re PR tree-optimization/43833 (false warning: array subscript is above array bounds...
[gcc.git] / gcc / genrecog.c
1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 /* This program is used to produce insn-recog.c, which contains a
24 function called `recog' plus its subroutines. These functions
25 contain a decision tree that recognizes whether an rtx, the
26 argument given to recog, is a valid instruction.
27
28 recog returns -1 if the rtx is not valid. If the rtx is valid,
29 recog returns a nonnegative number which is the insn code number
30 for the pattern that matched. This is the same as the order in the
31 machine description of the entry that matched. This number can be
32 used as an index into various insn_* tables, such as insn_template,
33 insn_outfun, and insn_n_operands (found in insn-output.c).
34
35 The third argument to recog is an optional pointer to an int. If
36 present, recog will accept a pattern if it matches except for
37 missing CLOBBER expressions at the end. In that case, the value
38 pointed to by the optional pointer will be set to the number of
39 CLOBBERs that need to be added (it should be initialized to zero by
40 the caller). If it is set nonzero, the caller should allocate a
41 PARALLEL of the appropriate size, copy the initial entries, and
42 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
43
44 This program also generates the function `split_insns', which
45 returns 0 if the rtl could not be split, or it returns the split
46 rtl as an INSN list.
47
48 This program also generates the function `peephole2_insns', which
49 returns 0 if the rtl could not be matched. If there was a match,
50 the new rtl is returned in an INSN list, and LAST_INSN will point
51 to the last recognized insn in the old sequence. */
52
53 #include "bconfig.h"
54 #include "system.h"
55 #include "coretypes.h"
56 #include "tm.h"
57 #include "rtl.h"
58 #include "errors.h"
59 #include "gensupport.h"
60
61 #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
62 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
63
64 /* A listhead of decision trees. The alternatives to a node are kept
65 in a doubly-linked list so we can easily add nodes to the proper
66 place when merging. */
67
68 struct decision_head
69 {
70 struct decision *first;
71 struct decision *last;
72 };
73
74 /* These types are roughly in the order in which we'd like to test them. */
75 enum decision_type
76 {
77 DT_num_insns,
78 DT_mode, DT_code, DT_veclen,
79 DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide, DT_elt_zero_wide_safe,
80 DT_const_int,
81 DT_veclen_ge, DT_dup, DT_pred, DT_c_test,
82 DT_accept_op, DT_accept_insn
83 };
84
85 /* A single test. The two accept types aren't tests per-se, but
86 their equality (or lack thereof) does affect tree merging so
87 it is convenient to keep them here. */
88
89 struct decision_test
90 {
91 /* A linked list through the tests attached to a node. */
92 struct decision_test *next;
93
94 enum decision_type type;
95
96 union
97 {
98 int num_insns; /* Number if insn in a define_peephole2. */
99 enum machine_mode mode; /* Machine mode of node. */
100 RTX_CODE code; /* Code to test. */
101
102 struct
103 {
104 const char *name; /* Predicate to call. */
105 const struct pred_data *data;
106 /* Optimization hints for this predicate. */
107 enum machine_mode mode; /* Machine mode for node. */
108 } pred;
109
110 const char *c_test; /* Additional test to perform. */
111 int veclen; /* Length of vector. */
112 int dup; /* Number of operand to compare against. */
113 HOST_WIDE_INT intval; /* Value for XINT for XWINT. */
114 int opno; /* Operand number matched. */
115
116 struct {
117 int code_number; /* Insn number matched. */
118 int lineno; /* Line number of the insn. */
119 int num_clobbers_to_add; /* Number of CLOBBERs to be added. */
120 } insn;
121 } u;
122 };
123
124 /* Data structure for decision tree for recognizing legitimate insns. */
125
126 struct decision
127 {
128 struct decision_head success; /* Nodes to test on success. */
129 struct decision *next; /* Node to test on failure. */
130 struct decision *prev; /* Node whose failure tests us. */
131 struct decision *afterward; /* Node to test on success,
132 but failure of successor nodes. */
133
134 const char *position; /* String denoting position in pattern. */
135
136 struct decision_test *tests; /* The tests for this node. */
137
138 int number; /* Node number, used for labels */
139 int subroutine_number; /* Number of subroutine this node starts */
140 int need_label; /* Label needs to be output. */
141 };
142
143 #define SUBROUTINE_THRESHOLD 100
144
145 static int next_subroutine_number;
146
147 /* We can write three types of subroutines: One for insn recognition,
148 one to split insns, and one for peephole-type optimizations. This
149 defines which type is being written. */
150
151 enum routine_type {
152 RECOG, SPLIT, PEEPHOLE2
153 };
154
155 #define IS_SPLIT(X) ((X) != RECOG)
156
157 /* Next available node number for tree nodes. */
158
159 static int next_number;
160
161 /* Next number to use as an insn_code. */
162
163 static int next_insn_code;
164
165 /* Record the highest depth we ever have so we know how many variables to
166 allocate in each subroutine we make. */
167
168 static int max_depth;
169
170 /* The line number of the start of the pattern currently being processed. */
171 static int pattern_lineno;
172
173 /* Count of errors. */
174 static int error_count;
175 \f
176 /* Predicate handling.
177
178 We construct from the machine description a table mapping each
179 predicate to a list of the rtl codes it can possibly match. The
180 function 'maybe_both_true' uses it to deduce that there are no
181 expressions that can be matches by certain pairs of tree nodes.
182 Also, if a predicate can match only one code, we can hardwire that
183 code into the node testing the predicate.
184
185 Some predicates are flagged as special. validate_pattern will not
186 warn about modeless match_operand expressions if they have a
187 special predicate. Predicates that allow only constants are also
188 treated as special, for this purpose.
189
190 validate_pattern will warn about predicates that allow non-lvalues
191 when they appear in destination operands.
192
193 Calculating the set of rtx codes that can possibly be accepted by a
194 predicate expression EXP requires a three-state logic: any given
195 subexpression may definitively accept a code C (Y), definitively
196 reject a code C (N), or may have an indeterminate effect (I). N
197 and I is N; Y or I is Y; Y and I, N or I are both I. Here are full
198 truth tables.
199
200 a b a&b a|b
201 Y Y Y Y
202 N Y N Y
203 N N N N
204 I Y I Y
205 I N N I
206 I I I I
207
208 We represent Y with 1, N with 0, I with 2. If any code is left in
209 an I state by the complete expression, we must assume that that
210 code can be accepted. */
211
212 #define N 0
213 #define Y 1
214 #define I 2
215
216 #define TRISTATE_AND(a,b) \
217 ((a) == I ? ((b) == N ? N : I) : \
218 (b) == I ? ((a) == N ? N : I) : \
219 (a) && (b))
220
221 #define TRISTATE_OR(a,b) \
222 ((a) == I ? ((b) == Y ? Y : I) : \
223 (b) == I ? ((a) == Y ? Y : I) : \
224 (a) || (b))
225
226 #define TRISTATE_NOT(a) \
227 ((a) == I ? I : !(a))
228
229 /* 0 means no warning about that code yet, 1 means warned. */
230 static char did_you_mean_codes[NUM_RTX_CODE];
231
232 /* Recursively calculate the set of rtx codes accepted by the
233 predicate expression EXP, writing the result to CODES. */
234 static void
235 compute_predicate_codes (rtx exp, char codes[NUM_RTX_CODE])
236 {
237 char op0_codes[NUM_RTX_CODE];
238 char op1_codes[NUM_RTX_CODE];
239 char op2_codes[NUM_RTX_CODE];
240 int i;
241
242 switch (GET_CODE (exp))
243 {
244 case AND:
245 compute_predicate_codes (XEXP (exp, 0), op0_codes);
246 compute_predicate_codes (XEXP (exp, 1), op1_codes);
247 for (i = 0; i < NUM_RTX_CODE; i++)
248 codes[i] = TRISTATE_AND (op0_codes[i], op1_codes[i]);
249 break;
250
251 case IOR:
252 compute_predicate_codes (XEXP (exp, 0), op0_codes);
253 compute_predicate_codes (XEXP (exp, 1), op1_codes);
254 for (i = 0; i < NUM_RTX_CODE; i++)
255 codes[i] = TRISTATE_OR (op0_codes[i], op1_codes[i]);
256 break;
257 case NOT:
258 compute_predicate_codes (XEXP (exp, 0), op0_codes);
259 for (i = 0; i < NUM_RTX_CODE; i++)
260 codes[i] = TRISTATE_NOT (op0_codes[i]);
261 break;
262
263 case IF_THEN_ELSE:
264 /* a ? b : c accepts the same codes as (a & b) | (!a & c). */
265 compute_predicate_codes (XEXP (exp, 0), op0_codes);
266 compute_predicate_codes (XEXP (exp, 1), op1_codes);
267 compute_predicate_codes (XEXP (exp, 2), op2_codes);
268 for (i = 0; i < NUM_RTX_CODE; i++)
269 codes[i] = TRISTATE_OR (TRISTATE_AND (op0_codes[i], op1_codes[i]),
270 TRISTATE_AND (TRISTATE_NOT (op0_codes[i]),
271 op2_codes[i]));
272 break;
273
274 case MATCH_CODE:
275 /* MATCH_CODE allows a specified list of codes. However, if it
276 does not apply to the top level of the expression, it does not
277 constrain the set of codes for the top level. */
278 if (XSTR (exp, 1)[0] != '\0')
279 {
280 memset (codes, Y, NUM_RTX_CODE);
281 break;
282 }
283
284 memset (codes, N, NUM_RTX_CODE);
285 {
286 const char *next_code = XSTR (exp, 0);
287 const char *code;
288
289 if (*next_code == '\0')
290 {
291 message_with_line (pattern_lineno, "empty match_code expression");
292 error_count++;
293 break;
294 }
295
296 while ((code = scan_comma_elt (&next_code)) != 0)
297 {
298 size_t n = next_code - code;
299 int found_it = 0;
300
301 for (i = 0; i < NUM_RTX_CODE; i++)
302 if (!strncmp (code, GET_RTX_NAME (i), n)
303 && GET_RTX_NAME (i)[n] == '\0')
304 {
305 codes[i] = Y;
306 found_it = 1;
307 break;
308 }
309 if (!found_it)
310 {
311 message_with_line (pattern_lineno, "match_code \"%.*s\" matches nothing",
312 (int) n, code);
313 error_count ++;
314 for (i = 0; i < NUM_RTX_CODE; i++)
315 if (!strncasecmp (code, GET_RTX_NAME (i), n)
316 && GET_RTX_NAME (i)[n] == '\0'
317 && !did_you_mean_codes[i])
318 {
319 did_you_mean_codes[i] = 1;
320 message_with_line (pattern_lineno, "(did you mean \"%s\"?)", GET_RTX_NAME (i));
321 }
322 }
323
324 }
325 }
326 break;
327
328 case MATCH_OPERAND:
329 /* MATCH_OPERAND disallows the set of codes that the named predicate
330 disallows, and is indeterminate for the codes that it does allow. */
331 {
332 struct pred_data *p = lookup_predicate (XSTR (exp, 1));
333 if (!p)
334 {
335 message_with_line (pattern_lineno,
336 "reference to unknown predicate '%s'",
337 XSTR (exp, 1));
338 error_count++;
339 break;
340 }
341 for (i = 0; i < NUM_RTX_CODE; i++)
342 codes[i] = p->codes[i] ? I : N;
343 }
344 break;
345
346
347 case MATCH_TEST:
348 /* (match_test WHATEVER) is completely indeterminate. */
349 memset (codes, I, NUM_RTX_CODE);
350 break;
351
352 default:
353 message_with_line (pattern_lineno,
354 "'%s' cannot be used in a define_predicate expression",
355 GET_RTX_NAME (GET_CODE (exp)));
356 error_count++;
357 memset (codes, I, NUM_RTX_CODE);
358 break;
359 }
360 }
361
362 #undef TRISTATE_OR
363 #undef TRISTATE_AND
364 #undef TRISTATE_NOT
365
366 /* Process a define_predicate expression: compute the set of predicates
367 that can be matched, and record this as a known predicate. */
368 static void
369 process_define_predicate (rtx desc)
370 {
371 struct pred_data *pred = XCNEW (struct pred_data);
372 char codes[NUM_RTX_CODE];
373 int i;
374
375 pred->name = XSTR (desc, 0);
376 if (GET_CODE (desc) == DEFINE_SPECIAL_PREDICATE)
377 pred->special = 1;
378
379 compute_predicate_codes (XEXP (desc, 1), codes);
380
381 for (i = 0; i < NUM_RTX_CODE; i++)
382 if (codes[i] != N)
383 add_predicate_code (pred, (enum rtx_code) i);
384
385 add_predicate (pred);
386 }
387 #undef I
388 #undef N
389 #undef Y
390
391 \f
392 static struct decision *new_decision
393 (const char *, struct decision_head *);
394 static struct decision_test *new_decision_test
395 (enum decision_type, struct decision_test ***);
396 static rtx find_operand
397 (rtx, int, rtx);
398 static rtx find_matching_operand
399 (rtx, int);
400 static void validate_pattern
401 (rtx, rtx, rtx, int);
402 static struct decision *add_to_sequence
403 (rtx, struct decision_head *, const char *, enum routine_type, int);
404
405 static int maybe_both_true_2
406 (struct decision_test *, struct decision_test *);
407 static int maybe_both_true_1
408 (struct decision_test *, struct decision_test *);
409 static int maybe_both_true
410 (struct decision *, struct decision *, int);
411
412 static int nodes_identical_1
413 (struct decision_test *, struct decision_test *);
414 static int nodes_identical
415 (struct decision *, struct decision *);
416 static void merge_accept_insn
417 (struct decision *, struct decision *);
418 static void merge_trees
419 (struct decision_head *, struct decision_head *);
420
421 static void factor_tests
422 (struct decision_head *);
423 static void simplify_tests
424 (struct decision_head *);
425 static int break_out_subroutines
426 (struct decision_head *, int);
427 static void find_afterward
428 (struct decision_head *, struct decision *);
429
430 static void change_state
431 (const char *, const char *, const char *);
432 static void print_code
433 (enum rtx_code);
434 static void write_afterward
435 (struct decision *, struct decision *, const char *);
436 static struct decision *write_switch
437 (struct decision *, int);
438 static void write_cond
439 (struct decision_test *, int, enum routine_type);
440 static void write_action
441 (struct decision *, struct decision_test *, int, int,
442 struct decision *, enum routine_type);
443 static int is_unconditional
444 (struct decision_test *, enum routine_type);
445 static int write_node
446 (struct decision *, int, enum routine_type);
447 static void write_tree_1
448 (struct decision_head *, int, enum routine_type);
449 static void write_tree
450 (struct decision_head *, const char *, enum routine_type, int);
451 static void write_subroutine
452 (struct decision_head *, enum routine_type);
453 static void write_subroutines
454 (struct decision_head *, enum routine_type);
455 static void write_header
456 (void);
457
458 static struct decision_head make_insn_sequence
459 (rtx, enum routine_type);
460 static void process_tree
461 (struct decision_head *, enum routine_type);
462
463 static void debug_decision_0
464 (struct decision *, int, int);
465 static void debug_decision_1
466 (struct decision *, int);
467 static void debug_decision_2
468 (struct decision_test *);
469 extern void debug_decision
470 (struct decision *);
471 extern void debug_decision_list
472 (struct decision *);
473 \f
474 /* Create a new node in sequence after LAST. */
475
476 static struct decision *
477 new_decision (const char *position, struct decision_head *last)
478 {
479 struct decision *new_decision = XCNEW (struct decision);
480
481 new_decision->success = *last;
482 new_decision->position = xstrdup (position);
483 new_decision->number = next_number++;
484
485 last->first = last->last = new_decision;
486 return new_decision;
487 }
488
489 /* Create a new test and link it in at PLACE. */
490
491 static struct decision_test *
492 new_decision_test (enum decision_type type, struct decision_test ***pplace)
493 {
494 struct decision_test **place = *pplace;
495 struct decision_test *test;
496
497 test = XNEW (struct decision_test);
498 test->next = *place;
499 test->type = type;
500 *place = test;
501
502 place = &test->next;
503 *pplace = place;
504
505 return test;
506 }
507
508 /* Search for and return operand N, stop when reaching node STOP. */
509
510 static rtx
511 find_operand (rtx pattern, int n, rtx stop)
512 {
513 const char *fmt;
514 RTX_CODE code;
515 int i, j, len;
516 rtx r;
517
518 if (pattern == stop)
519 return stop;
520
521 code = GET_CODE (pattern);
522 if ((code == MATCH_SCRATCH
523 || code == MATCH_OPERAND
524 || code == MATCH_OPERATOR
525 || code == MATCH_PARALLEL)
526 && XINT (pattern, 0) == n)
527 return pattern;
528
529 fmt = GET_RTX_FORMAT (code);
530 len = GET_RTX_LENGTH (code);
531 for (i = 0; i < len; i++)
532 {
533 switch (fmt[i])
534 {
535 case 'e': case 'u':
536 if ((r = find_operand (XEXP (pattern, i), n, stop)) != NULL_RTX)
537 return r;
538 break;
539
540 case 'V':
541 if (! XVEC (pattern, i))
542 break;
543 /* Fall through. */
544
545 case 'E':
546 for (j = 0; j < XVECLEN (pattern, i); j++)
547 if ((r = find_operand (XVECEXP (pattern, i, j), n, stop))
548 != NULL_RTX)
549 return r;
550 break;
551
552 case 'i': case 'w': case '0': case 's':
553 break;
554
555 default:
556 gcc_unreachable ();
557 }
558 }
559
560 return NULL;
561 }
562
563 /* Search for and return operand M, such that it has a matching
564 constraint for operand N. */
565
566 static rtx
567 find_matching_operand (rtx pattern, int n)
568 {
569 const char *fmt;
570 RTX_CODE code;
571 int i, j, len;
572 rtx r;
573
574 code = GET_CODE (pattern);
575 if (code == MATCH_OPERAND
576 && (XSTR (pattern, 2)[0] == '0' + n
577 || (XSTR (pattern, 2)[0] == '%'
578 && XSTR (pattern, 2)[1] == '0' + n)))
579 return pattern;
580
581 fmt = GET_RTX_FORMAT (code);
582 len = GET_RTX_LENGTH (code);
583 for (i = 0; i < len; i++)
584 {
585 switch (fmt[i])
586 {
587 case 'e': case 'u':
588 if ((r = find_matching_operand (XEXP (pattern, i), n)))
589 return r;
590 break;
591
592 case 'V':
593 if (! XVEC (pattern, i))
594 break;
595 /* Fall through. */
596
597 case 'E':
598 for (j = 0; j < XVECLEN (pattern, i); j++)
599 if ((r = find_matching_operand (XVECEXP (pattern, i, j), n)))
600 return r;
601 break;
602
603 case 'i': case 'w': case '0': case 's':
604 break;
605
606 default:
607 gcc_unreachable ();
608 }
609 }
610
611 return NULL;
612 }
613
614
615 /* Check for various errors in patterns. SET is nonnull for a destination,
616 and is the complete set pattern. SET_CODE is '=' for normal sets, and
617 '+' within a context that requires in-out constraints. */
618
619 static void
620 validate_pattern (rtx pattern, rtx insn, rtx set, int set_code)
621 {
622 const char *fmt;
623 RTX_CODE code;
624 size_t i, len;
625 int j;
626
627 code = GET_CODE (pattern);
628 switch (code)
629 {
630 case MATCH_SCRATCH:
631 return;
632 case MATCH_DUP:
633 case MATCH_OP_DUP:
634 case MATCH_PAR_DUP:
635 if (find_operand (insn, XINT (pattern, 0), pattern) == pattern)
636 {
637 message_with_line (pattern_lineno,
638 "operand %i duplicated before defined",
639 XINT (pattern, 0));
640 error_count++;
641 }
642 break;
643 case MATCH_OPERAND:
644 case MATCH_OPERATOR:
645 {
646 const char *pred_name = XSTR (pattern, 1);
647 const struct pred_data *pred;
648 const char *c_test;
649
650 if (GET_CODE (insn) == DEFINE_INSN)
651 c_test = XSTR (insn, 2);
652 else
653 c_test = XSTR (insn, 1);
654
655 if (pred_name[0] != 0)
656 {
657 pred = lookup_predicate (pred_name);
658 if (!pred)
659 message_with_line (pattern_lineno,
660 "warning: unknown predicate '%s'",
661 pred_name);
662 }
663 else
664 pred = 0;
665
666 if (code == MATCH_OPERAND)
667 {
668 const char constraints0 = XSTR (pattern, 2)[0];
669
670 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
671 don't use the MATCH_OPERAND constraint, only the predicate.
672 This is confusing to folks doing new ports, so help them
673 not make the mistake. */
674 if (GET_CODE (insn) == DEFINE_EXPAND
675 || GET_CODE (insn) == DEFINE_SPLIT
676 || GET_CODE (insn) == DEFINE_PEEPHOLE2)
677 {
678 if (constraints0)
679 message_with_line (pattern_lineno,
680 "warning: constraints not supported in %s",
681 rtx_name[GET_CODE (insn)]);
682 }
683
684 /* A MATCH_OPERAND that is a SET should have an output reload. */
685 else if (set && constraints0)
686 {
687 if (set_code == '+')
688 {
689 if (constraints0 == '+')
690 ;
691 /* If we've only got an output reload for this operand,
692 we'd better have a matching input operand. */
693 else if (constraints0 == '='
694 && find_matching_operand (insn, XINT (pattern, 0)))
695 ;
696 else
697 {
698 message_with_line (pattern_lineno,
699 "operand %d missing in-out reload",
700 XINT (pattern, 0));
701 error_count++;
702 }
703 }
704 else if (constraints0 != '=' && constraints0 != '+')
705 {
706 message_with_line (pattern_lineno,
707 "operand %d missing output reload",
708 XINT (pattern, 0));
709 error_count++;
710 }
711 }
712 }
713
714 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
715 while not likely to occur at runtime, results in less efficient
716 code from insn-recog.c. */
717 if (set && pred && pred->allows_non_lvalue)
718 message_with_line (pattern_lineno,
719 "warning: destination operand %d "
720 "allows non-lvalue",
721 XINT (pattern, 0));
722
723 /* A modeless MATCH_OPERAND can be handy when we can check for
724 multiple modes in the c_test. In most other cases, it is a
725 mistake. Only DEFINE_INSN is eligible, since SPLIT and
726 PEEP2 can FAIL within the output pattern. Exclude special
727 predicates, which check the mode themselves. Also exclude
728 predicates that allow only constants. Exclude the SET_DEST
729 of a call instruction, as that is a common idiom. */
730
731 if (GET_MODE (pattern) == VOIDmode
732 && code == MATCH_OPERAND
733 && GET_CODE (insn) == DEFINE_INSN
734 && pred
735 && !pred->special
736 && pred->allows_non_const
737 && strstr (c_test, "operands") == NULL
738 && ! (set
739 && GET_CODE (set) == SET
740 && GET_CODE (SET_SRC (set)) == CALL))
741 message_with_line (pattern_lineno,
742 "warning: operand %d missing mode?",
743 XINT (pattern, 0));
744 return;
745 }
746
747 case SET:
748 {
749 enum machine_mode dmode, smode;
750 rtx dest, src;
751
752 dest = SET_DEST (pattern);
753 src = SET_SRC (pattern);
754
755 /* STRICT_LOW_PART is a wrapper. Its argument is the real
756 destination, and it's mode should match the source. */
757 if (GET_CODE (dest) == STRICT_LOW_PART)
758 dest = XEXP (dest, 0);
759
760 /* Find the referent for a DUP. */
761
762 if (GET_CODE (dest) == MATCH_DUP
763 || GET_CODE (dest) == MATCH_OP_DUP
764 || GET_CODE (dest) == MATCH_PAR_DUP)
765 dest = find_operand (insn, XINT (dest, 0), NULL);
766
767 if (GET_CODE (src) == MATCH_DUP
768 || GET_CODE (src) == MATCH_OP_DUP
769 || GET_CODE (src) == MATCH_PAR_DUP)
770 src = find_operand (insn, XINT (src, 0), NULL);
771
772 dmode = GET_MODE (dest);
773 smode = GET_MODE (src);
774
775 /* The mode of an ADDRESS_OPERAND is the mode of the memory
776 reference, not the mode of the address. */
777 if (GET_CODE (src) == MATCH_OPERAND
778 && ! strcmp (XSTR (src, 1), "address_operand"))
779 ;
780
781 /* The operands of a SET must have the same mode unless one
782 is VOIDmode. */
783 else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
784 {
785 message_with_line (pattern_lineno,
786 "mode mismatch in set: %smode vs %smode",
787 GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
788 error_count++;
789 }
790
791 /* If only one of the operands is VOIDmode, and PC or CC0 is
792 not involved, it's probably a mistake. */
793 else if (dmode != smode
794 && GET_CODE (dest) != PC
795 && GET_CODE (dest) != CC0
796 && GET_CODE (src) != PC
797 && GET_CODE (src) != CC0
798 && !CONST_INT_P (src)
799 && GET_CODE (src) != CALL)
800 {
801 const char *which;
802 which = (dmode == VOIDmode ? "destination" : "source");
803 message_with_line (pattern_lineno,
804 "warning: %s missing a mode?", which);
805 }
806
807 if (dest != SET_DEST (pattern))
808 validate_pattern (dest, insn, pattern, '=');
809 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
810 validate_pattern (SET_SRC (pattern), insn, NULL_RTX, 0);
811 return;
812 }
813
814 case CLOBBER:
815 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
816 return;
817
818 case ZERO_EXTRACT:
819 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
820 validate_pattern (XEXP (pattern, 1), insn, NULL_RTX, 0);
821 validate_pattern (XEXP (pattern, 2), insn, NULL_RTX, 0);
822 return;
823
824 case STRICT_LOW_PART:
825 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
826 return;
827
828 case LABEL_REF:
829 if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
830 {
831 message_with_line (pattern_lineno,
832 "operand to label_ref %smode not VOIDmode",
833 GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
834 error_count++;
835 }
836 break;
837
838 default:
839 break;
840 }
841
842 fmt = GET_RTX_FORMAT (code);
843 len = GET_RTX_LENGTH (code);
844 for (i = 0; i < len; i++)
845 {
846 switch (fmt[i])
847 {
848 case 'e': case 'u':
849 validate_pattern (XEXP (pattern, i), insn, NULL_RTX, 0);
850 break;
851
852 case 'E':
853 for (j = 0; j < XVECLEN (pattern, i); j++)
854 validate_pattern (XVECEXP (pattern, i, j), insn, NULL_RTX, 0);
855 break;
856
857 case 'i': case 'w': case '0': case 's':
858 break;
859
860 default:
861 gcc_unreachable ();
862 }
863 }
864 }
865
866 /* Create a chain of nodes to verify that an rtl expression matches
867 PATTERN.
868
869 LAST is a pointer to the listhead in the previous node in the chain (or
870 in the calling function, for the first node).
871
872 POSITION is the string representing the current position in the insn.
873
874 INSN_TYPE is the type of insn for which we are emitting code.
875
876 A pointer to the final node in the chain is returned. */
877
878 static struct decision *
879 add_to_sequence (rtx pattern, struct decision_head *last, const char *position,
880 enum routine_type insn_type, int top)
881 {
882 RTX_CODE code;
883 struct decision *this_decision, *sub;
884 struct decision_test *test;
885 struct decision_test **place;
886 char *subpos;
887 size_t i;
888 const char *fmt;
889 int depth = strlen (position);
890 int len;
891 enum machine_mode mode;
892
893 if (depth > max_depth)
894 max_depth = depth;
895
896 subpos = XNEWVAR (char, depth + 2);
897 strcpy (subpos, position);
898 subpos[depth + 1] = 0;
899
900 sub = this_decision = new_decision (position, last);
901 place = &this_decision->tests;
902
903 restart:
904 mode = GET_MODE (pattern);
905 code = GET_CODE (pattern);
906
907 switch (code)
908 {
909 case PARALLEL:
910 /* Toplevel peephole pattern. */
911 if (insn_type == PEEPHOLE2 && top)
912 {
913 int num_insns;
914
915 /* Check we have sufficient insns. This avoids complications
916 because we then know peep2_next_insn never fails. */
917 num_insns = XVECLEN (pattern, 0);
918 if (num_insns > 1)
919 {
920 test = new_decision_test (DT_num_insns, &place);
921 test->u.num_insns = num_insns;
922 last = &sub->success;
923 }
924 else
925 {
926 /* We don't need the node we just created -- unlink it. */
927 last->first = last->last = NULL;
928 }
929
930 for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++)
931 {
932 /* Which insn we're looking at is represented by A-Z. We don't
933 ever use 'A', however; it is always implied. */
934
935 subpos[depth] = (i > 0 ? 'A' + i : 0);
936 sub = add_to_sequence (XVECEXP (pattern, 0, i),
937 last, subpos, insn_type, 0);
938 last = &sub->success;
939 }
940 goto ret;
941 }
942
943 /* Else nothing special. */
944 break;
945
946 case MATCH_PARALLEL:
947 /* The explicit patterns within a match_parallel enforce a minimum
948 length on the vector. The match_parallel predicate may allow
949 for more elements. We do need to check for this minimum here
950 or the code generated to match the internals may reference data
951 beyond the end of the vector. */
952 test = new_decision_test (DT_veclen_ge, &place);
953 test->u.veclen = XVECLEN (pattern, 2);
954 /* Fall through. */
955
956 case MATCH_OPERAND:
957 case MATCH_SCRATCH:
958 case MATCH_OPERATOR:
959 {
960 RTX_CODE was_code = code;
961 const char *pred_name;
962 bool allows_const_int = true;
963
964 if (code == MATCH_SCRATCH)
965 {
966 pred_name = "scratch_operand";
967 code = UNKNOWN;
968 }
969 else
970 {
971 pred_name = XSTR (pattern, 1);
972 if (code == MATCH_PARALLEL)
973 code = PARALLEL;
974 else
975 code = UNKNOWN;
976 }
977
978 if (pred_name[0] != 0)
979 {
980 const struct pred_data *pred;
981
982 test = new_decision_test (DT_pred, &place);
983 test->u.pred.name = pred_name;
984 test->u.pred.mode = mode;
985
986 /* See if we know about this predicate.
987 If we do, remember it for use below.
988
989 We can optimize the generated code a little if either
990 (a) the predicate only accepts one code, or (b) the
991 predicate does not allow CONST_INT, in which case it
992 can match only if the modes match. */
993 pred = lookup_predicate (pred_name);
994 if (pred)
995 {
996 test->u.pred.data = pred;
997 allows_const_int = pred->codes[CONST_INT];
998 if (was_code == MATCH_PARALLEL
999 && pred->singleton != PARALLEL)
1000 message_with_line (pattern_lineno,
1001 "predicate '%s' used in match_parallel "
1002 "does not allow only PARALLEL", pred->name);
1003 else
1004 code = pred->singleton;
1005 }
1006 else
1007 message_with_line (pattern_lineno,
1008 "warning: unknown predicate '%s' in '%s' expression",
1009 pred_name, GET_RTX_NAME (was_code));
1010 }
1011
1012 /* Can't enforce a mode if we allow const_int. */
1013 if (allows_const_int)
1014 mode = VOIDmode;
1015
1016 /* Accept the operand, i.e. record it in `operands'. */
1017 test = new_decision_test (DT_accept_op, &place);
1018 test->u.opno = XINT (pattern, 0);
1019
1020 if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL)
1021 {
1022 char base = (was_code == MATCH_OPERATOR ? '0' : 'a');
1023 for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++)
1024 {
1025 subpos[depth] = i + base;
1026 sub = add_to_sequence (XVECEXP (pattern, 2, i),
1027 &sub->success, subpos, insn_type, 0);
1028 }
1029 }
1030 goto fini;
1031 }
1032
1033 case MATCH_OP_DUP:
1034 code = UNKNOWN;
1035
1036 test = new_decision_test (DT_dup, &place);
1037 test->u.dup = XINT (pattern, 0);
1038
1039 test = new_decision_test (DT_accept_op, &place);
1040 test->u.opno = XINT (pattern, 0);
1041
1042 for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++)
1043 {
1044 subpos[depth] = i + '0';
1045 sub = add_to_sequence (XVECEXP (pattern, 1, i),
1046 &sub->success, subpos, insn_type, 0);
1047 }
1048 goto fini;
1049
1050 case MATCH_DUP:
1051 case MATCH_PAR_DUP:
1052 code = UNKNOWN;
1053
1054 test = new_decision_test (DT_dup, &place);
1055 test->u.dup = XINT (pattern, 0);
1056 goto fini;
1057
1058 case ADDRESS:
1059 pattern = XEXP (pattern, 0);
1060 goto restart;
1061
1062 default:
1063 break;
1064 }
1065
1066 fmt = GET_RTX_FORMAT (code);
1067 len = GET_RTX_LENGTH (code);
1068
1069 /* Do tests against the current node first. */
1070 for (i = 0; i < (size_t) len; i++)
1071 {
1072 if (fmt[i] == 'i')
1073 {
1074 gcc_assert (i < 2);
1075
1076 if (!i)
1077 {
1078 test = new_decision_test (DT_elt_zero_int, &place);
1079 test->u.intval = XINT (pattern, i);
1080 }
1081 else
1082 {
1083 test = new_decision_test (DT_elt_one_int, &place);
1084 test->u.intval = XINT (pattern, i);
1085 }
1086 }
1087 else if (fmt[i] == 'w')
1088 {
1089 /* If this value actually fits in an int, we can use a switch
1090 statement here, so indicate that. */
1091 enum decision_type type
1092 = ((int) XWINT (pattern, i) == XWINT (pattern, i))
1093 ? DT_elt_zero_wide_safe : DT_elt_zero_wide;
1094
1095 gcc_assert (!i);
1096
1097 test = new_decision_test (type, &place);
1098 test->u.intval = XWINT (pattern, i);
1099 }
1100 else if (fmt[i] == 'E')
1101 {
1102 gcc_assert (!i);
1103
1104 test = new_decision_test (DT_veclen, &place);
1105 test->u.veclen = XVECLEN (pattern, i);
1106 }
1107 }
1108
1109 /* Now test our sub-patterns. */
1110 for (i = 0; i < (size_t) len; i++)
1111 {
1112 switch (fmt[i])
1113 {
1114 case 'e': case 'u':
1115 subpos[depth] = '0' + i;
1116 sub = add_to_sequence (XEXP (pattern, i), &sub->success,
1117 subpos, insn_type, 0);
1118 break;
1119
1120 case 'E':
1121 {
1122 int j;
1123 for (j = 0; j < XVECLEN (pattern, i); j++)
1124 {
1125 subpos[depth] = 'a' + j;
1126 sub = add_to_sequence (XVECEXP (pattern, i, j),
1127 &sub->success, subpos, insn_type, 0);
1128 }
1129 break;
1130 }
1131
1132 case 'i': case 'w':
1133 /* Handled above. */
1134 break;
1135 case '0':
1136 break;
1137
1138 default:
1139 gcc_unreachable ();
1140 }
1141 }
1142
1143 fini:
1144 /* Insert nodes testing mode and code, if they're still relevant,
1145 before any of the nodes we may have added above. */
1146 if (code != UNKNOWN)
1147 {
1148 place = &this_decision->tests;
1149 test = new_decision_test (DT_code, &place);
1150 test->u.code = code;
1151 }
1152
1153 if (mode != VOIDmode)
1154 {
1155 place = &this_decision->tests;
1156 test = new_decision_test (DT_mode, &place);
1157 test->u.mode = mode;
1158 }
1159
1160 /* If we didn't insert any tests or accept nodes, hork. */
1161 gcc_assert (this_decision->tests);
1162
1163 ret:
1164 free (subpos);
1165 return sub;
1166 }
1167 \f
1168 /* A subroutine of maybe_both_true; examines only one test.
1169 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1170
1171 static int
1172 maybe_both_true_2 (struct decision_test *d1, struct decision_test *d2)
1173 {
1174 if (d1->type == d2->type)
1175 {
1176 switch (d1->type)
1177 {
1178 case DT_num_insns:
1179 if (d1->u.num_insns == d2->u.num_insns)
1180 return 1;
1181 else
1182 return -1;
1183
1184 case DT_mode:
1185 return d1->u.mode == d2->u.mode;
1186
1187 case DT_code:
1188 return d1->u.code == d2->u.code;
1189
1190 case DT_veclen:
1191 return d1->u.veclen == d2->u.veclen;
1192
1193 case DT_elt_zero_int:
1194 case DT_elt_one_int:
1195 case DT_elt_zero_wide:
1196 case DT_elt_zero_wide_safe:
1197 return d1->u.intval == d2->u.intval;
1198
1199 default:
1200 break;
1201 }
1202 }
1203
1204 /* If either has a predicate that we know something about, set
1205 things up so that D1 is the one that always has a known
1206 predicate. Then see if they have any codes in common. */
1207
1208 if (d1->type == DT_pred || d2->type == DT_pred)
1209 {
1210 if (d2->type == DT_pred)
1211 {
1212 struct decision_test *tmp;
1213 tmp = d1, d1 = d2, d2 = tmp;
1214 }
1215
1216 /* If D2 tests a mode, see if it matches D1. */
1217 if (d1->u.pred.mode != VOIDmode)
1218 {
1219 if (d2->type == DT_mode)
1220 {
1221 if (d1->u.pred.mode != d2->u.mode
1222 /* The mode of an address_operand predicate is the
1223 mode of the memory, not the operand. It can only
1224 be used for testing the predicate, so we must
1225 ignore it here. */
1226 && strcmp (d1->u.pred.name, "address_operand") != 0)
1227 return 0;
1228 }
1229 /* Don't check two predicate modes here, because if both predicates
1230 accept CONST_INT, then both can still be true even if the modes
1231 are different. If they don't accept CONST_INT, there will be a
1232 separate DT_mode that will make maybe_both_true_1 return 0. */
1233 }
1234
1235 if (d1->u.pred.data)
1236 {
1237 /* If D2 tests a code, see if it is in the list of valid
1238 codes for D1's predicate. */
1239 if (d2->type == DT_code)
1240 {
1241 if (!d1->u.pred.data->codes[d2->u.code])
1242 return 0;
1243 }
1244
1245 /* Otherwise see if the predicates have any codes in common. */
1246 else if (d2->type == DT_pred && d2->u.pred.data)
1247 {
1248 bool common = false;
1249 int c;
1250
1251 for (c = 0; c < NUM_RTX_CODE; c++)
1252 if (d1->u.pred.data->codes[c] && d2->u.pred.data->codes[c])
1253 {
1254 common = true;
1255 break;
1256 }
1257
1258 if (!common)
1259 return 0;
1260 }
1261 }
1262 }
1263
1264 /* Tests vs veclen may be known when strict equality is involved. */
1265 if (d1->type == DT_veclen && d2->type == DT_veclen_ge)
1266 return d1->u.veclen >= d2->u.veclen;
1267 if (d1->type == DT_veclen_ge && d2->type == DT_veclen)
1268 return d2->u.veclen >= d1->u.veclen;
1269
1270 return -1;
1271 }
1272
1273 /* A subroutine of maybe_both_true; examines all the tests for a given node.
1274 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1275
1276 static int
1277 maybe_both_true_1 (struct decision_test *d1, struct decision_test *d2)
1278 {
1279 struct decision_test *t1, *t2;
1280
1281 /* A match_operand with no predicate can match anything. Recognize
1282 this by the existence of a lone DT_accept_op test. */
1283 if (d1->type == DT_accept_op || d2->type == DT_accept_op)
1284 return 1;
1285
1286 /* Eliminate pairs of tests while they can exactly match. */
1287 while (d1 && d2 && d1->type == d2->type)
1288 {
1289 if (maybe_both_true_2 (d1, d2) == 0)
1290 return 0;
1291 d1 = d1->next, d2 = d2->next;
1292 }
1293
1294 /* After that, consider all pairs. */
1295 for (t1 = d1; t1 ; t1 = t1->next)
1296 for (t2 = d2; t2 ; t2 = t2->next)
1297 if (maybe_both_true_2 (t1, t2) == 0)
1298 return 0;
1299
1300 return -1;
1301 }
1302
1303 /* Return 0 if we can prove that there is no RTL that can match both
1304 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
1305 can match both or just that we couldn't prove there wasn't such an RTL).
1306
1307 TOPLEVEL is nonzero if we are to only look at the top level and not
1308 recursively descend. */
1309
1310 static int
1311 maybe_both_true (struct decision *d1, struct decision *d2,
1312 int toplevel)
1313 {
1314 struct decision *p1, *p2;
1315 int cmp;
1316
1317 /* Don't compare strings on the different positions in insn. Doing so
1318 is incorrect and results in false matches from constructs like
1319
1320 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1321 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1322 vs
1323 [(set (match_operand:HI "register_operand" "r")
1324 (match_operand:HI "register_operand" "r"))]
1325
1326 If we are presented with such, we are recursing through the remainder
1327 of a node's success nodes (from the loop at the end of this function).
1328 Skip forward until we come to a position that matches.
1329
1330 Due to the way position strings are constructed, we know that iterating
1331 forward from the lexically lower position (e.g. "00") will run into
1332 the lexically higher position (e.g. "1") and not the other way around.
1333 This saves a bit of effort. */
1334
1335 cmp = strcmp (d1->position, d2->position);
1336 if (cmp != 0)
1337 {
1338 gcc_assert (!toplevel);
1339
1340 /* If the d2->position was lexically lower, swap. */
1341 if (cmp > 0)
1342 p1 = d1, d1 = d2, d2 = p1;
1343
1344 if (d1->success.first == 0)
1345 return 1;
1346 for (p1 = d1->success.first; p1; p1 = p1->next)
1347 if (maybe_both_true (p1, d2, 0))
1348 return 1;
1349
1350 return 0;
1351 }
1352
1353 /* Test the current level. */
1354 cmp = maybe_both_true_1 (d1->tests, d2->tests);
1355 if (cmp >= 0)
1356 return cmp;
1357
1358 /* We can't prove that D1 and D2 cannot both be true. If we are only
1359 to check the top level, return 1. Otherwise, see if we can prove
1360 that all choices in both successors are mutually exclusive. If
1361 either does not have any successors, we can't prove they can't both
1362 be true. */
1363
1364 if (toplevel || d1->success.first == 0 || d2->success.first == 0)
1365 return 1;
1366
1367 for (p1 = d1->success.first; p1; p1 = p1->next)
1368 for (p2 = d2->success.first; p2; p2 = p2->next)
1369 if (maybe_both_true (p1, p2, 0))
1370 return 1;
1371
1372 return 0;
1373 }
1374
1375 /* A subroutine of nodes_identical. Examine two tests for equivalence. */
1376
1377 static int
1378 nodes_identical_1 (struct decision_test *d1, struct decision_test *d2)
1379 {
1380 switch (d1->type)
1381 {
1382 case DT_num_insns:
1383 return d1->u.num_insns == d2->u.num_insns;
1384
1385 case DT_mode:
1386 return d1->u.mode == d2->u.mode;
1387
1388 case DT_code:
1389 return d1->u.code == d2->u.code;
1390
1391 case DT_pred:
1392 return (d1->u.pred.mode == d2->u.pred.mode
1393 && strcmp (d1->u.pred.name, d2->u.pred.name) == 0);
1394
1395 case DT_c_test:
1396 return strcmp (d1->u.c_test, d2->u.c_test) == 0;
1397
1398 case DT_veclen:
1399 case DT_veclen_ge:
1400 return d1->u.veclen == d2->u.veclen;
1401
1402 case DT_dup:
1403 return d1->u.dup == d2->u.dup;
1404
1405 case DT_elt_zero_int:
1406 case DT_elt_one_int:
1407 case DT_elt_zero_wide:
1408 case DT_elt_zero_wide_safe:
1409 return d1->u.intval == d2->u.intval;
1410
1411 case DT_accept_op:
1412 return d1->u.opno == d2->u.opno;
1413
1414 case DT_accept_insn:
1415 /* Differences will be handled in merge_accept_insn. */
1416 return 1;
1417
1418 default:
1419 gcc_unreachable ();
1420 }
1421 }
1422
1423 /* True iff the two nodes are identical (on one level only). Due
1424 to the way these lists are constructed, we shouldn't have to
1425 consider different orderings on the tests. */
1426
1427 static int
1428 nodes_identical (struct decision *d1, struct decision *d2)
1429 {
1430 struct decision_test *t1, *t2;
1431
1432 for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next)
1433 {
1434 if (t1->type != t2->type)
1435 return 0;
1436 if (! nodes_identical_1 (t1, t2))
1437 return 0;
1438 }
1439
1440 /* For success, they should now both be null. */
1441 if (t1 != t2)
1442 return 0;
1443
1444 /* Check that their subnodes are at the same position, as any one set
1445 of sibling decisions must be at the same position. Allowing this
1446 requires complications to find_afterward and when change_state is
1447 invoked. */
1448 if (d1->success.first
1449 && d2->success.first
1450 && strcmp (d1->success.first->position, d2->success.first->position))
1451 return 0;
1452
1453 return 1;
1454 }
1455
1456 /* A subroutine of merge_trees; given two nodes that have been declared
1457 identical, cope with two insn accept states. If they differ in the
1458 number of clobbers, then the conflict was created by make_insn_sequence
1459 and we can drop the with-clobbers version on the floor. If both
1460 nodes have no additional clobbers, we have found an ambiguity in the
1461 source machine description. */
1462
1463 static void
1464 merge_accept_insn (struct decision *oldd, struct decision *addd)
1465 {
1466 struct decision_test *old, *add;
1467
1468 for (old = oldd->tests; old; old = old->next)
1469 if (old->type == DT_accept_insn)
1470 break;
1471 if (old == NULL)
1472 return;
1473
1474 for (add = addd->tests; add; add = add->next)
1475 if (add->type == DT_accept_insn)
1476 break;
1477 if (add == NULL)
1478 return;
1479
1480 /* If one node is for a normal insn and the second is for the base
1481 insn with clobbers stripped off, the second node should be ignored. */
1482
1483 if (old->u.insn.num_clobbers_to_add == 0
1484 && add->u.insn.num_clobbers_to_add > 0)
1485 {
1486 /* Nothing to do here. */
1487 }
1488 else if (old->u.insn.num_clobbers_to_add > 0
1489 && add->u.insn.num_clobbers_to_add == 0)
1490 {
1491 /* In this case, replace OLD with ADD. */
1492 old->u.insn = add->u.insn;
1493 }
1494 else
1495 {
1496 message_with_line (add->u.insn.lineno, "`%s' matches `%s'",
1497 get_insn_name (add->u.insn.code_number),
1498 get_insn_name (old->u.insn.code_number));
1499 message_with_line (old->u.insn.lineno, "previous definition of `%s'",
1500 get_insn_name (old->u.insn.code_number));
1501 error_count++;
1502 }
1503 }
1504
1505 /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1506
1507 static void
1508 merge_trees (struct decision_head *oldh, struct decision_head *addh)
1509 {
1510 struct decision *next, *add;
1511
1512 if (addh->first == 0)
1513 return;
1514 if (oldh->first == 0)
1515 {
1516 *oldh = *addh;
1517 return;
1518 }
1519
1520 /* Trying to merge bits at different positions isn't possible. */
1521 gcc_assert (!strcmp (oldh->first->position, addh->first->position));
1522
1523 for (add = addh->first; add ; add = next)
1524 {
1525 struct decision *old, *insert_before = NULL;
1526
1527 next = add->next;
1528
1529 /* The semantics of pattern matching state that the tests are
1530 done in the order given in the MD file so that if an insn
1531 matches two patterns, the first one will be used. However,
1532 in practice, most, if not all, patterns are unambiguous so
1533 that their order is independent. In that case, we can merge
1534 identical tests and group all similar modes and codes together.
1535
1536 Scan starting from the end of OLDH until we reach a point
1537 where we reach the head of the list or where we pass a
1538 pattern that could also be true if NEW is true. If we find
1539 an identical pattern, we can merge them. Also, record the
1540 last node that tests the same code and mode and the last one
1541 that tests just the same mode.
1542
1543 If we have no match, place NEW after the closest match we found. */
1544
1545 for (old = oldh->last; old; old = old->prev)
1546 {
1547 if (nodes_identical (old, add))
1548 {
1549 merge_accept_insn (old, add);
1550 merge_trees (&old->success, &add->success);
1551 goto merged_nodes;
1552 }
1553
1554 if (maybe_both_true (old, add, 0))
1555 break;
1556
1557 /* Insert the nodes in DT test type order, which is roughly
1558 how expensive/important the test is. Given that the tests
1559 are also ordered within the list, examining the first is
1560 sufficient. */
1561 if ((int) add->tests->type < (int) old->tests->type)
1562 insert_before = old;
1563 }
1564
1565 if (insert_before == NULL)
1566 {
1567 add->next = NULL;
1568 add->prev = oldh->last;
1569 oldh->last->next = add;
1570 oldh->last = add;
1571 }
1572 else
1573 {
1574 if ((add->prev = insert_before->prev) != NULL)
1575 add->prev->next = add;
1576 else
1577 oldh->first = add;
1578 add->next = insert_before;
1579 insert_before->prev = add;
1580 }
1581
1582 merged_nodes:;
1583 }
1584 }
1585 \f
1586 /* Walk the tree looking for sub-nodes that perform common tests.
1587 Factor out the common test into a new node. This enables us
1588 (depending on the test type) to emit switch statements later. */
1589
1590 static void
1591 factor_tests (struct decision_head *head)
1592 {
1593 struct decision *first, *next;
1594
1595 for (first = head->first; first && first->next; first = next)
1596 {
1597 enum decision_type type;
1598 struct decision *new_dec, *old_last;
1599
1600 type = first->tests->type;
1601 next = first->next;
1602
1603 /* Want at least two compatible sequential nodes. */
1604 if (next->tests->type != type)
1605 continue;
1606
1607 /* Don't want all node types, just those we can turn into
1608 switch statements. */
1609 if (type != DT_mode
1610 && type != DT_code
1611 && type != DT_veclen
1612 && type != DT_elt_zero_int
1613 && type != DT_elt_one_int
1614 && type != DT_elt_zero_wide_safe)
1615 continue;
1616
1617 /* If we'd been performing more than one test, create a new node
1618 below our first test. */
1619 if (first->tests->next != NULL)
1620 {
1621 new_dec = new_decision (first->position, &first->success);
1622 new_dec->tests = first->tests->next;
1623 first->tests->next = NULL;
1624 }
1625
1626 /* Crop the node tree off after our first test. */
1627 first->next = NULL;
1628 old_last = head->last;
1629 head->last = first;
1630
1631 /* For each compatible test, adjust to perform only one test in
1632 the top level node, then merge the node back into the tree. */
1633 do
1634 {
1635 struct decision_head h;
1636
1637 if (next->tests->next != NULL)
1638 {
1639 new_dec = new_decision (next->position, &next->success);
1640 new_dec->tests = next->tests->next;
1641 next->tests->next = NULL;
1642 }
1643 new_dec = next;
1644 next = next->next;
1645 new_dec->next = NULL;
1646 h.first = h.last = new_dec;
1647
1648 merge_trees (head, &h);
1649 }
1650 while (next && next->tests->type == type);
1651
1652 /* After we run out of compatible tests, graft the remaining nodes
1653 back onto the tree. */
1654 if (next)
1655 {
1656 next->prev = head->last;
1657 head->last->next = next;
1658 head->last = old_last;
1659 }
1660 }
1661
1662 /* Recurse. */
1663 for (first = head->first; first; first = first->next)
1664 factor_tests (&first->success);
1665 }
1666
1667 /* After factoring, try to simplify the tests on any one node.
1668 Tests that are useful for switch statements are recognizable
1669 by having only a single test on a node -- we'll be manipulating
1670 nodes with multiple tests:
1671
1672 If we have mode tests or code tests that are redundant with
1673 predicates, remove them. */
1674
1675 static void
1676 simplify_tests (struct decision_head *head)
1677 {
1678 struct decision *tree;
1679
1680 for (tree = head->first; tree; tree = tree->next)
1681 {
1682 struct decision_test *a, *b;
1683
1684 a = tree->tests;
1685 b = a->next;
1686 if (b == NULL)
1687 continue;
1688
1689 /* Find a predicate node. */
1690 while (b && b->type != DT_pred)
1691 b = b->next;
1692 if (b)
1693 {
1694 /* Due to how these tests are constructed, we don't even need
1695 to check that the mode and code are compatible -- they were
1696 generated from the predicate in the first place. */
1697 while (a->type == DT_mode || a->type == DT_code)
1698 a = a->next;
1699 tree->tests = a;
1700 }
1701 }
1702
1703 /* Recurse. */
1704 for (tree = head->first; tree; tree = tree->next)
1705 simplify_tests (&tree->success);
1706 }
1707
1708 /* Count the number of subnodes of HEAD. If the number is high enough,
1709 make the first node in HEAD start a separate subroutine in the C code
1710 that is generated. */
1711
1712 static int
1713 break_out_subroutines (struct decision_head *head, int initial)
1714 {
1715 int size = 0;
1716 struct decision *sub;
1717
1718 for (sub = head->first; sub; sub = sub->next)
1719 size += 1 + break_out_subroutines (&sub->success, 0);
1720
1721 if (size > SUBROUTINE_THRESHOLD && ! initial)
1722 {
1723 head->first->subroutine_number = ++next_subroutine_number;
1724 size = 1;
1725 }
1726 return size;
1727 }
1728
1729 /* For each node p, find the next alternative that might be true
1730 when p is true. */
1731
1732 static void
1733 find_afterward (struct decision_head *head, struct decision *real_afterward)
1734 {
1735 struct decision *p, *q, *afterward;
1736
1737 /* We can't propagate alternatives across subroutine boundaries.
1738 This is not incorrect, merely a minor optimization loss. */
1739
1740 p = head->first;
1741 afterward = (p->subroutine_number > 0 ? NULL : real_afterward);
1742
1743 for ( ; p ; p = p->next)
1744 {
1745 /* Find the next node that might be true if this one fails. */
1746 for (q = p->next; q ; q = q->next)
1747 if (maybe_both_true (p, q, 1))
1748 break;
1749
1750 /* If we reached the end of the list without finding one,
1751 use the incoming afterward position. */
1752 if (!q)
1753 q = afterward;
1754 p->afterward = q;
1755 if (q)
1756 q->need_label = 1;
1757 }
1758
1759 /* Recurse. */
1760 for (p = head->first; p ; p = p->next)
1761 if (p->success.first)
1762 find_afterward (&p->success, p->afterward);
1763
1764 /* When we are generating a subroutine, record the real afterward
1765 position in the first node where write_tree can find it, and we
1766 can do the right thing at the subroutine call site. */
1767 p = head->first;
1768 if (p->subroutine_number > 0)
1769 p->afterward = real_afterward;
1770 }
1771 \f
1772 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1773 actions are necessary to move to NEWPOS. If we fail to move to the
1774 new state, branch to node AFTERWARD if nonzero, otherwise return.
1775
1776 Failure to move to the new state can only occur if we are trying to
1777 match multiple insns and we try to step past the end of the stream. */
1778
1779 static void
1780 change_state (const char *oldpos, const char *newpos, const char *indent)
1781 {
1782 int odepth = strlen (oldpos);
1783 int ndepth = strlen (newpos);
1784 int depth;
1785 int old_has_insn, new_has_insn;
1786
1787 /* Pop up as many levels as necessary. */
1788 for (depth = odepth; strncmp (oldpos, newpos, depth) != 0; --depth)
1789 continue;
1790
1791 /* Hunt for the last [A-Z] in both strings. */
1792 for (old_has_insn = odepth - 1; old_has_insn >= 0; --old_has_insn)
1793 if (ISUPPER (oldpos[old_has_insn]))
1794 break;
1795 for (new_has_insn = ndepth - 1; new_has_insn >= 0; --new_has_insn)
1796 if (ISUPPER (newpos[new_has_insn]))
1797 break;
1798
1799 /* Go down to desired level. */
1800 while (depth < ndepth)
1801 {
1802 /* It's a different insn from the first one. */
1803 if (ISUPPER (newpos[depth]))
1804 {
1805 printf ("%stem = peep2_next_insn (%d);\n",
1806 indent, newpos[depth] - 'A');
1807 printf ("%sx%d = PATTERN (tem);\n", indent, depth + 1);
1808 }
1809 else if (ISLOWER (newpos[depth]))
1810 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1811 indent, depth + 1, depth, newpos[depth] - 'a');
1812 else
1813 printf ("%sx%d = XEXP (x%d, %c);\n",
1814 indent, depth + 1, depth, newpos[depth]);
1815 ++depth;
1816 }
1817 }
1818 \f
1819 /* Print the enumerator constant for CODE -- the upcase version of
1820 the name. */
1821
1822 static void
1823 print_code (enum rtx_code code)
1824 {
1825 const char *p;
1826 for (p = GET_RTX_NAME (code); *p; p++)
1827 putchar (TOUPPER (*p));
1828 }
1829
1830 /* Emit code to cross an afterward link -- change state and branch. */
1831
1832 static void
1833 write_afterward (struct decision *start, struct decision *afterward,
1834 const char *indent)
1835 {
1836 if (!afterward || start->subroutine_number > 0)
1837 printf("%sgoto ret0;\n", indent);
1838 else
1839 {
1840 change_state (start->position, afterward->position, indent);
1841 printf ("%sgoto L%d;\n", indent, afterward->number);
1842 }
1843 }
1844
1845 /* Emit a HOST_WIDE_INT as an integer constant expression. We need to take
1846 special care to avoid "decimal constant is so large that it is unsigned"
1847 warnings in the resulting code. */
1848
1849 static void
1850 print_host_wide_int (HOST_WIDE_INT val)
1851 {
1852 HOST_WIDE_INT min = (unsigned HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1);
1853 if (val == min)
1854 printf ("(" HOST_WIDE_INT_PRINT_DEC_C "-1)", val + 1);
1855 else
1856 printf (HOST_WIDE_INT_PRINT_DEC_C, val);
1857 }
1858
1859 /* Emit a switch statement, if possible, for an initial sequence of
1860 nodes at START. Return the first node yet untested. */
1861
1862 static struct decision *
1863 write_switch (struct decision *start, int depth)
1864 {
1865 struct decision *p = start;
1866 enum decision_type type = p->tests->type;
1867 struct decision *needs_label = NULL;
1868
1869 /* If we have two or more nodes in sequence that test the same one
1870 thing, we may be able to use a switch statement. */
1871
1872 if (!p->next
1873 || p->tests->next
1874 || p->next->tests->type != type
1875 || p->next->tests->next
1876 || nodes_identical_1 (p->tests, p->next->tests))
1877 return p;
1878
1879 /* DT_code is special in that we can do interesting things with
1880 known predicates at the same time. */
1881 if (type == DT_code)
1882 {
1883 char codemap[NUM_RTX_CODE];
1884 struct decision *ret;
1885 RTX_CODE code;
1886
1887 memset (codemap, 0, sizeof(codemap));
1888
1889 printf (" switch (GET_CODE (x%d))\n {\n", depth);
1890 code = p->tests->u.code;
1891 do
1892 {
1893 if (p != start && p->need_label && needs_label == NULL)
1894 needs_label = p;
1895
1896 printf (" case ");
1897 print_code (code);
1898 printf (":\n goto L%d;\n", p->success.first->number);
1899 p->success.first->need_label = 1;
1900
1901 codemap[code] = 1;
1902 p = p->next;
1903 }
1904 while (p
1905 && ! p->tests->next
1906 && p->tests->type == DT_code
1907 && ! codemap[code = p->tests->u.code]);
1908
1909 /* If P is testing a predicate that we know about and we haven't
1910 seen any of the codes that are valid for the predicate, we can
1911 write a series of "case" statement, one for each possible code.
1912 Since we are already in a switch, these redundant tests are very
1913 cheap and will reduce the number of predicates called. */
1914
1915 /* Note that while we write out cases for these predicates here,
1916 we don't actually write the test here, as it gets kinda messy.
1917 It is trivial to leave this to later by telling our caller that
1918 we only processed the CODE tests. */
1919 if (needs_label != NULL)
1920 ret = needs_label;
1921 else
1922 ret = p;
1923
1924 while (p && p->tests->type == DT_pred && p->tests->u.pred.data)
1925 {
1926 const struct pred_data *data = p->tests->u.pred.data;
1927 int c;
1928
1929 for (c = 0; c < NUM_RTX_CODE; c++)
1930 if (codemap[c] && data->codes[c])
1931 goto pred_done;
1932
1933 for (c = 0; c < NUM_RTX_CODE; c++)
1934 if (data->codes[c])
1935 {
1936 fputs (" case ", stdout);
1937 print_code ((enum rtx_code) c);
1938 fputs (":\n", stdout);
1939 codemap[c] = 1;
1940 }
1941
1942 printf (" goto L%d;\n", p->number);
1943 p->need_label = 1;
1944 p = p->next;
1945 }
1946
1947 pred_done:
1948 /* Make the default case skip the predicates we managed to match. */
1949
1950 printf (" default:\n");
1951 if (p != ret)
1952 {
1953 if (p)
1954 {
1955 printf (" goto L%d;\n", p->number);
1956 p->need_label = 1;
1957 }
1958 else
1959 write_afterward (start, start->afterward, " ");
1960 }
1961 else
1962 printf (" break;\n");
1963 printf (" }\n");
1964
1965 return ret;
1966 }
1967 else if (type == DT_mode
1968 || type == DT_veclen
1969 || type == DT_elt_zero_int
1970 || type == DT_elt_one_int
1971 || type == DT_elt_zero_wide_safe)
1972 {
1973 const char *indent = "";
1974
1975 /* We cast switch parameter to integer, so we must ensure that the value
1976 fits. */
1977 if (type == DT_elt_zero_wide_safe)
1978 {
1979 indent = " ";
1980 printf(" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n", depth, depth);
1981 }
1982 printf ("%s switch (", indent);
1983 switch (type)
1984 {
1985 case DT_mode:
1986 printf ("GET_MODE (x%d)", depth);
1987 break;
1988 case DT_veclen:
1989 printf ("XVECLEN (x%d, 0)", depth);
1990 break;
1991 case DT_elt_zero_int:
1992 printf ("XINT (x%d, 0)", depth);
1993 break;
1994 case DT_elt_one_int:
1995 printf ("XINT (x%d, 1)", depth);
1996 break;
1997 case DT_elt_zero_wide_safe:
1998 /* Convert result of XWINT to int for portability since some C
1999 compilers won't do it and some will. */
2000 printf ("(int) XWINT (x%d, 0)", depth);
2001 break;
2002 default:
2003 gcc_unreachable ();
2004 }
2005 printf (")\n%s {\n", indent);
2006
2007 do
2008 {
2009 /* Merge trees will not unify identical nodes if their
2010 sub-nodes are at different levels. Thus we must check
2011 for duplicate cases. */
2012 struct decision *q;
2013 for (q = start; q != p; q = q->next)
2014 if (nodes_identical_1 (p->tests, q->tests))
2015 goto case_done;
2016
2017 if (p != start && p->need_label && needs_label == NULL)
2018 needs_label = p;
2019
2020 printf ("%s case ", indent);
2021 switch (type)
2022 {
2023 case DT_mode:
2024 printf ("%smode", GET_MODE_NAME (p->tests->u.mode));
2025 break;
2026 case DT_veclen:
2027 printf ("%d", p->tests->u.veclen);
2028 break;
2029 case DT_elt_zero_int:
2030 case DT_elt_one_int:
2031 case DT_elt_zero_wide:
2032 case DT_elt_zero_wide_safe:
2033 print_host_wide_int (p->tests->u.intval);
2034 break;
2035 default:
2036 gcc_unreachable ();
2037 }
2038 printf (":\n%s goto L%d;\n", indent, p->success.first->number);
2039 p->success.first->need_label = 1;
2040
2041 p = p->next;
2042 }
2043 while (p && p->tests->type == type && !p->tests->next);
2044
2045 case_done:
2046 printf ("%s default:\n%s break;\n%s }\n",
2047 indent, indent, indent);
2048
2049 return needs_label != NULL ? needs_label : p;
2050 }
2051 else
2052 {
2053 /* None of the other tests are amenable. */
2054 return p;
2055 }
2056 }
2057
2058 /* Emit code for one test. */
2059
2060 static void
2061 write_cond (struct decision_test *p, int depth,
2062 enum routine_type subroutine_type)
2063 {
2064 switch (p->type)
2065 {
2066 case DT_num_insns:
2067 printf ("peep2_current_count >= %d", p->u.num_insns);
2068 break;
2069
2070 case DT_mode:
2071 printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode));
2072 break;
2073
2074 case DT_code:
2075 printf ("GET_CODE (x%d) == ", depth);
2076 print_code (p->u.code);
2077 break;
2078
2079 case DT_veclen:
2080 printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen);
2081 break;
2082
2083 case DT_elt_zero_int:
2084 printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval);
2085 break;
2086
2087 case DT_elt_one_int:
2088 printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval);
2089 break;
2090
2091 case DT_elt_zero_wide:
2092 case DT_elt_zero_wide_safe:
2093 printf ("XWINT (x%d, 0) == ", depth);
2094 print_host_wide_int (p->u.intval);
2095 break;
2096
2097 case DT_const_int:
2098 printf ("x%d == const_int_rtx[MAX_SAVED_CONST_INT + (%d)]",
2099 depth, (int) p->u.intval);
2100 break;
2101
2102 case DT_veclen_ge:
2103 printf ("XVECLEN (x%d, 0) >= %d", depth, p->u.veclen);
2104 break;
2105
2106 case DT_dup:
2107 printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup);
2108 break;
2109
2110 case DT_pred:
2111 printf ("%s (x%d, %smode)", p->u.pred.name, depth,
2112 GET_MODE_NAME (p->u.pred.mode));
2113 break;
2114
2115 case DT_c_test:
2116 print_c_condition (p->u.c_test);
2117 break;
2118
2119 case DT_accept_insn:
2120 gcc_assert (subroutine_type == RECOG);
2121 gcc_assert (p->u.insn.num_clobbers_to_add);
2122 printf ("pnum_clobbers != NULL");
2123 break;
2124
2125 default:
2126 gcc_unreachable ();
2127 }
2128 }
2129
2130 /* Emit code for one action. The previous tests have succeeded;
2131 TEST is the last of the chain. In the normal case we simply
2132 perform a state change. For the `accept' tests we must do more work. */
2133
2134 static void
2135 write_action (struct decision *p, struct decision_test *test,
2136 int depth, int uncond, struct decision *success,
2137 enum routine_type subroutine_type)
2138 {
2139 const char *indent;
2140 int want_close = 0;
2141
2142 if (uncond)
2143 indent = " ";
2144 else if (test->type == DT_accept_op || test->type == DT_accept_insn)
2145 {
2146 fputs (" {\n", stdout);
2147 indent = " ";
2148 want_close = 1;
2149 }
2150 else
2151 indent = " ";
2152
2153 if (test->type == DT_accept_op)
2154 {
2155 printf("%soperands[%d] = x%d;\n", indent, test->u.opno, depth);
2156
2157 /* Only allow DT_accept_insn to follow. */
2158 if (test->next)
2159 {
2160 test = test->next;
2161 gcc_assert (test->type == DT_accept_insn);
2162 }
2163 }
2164
2165 /* Sanity check that we're now at the end of the list of tests. */
2166 gcc_assert (!test->next);
2167
2168 if (test->type == DT_accept_insn)
2169 {
2170 switch (subroutine_type)
2171 {
2172 case RECOG:
2173 if (test->u.insn.num_clobbers_to_add != 0)
2174 printf ("%s*pnum_clobbers = %d;\n",
2175 indent, test->u.insn.num_clobbers_to_add);
2176 printf ("%sreturn %d; /* %s */\n", indent,
2177 test->u.insn.code_number,
2178 get_insn_name (test->u.insn.code_number));
2179 break;
2180
2181 case SPLIT:
2182 printf ("%sreturn gen_split_%d (insn, operands);\n",
2183 indent, test->u.insn.code_number);
2184 break;
2185
2186 case PEEPHOLE2:
2187 {
2188 int match_len = 0, i;
2189
2190 for (i = strlen (p->position) - 1; i >= 0; --i)
2191 if (ISUPPER (p->position[i]))
2192 {
2193 match_len = p->position[i] - 'A';
2194 break;
2195 }
2196 printf ("%s*_pmatch_len = %d;\n", indent, match_len);
2197 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
2198 indent, test->u.insn.code_number);
2199 printf ("%sif (tem != 0)\n%s return tem;\n", indent, indent);
2200 }
2201 break;
2202
2203 default:
2204 gcc_unreachable ();
2205 }
2206 }
2207 else
2208 {
2209 printf("%sgoto L%d;\n", indent, success->number);
2210 success->need_label = 1;
2211 }
2212
2213 if (want_close)
2214 fputs (" }\n", stdout);
2215 }
2216
2217 /* Return 1 if the test is always true and has no fallthru path. Return -1
2218 if the test does have a fallthru path, but requires that the condition be
2219 terminated. Otherwise return 0 for a normal test. */
2220 /* ??? is_unconditional is a stupid name for a tri-state function. */
2221
2222 static int
2223 is_unconditional (struct decision_test *t, enum routine_type subroutine_type)
2224 {
2225 if (t->type == DT_accept_op)
2226 return 1;
2227
2228 if (t->type == DT_accept_insn)
2229 {
2230 switch (subroutine_type)
2231 {
2232 case RECOG:
2233 return (t->u.insn.num_clobbers_to_add == 0);
2234 case SPLIT:
2235 return 1;
2236 case PEEPHOLE2:
2237 return -1;
2238 default:
2239 gcc_unreachable ();
2240 }
2241 }
2242
2243 return 0;
2244 }
2245
2246 /* Emit code for one node -- the conditional and the accompanying action.
2247 Return true if there is no fallthru path. */
2248
2249 static int
2250 write_node (struct decision *p, int depth,
2251 enum routine_type subroutine_type)
2252 {
2253 struct decision_test *test, *last_test;
2254 int uncond;
2255
2256 /* Scan the tests and simplify comparisons against small
2257 constants. */
2258 for (test = p->tests; test; test = test->next)
2259 {
2260 if (test->type == DT_code
2261 && test->u.code == CONST_INT
2262 && test->next
2263 && test->next->type == DT_elt_zero_wide_safe
2264 && -MAX_SAVED_CONST_INT <= test->next->u.intval
2265 && test->next->u.intval <= MAX_SAVED_CONST_INT)
2266 {
2267 test->type = DT_const_int;
2268 test->u.intval = test->next->u.intval;
2269 test->next = test->next->next;
2270 }
2271 }
2272
2273 last_test = test = p->tests;
2274 uncond = is_unconditional (test, subroutine_type);
2275 if (uncond == 0)
2276 {
2277 printf (" if (");
2278 write_cond (test, depth, subroutine_type);
2279
2280 while ((test = test->next) != NULL)
2281 {
2282 last_test = test;
2283 if (is_unconditional (test, subroutine_type))
2284 break;
2285
2286 printf ("\n && ");
2287 write_cond (test, depth, subroutine_type);
2288 }
2289
2290 printf (")\n");
2291 }
2292
2293 write_action (p, last_test, depth, uncond, p->success.first, subroutine_type);
2294
2295 return uncond > 0;
2296 }
2297
2298 /* Emit code for all of the sibling nodes of HEAD. */
2299
2300 static void
2301 write_tree_1 (struct decision_head *head, int depth,
2302 enum routine_type subroutine_type)
2303 {
2304 struct decision *p, *next;
2305 int uncond = 0;
2306
2307 for (p = head->first; p ; p = next)
2308 {
2309 /* The label for the first element was printed in write_tree. */
2310 if (p != head->first && p->need_label)
2311 OUTPUT_LABEL (" ", p->number);
2312
2313 /* Attempt to write a switch statement for a whole sequence. */
2314 next = write_switch (p, depth);
2315 if (p != next)
2316 uncond = 0;
2317 else
2318 {
2319 /* Failed -- fall back and write one node. */
2320 uncond = write_node (p, depth, subroutine_type);
2321 next = p->next;
2322 }
2323 }
2324
2325 /* Finished with this chain. Close a fallthru path by branching
2326 to the afterward node. */
2327 if (! uncond)
2328 write_afterward (head->last, head->last->afterward, " ");
2329 }
2330
2331 /* Write out the decision tree starting at HEAD. PREVPOS is the
2332 position at the node that branched to this node. */
2333
2334 static void
2335 write_tree (struct decision_head *head, const char *prevpos,
2336 enum routine_type type, int initial)
2337 {
2338 struct decision *p = head->first;
2339
2340 putchar ('\n');
2341 if (p->need_label)
2342 OUTPUT_LABEL (" ", p->number);
2343
2344 if (! initial && p->subroutine_number > 0)
2345 {
2346 static const char * const name_prefix[] = {
2347 "recog", "split", "peephole2"
2348 };
2349
2350 static const char * const call_suffix[] = {
2351 ", pnum_clobbers", "", ", _pmatch_len"
2352 };
2353
2354 /* This node has been broken out into a separate subroutine.
2355 Call it, test the result, and branch accordingly. */
2356
2357 if (p->afterward)
2358 {
2359 printf (" tem = %s_%d (x0, insn%s);\n",
2360 name_prefix[type], p->subroutine_number, call_suffix[type]);
2361 if (IS_SPLIT (type))
2362 printf (" if (tem != 0)\n return tem;\n");
2363 else
2364 printf (" if (tem >= 0)\n return tem;\n");
2365
2366 change_state (p->position, p->afterward->position, " ");
2367 printf (" goto L%d;\n", p->afterward->number);
2368 }
2369 else
2370 {
2371 printf (" return %s_%d (x0, insn%s);\n",
2372 name_prefix[type], p->subroutine_number, call_suffix[type]);
2373 }
2374 }
2375 else
2376 {
2377 int depth = strlen (p->position);
2378
2379 change_state (prevpos, p->position, " ");
2380 write_tree_1 (head, depth, type);
2381
2382 for (p = head->first; p; p = p->next)
2383 if (p->success.first)
2384 write_tree (&p->success, p->position, type, 0);
2385 }
2386 }
2387
2388 /* Write out a subroutine of type TYPE to do comparisons starting at
2389 node TREE. */
2390
2391 static void
2392 write_subroutine (struct decision_head *head, enum routine_type type)
2393 {
2394 int subfunction = head->first ? head->first->subroutine_number : 0;
2395 const char *s_or_e;
2396 char extension[32];
2397 int i;
2398
2399 s_or_e = subfunction ? "static " : "";
2400
2401 if (subfunction)
2402 sprintf (extension, "_%d", subfunction);
2403 else if (type == RECOG)
2404 extension[0] = '\0';
2405 else
2406 strcpy (extension, "_insns");
2407
2408 switch (type)
2409 {
2410 case RECOG:
2411 printf ("%sint\n\
2412 recog%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", s_or_e, extension);
2413 break;
2414 case SPLIT:
2415 printf ("%srtx\n\
2416 split%s (rtx x0 ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED)\n",
2417 s_or_e, extension);
2418 break;
2419 case PEEPHOLE2:
2420 printf ("%srtx\n\
2421 peephole2%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *_pmatch_len ATTRIBUTE_UNUSED)\n",
2422 s_or_e, extension);
2423 break;
2424 }
2425
2426 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
2427 for (i = 1; i <= max_depth; i++)
2428 printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i);
2429
2430 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int");
2431
2432 if (!subfunction)
2433 printf (" recog_data.insn = NULL_RTX;\n");
2434
2435 if (head->first)
2436 write_tree (head, "", type, 1);
2437 else
2438 printf (" goto ret0;\n");
2439
2440 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1);
2441 }
2442
2443 /* In break_out_subroutines, we discovered the boundaries for the
2444 subroutines, but did not write them out. Do so now. */
2445
2446 static void
2447 write_subroutines (struct decision_head *head, enum routine_type type)
2448 {
2449 struct decision *p;
2450
2451 for (p = head->first; p ; p = p->next)
2452 if (p->success.first)
2453 write_subroutines (&p->success, type);
2454
2455 if (head->first->subroutine_number > 0)
2456 write_subroutine (head, type);
2457 }
2458
2459 /* Begin the output file. */
2460
2461 static void
2462 write_header (void)
2463 {
2464 puts ("\
2465 /* Generated automatically by the program `genrecog' from the target\n\
2466 machine description file. */\n\
2467 \n\
2468 #include \"config.h\"\n\
2469 #include \"system.h\"\n\
2470 #include \"coretypes.h\"\n\
2471 #include \"tm.h\"\n\
2472 #include \"rtl.h\"\n\
2473 #include \"tm_p.h\"\n\
2474 #include \"function.h\"\n\
2475 #include \"insn-config.h\"\n\
2476 #include \"recog.h\"\n\
2477 #include \"real.h\"\n\
2478 #include \"output.h\"\n\
2479 #include \"flags.h\"\n\
2480 #include \"hard-reg-set.h\"\n\
2481 #include \"resource.h\"\n\
2482 #include \"toplev.h\"\n\
2483 #include \"reload.h\"\n\
2484 #include \"regs.h\"\n\
2485 #include \"tm-constrs.h\"\n\
2486 \n");
2487
2488 puts ("\n\
2489 /* `recog' contains a decision tree that recognizes whether the rtx\n\
2490 X0 is a valid instruction.\n\
2491 \n\
2492 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2493 returns a nonnegative number which is the insn code number for the\n\
2494 pattern that matched. This is the same as the order in the machine\n\
2495 description of the entry that matched. This number can be used as an\n\
2496 index into `insn_data' and other tables.\n");
2497 puts ("\
2498 The third argument to recog is an optional pointer to an int. If\n\
2499 present, recog will accept a pattern if it matches except for missing\n\
2500 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2501 the optional pointer will be set to the number of CLOBBERs that need\n\
2502 to be added (it should be initialized to zero by the caller). If it");
2503 puts ("\
2504 is set nonzero, the caller should allocate a PARALLEL of the\n\
2505 appropriate size, copy the initial entries, and call add_clobbers\n\
2506 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2507 ");
2508
2509 puts ("\n\
2510 The function split_insns returns 0 if the rtl could not\n\
2511 be split or the split rtl as an INSN list if it can be.\n\
2512 \n\
2513 The function peephole2_insns returns 0 if the rtl could not\n\
2514 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
2515 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2516 */\n\n");
2517 }
2518
2519 \f
2520 /* Construct and return a sequence of decisions
2521 that will recognize INSN.
2522
2523 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2524
2525 static struct decision_head
2526 make_insn_sequence (rtx insn, enum routine_type type)
2527 {
2528 rtx x;
2529 const char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
2530 int truth = maybe_eval_c_test (c_test);
2531 struct decision *last;
2532 struct decision_test *test, **place;
2533 struct decision_head head;
2534 char c_test_pos[2];
2535
2536 /* We should never see an insn whose C test is false at compile time. */
2537 gcc_assert (truth);
2538
2539 c_test_pos[0] = '\0';
2540 if (type == PEEPHOLE2)
2541 {
2542 int i, j;
2543
2544 /* peephole2 gets special treatment:
2545 - X always gets an outer parallel even if it's only one entry
2546 - we remove all traces of outer-level match_scratch and match_dup
2547 expressions here. */
2548 x = rtx_alloc (PARALLEL);
2549 PUT_MODE (x, VOIDmode);
2550 XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0));
2551 for (i = j = 0; i < XVECLEN (insn, 0); i++)
2552 {
2553 rtx tmp = XVECEXP (insn, 0, i);
2554 if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP)
2555 {
2556 XVECEXP (x, 0, j) = tmp;
2557 j++;
2558 }
2559 }
2560 XVECLEN (x, 0) = j;
2561
2562 c_test_pos[0] = 'A' + j - 1;
2563 c_test_pos[1] = '\0';
2564 }
2565 else if (XVECLEN (insn, type == RECOG) == 1)
2566 x = XVECEXP (insn, type == RECOG, 0);
2567 else
2568 {
2569 x = rtx_alloc (PARALLEL);
2570 XVEC (x, 0) = XVEC (insn, type == RECOG);
2571 PUT_MODE (x, VOIDmode);
2572 }
2573
2574 validate_pattern (x, insn, NULL_RTX, 0);
2575
2576 memset(&head, 0, sizeof(head));
2577 last = add_to_sequence (x, &head, "", type, 1);
2578
2579 /* Find the end of the test chain on the last node. */
2580 for (test = last->tests; test->next; test = test->next)
2581 continue;
2582 place = &test->next;
2583
2584 /* Skip the C test if it's known to be true at compile time. */
2585 if (truth == -1)
2586 {
2587 /* Need a new node if we have another test to add. */
2588 if (test->type == DT_accept_op)
2589 {
2590 last = new_decision (c_test_pos, &last->success);
2591 place = &last->tests;
2592 }
2593 test = new_decision_test (DT_c_test, &place);
2594 test->u.c_test = c_test;
2595 }
2596
2597 test = new_decision_test (DT_accept_insn, &place);
2598 test->u.insn.code_number = next_insn_code;
2599 test->u.insn.lineno = pattern_lineno;
2600 test->u.insn.num_clobbers_to_add = 0;
2601
2602 switch (type)
2603 {
2604 case RECOG:
2605 /* If this is a DEFINE_INSN and X is a PARALLEL, see if it ends
2606 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2607 If so, set up to recognize the pattern without these CLOBBERs. */
2608
2609 if (GET_CODE (x) == PARALLEL)
2610 {
2611 int i;
2612
2613 /* Find the last non-clobber in the parallel. */
2614 for (i = XVECLEN (x, 0); i > 0; i--)
2615 {
2616 rtx y = XVECEXP (x, 0, i - 1);
2617 if (GET_CODE (y) != CLOBBER
2618 || (!REG_P (XEXP (y, 0))
2619 && GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH))
2620 break;
2621 }
2622
2623 if (i != XVECLEN (x, 0))
2624 {
2625 rtx new_rtx;
2626 struct decision_head clobber_head;
2627
2628 /* Build a similar insn without the clobbers. */
2629 if (i == 1)
2630 new_rtx = XVECEXP (x, 0, 0);
2631 else
2632 {
2633 int j;
2634
2635 new_rtx = rtx_alloc (PARALLEL);
2636 XVEC (new_rtx, 0) = rtvec_alloc (i);
2637 for (j = i - 1; j >= 0; j--)
2638 XVECEXP (new_rtx, 0, j) = XVECEXP (x, 0, j);
2639 }
2640
2641 /* Recognize it. */
2642 memset (&clobber_head, 0, sizeof(clobber_head));
2643 last = add_to_sequence (new_rtx, &clobber_head, "", type, 1);
2644
2645 /* Find the end of the test chain on the last node. */
2646 for (test = last->tests; test->next; test = test->next)
2647 continue;
2648
2649 /* We definitely have a new test to add -- create a new
2650 node if needed. */
2651 place = &test->next;
2652 if (test->type == DT_accept_op)
2653 {
2654 last = new_decision ("", &last->success);
2655 place = &last->tests;
2656 }
2657
2658 /* Skip the C test if it's known to be true at compile
2659 time. */
2660 if (truth == -1)
2661 {
2662 test = new_decision_test (DT_c_test, &place);
2663 test->u.c_test = c_test;
2664 }
2665
2666 test = new_decision_test (DT_accept_insn, &place);
2667 test->u.insn.code_number = next_insn_code;
2668 test->u.insn.lineno = pattern_lineno;
2669 test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i;
2670
2671 merge_trees (&head, &clobber_head);
2672 }
2673 }
2674 break;
2675
2676 case SPLIT:
2677 /* Define the subroutine we will call below and emit in genemit. */
2678 printf ("extern rtx gen_split_%d (rtx, rtx *);\n", next_insn_code);
2679 break;
2680
2681 case PEEPHOLE2:
2682 /* Define the subroutine we will call below and emit in genemit. */
2683 printf ("extern rtx gen_peephole2_%d (rtx, rtx *);\n",
2684 next_insn_code);
2685 break;
2686 }
2687
2688 return head;
2689 }
2690
2691 static void
2692 process_tree (struct decision_head *head, enum routine_type subroutine_type)
2693 {
2694 if (head->first == NULL)
2695 {
2696 /* We can elide peephole2_insns, but not recog or split_insns. */
2697 if (subroutine_type == PEEPHOLE2)
2698 return;
2699 }
2700 else
2701 {
2702 factor_tests (head);
2703
2704 next_subroutine_number = 0;
2705 break_out_subroutines (head, 1);
2706 find_afterward (head, NULL);
2707
2708 /* We run this after find_afterward, because find_afterward needs
2709 the redundant DT_mode tests on predicates to determine whether
2710 two tests can both be true or not. */
2711 simplify_tests(head);
2712
2713 write_subroutines (head, subroutine_type);
2714 }
2715
2716 write_subroutine (head, subroutine_type);
2717 }
2718 \f
2719 extern int main (int, char **);
2720
2721 int
2722 main (int argc, char **argv)
2723 {
2724 rtx desc;
2725 struct decision_head recog_tree, split_tree, peephole2_tree, h;
2726
2727 progname = "genrecog";
2728
2729 memset (&recog_tree, 0, sizeof recog_tree);
2730 memset (&split_tree, 0, sizeof split_tree);
2731 memset (&peephole2_tree, 0, sizeof peephole2_tree);
2732
2733 if (init_md_reader_args (argc, argv) != SUCCESS_EXIT_CODE)
2734 return (FATAL_EXIT_CODE);
2735
2736 next_insn_code = 0;
2737
2738 write_header ();
2739
2740 /* Read the machine description. */
2741
2742 while (1)
2743 {
2744 desc = read_md_rtx (&pattern_lineno, &next_insn_code);
2745 if (desc == NULL)
2746 break;
2747
2748 switch (GET_CODE (desc))
2749 {
2750 case DEFINE_PREDICATE:
2751 case DEFINE_SPECIAL_PREDICATE:
2752 process_define_predicate (desc);
2753 break;
2754
2755 case DEFINE_INSN:
2756 h = make_insn_sequence (desc, RECOG);
2757 merge_trees (&recog_tree, &h);
2758 break;
2759
2760 case DEFINE_SPLIT:
2761 h = make_insn_sequence (desc, SPLIT);
2762 merge_trees (&split_tree, &h);
2763 break;
2764
2765 case DEFINE_PEEPHOLE2:
2766 h = make_insn_sequence (desc, PEEPHOLE2);
2767 merge_trees (&peephole2_tree, &h);
2768
2769 default:
2770 /* do nothing */;
2771 }
2772 }
2773
2774 if (error_count || have_error)
2775 return FATAL_EXIT_CODE;
2776
2777 puts ("\n\n");
2778
2779 process_tree (&recog_tree, RECOG);
2780 process_tree (&split_tree, SPLIT);
2781 process_tree (&peephole2_tree, PEEPHOLE2);
2782
2783 fflush (stdout);
2784 return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
2785 }
2786 \f
2787 static void
2788 debug_decision_2 (struct decision_test *test)
2789 {
2790 switch (test->type)
2791 {
2792 case DT_num_insns:
2793 fprintf (stderr, "num_insns=%d", test->u.num_insns);
2794 break;
2795 case DT_mode:
2796 fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode));
2797 break;
2798 case DT_code:
2799 fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code));
2800 break;
2801 case DT_veclen:
2802 fprintf (stderr, "veclen=%d", test->u.veclen);
2803 break;
2804 case DT_elt_zero_int:
2805 fprintf (stderr, "elt0_i=%d", (int) test->u.intval);
2806 break;
2807 case DT_elt_one_int:
2808 fprintf (stderr, "elt1_i=%d", (int) test->u.intval);
2809 break;
2810 case DT_elt_zero_wide:
2811 fprintf (stderr, "elt0_w=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2812 break;
2813 case DT_elt_zero_wide_safe:
2814 fprintf (stderr, "elt0_ws=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2815 break;
2816 case DT_veclen_ge:
2817 fprintf (stderr, "veclen>=%d", test->u.veclen);
2818 break;
2819 case DT_dup:
2820 fprintf (stderr, "dup=%d", test->u.dup);
2821 break;
2822 case DT_pred:
2823 fprintf (stderr, "pred=(%s,%s)",
2824 test->u.pred.name, GET_MODE_NAME(test->u.pred.mode));
2825 break;
2826 case DT_c_test:
2827 {
2828 char sub[16+4];
2829 strncpy (sub, test->u.c_test, sizeof(sub));
2830 memcpy (sub+16, "...", 4);
2831 fprintf (stderr, "c_test=\"%s\"", sub);
2832 }
2833 break;
2834 case DT_accept_op:
2835 fprintf (stderr, "A_op=%d", test->u.opno);
2836 break;
2837 case DT_accept_insn:
2838 fprintf (stderr, "A_insn=(%d,%d)",
2839 test->u.insn.code_number, test->u.insn.num_clobbers_to_add);
2840 break;
2841
2842 default:
2843 gcc_unreachable ();
2844 }
2845 }
2846
2847 static void
2848 debug_decision_1 (struct decision *d, int indent)
2849 {
2850 int i;
2851 struct decision_test *test;
2852
2853 if (d == NULL)
2854 {
2855 for (i = 0; i < indent; ++i)
2856 putc (' ', stderr);
2857 fputs ("(nil)\n", stderr);
2858 return;
2859 }
2860
2861 for (i = 0; i < indent; ++i)
2862 putc (' ', stderr);
2863
2864 putc ('{', stderr);
2865 test = d->tests;
2866 if (test)
2867 {
2868 debug_decision_2 (test);
2869 while ((test = test->next) != NULL)
2870 {
2871 fputs (" + ", stderr);
2872 debug_decision_2 (test);
2873 }
2874 }
2875 fprintf (stderr, "} %d n %d a %d\n", d->number,
2876 (d->next ? d->next->number : -1),
2877 (d->afterward ? d->afterward->number : -1));
2878 }
2879
2880 static void
2881 debug_decision_0 (struct decision *d, int indent, int maxdepth)
2882 {
2883 struct decision *n;
2884 int i;
2885
2886 if (maxdepth < 0)
2887 return;
2888 if (d == NULL)
2889 {
2890 for (i = 0; i < indent; ++i)
2891 putc (' ', stderr);
2892 fputs ("(nil)\n", stderr);
2893 return;
2894 }
2895
2896 debug_decision_1 (d, indent);
2897 for (n = d->success.first; n ; n = n->next)
2898 debug_decision_0 (n, indent + 2, maxdepth - 1);
2899 }
2900
2901 void
2902 debug_decision (struct decision *d)
2903 {
2904 debug_decision_0 (d, 0, 1000000);
2905 }
2906
2907 void
2908 debug_decision_list (struct decision *d)
2909 {
2910 while (d)
2911 {
2912 debug_decision_0 (d, 0, 0);
2913 d = d->next;
2914 }
2915 }