tree.h: Include vec.h
[gcc.git] / gcc / genrecog.c
1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* This program is used to produce insn-recog.c, which contains a
24 function called `recog' plus its subroutines. These functions
25 contain a decision tree that recognizes whether an rtx, the
26 argument given to recog, is a valid instruction.
27
28 recog returns -1 if the rtx is not valid. If the rtx is valid,
29 recog returns a nonnegative number which is the insn code number
30 for the pattern that matched. This is the same as the order in the
31 machine description of the entry that matched. This number can be
32 used as an index into various insn_* tables, such as insn_template,
33 insn_outfun, and insn_n_operands (found in insn-output.c).
34
35 The third argument to recog is an optional pointer to an int. If
36 present, recog will accept a pattern if it matches except for
37 missing CLOBBER expressions at the end. In that case, the value
38 pointed to by the optional pointer will be set to the number of
39 CLOBBERs that need to be added (it should be initialized to zero by
40 the caller). If it is set nonzero, the caller should allocate a
41 PARALLEL of the appropriate size, copy the initial entries, and
42 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
43
44 This program also generates the function `split_insns', which
45 returns 0 if the rtl could not be split, or it returns the split
46 rtl as an INSN list.
47
48 This program also generates the function `peephole2_insns', which
49 returns 0 if the rtl could not be matched. If there was a match,
50 the new rtl is returned in an INSN list, and LAST_INSN will point
51 to the last recognized insn in the old sequence. */
52
53 #include "bconfig.h"
54 #include "system.h"
55 #include "coretypes.h"
56 #include "tm.h"
57 #include "rtl.h"
58 #include "errors.h"
59 #include "gensupport.h"
60
61
62 #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
63 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
64
65 /* Holds an array of names indexed by insn_code_number. */
66 static char **insn_name_ptr = 0;
67 static int insn_name_ptr_size = 0;
68
69 /* A listhead of decision trees. The alternatives to a node are kept
70 in a doubly-linked list so we can easily add nodes to the proper
71 place when merging. */
72
73 struct decision_head
74 {
75 struct decision *first;
76 struct decision *last;
77 };
78
79 /* A single test. The two accept types aren't tests per-se, but
80 their equality (or lack thereof) does affect tree merging so
81 it is convenient to keep them here. */
82
83 struct decision_test
84 {
85 /* A linked list through the tests attached to a node. */
86 struct decision_test *next;
87
88 /* These types are roughly in the order in which we'd like to test them. */
89 enum decision_type
90 {
91 DT_mode, DT_code, DT_veclen,
92 DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide, DT_elt_zero_wide_safe,
93 DT_const_int,
94 DT_veclen_ge, DT_dup, DT_pred, DT_c_test,
95 DT_accept_op, DT_accept_insn
96 } type;
97
98 union
99 {
100 enum machine_mode mode; /* Machine mode of node. */
101 RTX_CODE code; /* Code to test. */
102
103 struct
104 {
105 const char *name; /* Predicate to call. */
106 int index; /* Index into `preds' or -1. */
107 enum machine_mode mode; /* Machine mode for node. */
108 } pred;
109
110 const char *c_test; /* Additional test to perform. */
111 int veclen; /* Length of vector. */
112 int dup; /* Number of operand to compare against. */
113 HOST_WIDE_INT intval; /* Value for XINT for XWINT. */
114 int opno; /* Operand number matched. */
115
116 struct {
117 int code_number; /* Insn number matched. */
118 int lineno; /* Line number of the insn. */
119 int num_clobbers_to_add; /* Number of CLOBBERs to be added. */
120 } insn;
121 } u;
122 };
123
124 /* Data structure for decision tree for recognizing legitimate insns. */
125
126 struct decision
127 {
128 struct decision_head success; /* Nodes to test on success. */
129 struct decision *next; /* Node to test on failure. */
130 struct decision *prev; /* Node whose failure tests us. */
131 struct decision *afterward; /* Node to test on success,
132 but failure of successor nodes. */
133
134 const char *position; /* String denoting position in pattern. */
135
136 struct decision_test *tests; /* The tests for this node. */
137
138 int number; /* Node number, used for labels */
139 int subroutine_number; /* Number of subroutine this node starts */
140 int need_label; /* Label needs to be output. */
141 };
142
143 #define SUBROUTINE_THRESHOLD 100
144
145 static int next_subroutine_number;
146
147 /* We can write three types of subroutines: One for insn recognition,
148 one to split insns, and one for peephole-type optimizations. This
149 defines which type is being written. */
150
151 enum routine_type {
152 RECOG, SPLIT, PEEPHOLE2
153 };
154
155 #define IS_SPLIT(X) ((X) != RECOG)
156
157 /* Next available node number for tree nodes. */
158
159 static int next_number;
160
161 /* Next number to use as an insn_code. */
162
163 static int next_insn_code;
164
165 /* Similar, but counts all expressions in the MD file; used for
166 error messages. */
167
168 static int next_index;
169
170 /* Record the highest depth we ever have so we know how many variables to
171 allocate in each subroutine we make. */
172
173 static int max_depth;
174
175 /* The line number of the start of the pattern currently being processed. */
176 static int pattern_lineno;
177
178 /* Count of errors. */
179 static int error_count;
180 \f
181 /* This table contains a list of the rtl codes that can possibly match a
182 predicate defined in recog.c. The function `maybe_both_true' uses it to
183 deduce that there are no expressions that can be matches by certain pairs
184 of tree nodes. Also, if a predicate can match only one code, we can
185 hardwire that code into the node testing the predicate. */
186
187 static const struct pred_table
188 {
189 const char *const name;
190 const RTX_CODE codes[NUM_RTX_CODE];
191 } preds[] = {
192 {"general_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
193 LABEL_REF, SUBREG, REG, MEM }},
194 #ifdef PREDICATE_CODES
195 PREDICATE_CODES
196 #endif
197 {"address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
198 LABEL_REF, SUBREG, REG, MEM,
199 PLUS, MINUS, MULT}},
200 {"register_operand", {SUBREG, REG}},
201 {"pmode_register_operand", {SUBREG, REG}},
202 {"scratch_operand", {SCRATCH, REG}},
203 {"immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
204 LABEL_REF}},
205 {"const_int_operand", {CONST_INT}},
206 {"const_double_operand", {CONST_INT, CONST_DOUBLE}},
207 {"nonimmediate_operand", {SUBREG, REG, MEM}},
208 {"nonmemory_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
209 LABEL_REF, SUBREG, REG}},
210 {"push_operand", {MEM}},
211 {"pop_operand", {MEM}},
212 {"memory_operand", {SUBREG, MEM}},
213 {"indirect_operand", {SUBREG, MEM}},
214 {"comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU,
215 UNORDERED, ORDERED, UNEQ, UNGE, UNGT, UNLE,
216 UNLT, LTGT}}
217 };
218
219 #define NUM_KNOWN_PREDS ARRAY_SIZE (preds)
220
221 static const char *const special_mode_pred_table[] = {
222 #ifdef SPECIAL_MODE_PREDICATES
223 SPECIAL_MODE_PREDICATES
224 #endif
225 "pmode_register_operand"
226 };
227
228 #define NUM_SPECIAL_MODE_PREDS ARRAY_SIZE (special_mode_pred_table)
229
230 static struct decision *new_decision
231 (const char *, struct decision_head *);
232 static struct decision_test *new_decision_test
233 (enum decision_type, struct decision_test ***);
234 static rtx find_operand
235 (rtx, int, rtx);
236 static rtx find_matching_operand
237 (rtx, int);
238 static void validate_pattern
239 (rtx, rtx, rtx, int);
240 static struct decision *add_to_sequence
241 (rtx, struct decision_head *, const char *, enum routine_type, int);
242
243 static int maybe_both_true_2
244 (struct decision_test *, struct decision_test *);
245 static int maybe_both_true_1
246 (struct decision_test *, struct decision_test *);
247 static int maybe_both_true
248 (struct decision *, struct decision *, int);
249
250 static int nodes_identical_1
251 (struct decision_test *, struct decision_test *);
252 static int nodes_identical
253 (struct decision *, struct decision *);
254 static void merge_accept_insn
255 (struct decision *, struct decision *);
256 static void merge_trees
257 (struct decision_head *, struct decision_head *);
258
259 static void factor_tests
260 (struct decision_head *);
261 static void simplify_tests
262 (struct decision_head *);
263 static int break_out_subroutines
264 (struct decision_head *, int);
265 static void find_afterward
266 (struct decision_head *, struct decision *);
267
268 static void change_state
269 (const char *, const char *, struct decision *, const char *);
270 static void print_code
271 (enum rtx_code);
272 static void write_afterward
273 (struct decision *, struct decision *, const char *);
274 static struct decision *write_switch
275 (struct decision *, int);
276 static void write_cond
277 (struct decision_test *, int, enum routine_type);
278 static void write_action
279 (struct decision *, struct decision_test *, int, int,
280 struct decision *, enum routine_type);
281 static int is_unconditional
282 (struct decision_test *, enum routine_type);
283 static int write_node
284 (struct decision *, int, enum routine_type);
285 static void write_tree_1
286 (struct decision_head *, int, enum routine_type);
287 static void write_tree
288 (struct decision_head *, const char *, enum routine_type, int);
289 static void write_subroutine
290 (struct decision_head *, enum routine_type);
291 static void write_subroutines
292 (struct decision_head *, enum routine_type);
293 static void write_header
294 (void);
295
296 static struct decision_head make_insn_sequence
297 (rtx, enum routine_type);
298 static void process_tree
299 (struct decision_head *, enum routine_type);
300
301 static void record_insn_name
302 (int, const char *);
303
304 static void debug_decision_0
305 (struct decision *, int, int);
306 static void debug_decision_1
307 (struct decision *, int);
308 static void debug_decision_2
309 (struct decision_test *);
310 extern void debug_decision
311 (struct decision *);
312 extern void debug_decision_list
313 (struct decision *);
314 \f
315 /* Create a new node in sequence after LAST. */
316
317 static struct decision *
318 new_decision (const char *position, struct decision_head *last)
319 {
320 struct decision *new = xcalloc (1, sizeof (struct decision));
321
322 new->success = *last;
323 new->position = xstrdup (position);
324 new->number = next_number++;
325
326 last->first = last->last = new;
327 return new;
328 }
329
330 /* Create a new test and link it in at PLACE. */
331
332 static struct decision_test *
333 new_decision_test (enum decision_type type, struct decision_test ***pplace)
334 {
335 struct decision_test **place = *pplace;
336 struct decision_test *test;
337
338 test = xmalloc (sizeof (*test));
339 test->next = *place;
340 test->type = type;
341 *place = test;
342
343 place = &test->next;
344 *pplace = place;
345
346 return test;
347 }
348
349 /* Search for and return operand N, stop when reaching node STOP. */
350
351 static rtx
352 find_operand (rtx pattern, int n, rtx stop)
353 {
354 const char *fmt;
355 RTX_CODE code;
356 int i, j, len;
357 rtx r;
358
359 if (pattern == stop)
360 return stop;
361
362 code = GET_CODE (pattern);
363 if ((code == MATCH_SCRATCH
364 || code == MATCH_OPERAND
365 || code == MATCH_OPERATOR
366 || code == MATCH_PARALLEL)
367 && XINT (pattern, 0) == n)
368 return pattern;
369
370 fmt = GET_RTX_FORMAT (code);
371 len = GET_RTX_LENGTH (code);
372 for (i = 0; i < len; i++)
373 {
374 switch (fmt[i])
375 {
376 case 'e': case 'u':
377 if ((r = find_operand (XEXP (pattern, i), n, stop)) != NULL_RTX)
378 return r;
379 break;
380
381 case 'V':
382 if (! XVEC (pattern, i))
383 break;
384 /* Fall through. */
385
386 case 'E':
387 for (j = 0; j < XVECLEN (pattern, i); j++)
388 if ((r = find_operand (XVECEXP (pattern, i, j), n, stop))
389 != NULL_RTX)
390 return r;
391 break;
392
393 case 'i': case 'w': case '0': case 's':
394 break;
395
396 default:
397 abort ();
398 }
399 }
400
401 return NULL;
402 }
403
404 /* Search for and return operand M, such that it has a matching
405 constraint for operand N. */
406
407 static rtx
408 find_matching_operand (rtx pattern, int n)
409 {
410 const char *fmt;
411 RTX_CODE code;
412 int i, j, len;
413 rtx r;
414
415 code = GET_CODE (pattern);
416 if (code == MATCH_OPERAND
417 && (XSTR (pattern, 2)[0] == '0' + n
418 || (XSTR (pattern, 2)[0] == '%'
419 && XSTR (pattern, 2)[1] == '0' + n)))
420 return pattern;
421
422 fmt = GET_RTX_FORMAT (code);
423 len = GET_RTX_LENGTH (code);
424 for (i = 0; i < len; i++)
425 {
426 switch (fmt[i])
427 {
428 case 'e': case 'u':
429 if ((r = find_matching_operand (XEXP (pattern, i), n)))
430 return r;
431 break;
432
433 case 'V':
434 if (! XVEC (pattern, i))
435 break;
436 /* Fall through. */
437
438 case 'E':
439 for (j = 0; j < XVECLEN (pattern, i); j++)
440 if ((r = find_matching_operand (XVECEXP (pattern, i, j), n)))
441 return r;
442 break;
443
444 case 'i': case 'w': case '0': case 's':
445 break;
446
447 default:
448 abort ();
449 }
450 }
451
452 return NULL;
453 }
454
455
456 /* Check for various errors in patterns. SET is nonnull for a destination,
457 and is the complete set pattern. SET_CODE is '=' for normal sets, and
458 '+' within a context that requires in-out constraints. */
459
460 static void
461 validate_pattern (rtx pattern, rtx insn, rtx set, int set_code)
462 {
463 const char *fmt;
464 RTX_CODE code;
465 size_t i, len;
466 int j;
467
468 code = GET_CODE (pattern);
469 switch (code)
470 {
471 case MATCH_SCRATCH:
472 return;
473 case MATCH_DUP:
474 case MATCH_OP_DUP:
475 case MATCH_PAR_DUP:
476 if (find_operand (insn, XINT (pattern, 0), pattern) == pattern)
477 {
478 message_with_line (pattern_lineno,
479 "operand %i duplicated before defined",
480 XINT (pattern, 0));
481 error_count++;
482 }
483 break;
484 case MATCH_OPERAND:
485 case MATCH_OPERATOR:
486 {
487 const char *pred_name = XSTR (pattern, 1);
488 int allows_non_lvalue = 1, allows_non_const = 1;
489 int special_mode_pred = 0;
490 const char *c_test;
491
492 if (GET_CODE (insn) == DEFINE_INSN)
493 c_test = XSTR (insn, 2);
494 else
495 c_test = XSTR (insn, 1);
496
497 if (pred_name[0] != 0)
498 {
499 for (i = 0; i < NUM_KNOWN_PREDS; i++)
500 if (! strcmp (preds[i].name, pred_name))
501 break;
502
503 if (i < NUM_KNOWN_PREDS)
504 {
505 int j;
506
507 allows_non_lvalue = allows_non_const = 0;
508 for (j = 0; preds[i].codes[j] != 0; j++)
509 {
510 RTX_CODE c = preds[i].codes[j];
511 if (c != LABEL_REF
512 && c != SYMBOL_REF
513 && c != CONST_INT
514 && c != CONST_DOUBLE
515 && c != CONST
516 && c != HIGH)
517 allows_non_const = 1;
518
519 if (c != REG
520 && c != SUBREG
521 && c != MEM
522 && c != CONCAT
523 && c != PARALLEL
524 && c != STRICT_LOW_PART)
525 allows_non_lvalue = 1;
526 }
527 }
528 else
529 {
530 #ifdef PREDICATE_CODES
531 /* If the port has a list of the predicates it uses but
532 omits one, warn. */
533 message_with_line (pattern_lineno,
534 "warning: `%s' not in PREDICATE_CODES",
535 pred_name);
536 #endif
537 }
538
539 for (i = 0; i < NUM_SPECIAL_MODE_PREDS; ++i)
540 if (strcmp (pred_name, special_mode_pred_table[i]) == 0)
541 {
542 special_mode_pred = 1;
543 break;
544 }
545 }
546
547 if (code == MATCH_OPERAND)
548 {
549 const char constraints0 = XSTR (pattern, 2)[0];
550
551 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
552 don't use the MATCH_OPERAND constraint, only the predicate.
553 This is confusing to folks doing new ports, so help them
554 not make the mistake. */
555 if (GET_CODE (insn) == DEFINE_EXPAND
556 || GET_CODE (insn) == DEFINE_SPLIT
557 || GET_CODE (insn) == DEFINE_PEEPHOLE2)
558 {
559 if (constraints0)
560 message_with_line (pattern_lineno,
561 "warning: constraints not supported in %s",
562 rtx_name[GET_CODE (insn)]);
563 }
564
565 /* A MATCH_OPERAND that is a SET should have an output reload. */
566 else if (set && constraints0)
567 {
568 if (set_code == '+')
569 {
570 if (constraints0 == '+')
571 ;
572 /* If we've only got an output reload for this operand,
573 we'd better have a matching input operand. */
574 else if (constraints0 == '='
575 && find_matching_operand (insn, XINT (pattern, 0)))
576 ;
577 else
578 {
579 message_with_line (pattern_lineno,
580 "operand %d missing in-out reload",
581 XINT (pattern, 0));
582 error_count++;
583 }
584 }
585 else if (constraints0 != '=' && constraints0 != '+')
586 {
587 message_with_line (pattern_lineno,
588 "operand %d missing output reload",
589 XINT (pattern, 0));
590 error_count++;
591 }
592 }
593 }
594
595 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
596 while not likely to occur at runtime, results in less efficient
597 code from insn-recog.c. */
598 if (set
599 && pred_name[0] != '\0'
600 && allows_non_lvalue)
601 {
602 message_with_line (pattern_lineno,
603 "warning: destination operand %d allows non-lvalue",
604 XINT (pattern, 0));
605 }
606
607 /* A modeless MATCH_OPERAND can be handy when we can
608 check for multiple modes in the c_test. In most other cases,
609 it is a mistake. Only DEFINE_INSN is eligible, since SPLIT
610 and PEEP2 can FAIL within the output pattern. Exclude
611 address_operand, since its mode is related to the mode of
612 the memory not the operand. Exclude the SET_DEST of a call
613 instruction, as that is a common idiom. */
614
615 if (GET_MODE (pattern) == VOIDmode
616 && code == MATCH_OPERAND
617 && GET_CODE (insn) == DEFINE_INSN
618 && allows_non_const
619 && ! special_mode_pred
620 && pred_name[0] != '\0'
621 && strcmp (pred_name, "address_operand") != 0
622 && strstr (c_test, "operands") == NULL
623 && ! (set
624 && GET_CODE (set) == SET
625 && GET_CODE (SET_SRC (set)) == CALL))
626 {
627 message_with_line (pattern_lineno,
628 "warning: operand %d missing mode?",
629 XINT (pattern, 0));
630 }
631 return;
632 }
633
634 case SET:
635 {
636 enum machine_mode dmode, smode;
637 rtx dest, src;
638
639 dest = SET_DEST (pattern);
640 src = SET_SRC (pattern);
641
642 /* STRICT_LOW_PART is a wrapper. Its argument is the real
643 destination, and it's mode should match the source. */
644 if (GET_CODE (dest) == STRICT_LOW_PART)
645 dest = XEXP (dest, 0);
646
647 /* Find the referent for a DUP. */
648
649 if (GET_CODE (dest) == MATCH_DUP
650 || GET_CODE (dest) == MATCH_OP_DUP
651 || GET_CODE (dest) == MATCH_PAR_DUP)
652 dest = find_operand (insn, XINT (dest, 0), NULL);
653
654 if (GET_CODE (src) == MATCH_DUP
655 || GET_CODE (src) == MATCH_OP_DUP
656 || GET_CODE (src) == MATCH_PAR_DUP)
657 src = find_operand (insn, XINT (src, 0), NULL);
658
659 dmode = GET_MODE (dest);
660 smode = GET_MODE (src);
661
662 /* The mode of an ADDRESS_OPERAND is the mode of the memory
663 reference, not the mode of the address. */
664 if (GET_CODE (src) == MATCH_OPERAND
665 && ! strcmp (XSTR (src, 1), "address_operand"))
666 ;
667
668 /* The operands of a SET must have the same mode unless one
669 is VOIDmode. */
670 else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
671 {
672 message_with_line (pattern_lineno,
673 "mode mismatch in set: %smode vs %smode",
674 GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
675 error_count++;
676 }
677
678 /* If only one of the operands is VOIDmode, and PC or CC0 is
679 not involved, it's probably a mistake. */
680 else if (dmode != smode
681 && GET_CODE (dest) != PC
682 && GET_CODE (dest) != CC0
683 && GET_CODE (src) != PC
684 && GET_CODE (src) != CC0
685 && GET_CODE (src) != CONST_INT)
686 {
687 const char *which;
688 which = (dmode == VOIDmode ? "destination" : "source");
689 message_with_line (pattern_lineno,
690 "warning: %s missing a mode?", which);
691 }
692
693 if (dest != SET_DEST (pattern))
694 validate_pattern (dest, insn, pattern, '=');
695 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
696 validate_pattern (SET_SRC (pattern), insn, NULL_RTX, 0);
697 return;
698 }
699
700 case CLOBBER:
701 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
702 return;
703
704 case ZERO_EXTRACT:
705 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
706 validate_pattern (XEXP (pattern, 1), insn, NULL_RTX, 0);
707 validate_pattern (XEXP (pattern, 2), insn, NULL_RTX, 0);
708 return;
709
710 case STRICT_LOW_PART:
711 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
712 return;
713
714 case LABEL_REF:
715 if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
716 {
717 message_with_line (pattern_lineno,
718 "operand to label_ref %smode not VOIDmode",
719 GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
720 error_count++;
721 }
722 break;
723
724 default:
725 break;
726 }
727
728 fmt = GET_RTX_FORMAT (code);
729 len = GET_RTX_LENGTH (code);
730 for (i = 0; i < len; i++)
731 {
732 switch (fmt[i])
733 {
734 case 'e': case 'u':
735 validate_pattern (XEXP (pattern, i), insn, NULL_RTX, 0);
736 break;
737
738 case 'E':
739 for (j = 0; j < XVECLEN (pattern, i); j++)
740 validate_pattern (XVECEXP (pattern, i, j), insn, NULL_RTX, 0);
741 break;
742
743 case 'i': case 'w': case '0': case 's':
744 break;
745
746 default:
747 abort ();
748 }
749 }
750 }
751
752 /* Create a chain of nodes to verify that an rtl expression matches
753 PATTERN.
754
755 LAST is a pointer to the listhead in the previous node in the chain (or
756 in the calling function, for the first node).
757
758 POSITION is the string representing the current position in the insn.
759
760 INSN_TYPE is the type of insn for which we are emitting code.
761
762 A pointer to the final node in the chain is returned. */
763
764 static struct decision *
765 add_to_sequence (rtx pattern, struct decision_head *last, const char *position,
766 enum routine_type insn_type, int top)
767 {
768 RTX_CODE code;
769 struct decision *this, *sub;
770 struct decision_test *test;
771 struct decision_test **place;
772 char *subpos;
773 size_t i;
774 const char *fmt;
775 int depth = strlen (position);
776 int len;
777 enum machine_mode mode;
778
779 if (depth > max_depth)
780 max_depth = depth;
781
782 subpos = xmalloc (depth + 2);
783 strcpy (subpos, position);
784 subpos[depth + 1] = 0;
785
786 sub = this = new_decision (position, last);
787 place = &this->tests;
788
789 restart:
790 mode = GET_MODE (pattern);
791 code = GET_CODE (pattern);
792
793 switch (code)
794 {
795 case PARALLEL:
796 /* Toplevel peephole pattern. */
797 if (insn_type == PEEPHOLE2 && top)
798 {
799 /* We don't need the node we just created -- unlink it. */
800 last->first = last->last = NULL;
801
802 for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++)
803 {
804 /* Which insn we're looking at is represented by A-Z. We don't
805 ever use 'A', however; it is always implied. */
806
807 subpos[depth] = (i > 0 ? 'A' + i : 0);
808 sub = add_to_sequence (XVECEXP (pattern, 0, i),
809 last, subpos, insn_type, 0);
810 last = &sub->success;
811 }
812 goto ret;
813 }
814
815 /* Else nothing special. */
816 break;
817
818 case MATCH_PARALLEL:
819 /* The explicit patterns within a match_parallel enforce a minimum
820 length on the vector. The match_parallel predicate may allow
821 for more elements. We do need to check for this minimum here
822 or the code generated to match the internals may reference data
823 beyond the end of the vector. */
824 test = new_decision_test (DT_veclen_ge, &place);
825 test->u.veclen = XVECLEN (pattern, 2);
826 /* Fall through. */
827
828 case MATCH_OPERAND:
829 case MATCH_SCRATCH:
830 case MATCH_OPERATOR:
831 {
832 const char *pred_name;
833 RTX_CODE was_code = code;
834 int allows_const_int = 1;
835
836 if (code == MATCH_SCRATCH)
837 {
838 pred_name = "scratch_operand";
839 code = UNKNOWN;
840 }
841 else
842 {
843 pred_name = XSTR (pattern, 1);
844 if (code == MATCH_PARALLEL)
845 code = PARALLEL;
846 else
847 code = UNKNOWN;
848 }
849
850 if (pred_name[0] != 0)
851 {
852 test = new_decision_test (DT_pred, &place);
853 test->u.pred.name = pred_name;
854 test->u.pred.mode = mode;
855
856 /* See if we know about this predicate and save its number.
857 If we do, and it only accepts one code, note that fact.
858
859 If we know that the predicate does not allow CONST_INT,
860 we know that the only way the predicate can match is if
861 the modes match (here we use the kludge of relying on the
862 fact that "address_operand" accepts CONST_INT; otherwise,
863 it would have to be a special case), so we can test the
864 mode (but we need not). This fact should considerably
865 simplify the generated code. */
866
867 for (i = 0; i < NUM_KNOWN_PREDS; i++)
868 if (! strcmp (preds[i].name, pred_name))
869 break;
870
871 if (i < NUM_KNOWN_PREDS)
872 {
873 int j;
874
875 test->u.pred.index = i;
876
877 if (preds[i].codes[1] == 0 && code == UNKNOWN)
878 code = preds[i].codes[0];
879
880 allows_const_int = 0;
881 for (j = 0; preds[i].codes[j] != 0; j++)
882 if (preds[i].codes[j] == CONST_INT)
883 {
884 allows_const_int = 1;
885 break;
886 }
887 }
888 else
889 test->u.pred.index = -1;
890 }
891
892 /* Can't enforce a mode if we allow const_int. */
893 if (allows_const_int)
894 mode = VOIDmode;
895
896 /* Accept the operand, ie. record it in `operands'. */
897 test = new_decision_test (DT_accept_op, &place);
898 test->u.opno = XINT (pattern, 0);
899
900 if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL)
901 {
902 char base = (was_code == MATCH_OPERATOR ? '0' : 'a');
903 for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++)
904 {
905 subpos[depth] = i + base;
906 sub = add_to_sequence (XVECEXP (pattern, 2, i),
907 &sub->success, subpos, insn_type, 0);
908 }
909 }
910 goto fini;
911 }
912
913 case MATCH_OP_DUP:
914 code = UNKNOWN;
915
916 test = new_decision_test (DT_dup, &place);
917 test->u.dup = XINT (pattern, 0);
918
919 test = new_decision_test (DT_accept_op, &place);
920 test->u.opno = XINT (pattern, 0);
921
922 for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++)
923 {
924 subpos[depth] = i + '0';
925 sub = add_to_sequence (XVECEXP (pattern, 1, i),
926 &sub->success, subpos, insn_type, 0);
927 }
928 goto fini;
929
930 case MATCH_DUP:
931 case MATCH_PAR_DUP:
932 code = UNKNOWN;
933
934 test = new_decision_test (DT_dup, &place);
935 test->u.dup = XINT (pattern, 0);
936 goto fini;
937
938 case ADDRESS:
939 pattern = XEXP (pattern, 0);
940 goto restart;
941
942 default:
943 break;
944 }
945
946 fmt = GET_RTX_FORMAT (code);
947 len = GET_RTX_LENGTH (code);
948
949 /* Do tests against the current node first. */
950 for (i = 0; i < (size_t) len; i++)
951 {
952 if (fmt[i] == 'i')
953 {
954 if (i == 0)
955 {
956 test = new_decision_test (DT_elt_zero_int, &place);
957 test->u.intval = XINT (pattern, i);
958 }
959 else if (i == 1)
960 {
961 test = new_decision_test (DT_elt_one_int, &place);
962 test->u.intval = XINT (pattern, i);
963 }
964 else
965 abort ();
966 }
967 else if (fmt[i] == 'w')
968 {
969 /* If this value actually fits in an int, we can use a switch
970 statement here, so indicate that. */
971 enum decision_type type
972 = ((int) XWINT (pattern, i) == XWINT (pattern, i))
973 ? DT_elt_zero_wide_safe : DT_elt_zero_wide;
974
975 if (i != 0)
976 abort ();
977
978 test = new_decision_test (type, &place);
979 test->u.intval = XWINT (pattern, i);
980 }
981 else if (fmt[i] == 'E')
982 {
983 if (i != 0)
984 abort ();
985
986 test = new_decision_test (DT_veclen, &place);
987 test->u.veclen = XVECLEN (pattern, i);
988 }
989 }
990
991 /* Now test our sub-patterns. */
992 for (i = 0; i < (size_t) len; i++)
993 {
994 switch (fmt[i])
995 {
996 case 'e': case 'u':
997 subpos[depth] = '0' + i;
998 sub = add_to_sequence (XEXP (pattern, i), &sub->success,
999 subpos, insn_type, 0);
1000 break;
1001
1002 case 'E':
1003 {
1004 int j;
1005 for (j = 0; j < XVECLEN (pattern, i); j++)
1006 {
1007 subpos[depth] = 'a' + j;
1008 sub = add_to_sequence (XVECEXP (pattern, i, j),
1009 &sub->success, subpos, insn_type, 0);
1010 }
1011 break;
1012 }
1013
1014 case 'i': case 'w':
1015 /* Handled above. */
1016 break;
1017 case '0':
1018 break;
1019
1020 default:
1021 abort ();
1022 }
1023 }
1024
1025 fini:
1026 /* Insert nodes testing mode and code, if they're still relevant,
1027 before any of the nodes we may have added above. */
1028 if (code != UNKNOWN)
1029 {
1030 place = &this->tests;
1031 test = new_decision_test (DT_code, &place);
1032 test->u.code = code;
1033 }
1034
1035 if (mode != VOIDmode)
1036 {
1037 place = &this->tests;
1038 test = new_decision_test (DT_mode, &place);
1039 test->u.mode = mode;
1040 }
1041
1042 /* If we didn't insert any tests or accept nodes, hork. */
1043 if (this->tests == NULL)
1044 abort ();
1045
1046 ret:
1047 free (subpos);
1048 return sub;
1049 }
1050 \f
1051 /* A subroutine of maybe_both_true; examines only one test.
1052 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1053
1054 static int
1055 maybe_both_true_2 (struct decision_test *d1, struct decision_test *d2)
1056 {
1057 if (d1->type == d2->type)
1058 {
1059 switch (d1->type)
1060 {
1061 case DT_mode:
1062 return d1->u.mode == d2->u.mode;
1063
1064 case DT_code:
1065 return d1->u.code == d2->u.code;
1066
1067 case DT_veclen:
1068 return d1->u.veclen == d2->u.veclen;
1069
1070 case DT_elt_zero_int:
1071 case DT_elt_one_int:
1072 case DT_elt_zero_wide:
1073 case DT_elt_zero_wide_safe:
1074 return d1->u.intval == d2->u.intval;
1075
1076 default:
1077 break;
1078 }
1079 }
1080
1081 /* If either has a predicate that we know something about, set
1082 things up so that D1 is the one that always has a known
1083 predicate. Then see if they have any codes in common. */
1084
1085 if (d1->type == DT_pred || d2->type == DT_pred)
1086 {
1087 if (d2->type == DT_pred)
1088 {
1089 struct decision_test *tmp;
1090 tmp = d1, d1 = d2, d2 = tmp;
1091 }
1092
1093 /* If D2 tests a mode, see if it matches D1. */
1094 if (d1->u.pred.mode != VOIDmode)
1095 {
1096 if (d2->type == DT_mode)
1097 {
1098 if (d1->u.pred.mode != d2->u.mode
1099 /* The mode of an address_operand predicate is the
1100 mode of the memory, not the operand. It can only
1101 be used for testing the predicate, so we must
1102 ignore it here. */
1103 && strcmp (d1->u.pred.name, "address_operand") != 0)
1104 return 0;
1105 }
1106 /* Don't check two predicate modes here, because if both predicates
1107 accept CONST_INT, then both can still be true even if the modes
1108 are different. If they don't accept CONST_INT, there will be a
1109 separate DT_mode that will make maybe_both_true_1 return 0. */
1110 }
1111
1112 if (d1->u.pred.index >= 0)
1113 {
1114 /* If D2 tests a code, see if it is in the list of valid
1115 codes for D1's predicate. */
1116 if (d2->type == DT_code)
1117 {
1118 const RTX_CODE *c = &preds[d1->u.pred.index].codes[0];
1119 while (*c != 0)
1120 {
1121 if (*c == d2->u.code)
1122 break;
1123 ++c;
1124 }
1125 if (*c == 0)
1126 return 0;
1127 }
1128
1129 /* Otherwise see if the predicates have any codes in common. */
1130 else if (d2->type == DT_pred && d2->u.pred.index >= 0)
1131 {
1132 const RTX_CODE *c1 = &preds[d1->u.pred.index].codes[0];
1133 int common = 0;
1134
1135 while (*c1 != 0 && !common)
1136 {
1137 const RTX_CODE *c2 = &preds[d2->u.pred.index].codes[0];
1138 while (*c2 != 0 && !common)
1139 {
1140 common = (*c1 == *c2);
1141 ++c2;
1142 }
1143 ++c1;
1144 }
1145
1146 if (!common)
1147 return 0;
1148 }
1149 }
1150 }
1151
1152 /* Tests vs veclen may be known when strict equality is involved. */
1153 if (d1->type == DT_veclen && d2->type == DT_veclen_ge)
1154 return d1->u.veclen >= d2->u.veclen;
1155 if (d1->type == DT_veclen_ge && d2->type == DT_veclen)
1156 return d2->u.veclen >= d1->u.veclen;
1157
1158 return -1;
1159 }
1160
1161 /* A subroutine of maybe_both_true; examines all the tests for a given node.
1162 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1163
1164 static int
1165 maybe_both_true_1 (struct decision_test *d1, struct decision_test *d2)
1166 {
1167 struct decision_test *t1, *t2;
1168
1169 /* A match_operand with no predicate can match anything. Recognize
1170 this by the existence of a lone DT_accept_op test. */
1171 if (d1->type == DT_accept_op || d2->type == DT_accept_op)
1172 return 1;
1173
1174 /* Eliminate pairs of tests while they can exactly match. */
1175 while (d1 && d2 && d1->type == d2->type)
1176 {
1177 if (maybe_both_true_2 (d1, d2) == 0)
1178 return 0;
1179 d1 = d1->next, d2 = d2->next;
1180 }
1181
1182 /* After that, consider all pairs. */
1183 for (t1 = d1; t1 ; t1 = t1->next)
1184 for (t2 = d2; t2 ; t2 = t2->next)
1185 if (maybe_both_true_2 (t1, t2) == 0)
1186 return 0;
1187
1188 return -1;
1189 }
1190
1191 /* Return 0 if we can prove that there is no RTL that can match both
1192 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
1193 can match both or just that we couldn't prove there wasn't such an RTL).
1194
1195 TOPLEVEL is nonzero if we are to only look at the top level and not
1196 recursively descend. */
1197
1198 static int
1199 maybe_both_true (struct decision *d1, struct decision *d2,
1200 int toplevel)
1201 {
1202 struct decision *p1, *p2;
1203 int cmp;
1204
1205 /* Don't compare strings on the different positions in insn. Doing so
1206 is incorrect and results in false matches from constructs like
1207
1208 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1209 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1210 vs
1211 [(set (match_operand:HI "register_operand" "r")
1212 (match_operand:HI "register_operand" "r"))]
1213
1214 If we are presented with such, we are recursing through the remainder
1215 of a node's success nodes (from the loop at the end of this function).
1216 Skip forward until we come to a position that matches.
1217
1218 Due to the way position strings are constructed, we know that iterating
1219 forward from the lexically lower position (e.g. "00") will run into
1220 the lexically higher position (e.g. "1") and not the other way around.
1221 This saves a bit of effort. */
1222
1223 cmp = strcmp (d1->position, d2->position);
1224 if (cmp != 0)
1225 {
1226 if (toplevel)
1227 abort ();
1228
1229 /* If the d2->position was lexically lower, swap. */
1230 if (cmp > 0)
1231 p1 = d1, d1 = d2, d2 = p1;
1232
1233 if (d1->success.first == 0)
1234 return 1;
1235 for (p1 = d1->success.first; p1; p1 = p1->next)
1236 if (maybe_both_true (p1, d2, 0))
1237 return 1;
1238
1239 return 0;
1240 }
1241
1242 /* Test the current level. */
1243 cmp = maybe_both_true_1 (d1->tests, d2->tests);
1244 if (cmp >= 0)
1245 return cmp;
1246
1247 /* We can't prove that D1 and D2 cannot both be true. If we are only
1248 to check the top level, return 1. Otherwise, see if we can prove
1249 that all choices in both successors are mutually exclusive. If
1250 either does not have any successors, we can't prove they can't both
1251 be true. */
1252
1253 if (toplevel || d1->success.first == 0 || d2->success.first == 0)
1254 return 1;
1255
1256 for (p1 = d1->success.first; p1; p1 = p1->next)
1257 for (p2 = d2->success.first; p2; p2 = p2->next)
1258 if (maybe_both_true (p1, p2, 0))
1259 return 1;
1260
1261 return 0;
1262 }
1263
1264 /* A subroutine of nodes_identical. Examine two tests for equivalence. */
1265
1266 static int
1267 nodes_identical_1 (struct decision_test *d1, struct decision_test *d2)
1268 {
1269 switch (d1->type)
1270 {
1271 case DT_mode:
1272 return d1->u.mode == d2->u.mode;
1273
1274 case DT_code:
1275 return d1->u.code == d2->u.code;
1276
1277 case DT_pred:
1278 return (d1->u.pred.mode == d2->u.pred.mode
1279 && strcmp (d1->u.pred.name, d2->u.pred.name) == 0);
1280
1281 case DT_c_test:
1282 return strcmp (d1->u.c_test, d2->u.c_test) == 0;
1283
1284 case DT_veclen:
1285 case DT_veclen_ge:
1286 return d1->u.veclen == d2->u.veclen;
1287
1288 case DT_dup:
1289 return d1->u.dup == d2->u.dup;
1290
1291 case DT_elt_zero_int:
1292 case DT_elt_one_int:
1293 case DT_elt_zero_wide:
1294 case DT_elt_zero_wide_safe:
1295 return d1->u.intval == d2->u.intval;
1296
1297 case DT_accept_op:
1298 return d1->u.opno == d2->u.opno;
1299
1300 case DT_accept_insn:
1301 /* Differences will be handled in merge_accept_insn. */
1302 return 1;
1303
1304 default:
1305 abort ();
1306 }
1307 }
1308
1309 /* True iff the two nodes are identical (on one level only). Due
1310 to the way these lists are constructed, we shouldn't have to
1311 consider different orderings on the tests. */
1312
1313 static int
1314 nodes_identical (struct decision *d1, struct decision *d2)
1315 {
1316 struct decision_test *t1, *t2;
1317
1318 for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next)
1319 {
1320 if (t1->type != t2->type)
1321 return 0;
1322 if (! nodes_identical_1 (t1, t2))
1323 return 0;
1324 }
1325
1326 /* For success, they should now both be null. */
1327 if (t1 != t2)
1328 return 0;
1329
1330 /* Check that their subnodes are at the same position, as any one set
1331 of sibling decisions must be at the same position. Allowing this
1332 requires complications to find_afterward and when change_state is
1333 invoked. */
1334 if (d1->success.first
1335 && d2->success.first
1336 && strcmp (d1->success.first->position, d2->success.first->position))
1337 return 0;
1338
1339 return 1;
1340 }
1341
1342 /* A subroutine of merge_trees; given two nodes that have been declared
1343 identical, cope with two insn accept states. If they differ in the
1344 number of clobbers, then the conflict was created by make_insn_sequence
1345 and we can drop the with-clobbers version on the floor. If both
1346 nodes have no additional clobbers, we have found an ambiguity in the
1347 source machine description. */
1348
1349 static void
1350 merge_accept_insn (struct decision *oldd, struct decision *addd)
1351 {
1352 struct decision_test *old, *add;
1353
1354 for (old = oldd->tests; old; old = old->next)
1355 if (old->type == DT_accept_insn)
1356 break;
1357 if (old == NULL)
1358 return;
1359
1360 for (add = addd->tests; add; add = add->next)
1361 if (add->type == DT_accept_insn)
1362 break;
1363 if (add == NULL)
1364 return;
1365
1366 /* If one node is for a normal insn and the second is for the base
1367 insn with clobbers stripped off, the second node should be ignored. */
1368
1369 if (old->u.insn.num_clobbers_to_add == 0
1370 && add->u.insn.num_clobbers_to_add > 0)
1371 {
1372 /* Nothing to do here. */
1373 }
1374 else if (old->u.insn.num_clobbers_to_add > 0
1375 && add->u.insn.num_clobbers_to_add == 0)
1376 {
1377 /* In this case, replace OLD with ADD. */
1378 old->u.insn = add->u.insn;
1379 }
1380 else
1381 {
1382 message_with_line (add->u.insn.lineno, "`%s' matches `%s'",
1383 get_insn_name (add->u.insn.code_number),
1384 get_insn_name (old->u.insn.code_number));
1385 message_with_line (old->u.insn.lineno, "previous definition of `%s'",
1386 get_insn_name (old->u.insn.code_number));
1387 error_count++;
1388 }
1389 }
1390
1391 /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1392
1393 static void
1394 merge_trees (struct decision_head *oldh, struct decision_head *addh)
1395 {
1396 struct decision *next, *add;
1397
1398 if (addh->first == 0)
1399 return;
1400 if (oldh->first == 0)
1401 {
1402 *oldh = *addh;
1403 return;
1404 }
1405
1406 /* Trying to merge bits at different positions isn't possible. */
1407 if (strcmp (oldh->first->position, addh->first->position))
1408 abort ();
1409
1410 for (add = addh->first; add ; add = next)
1411 {
1412 struct decision *old, *insert_before = NULL;
1413
1414 next = add->next;
1415
1416 /* The semantics of pattern matching state that the tests are
1417 done in the order given in the MD file so that if an insn
1418 matches two patterns, the first one will be used. However,
1419 in practice, most, if not all, patterns are unambiguous so
1420 that their order is independent. In that case, we can merge
1421 identical tests and group all similar modes and codes together.
1422
1423 Scan starting from the end of OLDH until we reach a point
1424 where we reach the head of the list or where we pass a
1425 pattern that could also be true if NEW is true. If we find
1426 an identical pattern, we can merge them. Also, record the
1427 last node that tests the same code and mode and the last one
1428 that tests just the same mode.
1429
1430 If we have no match, place NEW after the closest match we found. */
1431
1432 for (old = oldh->last; old; old = old->prev)
1433 {
1434 if (nodes_identical (old, add))
1435 {
1436 merge_accept_insn (old, add);
1437 merge_trees (&old->success, &add->success);
1438 goto merged_nodes;
1439 }
1440
1441 if (maybe_both_true (old, add, 0))
1442 break;
1443
1444 /* Insert the nodes in DT test type order, which is roughly
1445 how expensive/important the test is. Given that the tests
1446 are also ordered within the list, examining the first is
1447 sufficient. */
1448 if ((int) add->tests->type < (int) old->tests->type)
1449 insert_before = old;
1450 }
1451
1452 if (insert_before == NULL)
1453 {
1454 add->next = NULL;
1455 add->prev = oldh->last;
1456 oldh->last->next = add;
1457 oldh->last = add;
1458 }
1459 else
1460 {
1461 if ((add->prev = insert_before->prev) != NULL)
1462 add->prev->next = add;
1463 else
1464 oldh->first = add;
1465 add->next = insert_before;
1466 insert_before->prev = add;
1467 }
1468
1469 merged_nodes:;
1470 }
1471 }
1472 \f
1473 /* Walk the tree looking for sub-nodes that perform common tests.
1474 Factor out the common test into a new node. This enables us
1475 (depending on the test type) to emit switch statements later. */
1476
1477 static void
1478 factor_tests (struct decision_head *head)
1479 {
1480 struct decision *first, *next;
1481
1482 for (first = head->first; first && first->next; first = next)
1483 {
1484 enum decision_type type;
1485 struct decision *new, *old_last;
1486
1487 type = first->tests->type;
1488 next = first->next;
1489
1490 /* Want at least two compatible sequential nodes. */
1491 if (next->tests->type != type)
1492 continue;
1493
1494 /* Don't want all node types, just those we can turn into
1495 switch statements. */
1496 if (type != DT_mode
1497 && type != DT_code
1498 && type != DT_veclen
1499 && type != DT_elt_zero_int
1500 && type != DT_elt_one_int
1501 && type != DT_elt_zero_wide_safe)
1502 continue;
1503
1504 /* If we'd been performing more than one test, create a new node
1505 below our first test. */
1506 if (first->tests->next != NULL)
1507 {
1508 new = new_decision (first->position, &first->success);
1509 new->tests = first->tests->next;
1510 first->tests->next = NULL;
1511 }
1512
1513 /* Crop the node tree off after our first test. */
1514 first->next = NULL;
1515 old_last = head->last;
1516 head->last = first;
1517
1518 /* For each compatible test, adjust to perform only one test in
1519 the top level node, then merge the node back into the tree. */
1520 do
1521 {
1522 struct decision_head h;
1523
1524 if (next->tests->next != NULL)
1525 {
1526 new = new_decision (next->position, &next->success);
1527 new->tests = next->tests->next;
1528 next->tests->next = NULL;
1529 }
1530 new = next;
1531 next = next->next;
1532 new->next = NULL;
1533 h.first = h.last = new;
1534
1535 merge_trees (head, &h);
1536 }
1537 while (next && next->tests->type == type);
1538
1539 /* After we run out of compatible tests, graft the remaining nodes
1540 back onto the tree. */
1541 if (next)
1542 {
1543 next->prev = head->last;
1544 head->last->next = next;
1545 head->last = old_last;
1546 }
1547 }
1548
1549 /* Recurse. */
1550 for (first = head->first; first; first = first->next)
1551 factor_tests (&first->success);
1552 }
1553
1554 /* After factoring, try to simplify the tests on any one node.
1555 Tests that are useful for switch statements are recognizable
1556 by having only a single test on a node -- we'll be manipulating
1557 nodes with multiple tests:
1558
1559 If we have mode tests or code tests that are redundant with
1560 predicates, remove them. */
1561
1562 static void
1563 simplify_tests (struct decision_head *head)
1564 {
1565 struct decision *tree;
1566
1567 for (tree = head->first; tree; tree = tree->next)
1568 {
1569 struct decision_test *a, *b;
1570
1571 a = tree->tests;
1572 b = a->next;
1573 if (b == NULL)
1574 continue;
1575
1576 /* Find a predicate node. */
1577 while (b && b->type != DT_pred)
1578 b = b->next;
1579 if (b)
1580 {
1581 /* Due to how these tests are constructed, we don't even need
1582 to check that the mode and code are compatible -- they were
1583 generated from the predicate in the first place. */
1584 while (a->type == DT_mode || a->type == DT_code)
1585 a = a->next;
1586 tree->tests = a;
1587 }
1588 }
1589
1590 /* Recurse. */
1591 for (tree = head->first; tree; tree = tree->next)
1592 simplify_tests (&tree->success);
1593 }
1594
1595 /* Count the number of subnodes of HEAD. If the number is high enough,
1596 make the first node in HEAD start a separate subroutine in the C code
1597 that is generated. */
1598
1599 static int
1600 break_out_subroutines (struct decision_head *head, int initial)
1601 {
1602 int size = 0;
1603 struct decision *sub;
1604
1605 for (sub = head->first; sub; sub = sub->next)
1606 size += 1 + break_out_subroutines (&sub->success, 0);
1607
1608 if (size > SUBROUTINE_THRESHOLD && ! initial)
1609 {
1610 head->first->subroutine_number = ++next_subroutine_number;
1611 size = 1;
1612 }
1613 return size;
1614 }
1615
1616 /* For each node p, find the next alternative that might be true
1617 when p is true. */
1618
1619 static void
1620 find_afterward (struct decision_head *head, struct decision *real_afterward)
1621 {
1622 struct decision *p, *q, *afterward;
1623
1624 /* We can't propagate alternatives across subroutine boundaries.
1625 This is not incorrect, merely a minor optimization loss. */
1626
1627 p = head->first;
1628 afterward = (p->subroutine_number > 0 ? NULL : real_afterward);
1629
1630 for ( ; p ; p = p->next)
1631 {
1632 /* Find the next node that might be true if this one fails. */
1633 for (q = p->next; q ; q = q->next)
1634 if (maybe_both_true (p, q, 1))
1635 break;
1636
1637 /* If we reached the end of the list without finding one,
1638 use the incoming afterward position. */
1639 if (!q)
1640 q = afterward;
1641 p->afterward = q;
1642 if (q)
1643 q->need_label = 1;
1644 }
1645
1646 /* Recurse. */
1647 for (p = head->first; p ; p = p->next)
1648 if (p->success.first)
1649 find_afterward (&p->success, p->afterward);
1650
1651 /* When we are generating a subroutine, record the real afterward
1652 position in the first node where write_tree can find it, and we
1653 can do the right thing at the subroutine call site. */
1654 p = head->first;
1655 if (p->subroutine_number > 0)
1656 p->afterward = real_afterward;
1657 }
1658 \f
1659 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1660 actions are necessary to move to NEWPOS. If we fail to move to the
1661 new state, branch to node AFTERWARD if nonzero, otherwise return.
1662
1663 Failure to move to the new state can only occur if we are trying to
1664 match multiple insns and we try to step past the end of the stream. */
1665
1666 static void
1667 change_state (const char *oldpos, const char *newpos,
1668 struct decision *afterward, const char *indent)
1669 {
1670 int odepth = strlen (oldpos);
1671 int ndepth = strlen (newpos);
1672 int depth;
1673 int old_has_insn, new_has_insn;
1674
1675 /* Pop up as many levels as necessary. */
1676 for (depth = odepth; strncmp (oldpos, newpos, depth) != 0; --depth)
1677 continue;
1678
1679 /* Hunt for the last [A-Z] in both strings. */
1680 for (old_has_insn = odepth - 1; old_has_insn >= 0; --old_has_insn)
1681 if (ISUPPER (oldpos[old_has_insn]))
1682 break;
1683 for (new_has_insn = ndepth - 1; new_has_insn >= 0; --new_has_insn)
1684 if (ISUPPER (newpos[new_has_insn]))
1685 break;
1686
1687 /* Go down to desired level. */
1688 while (depth < ndepth)
1689 {
1690 /* It's a different insn from the first one. */
1691 if (ISUPPER (newpos[depth]))
1692 {
1693 /* We can only fail if we're moving down the tree. */
1694 if (old_has_insn >= 0 && oldpos[old_has_insn] >= newpos[depth])
1695 {
1696 printf ("%stem = peep2_next_insn (%d);\n",
1697 indent, newpos[depth] - 'A');
1698 }
1699 else
1700 {
1701 printf ("%stem = peep2_next_insn (%d);\n",
1702 indent, newpos[depth] - 'A');
1703 printf ("%sif (tem == NULL_RTX)\n", indent);
1704 if (afterward)
1705 printf ("%s goto L%d;\n", indent, afterward->number);
1706 else
1707 printf ("%s goto ret0;\n", indent);
1708 }
1709 printf ("%sx%d = PATTERN (tem);\n", indent, depth + 1);
1710 }
1711 else if (ISLOWER (newpos[depth]))
1712 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1713 indent, depth + 1, depth, newpos[depth] - 'a');
1714 else
1715 printf ("%sx%d = XEXP (x%d, %c);\n",
1716 indent, depth + 1, depth, newpos[depth]);
1717 ++depth;
1718 }
1719 }
1720 \f
1721 /* Print the enumerator constant for CODE -- the upcase version of
1722 the name. */
1723
1724 static void
1725 print_code (enum rtx_code code)
1726 {
1727 const char *p;
1728 for (p = GET_RTX_NAME (code); *p; p++)
1729 putchar (TOUPPER (*p));
1730 }
1731
1732 /* Emit code to cross an afterward link -- change state and branch. */
1733
1734 static void
1735 write_afterward (struct decision *start, struct decision *afterward,
1736 const char *indent)
1737 {
1738 if (!afterward || start->subroutine_number > 0)
1739 printf("%sgoto ret0;\n", indent);
1740 else
1741 {
1742 change_state (start->position, afterward->position, NULL, indent);
1743 printf ("%sgoto L%d;\n", indent, afterward->number);
1744 }
1745 }
1746
1747 /* Emit a HOST_WIDE_INT as an integer constant expression. We need to take
1748 special care to avoid "decimal constant is so large that it is unsigned"
1749 warnings in the resulting code. */
1750
1751 static void
1752 print_host_wide_int (HOST_WIDE_INT val)
1753 {
1754 HOST_WIDE_INT min = (unsigned HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1);
1755 if (val == min)
1756 printf ("(" HOST_WIDE_INT_PRINT_DEC_C "-1)", val + 1);
1757 else
1758 printf (HOST_WIDE_INT_PRINT_DEC_C, val);
1759 }
1760
1761 /* Emit a switch statement, if possible, for an initial sequence of
1762 nodes at START. Return the first node yet untested. */
1763
1764 static struct decision *
1765 write_switch (struct decision *start, int depth)
1766 {
1767 struct decision *p = start;
1768 enum decision_type type = p->tests->type;
1769 struct decision *needs_label = NULL;
1770
1771 /* If we have two or more nodes in sequence that test the same one
1772 thing, we may be able to use a switch statement. */
1773
1774 if (!p->next
1775 || p->tests->next
1776 || p->next->tests->type != type
1777 || p->next->tests->next
1778 || nodes_identical_1 (p->tests, p->next->tests))
1779 return p;
1780
1781 /* DT_code is special in that we can do interesting things with
1782 known predicates at the same time. */
1783 if (type == DT_code)
1784 {
1785 char codemap[NUM_RTX_CODE];
1786 struct decision *ret;
1787 RTX_CODE code;
1788
1789 memset (codemap, 0, sizeof(codemap));
1790
1791 printf (" switch (GET_CODE (x%d))\n {\n", depth);
1792 code = p->tests->u.code;
1793 do
1794 {
1795 if (p != start && p->need_label && needs_label == NULL)
1796 needs_label = p;
1797
1798 printf (" case ");
1799 print_code (code);
1800 printf (":\n goto L%d;\n", p->success.first->number);
1801 p->success.first->need_label = 1;
1802
1803 codemap[code] = 1;
1804 p = p->next;
1805 }
1806 while (p
1807 && ! p->tests->next
1808 && p->tests->type == DT_code
1809 && ! codemap[code = p->tests->u.code]);
1810
1811 /* If P is testing a predicate that we know about and we haven't
1812 seen any of the codes that are valid for the predicate, we can
1813 write a series of "case" statement, one for each possible code.
1814 Since we are already in a switch, these redundant tests are very
1815 cheap and will reduce the number of predicates called. */
1816
1817 /* Note that while we write out cases for these predicates here,
1818 we don't actually write the test here, as it gets kinda messy.
1819 It is trivial to leave this to later by telling our caller that
1820 we only processed the CODE tests. */
1821 if (needs_label != NULL)
1822 ret = needs_label;
1823 else
1824 ret = p;
1825
1826 while (p && p->tests->type == DT_pred
1827 && p->tests->u.pred.index >= 0)
1828 {
1829 const RTX_CODE *c;
1830
1831 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1832 if (codemap[(int) *c] != 0)
1833 goto pred_done;
1834
1835 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1836 {
1837 printf (" case ");
1838 print_code (*c);
1839 printf (":\n");
1840 codemap[(int) *c] = 1;
1841 }
1842
1843 printf (" goto L%d;\n", p->number);
1844 p->need_label = 1;
1845 p = p->next;
1846 }
1847
1848 pred_done:
1849 /* Make the default case skip the predicates we managed to match. */
1850
1851 printf (" default:\n");
1852 if (p != ret)
1853 {
1854 if (p)
1855 {
1856 printf (" goto L%d;\n", p->number);
1857 p->need_label = 1;
1858 }
1859 else
1860 write_afterward (start, start->afterward, " ");
1861 }
1862 else
1863 printf (" break;\n");
1864 printf (" }\n");
1865
1866 return ret;
1867 }
1868 else if (type == DT_mode
1869 || type == DT_veclen
1870 || type == DT_elt_zero_int
1871 || type == DT_elt_one_int
1872 || type == DT_elt_zero_wide_safe)
1873 {
1874 const char *indent = "";
1875
1876 /* We cast switch parameter to integer, so we must ensure that the value
1877 fits. */
1878 if (type == DT_elt_zero_wide_safe)
1879 {
1880 indent = " ";
1881 printf(" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n", depth, depth);
1882 }
1883 printf ("%s switch (", indent);
1884 switch (type)
1885 {
1886 case DT_mode:
1887 printf ("GET_MODE (x%d)", depth);
1888 break;
1889 case DT_veclen:
1890 printf ("XVECLEN (x%d, 0)", depth);
1891 break;
1892 case DT_elt_zero_int:
1893 printf ("XINT (x%d, 0)", depth);
1894 break;
1895 case DT_elt_one_int:
1896 printf ("XINT (x%d, 1)", depth);
1897 break;
1898 case DT_elt_zero_wide_safe:
1899 /* Convert result of XWINT to int for portability since some C
1900 compilers won't do it and some will. */
1901 printf ("(int) XWINT (x%d, 0)", depth);
1902 break;
1903 default:
1904 abort ();
1905 }
1906 printf (")\n%s {\n", indent);
1907
1908 do
1909 {
1910 /* Merge trees will not unify identical nodes if their
1911 sub-nodes are at different levels. Thus we must check
1912 for duplicate cases. */
1913 struct decision *q;
1914 for (q = start; q != p; q = q->next)
1915 if (nodes_identical_1 (p->tests, q->tests))
1916 goto case_done;
1917
1918 if (p != start && p->need_label && needs_label == NULL)
1919 needs_label = p;
1920
1921 printf ("%s case ", indent);
1922 switch (type)
1923 {
1924 case DT_mode:
1925 printf ("%smode", GET_MODE_NAME (p->tests->u.mode));
1926 break;
1927 case DT_veclen:
1928 printf ("%d", p->tests->u.veclen);
1929 break;
1930 case DT_elt_zero_int:
1931 case DT_elt_one_int:
1932 case DT_elt_zero_wide:
1933 case DT_elt_zero_wide_safe:
1934 print_host_wide_int (p->tests->u.intval);
1935 break;
1936 default:
1937 abort ();
1938 }
1939 printf (":\n%s goto L%d;\n", indent, p->success.first->number);
1940 p->success.first->need_label = 1;
1941
1942 p = p->next;
1943 }
1944 while (p && p->tests->type == type && !p->tests->next);
1945
1946 case_done:
1947 printf ("%s default:\n%s break;\n%s }\n",
1948 indent, indent, indent);
1949
1950 return needs_label != NULL ? needs_label : p;
1951 }
1952 else
1953 {
1954 /* None of the other tests are amenable. */
1955 return p;
1956 }
1957 }
1958
1959 /* Emit code for one test. */
1960
1961 static void
1962 write_cond (struct decision_test *p, int depth,
1963 enum routine_type subroutine_type)
1964 {
1965 switch (p->type)
1966 {
1967 case DT_mode:
1968 printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode));
1969 break;
1970
1971 case DT_code:
1972 printf ("GET_CODE (x%d) == ", depth);
1973 print_code (p->u.code);
1974 break;
1975
1976 case DT_veclen:
1977 printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen);
1978 break;
1979
1980 case DT_elt_zero_int:
1981 printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval);
1982 break;
1983
1984 case DT_elt_one_int:
1985 printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval);
1986 break;
1987
1988 case DT_elt_zero_wide:
1989 case DT_elt_zero_wide_safe:
1990 printf ("XWINT (x%d, 0) == ", depth);
1991 print_host_wide_int (p->u.intval);
1992 break;
1993
1994 case DT_const_int:
1995 printf ("x%d == const_int_rtx[MAX_SAVED_CONST_INT + (%d)]",
1996 depth, (int) p->u.intval);
1997 break;
1998
1999 case DT_veclen_ge:
2000 printf ("XVECLEN (x%d, 0) >= %d", depth, p->u.veclen);
2001 break;
2002
2003 case DT_dup:
2004 printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup);
2005 break;
2006
2007 case DT_pred:
2008 printf ("%s (x%d, %smode)", p->u.pred.name, depth,
2009 GET_MODE_NAME (p->u.pred.mode));
2010 break;
2011
2012 case DT_c_test:
2013 printf ("(%s)", p->u.c_test);
2014 break;
2015
2016 case DT_accept_insn:
2017 switch (subroutine_type)
2018 {
2019 case RECOG:
2020 if (p->u.insn.num_clobbers_to_add == 0)
2021 abort ();
2022 printf ("pnum_clobbers != NULL");
2023 break;
2024
2025 default:
2026 abort ();
2027 }
2028 break;
2029
2030 default:
2031 abort ();
2032 }
2033 }
2034
2035 /* Emit code for one action. The previous tests have succeeded;
2036 TEST is the last of the chain. In the normal case we simply
2037 perform a state change. For the `accept' tests we must do more work. */
2038
2039 static void
2040 write_action (struct decision *p, struct decision_test *test,
2041 int depth, int uncond, struct decision *success,
2042 enum routine_type subroutine_type)
2043 {
2044 const char *indent;
2045 int want_close = 0;
2046
2047 if (uncond)
2048 indent = " ";
2049 else if (test->type == DT_accept_op || test->type == DT_accept_insn)
2050 {
2051 fputs (" {\n", stdout);
2052 indent = " ";
2053 want_close = 1;
2054 }
2055 else
2056 indent = " ";
2057
2058 if (test->type == DT_accept_op)
2059 {
2060 printf("%soperands[%d] = x%d;\n", indent, test->u.opno, depth);
2061
2062 /* Only allow DT_accept_insn to follow. */
2063 if (test->next)
2064 {
2065 test = test->next;
2066 if (test->type != DT_accept_insn)
2067 abort ();
2068 }
2069 }
2070
2071 /* Sanity check that we're now at the end of the list of tests. */
2072 if (test->next)
2073 abort ();
2074
2075 if (test->type == DT_accept_insn)
2076 {
2077 switch (subroutine_type)
2078 {
2079 case RECOG:
2080 if (test->u.insn.num_clobbers_to_add != 0)
2081 printf ("%s*pnum_clobbers = %d;\n",
2082 indent, test->u.insn.num_clobbers_to_add);
2083 printf ("%sreturn %d;\n", indent, test->u.insn.code_number);
2084 break;
2085
2086 case SPLIT:
2087 printf ("%sreturn gen_split_%d (insn, operands);\n",
2088 indent, test->u.insn.code_number);
2089 break;
2090
2091 case PEEPHOLE2:
2092 {
2093 int match_len = 0, i;
2094
2095 for (i = strlen (p->position) - 1; i >= 0; --i)
2096 if (ISUPPER (p->position[i]))
2097 {
2098 match_len = p->position[i] - 'A';
2099 break;
2100 }
2101 printf ("%s*_pmatch_len = %d;\n", indent, match_len);
2102 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
2103 indent, test->u.insn.code_number);
2104 printf ("%sif (tem != 0)\n%s return tem;\n", indent, indent);
2105 }
2106 break;
2107
2108 default:
2109 abort ();
2110 }
2111 }
2112 else
2113 {
2114 printf("%sgoto L%d;\n", indent, success->number);
2115 success->need_label = 1;
2116 }
2117
2118 if (want_close)
2119 fputs (" }\n", stdout);
2120 }
2121
2122 /* Return 1 if the test is always true and has no fallthru path. Return -1
2123 if the test does have a fallthru path, but requires that the condition be
2124 terminated. Otherwise return 0 for a normal test. */
2125 /* ??? is_unconditional is a stupid name for a tri-state function. */
2126
2127 static int
2128 is_unconditional (struct decision_test *t, enum routine_type subroutine_type)
2129 {
2130 if (t->type == DT_accept_op)
2131 return 1;
2132
2133 if (t->type == DT_accept_insn)
2134 {
2135 switch (subroutine_type)
2136 {
2137 case RECOG:
2138 return (t->u.insn.num_clobbers_to_add == 0);
2139 case SPLIT:
2140 return 1;
2141 case PEEPHOLE2:
2142 return -1;
2143 default:
2144 abort ();
2145 }
2146 }
2147
2148 return 0;
2149 }
2150
2151 /* Emit code for one node -- the conditional and the accompanying action.
2152 Return true if there is no fallthru path. */
2153
2154 static int
2155 write_node (struct decision *p, int depth,
2156 enum routine_type subroutine_type)
2157 {
2158 struct decision_test *test, *last_test;
2159 int uncond;
2160
2161 /* Scan the tests and simplify comparisons against small
2162 constants. */
2163 for (test = p->tests; test; test = test->next)
2164 {
2165 if (test->type == DT_code
2166 && test->u.code == CONST_INT
2167 && test->next
2168 && test->next->type == DT_elt_zero_wide_safe
2169 && -MAX_SAVED_CONST_INT <= test->next->u.intval
2170 && test->next->u.intval <= MAX_SAVED_CONST_INT)
2171 {
2172 test->type = DT_const_int;
2173 test->u.intval = test->next->u.intval;
2174 test->next = test->next->next;
2175 }
2176 }
2177
2178 last_test = test = p->tests;
2179 uncond = is_unconditional (test, subroutine_type);
2180 if (uncond == 0)
2181 {
2182 printf (" if (");
2183 write_cond (test, depth, subroutine_type);
2184
2185 while ((test = test->next) != NULL)
2186 {
2187 last_test = test;
2188 if (is_unconditional (test, subroutine_type))
2189 break;
2190
2191 printf ("\n && ");
2192 write_cond (test, depth, subroutine_type);
2193 }
2194
2195 printf (")\n");
2196 }
2197
2198 write_action (p, last_test, depth, uncond, p->success.first, subroutine_type);
2199
2200 return uncond > 0;
2201 }
2202
2203 /* Emit code for all of the sibling nodes of HEAD. */
2204
2205 static void
2206 write_tree_1 (struct decision_head *head, int depth,
2207 enum routine_type subroutine_type)
2208 {
2209 struct decision *p, *next;
2210 int uncond = 0;
2211
2212 for (p = head->first; p ; p = next)
2213 {
2214 /* The label for the first element was printed in write_tree. */
2215 if (p != head->first && p->need_label)
2216 OUTPUT_LABEL (" ", p->number);
2217
2218 /* Attempt to write a switch statement for a whole sequence. */
2219 next = write_switch (p, depth);
2220 if (p != next)
2221 uncond = 0;
2222 else
2223 {
2224 /* Failed -- fall back and write one node. */
2225 uncond = write_node (p, depth, subroutine_type);
2226 next = p->next;
2227 }
2228 }
2229
2230 /* Finished with this chain. Close a fallthru path by branching
2231 to the afterward node. */
2232 if (! uncond)
2233 write_afterward (head->last, head->last->afterward, " ");
2234 }
2235
2236 /* Write out the decision tree starting at HEAD. PREVPOS is the
2237 position at the node that branched to this node. */
2238
2239 static void
2240 write_tree (struct decision_head *head, const char *prevpos,
2241 enum routine_type type, int initial)
2242 {
2243 struct decision *p = head->first;
2244
2245 putchar ('\n');
2246 if (p->need_label)
2247 OUTPUT_LABEL (" ", p->number);
2248
2249 if (! initial && p->subroutine_number > 0)
2250 {
2251 static const char * const name_prefix[] = {
2252 "recog", "split", "peephole2"
2253 };
2254
2255 static const char * const call_suffix[] = {
2256 ", pnum_clobbers", "", ", _pmatch_len"
2257 };
2258
2259 /* This node has been broken out into a separate subroutine.
2260 Call it, test the result, and branch accordingly. */
2261
2262 if (p->afterward)
2263 {
2264 printf (" tem = %s_%d (x0, insn%s);\n",
2265 name_prefix[type], p->subroutine_number, call_suffix[type]);
2266 if (IS_SPLIT (type))
2267 printf (" if (tem != 0)\n return tem;\n");
2268 else
2269 printf (" if (tem >= 0)\n return tem;\n");
2270
2271 change_state (p->position, p->afterward->position, NULL, " ");
2272 printf (" goto L%d;\n", p->afterward->number);
2273 }
2274 else
2275 {
2276 printf (" return %s_%d (x0, insn%s);\n",
2277 name_prefix[type], p->subroutine_number, call_suffix[type]);
2278 }
2279 }
2280 else
2281 {
2282 int depth = strlen (p->position);
2283
2284 change_state (prevpos, p->position, head->last->afterward, " ");
2285 write_tree_1 (head, depth, type);
2286
2287 for (p = head->first; p; p = p->next)
2288 if (p->success.first)
2289 write_tree (&p->success, p->position, type, 0);
2290 }
2291 }
2292
2293 /* Write out a subroutine of type TYPE to do comparisons starting at
2294 node TREE. */
2295
2296 static void
2297 write_subroutine (struct decision_head *head, enum routine_type type)
2298 {
2299 int subfunction = head->first ? head->first->subroutine_number : 0;
2300 const char *s_or_e;
2301 char extension[32];
2302 int i;
2303
2304 s_or_e = subfunction ? "static " : "";
2305
2306 if (subfunction)
2307 sprintf (extension, "_%d", subfunction);
2308 else if (type == RECOG)
2309 extension[0] = '\0';
2310 else
2311 strcpy (extension, "_insns");
2312
2313 switch (type)
2314 {
2315 case RECOG:
2316 printf ("%sint\n\
2317 recog%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", s_or_e, extension);
2318 break;
2319 case SPLIT:
2320 printf ("%srtx\n\
2321 split%s (rtx x0 ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED)\n",
2322 s_or_e, extension);
2323 break;
2324 case PEEPHOLE2:
2325 printf ("%srtx\n\
2326 peephole2%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *_pmatch_len ATTRIBUTE_UNUSED)\n",
2327 s_or_e, extension);
2328 break;
2329 }
2330
2331 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
2332 for (i = 1; i <= max_depth; i++)
2333 printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i);
2334
2335 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int");
2336
2337 if (!subfunction)
2338 printf (" recog_data.insn = NULL_RTX;\n");
2339
2340 if (head->first)
2341 write_tree (head, "", type, 1);
2342 else
2343 printf (" goto ret0;\n");
2344
2345 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1);
2346 }
2347
2348 /* In break_out_subroutines, we discovered the boundaries for the
2349 subroutines, but did not write them out. Do so now. */
2350
2351 static void
2352 write_subroutines (struct decision_head *head, enum routine_type type)
2353 {
2354 struct decision *p;
2355
2356 for (p = head->first; p ; p = p->next)
2357 if (p->success.first)
2358 write_subroutines (&p->success, type);
2359
2360 if (head->first->subroutine_number > 0)
2361 write_subroutine (head, type);
2362 }
2363
2364 /* Begin the output file. */
2365
2366 static void
2367 write_header (void)
2368 {
2369 puts ("\
2370 /* Generated automatically by the program `genrecog' from the target\n\
2371 machine description file. */\n\
2372 \n\
2373 #include \"config.h\"\n\
2374 #include \"system.h\"\n\
2375 #include \"coretypes.h\"\n\
2376 #include \"tm.h\"\n\
2377 #include \"rtl.h\"\n\
2378 #include \"tm_p.h\"\n\
2379 #include \"function.h\"\n\
2380 #include \"insn-config.h\"\n\
2381 #include \"recog.h\"\n\
2382 #include \"real.h\"\n\
2383 #include \"output.h\"\n\
2384 #include \"flags.h\"\n\
2385 #include \"hard-reg-set.h\"\n\
2386 #include \"resource.h\"\n\
2387 #include \"toplev.h\"\n\
2388 #include \"reload.h\"\n\
2389 \n");
2390
2391 puts ("\n\
2392 /* `recog' contains a decision tree that recognizes whether the rtx\n\
2393 X0 is a valid instruction.\n\
2394 \n\
2395 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2396 returns a nonnegative number which is the insn code number for the\n\
2397 pattern that matched. This is the same as the order in the machine\n\
2398 description of the entry that matched. This number can be used as an\n\
2399 index into `insn_data' and other tables.\n");
2400 puts ("\
2401 The third argument to recog is an optional pointer to an int. If\n\
2402 present, recog will accept a pattern if it matches except for missing\n\
2403 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2404 the optional pointer will be set to the number of CLOBBERs that need\n\
2405 to be added (it should be initialized to zero by the caller). If it");
2406 puts ("\
2407 is set nonzero, the caller should allocate a PARALLEL of the\n\
2408 appropriate size, copy the initial entries, and call add_clobbers\n\
2409 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2410 ");
2411
2412 puts ("\n\
2413 The function split_insns returns 0 if the rtl could not\n\
2414 be split or the split rtl as an INSN list if it can be.\n\
2415 \n\
2416 The function peephole2_insns returns 0 if the rtl could not\n\
2417 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
2418 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2419 */\n\n");
2420 }
2421
2422 \f
2423 /* Construct and return a sequence of decisions
2424 that will recognize INSN.
2425
2426 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2427
2428 static struct decision_head
2429 make_insn_sequence (rtx insn, enum routine_type type)
2430 {
2431 rtx x;
2432 const char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
2433 int truth = maybe_eval_c_test (c_test);
2434 struct decision *last;
2435 struct decision_test *test, **place;
2436 struct decision_head head;
2437 char c_test_pos[2];
2438
2439 /* We should never see an insn whose C test is false at compile time. */
2440 if (truth == 0)
2441 abort ();
2442
2443 record_insn_name (next_insn_code, (type == RECOG ? XSTR (insn, 0) : NULL));
2444
2445 c_test_pos[0] = '\0';
2446 if (type == PEEPHOLE2)
2447 {
2448 int i, j;
2449
2450 /* peephole2 gets special treatment:
2451 - X always gets an outer parallel even if it's only one entry
2452 - we remove all traces of outer-level match_scratch and match_dup
2453 expressions here. */
2454 x = rtx_alloc (PARALLEL);
2455 PUT_MODE (x, VOIDmode);
2456 XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0));
2457 for (i = j = 0; i < XVECLEN (insn, 0); i++)
2458 {
2459 rtx tmp = XVECEXP (insn, 0, i);
2460 if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP)
2461 {
2462 XVECEXP (x, 0, j) = tmp;
2463 j++;
2464 }
2465 }
2466 XVECLEN (x, 0) = j;
2467
2468 c_test_pos[0] = 'A' + j - 1;
2469 c_test_pos[1] = '\0';
2470 }
2471 else if (XVECLEN (insn, type == RECOG) == 1)
2472 x = XVECEXP (insn, type == RECOG, 0);
2473 else
2474 {
2475 x = rtx_alloc (PARALLEL);
2476 XVEC (x, 0) = XVEC (insn, type == RECOG);
2477 PUT_MODE (x, VOIDmode);
2478 }
2479
2480 validate_pattern (x, insn, NULL_RTX, 0);
2481
2482 memset(&head, 0, sizeof(head));
2483 last = add_to_sequence (x, &head, "", type, 1);
2484
2485 /* Find the end of the test chain on the last node. */
2486 for (test = last->tests; test->next; test = test->next)
2487 continue;
2488 place = &test->next;
2489
2490 /* Skip the C test if it's known to be true at compile time. */
2491 if (truth == -1)
2492 {
2493 /* Need a new node if we have another test to add. */
2494 if (test->type == DT_accept_op)
2495 {
2496 last = new_decision (c_test_pos, &last->success);
2497 place = &last->tests;
2498 }
2499 test = new_decision_test (DT_c_test, &place);
2500 test->u.c_test = c_test;
2501 }
2502
2503 test = new_decision_test (DT_accept_insn, &place);
2504 test->u.insn.code_number = next_insn_code;
2505 test->u.insn.lineno = pattern_lineno;
2506 test->u.insn.num_clobbers_to_add = 0;
2507
2508 switch (type)
2509 {
2510 case RECOG:
2511 /* If this is a DEFINE_INSN and X is a PARALLEL, see if it ends
2512 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2513 If so, set up to recognize the pattern without these CLOBBERs. */
2514
2515 if (GET_CODE (x) == PARALLEL)
2516 {
2517 int i;
2518
2519 /* Find the last non-clobber in the parallel. */
2520 for (i = XVECLEN (x, 0); i > 0; i--)
2521 {
2522 rtx y = XVECEXP (x, 0, i - 1);
2523 if (GET_CODE (y) != CLOBBER
2524 || (!REG_P (XEXP (y, 0))
2525 && GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH))
2526 break;
2527 }
2528
2529 if (i != XVECLEN (x, 0))
2530 {
2531 rtx new;
2532 struct decision_head clobber_head;
2533
2534 /* Build a similar insn without the clobbers. */
2535 if (i == 1)
2536 new = XVECEXP (x, 0, 0);
2537 else
2538 {
2539 int j;
2540
2541 new = rtx_alloc (PARALLEL);
2542 XVEC (new, 0) = rtvec_alloc (i);
2543 for (j = i - 1; j >= 0; j--)
2544 XVECEXP (new, 0, j) = XVECEXP (x, 0, j);
2545 }
2546
2547 /* Recognize it. */
2548 memset (&clobber_head, 0, sizeof(clobber_head));
2549 last = add_to_sequence (new, &clobber_head, "", type, 1);
2550
2551 /* Find the end of the test chain on the last node. */
2552 for (test = last->tests; test->next; test = test->next)
2553 continue;
2554
2555 /* We definitely have a new test to add -- create a new
2556 node if needed. */
2557 place = &test->next;
2558 if (test->type == DT_accept_op)
2559 {
2560 last = new_decision ("", &last->success);
2561 place = &last->tests;
2562 }
2563
2564 /* Skip the C test if it's known to be true at compile
2565 time. */
2566 if (truth == -1)
2567 {
2568 test = new_decision_test (DT_c_test, &place);
2569 test->u.c_test = c_test;
2570 }
2571
2572 test = new_decision_test (DT_accept_insn, &place);
2573 test->u.insn.code_number = next_insn_code;
2574 test->u.insn.lineno = pattern_lineno;
2575 test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i;
2576
2577 merge_trees (&head, &clobber_head);
2578 }
2579 }
2580 break;
2581
2582 case SPLIT:
2583 /* Define the subroutine we will call below and emit in genemit. */
2584 printf ("extern rtx gen_split_%d (rtx, rtx *);\n", next_insn_code);
2585 break;
2586
2587 case PEEPHOLE2:
2588 /* Define the subroutine we will call below and emit in genemit. */
2589 printf ("extern rtx gen_peephole2_%d (rtx, rtx *);\n",
2590 next_insn_code);
2591 break;
2592 }
2593
2594 return head;
2595 }
2596
2597 static void
2598 process_tree (struct decision_head *head, enum routine_type subroutine_type)
2599 {
2600 if (head->first == NULL)
2601 {
2602 /* We can elide peephole2_insns, but not recog or split_insns. */
2603 if (subroutine_type == PEEPHOLE2)
2604 return;
2605 }
2606 else
2607 {
2608 factor_tests (head);
2609
2610 next_subroutine_number = 0;
2611 break_out_subroutines (head, 1);
2612 find_afterward (head, NULL);
2613
2614 /* We run this after find_afterward, because find_afterward needs
2615 the redundant DT_mode tests on predicates to determine whether
2616 two tests can both be true or not. */
2617 simplify_tests(head);
2618
2619 write_subroutines (head, subroutine_type);
2620 }
2621
2622 write_subroutine (head, subroutine_type);
2623 }
2624 \f
2625 extern int main (int, char **);
2626
2627 int
2628 main (int argc, char **argv)
2629 {
2630 rtx desc;
2631 struct decision_head recog_tree, split_tree, peephole2_tree, h;
2632
2633 progname = "genrecog";
2634
2635 memset (&recog_tree, 0, sizeof recog_tree);
2636 memset (&split_tree, 0, sizeof split_tree);
2637 memset (&peephole2_tree, 0, sizeof peephole2_tree);
2638
2639 if (argc <= 1)
2640 fatal ("no input file name");
2641
2642 if (init_md_reader_args (argc, argv) != SUCCESS_EXIT_CODE)
2643 return (FATAL_EXIT_CODE);
2644
2645 next_insn_code = 0;
2646 next_index = 0;
2647
2648 write_header ();
2649
2650 /* Read the machine description. */
2651
2652 while (1)
2653 {
2654 desc = read_md_rtx (&pattern_lineno, &next_insn_code);
2655 if (desc == NULL)
2656 break;
2657
2658 if (GET_CODE (desc) == DEFINE_INSN)
2659 {
2660 h = make_insn_sequence (desc, RECOG);
2661 merge_trees (&recog_tree, &h);
2662 }
2663 else if (GET_CODE (desc) == DEFINE_SPLIT)
2664 {
2665 h = make_insn_sequence (desc, SPLIT);
2666 merge_trees (&split_tree, &h);
2667 }
2668 else if (GET_CODE (desc) == DEFINE_PEEPHOLE2)
2669 {
2670 h = make_insn_sequence (desc, PEEPHOLE2);
2671 merge_trees (&peephole2_tree, &h);
2672 }
2673
2674 next_index++;
2675 }
2676
2677 if (error_count)
2678 return FATAL_EXIT_CODE;
2679
2680 puts ("\n\n");
2681
2682 process_tree (&recog_tree, RECOG);
2683 process_tree (&split_tree, SPLIT);
2684 process_tree (&peephole2_tree, PEEPHOLE2);
2685
2686 fflush (stdout);
2687 return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
2688 }
2689 \f
2690 /* Define this so we can link with print-rtl.o to get debug_rtx function. */
2691 const char *
2692 get_insn_name (int code)
2693 {
2694 if (code < insn_name_ptr_size)
2695 return insn_name_ptr[code];
2696 else
2697 return NULL;
2698 }
2699
2700 static void
2701 record_insn_name (int code, const char *name)
2702 {
2703 static const char *last_real_name = "insn";
2704 static int last_real_code = 0;
2705 char *new;
2706
2707 if (insn_name_ptr_size <= code)
2708 {
2709 int new_size;
2710 new_size = (insn_name_ptr_size ? insn_name_ptr_size * 2 : 512);
2711 insn_name_ptr = xrealloc (insn_name_ptr, sizeof(char *) * new_size);
2712 memset (insn_name_ptr + insn_name_ptr_size, 0,
2713 sizeof(char *) * (new_size - insn_name_ptr_size));
2714 insn_name_ptr_size = new_size;
2715 }
2716
2717 if (!name || name[0] == '\0')
2718 {
2719 new = xmalloc (strlen (last_real_name) + 10);
2720 sprintf (new, "%s+%d", last_real_name, code - last_real_code);
2721 }
2722 else
2723 {
2724 last_real_name = new = xstrdup (name);
2725 last_real_code = code;
2726 }
2727
2728 insn_name_ptr[code] = new;
2729 }
2730 \f
2731 static void
2732 debug_decision_2 (struct decision_test *test)
2733 {
2734 switch (test->type)
2735 {
2736 case DT_mode:
2737 fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode));
2738 break;
2739 case DT_code:
2740 fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code));
2741 break;
2742 case DT_veclen:
2743 fprintf (stderr, "veclen=%d", test->u.veclen);
2744 break;
2745 case DT_elt_zero_int:
2746 fprintf (stderr, "elt0_i=%d", (int) test->u.intval);
2747 break;
2748 case DT_elt_one_int:
2749 fprintf (stderr, "elt1_i=%d", (int) test->u.intval);
2750 break;
2751 case DT_elt_zero_wide:
2752 fprintf (stderr, "elt0_w=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2753 break;
2754 case DT_elt_zero_wide_safe:
2755 fprintf (stderr, "elt0_ws=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2756 break;
2757 case DT_veclen_ge:
2758 fprintf (stderr, "veclen>=%d", test->u.veclen);
2759 break;
2760 case DT_dup:
2761 fprintf (stderr, "dup=%d", test->u.dup);
2762 break;
2763 case DT_pred:
2764 fprintf (stderr, "pred=(%s,%s)",
2765 test->u.pred.name, GET_MODE_NAME(test->u.pred.mode));
2766 break;
2767 case DT_c_test:
2768 {
2769 char sub[16+4];
2770 strncpy (sub, test->u.c_test, sizeof(sub));
2771 memcpy (sub+16, "...", 4);
2772 fprintf (stderr, "c_test=\"%s\"", sub);
2773 }
2774 break;
2775 case DT_accept_op:
2776 fprintf (stderr, "A_op=%d", test->u.opno);
2777 break;
2778 case DT_accept_insn:
2779 fprintf (stderr, "A_insn=(%d,%d)",
2780 test->u.insn.code_number, test->u.insn.num_clobbers_to_add);
2781 break;
2782
2783 default:
2784 abort ();
2785 }
2786 }
2787
2788 static void
2789 debug_decision_1 (struct decision *d, int indent)
2790 {
2791 int i;
2792 struct decision_test *test;
2793
2794 if (d == NULL)
2795 {
2796 for (i = 0; i < indent; ++i)
2797 putc (' ', stderr);
2798 fputs ("(nil)\n", stderr);
2799 return;
2800 }
2801
2802 for (i = 0; i < indent; ++i)
2803 putc (' ', stderr);
2804
2805 putc ('{', stderr);
2806 test = d->tests;
2807 if (test)
2808 {
2809 debug_decision_2 (test);
2810 while ((test = test->next) != NULL)
2811 {
2812 fputs (" + ", stderr);
2813 debug_decision_2 (test);
2814 }
2815 }
2816 fprintf (stderr, "} %d n %d a %d\n", d->number,
2817 (d->next ? d->next->number : -1),
2818 (d->afterward ? d->afterward->number : -1));
2819 }
2820
2821 static void
2822 debug_decision_0 (struct decision *d, int indent, int maxdepth)
2823 {
2824 struct decision *n;
2825 int i;
2826
2827 if (maxdepth < 0)
2828 return;
2829 if (d == NULL)
2830 {
2831 for (i = 0; i < indent; ++i)
2832 putc (' ', stderr);
2833 fputs ("(nil)\n", stderr);
2834 return;
2835 }
2836
2837 debug_decision_1 (d, indent);
2838 for (n = d->success.first; n ; n = n->next)
2839 debug_decision_0 (n, indent + 2, maxdepth - 1);
2840 }
2841
2842 void
2843 debug_decision (struct decision *d)
2844 {
2845 debug_decision_0 (d, 0, 1000000);
2846 }
2847
2848 void
2849 debug_decision_list (struct decision *d)
2850 {
2851 while (d)
2852 {
2853 debug_decision_0 (d, 0, 0);
2854 d = d->next;
2855 }
2856 }