mips.h (MASK_FIX_SB1): Bump.
[gcc.git] / gcc / genrecog.c
1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* This program is used to produce insn-recog.c, which contains a
24 function called `recog' plus its subroutines. These functions
25 contain a decision tree that recognizes whether an rtx, the
26 argument given to recog, is a valid instruction.
27
28 recog returns -1 if the rtx is not valid. If the rtx is valid,
29 recog returns a nonnegative number which is the insn code number
30 for the pattern that matched. This is the same as the order in the
31 machine description of the entry that matched. This number can be
32 used as an index into various insn_* tables, such as insn_template,
33 insn_outfun, and insn_n_operands (found in insn-output.c).
34
35 The third argument to recog is an optional pointer to an int. If
36 present, recog will accept a pattern if it matches except for
37 missing CLOBBER expressions at the end. In that case, the value
38 pointed to by the optional pointer will be set to the number of
39 CLOBBERs that need to be added (it should be initialized to zero by
40 the caller). If it is set nonzero, the caller should allocate a
41 PARALLEL of the appropriate size, copy the initial entries, and
42 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
43
44 This program also generates the function `split_insns', which
45 returns 0 if the rtl could not be split, or it returns the split
46 rtl as an INSN list.
47
48 This program also generates the function `peephole2_insns', which
49 returns 0 if the rtl could not be matched. If there was a match,
50 the new rtl is returned in an INSN list, and LAST_INSN will point
51 to the last recognized insn in the old sequence. */
52
53 #include "bconfig.h"
54 #include "system.h"
55 #include "coretypes.h"
56 #include "tm.h"
57 #include "rtl.h"
58 #include "errors.h"
59 #include "gensupport.h"
60
61
62 #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
63 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
64
65 /* Holds an array of names indexed by insn_code_number. */
66 static char **insn_name_ptr = 0;
67 static int insn_name_ptr_size = 0;
68
69 /* A listhead of decision trees. The alternatives to a node are kept
70 in a doubly-linked list so we can easily add nodes to the proper
71 place when merging. */
72
73 struct decision_head
74 {
75 struct decision *first;
76 struct decision *last;
77 };
78
79 /* A single test. The two accept types aren't tests per-se, but
80 their equality (or lack thereof) does affect tree merging so
81 it is convenient to keep them here. */
82
83 struct decision_test
84 {
85 /* A linked list through the tests attached to a node. */
86 struct decision_test *next;
87
88 /* These types are roughly in the order in which we'd like to test them. */
89 enum decision_type
90 {
91 DT_mode, DT_code, DT_veclen,
92 DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide, DT_elt_zero_wide_safe,
93 DT_const_int,
94 DT_veclen_ge, DT_dup, DT_pred, DT_c_test,
95 DT_accept_op, DT_accept_insn
96 } type;
97
98 union
99 {
100 enum machine_mode mode; /* Machine mode of node. */
101 RTX_CODE code; /* Code to test. */
102
103 struct
104 {
105 const char *name; /* Predicate to call. */
106 int index; /* Index into `preds' or -1. */
107 enum machine_mode mode; /* Machine mode for node. */
108 } pred;
109
110 const char *c_test; /* Additional test to perform. */
111 int veclen; /* Length of vector. */
112 int dup; /* Number of operand to compare against. */
113 HOST_WIDE_INT intval; /* Value for XINT for XWINT. */
114 int opno; /* Operand number matched. */
115
116 struct {
117 int code_number; /* Insn number matched. */
118 int lineno; /* Line number of the insn. */
119 int num_clobbers_to_add; /* Number of CLOBBERs to be added. */
120 } insn;
121 } u;
122 };
123
124 /* Data structure for decision tree for recognizing legitimate insns. */
125
126 struct decision
127 {
128 struct decision_head success; /* Nodes to test on success. */
129 struct decision *next; /* Node to test on failure. */
130 struct decision *prev; /* Node whose failure tests us. */
131 struct decision *afterward; /* Node to test on success,
132 but failure of successor nodes. */
133
134 const char *position; /* String denoting position in pattern. */
135
136 struct decision_test *tests; /* The tests for this node. */
137
138 int number; /* Node number, used for labels */
139 int subroutine_number; /* Number of subroutine this node starts */
140 int need_label; /* Label needs to be output. */
141 };
142
143 #define SUBROUTINE_THRESHOLD 100
144
145 static int next_subroutine_number;
146
147 /* We can write three types of subroutines: One for insn recognition,
148 one to split insns, and one for peephole-type optimizations. This
149 defines which type is being written. */
150
151 enum routine_type {
152 RECOG, SPLIT, PEEPHOLE2
153 };
154
155 #define IS_SPLIT(X) ((X) != RECOG)
156
157 /* Next available node number for tree nodes. */
158
159 static int next_number;
160
161 /* Next number to use as an insn_code. */
162
163 static int next_insn_code;
164
165 /* Similar, but counts all expressions in the MD file; used for
166 error messages. */
167
168 static int next_index;
169
170 /* Record the highest depth we ever have so we know how many variables to
171 allocate in each subroutine we make. */
172
173 static int max_depth;
174
175 /* The line number of the start of the pattern currently being processed. */
176 static int pattern_lineno;
177
178 /* Count of errors. */
179 static int error_count;
180 \f
181 /* This table contains a list of the rtl codes that can possibly match a
182 predicate defined in recog.c. The function `maybe_both_true' uses it to
183 deduce that there are no expressions that can be matches by certain pairs
184 of tree nodes. Also, if a predicate can match only one code, we can
185 hardwire that code into the node testing the predicate. */
186
187 static const struct pred_table
188 {
189 const char *const name;
190 const RTX_CODE codes[NUM_RTX_CODE];
191 } preds[] = {
192 {"general_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
193 LABEL_REF, SUBREG, REG, MEM, ADDRESSOF}},
194 #ifdef PREDICATE_CODES
195 PREDICATE_CODES
196 #endif
197 {"address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
198 LABEL_REF, SUBREG, REG, MEM, ADDRESSOF,
199 PLUS, MINUS, MULT}},
200 {"register_operand", {SUBREG, REG, ADDRESSOF}},
201 {"pmode_register_operand", {SUBREG, REG, ADDRESSOF}},
202 {"scratch_operand", {SCRATCH, REG}},
203 {"immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
204 LABEL_REF}},
205 {"const_int_operand", {CONST_INT}},
206 {"const_double_operand", {CONST_INT, CONST_DOUBLE}},
207 {"nonimmediate_operand", {SUBREG, REG, MEM, ADDRESSOF}},
208 {"nonmemory_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
209 LABEL_REF, SUBREG, REG, ADDRESSOF}},
210 {"push_operand", {MEM}},
211 {"pop_operand", {MEM}},
212 {"memory_operand", {SUBREG, MEM}},
213 {"indirect_operand", {SUBREG, MEM}},
214 {"comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU,
215 UNORDERED, ORDERED, UNEQ, UNGE, UNGT, UNLE,
216 UNLT, LTGT}}
217 };
218
219 #define NUM_KNOWN_PREDS ARRAY_SIZE (preds)
220
221 static const char *const special_mode_pred_table[] = {
222 #ifdef SPECIAL_MODE_PREDICATES
223 SPECIAL_MODE_PREDICATES
224 #endif
225 "pmode_register_operand"
226 };
227
228 #define NUM_SPECIAL_MODE_PREDS ARRAY_SIZE (special_mode_pred_table)
229
230 static struct decision *new_decision
231 (const char *, struct decision_head *);
232 static struct decision_test *new_decision_test
233 (enum decision_type, struct decision_test ***);
234 static rtx find_operand
235 (rtx, int, rtx);
236 static rtx find_matching_operand
237 (rtx, int);
238 static void validate_pattern
239 (rtx, rtx, rtx, int);
240 static struct decision *add_to_sequence
241 (rtx, struct decision_head *, const char *, enum routine_type, int);
242
243 static int maybe_both_true_2
244 (struct decision_test *, struct decision_test *);
245 static int maybe_both_true_1
246 (struct decision_test *, struct decision_test *);
247 static int maybe_both_true
248 (struct decision *, struct decision *, int);
249
250 static int nodes_identical_1
251 (struct decision_test *, struct decision_test *);
252 static int nodes_identical
253 (struct decision *, struct decision *);
254 static void merge_accept_insn
255 (struct decision *, struct decision *);
256 static void merge_trees
257 (struct decision_head *, struct decision_head *);
258
259 static void factor_tests
260 (struct decision_head *);
261 static void simplify_tests
262 (struct decision_head *);
263 static int break_out_subroutines
264 (struct decision_head *, int);
265 static void find_afterward
266 (struct decision_head *, struct decision *);
267
268 static void change_state
269 (const char *, const char *, struct decision *, const char *);
270 static void print_code
271 (enum rtx_code);
272 static void write_afterward
273 (struct decision *, struct decision *, const char *);
274 static struct decision *write_switch
275 (struct decision *, int);
276 static void write_cond
277 (struct decision_test *, int, enum routine_type);
278 static void write_action
279 (struct decision *, struct decision_test *, int, int,
280 struct decision *, enum routine_type);
281 static int is_unconditional
282 (struct decision_test *, enum routine_type);
283 static int write_node
284 (struct decision *, int, enum routine_type);
285 static void write_tree_1
286 (struct decision_head *, int, enum routine_type);
287 static void write_tree
288 (struct decision_head *, const char *, enum routine_type, int);
289 static void write_subroutine
290 (struct decision_head *, enum routine_type);
291 static void write_subroutines
292 (struct decision_head *, enum routine_type);
293 static void write_header
294 (void);
295
296 static struct decision_head make_insn_sequence
297 (rtx, enum routine_type);
298 static void process_tree
299 (struct decision_head *, enum routine_type);
300
301 static void record_insn_name
302 (int, const char *);
303
304 static void debug_decision_0
305 (struct decision *, int, int);
306 static void debug_decision_1
307 (struct decision *, int);
308 static void debug_decision_2
309 (struct decision_test *);
310 extern void debug_decision
311 (struct decision *);
312 extern void debug_decision_list
313 (struct decision *);
314 \f
315 /* Create a new node in sequence after LAST. */
316
317 static struct decision *
318 new_decision (const char *position, struct decision_head *last)
319 {
320 struct decision *new = xcalloc (1, sizeof (struct decision));
321
322 new->success = *last;
323 new->position = xstrdup (position);
324 new->number = next_number++;
325
326 last->first = last->last = new;
327 return new;
328 }
329
330 /* Create a new test and link it in at PLACE. */
331
332 static struct decision_test *
333 new_decision_test (enum decision_type type, struct decision_test ***pplace)
334 {
335 struct decision_test **place = *pplace;
336 struct decision_test *test;
337
338 test = xmalloc (sizeof (*test));
339 test->next = *place;
340 test->type = type;
341 *place = test;
342
343 place = &test->next;
344 *pplace = place;
345
346 return test;
347 }
348
349 /* Search for and return operand N, stop when reaching node STOP. */
350
351 static rtx
352 find_operand (rtx pattern, int n, rtx stop)
353 {
354 const char *fmt;
355 RTX_CODE code;
356 int i, j, len;
357 rtx r;
358
359 if (pattern == stop)
360 return stop;
361
362 code = GET_CODE (pattern);
363 if ((code == MATCH_SCRATCH
364 || code == MATCH_OPERAND
365 || code == MATCH_OPERATOR
366 || code == MATCH_PARALLEL)
367 && XINT (pattern, 0) == n)
368 return pattern;
369
370 fmt = GET_RTX_FORMAT (code);
371 len = GET_RTX_LENGTH (code);
372 for (i = 0; i < len; i++)
373 {
374 switch (fmt[i])
375 {
376 case 'e': case 'u':
377 if ((r = find_operand (XEXP (pattern, i), n, stop)) != NULL_RTX)
378 return r;
379 break;
380
381 case 'V':
382 if (! XVEC (pattern, i))
383 break;
384 /* Fall through. */
385
386 case 'E':
387 for (j = 0; j < XVECLEN (pattern, i); j++)
388 if ((r = find_operand (XVECEXP (pattern, i, j), n, stop))
389 != NULL_RTX)
390 return r;
391 break;
392
393 case 'i': case 'w': case '0': case 's':
394 break;
395
396 default:
397 abort ();
398 }
399 }
400
401 return NULL;
402 }
403
404 /* Search for and return operand M, such that it has a matching
405 constraint for operand N. */
406
407 static rtx
408 find_matching_operand (rtx pattern, int n)
409 {
410 const char *fmt;
411 RTX_CODE code;
412 int i, j, len;
413 rtx r;
414
415 code = GET_CODE (pattern);
416 if (code == MATCH_OPERAND
417 && (XSTR (pattern, 2)[0] == '0' + n
418 || (XSTR (pattern, 2)[0] == '%'
419 && XSTR (pattern, 2)[1] == '0' + n)))
420 return pattern;
421
422 fmt = GET_RTX_FORMAT (code);
423 len = GET_RTX_LENGTH (code);
424 for (i = 0; i < len; i++)
425 {
426 switch (fmt[i])
427 {
428 case 'e': case 'u':
429 if ((r = find_matching_operand (XEXP (pattern, i), n)))
430 return r;
431 break;
432
433 case 'V':
434 if (! XVEC (pattern, i))
435 break;
436 /* Fall through. */
437
438 case 'E':
439 for (j = 0; j < XVECLEN (pattern, i); j++)
440 if ((r = find_matching_operand (XVECEXP (pattern, i, j), n)))
441 return r;
442 break;
443
444 case 'i': case 'w': case '0': case 's':
445 break;
446
447 default:
448 abort ();
449 }
450 }
451
452 return NULL;
453 }
454
455
456 /* Check for various errors in patterns. SET is nonnull for a destination,
457 and is the complete set pattern. SET_CODE is '=' for normal sets, and
458 '+' within a context that requires in-out constraints. */
459
460 static void
461 validate_pattern (rtx pattern, rtx insn, rtx set, int set_code)
462 {
463 const char *fmt;
464 RTX_CODE code;
465 size_t i, len;
466 int j;
467
468 code = GET_CODE (pattern);
469 switch (code)
470 {
471 case MATCH_SCRATCH:
472 return;
473 case MATCH_DUP:
474 case MATCH_OP_DUP:
475 case MATCH_PAR_DUP:
476 if (find_operand (insn, XINT (pattern, 0), pattern) == pattern)
477 {
478 message_with_line (pattern_lineno,
479 "operand %i duplicated before defined",
480 XINT (pattern, 0));
481 error_count++;
482 }
483 break;
484 case MATCH_OPERAND:
485 case MATCH_OPERATOR:
486 {
487 const char *pred_name = XSTR (pattern, 1);
488 int allows_non_lvalue = 1, allows_non_const = 1;
489 int special_mode_pred = 0;
490 const char *c_test;
491
492 if (GET_CODE (insn) == DEFINE_INSN)
493 c_test = XSTR (insn, 2);
494 else
495 c_test = XSTR (insn, 1);
496
497 if (pred_name[0] != 0)
498 {
499 for (i = 0; i < NUM_KNOWN_PREDS; i++)
500 if (! strcmp (preds[i].name, pred_name))
501 break;
502
503 if (i < NUM_KNOWN_PREDS)
504 {
505 int j;
506
507 allows_non_lvalue = allows_non_const = 0;
508 for (j = 0; preds[i].codes[j] != 0; j++)
509 {
510 RTX_CODE c = preds[i].codes[j];
511 if (c != LABEL_REF
512 && c != SYMBOL_REF
513 && c != CONST_INT
514 && c != CONST_DOUBLE
515 && c != CONST
516 && c != HIGH
517 && c != CONSTANT_P_RTX)
518 allows_non_const = 1;
519
520 if (c != REG
521 && c != SUBREG
522 && c != MEM
523 && c != ADDRESSOF
524 && c != CONCAT
525 && c != PARALLEL
526 && c != STRICT_LOW_PART)
527 allows_non_lvalue = 1;
528 }
529 }
530 else
531 {
532 #ifdef PREDICATE_CODES
533 /* If the port has a list of the predicates it uses but
534 omits one, warn. */
535 message_with_line (pattern_lineno,
536 "warning: `%s' not in PREDICATE_CODES",
537 pred_name);
538 #endif
539 }
540
541 for (i = 0; i < NUM_SPECIAL_MODE_PREDS; ++i)
542 if (strcmp (pred_name, special_mode_pred_table[i]) == 0)
543 {
544 special_mode_pred = 1;
545 break;
546 }
547 }
548
549 if (code == MATCH_OPERAND)
550 {
551 const char constraints0 = XSTR (pattern, 2)[0];
552
553 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
554 don't use the MATCH_OPERAND constraint, only the predicate.
555 This is confusing to folks doing new ports, so help them
556 not make the mistake. */
557 if (GET_CODE (insn) == DEFINE_EXPAND
558 || GET_CODE (insn) == DEFINE_SPLIT
559 || GET_CODE (insn) == DEFINE_PEEPHOLE2)
560 {
561 if (constraints0)
562 message_with_line (pattern_lineno,
563 "warning: constraints not supported in %s",
564 rtx_name[GET_CODE (insn)]);
565 }
566
567 /* A MATCH_OPERAND that is a SET should have an output reload. */
568 else if (set && constraints0)
569 {
570 if (set_code == '+')
571 {
572 if (constraints0 == '+')
573 ;
574 /* If we've only got an output reload for this operand,
575 we'd better have a matching input operand. */
576 else if (constraints0 == '='
577 && find_matching_operand (insn, XINT (pattern, 0)))
578 ;
579 else
580 {
581 message_with_line (pattern_lineno,
582 "operand %d missing in-out reload",
583 XINT (pattern, 0));
584 error_count++;
585 }
586 }
587 else if (constraints0 != '=' && constraints0 != '+')
588 {
589 message_with_line (pattern_lineno,
590 "operand %d missing output reload",
591 XINT (pattern, 0));
592 error_count++;
593 }
594 }
595 }
596
597 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
598 while not likely to occur at runtime, results in less efficient
599 code from insn-recog.c. */
600 if (set
601 && pred_name[0] != '\0'
602 && allows_non_lvalue)
603 {
604 message_with_line (pattern_lineno,
605 "warning: destination operand %d allows non-lvalue",
606 XINT (pattern, 0));
607 }
608
609 /* A modeless MATCH_OPERAND can be handy when we can
610 check for multiple modes in the c_test. In most other cases,
611 it is a mistake. Only DEFINE_INSN is eligible, since SPLIT
612 and PEEP2 can FAIL within the output pattern. Exclude
613 address_operand, since its mode is related to the mode of
614 the memory not the operand. Exclude the SET_DEST of a call
615 instruction, as that is a common idiom. */
616
617 if (GET_MODE (pattern) == VOIDmode
618 && code == MATCH_OPERAND
619 && GET_CODE (insn) == DEFINE_INSN
620 && allows_non_const
621 && ! special_mode_pred
622 && pred_name[0] != '\0'
623 && strcmp (pred_name, "address_operand") != 0
624 && strstr (c_test, "operands") == NULL
625 && ! (set
626 && GET_CODE (set) == SET
627 && GET_CODE (SET_SRC (set)) == CALL))
628 {
629 message_with_line (pattern_lineno,
630 "warning: operand %d missing mode?",
631 XINT (pattern, 0));
632 }
633 return;
634 }
635
636 case SET:
637 {
638 enum machine_mode dmode, smode;
639 rtx dest, src;
640
641 dest = SET_DEST (pattern);
642 src = SET_SRC (pattern);
643
644 /* STRICT_LOW_PART is a wrapper. Its argument is the real
645 destination, and it's mode should match the source. */
646 if (GET_CODE (dest) == STRICT_LOW_PART)
647 dest = XEXP (dest, 0);
648
649 /* Find the referent for a DUP. */
650
651 if (GET_CODE (dest) == MATCH_DUP
652 || GET_CODE (dest) == MATCH_OP_DUP
653 || GET_CODE (dest) == MATCH_PAR_DUP)
654 dest = find_operand (insn, XINT (dest, 0), NULL);
655
656 if (GET_CODE (src) == MATCH_DUP
657 || GET_CODE (src) == MATCH_OP_DUP
658 || GET_CODE (src) == MATCH_PAR_DUP)
659 src = find_operand (insn, XINT (src, 0), NULL);
660
661 dmode = GET_MODE (dest);
662 smode = GET_MODE (src);
663
664 /* The mode of an ADDRESS_OPERAND is the mode of the memory
665 reference, not the mode of the address. */
666 if (GET_CODE (src) == MATCH_OPERAND
667 && ! strcmp (XSTR (src, 1), "address_operand"))
668 ;
669
670 /* The operands of a SET must have the same mode unless one
671 is VOIDmode. */
672 else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
673 {
674 message_with_line (pattern_lineno,
675 "mode mismatch in set: %smode vs %smode",
676 GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
677 error_count++;
678 }
679
680 /* If only one of the operands is VOIDmode, and PC or CC0 is
681 not involved, it's probably a mistake. */
682 else if (dmode != smode
683 && GET_CODE (dest) != PC
684 && GET_CODE (dest) != CC0
685 && GET_CODE (src) != PC
686 && GET_CODE (src) != CC0
687 && GET_CODE (src) != CONST_INT)
688 {
689 const char *which;
690 which = (dmode == VOIDmode ? "destination" : "source");
691 message_with_line (pattern_lineno,
692 "warning: %s missing a mode?", which);
693 }
694
695 if (dest != SET_DEST (pattern))
696 validate_pattern (dest, insn, pattern, '=');
697 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
698 validate_pattern (SET_SRC (pattern), insn, NULL_RTX, 0);
699 return;
700 }
701
702 case CLOBBER:
703 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
704 return;
705
706 case ZERO_EXTRACT:
707 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
708 validate_pattern (XEXP (pattern, 1), insn, NULL_RTX, 0);
709 validate_pattern (XEXP (pattern, 2), insn, NULL_RTX, 0);
710 return;
711
712 case STRICT_LOW_PART:
713 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
714 return;
715
716 case LABEL_REF:
717 if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
718 {
719 message_with_line (pattern_lineno,
720 "operand to label_ref %smode not VOIDmode",
721 GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
722 error_count++;
723 }
724 break;
725
726 default:
727 break;
728 }
729
730 fmt = GET_RTX_FORMAT (code);
731 len = GET_RTX_LENGTH (code);
732 for (i = 0; i < len; i++)
733 {
734 switch (fmt[i])
735 {
736 case 'e': case 'u':
737 validate_pattern (XEXP (pattern, i), insn, NULL_RTX, 0);
738 break;
739
740 case 'E':
741 for (j = 0; j < XVECLEN (pattern, i); j++)
742 validate_pattern (XVECEXP (pattern, i, j), insn, NULL_RTX, 0);
743 break;
744
745 case 'i': case 'w': case '0': case 's':
746 break;
747
748 default:
749 abort ();
750 }
751 }
752 }
753
754 /* Create a chain of nodes to verify that an rtl expression matches
755 PATTERN.
756
757 LAST is a pointer to the listhead in the previous node in the chain (or
758 in the calling function, for the first node).
759
760 POSITION is the string representing the current position in the insn.
761
762 INSN_TYPE is the type of insn for which we are emitting code.
763
764 A pointer to the final node in the chain is returned. */
765
766 static struct decision *
767 add_to_sequence (rtx pattern, struct decision_head *last, const char *position,
768 enum routine_type insn_type, int top)
769 {
770 RTX_CODE code;
771 struct decision *this, *sub;
772 struct decision_test *test;
773 struct decision_test **place;
774 char *subpos;
775 size_t i;
776 const char *fmt;
777 int depth = strlen (position);
778 int len;
779 enum machine_mode mode;
780
781 if (depth > max_depth)
782 max_depth = depth;
783
784 subpos = xmalloc (depth + 2);
785 strcpy (subpos, position);
786 subpos[depth + 1] = 0;
787
788 sub = this = new_decision (position, last);
789 place = &this->tests;
790
791 restart:
792 mode = GET_MODE (pattern);
793 code = GET_CODE (pattern);
794
795 switch (code)
796 {
797 case PARALLEL:
798 /* Toplevel peephole pattern. */
799 if (insn_type == PEEPHOLE2 && top)
800 {
801 /* We don't need the node we just created -- unlink it. */
802 last->first = last->last = NULL;
803
804 for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++)
805 {
806 /* Which insn we're looking at is represented by A-Z. We don't
807 ever use 'A', however; it is always implied. */
808
809 subpos[depth] = (i > 0 ? 'A' + i : 0);
810 sub = add_to_sequence (XVECEXP (pattern, 0, i),
811 last, subpos, insn_type, 0);
812 last = &sub->success;
813 }
814 goto ret;
815 }
816
817 /* Else nothing special. */
818 break;
819
820 case MATCH_PARALLEL:
821 /* The explicit patterns within a match_parallel enforce a minimum
822 length on the vector. The match_parallel predicate may allow
823 for more elements. We do need to check for this minimum here
824 or the code generated to match the internals may reference data
825 beyond the end of the vector. */
826 test = new_decision_test (DT_veclen_ge, &place);
827 test->u.veclen = XVECLEN (pattern, 2);
828 /* Fall through. */
829
830 case MATCH_OPERAND:
831 case MATCH_SCRATCH:
832 case MATCH_OPERATOR:
833 {
834 const char *pred_name;
835 RTX_CODE was_code = code;
836 int allows_const_int = 1;
837
838 if (code == MATCH_SCRATCH)
839 {
840 pred_name = "scratch_operand";
841 code = UNKNOWN;
842 }
843 else
844 {
845 pred_name = XSTR (pattern, 1);
846 if (code == MATCH_PARALLEL)
847 code = PARALLEL;
848 else
849 code = UNKNOWN;
850 }
851
852 if (pred_name[0] != 0)
853 {
854 test = new_decision_test (DT_pred, &place);
855 test->u.pred.name = pred_name;
856 test->u.pred.mode = mode;
857
858 /* See if we know about this predicate and save its number.
859 If we do, and it only accepts one code, note that fact.
860
861 If we know that the predicate does not allow CONST_INT,
862 we know that the only way the predicate can match is if
863 the modes match (here we use the kludge of relying on the
864 fact that "address_operand" accepts CONST_INT; otherwise,
865 it would have to be a special case), so we can test the
866 mode (but we need not). This fact should considerably
867 simplify the generated code. */
868
869 for (i = 0; i < NUM_KNOWN_PREDS; i++)
870 if (! strcmp (preds[i].name, pred_name))
871 break;
872
873 if (i < NUM_KNOWN_PREDS)
874 {
875 int j;
876
877 test->u.pred.index = i;
878
879 if (preds[i].codes[1] == 0 && code == UNKNOWN)
880 code = preds[i].codes[0];
881
882 allows_const_int = 0;
883 for (j = 0; preds[i].codes[j] != 0; j++)
884 if (preds[i].codes[j] == CONST_INT)
885 {
886 allows_const_int = 1;
887 break;
888 }
889 }
890 else
891 test->u.pred.index = -1;
892 }
893
894 /* Can't enforce a mode if we allow const_int. */
895 if (allows_const_int)
896 mode = VOIDmode;
897
898 /* Accept the operand, ie. record it in `operands'. */
899 test = new_decision_test (DT_accept_op, &place);
900 test->u.opno = XINT (pattern, 0);
901
902 if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL)
903 {
904 char base = (was_code == MATCH_OPERATOR ? '0' : 'a');
905 for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++)
906 {
907 subpos[depth] = i + base;
908 sub = add_to_sequence (XVECEXP (pattern, 2, i),
909 &sub->success, subpos, insn_type, 0);
910 }
911 }
912 goto fini;
913 }
914
915 case MATCH_OP_DUP:
916 code = UNKNOWN;
917
918 test = new_decision_test (DT_dup, &place);
919 test->u.dup = XINT (pattern, 0);
920
921 test = new_decision_test (DT_accept_op, &place);
922 test->u.opno = XINT (pattern, 0);
923
924 for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++)
925 {
926 subpos[depth] = i + '0';
927 sub = add_to_sequence (XVECEXP (pattern, 1, i),
928 &sub->success, subpos, insn_type, 0);
929 }
930 goto fini;
931
932 case MATCH_DUP:
933 case MATCH_PAR_DUP:
934 code = UNKNOWN;
935
936 test = new_decision_test (DT_dup, &place);
937 test->u.dup = XINT (pattern, 0);
938 goto fini;
939
940 case ADDRESS:
941 pattern = XEXP (pattern, 0);
942 goto restart;
943
944 default:
945 break;
946 }
947
948 fmt = GET_RTX_FORMAT (code);
949 len = GET_RTX_LENGTH (code);
950
951 /* Do tests against the current node first. */
952 for (i = 0; i < (size_t) len; i++)
953 {
954 if (fmt[i] == 'i')
955 {
956 if (i == 0)
957 {
958 test = new_decision_test (DT_elt_zero_int, &place);
959 test->u.intval = XINT (pattern, i);
960 }
961 else if (i == 1)
962 {
963 test = new_decision_test (DT_elt_one_int, &place);
964 test->u.intval = XINT (pattern, i);
965 }
966 else
967 abort ();
968 }
969 else if (fmt[i] == 'w')
970 {
971 /* If this value actually fits in an int, we can use a switch
972 statement here, so indicate that. */
973 enum decision_type type
974 = ((int) XWINT (pattern, i) == XWINT (pattern, i))
975 ? DT_elt_zero_wide_safe : DT_elt_zero_wide;
976
977 if (i != 0)
978 abort ();
979
980 test = new_decision_test (type, &place);
981 test->u.intval = XWINT (pattern, i);
982 }
983 else if (fmt[i] == 'E')
984 {
985 if (i != 0)
986 abort ();
987
988 test = new_decision_test (DT_veclen, &place);
989 test->u.veclen = XVECLEN (pattern, i);
990 }
991 }
992
993 /* Now test our sub-patterns. */
994 for (i = 0; i < (size_t) len; i++)
995 {
996 switch (fmt[i])
997 {
998 case 'e': case 'u':
999 subpos[depth] = '0' + i;
1000 sub = add_to_sequence (XEXP (pattern, i), &sub->success,
1001 subpos, insn_type, 0);
1002 break;
1003
1004 case 'E':
1005 {
1006 int j;
1007 for (j = 0; j < XVECLEN (pattern, i); j++)
1008 {
1009 subpos[depth] = 'a' + j;
1010 sub = add_to_sequence (XVECEXP (pattern, i, j),
1011 &sub->success, subpos, insn_type, 0);
1012 }
1013 break;
1014 }
1015
1016 case 'i': case 'w':
1017 /* Handled above. */
1018 break;
1019 case '0':
1020 break;
1021
1022 default:
1023 abort ();
1024 }
1025 }
1026
1027 fini:
1028 /* Insert nodes testing mode and code, if they're still relevant,
1029 before any of the nodes we may have added above. */
1030 if (code != UNKNOWN)
1031 {
1032 place = &this->tests;
1033 test = new_decision_test (DT_code, &place);
1034 test->u.code = code;
1035 }
1036
1037 if (mode != VOIDmode)
1038 {
1039 place = &this->tests;
1040 test = new_decision_test (DT_mode, &place);
1041 test->u.mode = mode;
1042 }
1043
1044 /* If we didn't insert any tests or accept nodes, hork. */
1045 if (this->tests == NULL)
1046 abort ();
1047
1048 ret:
1049 free (subpos);
1050 return sub;
1051 }
1052 \f
1053 /* A subroutine of maybe_both_true; examines only one test.
1054 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1055
1056 static int
1057 maybe_both_true_2 (struct decision_test *d1, struct decision_test *d2)
1058 {
1059 if (d1->type == d2->type)
1060 {
1061 switch (d1->type)
1062 {
1063 case DT_mode:
1064 return d1->u.mode == d2->u.mode;
1065
1066 case DT_code:
1067 return d1->u.code == d2->u.code;
1068
1069 case DT_veclen:
1070 return d1->u.veclen == d2->u.veclen;
1071
1072 case DT_elt_zero_int:
1073 case DT_elt_one_int:
1074 case DT_elt_zero_wide:
1075 case DT_elt_zero_wide_safe:
1076 return d1->u.intval == d2->u.intval;
1077
1078 default:
1079 break;
1080 }
1081 }
1082
1083 /* If either has a predicate that we know something about, set
1084 things up so that D1 is the one that always has a known
1085 predicate. Then see if they have any codes in common. */
1086
1087 if (d1->type == DT_pred || d2->type == DT_pred)
1088 {
1089 if (d2->type == DT_pred)
1090 {
1091 struct decision_test *tmp;
1092 tmp = d1, d1 = d2, d2 = tmp;
1093 }
1094
1095 /* If D2 tests a mode, see if it matches D1. */
1096 if (d1->u.pred.mode != VOIDmode)
1097 {
1098 if (d2->type == DT_mode)
1099 {
1100 if (d1->u.pred.mode != d2->u.mode
1101 /* The mode of an address_operand predicate is the
1102 mode of the memory, not the operand. It can only
1103 be used for testing the predicate, so we must
1104 ignore it here. */
1105 && strcmp (d1->u.pred.name, "address_operand") != 0)
1106 return 0;
1107 }
1108 /* Don't check two predicate modes here, because if both predicates
1109 accept CONST_INT, then both can still be true even if the modes
1110 are different. If they don't accept CONST_INT, there will be a
1111 separate DT_mode that will make maybe_both_true_1 return 0. */
1112 }
1113
1114 if (d1->u.pred.index >= 0)
1115 {
1116 /* If D2 tests a code, see if it is in the list of valid
1117 codes for D1's predicate. */
1118 if (d2->type == DT_code)
1119 {
1120 const RTX_CODE *c = &preds[d1->u.pred.index].codes[0];
1121 while (*c != 0)
1122 {
1123 if (*c == d2->u.code)
1124 break;
1125 ++c;
1126 }
1127 if (*c == 0)
1128 return 0;
1129 }
1130
1131 /* Otherwise see if the predicates have any codes in common. */
1132 else if (d2->type == DT_pred && d2->u.pred.index >= 0)
1133 {
1134 const RTX_CODE *c1 = &preds[d1->u.pred.index].codes[0];
1135 int common = 0;
1136
1137 while (*c1 != 0 && !common)
1138 {
1139 const RTX_CODE *c2 = &preds[d2->u.pred.index].codes[0];
1140 while (*c2 != 0 && !common)
1141 {
1142 common = (*c1 == *c2);
1143 ++c2;
1144 }
1145 ++c1;
1146 }
1147
1148 if (!common)
1149 return 0;
1150 }
1151 }
1152 }
1153
1154 /* Tests vs veclen may be known when strict equality is involved. */
1155 if (d1->type == DT_veclen && d2->type == DT_veclen_ge)
1156 return d1->u.veclen >= d2->u.veclen;
1157 if (d1->type == DT_veclen_ge && d2->type == DT_veclen)
1158 return d2->u.veclen >= d1->u.veclen;
1159
1160 return -1;
1161 }
1162
1163 /* A subroutine of maybe_both_true; examines all the tests for a given node.
1164 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1165
1166 static int
1167 maybe_both_true_1 (struct decision_test *d1, struct decision_test *d2)
1168 {
1169 struct decision_test *t1, *t2;
1170
1171 /* A match_operand with no predicate can match anything. Recognize
1172 this by the existence of a lone DT_accept_op test. */
1173 if (d1->type == DT_accept_op || d2->type == DT_accept_op)
1174 return 1;
1175
1176 /* Eliminate pairs of tests while they can exactly match. */
1177 while (d1 && d2 && d1->type == d2->type)
1178 {
1179 if (maybe_both_true_2 (d1, d2) == 0)
1180 return 0;
1181 d1 = d1->next, d2 = d2->next;
1182 }
1183
1184 /* After that, consider all pairs. */
1185 for (t1 = d1; t1 ; t1 = t1->next)
1186 for (t2 = d2; t2 ; t2 = t2->next)
1187 if (maybe_both_true_2 (t1, t2) == 0)
1188 return 0;
1189
1190 return -1;
1191 }
1192
1193 /* Return 0 if we can prove that there is no RTL that can match both
1194 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
1195 can match both or just that we couldn't prove there wasn't such an RTL).
1196
1197 TOPLEVEL is nonzero if we are to only look at the top level and not
1198 recursively descend. */
1199
1200 static int
1201 maybe_both_true (struct decision *d1, struct decision *d2,
1202 int toplevel)
1203 {
1204 struct decision *p1, *p2;
1205 int cmp;
1206
1207 /* Don't compare strings on the different positions in insn. Doing so
1208 is incorrect and results in false matches from constructs like
1209
1210 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1211 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1212 vs
1213 [(set (match_operand:HI "register_operand" "r")
1214 (match_operand:HI "register_operand" "r"))]
1215
1216 If we are presented with such, we are recursing through the remainder
1217 of a node's success nodes (from the loop at the end of this function).
1218 Skip forward until we come to a position that matches.
1219
1220 Due to the way position strings are constructed, we know that iterating
1221 forward from the lexically lower position (e.g. "00") will run into
1222 the lexically higher position (e.g. "1") and not the other way around.
1223 This saves a bit of effort. */
1224
1225 cmp = strcmp (d1->position, d2->position);
1226 if (cmp != 0)
1227 {
1228 if (toplevel)
1229 abort ();
1230
1231 /* If the d2->position was lexically lower, swap. */
1232 if (cmp > 0)
1233 p1 = d1, d1 = d2, d2 = p1;
1234
1235 if (d1->success.first == 0)
1236 return 1;
1237 for (p1 = d1->success.first; p1; p1 = p1->next)
1238 if (maybe_both_true (p1, d2, 0))
1239 return 1;
1240
1241 return 0;
1242 }
1243
1244 /* Test the current level. */
1245 cmp = maybe_both_true_1 (d1->tests, d2->tests);
1246 if (cmp >= 0)
1247 return cmp;
1248
1249 /* We can't prove that D1 and D2 cannot both be true. If we are only
1250 to check the top level, return 1. Otherwise, see if we can prove
1251 that all choices in both successors are mutually exclusive. If
1252 either does not have any successors, we can't prove they can't both
1253 be true. */
1254
1255 if (toplevel || d1->success.first == 0 || d2->success.first == 0)
1256 return 1;
1257
1258 for (p1 = d1->success.first; p1; p1 = p1->next)
1259 for (p2 = d2->success.first; p2; p2 = p2->next)
1260 if (maybe_both_true (p1, p2, 0))
1261 return 1;
1262
1263 return 0;
1264 }
1265
1266 /* A subroutine of nodes_identical. Examine two tests for equivalence. */
1267
1268 static int
1269 nodes_identical_1 (struct decision_test *d1, struct decision_test *d2)
1270 {
1271 switch (d1->type)
1272 {
1273 case DT_mode:
1274 return d1->u.mode == d2->u.mode;
1275
1276 case DT_code:
1277 return d1->u.code == d2->u.code;
1278
1279 case DT_pred:
1280 return (d1->u.pred.mode == d2->u.pred.mode
1281 && strcmp (d1->u.pred.name, d2->u.pred.name) == 0);
1282
1283 case DT_c_test:
1284 return strcmp (d1->u.c_test, d2->u.c_test) == 0;
1285
1286 case DT_veclen:
1287 case DT_veclen_ge:
1288 return d1->u.veclen == d2->u.veclen;
1289
1290 case DT_dup:
1291 return d1->u.dup == d2->u.dup;
1292
1293 case DT_elt_zero_int:
1294 case DT_elt_one_int:
1295 case DT_elt_zero_wide:
1296 case DT_elt_zero_wide_safe:
1297 return d1->u.intval == d2->u.intval;
1298
1299 case DT_accept_op:
1300 return d1->u.opno == d2->u.opno;
1301
1302 case DT_accept_insn:
1303 /* Differences will be handled in merge_accept_insn. */
1304 return 1;
1305
1306 default:
1307 abort ();
1308 }
1309 }
1310
1311 /* True iff the two nodes are identical (on one level only). Due
1312 to the way these lists are constructed, we shouldn't have to
1313 consider different orderings on the tests. */
1314
1315 static int
1316 nodes_identical (struct decision *d1, struct decision *d2)
1317 {
1318 struct decision_test *t1, *t2;
1319
1320 for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next)
1321 {
1322 if (t1->type != t2->type)
1323 return 0;
1324 if (! nodes_identical_1 (t1, t2))
1325 return 0;
1326 }
1327
1328 /* For success, they should now both be null. */
1329 if (t1 != t2)
1330 return 0;
1331
1332 /* Check that their subnodes are at the same position, as any one set
1333 of sibling decisions must be at the same position. Allowing this
1334 requires complications to find_afterward and when change_state is
1335 invoked. */
1336 if (d1->success.first
1337 && d2->success.first
1338 && strcmp (d1->success.first->position, d2->success.first->position))
1339 return 0;
1340
1341 return 1;
1342 }
1343
1344 /* A subroutine of merge_trees; given two nodes that have been declared
1345 identical, cope with two insn accept states. If they differ in the
1346 number of clobbers, then the conflict was created by make_insn_sequence
1347 and we can drop the with-clobbers version on the floor. If both
1348 nodes have no additional clobbers, we have found an ambiguity in the
1349 source machine description. */
1350
1351 static void
1352 merge_accept_insn (struct decision *oldd, struct decision *addd)
1353 {
1354 struct decision_test *old, *add;
1355
1356 for (old = oldd->tests; old; old = old->next)
1357 if (old->type == DT_accept_insn)
1358 break;
1359 if (old == NULL)
1360 return;
1361
1362 for (add = addd->tests; add; add = add->next)
1363 if (add->type == DT_accept_insn)
1364 break;
1365 if (add == NULL)
1366 return;
1367
1368 /* If one node is for a normal insn and the second is for the base
1369 insn with clobbers stripped off, the second node should be ignored. */
1370
1371 if (old->u.insn.num_clobbers_to_add == 0
1372 && add->u.insn.num_clobbers_to_add > 0)
1373 {
1374 /* Nothing to do here. */
1375 }
1376 else if (old->u.insn.num_clobbers_to_add > 0
1377 && add->u.insn.num_clobbers_to_add == 0)
1378 {
1379 /* In this case, replace OLD with ADD. */
1380 old->u.insn = add->u.insn;
1381 }
1382 else
1383 {
1384 message_with_line (add->u.insn.lineno, "`%s' matches `%s'",
1385 get_insn_name (add->u.insn.code_number),
1386 get_insn_name (old->u.insn.code_number));
1387 message_with_line (old->u.insn.lineno, "previous definition of `%s'",
1388 get_insn_name (old->u.insn.code_number));
1389 error_count++;
1390 }
1391 }
1392
1393 /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1394
1395 static void
1396 merge_trees (struct decision_head *oldh, struct decision_head *addh)
1397 {
1398 struct decision *next, *add;
1399
1400 if (addh->first == 0)
1401 return;
1402 if (oldh->first == 0)
1403 {
1404 *oldh = *addh;
1405 return;
1406 }
1407
1408 /* Trying to merge bits at different positions isn't possible. */
1409 if (strcmp (oldh->first->position, addh->first->position))
1410 abort ();
1411
1412 for (add = addh->first; add ; add = next)
1413 {
1414 struct decision *old, *insert_before = NULL;
1415
1416 next = add->next;
1417
1418 /* The semantics of pattern matching state that the tests are
1419 done in the order given in the MD file so that if an insn
1420 matches two patterns, the first one will be used. However,
1421 in practice, most, if not all, patterns are unambiguous so
1422 that their order is independent. In that case, we can merge
1423 identical tests and group all similar modes and codes together.
1424
1425 Scan starting from the end of OLDH until we reach a point
1426 where we reach the head of the list or where we pass a
1427 pattern that could also be true if NEW is true. If we find
1428 an identical pattern, we can merge them. Also, record the
1429 last node that tests the same code and mode and the last one
1430 that tests just the same mode.
1431
1432 If we have no match, place NEW after the closest match we found. */
1433
1434 for (old = oldh->last; old; old = old->prev)
1435 {
1436 if (nodes_identical (old, add))
1437 {
1438 merge_accept_insn (old, add);
1439 merge_trees (&old->success, &add->success);
1440 goto merged_nodes;
1441 }
1442
1443 if (maybe_both_true (old, add, 0))
1444 break;
1445
1446 /* Insert the nodes in DT test type order, which is roughly
1447 how expensive/important the test is. Given that the tests
1448 are also ordered within the list, examining the first is
1449 sufficient. */
1450 if ((int) add->tests->type < (int) old->tests->type)
1451 insert_before = old;
1452 }
1453
1454 if (insert_before == NULL)
1455 {
1456 add->next = NULL;
1457 add->prev = oldh->last;
1458 oldh->last->next = add;
1459 oldh->last = add;
1460 }
1461 else
1462 {
1463 if ((add->prev = insert_before->prev) != NULL)
1464 add->prev->next = add;
1465 else
1466 oldh->first = add;
1467 add->next = insert_before;
1468 insert_before->prev = add;
1469 }
1470
1471 merged_nodes:;
1472 }
1473 }
1474 \f
1475 /* Walk the tree looking for sub-nodes that perform common tests.
1476 Factor out the common test into a new node. This enables us
1477 (depending on the test type) to emit switch statements later. */
1478
1479 static void
1480 factor_tests (struct decision_head *head)
1481 {
1482 struct decision *first, *next;
1483
1484 for (first = head->first; first && first->next; first = next)
1485 {
1486 enum decision_type type;
1487 struct decision *new, *old_last;
1488
1489 type = first->tests->type;
1490 next = first->next;
1491
1492 /* Want at least two compatible sequential nodes. */
1493 if (next->tests->type != type)
1494 continue;
1495
1496 /* Don't want all node types, just those we can turn into
1497 switch statements. */
1498 if (type != DT_mode
1499 && type != DT_code
1500 && type != DT_veclen
1501 && type != DT_elt_zero_int
1502 && type != DT_elt_one_int
1503 && type != DT_elt_zero_wide_safe)
1504 continue;
1505
1506 /* If we'd been performing more than one test, create a new node
1507 below our first test. */
1508 if (first->tests->next != NULL)
1509 {
1510 new = new_decision (first->position, &first->success);
1511 new->tests = first->tests->next;
1512 first->tests->next = NULL;
1513 }
1514
1515 /* Crop the node tree off after our first test. */
1516 first->next = NULL;
1517 old_last = head->last;
1518 head->last = first;
1519
1520 /* For each compatible test, adjust to perform only one test in
1521 the top level node, then merge the node back into the tree. */
1522 do
1523 {
1524 struct decision_head h;
1525
1526 if (next->tests->next != NULL)
1527 {
1528 new = new_decision (next->position, &next->success);
1529 new->tests = next->tests->next;
1530 next->tests->next = NULL;
1531 }
1532 new = next;
1533 next = next->next;
1534 new->next = NULL;
1535 h.first = h.last = new;
1536
1537 merge_trees (head, &h);
1538 }
1539 while (next && next->tests->type == type);
1540
1541 /* After we run out of compatible tests, graft the remaining nodes
1542 back onto the tree. */
1543 if (next)
1544 {
1545 next->prev = head->last;
1546 head->last->next = next;
1547 head->last = old_last;
1548 }
1549 }
1550
1551 /* Recurse. */
1552 for (first = head->first; first; first = first->next)
1553 factor_tests (&first->success);
1554 }
1555
1556 /* After factoring, try to simplify the tests on any one node.
1557 Tests that are useful for switch statements are recognizable
1558 by having only a single test on a node -- we'll be manipulating
1559 nodes with multiple tests:
1560
1561 If we have mode tests or code tests that are redundant with
1562 predicates, remove them. */
1563
1564 static void
1565 simplify_tests (struct decision_head *head)
1566 {
1567 struct decision *tree;
1568
1569 for (tree = head->first; tree; tree = tree->next)
1570 {
1571 struct decision_test *a, *b;
1572
1573 a = tree->tests;
1574 b = a->next;
1575 if (b == NULL)
1576 continue;
1577
1578 /* Find a predicate node. */
1579 while (b && b->type != DT_pred)
1580 b = b->next;
1581 if (b)
1582 {
1583 /* Due to how these tests are constructed, we don't even need
1584 to check that the mode and code are compatible -- they were
1585 generated from the predicate in the first place. */
1586 while (a->type == DT_mode || a->type == DT_code)
1587 a = a->next;
1588 tree->tests = a;
1589 }
1590 }
1591
1592 /* Recurse. */
1593 for (tree = head->first; tree; tree = tree->next)
1594 simplify_tests (&tree->success);
1595 }
1596
1597 /* Count the number of subnodes of HEAD. If the number is high enough,
1598 make the first node in HEAD start a separate subroutine in the C code
1599 that is generated. */
1600
1601 static int
1602 break_out_subroutines (struct decision_head *head, int initial)
1603 {
1604 int size = 0;
1605 struct decision *sub;
1606
1607 for (sub = head->first; sub; sub = sub->next)
1608 size += 1 + break_out_subroutines (&sub->success, 0);
1609
1610 if (size > SUBROUTINE_THRESHOLD && ! initial)
1611 {
1612 head->first->subroutine_number = ++next_subroutine_number;
1613 size = 1;
1614 }
1615 return size;
1616 }
1617
1618 /* For each node p, find the next alternative that might be true
1619 when p is true. */
1620
1621 static void
1622 find_afterward (struct decision_head *head, struct decision *real_afterward)
1623 {
1624 struct decision *p, *q, *afterward;
1625
1626 /* We can't propagate alternatives across subroutine boundaries.
1627 This is not incorrect, merely a minor optimization loss. */
1628
1629 p = head->first;
1630 afterward = (p->subroutine_number > 0 ? NULL : real_afterward);
1631
1632 for ( ; p ; p = p->next)
1633 {
1634 /* Find the next node that might be true if this one fails. */
1635 for (q = p->next; q ; q = q->next)
1636 if (maybe_both_true (p, q, 1))
1637 break;
1638
1639 /* If we reached the end of the list without finding one,
1640 use the incoming afterward position. */
1641 if (!q)
1642 q = afterward;
1643 p->afterward = q;
1644 if (q)
1645 q->need_label = 1;
1646 }
1647
1648 /* Recurse. */
1649 for (p = head->first; p ; p = p->next)
1650 if (p->success.first)
1651 find_afterward (&p->success, p->afterward);
1652
1653 /* When we are generating a subroutine, record the real afterward
1654 position in the first node where write_tree can find it, and we
1655 can do the right thing at the subroutine call site. */
1656 p = head->first;
1657 if (p->subroutine_number > 0)
1658 p->afterward = real_afterward;
1659 }
1660 \f
1661 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1662 actions are necessary to move to NEWPOS. If we fail to move to the
1663 new state, branch to node AFTERWARD if nonzero, otherwise return.
1664
1665 Failure to move to the new state can only occur if we are trying to
1666 match multiple insns and we try to step past the end of the stream. */
1667
1668 static void
1669 change_state (const char *oldpos, const char *newpos,
1670 struct decision *afterward, const char *indent)
1671 {
1672 int odepth = strlen (oldpos);
1673 int ndepth = strlen (newpos);
1674 int depth;
1675 int old_has_insn, new_has_insn;
1676
1677 /* Pop up as many levels as necessary. */
1678 for (depth = odepth; strncmp (oldpos, newpos, depth) != 0; --depth)
1679 continue;
1680
1681 /* Hunt for the last [A-Z] in both strings. */
1682 for (old_has_insn = odepth - 1; old_has_insn >= 0; --old_has_insn)
1683 if (ISUPPER (oldpos[old_has_insn]))
1684 break;
1685 for (new_has_insn = ndepth - 1; new_has_insn >= 0; --new_has_insn)
1686 if (ISUPPER (newpos[new_has_insn]))
1687 break;
1688
1689 /* Go down to desired level. */
1690 while (depth < ndepth)
1691 {
1692 /* It's a different insn from the first one. */
1693 if (ISUPPER (newpos[depth]))
1694 {
1695 /* We can only fail if we're moving down the tree. */
1696 if (old_has_insn >= 0 && oldpos[old_has_insn] >= newpos[depth])
1697 {
1698 printf ("%stem = peep2_next_insn (%d);\n",
1699 indent, newpos[depth] - 'A');
1700 }
1701 else
1702 {
1703 printf ("%stem = peep2_next_insn (%d);\n",
1704 indent, newpos[depth] - 'A');
1705 printf ("%sif (tem == NULL_RTX)\n", indent);
1706 if (afterward)
1707 printf ("%s goto L%d;\n", indent, afterward->number);
1708 else
1709 printf ("%s goto ret0;\n", indent);
1710 }
1711 printf ("%sx%d = PATTERN (tem);\n", indent, depth + 1);
1712 }
1713 else if (ISLOWER (newpos[depth]))
1714 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1715 indent, depth + 1, depth, newpos[depth] - 'a');
1716 else
1717 printf ("%sx%d = XEXP (x%d, %c);\n",
1718 indent, depth + 1, depth, newpos[depth]);
1719 ++depth;
1720 }
1721 }
1722 \f
1723 /* Print the enumerator constant for CODE -- the upcase version of
1724 the name. */
1725
1726 static void
1727 print_code (enum rtx_code code)
1728 {
1729 const char *p;
1730 for (p = GET_RTX_NAME (code); *p; p++)
1731 putchar (TOUPPER (*p));
1732 }
1733
1734 /* Emit code to cross an afterward link -- change state and branch. */
1735
1736 static void
1737 write_afterward (struct decision *start, struct decision *afterward,
1738 const char *indent)
1739 {
1740 if (!afterward || start->subroutine_number > 0)
1741 printf("%sgoto ret0;\n", indent);
1742 else
1743 {
1744 change_state (start->position, afterward->position, NULL, indent);
1745 printf ("%sgoto L%d;\n", indent, afterward->number);
1746 }
1747 }
1748
1749 /* Emit a HOST_WIDE_INT as an integer constant expression. We need to take
1750 special care to avoid "decimal constant is so large that it is unsigned"
1751 warnings in the resulting code. */
1752
1753 static void
1754 print_host_wide_int (HOST_WIDE_INT val)
1755 {
1756 HOST_WIDE_INT min = (unsigned HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1);
1757 if (val == min)
1758 printf ("(" HOST_WIDE_INT_PRINT_DEC_C "-1)", val + 1);
1759 else
1760 printf (HOST_WIDE_INT_PRINT_DEC_C, val);
1761 }
1762
1763 /* Emit a switch statement, if possible, for an initial sequence of
1764 nodes at START. Return the first node yet untested. */
1765
1766 static struct decision *
1767 write_switch (struct decision *start, int depth)
1768 {
1769 struct decision *p = start;
1770 enum decision_type type = p->tests->type;
1771 struct decision *needs_label = NULL;
1772
1773 /* If we have two or more nodes in sequence that test the same one
1774 thing, we may be able to use a switch statement. */
1775
1776 if (!p->next
1777 || p->tests->next
1778 || p->next->tests->type != type
1779 || p->next->tests->next
1780 || nodes_identical_1 (p->tests, p->next->tests))
1781 return p;
1782
1783 /* DT_code is special in that we can do interesting things with
1784 known predicates at the same time. */
1785 if (type == DT_code)
1786 {
1787 char codemap[NUM_RTX_CODE];
1788 struct decision *ret;
1789 RTX_CODE code;
1790
1791 memset (codemap, 0, sizeof(codemap));
1792
1793 printf (" switch (GET_CODE (x%d))\n {\n", depth);
1794 code = p->tests->u.code;
1795 do
1796 {
1797 if (p != start && p->need_label && needs_label == NULL)
1798 needs_label = p;
1799
1800 printf (" case ");
1801 print_code (code);
1802 printf (":\n goto L%d;\n", p->success.first->number);
1803 p->success.first->need_label = 1;
1804
1805 codemap[code] = 1;
1806 p = p->next;
1807 }
1808 while (p
1809 && ! p->tests->next
1810 && p->tests->type == DT_code
1811 && ! codemap[code = p->tests->u.code]);
1812
1813 /* If P is testing a predicate that we know about and we haven't
1814 seen any of the codes that are valid for the predicate, we can
1815 write a series of "case" statement, one for each possible code.
1816 Since we are already in a switch, these redundant tests are very
1817 cheap and will reduce the number of predicates called. */
1818
1819 /* Note that while we write out cases for these predicates here,
1820 we don't actually write the test here, as it gets kinda messy.
1821 It is trivial to leave this to later by telling our caller that
1822 we only processed the CODE tests. */
1823 if (needs_label != NULL)
1824 ret = needs_label;
1825 else
1826 ret = p;
1827
1828 while (p && p->tests->type == DT_pred
1829 && p->tests->u.pred.index >= 0)
1830 {
1831 const RTX_CODE *c;
1832
1833 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1834 if (codemap[(int) *c] != 0)
1835 goto pred_done;
1836
1837 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1838 {
1839 printf (" case ");
1840 print_code (*c);
1841 printf (":\n");
1842 codemap[(int) *c] = 1;
1843 }
1844
1845 printf (" goto L%d;\n", p->number);
1846 p->need_label = 1;
1847 p = p->next;
1848 }
1849
1850 pred_done:
1851 /* Make the default case skip the predicates we managed to match. */
1852
1853 printf (" default:\n");
1854 if (p != ret)
1855 {
1856 if (p)
1857 {
1858 printf (" goto L%d;\n", p->number);
1859 p->need_label = 1;
1860 }
1861 else
1862 write_afterward (start, start->afterward, " ");
1863 }
1864 else
1865 printf (" break;\n");
1866 printf (" }\n");
1867
1868 return ret;
1869 }
1870 else if (type == DT_mode
1871 || type == DT_veclen
1872 || type == DT_elt_zero_int
1873 || type == DT_elt_one_int
1874 || type == DT_elt_zero_wide_safe)
1875 {
1876 const char *indent = "";
1877
1878 /* We cast switch parameter to integer, so we must ensure that the value
1879 fits. */
1880 if (type == DT_elt_zero_wide_safe)
1881 {
1882 indent = " ";
1883 printf(" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n", depth, depth);
1884 }
1885 printf ("%s switch (", indent);
1886 switch (type)
1887 {
1888 case DT_mode:
1889 printf ("GET_MODE (x%d)", depth);
1890 break;
1891 case DT_veclen:
1892 printf ("XVECLEN (x%d, 0)", depth);
1893 break;
1894 case DT_elt_zero_int:
1895 printf ("XINT (x%d, 0)", depth);
1896 break;
1897 case DT_elt_one_int:
1898 printf ("XINT (x%d, 1)", depth);
1899 break;
1900 case DT_elt_zero_wide_safe:
1901 /* Convert result of XWINT to int for portability since some C
1902 compilers won't do it and some will. */
1903 printf ("(int) XWINT (x%d, 0)", depth);
1904 break;
1905 default:
1906 abort ();
1907 }
1908 printf (")\n%s {\n", indent);
1909
1910 do
1911 {
1912 /* Merge trees will not unify identical nodes if their
1913 sub-nodes are at different levels. Thus we must check
1914 for duplicate cases. */
1915 struct decision *q;
1916 for (q = start; q != p; q = q->next)
1917 if (nodes_identical_1 (p->tests, q->tests))
1918 goto case_done;
1919
1920 if (p != start && p->need_label && needs_label == NULL)
1921 needs_label = p;
1922
1923 printf ("%s case ", indent);
1924 switch (type)
1925 {
1926 case DT_mode:
1927 printf ("%smode", GET_MODE_NAME (p->tests->u.mode));
1928 break;
1929 case DT_veclen:
1930 printf ("%d", p->tests->u.veclen);
1931 break;
1932 case DT_elt_zero_int:
1933 case DT_elt_one_int:
1934 case DT_elt_zero_wide:
1935 case DT_elt_zero_wide_safe:
1936 print_host_wide_int (p->tests->u.intval);
1937 break;
1938 default:
1939 abort ();
1940 }
1941 printf (":\n%s goto L%d;\n", indent, p->success.first->number);
1942 p->success.first->need_label = 1;
1943
1944 p = p->next;
1945 }
1946 while (p && p->tests->type == type && !p->tests->next);
1947
1948 case_done:
1949 printf ("%s default:\n%s break;\n%s }\n",
1950 indent, indent, indent);
1951
1952 return needs_label != NULL ? needs_label : p;
1953 }
1954 else
1955 {
1956 /* None of the other tests are amenable. */
1957 return p;
1958 }
1959 }
1960
1961 /* Emit code for one test. */
1962
1963 static void
1964 write_cond (struct decision_test *p, int depth,
1965 enum routine_type subroutine_type)
1966 {
1967 switch (p->type)
1968 {
1969 case DT_mode:
1970 printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode));
1971 break;
1972
1973 case DT_code:
1974 printf ("GET_CODE (x%d) == ", depth);
1975 print_code (p->u.code);
1976 break;
1977
1978 case DT_veclen:
1979 printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen);
1980 break;
1981
1982 case DT_elt_zero_int:
1983 printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval);
1984 break;
1985
1986 case DT_elt_one_int:
1987 printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval);
1988 break;
1989
1990 case DT_elt_zero_wide:
1991 case DT_elt_zero_wide_safe:
1992 printf ("XWINT (x%d, 0) == ", depth);
1993 print_host_wide_int (p->u.intval);
1994 break;
1995
1996 case DT_const_int:
1997 printf ("x%d == const_int_rtx[MAX_SAVED_CONST_INT + (%d)]",
1998 depth, (int) p->u.intval);
1999 break;
2000
2001 case DT_veclen_ge:
2002 printf ("XVECLEN (x%d, 0) >= %d", depth, p->u.veclen);
2003 break;
2004
2005 case DT_dup:
2006 printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup);
2007 break;
2008
2009 case DT_pred:
2010 printf ("%s (x%d, %smode)", p->u.pred.name, depth,
2011 GET_MODE_NAME (p->u.pred.mode));
2012 break;
2013
2014 case DT_c_test:
2015 printf ("(%s)", p->u.c_test);
2016 break;
2017
2018 case DT_accept_insn:
2019 switch (subroutine_type)
2020 {
2021 case RECOG:
2022 if (p->u.insn.num_clobbers_to_add == 0)
2023 abort ();
2024 printf ("pnum_clobbers != NULL");
2025 break;
2026
2027 default:
2028 abort ();
2029 }
2030 break;
2031
2032 default:
2033 abort ();
2034 }
2035 }
2036
2037 /* Emit code for one action. The previous tests have succeeded;
2038 TEST is the last of the chain. In the normal case we simply
2039 perform a state change. For the `accept' tests we must do more work. */
2040
2041 static void
2042 write_action (struct decision *p, struct decision_test *test,
2043 int depth, int uncond, struct decision *success,
2044 enum routine_type subroutine_type)
2045 {
2046 const char *indent;
2047 int want_close = 0;
2048
2049 if (uncond)
2050 indent = " ";
2051 else if (test->type == DT_accept_op || test->type == DT_accept_insn)
2052 {
2053 fputs (" {\n", stdout);
2054 indent = " ";
2055 want_close = 1;
2056 }
2057 else
2058 indent = " ";
2059
2060 if (test->type == DT_accept_op)
2061 {
2062 printf("%soperands[%d] = x%d;\n", indent, test->u.opno, depth);
2063
2064 /* Only allow DT_accept_insn to follow. */
2065 if (test->next)
2066 {
2067 test = test->next;
2068 if (test->type != DT_accept_insn)
2069 abort ();
2070 }
2071 }
2072
2073 /* Sanity check that we're now at the end of the list of tests. */
2074 if (test->next)
2075 abort ();
2076
2077 if (test->type == DT_accept_insn)
2078 {
2079 switch (subroutine_type)
2080 {
2081 case RECOG:
2082 if (test->u.insn.num_clobbers_to_add != 0)
2083 printf ("%s*pnum_clobbers = %d;\n",
2084 indent, test->u.insn.num_clobbers_to_add);
2085 printf ("%sreturn %d;\n", indent, test->u.insn.code_number);
2086 break;
2087
2088 case SPLIT:
2089 printf ("%sreturn gen_split_%d (operands);\n",
2090 indent, test->u.insn.code_number);
2091 break;
2092
2093 case PEEPHOLE2:
2094 {
2095 int match_len = 0, i;
2096
2097 for (i = strlen (p->position) - 1; i >= 0; --i)
2098 if (ISUPPER (p->position[i]))
2099 {
2100 match_len = p->position[i] - 'A';
2101 break;
2102 }
2103 printf ("%s*_pmatch_len = %d;\n", indent, match_len);
2104 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
2105 indent, test->u.insn.code_number);
2106 printf ("%sif (tem != 0)\n%s return tem;\n", indent, indent);
2107 }
2108 break;
2109
2110 default:
2111 abort ();
2112 }
2113 }
2114 else
2115 {
2116 printf("%sgoto L%d;\n", indent, success->number);
2117 success->need_label = 1;
2118 }
2119
2120 if (want_close)
2121 fputs (" }\n", stdout);
2122 }
2123
2124 /* Return 1 if the test is always true and has no fallthru path. Return -1
2125 if the test does have a fallthru path, but requires that the condition be
2126 terminated. Otherwise return 0 for a normal test. */
2127 /* ??? is_unconditional is a stupid name for a tri-state function. */
2128
2129 static int
2130 is_unconditional (struct decision_test *t, enum routine_type subroutine_type)
2131 {
2132 if (t->type == DT_accept_op)
2133 return 1;
2134
2135 if (t->type == DT_accept_insn)
2136 {
2137 switch (subroutine_type)
2138 {
2139 case RECOG:
2140 return (t->u.insn.num_clobbers_to_add == 0);
2141 case SPLIT:
2142 return 1;
2143 case PEEPHOLE2:
2144 return -1;
2145 default:
2146 abort ();
2147 }
2148 }
2149
2150 return 0;
2151 }
2152
2153 /* Emit code for one node -- the conditional and the accompanying action.
2154 Return true if there is no fallthru path. */
2155
2156 static int
2157 write_node (struct decision *p, int depth,
2158 enum routine_type subroutine_type)
2159 {
2160 struct decision_test *test, *last_test;
2161 int uncond;
2162
2163 /* Scan the tests and simplify comparisons against small
2164 constants. */
2165 for (test = p->tests; test; test = test->next)
2166 {
2167 if (test->type == DT_code
2168 && test->u.code == CONST_INT
2169 && test->next
2170 && test->next->type == DT_elt_zero_wide_safe
2171 && -MAX_SAVED_CONST_INT <= test->next->u.intval
2172 && test->next->u.intval <= MAX_SAVED_CONST_INT)
2173 {
2174 test->type = DT_const_int;
2175 test->u.intval = test->next->u.intval;
2176 test->next = test->next->next;
2177 }
2178 }
2179
2180 last_test = test = p->tests;
2181 uncond = is_unconditional (test, subroutine_type);
2182 if (uncond == 0)
2183 {
2184 printf (" if (");
2185 write_cond (test, depth, subroutine_type);
2186
2187 while ((test = test->next) != NULL)
2188 {
2189 last_test = test;
2190 if (is_unconditional (test, subroutine_type))
2191 break;
2192
2193 printf ("\n && ");
2194 write_cond (test, depth, subroutine_type);
2195 }
2196
2197 printf (")\n");
2198 }
2199
2200 write_action (p, last_test, depth, uncond, p->success.first, subroutine_type);
2201
2202 return uncond > 0;
2203 }
2204
2205 /* Emit code for all of the sibling nodes of HEAD. */
2206
2207 static void
2208 write_tree_1 (struct decision_head *head, int depth,
2209 enum routine_type subroutine_type)
2210 {
2211 struct decision *p, *next;
2212 int uncond = 0;
2213
2214 for (p = head->first; p ; p = next)
2215 {
2216 /* The label for the first element was printed in write_tree. */
2217 if (p != head->first && p->need_label)
2218 OUTPUT_LABEL (" ", p->number);
2219
2220 /* Attempt to write a switch statement for a whole sequence. */
2221 next = write_switch (p, depth);
2222 if (p != next)
2223 uncond = 0;
2224 else
2225 {
2226 /* Failed -- fall back and write one node. */
2227 uncond = write_node (p, depth, subroutine_type);
2228 next = p->next;
2229 }
2230 }
2231
2232 /* Finished with this chain. Close a fallthru path by branching
2233 to the afterward node. */
2234 if (! uncond)
2235 write_afterward (head->last, head->last->afterward, " ");
2236 }
2237
2238 /* Write out the decision tree starting at HEAD. PREVPOS is the
2239 position at the node that branched to this node. */
2240
2241 static void
2242 write_tree (struct decision_head *head, const char *prevpos,
2243 enum routine_type type, int initial)
2244 {
2245 struct decision *p = head->first;
2246
2247 putchar ('\n');
2248 if (p->need_label)
2249 OUTPUT_LABEL (" ", p->number);
2250
2251 if (! initial && p->subroutine_number > 0)
2252 {
2253 static const char * const name_prefix[] = {
2254 "recog", "split", "peephole2"
2255 };
2256
2257 static const char * const call_suffix[] = {
2258 ", pnum_clobbers", "", ", _pmatch_len"
2259 };
2260
2261 /* This node has been broken out into a separate subroutine.
2262 Call it, test the result, and branch accordingly. */
2263
2264 if (p->afterward)
2265 {
2266 printf (" tem = %s_%d (x0, insn%s);\n",
2267 name_prefix[type], p->subroutine_number, call_suffix[type]);
2268 if (IS_SPLIT (type))
2269 printf (" if (tem != 0)\n return tem;\n");
2270 else
2271 printf (" if (tem >= 0)\n return tem;\n");
2272
2273 change_state (p->position, p->afterward->position, NULL, " ");
2274 printf (" goto L%d;\n", p->afterward->number);
2275 }
2276 else
2277 {
2278 printf (" return %s_%d (x0, insn%s);\n",
2279 name_prefix[type], p->subroutine_number, call_suffix[type]);
2280 }
2281 }
2282 else
2283 {
2284 int depth = strlen (p->position);
2285
2286 change_state (prevpos, p->position, head->last->afterward, " ");
2287 write_tree_1 (head, depth, type);
2288
2289 for (p = head->first; p; p = p->next)
2290 if (p->success.first)
2291 write_tree (&p->success, p->position, type, 0);
2292 }
2293 }
2294
2295 /* Write out a subroutine of type TYPE to do comparisons starting at
2296 node TREE. */
2297
2298 static void
2299 write_subroutine (struct decision_head *head, enum routine_type type)
2300 {
2301 int subfunction = head->first ? head->first->subroutine_number : 0;
2302 const char *s_or_e;
2303 char extension[32];
2304 int i;
2305
2306 s_or_e = subfunction ? "static " : "";
2307
2308 if (subfunction)
2309 sprintf (extension, "_%d", subfunction);
2310 else if (type == RECOG)
2311 extension[0] = '\0';
2312 else
2313 strcpy (extension, "_insns");
2314
2315 switch (type)
2316 {
2317 case RECOG:
2318 printf ("%sint\n\
2319 recog%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", s_or_e, extension);
2320 break;
2321 case SPLIT:
2322 printf ("%srtx\n\
2323 split%s (rtx x0 ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED)\n",
2324 s_or_e, extension);
2325 break;
2326 case PEEPHOLE2:
2327 printf ("%srtx\n\
2328 peephole2%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *_pmatch_len ATTRIBUTE_UNUSED)\n",
2329 s_or_e, extension);
2330 break;
2331 }
2332
2333 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
2334 for (i = 1; i <= max_depth; i++)
2335 printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i);
2336
2337 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int");
2338
2339 if (!subfunction)
2340 printf (" recog_data.insn = NULL_RTX;\n");
2341
2342 if (head->first)
2343 write_tree (head, "", type, 1);
2344 else
2345 printf (" goto ret0;\n");
2346
2347 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1);
2348 }
2349
2350 /* In break_out_subroutines, we discovered the boundaries for the
2351 subroutines, but did not write them out. Do so now. */
2352
2353 static void
2354 write_subroutines (struct decision_head *head, enum routine_type type)
2355 {
2356 struct decision *p;
2357
2358 for (p = head->first; p ; p = p->next)
2359 if (p->success.first)
2360 write_subroutines (&p->success, type);
2361
2362 if (head->first->subroutine_number > 0)
2363 write_subroutine (head, type);
2364 }
2365
2366 /* Begin the output file. */
2367
2368 static void
2369 write_header (void)
2370 {
2371 puts ("\
2372 /* Generated automatically by the program `genrecog' from the target\n\
2373 machine description file. */\n\
2374 \n\
2375 #include \"config.h\"\n\
2376 #include \"system.h\"\n\
2377 #include \"coretypes.h\"\n\
2378 #include \"tm.h\"\n\
2379 #include \"rtl.h\"\n\
2380 #include \"tm_p.h\"\n\
2381 #include \"function.h\"\n\
2382 #include \"insn-config.h\"\n\
2383 #include \"recog.h\"\n\
2384 #include \"real.h\"\n\
2385 #include \"output.h\"\n\
2386 #include \"flags.h\"\n\
2387 #include \"hard-reg-set.h\"\n\
2388 #include \"resource.h\"\n\
2389 #include \"toplev.h\"\n\
2390 #include \"reload.h\"\n\
2391 \n");
2392
2393 puts ("\n\
2394 /* `recog' contains a decision tree that recognizes whether the rtx\n\
2395 X0 is a valid instruction.\n\
2396 \n\
2397 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2398 returns a nonnegative number which is the insn code number for the\n\
2399 pattern that matched. This is the same as the order in the machine\n\
2400 description of the entry that matched. This number can be used as an\n\
2401 index into `insn_data' and other tables.\n");
2402 puts ("\
2403 The third argument to recog is an optional pointer to an int. If\n\
2404 present, recog will accept a pattern if it matches except for missing\n\
2405 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2406 the optional pointer will be set to the number of CLOBBERs that need\n\
2407 to be added (it should be initialized to zero by the caller). If it");
2408 puts ("\
2409 is set nonzero, the caller should allocate a PARALLEL of the\n\
2410 appropriate size, copy the initial entries, and call add_clobbers\n\
2411 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2412 ");
2413
2414 puts ("\n\
2415 The function split_insns returns 0 if the rtl could not\n\
2416 be split or the split rtl as an INSN list if it can be.\n\
2417 \n\
2418 The function peephole2_insns returns 0 if the rtl could not\n\
2419 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
2420 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2421 */\n\n");
2422 }
2423
2424 \f
2425 /* Construct and return a sequence of decisions
2426 that will recognize INSN.
2427
2428 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2429
2430 static struct decision_head
2431 make_insn_sequence (rtx insn, enum routine_type type)
2432 {
2433 rtx x;
2434 const char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
2435 int truth = maybe_eval_c_test (c_test);
2436 struct decision *last;
2437 struct decision_test *test, **place;
2438 struct decision_head head;
2439 char c_test_pos[2];
2440
2441 /* We should never see an insn whose C test is false at compile time. */
2442 if (truth == 0)
2443 abort ();
2444
2445 record_insn_name (next_insn_code, (type == RECOG ? XSTR (insn, 0) : NULL));
2446
2447 c_test_pos[0] = '\0';
2448 if (type == PEEPHOLE2)
2449 {
2450 int i, j;
2451
2452 /* peephole2 gets special treatment:
2453 - X always gets an outer parallel even if it's only one entry
2454 - we remove all traces of outer-level match_scratch and match_dup
2455 expressions here. */
2456 x = rtx_alloc (PARALLEL);
2457 PUT_MODE (x, VOIDmode);
2458 XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0));
2459 for (i = j = 0; i < XVECLEN (insn, 0); i++)
2460 {
2461 rtx tmp = XVECEXP (insn, 0, i);
2462 if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP)
2463 {
2464 XVECEXP (x, 0, j) = tmp;
2465 j++;
2466 }
2467 }
2468 XVECLEN (x, 0) = j;
2469
2470 c_test_pos[0] = 'A' + j - 1;
2471 c_test_pos[1] = '\0';
2472 }
2473 else if (XVECLEN (insn, type == RECOG) == 1)
2474 x = XVECEXP (insn, type == RECOG, 0);
2475 else
2476 {
2477 x = rtx_alloc (PARALLEL);
2478 XVEC (x, 0) = XVEC (insn, type == RECOG);
2479 PUT_MODE (x, VOIDmode);
2480 }
2481
2482 validate_pattern (x, insn, NULL_RTX, 0);
2483
2484 memset(&head, 0, sizeof(head));
2485 last = add_to_sequence (x, &head, "", type, 1);
2486
2487 /* Find the end of the test chain on the last node. */
2488 for (test = last->tests; test->next; test = test->next)
2489 continue;
2490 place = &test->next;
2491
2492 /* Skip the C test if it's known to be true at compile time. */
2493 if (truth == -1)
2494 {
2495 /* Need a new node if we have another test to add. */
2496 if (test->type == DT_accept_op)
2497 {
2498 last = new_decision (c_test_pos, &last->success);
2499 place = &last->tests;
2500 }
2501 test = new_decision_test (DT_c_test, &place);
2502 test->u.c_test = c_test;
2503 }
2504
2505 test = new_decision_test (DT_accept_insn, &place);
2506 test->u.insn.code_number = next_insn_code;
2507 test->u.insn.lineno = pattern_lineno;
2508 test->u.insn.num_clobbers_to_add = 0;
2509
2510 switch (type)
2511 {
2512 case RECOG:
2513 /* If this is a DEFINE_INSN and X is a PARALLEL, see if it ends
2514 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2515 If so, set up to recognize the pattern without these CLOBBERs. */
2516
2517 if (GET_CODE (x) == PARALLEL)
2518 {
2519 int i;
2520
2521 /* Find the last non-clobber in the parallel. */
2522 for (i = XVECLEN (x, 0); i > 0; i--)
2523 {
2524 rtx y = XVECEXP (x, 0, i - 1);
2525 if (GET_CODE (y) != CLOBBER
2526 || (GET_CODE (XEXP (y, 0)) != REG
2527 && GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH))
2528 break;
2529 }
2530
2531 if (i != XVECLEN (x, 0))
2532 {
2533 rtx new;
2534 struct decision_head clobber_head;
2535
2536 /* Build a similar insn without the clobbers. */
2537 if (i == 1)
2538 new = XVECEXP (x, 0, 0);
2539 else
2540 {
2541 int j;
2542
2543 new = rtx_alloc (PARALLEL);
2544 XVEC (new, 0) = rtvec_alloc (i);
2545 for (j = i - 1; j >= 0; j--)
2546 XVECEXP (new, 0, j) = XVECEXP (x, 0, j);
2547 }
2548
2549 /* Recognize it. */
2550 memset (&clobber_head, 0, sizeof(clobber_head));
2551 last = add_to_sequence (new, &clobber_head, "", type, 1);
2552
2553 /* Find the end of the test chain on the last node. */
2554 for (test = last->tests; test->next; test = test->next)
2555 continue;
2556
2557 /* We definitely have a new test to add -- create a new
2558 node if needed. */
2559 place = &test->next;
2560 if (test->type == DT_accept_op)
2561 {
2562 last = new_decision ("", &last->success);
2563 place = &last->tests;
2564 }
2565
2566 /* Skip the C test if it's known to be true at compile
2567 time. */
2568 if (truth == -1)
2569 {
2570 test = new_decision_test (DT_c_test, &place);
2571 test->u.c_test = c_test;
2572 }
2573
2574 test = new_decision_test (DT_accept_insn, &place);
2575 test->u.insn.code_number = next_insn_code;
2576 test->u.insn.lineno = pattern_lineno;
2577 test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i;
2578
2579 merge_trees (&head, &clobber_head);
2580 }
2581 }
2582 break;
2583
2584 case SPLIT:
2585 /* Define the subroutine we will call below and emit in genemit. */
2586 printf ("extern rtx gen_split_%d (rtx *);\n", next_insn_code);
2587 break;
2588
2589 case PEEPHOLE2:
2590 /* Define the subroutine we will call below and emit in genemit. */
2591 printf ("extern rtx gen_peephole2_%d (rtx, rtx *);\n",
2592 next_insn_code);
2593 break;
2594 }
2595
2596 return head;
2597 }
2598
2599 static void
2600 process_tree (struct decision_head *head, enum routine_type subroutine_type)
2601 {
2602 if (head->first == NULL)
2603 {
2604 /* We can elide peephole2_insns, but not recog or split_insns. */
2605 if (subroutine_type == PEEPHOLE2)
2606 return;
2607 }
2608 else
2609 {
2610 factor_tests (head);
2611
2612 next_subroutine_number = 0;
2613 break_out_subroutines (head, 1);
2614 find_afterward (head, NULL);
2615
2616 /* We run this after find_afterward, because find_afterward needs
2617 the redundant DT_mode tests on predicates to determine whether
2618 two tests can both be true or not. */
2619 simplify_tests(head);
2620
2621 write_subroutines (head, subroutine_type);
2622 }
2623
2624 write_subroutine (head, subroutine_type);
2625 }
2626 \f
2627 extern int main (int, char **);
2628
2629 int
2630 main (int argc, char **argv)
2631 {
2632 rtx desc;
2633 struct decision_head recog_tree, split_tree, peephole2_tree, h;
2634
2635 progname = "genrecog";
2636
2637 memset (&recog_tree, 0, sizeof recog_tree);
2638 memset (&split_tree, 0, sizeof split_tree);
2639 memset (&peephole2_tree, 0, sizeof peephole2_tree);
2640
2641 if (argc <= 1)
2642 fatal ("no input file name");
2643
2644 if (init_md_reader_args (argc, argv) != SUCCESS_EXIT_CODE)
2645 return (FATAL_EXIT_CODE);
2646
2647 next_insn_code = 0;
2648 next_index = 0;
2649
2650 write_header ();
2651
2652 /* Read the machine description. */
2653
2654 while (1)
2655 {
2656 desc = read_md_rtx (&pattern_lineno, &next_insn_code);
2657 if (desc == NULL)
2658 break;
2659
2660 if (GET_CODE (desc) == DEFINE_INSN)
2661 {
2662 h = make_insn_sequence (desc, RECOG);
2663 merge_trees (&recog_tree, &h);
2664 }
2665 else if (GET_CODE (desc) == DEFINE_SPLIT)
2666 {
2667 h = make_insn_sequence (desc, SPLIT);
2668 merge_trees (&split_tree, &h);
2669 }
2670 else if (GET_CODE (desc) == DEFINE_PEEPHOLE2)
2671 {
2672 h = make_insn_sequence (desc, PEEPHOLE2);
2673 merge_trees (&peephole2_tree, &h);
2674 }
2675
2676 next_index++;
2677 }
2678
2679 if (error_count)
2680 return FATAL_EXIT_CODE;
2681
2682 puts ("\n\n");
2683
2684 process_tree (&recog_tree, RECOG);
2685 process_tree (&split_tree, SPLIT);
2686 process_tree (&peephole2_tree, PEEPHOLE2);
2687
2688 fflush (stdout);
2689 return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
2690 }
2691 \f
2692 /* Define this so we can link with print-rtl.o to get debug_rtx function. */
2693 const char *
2694 get_insn_name (int code)
2695 {
2696 if (code < insn_name_ptr_size)
2697 return insn_name_ptr[code];
2698 else
2699 return NULL;
2700 }
2701
2702 static void
2703 record_insn_name (int code, const char *name)
2704 {
2705 static const char *last_real_name = "insn";
2706 static int last_real_code = 0;
2707 char *new;
2708
2709 if (insn_name_ptr_size <= code)
2710 {
2711 int new_size;
2712 new_size = (insn_name_ptr_size ? insn_name_ptr_size * 2 : 512);
2713 insn_name_ptr = xrealloc (insn_name_ptr, sizeof(char *) * new_size);
2714 memset (insn_name_ptr + insn_name_ptr_size, 0,
2715 sizeof(char *) * (new_size - insn_name_ptr_size));
2716 insn_name_ptr_size = new_size;
2717 }
2718
2719 if (!name || name[0] == '\0')
2720 {
2721 new = xmalloc (strlen (last_real_name) + 10);
2722 sprintf (new, "%s+%d", last_real_name, code - last_real_code);
2723 }
2724 else
2725 {
2726 last_real_name = new = xstrdup (name);
2727 last_real_code = code;
2728 }
2729
2730 insn_name_ptr[code] = new;
2731 }
2732 \f
2733 static void
2734 debug_decision_2 (struct decision_test *test)
2735 {
2736 switch (test->type)
2737 {
2738 case DT_mode:
2739 fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode));
2740 break;
2741 case DT_code:
2742 fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code));
2743 break;
2744 case DT_veclen:
2745 fprintf (stderr, "veclen=%d", test->u.veclen);
2746 break;
2747 case DT_elt_zero_int:
2748 fprintf (stderr, "elt0_i=%d", (int) test->u.intval);
2749 break;
2750 case DT_elt_one_int:
2751 fprintf (stderr, "elt1_i=%d", (int) test->u.intval);
2752 break;
2753 case DT_elt_zero_wide:
2754 fprintf (stderr, "elt0_w=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2755 break;
2756 case DT_elt_zero_wide_safe:
2757 fprintf (stderr, "elt0_ws=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2758 break;
2759 case DT_veclen_ge:
2760 fprintf (stderr, "veclen>=%d", test->u.veclen);
2761 break;
2762 case DT_dup:
2763 fprintf (stderr, "dup=%d", test->u.dup);
2764 break;
2765 case DT_pred:
2766 fprintf (stderr, "pred=(%s,%s)",
2767 test->u.pred.name, GET_MODE_NAME(test->u.pred.mode));
2768 break;
2769 case DT_c_test:
2770 {
2771 char sub[16+4];
2772 strncpy (sub, test->u.c_test, sizeof(sub));
2773 memcpy (sub+16, "...", 4);
2774 fprintf (stderr, "c_test=\"%s\"", sub);
2775 }
2776 break;
2777 case DT_accept_op:
2778 fprintf (stderr, "A_op=%d", test->u.opno);
2779 break;
2780 case DT_accept_insn:
2781 fprintf (stderr, "A_insn=(%d,%d)",
2782 test->u.insn.code_number, test->u.insn.num_clobbers_to_add);
2783 break;
2784
2785 default:
2786 abort ();
2787 }
2788 }
2789
2790 static void
2791 debug_decision_1 (struct decision *d, int indent)
2792 {
2793 int i;
2794 struct decision_test *test;
2795
2796 if (d == NULL)
2797 {
2798 for (i = 0; i < indent; ++i)
2799 putc (' ', stderr);
2800 fputs ("(nil)\n", stderr);
2801 return;
2802 }
2803
2804 for (i = 0; i < indent; ++i)
2805 putc (' ', stderr);
2806
2807 putc ('{', stderr);
2808 test = d->tests;
2809 if (test)
2810 {
2811 debug_decision_2 (test);
2812 while ((test = test->next) != NULL)
2813 {
2814 fputs (" + ", stderr);
2815 debug_decision_2 (test);
2816 }
2817 }
2818 fprintf (stderr, "} %d n %d a %d\n", d->number,
2819 (d->next ? d->next->number : -1),
2820 (d->afterward ? d->afterward->number : -1));
2821 }
2822
2823 static void
2824 debug_decision_0 (struct decision *d, int indent, int maxdepth)
2825 {
2826 struct decision *n;
2827 int i;
2828
2829 if (maxdepth < 0)
2830 return;
2831 if (d == NULL)
2832 {
2833 for (i = 0; i < indent; ++i)
2834 putc (' ', stderr);
2835 fputs ("(nil)\n", stderr);
2836 return;
2837 }
2838
2839 debug_decision_1 (d, indent);
2840 for (n = d->success.first; n ; n = n->next)
2841 debug_decision_0 (n, indent + 2, maxdepth - 1);
2842 }
2843
2844 void
2845 debug_decision (struct decision *d)
2846 {
2847 debug_decision_0 (d, 0, 1000000);
2848 }
2849
2850 void
2851 debug_decision_list (struct decision *d)
2852 {
2853 while (d)
2854 {
2855 debug_decision_0 (d, 0, 0);
2856 d = d->next;
2857 }
2858 }