 record_last_reg_set_info (rtx insn, int regno)
1447 {
1448 struct reg_avail_info *info = &reg_avail_info[regno];
1449 int luid = DF_INSN_LUID (insn);
1450
1451 info->last_set = luid;
1452 if (info->last_bb != current_bb)
1453 {
1454 info->last_bb = current_bb;
1455 info->first_set = luid;
1456 }
1457 }
1458
1459 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1460 Note we store a pair of elements in the list, so they have to be
1461 taken off pairwise. */
1462
1463 static void
1464 canon_list_insert (rtx dest ATTRIBUTE_UNUSED, const_rtx x ATTRIBUTE_UNUSED,
1465 void * v_insn)
1466 {
1467 rtx dest_addr, insn;
1468 int bb;
1469 modify_pair pair;
1470
1471 while (GET_CODE (dest) == SUBREG
1472 || GET_CODE (dest) == ZERO_EXTRACT
1473 || GET_CODE (dest) == STRICT_LOW_PART)
1474 dest = XEXP (dest, 0);
1475
1476 /* If DEST is not a MEM, then it will not conflict with a load. Note
1477 that function calls are assumed to clobber memory, but are handled
1478 elsewhere. */
1479
1480 if (! MEM_P (dest))
1481 return;
1482
1483 dest_addr = get_addr (XEXP (dest, 0));
1484 dest_addr = canon_rtx (dest_addr);
1485 insn = (rtx) v_insn;
1486 bb = BLOCK_FOR_INSN (insn)->index;
1487
1488 pair.dest = dest;
1489 pair.dest_addr = dest_addr;
1490 canon_modify_mem_list[bb].safe_push (pair);
1491 }
1492
1493 /* Record memory modification information for INSN. We do not actually care
1494 about the memory location(s) that are set, or even how they are set (consider
1495 a CALL_INSN). We merely need to record which insns modify memory. */
1496
1497 static void
1498 record_last_mem_set_info (rtx insn)
1499 {
1500 int bb;
1501
1502 if (! flag_gcse_lm)
1503 return;
1504
1505 /* load_killed_in_block_p will handle the case of calls clobbering
1506 everything. */
1507 bb = BLOCK_FOR_INSN (insn)->index;
1508 modify_mem_list[bb].safe_push (insn);
1509 bitmap_set_bit (modify_mem_list_set, bb);
1510
1511 if (CALL_P (insn))
1512 bitmap_set_bit (blocks_with_calls, bb);
1513 else
1514 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
1515 }
1516
1517 /* Called from compute_hash_table via note_stores to handle one
1518 SET or CLOBBER in an insn. DATA is really the instruction in which
1519 the SET is taking place. */
1520
1521 static void
1522 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1523 {
1524 rtx last_set_insn = (rtx) data;
1525
1526 if (GET_CODE (dest) == SUBREG)
1527 dest = SUBREG_REG (dest);
1528
1529 if (REG_P (dest))
1530 record_last_reg_set_info (last_set_insn, REGNO (dest));
1531 else if (MEM_P (dest)
1532 /* Ignore pushes, they clobber nothing. */
1533 && ! push_operand (dest, GET_MODE (dest)))
1534 record_last_mem_set_info (last_set_insn);
1535 }
1536
1537 /* Top level function to create an expression hash table.
1538
1539 Expression entries are placed in the hash table if
1540 - they are of the form (set (pseudo-reg) src),
1541 - src is something we want to perform GCSE on,
1542 - none of the operands are subsequently modified in the block
1543
1544 Currently src must be a pseudo-reg or a const_int.
1545
1546 TABLE is the table computed. */
1547
1548 static void
1549 compute_hash_table_work (struct hash_table_d *table)
1550 {
1551 int i;
1552
1553 /* re-Cache any INSN_LIST nodes we have allocated. */
1554 clear_modify_mem_tables ();
1555 /* Some working arrays used to track first and last set in each block. */
1556 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
1557
1558 for (i = 0; i < max_reg_num (); ++i)
1559 reg_avail_info[i].last_bb = NULL;
1560
1561 FOR_EACH_BB (current_bb)
1562 {
1563 rtx insn;
1564 unsigned int regno;
1565
1566 /* First pass over the instructions records information used to
1567 determine when registers and memory are first and last set. */
1568 FOR_BB_INSNS (current_bb, insn)
1569 {
1570 if (!NONDEBUG_INSN_P (insn))
1571 continue;
1572
1573 if (CALL_P (insn))
1574 {
1575 hard_reg_set_iterator hrsi;
1576 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1577 0, regno, hrsi)
1578 record_last_reg_set_info (insn, regno);
1579
1580 if (! RTL_CONST_OR_PURE_CALL_P (insn))
1581 record_last_mem_set_info (insn);
1582 }
1583
1584 note_stores (PATTERN (insn), record_last_set_info, insn);
1585 }
1586
1587 /* The next pass builds the hash table. */
1588 FOR_BB_INSNS (current_bb, insn)
1589 if (NONDEBUG_INSN_P (insn))
1590 hash_scan_insn (insn, table);
1591 }
1592
1593 free (reg_avail_info);
1594 reg_avail_info = NULL;
1595 }
1596
1597 /* Allocate space for the set/expr hash TABLE.
1598 It is used to determine the number of buckets to use. */
1599
1600 static void
1601 alloc_hash_table (struct hash_table_d *table)
1602 {
1603 int n;
1604
1605 n = get_max_insn_count ();
1606
1607 table->size = n / 4;
1608 if (table->size < 11)
1609 table->size = 11;
1610
1611 /* Attempt to maintain efficient use of hash table.
1612 Making it an odd number is simplest for now.
1613 ??? Later take some measurements. */
1614 table->size |= 1;
1615 n = table->size * sizeof (struct expr *);
1616 table->table = GNEWVAR (struct expr *, n);
1617 }
1618
1619 /* Free things allocated by alloc_hash_table. */
1620
1621 static void
1622 free_hash_table (struct hash_table_d *table)
1623 {
1624 free (table->table);
1625 }
1626
1627 /* Compute the expression hash table TABLE. */
1628
1629 static void
1630 compute_hash_table (struct hash_table_d *table)
1631 {
1632 /* Initialize count of number of entries in hash table. */
1633 table->n_elems = 0;
1634 memset (table->table, 0, table->size * sizeof (struct expr *));
1635
1636 compute_hash_table_work (table);
1637 }
1638 \f
1639 /* Expression tracking support. */
1640
1641 /* Clear canon_modify_mem_list and modify_mem_list tables. */
1642 static void
1643 clear_modify_mem_tables (void)
1644 {
1645 unsigned i;
1646 bitmap_iterator bi;
1647
1648 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
1649 {
1650 modify_mem_list[i].release ();
1651 canon_modify_mem_list[i].release ();
1652 }
1653 bitmap_clear (modify_mem_list_set);
1654 bitmap_clear (blocks_with_calls);
1655 }
1656
1657 /* Release memory used by modify_mem_list_set. */
1658
1659 static void
1660 free_modify_mem_tables (void)
1661 {
1662 clear_modify_mem_tables ();
1663 free (modify_mem_list);
1664 free (canon_modify_mem_list);
1665 modify_mem_list = 0;
1666 canon_modify_mem_list = 0;
1667 }
1668 \f
1669 /* For each block, compute whether X is transparent. X is either an
1670 expression or an assignment [though we don't care which, for this context
1671 an assignment is treated as an expression]. For each block where an
1672 element of X is modified, reset the INDX bit in BMAP. */
1673
1674 static void
1675 compute_transp (const_rtx x, int indx, sbitmap *bmap)
1676 {
1677 int i, j;
1678 enum rtx_code code;
1679 const char *fmt;
1680
1681 /* repeat is used to turn tail-recursion into iteration since GCC
1682 can't do it when there's no return value. */
1683 repeat:
1684
1685 if (x == 0)
1686 return;
1687
1688 code = GET_CODE (x);
1689 switch (code)
1690 {
1691 case REG:
1692 {
1693 df_ref def;
1694 for (def = DF_REG_DEF_CHAIN (REGNO (x));
1695 def;
1696 def = DF_REF_NEXT_REG (def))
1697 bitmap_clear_bit (bmap[DF_REF_BB (def)->index], indx);
1698 }
1699
1700 return;
1701
1702 case MEM:
1703 if (! MEM_READONLY_P (x))
1704 {
1705 bitmap_iterator bi;
1706 unsigned bb_index;
1707 rtx x_addr;
1708
1709 x_addr = get_addr (XEXP (x, 0));
1710 x_addr = canon_rtx (x_addr);
1711
1712 /* First handle all the blocks with calls. We don't need to
1713 do any list walking for them. */
1714 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
1715 {
1716 bitmap_clear_bit (bmap[bb_index], indx);
1717 }
1718
1719 /* Now iterate over the blocks which have memory modifications
1720 but which do not have any calls. */
1721 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set,
1722 blocks_with_calls,
1723 0, bb_index, bi)
1724 {
1725 vec<modify_pair> list
1726 = canon_modify_mem_list[bb_index];
1727 modify_pair *pair;
1728 unsigned ix;
1729
1730 FOR_EACH_VEC_ELT_REVERSE (list, ix, pair)
1731 {
1732 rtx dest = pair->dest;
1733 rtx dest_addr = pair->dest_addr;
1734
1735 if (canon_true_dependence (dest, GET_MODE (dest),
1736 dest_addr, x, x_addr))
1737 bitmap_clear_bit (bmap[bb_index], indx);
1738 }
1739 }
1740 }
1741
1742 x = XEXP (x, 0);
1743 goto repeat;
1744
1745 case PC:
1746 case CC0: /*FIXME*/
1747 case CONST:
1748 CASE_CONST_ANY:
1749 case SYMBOL_REF:
1750 case LABEL_REF:
1751 case ADDR_VEC:
1752 case ADDR_DIFF_VEC:
1753 return;
1754
1755 default:
1756 break;
1757 }
1758
1759 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1760 {
1761 if (fmt[i] == 'e')
1762 {
1763 /* If we are about to do the last recursive call
1764 needed at this level, change it into iteration.
1765 This function is called enough to be worth it. */
1766 if (i == 0)
1767 {
1768 x = XEXP (x, i);
1769 goto repeat;
1770 }
1771
1772 compute_transp (XEXP (x, i), indx, bmap);
1773 }
1774 else if (fmt[i] == 'E')
1775 for (j = 0; j < XVECLEN (x, i); j++)
1776 compute_transp (XVECEXP (x, i, j), indx, bmap);
1777 }
1778 }
1779 \f
1780 /* Compute PRE+LCM working variables. */
1781
1782 /* Local properties of expressions. */
1783
1784 /* Nonzero for expressions that are transparent in the block. */
1785 static sbitmap *transp;
1786
1787 /* Nonzero for expressions that are computed (available) in the block. */
1788 static sbitmap *comp;
1789
1790 /* Nonzero for expressions that are locally anticipatable in the block. */
1791 static sbitmap *antloc;
1792
1793 /* Nonzero for expressions where this block is an optimal computation
1794 point. */
1795 static sbitmap *pre_optimal;
1796
1797 /* Nonzero for expressions which are redundant in a particular block. */
1798 static sbitmap *pre_redundant;
1799
1800 /* Nonzero for expressions which should be inserted on a specific edge. */
1801 static sbitmap *pre_insert_map;
1802
1803 /* Nonzero for expressions which should be deleted in a specific block. */
1804 static sbitmap *pre_delete_map;
1805
1806 /* Allocate vars used for PRE analysis. */
1807
1808 static void
1809 alloc_pre_mem (int n_blocks, int n_exprs)
1810 {
1811 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1812 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1813 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
1814
1815 pre_optimal = NULL;
1816 pre_redundant = NULL;
1817 pre_insert_map = NULL;
1818 pre_delete_map = NULL;
1819 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
1820
1821 /* pre_insert and pre_delete are allocated later. */
1822 }
1823
1824 /* Free vars used for PRE analysis. */
1825
1826 static void
1827 free_pre_mem (void)
1828 {
1829 sbitmap_vector_free (transp);
1830 sbitmap_vector_free (comp);
1831
1832 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
1833
1834 if (pre_optimal)
1835 sbitmap_vector_free (pre_optimal);
1836 if (pre_redundant)
1837 sbitmap_vector_free (pre_redundant);
1838 if (pre_insert_map)
1839 sbitmap_vector_free (pre_insert_map);
1840 if (pre_delete_map)
1841 sbitmap_vector_free (pre_delete_map);
1842
1843 transp = comp = NULL;
1844 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
1845 }
1846
1847 /* Remove certain expressions from anticipatable and transparent
1848 sets of basic blocks that have incoming abnormal edge.
1849 For PRE remove potentially trapping expressions to avoid placing
1850 them on abnormal edges. For hoisting remove memory references that
1851 can be clobbered by calls. */
1852
1853 static void
1854 prune_expressions (bool pre_p)
1855 {
1856 sbitmap prune_exprs;
1857 struct expr *expr;
1858 unsigned int ui;
1859 basic_block bb;
1860
1861 prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
1862 bitmap_clear (prune_exprs);
1863 for (ui = 0; ui < expr_hash_table.size; ui++)
1864 {
1865 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
1866 {
1867 /* Note potentially trapping expressions. */
1868 if (may_trap_p (expr->expr))
1869 {
1870 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1871 continue;
1872 }
1873
1874 if (!pre_p && MEM_P (expr->expr))
1875 /* Note memory references that can be clobbered by a call.
1876 We do not split abnormal edges in hoisting, so would
1877 a memory reference get hoisted along an abnormal edge,
1878 it would be placed /before/ the call. Therefore, only
1879 constant memory references can be hoisted along abnormal
1880 edges. */
1881 {
1882 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
1883 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
1884 continue;
1885
1886 if (MEM_READONLY_P (expr->expr)
1887 && !MEM_VOLATILE_P (expr->expr)
1888 && MEM_NOTRAP_P (expr->expr))
1889 /* Constant memory reference, e.g., a PIC address. */
1890 continue;
1891
1892 /* ??? Optimally, we would use interprocedural alias
1893 analysis to determine if this mem is actually killed
1894 by this call. */
1895
1896 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1897 }
1898 }
1899 }
1900
1901 FOR_EACH_BB (bb)
1902 {
1903 edge e;
1904 edge_iterator ei;
1905
1906 /* If the current block is the destination of an abnormal edge, we
1907 kill all trapping (for PRE) and memory (for hoist) expressions
1908 because we won't be able to properly place the instruction on
1909 the edge. So make them neither anticipatable nor transparent.
1910 This is fairly conservative.
1911
1912 ??? For hoisting it may be necessary to check for set-and-jump
1913 instructions here, not just for abnormal edges. The general problem
1914 is that when an expression cannot not be placed right at the end of
1915 a basic block we should account for any side-effects of a subsequent
1916 jump instructions that could clobber the expression. It would
1917 be best to implement this check along the lines of
1918 should_hoist_expr_to_dom where the target block is already known
1919 and, hence, there's no need to conservatively prune expressions on
1920 "intermediate" set-and-jump instructions. */
1921 FOR_EACH_EDGE (e, ei, bb->preds)
1922 if ((e->flags & EDGE_ABNORMAL)
1923 && (pre_p || CALL_P (BB_END (e->src))))
1924 {
1925 bitmap_and_compl (antloc[bb->index],
1926 antloc[bb->index], prune_exprs);
1927 bitmap_and_compl (transp[bb->index],
1928 transp[bb->index], prune_exprs);
1929 break;
1930 }
1931 }
1932
1933 sbitmap_free (prune_exprs);
1934 }
1935
1936 /* It may be necessary to insert a large number of insns on edges to
1937 make the existing occurrences of expressions fully redundant. This
1938 routine examines the set of insertions and deletions and if the ratio
1939 of insertions to deletions is too high for a particular expression, then
1940 the expression is removed from the insertion/deletion sets.
1941
1942 N_ELEMS is the number of elements in the hash table. */
1943
1944 static void
1945 prune_insertions_deletions (int n_elems)
1946 {
1947 sbitmap_iterator sbi;
1948 sbitmap prune_exprs;
1949
1950 /* We always use I to iterate over blocks/edges and J to iterate over
1951 expressions. */
1952 unsigned int i, j;
1953
1954 /* Counts for the number of times an expression needs to be inserted and
1955 number of times an expression can be removed as a result. */
1956 int *insertions = GCNEWVEC (int, n_elems);
1957 int *deletions = GCNEWVEC (int, n_elems);
1958
1959 /* Set of expressions which require too many insertions relative to
1960 the number of deletions achieved. We will prune these out of the
1961 insertion/deletion sets. */
1962 prune_exprs = sbitmap_alloc (n_elems);
1963 bitmap_clear (prune_exprs);
1964
1965 /* Iterate over the edges counting the number of times each expression
1966 needs to be inserted. */
1967 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1968 {
1969 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
1970 insertions[j]++;
1971 }
1972
1973 /* Similarly for deletions, but those occur in blocks rather than on
1974 edges. */
1975 for (i = 0; i < (unsigned) last_basic_block; i++)
1976 {
1977 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
1978 deletions[j]++;
1979 }
1980
1981 /* Now that we have accurate counts, iterate over the elements in the
1982 hash table and see if any need too many insertions relative to the
1983 number of evaluations that can be removed. If so, mark them in
1984 PRUNE_EXPRS. */
1985 for (j = 0; j < (unsigned) n_elems; j++)
1986 if (deletions[j]
1987 && ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
1988 bitmap_set_bit (prune_exprs, j);
1989
1990 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
1991 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
1992 {
1993 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1994 bitmap_clear_bit (pre_insert_map[i], j);
1995
1996 for (i = 0; i < (unsigned) last_basic_block; i++)
1997 bitmap_clear_bit (pre_delete_map[i], j);
1998 }
1999
2000 sbitmap_free (prune_exprs);
2001 free (insertions);
2002 free (deletions);
2003 }
2004
2005 /* Top level routine to do the dataflow analysis needed by PRE. */
2006
2007 static struct edge_list *
2008 compute_pre_data (void)
2009 {
2010 struct edge_list *edge_list;
2011 basic_block bb;
2012
2013 compute_local_properties (transp, comp, antloc, &expr_hash_table);
2014 prune_expressions (true);
2015 bitmap_vector_clear (ae_kill, last_basic_block);
2016
2017 /* Compute ae_kill for each basic block using:
2018
2019 ~(TRANSP | COMP)
2020 */
2021
2022 FOR_EACH_BB (bb)
2023 {
2024 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
2025 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
2026 }
2027
2028 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
2029 ae_kill, &pre_insert_map, &pre_delete_map);
2030 sbitmap_vector_free (antloc);
2031 antloc = NULL;
2032 sbitmap_vector_free (ae_kill);
2033 ae_kill = NULL;
2034
2035 prune_insertions_deletions (expr_hash_table.n_elems);
2036
2037 return edge_list;
2038 }
2039 \f
2040 /* PRE utilities */
2041
2042 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
2043 block BB.
2044
2045 VISITED is a pointer to a working buffer for tracking which BB's have
2046 been visited. It is NULL for the top-level call.
2047
2048 We treat reaching expressions that go through blocks containing the same
2049 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
2050 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
2051 2 as not reaching. The intent is to improve the probability of finding
2052 only one reaching expression and to reduce register lifetimes by picking
2053 the closest such expression. */
2054
2055 static int
2056 pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr,
2057 basic_block bb, char *visited)
2058 {
2059 edge pred;
2060 edge_iterator ei;
2061
2062 FOR_EACH_EDGE (pred, ei, bb->preds)
2063 {
2064 basic_block pred_bb = pred->src;
2065
2066 if (pred->src == ENTRY_BLOCK_PTR
2067 /* Has predecessor has already been visited? */
2068 || visited[pred_bb->index])
2069 ;/* Nothing to do. */
2070
2071 /* Does this predecessor generate this expression? */
2072 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
2073 {
2074 /* Is this the occurrence we're looking for?
2075 Note that there's only one generating occurrence per block
2076 so we just need to check the block number. */
2077 if (occr_bb == pred_bb)
2078 return 1;
2079
2080 visited[pred_bb->index] = 1;
2081 }
2082 /* Ignore this predecessor if it kills the expression. */
2083 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
2084 visited[pred_bb->index] = 1;
2085
2086 /* Neither gen nor kill. */
2087 else
2088 {
2089 visited[pred_bb->index] = 1;
2090 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
2091 return 1;
2092 }
2093 }
2094
2095 /* All paths have been checked. */
2096 return 0;
2097 }
2098
2099 /* The wrapper for pre_expr_reaches_here_work that ensures that any
2100 memory allocated for that function is returned. */
2101
2102 static int
2103 pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
2104 {
2105 int rval;
2106 char *visited = XCNEWVEC (char, last_basic_block);
2107
2108 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
2109
2110 free (visited);
2111 return rval;
2112 }
2113 \f
2114 /* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
2115
2116 static rtx
2117 process_insert_insn (struct expr *expr)
2118 {
2119 rtx reg = expr->reaching_reg;
2120 /* Copy the expression to make sure we don't have any sharing issues. */
2121 rtx exp = copy_rtx (expr->expr);
2122 rtx pat;
2123
2124 start_sequence ();
2125
2126 /* If the expression is something that's an operand, like a constant,
2127 just copy it to a register. */
2128 if (general_operand (exp, GET_MODE (reg)))
2129 emit_move_insn (reg, exp);
2130
2131 /* Otherwise, make a new insn to compute this expression and make sure the
2132 insn will be recognized (this also adds any needed CLOBBERs). */
2133 else
2134 {
2135 rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
2136
2137 if (insn_invalid_p (insn, false))
2138 gcc_unreachable ();
2139 }
2140
2141 pat = get_insns ();
2142 end_sequence ();
2143
2144 return pat;
2145 }
2146
2147 /* Add EXPR to the end of basic block BB.
2148
2149 This is used by both the PRE and code hoisting. */
2150
2151 static void
2152 insert_insn_end_basic_block (struct expr *expr, basic_block bb)
2153 {
2154 rtx insn = BB_END (bb);
2155 rtx new_insn;
2156 rtx reg = expr->reaching_reg;
2157 int regno = REGNO (reg);
2158 rtx pat, pat_end;
2159
2160 pat = process_insert_insn (expr);
2161 gcc_assert (pat && INSN_P (pat));
2162
2163 pat_end = pat;
2164 while (NEXT_INSN (pat_end) != NULL_RTX)
2165 pat_end = NEXT_INSN (pat_end);
2166
2167 /* If the last insn is a jump, insert EXPR in front [taking care to
2168 handle cc0, etc. properly]. Similarly we need to care trapping
2169 instructions in presence of non-call exceptions. */
2170
2171 if (JUMP_P (insn)
2172 || (NONJUMP_INSN_P (insn)
2173 && (!single_succ_p (bb)
2174 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
2175 {
2176 #ifdef HAVE_cc0
2177 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2178 if cc0 isn't set. */
2179 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2180 if (note)
2181 insn = XEXP (note, 0);
2182 else
2183 {
2184 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
2185 if (maybe_cc0_setter
2186 && INSN_P (maybe_cc0_setter)
2187 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2188 insn = maybe_cc0_setter;
2189 }
2190 #endif
2191 /* FIXME: What if something in cc0/jump uses value set in new insn? */
2192 new_insn = emit_insn_before_noloc (pat, insn, bb);
2193 }
2194
2195 /* Likewise if the last insn is a call, as will happen in the presence
2196 of exception handling. */
2197 else if (CALL_P (insn)
2198 && (!single_succ_p (bb)
2199 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
2200 {
2201 /* Keeping in mind targets with small register classes and parameters
2202 in registers, we search backward and place the instructions before
2203 the first parameter is loaded. Do this for everyone for consistency
2204 and a presumption that we'll get better code elsewhere as well. */
2205
2206 /* Since different machines initialize their parameter registers
2207 in different orders, assume nothing. Collect the set of all
2208 parameter registers. */
2209 insn = find_first_parameter_load (insn, BB_HEAD (bb));
2210
2211 /* If we found all the parameter loads, then we want to insert
2212 before the first parameter load.
2213
2214 If we did not find all the parameter loads, then we might have
2215 stopped on the head of the block, which could be a CODE_LABEL.
2216 If we inserted before the CODE_LABEL, then we would be putting
2217 the insn in the wrong basic block. In that case, put the insn
2218 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
2219 while (LABEL_P (insn)
2220 || NOTE_INSN_BASIC_BLOCK_P (insn))
2221 insn = NEXT_INSN (insn);
2222
2223 new_insn = emit_insn_before_noloc (pat, insn, bb);
2224 }
2225 else
2226 new_insn = emit_insn_after_noloc (pat, insn, bb);
2227
2228 while (1)
2229 {
2230 if (INSN_P (pat))
2231 add_label_notes (PATTERN (pat), new_insn);
2232 if (pat == pat_end)
2233 break;
2234 pat = NEXT_INSN (pat);
2235 }
2236
2237 gcse_create_count++;
2238
2239 if (dump_file)
2240 {
2241 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
2242 bb->index, INSN_UID (new_insn));
2243 fprintf (dump_file, "copying expression %d to reg %d\n",
2244 expr->bitmap_index, regno);
2245 }
2246 }
2247
2248 /* Insert partially redundant expressions on edges in the CFG to make
2249 the expressions fully redundant. */
2250
2251 static int
2252 pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
2253 {
2254 int e, i, j, num_edges, set_size, did_insert = 0;
2255 sbitmap *inserted;
2256
2257 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2258 if it reaches any of the deleted expressions. */
2259
2260 set_size = pre_insert_map[0]->size;
2261 num_edges = NUM_EDGES (edge_list);
2262 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
2263 bitmap_vector_clear (inserted, num_edges);
2264
2265 for (e = 0; e < num_edges; e++)
2266 {
2267 int indx;
2268 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
2269
2270 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
2271 {
2272 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
2273
2274 for (j = indx;
2275 insert && j < (int) expr_hash_table.n_elems;
2276 j++, insert >>= 1)
2277 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2278 {
2279 struct expr *expr = index_map[j];
2280 struct occr *occr;
2281
2282 /* Now look at each deleted occurrence of this expression. */
2283 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2284 {
2285 if (! occr->deleted_p)
2286 continue;
2287
2288 /* Insert this expression on this edge if it would
2289 reach the deleted occurrence in BB. */
2290 if (!bitmap_bit_p (inserted[e], j))
2291 {
2292 rtx insn;
2293 edge eg = INDEX_EDGE (edge_list, e);
2294
2295 /* We can't insert anything on an abnormal and
2296 critical edge, so we insert the insn at the end of
2297 the previous block. There are several alternatives
2298 detailed in Morgans book P277 (sec 10.5) for
2299 handling this situation. This one is easiest for
2300 now. */
2301
2302 if (eg->flags & EDGE_ABNORMAL)
2303 insert_insn_end_basic_block (index_map[j], bb);
2304 else
2305 {
2306 insn = process_insert_insn (index_map[j]);
2307 insert_insn_on_edge (insn, eg);
2308 }
2309
2310 if (dump_file)
2311 {
2312 fprintf (dump_file, "PRE: edge (%d,%d), ",
2313 bb->index,
2314 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
2315 fprintf (dump_file, "copy expression %d\n",
2316 expr->bitmap_index);
2317 }
2318
2319 update_ld_motion_stores (expr);
2320 bitmap_set_bit (inserted[e], j);
2321 did_insert = 1;
2322 gcse_create_count++;
2323 }
2324 }
2325 }
2326 }
2327 }
2328
2329 sbitmap_vector_free (inserted);
2330 return did_insert;
2331 }
2332
2333 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
2334 Given "old_reg <- expr" (INSN), instead of adding after it
2335 reaching_reg <- old_reg
2336 it's better to do the following:
2337 reaching_reg <- expr
2338 old_reg <- reaching_reg
2339 because this way copy propagation can discover additional PRE
2340 opportunities. But if this fails, we try the old way.
2341 When "expr" is a store, i.e.
2342 given "MEM <- old_reg", instead of adding after it
2343 reaching_reg <- old_reg
2344 it's better to add it before as follows:
2345 reaching_reg <- old_reg
2346 MEM <- reaching_reg. */
2347
2348 static void
2349 pre_insert_copy_insn (struct expr *expr, rtx insn)
2350 {
2351 rtx reg = expr->reaching_reg;
2352 int regno = REGNO (reg);
2353 int indx = expr->bitmap_index;
2354 rtx pat = PATTERN (insn);
2355 rtx set, first_set, new_insn;
2356 rtx old_reg;
2357 int i;
2358
2359 /* This block matches the logic in hash_scan_insn. */
2360 switch (GET_CODE (pat))
2361 {
2362 case SET:
2363 set = pat;
2364 break;
2365
2366 case PARALLEL:
2367 /* Search through the parallel looking for the set whose
2368 source was the expression that we're interested in. */
2369 first_set = NULL_RTX;
2370 set = NULL_RTX;
2371 for (i = 0; i < XVECLEN (pat, 0); i++)
2372 {
2373 rtx x = XVECEXP (pat, 0, i);
2374 if (GET_CODE (x) == SET)
2375 {
2376 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2377 may not find an equivalent expression, but in this
2378 case the PARALLEL will have a single set. */
2379 if (first_set == NULL_RTX)
2380 first_set = x;
2381 if (expr_equiv_p (SET_SRC (x), expr->expr))
2382 {
2383 set = x;
2384 break;
2385 }
2386 }
2387 }
2388
2389 gcc_assert (first_set);
2390 if (set == NULL_RTX)
2391 set = first_set;
2392 break;
2393
2394 default:
2395 gcc_unreachable ();
2396 }
2397
2398 if (REG_P (SET_DEST (set)))
2399 {
2400 old_reg = SET_DEST (set);
2401 /* Check if we can modify the set destination in the original insn. */
2402 if (validate_change (insn, &SET_DEST (set), reg, 0))
2403 {
2404 new_insn = gen_move_insn (old_reg, reg);
2405 new_insn = emit_insn_after (new_insn, insn);
2406 }
2407 else
2408 {
2409 new_insn = gen_move_insn (reg, old_reg);
2410 new_insn = emit_insn_after (new_insn, insn);
2411 }
2412 }
2413 else /* This is possible only in case of a store to memory. */
2414 {
2415 old_reg = SET_SRC (set);
2416 new_insn = gen_move_insn (reg, old_reg);
2417
2418 /* Check if we can modify the set source in the original insn. */
2419 if (validate_change (insn, &SET_SRC (set), reg, 0))
2420 new_insn = emit_insn_before (new_insn, insn);
2421 else
2422 new_insn = emit_insn_after (new_insn, insn);
2423 }
2424
2425 gcse_create_count++;
2426
2427 if (dump_file)
2428 fprintf (dump_file,
2429 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
2430 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
2431 INSN_UID (insn), regno);
2432 }
2433
2434 /* Copy available expressions that reach the redundant expression
2435 to `reaching_reg'. */
2436
2437 static void
2438 pre_insert_copies (void)
2439 {
2440 unsigned int i, added_copy;
2441 struct expr *expr;
2442 struct occr *occr;
2443 struct occr *avail;
2444
2445 /* For each available expression in the table, copy the result to
2446 `reaching_reg' if the expression reaches a deleted one.
2447
2448 ??? The current algorithm is rather brute force.
2449 Need to do some profiling. */
2450
2451 for (i = 0; i < expr_hash_table.size; i++)
2452 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2453 {
2454 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2455 we don't want to insert a copy here because the expression may not
2456 really be redundant. So only insert an insn if the expression was
2457 deleted. This test also avoids further processing if the
2458 expression wasn't deleted anywhere. */
2459 if (expr->reaching_reg == NULL)
2460 continue;
2461
2462 /* Set when we add a copy for that expression. */
2463 added_copy = 0;
2464
2465 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2466 {
2467 if (! occr->deleted_p)
2468 continue;
2469
2470 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2471 {
2472 rtx insn = avail->insn;
2473
2474 /* No need to handle this one if handled already. */
2475 if (avail->copied_p)
2476 continue;
2477
2478 /* Don't handle this one if it's a redundant one. */
2479 if (INSN_DELETED_P (insn))
2480 continue;
2481
2482 /* Or if the expression doesn't reach the deleted one. */
2483 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
2484 expr,
2485 BLOCK_FOR_INSN (occr->insn)))
2486 continue;
2487
2488 added_copy = 1;
2489
2490 /* Copy the result of avail to reaching_reg. */
2491 pre_insert_copy_insn (expr, insn);
2492 avail->copied_p = 1;
2493 }
2494 }
2495
2496 if (added_copy)
2497 update_ld_motion_stores (expr);
2498 }
2499 }
2500
2501 /* Emit move from SRC to DEST noting the equivalence with expression computed
2502 in INSN. */
2503
2504 static rtx
2505 gcse_emit_move_after (rtx dest, rtx src, rtx insn)
2506 {
2507 rtx new_rtx;
2508 rtx set = single_set (insn), set2;
2509 rtx note;
2510 rtx eqv = NULL_RTX;
2511
2512 /* This should never fail since we're creating a reg->reg copy
2513 we've verified to be valid. */
2514
2515 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
2516
2517 /* Note the equivalence for local CSE pass. Take the note from the old
2518 set if there was one. Otherwise record the SET_SRC from the old set
2519 unless DEST is also an operand of the SET_SRC. */
2520 set2 = single_set (new_rtx);
2521 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
2522 return new_rtx;
2523 if ((note = find_reg_equal_equiv_note (insn)))
2524 eqv = XEXP (note, 0);
2525 else if (! REG_P (dest)
2526 || ! reg_mentioned_p (dest, SET_SRC (set)))
2527 eqv = SET_SRC (set);
2528
2529 if (eqv != NULL_RTX)
2530 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
2531
2532 return new_rtx;
2533 }
2534
2535 /* Delete redundant computations.
2536 Deletion is done by changing the insn to copy the `reaching_reg' of
2537 the expression into the result of the SET. It is left to later passes
2538 to propagate the copy or eliminate it.
2539
2540 Return nonzero if a change is made. */
2541
2542 static int
2543 pre_delete (void)
2544 {
2545 unsigned int i;
2546 int changed;
2547 struct expr *expr;
2548 struct occr *occr;
2549
2550 changed = 0;
2551 for (i = 0; i < expr_hash_table.size; i++)
2552 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2553 {
2554 int indx = expr->bitmap_index;
2555
2556 /* We only need to search antic_occr since we require ANTLOC != 0. */
2557 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2558 {
2559 rtx insn = occr->insn;
2560 rtx set;
2561 basic_block bb = BLOCK_FOR_INSN (insn);
2562
2563 /* We only delete insns that have a single_set. */
2564 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
2565 && (set = single_set (insn)) != 0
2566 && dbg_cnt (pre_insn))
2567 {
2568 /* Create a pseudo-reg to store the result of reaching
2569 expressions into. Get the mode for the new pseudo from
2570 the mode of the original destination pseudo. */
2571 if (expr->reaching_reg == NULL)
2572 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
2573
2574 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
2575 delete_insn (insn);
2576 occr->deleted_p = 1;
2577 changed = 1;
2578 gcse_subst_count++;
2579
2580 if (dump_file)
2581 {
2582 fprintf (dump_file,
2583 "PRE: redundant insn %d (expression %d) in ",
2584 INSN_UID (insn), indx);
2585 fprintf (dump_file, "bb %d, reaching reg is %d\n",
2586 bb->index, REGNO (expr->reaching_reg));
2587 }
2588 }
2589 }
2590 }
2591
2592 return changed;
2593 }
2594
2595 /* Perform GCSE optimizations using PRE.
2596 This is called by one_pre_gcse_pass after all the dataflow analysis
2597 has been done.
2598
2599 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2600 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2601 Compiler Design and Implementation.
2602
2603 ??? A new pseudo reg is created to hold the reaching expression. The nice
2604 thing about the classical approach is that it would try to use an existing
2605 reg. If the register can't be adequately optimized [i.e. we introduce
2606 reload problems], one could add a pass here to propagate the new register
2607 through the block.
2608
2609 ??? We don't handle single sets in PARALLELs because we're [currently] not
2610 able to copy the rest of the parallel when we insert copies to create full
2611 redundancies from partial redundancies. However, there's no reason why we
2612 can't handle PARALLELs in the cases where there are no partial
2613 redundancies. */
2614
2615 static int
2616 pre_gcse (struct edge_list *edge_list)
2617 {
2618 unsigned int i;
2619 int did_insert, changed;
2620 struct expr **index_map;
2621 struct expr *expr;
2622
2623 /* Compute a mapping from expression number (`bitmap_index') to
2624 hash table entry. */
2625
2626 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
2627 for (i = 0; i < expr_hash_table.size; i++)
2628 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2629 index_map[expr->bitmap_index] = expr;
2630
2631 /* Delete the redundant insns first so that
2632 - we know what register to use for the new insns and for the other
2633 ones with reaching expressions
2634 - we know which insns are redundant when we go to create copies */
2635
2636 changed = pre_delete ();
2637 did_insert = pre_edge_insert (edge_list, index_map);
2638
2639 /* In other places with reaching expressions, copy the expression to the
2640 specially allocated pseudo-reg that reaches the redundant expr. */
2641 pre_insert_copies ();
2642 if (did_insert)
2643 {
2644 commit_edge_insertions ();
2645 changed = 1;
2646 }
2647
2648 free (index_map);
2649 return changed;
2650 }
2651
2652 /* Top level routine to perform one PRE GCSE pass.
2653
2654 Return nonzero if a change was made. */
2655
2656 static int
2657 one_pre_gcse_pass (void)
2658 {
2659 int changed = 0;
2660
2661 gcse_subst_count = 0;
2662 gcse_create_count = 0;
2663
2664 /* Return if there's nothing to do, or it is too expensive. */
2665 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
2666 || is_too_expensive (_("PRE disabled")))
2667 return 0;
2668
2669 /* We need alias. */
2670 init_alias_analysis ();
2671
2672 bytes_used = 0;
2673 gcc_obstack_init (&gcse_obstack);
2674 alloc_gcse_mem ();
2675
2676 alloc_hash_table (&expr_hash_table);
2677 add_noreturn_fake_exit_edges ();
2678 if (flag_gcse_lm)
2679 compute_ld_motion_mems ();
2680
2681 compute_hash_table (&expr_hash_table);
2682 if (flag_gcse_lm)
2683 trim_ld_motion_mems ();
2684 if (dump_file)
2685 dump_hash_table (dump_file, "Expression", &expr_hash_table);
2686
2687 if (expr_hash_table.n_elems > 0)
2688 {
2689 struct edge_list *edge_list;
2690 alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
2691 edge_list = compute_pre_data ();
2692 changed |= pre_gcse (edge_list);
2693 free_edge_list (edge_list);
2694 free_pre_mem ();
2695 }
2696
2697 if (flag_gcse_lm)
2698 free_ld_motion_mems ();
2699 remove_fake_exit_edges ();
2700 free_hash_table (&expr_hash_table);
2701
2702 free_gcse_mem ();
2703 obstack_free (&gcse_obstack, NULL);
2704
2705 /* We are finished with alias. */
2706 end_alias_analysis ();
2707
2708 if (dump_file)
2709 {
2710 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
2711 current_function_name (), n_basic_blocks_for_fn (cfun),
2712 bytes_used);
2713 fprintf (dump_file, "%d substs, %d insns created\n",
2714 gcse_subst_count, gcse_create_count);
2715 }
2716
2717 return changed;
2718 }
2719 \f
2720 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2721 to INSN. If such notes are added to an insn which references a
2722 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2723 that note, because the following loop optimization pass requires
2724 them. */
2725
2726 /* ??? If there was a jump optimization pass after gcse and before loop,
2727 then we would not need to do this here, because jump would add the
2728 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
2729
2730 static void
2731 add_label_notes (rtx x, rtx insn)
2732 {
2733 enum rtx_code code = GET_CODE (x);
2734 int i, j;
2735 const char *fmt;
2736
2737 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2738 {
2739 /* This code used to ignore labels that referred to dispatch tables to
2740 avoid flow generating (slightly) worse code.
2741
2742 We no longer ignore such label references (see LABEL_REF handling in
2743 mark_jump_label for additional information). */
2744
2745 /* There's no reason for current users to emit jump-insns with
2746 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2747 notes. */
2748 gcc_assert (!JUMP_P (insn));
2749 add_reg_note (insn, REG_LABEL_OPERAND, XEXP (x, 0));
2750
2751 if (LABEL_P (XEXP (x, 0)))
2752 LABEL_NUSES (XEXP (x, 0))++;
2753
2754 return;
2755 }
2756
2757 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2758 {
2759 if (fmt[i] == 'e')
2760 add_label_notes (XEXP (x, i), insn);
2761 else if (fmt[i] == 'E')
2762 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2763 add_label_notes (XVECEXP (x, i, j), insn);
2764 }
2765 }
2766
2767 /* Code Hoisting variables and subroutines. */
2768
2769 /* Very busy expressions. */
2770 static sbitmap *hoist_vbein;
2771 static sbitmap *hoist_vbeout;
2772
2773 /* ??? We could compute post dominators and run this algorithm in
2774 reverse to perform tail merging, doing so would probably be
2775 more effective than the tail merging code in jump.c.
2776
2777 It's unclear if tail merging could be run in parallel with
2778 code hoisting. It would be nice. */
2779
2780 /* Allocate vars used for code hoisting analysis. */
2781
2782 static void
2783 alloc_code_hoist_mem (int n_blocks, int n_exprs)
2784 {
2785 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2786 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2787 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2788
2789 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2790 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
2791 }
2792
2793 /* Free vars used for code hoisting analysis. */
2794
2795 static void
2796 free_code_hoist_mem (void)
2797 {
2798 sbitmap_vector_free (antloc);
2799 sbitmap_vector_free (transp);
2800 sbitmap_vector_free (comp);
2801
2802 sbitmap_vector_free (hoist_vbein);
2803 sbitmap_vector_free (hoist_vbeout);
2804
2805 free_dominance_info (CDI_DOMINATORS);
2806 }
2807
2808 /* Compute the very busy expressions at entry/exit from each block.
2809
2810 An expression is very busy if all paths from a given point
2811 compute the expression. */
2812
2813 static void
2814 compute_code_hoist_vbeinout (void)
2815 {
2816 int changed, passes;
2817 basic_block bb;
2818
2819 bitmap_vector_clear (hoist_vbeout, last_basic_block);
2820 bitmap_vector_clear (hoist_vbein, last_basic_block);
2821
2822 passes = 0;
2823 changed = 1;
2824
2825 while (changed)
2826 {
2827 changed = 0;
2828
2829 /* We scan the blocks in the reverse order to speed up
2830 the convergence. */
2831 FOR_EACH_BB_REVERSE (bb)
2832 {
2833 if (bb->next_bb != EXIT_BLOCK_PTR)
2834 {
2835 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2836 hoist_vbein, bb);
2837
2838 /* Include expressions in VBEout that are calculated
2839 in BB and available at its end. */
2840 bitmap_ior (hoist_vbeout[bb->index],
2841 hoist_vbeout[bb->index], comp[bb->index]);
2842 }
2843
2844 changed |= bitmap_or_and (hoist_vbein[bb->index],
2845 antloc[bb->index],
2846 hoist_vbeout[bb->index],
2847 transp[bb->index]);
2848 }
2849
2850 passes++;
2851 }
2852
2853 if (dump_file)
2854 {
2855 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2856
2857 FOR_EACH_BB (bb)
2858 {
2859 fprintf (dump_file, "vbein (%d): ", bb->index);
2860 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
2861 fprintf (dump_file, "vbeout(%d): ", bb->index);
2862 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
2863 }
2864 }
2865 }
2866
2867 /* Top level routine to do the dataflow analysis needed by code hoisting. */
2868
2869 static void
2870 compute_code_hoist_data (void)
2871 {
2872 compute_local_properties (transp, comp, antloc, &expr_hash_table);
2873 prune_expressions (false);
2874 compute_code_hoist_vbeinout ();
2875 calculate_dominance_info (CDI_DOMINATORS);
2876 if (dump_file)
2877 fprintf (dump_file, "\n");
2878 }
2879
2880 /* Update register pressure for BB when hoisting an expression from
2881 instruction FROM, if live ranges of inputs are shrunk. Also
2882 maintain live_in information if live range of register referred
2883 in FROM is shrunk.
2884
2885 Return 0 if register pressure doesn't change, otherwise return
2886 the number by which register pressure is decreased.
2887
2888 NOTE: Register pressure won't be increased in this function. */
2889
2890 static int
2891 update_bb_reg_pressure (basic_block bb, rtx from)
2892 {
2893 rtx dreg, insn;
2894 basic_block succ_bb;
2895 df_ref *op, op_ref;
2896 edge succ;
2897 edge_iterator ei;
2898 int decreased_pressure = 0;
2899 int nregs;
2900 enum reg_class pressure_class;
2901
2902 for (op = DF_INSN_USES (from); *op; op++)
2903 {
2904 dreg = DF_REF_REAL_REG (*op);
2905 /* The live range of register is shrunk only if it isn't:
2906 1. referred on any path from the end of this block to EXIT, or
2907 2. referred by insns other than FROM in this block. */
2908 FOR_EACH_EDGE (succ, ei, bb->succs)
2909 {
2910 succ_bb = succ->dest;
2911 if (succ_bb == EXIT_BLOCK_PTR)
2912 continue;
2913
2914 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2915 break;
2916 }
2917 if (succ != NULL)
2918 continue;
2919
2920 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2921 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2922 {
2923 if (!DF_REF_INSN_INFO (op_ref))
2924 continue;
2925
2926 insn = DF_REF_INSN (op_ref);
2927 if (BLOCK_FOR_INSN (insn) == bb
2928 && NONDEBUG_INSN_P (insn) && insn != from)
2929 break;
2930 }
2931
2932 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2933 /* Decrease register pressure and update live_in information for
2934 this block. */
2935 if (!op_ref && pressure_class != NO_REGS)
2936 {
2937 decreased_pressure += nregs;
2938 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2939 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2940 }
2941 }
2942 return decreased_pressure;
2943 }
2944
2945 /* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2946 flow graph, if it can reach BB unimpared. Stop the search if the
2947 expression would need to be moved more than DISTANCE instructions.
2948
2949 DISTANCE is the number of instructions through which EXPR can be
2950 hoisted up in flow graph.
2951
2952 BB_SIZE points to an array which contains the number of instructions
2953 for each basic block.
2954
2955 PRESSURE_CLASS and NREGS are register class and number of hard registers
2956 for storing EXPR.
2957
2958 HOISTED_BBS points to a bitmap indicating basic blocks through which
2959 EXPR is hoisted.
2960
2961 FROM is the instruction from which EXPR is hoisted.
2962
2963 It's unclear exactly what Muchnick meant by "unimpared". It seems
2964 to me that the expression must either be computed or transparent in
2965 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2966 would allow the expression to be hoisted out of loops, even if
2967 the expression wasn't a loop invariant.
2968
2969 Contrast this to reachability for PRE where an expression is
2970 considered reachable if *any* path reaches instead of *all*
2971 paths. */
2972
2973 static int
2974 should_hoist_expr_to_dom (basic_block expr_bb, struct expr *expr,
2975 basic_block bb, sbitmap visited, int distance,
2976 int *bb_size, enum reg_class pressure_class,
2977 int *nregs, bitmap hoisted_bbs, rtx from)
2978 {
2979 unsigned int i;
2980 edge pred;
2981 edge_iterator ei;
2982 sbitmap_iterator sbi;
2983 int visited_allocated_locally = 0;
2984 int decreased_pressure = 0;
2985
2986 if (flag_ira_hoist_pressure)
2987 {
2988 /* Record old information of basic block BB when it is visited
2989 at the first time. */
2990 if (!bitmap_bit_p (hoisted_bbs, bb->index))
2991 {
2992 struct bb_data *data = BB_DATA (bb);
2993 bitmap_copy (data->backup, data->live_in);
2994 data->old_pressure = data->max_reg_pressure[pressure_class];
2995 }
2996 decreased_pressure = update_bb_reg_pressure (bb, from);
2997 }
2998 /* Terminate the search if distance, for which EXPR is allowed to move,
2999 is exhausted. */
3000 if (distance > 0)
3001 {
3002 if (flag_ira_hoist_pressure)
3003 {
3004 /* Prefer to hoist EXPR if register pressure is decreased. */
3005 if (decreased_pressure > *nregs)
3006 distance += bb_size[bb->index];
3007 /* Let EXPR be hoisted through basic block at no cost if one
3008 of following conditions is satisfied:
3009
3010 1. The basic block has low register pressure.
3011 2. Register pressure won't be increases after hoisting EXPR.
3012
3013 Constant expressions is handled conservatively, because
3014 hoisting constant expression aggressively results in worse
3015 code. This decision is made by the observation of CSiBE
3016 on ARM target, while it has no obvious effect on other
3017 targets like x86, x86_64, mips and powerpc. */
3018 else if (CONST_INT_P (expr->expr)
3019 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
3020 >= ira_class_hard_regs_num[pressure_class]
3021 && decreased_pressure < *nregs))
3022 distance -= bb_size[bb->index];
3023 }
3024 else
3025 distance -= bb_size[bb->index];
3026
3027 if (distance <= 0)
3028 return 0;
3029 }
3030 else
3031 gcc_assert (distance == 0);
3032
3033 if (visited == NULL)
3034 {
3035 visited_allocated_locally = 1;
3036 visited = sbitmap_alloc (last_basic_block);
3037 bitmap_clear (visited);
3038 }
3039
3040 FOR_EACH_EDGE (pred, ei, bb->preds)
3041 {
3042 basic_block pred_bb = pred->src;
3043
3044 if (pred->src == ENTRY_BLOCK_PTR)
3045 break;
3046 else if (pred_bb == expr_bb)
3047 continue;
3048 else if (bitmap_bit_p (visited, pred_bb->index))
3049 continue;
3050 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
3051 break;
3052 /* Not killed. */
3053 else
3054 {
3055 bitmap_set_bit (visited, pred_bb->index);
3056 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
3057 visited, distance, bb_size,
3058 pressure_class, nregs,
3059 hoisted_bbs, from))
3060 break;
3061 }
3062 }
3063 if (visited_allocated_locally)
3064 {
3065 /* If EXPR can be hoisted to expr_bb, record basic blocks through
3066 which EXPR is hoisted in hoisted_bbs. */
3067 if (flag_ira_hoist_pressure && !pred)
3068 {
3069 /* Record the basic block from which EXPR is hoisted. */
3070 bitmap_set_bit (visited, bb->index);
3071 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
3072 bitmap_set_bit (hoisted_bbs, i);
3073 }
3074 sbitmap_free (visited);
3075 }
3076
3077 return (pred == NULL);
3078 }
3079 \f
3080 /* Find occurrence in BB. */
3081
3082 static struct occr *
3083 find_occr_in_bb (struct occr *occr, basic_block bb)
3084 {
3085 /* Find the right occurrence of this expression. */
3086 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
3087 occr = occr->next;
3088
3089 return occr;
3090 }
3091
3092 /* Actually perform code hoisting.
3093
3094 The code hoisting pass can hoist multiple computations of the same
3095 expression along dominated path to a dominating basic block, like
3096 from b2/b3 to b1 as depicted below:
3097
3098 b1 ------
3099 /\ |
3100 / \ |
3101 bx by distance
3102 / \ |
3103 / \ |
3104 b2 b3 ------
3105
3106 Unfortunately code hoisting generally extends the live range of an
3107 output pseudo register, which increases register pressure and hurts
3108 register allocation. To address this issue, an attribute MAX_DISTANCE
3109 is computed and attached to each expression. The attribute is computed
3110 from rtx cost of the corresponding expression and it's used to control
3111 how long the expression can be hoisted up in flow graph. As the
3112 expression is hoisted up in flow graph, GCC decreases its DISTANCE
3113 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3114 register pressure if live ranges of inputs are shrunk.
3115
3116 Option "-fira-hoist-pressure" implements register pressure directed
3117 hoist based on upper method. The rationale is:
3118 1. Calculate register pressure for each basic block by reusing IRA
3119 facility.
3120 2. When expression is hoisted through one basic block, GCC checks
3121 the change of live ranges for inputs/output. The basic block's
3122 register pressure will be increased because of extended live
3123 range of output. However, register pressure will be decreased
3124 if the live ranges of inputs are shrunk.
3125 3. After knowing how hoisting affects register pressure, GCC prefers
3126 to hoist the expression if it can decrease register pressure, by
3127 increasing DISTANCE of the corresponding expression.
3128 4. If hoisting the expression increases register pressure, GCC checks
3129 register pressure of the basic block and decrease DISTANCE only if
3130 the register pressure is high. In other words, expression will be
3131 hoisted through at no cost if the basic block has low register
3132 pressure.
3133 5. Update register pressure information for basic blocks through
3134 which expression is hoisted. */
3135
3136 static int
3137 hoist_code (void)
3138 {
3139 basic_block bb, dominated;
3140 vec<basic_block> dom_tree_walk;
3141 unsigned int dom_tree_walk_index;
3142 vec<basic_block> domby;
3143 unsigned int i, j, k;
3144 struct expr **index_map;
3145 struct expr *expr;
3146 int *to_bb_head;
3147 int *bb_size;
3148 int changed = 0;
3149 struct bb_data *data;
3150 /* Basic blocks that have occurrences reachable from BB. */
3151 bitmap from_bbs;
3152 /* Basic blocks through which expr is hoisted. */
3153 bitmap hoisted_bbs = NULL;
3154 bitmap_iterator bi;
3155
3156 /* Compute a mapping from expression number (`bitmap_index') to
3157 hash table entry. */
3158
3159 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
3160 for (i = 0; i < expr_hash_table.size; i++)
3161 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
3162 index_map[expr->bitmap_index] = expr;
3163
3164 /* Calculate sizes of basic blocks and note how far
3165 each instruction is from the start of its block. We then use this
3166 data to restrict distance an expression can travel. */
3167
3168 to_bb_head = XCNEWVEC (int, get_max_uid ());
3169 bb_size = XCNEWVEC (int, last_basic_block);
3170
3171 FOR_EACH_BB (bb)
3172 {
3173 rtx insn;
3174 int to_head;
3175
3176 to_head = 0;
3177 FOR_BB_INSNS (bb, insn)
3178 {
3179 /* Don't count debug instructions to avoid them affecting
3180 decision choices. */
3181 if (NONDEBUG_INSN_P (insn))
3182 to_bb_head[INSN_UID (insn)] = to_head++;
3183 }
3184
3185 bb_size[bb->index] = to_head;
3186 }
3187
3188 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR->succs) == 1
3189 && (EDGE_SUCC (ENTRY_BLOCK_PTR, 0)->dest
3190 == ENTRY_BLOCK_PTR->next_bb));
3191
3192 from_bbs = BITMAP_ALLOC (NULL);
3193 if (flag_ira_hoist_pressure)
3194 hoisted_bbs = BITMAP_ALLOC (NULL);
3195
3196 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
3197 ENTRY_BLOCK_PTR->next_bb);
3198
3199 /* Walk over each basic block looking for potentially hoistable
3200 expressions, nothing gets hoisted from the entry block. */
3201 FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
3202 {
3203 domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3204
3205 if (domby.length () == 0)
3206 continue;
3207
3208 /* Examine each expression that is very busy at the exit of this
3209 block. These are the potentially hoistable expressions. */
3210 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
3211 {
3212 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
3213 {
3214 int nregs = 0;
3215 enum reg_class pressure_class = NO_REGS;
3216 /* Current expression. */
3217 struct expr *expr = index_map[i];
3218 /* Number of occurrences of EXPR that can be hoisted to BB. */
3219 int hoistable = 0;
3220 /* Occurrences reachable from BB. */
3221 vec<occr_t> occrs_to_hoist = vNULL;
3222 /* We want to insert the expression into BB only once, so
3223 note when we've inserted it. */
3224 int insn_inserted_p;
3225 occr_t occr;
3226
3227 /* If an expression is computed in BB and is available at end of
3228 BB, hoist all occurrences dominated by BB to BB. */
3229 if (bitmap_bit_p (comp[bb->index], i))
3230 {
3231 occr = find_occr_in_bb (expr->antic_occr, bb);
3232
3233 if (occr)
3234 {
3235 /* An occurrence might've been already deleted
3236 while processing a dominator of BB. */
3237 if (!occr->deleted_p)
3238 {
3239 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3240 hoistable++;
3241 }
3242 }
3243 else
3244 hoistable++;
3245 }
3246
3247 /* We've found a potentially hoistable expression, now
3248 we look at every block BB dominates to see if it
3249 computes the expression. */
3250 FOR_EACH_VEC_ELT (domby, j, dominated)
3251 {
3252 int max_distance;
3253
3254 /* Ignore self dominance. */
3255 if (bb == dominated)
3256 continue;
3257 /* We've found a dominated block, now see if it computes
3258 the busy expression and whether or not moving that
3259 expression to the "beginning" of that block is safe. */
3260 if (!bitmap_bit_p (antloc[dominated->index], i))
3261 continue;
3262
3263 occr = find_occr_in_bb (expr->antic_occr, dominated);
3264 gcc_assert (occr);
3265
3266 /* An occurrence might've been already deleted
3267 while processing a dominator of BB. */
3268 if (occr->deleted_p)
3269 continue;
3270 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3271
3272 max_distance = expr->max_distance;
3273 if (max_distance > 0)
3274 /* Adjust MAX_DISTANCE to account for the fact that
3275 OCCR won't have to travel all of DOMINATED, but
3276 only part of it. */
3277 max_distance += (bb_size[dominated->index]
3278 - to_bb_head[INSN_UID (occr->insn)]);
3279
3280 pressure_class = get_pressure_class_and_nregs (occr->insn,
3281 &nregs);
3282
3283 /* Note if the expression should be hoisted from the dominated
3284 block to BB if it can reach DOMINATED unimpared.
3285
3286 Keep track of how many times this expression is hoistable
3287 from a dominated block into BB. */
3288 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3289 max_distance, bb_size,
3290 pressure_class, &nregs,
3291 hoisted_bbs, occr->insn))
3292 {
3293 hoistable++;
3294 occrs_to_hoist.safe_push (occr);
3295 bitmap_set_bit (from_bbs, dominated->index);
3296 }
3297 }
3298
3299 /* If we found more than one hoistable occurrence of this
3300 expression, then note it in the vector of expressions to
3301 hoist. It makes no sense to hoist things which are computed
3302 in only one BB, and doing so tends to pessimize register
3303 allocation. One could increase this value to try harder
3304 to avoid any possible code expansion due to register
3305 allocation issues; however experiments have shown that
3306 the vast majority of hoistable expressions are only movable
3307 from two successors, so raising this threshold is likely
3308 to nullify any benefit we get from code hoisting. */
3309 if (hoistable > 1 && dbg_cnt (hoist_insn))
3310 {
3311 /* If (hoistable != vec::length), then there is
3312 an occurrence of EXPR in BB itself. Don't waste
3313 time looking for LCA in this case. */
3314 if ((unsigned) hoistable == occrs_to_hoist.length ())
3315 {
3316 basic_block lca;
3317
3318 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3319 from_bbs);
3320 if (lca != bb)
3321 /* Punt, it's better to hoist these occurrences to
3322 LCA. */
3323 occrs_to_hoist.release ();
3324 }
3325 }
3326 else
3327 /* Punt, no point hoisting a single occurrence. */
3328 occrs_to_hoist.release ();
3329
3330 if (flag_ira_hoist_pressure
3331 && !occrs_to_hoist.is_empty ())
3332 {
3333 /* Increase register pressure of basic blocks to which
3334 expr is hoisted because of extended live range of
3335 output. */
3336 data = BB_DATA (bb);
3337 data->max_reg_pressure[pressure_class] += nregs;
3338 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3339 {
3340 data = BB_DATA (BASIC_BLOCK (k));
3341 data->max_reg_pressure[pressure_class] += nregs;
3342 }
3343 }
3344 else if (flag_ira_hoist_pressure)
3345 {
3346 /* Restore register pressure and live_in info for basic
3347 blocks recorded in hoisted_bbs when expr will not be
3348 hoisted. */
3349 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3350 {
3351 data = BB_DATA (BASIC_BLOCK (k));
3352 bitmap_copy (data->live_in, data->backup);
3353 data->max_reg_pressure[pressure_class]
3354 = data->old_pressure;
3355 }
3356 }
3357
3358 if (flag_ira_hoist_pressure)
3359 bitmap_clear (hoisted_bbs);
3360
3361 insn_inserted_p = 0;
3362
3363 /* Walk through occurrences of I'th expressions we want
3364 to hoist to BB and make the transformations. */
3365 FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
3366 {
3367 rtx insn;
3368 rtx set;
3369
3370 gcc_assert (!occr->deleted_p);
3371
3372 insn = occr->insn;
3373 set = single_set (insn);
3374 gcc_assert (set);
3375
3376 /* Create a pseudo-reg to store the result of reaching
3377 expressions into. Get the mode for the new pseudo
3378 from the mode of the original destination pseudo.
3379
3380 It is important to use new pseudos whenever we
3381 emit a set. This will allow reload to use
3382 rematerialization for such registers. */
3383 if (!insn_inserted_p)
3384 expr->reaching_reg
3385 = gen_reg_rtx_and_attrs (SET_DEST (set));
3386
3387 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
3388 insn);
3389 delete_insn (insn);
3390 occr->deleted_p = 1;
3391 changed = 1;
3392 gcse_subst_count++;
3393
3394 if (!insn_inserted_p)
3395 {
3396 insert_insn_end_basic_block (expr, bb);
3397 insn_inserted_p = 1;
3398 }
3399 }
3400
3401 occrs_to_hoist.release ();
3402 bitmap_clear (from_bbs);
3403 }
3404 }
3405 domby.release ();
3406 }
3407
3408 dom_tree_walk.release ();
3409 BITMAP_FREE (from_bbs);
3410 if (flag_ira_hoist_pressure)
3411 BITMAP_FREE (hoisted_bbs);
3412
3413 free (bb_size);
3414 free (to_bb_head);
3415 free (index_map);
3416
3417 return changed;
3418 }
3419
3420 /* Return pressure class and number of needed hard registers (through
3421 *NREGS) of register REGNO. */
3422 static enum reg_class
3423 get_regno_pressure_class (int regno, int *nregs)
3424 {
3425 if (regno >= FIRST_PSEUDO_REGISTER)
3426 {
3427 enum reg_class pressure_class;
3428
3429 pressure_class = reg_allocno_class (regno);
3430 pressure_class = ira_pressure_class_translate[pressure_class];
3431 *nregs
3432 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3433 return pressure_class;
3434 }
3435 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3436 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3437 {
3438 *nregs = 1;
3439 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3440 }
3441 else
3442 {
3443 *nregs = 0;
3444 return NO_REGS;
3445 }
3446 }
3447
3448 /* Return pressure class and number of hard registers (through *NREGS)
3449 for destination of INSN. */
3450 static enum reg_class
3451 get_pressure_class_and_nregs (rtx insn, int *nregs)
3452 {
3453 rtx reg;
3454 enum reg_class pressure_class;
3455 rtx set = single_set (insn);
3456
3457 /* Considered invariant insns have only one set. */
3458 gcc_assert (set != NULL_RTX);
3459 reg = SET_DEST (set);
3460 if (GET_CODE (reg) == SUBREG)
3461 reg = SUBREG_REG (reg);
3462 if (MEM_P (reg))
3463 {
3464 *nregs = 0;
3465 pressure_class = NO_REGS;
3466 }
3467 else
3468 {
3469 gcc_assert (REG_P (reg));
3470 pressure_class = reg_allocno_class (REGNO (reg));
3471 pressure_class = ira_pressure_class_translate[pressure_class];
3472 *nregs
3473 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3474 }
3475 return pressure_class;
3476 }
3477
3478 /* Increase (if INCR_P) or decrease current register pressure for
3479 register REGNO. */
3480 static void
3481 change_pressure (int regno, bool incr_p)
3482 {
3483 int nregs;
3484 enum reg_class pressure_class;
3485
3486 pressure_class = get_regno_pressure_class (regno, &nregs);
3487 if (! incr_p)
3488 curr_reg_pressure[pressure_class] -= nregs;
3489 else
3490 {
3491 curr_reg_pressure[pressure_class] += nregs;
3492 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3493 < curr_reg_pressure[pressure_class])
3494 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3495 = curr_reg_pressure[pressure_class];
3496 }
3497 }
3498
3499 /* Calculate register pressure for each basic block by walking insns
3500 from last to first. */
3501 static void
3502 calculate_bb_reg_pressure (void)
3503 {
3504 int i;
3505 unsigned int j;
3506 rtx insn;
3507 basic_block bb;
3508 bitmap curr_regs_live;
3509 bitmap_iterator bi;
3510
3511
3512 ira_setup_eliminable_regset (false);
3513 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
3514 FOR_EACH_BB (bb)
3515 {
3516 curr_bb = bb;
3517 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3518 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3519 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3520 bitmap_copy (curr_regs_live, df_get_live_out (bb));
3521 for (i = 0; i < ira_pressure_classes_num; i++)
3522 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3523 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3524 change_pressure (j, true);
3525
3526 FOR_BB_INSNS_REVERSE (bb, insn)
3527 {
3528 rtx dreg;
3529 int regno;
3530 df_ref *def_rec, *use_rec;
3531
3532 if (! NONDEBUG_INSN_P (insn))
3533 continue;
3534
3535 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
3536 {
3537 dreg = DF_REF_REAL_REG (*def_rec);
3538 gcc_assert (REG_P (dreg));
3539 regno = REGNO (dreg);
3540 if (!(DF_REF_FLAGS (*def_rec)
3541 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3542 {
3543 if (bitmap_clear_bit (curr_regs_live, regno))
3544 change_pressure (regno, false);
3545 }
3546 }
3547
3548 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
3549 {
3550 dreg = DF_REF_REAL_REG (*use_rec);
3551 gcc_assert (REG_P (dreg));
3552 regno = REGNO (dreg);
3553 if (bitmap_set_bit (curr_regs_live, regno))
3554 change_pressure (regno, true);
3555 }
3556 }
3557 }
3558 BITMAP_FREE (curr_regs_live);
3559
3560 if (dump_file == NULL)
3561 return;
3562
3563 fprintf (dump_file, "\nRegister Pressure: \n");
3564 FOR_EACH_BB (bb)
3565 {
3566 fprintf (dump_file, " Basic block %d: \n", bb->index);
3567 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3568 {
3569 enum reg_class pressure_class;
3570
3571 pressure_class = ira_pressure_classes[i];
3572 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3573 continue;
3574
3575 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3576 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3577 }
3578 }
3579 fprintf (dump_file, "\n");
3580 }
3581
3582 /* Top level routine to perform one code hoisting (aka unification) pass
3583
3584 Return nonzero if a change was made. */
3585
3586 static int
3587 one_code_hoisting_pass (void)
3588 {
3589 int changed = 0;
3590
3591 gcse_subst_count = 0;
3592 gcse_create_count = 0;
3593
3594 /* Return if there's nothing to do, or it is too expensive. */
3595 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
3596 || is_too_expensive (_("GCSE disabled")))
3597 return 0;
3598
3599 doing_code_hoisting_p = true;
3600
3601 /* Calculate register pressure for each basic block. */
3602 if (flag_ira_hoist_pressure)
3603 {
3604 regstat_init_n_sets_and_refs ();
3605 ira_set_pseudo_classes (false, dump_file);
3606 alloc_aux_for_blocks (sizeof (struct bb_data));
3607 calculate_bb_reg_pressure ();
3608 regstat_free_n_sets_and_refs ();
3609 }
3610
3611 /* We need alias. */
3612 init_alias_analysis ();
3613
3614 bytes_used = 0;
3615 gcc_obstack_init (&gcse_obstack);
3616 alloc_gcse_mem ();
3617
3618 alloc_hash_table (&expr_hash_table);
3619 compute_hash_table (&expr_hash_table);
3620 if (dump_file)
3621 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
3622
3623 if (expr_hash_table.n_elems > 0)
3624 {
3625 alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
3626 compute_code_hoist_data ();
3627 changed = hoist_code ();
3628 free_code_hoist_mem ();
3629 }
3630
3631 if (flag_ira_hoist_pressure)
3632 {
3633 free_aux_for_blocks ();
3634 free_reg_info ();
3635 }
3636 free_hash_table (&expr_hash_table);
3637 free_gcse_mem ();
3638 obstack_free (&gcse_obstack, NULL);
3639
3640 /* We are finished with alias. */
3641 end_alias_analysis ();
3642
3643 if (dump_file)
3644 {
3645 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
3646 current_function_name (), n_basic_blocks_for_fn (cfun),
3647 bytes_used);
3648 fprintf (dump_file, "%d substs, %d insns created\n",
3649 gcse_subst_count, gcse_create_count);
3650 }
3651
3652 doing_code_hoisting_p = false;
3653
3654 return changed;
3655 }
3656 \f
3657 /* Here we provide the things required to do store motion towards the exit.
3658 In order for this to be effective, gcse also needed to be taught how to
3659 move a load when it is killed only by a store to itself.
3660
3661 int i;
3662 float a[10];
3663
3664 void foo(float scale)
3665 {
3666 for (i=0; i<10; i++)
3667 a[i] *= scale;
3668 }
3669
3670 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3671 the load out since its live around the loop, and stored at the bottom
3672 of the loop.
3673
3674 The 'Load Motion' referred to and implemented in this file is
3675 an enhancement to gcse which when using edge based LCM, recognizes
3676 this situation and allows gcse to move the load out of the loop.
3677
3678 Once gcse has hoisted the load, store motion can then push this
3679 load towards the exit, and we end up with no loads or stores of 'i'
3680 in the loop. */
3681
3682 /* This will search the ldst list for a matching expression. If it
3683 doesn't find one, we create one and initialize it. */
3684
3685 static struct ls_expr *
3686 ldst_entry (rtx x)
3687 {
3688 int do_not_record_p = 0;
3689 struct ls_expr * ptr;
3690 unsigned int hash;
3691 ls_expr **slot;
3692 struct ls_expr e;
3693
3694 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3695 NULL, /*have_reg_qty=*/false);
3696
3697 e.pattern = x;
3698 slot = pre_ldst_table.find_slot_with_hash (&e, hash, INSERT);
3699 if (*slot)
3700 return *slot;
3701
3702 ptr = XNEW (struct ls_expr);
3703
3704 ptr->next = pre_ldst_mems;
3705 ptr->expr = NULL;
3706 ptr->pattern = x;
3707 ptr->pattern_regs = NULL_RTX;
3708 ptr->loads = NULL_RTX;
3709 ptr->stores = NULL_RTX;
3710 ptr->reaching_reg = NULL_RTX;
3711 ptr->invalid = 0;
3712 ptr->index = 0;
3713 ptr->hash_index = hash;
3714 pre_ldst_mems = ptr;
3715 *slot = ptr;
3716
3717 return ptr;
3718 }
3719
3720 /* Free up an individual ldst entry. */
3721
3722 static void
3723 free_ldst_entry (struct ls_expr * ptr)
3724 {
3725 free_INSN_LIST_list (& ptr->loads);
3726 free_INSN_LIST_list (& ptr->stores);
3727
3728 free (ptr);
3729 }
3730
3731 /* Free up all memory associated with the ldst list. */
3732
3733 static void
3734 free_ld_motion_mems (void)
3735 {
3736 if (pre_ldst_table.is_created ())
3737 pre_ldst_table.dispose ();
3738
3739 while (pre_ldst_mems)
3740 {
3741 struct ls_expr * tmp = pre_ldst_mems;
3742
3743 pre_ldst_mems = pre_ldst_mems->next;
3744
3745 free_ldst_entry (tmp);
3746 }
3747
3748 pre_ldst_mems = NULL;
3749 }
3750
3751 /* Dump debugging info about the ldst list. */
3752
3753 static void
3754 print_ldst_list (FILE * file)
3755 {
3756 struct ls_expr * ptr;
3757
3758 fprintf (file, "LDST list: \n");
3759
3760 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
3761 {
3762 fprintf (file, " Pattern (%3d): ", ptr->index);
3763
3764 print_rtl (file, ptr->pattern);
3765
3766 fprintf (file, "\n Loads : ");
3767
3768 if (ptr->loads)
3769 print_rtl (file, ptr->loads);
3770 else
3771 fprintf (file, "(nil)");
3772
3773 fprintf (file, "\n Stores : ");
3774
3775 if (ptr->stores)
3776 print_rtl (file, ptr->stores);
3777 else
3778 fprintf (file, "(nil)");
3779
3780 fprintf (file, "\n\n");
3781 }
3782
3783 fprintf (file, "\n");
3784 }
3785
3786 /* Returns 1 if X is in the list of ldst only expressions. */
3787
3788 static struct ls_expr *
3789 find_rtx_in_ldst (rtx x)
3790 {
3791 struct ls_expr e;
3792 ls_expr **slot;
3793 if (!pre_ldst_table.is_created ())
3794 return NULL;
3795 e.pattern = x;
3796 slot = pre_ldst_table.find_slot (&e, NO_INSERT);
3797 if (!slot || (*slot)->invalid)
3798 return NULL;
3799 return *slot;
3800 }
3801 \f
3802 /* Load Motion for loads which only kill themselves. */
3803
3804 /* Return true if x, a MEM, is a simple access with no side effects.
3805 These are the types of loads we consider for the ld_motion list,
3806 otherwise we let the usual aliasing take care of it. */
3807
3808 static int
3809 simple_mem (const_rtx x)
3810 {
3811 if (MEM_VOLATILE_P (x))
3812 return 0;
3813
3814 if (GET_MODE (x) == BLKmode)
3815 return 0;
3816
3817 /* If we are handling exceptions, we must be careful with memory references
3818 that may trap. If we are not, the behavior is undefined, so we may just
3819 continue. */
3820 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
3821 return 0;
3822
3823 if (side_effects_p (x))
3824 return 0;
3825
3826 /* Do not consider function arguments passed on stack. */
3827 if (reg_mentioned_p (stack_pointer_rtx, x))
3828 return 0;
3829
3830 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3831 return 0;
3832
3833 return 1;
3834 }
3835
3836 /* Make sure there isn't a buried reference in this pattern anywhere.
3837 If there is, invalidate the entry for it since we're not capable
3838 of fixing it up just yet.. We have to be sure we know about ALL
3839 loads since the aliasing code will allow all entries in the
3840 ld_motion list to not-alias itself. If we miss a load, we will get
3841 the wrong value since gcse might common it and we won't know to
3842 fix it up. */
3843
3844 static void
3845 invalidate_any_buried_refs (rtx x)
3846 {
3847 const char * fmt;
3848 int i, j;
3849 struct ls_expr * ptr;
3850
3851 /* Invalidate it in the list. */
3852 if (MEM_P (x) && simple_mem (x))
3853 {
3854 ptr = ldst_entry (x);
3855 ptr->invalid = 1;
3856 }
3857
3858 /* Recursively process the insn. */
3859 fmt = GET_RTX_FORMAT (GET_CODE (x));
3860
3861 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3862 {
3863 if (fmt[i] == 'e')
3864 invalidate_any_buried_refs (XEXP (x, i));
3865 else if (fmt[i] == 'E')
3866 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3867 invalidate_any_buried_refs (XVECEXP (x, i, j));
3868 }
3869 }
3870
3871 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3872 being defined as MEM loads and stores to symbols, with no side effects
3873 and no registers in the expression. For a MEM destination, we also
3874 check that the insn is still valid if we replace the destination with a
3875 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3876 which don't match this criteria, they are invalidated and trimmed out
3877 later. */
3878
3879 static void
3880 compute_ld_motion_mems (void)
3881 {
3882 struct ls_expr * ptr;
3883 basic_block bb;
3884 rtx insn;
3885
3886 pre_ldst_mems = NULL;
3887 pre_ldst_table.create (13);
3888
3889 FOR_EACH_BB (bb)
3890 {
3891 FOR_BB_INSNS (bb, insn)
3892 {
3893 if (NONDEBUG_INSN_P (insn))
3894 {
3895 if (GET_CODE (PATTERN (insn)) == SET)
3896 {
3897 rtx src = SET_SRC (PATTERN (insn));
3898 rtx dest = SET_DEST (PATTERN (insn));
3899 rtx note = find_reg_equal_equiv_note (insn);
3900 rtx src_eq;
3901
3902 /* Check for a simple LOAD... */
3903 if (MEM_P (src) && simple_mem (src))
3904 {
3905 ptr = ldst_entry (src);
3906 if (REG_P (dest))
3907 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
3908 else
3909 ptr->invalid = 1;
3910 }
3911 else
3912 {
3913 /* Make sure there isn't a buried load somewhere. */
3914 invalidate_any_buried_refs (src);
3915 }
3916
3917 if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL)
3918 src_eq = XEXP (note, 0);
3919 else
3920 src_eq = NULL_RTX;
3921
3922 if (src_eq != NULL_RTX
3923 && !(MEM_P (src_eq) && simple_mem (src_eq)))
3924 invalidate_any_buried_refs (src_eq);
3925
3926 /* Check for stores. Don't worry about aliased ones, they
3927 will block any movement we might do later. We only care
3928 about this exact pattern since those are the only
3929 circumstance that we will ignore the aliasing info. */
3930 if (MEM_P (dest) && simple_mem (dest))
3931 {
3932 ptr = ldst_entry (dest);
3933
3934 if (! MEM_P (src)
3935 && GET_CODE (src) != ASM_OPERANDS
3936 /* Check for REG manually since want_to_gcse_p
3937 returns 0 for all REGs. */
3938 && can_assign_to_reg_without_clobbers_p (src))
3939 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
3940 else
3941 ptr->invalid = 1;
3942 }
3943 }
3944 else
3945 invalidate_any_buried_refs (PATTERN (insn));
3946 }
3947 }
3948 }
3949 }
3950
3951 /* Remove any references that have been either invalidated or are not in the
3952 expression list for pre gcse. */
3953
3954 static void
3955 trim_ld_motion_mems (void)
3956 {
3957 struct ls_expr * * last = & pre_ldst_mems;
3958 struct ls_expr * ptr = pre_ldst_mems;
3959
3960 while (ptr != NULL)
3961 {
3962 struct expr * expr;
3963
3964 /* Delete if entry has been made invalid. */
3965 if (! ptr->invalid)
3966 {
3967 /* Delete if we cannot find this mem in the expression list. */
3968 unsigned int hash = ptr->hash_index % expr_hash_table.size;
3969
3970 for (expr = expr_hash_table.table[hash];
3971 expr != NULL;
3972 expr = expr->next_same_hash)
3973 if (expr_equiv_p (expr->expr, ptr->pattern))
3974 break;
3975 }
3976 else
3977 expr = (struct expr *) 0;
3978
3979 if (expr)
3980 {
3981 /* Set the expression field if we are keeping it. */
3982 ptr->expr = expr;
3983 last = & ptr->next;
3984 ptr = ptr->next;
3985 }
3986 else
3987 {
3988 *last = ptr->next;
3989 pre_ldst_table.remove_elt_with_hash (ptr, ptr->hash_index);
3990 free_ldst_entry (ptr);
3991 ptr = * last;
3992 }
3993 }
3994
3995 /* Show the world what we've found. */
3996 if (dump_file && pre_ldst_mems != NULL)
3997 print_ldst_list (dump_file);
3998 }
3999
4000 /* This routine will take an expression which we are replacing with
4001 a reaching register, and update any stores that are needed if
4002 that expression is in the ld_motion list. Stores are updated by
4003 copying their SRC to the reaching register, and then storing
4004 the reaching register into the store location. These keeps the
4005 correct value in the reaching register for the loads. */
4006
4007 static void
4008 update_ld_motion_stores (struct expr * expr)
4009 {
4010 struct ls_expr * mem_ptr;
4011
4012 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
4013 {
4014 /* We can try to find just the REACHED stores, but is shouldn't
4015 matter to set the reaching reg everywhere... some might be
4016 dead and should be eliminated later. */
4017
4018 /* We replace (set mem expr) with (set reg expr) (set mem reg)
4019 where reg is the reaching reg used in the load. We checked in
4020 compute_ld_motion_mems that we can replace (set mem expr) with
4021 (set reg expr) in that insn. */
4022 rtx list = mem_ptr->stores;
4023
4024 for ( ; list != NULL_RTX; list = XEXP (list, 1))
4025 {
4026 rtx insn = XEXP (list, 0);
4027 rtx pat = PATTERN (insn);
4028 rtx src = SET_SRC (pat);
4029 rtx reg = expr->reaching_reg;
4030 rtx copy;
4031
4032 /* If we've already copied it, continue. */
4033 if (expr->reaching_reg == src)
4034 continue;
4035
4036 if (dump_file)
4037 {
4038 fprintf (dump_file, "PRE: store updated with reaching reg ");
4039 print_rtl (dump_file, reg);
4040 fprintf (dump_file, ":\n ");
4041 print_inline_rtx (dump_file, insn, 8);
4042 fprintf (dump_file, "\n");
4043 }
4044
4045 copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
4046 emit_insn_before (copy, insn);
4047 SET_SRC (pat) = reg;
4048 df_insn_rescan (insn);
4049
4050 /* un-recognize this pattern since it's probably different now. */
4051 INSN_CODE (insn) = -1;
4052 gcse_create_count++;
4053 }
4054 }
4055 }
4056 \f
4057 /* Return true if the graph is too expensive to optimize. PASS is the
4058 optimization about to be performed. */
4059
4060 static bool
4061 is_too_expensive (const char *pass)
4062 {
4063 /* Trying to perform global optimizations on flow graphs which have
4064 a high connectivity will take a long time and is unlikely to be
4065 particularly useful.
4066
4067 In normal circumstances a cfg should have about twice as many
4068 edges as blocks. But we do not want to punish small functions
4069 which have a couple switch statements. Rather than simply
4070 threshold the number of blocks, uses something with a more
4071 graceful degradation. */
4072 if (n_edges_for_fn (cfun) > 20000 + n_basic_blocks_for_fn (cfun) * 4)
4073 {
4074 warning (OPT_Wdisabled_optimization,
4075 "%s: %d basic blocks and %d edges/basic block",
4076 pass, n_basic_blocks_for_fn (cfun),
4077 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun));
4078
4079 return true;
4080 }
4081
4082 /* If allocating memory for the dataflow bitmaps would take up too much
4083 storage it's better just to disable the optimization. */
4084 if ((n_basic_blocks_for_fn (cfun)
4085 * SBITMAP_SET_SIZE (max_reg_num ())
4086 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
4087 {
4088 warning (OPT_Wdisabled_optimization,
4089 "%s: %d basic blocks and %d registers",
4090 pass, n_basic_blocks_for_fn (cfun), max_reg_num ());
4091
4092 return true;
4093 }
4094
4095 return false;
4096 }
4097 \f
4098 /* All the passes implemented in this file. Each pass has its
4099 own gate and execute function, and at the end of the file a
4100 pass definition for passes.c.
4101
4102 We do not construct an accurate cfg in functions which call
4103 setjmp, so none of these passes runs if the function calls
4104 setjmp.
4105 FIXME: Should just handle setjmp via REG_SETJMP notes. */
4106
4107 static bool
4108 gate_rtl_pre (void)
4109 {
4110 return optimize > 0 && flag_gcse
4111 && !cfun->calls_setjmp
4112 && optimize_function_for_speed_p (cfun)
4113 && dbg_cnt (pre);
4114 }
4115
4116 static unsigned int
4117 execute_rtl_pre (void)
4118 {
4119 int changed;
4120 delete_unreachable_blocks ();
4121 df_analyze ();
4122 changed = one_pre_gcse_pass ();
4123 flag_rerun_cse_after_global_opts |= changed;
4124 if (changed)
4125 cleanup_cfg (0);
4126 return 0;
4127 }
4128
4129 static bool
4130 gate_rtl_hoist (void)
4131 {
4132 return optimize > 0 && flag_gcse
4133 && !cfun->calls_setjmp
4134 /* It does not make sense to run code hoisting unless we are optimizing
4135 for code size -- it rarely makes programs faster, and can make then
4136 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4137 && optimize_function_for_size_p (cfun)
4138 && dbg_cnt (hoist);
4139 }
4140
4141 static unsigned int
4142 execute_rtl_hoist (void)
4143 {
4144 int changed;
4145 delete_unreachable_blocks ();
4146 df_analyze ();
4147 changed = one_code_hoisting_pass ();
4148 flag_rerun_cse_after_global_opts |= changed;
4149 if (changed)
4150 cleanup_cfg (0);
4151 return 0;
4152 }
4153
4154 namespace {
4155
4156 const pass_data pass_data_rtl_pre =
4157 {
4158 RTL_PASS, /* type */
4159 "rtl pre", /* name */
4160 OPTGROUP_NONE, /* optinfo_flags */
4161 true, /* has_gate */
4162 true, /* has_execute */
4163 TV_PRE, /* tv_id */
4164 PROP_cfglayout, /* properties_required */
4165 0, /* properties_provided */
4166 0, /* properties_destroyed */
4167 0, /* todo_flags_start */
4168 ( TODO_df_finish | TODO_verify_rtl_sharing
4169 | TODO_verify_flow ), /* todo_flags_finish */
4170 };
4171
4172 class pass_rtl_pre : public rtl_opt_pass
4173 {
4174 public:
4175 pass_rtl_pre (gcc::context *ctxt)
4176 : rtl_opt_pass (pass_data_rtl_pre, ctxt)
4177 {}
4178
4179 /* opt_pass methods: */
4180 bool gate () { return gate_rtl_pre (); }
4181 unsigned int execute () { return execute_rtl_pre (); }
4182
4183 }; // class pass_rtl_pre
4184
4185 } // anon namespace
4186
4187 rtl_opt_pass *
4188 make_pass_rtl_pre (gcc::context *ctxt)
4189 {
4190 return new pass_rtl_pre (ctxt);
4191 }
4192
4193 namespace {
4194
4195 const pass_data pass_data_rtl_hoist =
4196 {
4197 RTL_PASS, /* type */
4198 "hoist", /* name */
4199 OPTGROUP_NONE, /* optinfo_flags */
4200 true, /* has_gate */
4201 true, /* has_execute */
4202 TV_HOIST, /* tv_id */
4203 PROP_cfglayout, /* properties_required */
4204 0, /* properties_provided */
4205 0, /* properties_destroyed */
4206 0, /* todo_flags_start */
4207 ( TODO_df_finish | TODO_verify_rtl_sharing
4208 | TODO_verify_flow ), /* todo_flags_finish */
4209 };
4210
4211 class pass_rtl_hoist : public rtl_opt_pass
4212 {
4213 public:
4214 pass_rtl_hoist (gcc::context *ctxt)
4215 : rtl_opt_pass (pass_data_rtl_hoist, ctxt)
4216 {}
4217
4218 /* opt_pass methods: */
4219 bool gate () { return gate_rtl_hoist (); }
4220 unsigned int execute () { return execute_rtl_hoist (); }
4221
4222 }; // class pass_rtl_hoist
4223
4224 } // anon namespace
4225
4226 rtl_opt_pass *
4227 make_pass_rtl_hoist (gcc::context *ctxt)
4228 {
4229 return new pass_rtl_hoist (ctxt);
4230 }
4231
4232 #include "gt-gcse.h"