re PR c++/23167 (internal compiler error: in create_tmp_var)
[gcc.git] / gcc / genrecog.c
1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22
23 /* This program is used to produce insn-recog.c, which contains a
24 function called `recog' plus its subroutines. These functions
25 contain a decision tree that recognizes whether an rtx, the
26 argument given to recog, is a valid instruction.
27
28 recog returns -1 if the rtx is not valid. If the rtx is valid,
29 recog returns a nonnegative number which is the insn code number
30 for the pattern that matched. This is the same as the order in the
31 machine description of the entry that matched. This number can be
32 used as an index into various insn_* tables, such as insn_template,
33 insn_outfun, and insn_n_operands (found in insn-output.c).
34
35 The third argument to recog is an optional pointer to an int. If
36 present, recog will accept a pattern if it matches except for
37 missing CLOBBER expressions at the end. In that case, the value
38 pointed to by the optional pointer will be set to the number of
39 CLOBBERs that need to be added (it should be initialized to zero by
40 the caller). If it is set nonzero, the caller should allocate a
41 PARALLEL of the appropriate size, copy the initial entries, and
42 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
43
44 This program also generates the function `split_insns', which
45 returns 0 if the rtl could not be split, or it returns the split
46 rtl as an INSN list.
47
48 This program also generates the function `peephole2_insns', which
49 returns 0 if the rtl could not be matched. If there was a match,
50 the new rtl is returned in an INSN list, and LAST_INSN will point
51 to the last recognized insn in the old sequence. */
52
53 #include "bconfig.h"
54 #include "system.h"
55 #include "coretypes.h"
56 #include "tm.h"
57 #include "rtl.h"
58 #include "errors.h"
59 #include "gensupport.h"
60
61 #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
62 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
63
64 /* Holds an array of names indexed by insn_code_number. */
65 static char **insn_name_ptr = 0;
66 static int insn_name_ptr_size = 0;
67
68 /* A listhead of decision trees. The alternatives to a node are kept
69 in a doubly-linked list so we can easily add nodes to the proper
70 place when merging. */
71
72 struct decision_head
73 {
74 struct decision *first;
75 struct decision *last;
76 };
77
78 /* A single test. The two accept types aren't tests per-se, but
79 their equality (or lack thereof) does affect tree merging so
80 it is convenient to keep them here. */
81
82 struct decision_test
83 {
84 /* A linked list through the tests attached to a node. */
85 struct decision_test *next;
86
87 /* These types are roughly in the order in which we'd like to test them. */
88 enum decision_type
89 {
90 DT_num_insns,
91 DT_mode, DT_code, DT_veclen,
92 DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide, DT_elt_zero_wide_safe,
93 DT_const_int,
94 DT_veclen_ge, DT_dup, DT_pred, DT_c_test,
95 DT_accept_op, DT_accept_insn
96 } type;
97
98 union
99 {
100 int num_insns; /* Number if insn in a define_peephole2. */
101 enum machine_mode mode; /* Machine mode of node. */
102 RTX_CODE code; /* Code to test. */
103
104 struct
105 {
106 const char *name; /* Predicate to call. */
107 const struct pred_data *data;
108 /* Optimization hints for this predicate. */
109 enum machine_mode mode; /* Machine mode for node. */
110 } pred;
111
112 const char *c_test; /* Additional test to perform. */
113 int veclen; /* Length of vector. */
114 int dup; /* Number of operand to compare against. */
115 HOST_WIDE_INT intval; /* Value for XINT for XWINT. */
116 int opno; /* Operand number matched. */
117
118 struct {
119 int code_number; /* Insn number matched. */
120 int lineno; /* Line number of the insn. */
121 int num_clobbers_to_add; /* Number of CLOBBERs to be added. */
122 } insn;
123 } u;
124 };
125
126 /* Data structure for decision tree for recognizing legitimate insns. */
127
128 struct decision
129 {
130 struct decision_head success; /* Nodes to test on success. */
131 struct decision *next; /* Node to test on failure. */
132 struct decision *prev; /* Node whose failure tests us. */
133 struct decision *afterward; /* Node to test on success,
134 but failure of successor nodes. */
135
136 const char *position; /* String denoting position in pattern. */
137
138 struct decision_test *tests; /* The tests for this node. */
139
140 int number; /* Node number, used for labels */
141 int subroutine_number; /* Number of subroutine this node starts */
142 int need_label; /* Label needs to be output. */
143 };
144
145 #define SUBROUTINE_THRESHOLD 100
146
147 static int next_subroutine_number;
148
149 /* We can write three types of subroutines: One for insn recognition,
150 one to split insns, and one for peephole-type optimizations. This
151 defines which type is being written. */
152
153 enum routine_type {
154 RECOG, SPLIT, PEEPHOLE2
155 };
156
157 #define IS_SPLIT(X) ((X) != RECOG)
158
159 /* Next available node number for tree nodes. */
160
161 static int next_number;
162
163 /* Next number to use as an insn_code. */
164
165 static int next_insn_code;
166
167 /* Record the highest depth we ever have so we know how many variables to
168 allocate in each subroutine we make. */
169
170 static int max_depth;
171
172 /* The line number of the start of the pattern currently being processed. */
173 static int pattern_lineno;
174
175 /* Count of errors. */
176 static int error_count;
177 \f
178 /* Predicate handling.
179
180 We construct from the machine description a table mapping each
181 predicate to a list of the rtl codes it can possibly match. The
182 function 'maybe_both_true' uses it to deduce that there are no
183 expressions that can be matches by certain pairs of tree nodes.
184 Also, if a predicate can match only one code, we can hardwire that
185 code into the node testing the predicate.
186
187 Some predicates are flagged as special. validate_pattern will not
188 warn about modeless match_operand expressions if they have a
189 special predicate. Predicates that allow only constants are also
190 treated as special, for this purpose.
191
192 validate_pattern will warn about predicates that allow non-lvalues
193 when they appear in destination operands.
194
195 Calculating the set of rtx codes that can possibly be accepted by a
196 predicate expression EXP requires a three-state logic: any given
197 subexpression may definitively accept a code C (Y), definitively
198 reject a code C (N), or may have an indeterminate effect (I). N
199 and I is N; Y or I is Y; Y and I, N or I are both I. Here are full
200 truth tables.
201
202 a b a&b a|b
203 Y Y Y Y
204 N Y N Y
205 N N N N
206 I Y I Y
207 I N N I
208 I I I I
209
210 We represent Y with 1, N with 0, I with 2. If any code is left in
211 an I state by the complete expression, we must assume that that
212 code can be accepted. */
213
214 #define N 0
215 #define Y 1
216 #define I 2
217
218 #define TRISTATE_AND(a,b) \
219 ((a) == I ? ((b) == N ? N : I) : \
220 (b) == I ? ((a) == N ? N : I) : \
221 (a) && (b))
222
223 #define TRISTATE_OR(a,b) \
224 ((a) == I ? ((b) == Y ? Y : I) : \
225 (b) == I ? ((a) == Y ? Y : I) : \
226 (a) || (b))
227
228 #define TRISTATE_NOT(a) \
229 ((a) == I ? I : !(a))
230
231 /* 0 means no warning about that code yet, 1 means warned. */
232 static char did_you_mean_codes[NUM_RTX_CODE];
233
234 /* Recursively calculate the set of rtx codes accepted by the
235 predicate expression EXP, writing the result to CODES. */
236 static void
237 compute_predicate_codes (rtx exp, char codes[NUM_RTX_CODE])
238 {
239 char op0_codes[NUM_RTX_CODE];
240 char op1_codes[NUM_RTX_CODE];
241 char op2_codes[NUM_RTX_CODE];
242 int i;
243
244 switch (GET_CODE (exp))
245 {
246 case AND:
247 compute_predicate_codes (XEXP (exp, 0), op0_codes);
248 compute_predicate_codes (XEXP (exp, 1), op1_codes);
249 for (i = 0; i < NUM_RTX_CODE; i++)
250 codes[i] = TRISTATE_AND (op0_codes[i], op1_codes[i]);
251 break;
252
253 case IOR:
254 compute_predicate_codes (XEXP (exp, 0), op0_codes);
255 compute_predicate_codes (XEXP (exp, 1), op1_codes);
256 for (i = 0; i < NUM_RTX_CODE; i++)
257 codes[i] = TRISTATE_OR (op0_codes[i], op1_codes[i]);
258 break;
259 case NOT:
260 compute_predicate_codes (XEXP (exp, 0), op0_codes);
261 for (i = 0; i < NUM_RTX_CODE; i++)
262 codes[i] = TRISTATE_NOT (op0_codes[i]);
263 break;
264
265 case IF_THEN_ELSE:
266 /* a ? b : c accepts the same codes as (a & b) | (!a & c). */
267 compute_predicate_codes (XEXP (exp, 0), op0_codes);
268 compute_predicate_codes (XEXP (exp, 1), op1_codes);
269 compute_predicate_codes (XEXP (exp, 2), op2_codes);
270 for (i = 0; i < NUM_RTX_CODE; i++)
271 codes[i] = TRISTATE_OR (TRISTATE_AND (op0_codes[i], op1_codes[i]),
272 TRISTATE_AND (TRISTATE_NOT (op0_codes[i]),
273 op2_codes[i]));
274 break;
275
276 case MATCH_CODE:
277 /* MATCH_CODE allows a specified list of codes. */
278 memset (codes, N, NUM_RTX_CODE);
279 {
280 const char *next_code = XSTR (exp, 0);
281 const char *code;
282
283 if (*next_code == '\0')
284 {
285 message_with_line (pattern_lineno, "empty match_code expression");
286 error_count++;
287 break;
288 }
289
290 while ((code = scan_comma_elt (&next_code)) != 0)
291 {
292 size_t n = next_code - code;
293 int found_it = 0;
294
295 for (i = 0; i < NUM_RTX_CODE; i++)
296 if (!strncmp (code, GET_RTX_NAME (i), n)
297 && GET_RTX_NAME (i)[n] == '\0')
298 {
299 codes[i] = Y;
300 found_it = 1;
301 break;
302 }
303 if (!found_it)
304 {
305 message_with_line (pattern_lineno, "match_code \"%.*s\" matches nothing",
306 (int) n, code);
307 error_count ++;
308 for (i = 0; i < NUM_RTX_CODE; i++)
309 if (!strncasecmp (code, GET_RTX_NAME (i), n)
310 && GET_RTX_NAME (i)[n] == '\0'
311 && !did_you_mean_codes[i])
312 {
313 did_you_mean_codes[i] = 1;
314 message_with_line (pattern_lineno, "(did you mean \"%s\"?)", GET_RTX_NAME (i));
315 }
316 }
317
318 }
319 }
320 break;
321
322 case MATCH_OPERAND:
323 /* MATCH_OPERAND disallows the set of codes that the named predicate
324 disallows, and is indeterminate for the codes that it does allow. */
325 {
326 struct pred_data *p = lookup_predicate (XSTR (exp, 1));
327 if (!p)
328 {
329 message_with_line (pattern_lineno,
330 "reference to unknown predicate '%s'",
331 XSTR (exp, 1));
332 error_count++;
333 break;
334 }
335 for (i = 0; i < NUM_RTX_CODE; i++)
336 codes[i] = p->codes[i] ? I : N;
337 }
338 break;
339
340
341 case MATCH_TEST:
342 /* (match_test WHATEVER) is completely indeterminate. */
343 memset (codes, I, NUM_RTX_CODE);
344 break;
345
346 default:
347 message_with_line (pattern_lineno,
348 "'%s' cannot be used in a define_predicate expression",
349 GET_RTX_NAME (GET_CODE (exp)));
350 error_count++;
351 memset (codes, I, NUM_RTX_CODE);
352 break;
353 }
354 }
355
356 #undef TRISTATE_OR
357 #undef TRISTATE_AND
358 #undef TRISTATE_NOT
359
360 /* Process a define_predicate expression: compute the set of predicates
361 that can be matched, and record this as a known predicate. */
362 static void
363 process_define_predicate (rtx desc)
364 {
365 struct pred_data *pred = xcalloc (sizeof (struct pred_data), 1);
366 char codes[NUM_RTX_CODE];
367 bool seen_one = false;
368 int i;
369
370 pred->name = XSTR (desc, 0);
371 if (GET_CODE (desc) == DEFINE_SPECIAL_PREDICATE)
372 pred->special = 1;
373
374 compute_predicate_codes (XEXP (desc, 1), codes);
375
376 for (i = 0; i < NUM_RTX_CODE; i++)
377 if (codes[i] != N)
378 {
379 pred->codes[i] = true;
380 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
381 pred->allows_non_const = true;
382 if (i != REG
383 && i != SUBREG
384 && i != MEM
385 && i != CONCAT
386 && i != PARALLEL
387 && i != STRICT_LOW_PART)
388 pred->allows_non_lvalue = true;
389
390 if (seen_one)
391 pred->singleton = UNKNOWN;
392 else
393 {
394 pred->singleton = i;
395 seen_one = true;
396 }
397 }
398 add_predicate (pred);
399 }
400 #undef I
401 #undef N
402 #undef Y
403
404 \f
405 static struct decision *new_decision
406 (const char *, struct decision_head *);
407 static struct decision_test *new_decision_test
408 (enum decision_type, struct decision_test ***);
409 static rtx find_operand
410 (rtx, int, rtx);
411 static rtx find_matching_operand
412 (rtx, int);
413 static void validate_pattern
414 (rtx, rtx, rtx, int);
415 static struct decision *add_to_sequence
416 (rtx, struct decision_head *, const char *, enum routine_type, int);
417
418 static int maybe_both_true_2
419 (struct decision_test *, struct decision_test *);
420 static int maybe_both_true_1
421 (struct decision_test *, struct decision_test *);
422 static int maybe_both_true
423 (struct decision *, struct decision *, int);
424
425 static int nodes_identical_1
426 (struct decision_test *, struct decision_test *);
427 static int nodes_identical
428 (struct decision *, struct decision *);
429 static void merge_accept_insn
430 (struct decision *, struct decision *);
431 static void merge_trees
432 (struct decision_head *, struct decision_head *);
433
434 static void factor_tests
435 (struct decision_head *);
436 static void simplify_tests
437 (struct decision_head *);
438 static int break_out_subroutines
439 (struct decision_head *, int);
440 static void find_afterward
441 (struct decision_head *, struct decision *);
442
443 static void change_state
444 (const char *, const char *, const char *);
445 static void print_code
446 (enum rtx_code);
447 static void write_afterward
448 (struct decision *, struct decision *, const char *);
449 static struct decision *write_switch
450 (struct decision *, int);
451 static void write_cond
452 (struct decision_test *, int, enum routine_type);
453 static void write_action
454 (struct decision *, struct decision_test *, int, int,
455 struct decision *, enum routine_type);
456 static int is_unconditional
457 (struct decision_test *, enum routine_type);
458 static int write_node
459 (struct decision *, int, enum routine_type);
460 static void write_tree_1
461 (struct decision_head *, int, enum routine_type);
462 static void write_tree
463 (struct decision_head *, const char *, enum routine_type, int);
464 static void write_subroutine
465 (struct decision_head *, enum routine_type);
466 static void write_subroutines
467 (struct decision_head *, enum routine_type);
468 static void write_header
469 (void);
470
471 static struct decision_head make_insn_sequence
472 (rtx, enum routine_type);
473 static void process_tree
474 (struct decision_head *, enum routine_type);
475
476 static void record_insn_name
477 (int, const char *);
478
479 static void debug_decision_0
480 (struct decision *, int, int);
481 static void debug_decision_1
482 (struct decision *, int);
483 static void debug_decision_2
484 (struct decision_test *);
485 extern void debug_decision
486 (struct decision *);
487 extern void debug_decision_list
488 (struct decision *);
489 \f
490 /* Create a new node in sequence after LAST. */
491
492 static struct decision *
493 new_decision (const char *position, struct decision_head *last)
494 {
495 struct decision *new = xcalloc (1, sizeof (struct decision));
496
497 new->success = *last;
498 new->position = xstrdup (position);
499 new->number = next_number++;
500
501 last->first = last->last = new;
502 return new;
503 }
504
505 /* Create a new test and link it in at PLACE. */
506
507 static struct decision_test *
508 new_decision_test (enum decision_type type, struct decision_test ***pplace)
509 {
510 struct decision_test **place = *pplace;
511 struct decision_test *test;
512
513 test = xmalloc (sizeof (*test));
514 test->next = *place;
515 test->type = type;
516 *place = test;
517
518 place = &test->next;
519 *pplace = place;
520
521 return test;
522 }
523
524 /* Search for and return operand N, stop when reaching node STOP. */
525
526 static rtx
527 find_operand (rtx pattern, int n, rtx stop)
528 {
529 const char *fmt;
530 RTX_CODE code;
531 int i, j, len;
532 rtx r;
533
534 if (pattern == stop)
535 return stop;
536
537 code = GET_CODE (pattern);
538 if ((code == MATCH_SCRATCH
539 || code == MATCH_OPERAND
540 || code == MATCH_OPERATOR
541 || code == MATCH_PARALLEL)
542 && XINT (pattern, 0) == n)
543 return pattern;
544
545 fmt = GET_RTX_FORMAT (code);
546 len = GET_RTX_LENGTH (code);
547 for (i = 0; i < len; i++)
548 {
549 switch (fmt[i])
550 {
551 case 'e': case 'u':
552 if ((r = find_operand (XEXP (pattern, i), n, stop)) != NULL_RTX)
553 return r;
554 break;
555
556 case 'V':
557 if (! XVEC (pattern, i))
558 break;
559 /* Fall through. */
560
561 case 'E':
562 for (j = 0; j < XVECLEN (pattern, i); j++)
563 if ((r = find_operand (XVECEXP (pattern, i, j), n, stop))
564 != NULL_RTX)
565 return r;
566 break;
567
568 case 'i': case 'w': case '0': case 's':
569 break;
570
571 default:
572 gcc_unreachable ();
573 }
574 }
575
576 return NULL;
577 }
578
579 /* Search for and return operand M, such that it has a matching
580 constraint for operand N. */
581
582 static rtx
583 find_matching_operand (rtx pattern, int n)
584 {
585 const char *fmt;
586 RTX_CODE code;
587 int i, j, len;
588 rtx r;
589
590 code = GET_CODE (pattern);
591 if (code == MATCH_OPERAND
592 && (XSTR (pattern, 2)[0] == '0' + n
593 || (XSTR (pattern, 2)[0] == '%'
594 && XSTR (pattern, 2)[1] == '0' + n)))
595 return pattern;
596
597 fmt = GET_RTX_FORMAT (code);
598 len = GET_RTX_LENGTH (code);
599 for (i = 0; i < len; i++)
600 {
601 switch (fmt[i])
602 {
603 case 'e': case 'u':
604 if ((r = find_matching_operand (XEXP (pattern, i), n)))
605 return r;
606 break;
607
608 case 'V':
609 if (! XVEC (pattern, i))
610 break;
611 /* Fall through. */
612
613 case 'E':
614 for (j = 0; j < XVECLEN (pattern, i); j++)
615 if ((r = find_matching_operand (XVECEXP (pattern, i, j), n)))
616 return r;
617 break;
618
619 case 'i': case 'w': case '0': case 's':
620 break;
621
622 default:
623 gcc_unreachable ();
624 }
625 }
626
627 return NULL;
628 }
629
630
631 /* Check for various errors in patterns. SET is nonnull for a destination,
632 and is the complete set pattern. SET_CODE is '=' for normal sets, and
633 '+' within a context that requires in-out constraints. */
634
635 static void
636 validate_pattern (rtx pattern, rtx insn, rtx set, int set_code)
637 {
638 const char *fmt;
639 RTX_CODE code;
640 size_t i, len;
641 int j;
642
643 code = GET_CODE (pattern);
644 switch (code)
645 {
646 case MATCH_SCRATCH:
647 return;
648 case MATCH_DUP:
649 case MATCH_OP_DUP:
650 case MATCH_PAR_DUP:
651 if (find_operand (insn, XINT (pattern, 0), pattern) == pattern)
652 {
653 message_with_line (pattern_lineno,
654 "operand %i duplicated before defined",
655 XINT (pattern, 0));
656 error_count++;
657 }
658 break;
659 case MATCH_OPERAND:
660 case MATCH_OPERATOR:
661 {
662 const char *pred_name = XSTR (pattern, 1);
663 const struct pred_data *pred;
664 const char *c_test;
665
666 if (GET_CODE (insn) == DEFINE_INSN)
667 c_test = XSTR (insn, 2);
668 else
669 c_test = XSTR (insn, 1);
670
671 if (pred_name[0] != 0)
672 {
673 pred = lookup_predicate (pred_name);
674 if (!pred)
675 message_with_line (pattern_lineno,
676 "warning: unknown predicate '%s'",
677 pred_name);
678 }
679 else
680 pred = 0;
681
682 if (code == MATCH_OPERAND)
683 {
684 const char constraints0 = XSTR (pattern, 2)[0];
685
686 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
687 don't use the MATCH_OPERAND constraint, only the predicate.
688 This is confusing to folks doing new ports, so help them
689 not make the mistake. */
690 if (GET_CODE (insn) == DEFINE_EXPAND
691 || GET_CODE (insn) == DEFINE_SPLIT
692 || GET_CODE (insn) == DEFINE_PEEPHOLE2)
693 {
694 if (constraints0)
695 message_with_line (pattern_lineno,
696 "warning: constraints not supported in %s",
697 rtx_name[GET_CODE (insn)]);
698 }
699
700 /* A MATCH_OPERAND that is a SET should have an output reload. */
701 else if (set && constraints0)
702 {
703 if (set_code == '+')
704 {
705 if (constraints0 == '+')
706 ;
707 /* If we've only got an output reload for this operand,
708 we'd better have a matching input operand. */
709 else if (constraints0 == '='
710 && find_matching_operand (insn, XINT (pattern, 0)))
711 ;
712 else
713 {
714 message_with_line (pattern_lineno,
715 "operand %d missing in-out reload",
716 XINT (pattern, 0));
717 error_count++;
718 }
719 }
720 else if (constraints0 != '=' && constraints0 != '+')
721 {
722 message_with_line (pattern_lineno,
723 "operand %d missing output reload",
724 XINT (pattern, 0));
725 error_count++;
726 }
727 }
728 }
729
730 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
731 while not likely to occur at runtime, results in less efficient
732 code from insn-recog.c. */
733 if (set && pred && pred->allows_non_lvalue)
734 message_with_line (pattern_lineno,
735 "warning: destination operand %d "
736 "allows non-lvalue",
737 XINT (pattern, 0));
738
739 /* A modeless MATCH_OPERAND can be handy when we can check for
740 multiple modes in the c_test. In most other cases, it is a
741 mistake. Only DEFINE_INSN is eligible, since SPLIT and
742 PEEP2 can FAIL within the output pattern. Exclude special
743 predicates, which check the mode themselves. Also exclude
744 predicates that allow only constants. Exclude the SET_DEST
745 of a call instruction, as that is a common idiom. */
746
747 if (GET_MODE (pattern) == VOIDmode
748 && code == MATCH_OPERAND
749 && GET_CODE (insn) == DEFINE_INSN
750 && pred
751 && !pred->special
752 && pred->allows_non_const
753 && strstr (c_test, "operands") == NULL
754 && ! (set
755 && GET_CODE (set) == SET
756 && GET_CODE (SET_SRC (set)) == CALL))
757 message_with_line (pattern_lineno,
758 "warning: operand %d missing mode?",
759 XINT (pattern, 0));
760 return;
761 }
762
763 case SET:
764 {
765 enum machine_mode dmode, smode;
766 rtx dest, src;
767
768 dest = SET_DEST (pattern);
769 src = SET_SRC (pattern);
770
771 /* STRICT_LOW_PART is a wrapper. Its argument is the real
772 destination, and it's mode should match the source. */
773 if (GET_CODE (dest) == STRICT_LOW_PART)
774 dest = XEXP (dest, 0);
775
776 /* Find the referent for a DUP. */
777
778 if (GET_CODE (dest) == MATCH_DUP
779 || GET_CODE (dest) == MATCH_OP_DUP
780 || GET_CODE (dest) == MATCH_PAR_DUP)
781 dest = find_operand (insn, XINT (dest, 0), NULL);
782
783 if (GET_CODE (src) == MATCH_DUP
784 || GET_CODE (src) == MATCH_OP_DUP
785 || GET_CODE (src) == MATCH_PAR_DUP)
786 src = find_operand (insn, XINT (src, 0), NULL);
787
788 dmode = GET_MODE (dest);
789 smode = GET_MODE (src);
790
791 /* The mode of an ADDRESS_OPERAND is the mode of the memory
792 reference, not the mode of the address. */
793 if (GET_CODE (src) == MATCH_OPERAND
794 && ! strcmp (XSTR (src, 1), "address_operand"))
795 ;
796
797 /* The operands of a SET must have the same mode unless one
798 is VOIDmode. */
799 else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
800 {
801 message_with_line (pattern_lineno,
802 "mode mismatch in set: %smode vs %smode",
803 GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
804 error_count++;
805 }
806
807 /* If only one of the operands is VOIDmode, and PC or CC0 is
808 not involved, it's probably a mistake. */
809 else if (dmode != smode
810 && GET_CODE (dest) != PC
811 && GET_CODE (dest) != CC0
812 && GET_CODE (src) != PC
813 && GET_CODE (src) != CC0
814 && GET_CODE (src) != CONST_INT)
815 {
816 const char *which;
817 which = (dmode == VOIDmode ? "destination" : "source");
818 message_with_line (pattern_lineno,
819 "warning: %s missing a mode?", which);
820 }
821
822 if (dest != SET_DEST (pattern))
823 validate_pattern (dest, insn, pattern, '=');
824 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
825 validate_pattern (SET_SRC (pattern), insn, NULL_RTX, 0);
826 return;
827 }
828
829 case CLOBBER:
830 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
831 return;
832
833 case ZERO_EXTRACT:
834 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
835 validate_pattern (XEXP (pattern, 1), insn, NULL_RTX, 0);
836 validate_pattern (XEXP (pattern, 2), insn, NULL_RTX, 0);
837 return;
838
839 case STRICT_LOW_PART:
840 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
841 return;
842
843 case LABEL_REF:
844 if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
845 {
846 message_with_line (pattern_lineno,
847 "operand to label_ref %smode not VOIDmode",
848 GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
849 error_count++;
850 }
851 break;
852
853 default:
854 break;
855 }
856
857 fmt = GET_RTX_FORMAT (code);
858 len = GET_RTX_LENGTH (code);
859 for (i = 0; i < len; i++)
860 {
861 switch (fmt[i])
862 {
863 case 'e': case 'u':
864 validate_pattern (XEXP (pattern, i), insn, NULL_RTX, 0);
865 break;
866
867 case 'E':
868 for (j = 0; j < XVECLEN (pattern, i); j++)
869 validate_pattern (XVECEXP (pattern, i, j), insn, NULL_RTX, 0);
870 break;
871
872 case 'i': case 'w': case '0': case 's':
873 break;
874
875 default:
876 gcc_unreachable ();
877 }
878 }
879 }
880
881 /* Create a chain of nodes to verify that an rtl expression matches
882 PATTERN.
883
884 LAST is a pointer to the listhead in the previous node in the chain (or
885 in the calling function, for the first node).
886
887 POSITION is the string representing the current position in the insn.
888
889 INSN_TYPE is the type of insn for which we are emitting code.
890
891 A pointer to the final node in the chain is returned. */
892
893 static struct decision *
894 add_to_sequence (rtx pattern, struct decision_head *last, const char *position,
895 enum routine_type insn_type, int top)
896 {
897 RTX_CODE code;
898 struct decision *this, *sub;
899 struct decision_test *test;
900 struct decision_test **place;
901 char *subpos;
902 size_t i;
903 const char *fmt;
904 int depth = strlen (position);
905 int len;
906 enum machine_mode mode;
907
908 if (depth > max_depth)
909 max_depth = depth;
910
911 subpos = xmalloc (depth + 2);
912 strcpy (subpos, position);
913 subpos[depth + 1] = 0;
914
915 sub = this = new_decision (position, last);
916 place = &this->tests;
917
918 restart:
919 mode = GET_MODE (pattern);
920 code = GET_CODE (pattern);
921
922 switch (code)
923 {
924 case PARALLEL:
925 /* Toplevel peephole pattern. */
926 if (insn_type == PEEPHOLE2 && top)
927 {
928 int num_insns;
929
930 /* Check we have sufficient insns. This avoids complications
931 because we then know peep2_next_insn never fails. */
932 num_insns = XVECLEN (pattern, 0);
933 if (num_insns > 1)
934 {
935 test = new_decision_test (DT_num_insns, &place);
936 test->u.num_insns = num_insns;
937 last = &sub->success;
938 }
939 else
940 {
941 /* We don't need the node we just created -- unlink it. */
942 last->first = last->last = NULL;
943 }
944
945 for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++)
946 {
947 /* Which insn we're looking at is represented by A-Z. We don't
948 ever use 'A', however; it is always implied. */
949
950 subpos[depth] = (i > 0 ? 'A' + i : 0);
951 sub = add_to_sequence (XVECEXP (pattern, 0, i),
952 last, subpos, insn_type, 0);
953 last = &sub->success;
954 }
955 goto ret;
956 }
957
958 /* Else nothing special. */
959 break;
960
961 case MATCH_PARALLEL:
962 /* The explicit patterns within a match_parallel enforce a minimum
963 length on the vector. The match_parallel predicate may allow
964 for more elements. We do need to check for this minimum here
965 or the code generated to match the internals may reference data
966 beyond the end of the vector. */
967 test = new_decision_test (DT_veclen_ge, &place);
968 test->u.veclen = XVECLEN (pattern, 2);
969 /* Fall through. */
970
971 case MATCH_OPERAND:
972 case MATCH_SCRATCH:
973 case MATCH_OPERATOR:
974 {
975 RTX_CODE was_code = code;
976 const char *pred_name;
977 bool allows_const_int = true;
978
979 if (code == MATCH_SCRATCH)
980 {
981 pred_name = "scratch_operand";
982 code = UNKNOWN;
983 }
984 else
985 {
986 pred_name = XSTR (pattern, 1);
987 if (code == MATCH_PARALLEL)
988 code = PARALLEL;
989 else
990 code = UNKNOWN;
991 }
992
993 if (pred_name[0] != 0)
994 {
995 const struct pred_data *pred;
996
997 test = new_decision_test (DT_pred, &place);
998 test->u.pred.name = pred_name;
999 test->u.pred.mode = mode;
1000
1001 /* See if we know about this predicate.
1002 If we do, remember it for use below.
1003
1004 We can optimize the generated code a little if either
1005 (a) the predicate only accepts one code, or (b) the
1006 predicate does not allow CONST_INT, in which case it
1007 can match only if the modes match. */
1008 pred = lookup_predicate (pred_name);
1009 if (pred)
1010 {
1011 test->u.pred.data = pred;
1012 allows_const_int = pred->codes[CONST_INT];
1013 if (was_code == MATCH_PARALLEL
1014 && pred->singleton != PARALLEL)
1015 message_with_line (pattern_lineno,
1016 "predicate '%s' used in match_parallel "
1017 "does not allow only PARALLEL", pred->name);
1018 else
1019 code = pred->singleton;
1020 }
1021 else
1022 message_with_line (pattern_lineno,
1023 "warning: unknown predicate '%s' in '%s' expression",
1024 pred_name, GET_RTX_NAME (was_code));
1025 }
1026
1027 /* Can't enforce a mode if we allow const_int. */
1028 if (allows_const_int)
1029 mode = VOIDmode;
1030
1031 /* Accept the operand, i.e. record it in `operands'. */
1032 test = new_decision_test (DT_accept_op, &place);
1033 test->u.opno = XINT (pattern, 0);
1034
1035 if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL)
1036 {
1037 char base = (was_code == MATCH_OPERATOR ? '0' : 'a');
1038 for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++)
1039 {
1040 subpos[depth] = i + base;
1041 sub = add_to_sequence (XVECEXP (pattern, 2, i),
1042 &sub->success, subpos, insn_type, 0);
1043 }
1044 }
1045 goto fini;
1046 }
1047
1048 case MATCH_OP_DUP:
1049 code = UNKNOWN;
1050
1051 test = new_decision_test (DT_dup, &place);
1052 test->u.dup = XINT (pattern, 0);
1053
1054 test = new_decision_test (DT_accept_op, &place);
1055 test->u.opno = XINT (pattern, 0);
1056
1057 for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++)
1058 {
1059 subpos[depth] = i + '0';
1060 sub = add_to_sequence (XVECEXP (pattern, 1, i),
1061 &sub->success, subpos, insn_type, 0);
1062 }
1063 goto fini;
1064
1065 case MATCH_DUP:
1066 case MATCH_PAR_DUP:
1067 code = UNKNOWN;
1068
1069 test = new_decision_test (DT_dup, &place);
1070 test->u.dup = XINT (pattern, 0);
1071 goto fini;
1072
1073 case ADDRESS:
1074 pattern = XEXP (pattern, 0);
1075 goto restart;
1076
1077 default:
1078 break;
1079 }
1080
1081 fmt = GET_RTX_FORMAT (code);
1082 len = GET_RTX_LENGTH (code);
1083
1084 /* Do tests against the current node first. */
1085 for (i = 0; i < (size_t) len; i++)
1086 {
1087 if (fmt[i] == 'i')
1088 {
1089 gcc_assert (i < 2);
1090
1091 if (!i)
1092 {
1093 test = new_decision_test (DT_elt_zero_int, &place);
1094 test->u.intval = XINT (pattern, i);
1095 }
1096 else
1097 {
1098 test = new_decision_test (DT_elt_one_int, &place);
1099 test->u.intval = XINT (pattern, i);
1100 }
1101 }
1102 else if (fmt[i] == 'w')
1103 {
1104 /* If this value actually fits in an int, we can use a switch
1105 statement here, so indicate that. */
1106 enum decision_type type
1107 = ((int) XWINT (pattern, i) == XWINT (pattern, i))
1108 ? DT_elt_zero_wide_safe : DT_elt_zero_wide;
1109
1110 gcc_assert (!i);
1111
1112 test = new_decision_test (type, &place);
1113 test->u.intval = XWINT (pattern, i);
1114 }
1115 else if (fmt[i] == 'E')
1116 {
1117 gcc_assert (!i);
1118
1119 test = new_decision_test (DT_veclen, &place);
1120 test->u.veclen = XVECLEN (pattern, i);
1121 }
1122 }
1123
1124 /* Now test our sub-patterns. */
1125 for (i = 0; i < (size_t) len; i++)
1126 {
1127 switch (fmt[i])
1128 {
1129 case 'e': case 'u':
1130 subpos[depth] = '0' + i;
1131 sub = add_to_sequence (XEXP (pattern, i), &sub->success,
1132 subpos, insn_type, 0);
1133 break;
1134
1135 case 'E':
1136 {
1137 int j;
1138 for (j = 0; j < XVECLEN (pattern, i); j++)
1139 {
1140 subpos[depth] = 'a' + j;
1141 sub = add_to_sequence (XVECEXP (pattern, i, j),
1142 &sub->success, subpos, insn_type, 0);
1143 }
1144 break;
1145 }
1146
1147 case 'i': case 'w':
1148 /* Handled above. */
1149 break;
1150 case '0':
1151 break;
1152
1153 default:
1154 gcc_unreachable ();
1155 }
1156 }
1157
1158 fini:
1159 /* Insert nodes testing mode and code, if they're still relevant,
1160 before any of the nodes we may have added above. */
1161 if (code != UNKNOWN)
1162 {
1163 place = &this->tests;
1164 test = new_decision_test (DT_code, &place);
1165 test->u.code = code;
1166 }
1167
1168 if (mode != VOIDmode)
1169 {
1170 place = &this->tests;
1171 test = new_decision_test (DT_mode, &place);
1172 test->u.mode = mode;
1173 }
1174
1175 /* If we didn't insert any tests or accept nodes, hork. */
1176 gcc_assert (this->tests);
1177
1178 ret:
1179 free (subpos);
1180 return sub;
1181 }
1182 \f
1183 /* A subroutine of maybe_both_true; examines only one test.
1184 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1185
1186 static int
1187 maybe_both_true_2 (struct decision_test *d1, struct decision_test *d2)
1188 {
1189 if (d1->type == d2->type)
1190 {
1191 switch (d1->type)
1192 {
1193 case DT_num_insns:
1194 if (d1->u.num_insns == d2->u.num_insns)
1195 return 1;
1196 else
1197 return -1;
1198
1199 case DT_mode:
1200 return d1->u.mode == d2->u.mode;
1201
1202 case DT_code:
1203 return d1->u.code == d2->u.code;
1204
1205 case DT_veclen:
1206 return d1->u.veclen == d2->u.veclen;
1207
1208 case DT_elt_zero_int:
1209 case DT_elt_one_int:
1210 case DT_elt_zero_wide:
1211 case DT_elt_zero_wide_safe:
1212 return d1->u.intval == d2->u.intval;
1213
1214 default:
1215 break;
1216 }
1217 }
1218
1219 /* If either has a predicate that we know something about, set
1220 things up so that D1 is the one that always has a known
1221 predicate. Then see if they have any codes in common. */
1222
1223 if (d1->type == DT_pred || d2->type == DT_pred)
1224 {
1225 if (d2->type == DT_pred)
1226 {
1227 struct decision_test *tmp;
1228 tmp = d1, d1 = d2, d2 = tmp;
1229 }
1230
1231 /* If D2 tests a mode, see if it matches D1. */
1232 if (d1->u.pred.mode != VOIDmode)
1233 {
1234 if (d2->type == DT_mode)
1235 {
1236 if (d1->u.pred.mode != d2->u.mode
1237 /* The mode of an address_operand predicate is the
1238 mode of the memory, not the operand. It can only
1239 be used for testing the predicate, so we must
1240 ignore it here. */
1241 && strcmp (d1->u.pred.name, "address_operand") != 0)
1242 return 0;
1243 }
1244 /* Don't check two predicate modes here, because if both predicates
1245 accept CONST_INT, then both can still be true even if the modes
1246 are different. If they don't accept CONST_INT, there will be a
1247 separate DT_mode that will make maybe_both_true_1 return 0. */
1248 }
1249
1250 if (d1->u.pred.data)
1251 {
1252 /* If D2 tests a code, see if it is in the list of valid
1253 codes for D1's predicate. */
1254 if (d2->type == DT_code)
1255 {
1256 if (!d1->u.pred.data->codes[d2->u.code])
1257 return 0;
1258 }
1259
1260 /* Otherwise see if the predicates have any codes in common. */
1261 else if (d2->type == DT_pred && d2->u.pred.data)
1262 {
1263 bool common = false;
1264 enum rtx_code c;
1265
1266 for (c = 0; c < NUM_RTX_CODE; c++)
1267 if (d1->u.pred.data->codes[c] && d2->u.pred.data->codes[c])
1268 {
1269 common = true;
1270 break;
1271 }
1272
1273 if (!common)
1274 return 0;
1275 }
1276 }
1277 }
1278
1279 /* Tests vs veclen may be known when strict equality is involved. */
1280 if (d1->type == DT_veclen && d2->type == DT_veclen_ge)
1281 return d1->u.veclen >= d2->u.veclen;
1282 if (d1->type == DT_veclen_ge && d2->type == DT_veclen)
1283 return d2->u.veclen >= d1->u.veclen;
1284
1285 return -1;
1286 }
1287
1288 /* A subroutine of maybe_both_true; examines all the tests for a given node.
1289 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1290
1291 static int
1292 maybe_both_true_1 (struct decision_test *d1, struct decision_test *d2)
1293 {
1294 struct decision_test *t1, *t2;
1295
1296 /* A match_operand with no predicate can match anything. Recognize
1297 this by the existence of a lone DT_accept_op test. */
1298 if (d1->type == DT_accept_op || d2->type == DT_accept_op)
1299 return 1;
1300
1301 /* Eliminate pairs of tests while they can exactly match. */
1302 while (d1 && d2 && d1->type == d2->type)
1303 {
1304 if (maybe_both_true_2 (d1, d2) == 0)
1305 return 0;
1306 d1 = d1->next, d2 = d2->next;
1307 }
1308
1309 /* After that, consider all pairs. */
1310 for (t1 = d1; t1 ; t1 = t1->next)
1311 for (t2 = d2; t2 ; t2 = t2->next)
1312 if (maybe_both_true_2 (t1, t2) == 0)
1313 return 0;
1314
1315 return -1;
1316 }
1317
1318 /* Return 0 if we can prove that there is no RTL that can match both
1319 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
1320 can match both or just that we couldn't prove there wasn't such an RTL).
1321
1322 TOPLEVEL is nonzero if we are to only look at the top level and not
1323 recursively descend. */
1324
1325 static int
1326 maybe_both_true (struct decision *d1, struct decision *d2,
1327 int toplevel)
1328 {
1329 struct decision *p1, *p2;
1330 int cmp;
1331
1332 /* Don't compare strings on the different positions in insn. Doing so
1333 is incorrect and results in false matches from constructs like
1334
1335 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1336 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1337 vs
1338 [(set (match_operand:HI "register_operand" "r")
1339 (match_operand:HI "register_operand" "r"))]
1340
1341 If we are presented with such, we are recursing through the remainder
1342 of a node's success nodes (from the loop at the end of this function).
1343 Skip forward until we come to a position that matches.
1344
1345 Due to the way position strings are constructed, we know that iterating
1346 forward from the lexically lower position (e.g. "00") will run into
1347 the lexically higher position (e.g. "1") and not the other way around.
1348 This saves a bit of effort. */
1349
1350 cmp = strcmp (d1->position, d2->position);
1351 if (cmp != 0)
1352 {
1353 gcc_assert (!toplevel);
1354
1355 /* If the d2->position was lexically lower, swap. */
1356 if (cmp > 0)
1357 p1 = d1, d1 = d2, d2 = p1;
1358
1359 if (d1->success.first == 0)
1360 return 1;
1361 for (p1 = d1->success.first; p1; p1 = p1->next)
1362 if (maybe_both_true (p1, d2, 0))
1363 return 1;
1364
1365 return 0;
1366 }
1367
1368 /* Test the current level. */
1369 cmp = maybe_both_true_1 (d1->tests, d2->tests);
1370 if (cmp >= 0)
1371 return cmp;
1372
1373 /* We can't prove that D1 and D2 cannot both be true. If we are only
1374 to check the top level, return 1. Otherwise, see if we can prove
1375 that all choices in both successors are mutually exclusive. If
1376 either does not have any successors, we can't prove they can't both
1377 be true. */
1378
1379 if (toplevel || d1->success.first == 0 || d2->success.first == 0)
1380 return 1;
1381
1382 for (p1 = d1->success.first; p1; p1 = p1->next)
1383 for (p2 = d2->success.first; p2; p2 = p2->next)
1384 if (maybe_both_true (p1, p2, 0))
1385 return 1;
1386
1387 return 0;
1388 }
1389
1390 /* A subroutine of nodes_identical. Examine two tests for equivalence. */
1391
1392 static int
1393 nodes_identical_1 (struct decision_test *d1, struct decision_test *d2)
1394 {
1395 switch (d1->type)
1396 {
1397 case DT_num_insns:
1398 return d1->u.num_insns == d2->u.num_insns;
1399
1400 case DT_mode:
1401 return d1->u.mode == d2->u.mode;
1402
1403 case DT_code:
1404 return d1->u.code == d2->u.code;
1405
1406 case DT_pred:
1407 return (d1->u.pred.mode == d2->u.pred.mode
1408 && strcmp (d1->u.pred.name, d2->u.pred.name) == 0);
1409
1410 case DT_c_test:
1411 return strcmp (d1->u.c_test, d2->u.c_test) == 0;
1412
1413 case DT_veclen:
1414 case DT_veclen_ge:
1415 return d1->u.veclen == d2->u.veclen;
1416
1417 case DT_dup:
1418 return d1->u.dup == d2->u.dup;
1419
1420 case DT_elt_zero_int:
1421 case DT_elt_one_int:
1422 case DT_elt_zero_wide:
1423 case DT_elt_zero_wide_safe:
1424 return d1->u.intval == d2->u.intval;
1425
1426 case DT_accept_op:
1427 return d1->u.opno == d2->u.opno;
1428
1429 case DT_accept_insn:
1430 /* Differences will be handled in merge_accept_insn. */
1431 return 1;
1432
1433 default:
1434 gcc_unreachable ();
1435 }
1436 }
1437
1438 /* True iff the two nodes are identical (on one level only). Due
1439 to the way these lists are constructed, we shouldn't have to
1440 consider different orderings on the tests. */
1441
1442 static int
1443 nodes_identical (struct decision *d1, struct decision *d2)
1444 {
1445 struct decision_test *t1, *t2;
1446
1447 for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next)
1448 {
1449 if (t1->type != t2->type)
1450 return 0;
1451 if (! nodes_identical_1 (t1, t2))
1452 return 0;
1453 }
1454
1455 /* For success, they should now both be null. */
1456 if (t1 != t2)
1457 return 0;
1458
1459 /* Check that their subnodes are at the same position, as any one set
1460 of sibling decisions must be at the same position. Allowing this
1461 requires complications to find_afterward and when change_state is
1462 invoked. */
1463 if (d1->success.first
1464 && d2->success.first
1465 && strcmp (d1->success.first->position, d2->success.first->position))
1466 return 0;
1467
1468 return 1;
1469 }
1470
1471 /* A subroutine of merge_trees; given two nodes that have been declared
1472 identical, cope with two insn accept states. If they differ in the
1473 number of clobbers, then the conflict was created by make_insn_sequence
1474 and we can drop the with-clobbers version on the floor. If both
1475 nodes have no additional clobbers, we have found an ambiguity in the
1476 source machine description. */
1477
1478 static void
1479 merge_accept_insn (struct decision *oldd, struct decision *addd)
1480 {
1481 struct decision_test *old, *add;
1482
1483 for (old = oldd->tests; old; old = old->next)
1484 if (old->type == DT_accept_insn)
1485 break;
1486 if (old == NULL)
1487 return;
1488
1489 for (add = addd->tests; add; add = add->next)
1490 if (add->type == DT_accept_insn)
1491 break;
1492 if (add == NULL)
1493 return;
1494
1495 /* If one node is for a normal insn and the second is for the base
1496 insn with clobbers stripped off, the second node should be ignored. */
1497
1498 if (old->u.insn.num_clobbers_to_add == 0
1499 && add->u.insn.num_clobbers_to_add > 0)
1500 {
1501 /* Nothing to do here. */
1502 }
1503 else if (old->u.insn.num_clobbers_to_add > 0
1504 && add->u.insn.num_clobbers_to_add == 0)
1505 {
1506 /* In this case, replace OLD with ADD. */
1507 old->u.insn = add->u.insn;
1508 }
1509 else
1510 {
1511 message_with_line (add->u.insn.lineno, "`%s' matches `%s'",
1512 get_insn_name (add->u.insn.code_number),
1513 get_insn_name (old->u.insn.code_number));
1514 message_with_line (old->u.insn.lineno, "previous definition of `%s'",
1515 get_insn_name (old->u.insn.code_number));
1516 error_count++;
1517 }
1518 }
1519
1520 /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1521
1522 static void
1523 merge_trees (struct decision_head *oldh, struct decision_head *addh)
1524 {
1525 struct decision *next, *add;
1526
1527 if (addh->first == 0)
1528 return;
1529 if (oldh->first == 0)
1530 {
1531 *oldh = *addh;
1532 return;
1533 }
1534
1535 /* Trying to merge bits at different positions isn't possible. */
1536 gcc_assert (!strcmp (oldh->first->position, addh->first->position));
1537
1538 for (add = addh->first; add ; add = next)
1539 {
1540 struct decision *old, *insert_before = NULL;
1541
1542 next = add->next;
1543
1544 /* The semantics of pattern matching state that the tests are
1545 done in the order given in the MD file so that if an insn
1546 matches two patterns, the first one will be used. However,
1547 in practice, most, if not all, patterns are unambiguous so
1548 that their order is independent. In that case, we can merge
1549 identical tests and group all similar modes and codes together.
1550
1551 Scan starting from the end of OLDH until we reach a point
1552 where we reach the head of the list or where we pass a
1553 pattern that could also be true if NEW is true. If we find
1554 an identical pattern, we can merge them. Also, record the
1555 last node that tests the same code and mode and the last one
1556 that tests just the same mode.
1557
1558 If we have no match, place NEW after the closest match we found. */
1559
1560 for (old = oldh->last; old; old = old->prev)
1561 {
1562 if (nodes_identical (old, add))
1563 {
1564 merge_accept_insn (old, add);
1565 merge_trees (&old->success, &add->success);
1566 goto merged_nodes;
1567 }
1568
1569 if (maybe_both_true (old, add, 0))
1570 break;
1571
1572 /* Insert the nodes in DT test type order, which is roughly
1573 how expensive/important the test is. Given that the tests
1574 are also ordered within the list, examining the first is
1575 sufficient. */
1576 if ((int) add->tests->type < (int) old->tests->type)
1577 insert_before = old;
1578 }
1579
1580 if (insert_before == NULL)
1581 {
1582 add->next = NULL;
1583 add->prev = oldh->last;
1584 oldh->last->next = add;
1585 oldh->last = add;
1586 }
1587 else
1588 {
1589 if ((add->prev = insert_before->prev) != NULL)
1590 add->prev->next = add;
1591 else
1592 oldh->first = add;
1593 add->next = insert_before;
1594 insert_before->prev = add;
1595 }
1596
1597 merged_nodes:;
1598 }
1599 }
1600 \f
1601 /* Walk the tree looking for sub-nodes that perform common tests.
1602 Factor out the common test into a new node. This enables us
1603 (depending on the test type) to emit switch statements later. */
1604
1605 static void
1606 factor_tests (struct decision_head *head)
1607 {
1608 struct decision *first, *next;
1609
1610 for (first = head->first; first && first->next; first = next)
1611 {
1612 enum decision_type type;
1613 struct decision *new, *old_last;
1614
1615 type = first->tests->type;
1616 next = first->next;
1617
1618 /* Want at least two compatible sequential nodes. */
1619 if (next->tests->type != type)
1620 continue;
1621
1622 /* Don't want all node types, just those we can turn into
1623 switch statements. */
1624 if (type != DT_mode
1625 && type != DT_code
1626 && type != DT_veclen
1627 && type != DT_elt_zero_int
1628 && type != DT_elt_one_int
1629 && type != DT_elt_zero_wide_safe)
1630 continue;
1631
1632 /* If we'd been performing more than one test, create a new node
1633 below our first test. */
1634 if (first->tests->next != NULL)
1635 {
1636 new = new_decision (first->position, &first->success);
1637 new->tests = first->tests->next;
1638 first->tests->next = NULL;
1639 }
1640
1641 /* Crop the node tree off after our first test. */
1642 first->next = NULL;
1643 old_last = head->last;
1644 head->last = first;
1645
1646 /* For each compatible test, adjust to perform only one test in
1647 the top level node, then merge the node back into the tree. */
1648 do
1649 {
1650 struct decision_head h;
1651
1652 if (next->tests->next != NULL)
1653 {
1654 new = new_decision (next->position, &next->success);
1655 new->tests = next->tests->next;
1656 next->tests->next = NULL;
1657 }
1658 new = next;
1659 next = next->next;
1660 new->next = NULL;
1661 h.first = h.last = new;
1662
1663 merge_trees (head, &h);
1664 }
1665 while (next && next->tests->type == type);
1666
1667 /* After we run out of compatible tests, graft the remaining nodes
1668 back onto the tree. */
1669 if (next)
1670 {
1671 next->prev = head->last;
1672 head->last->next = next;
1673 head->last = old_last;
1674 }
1675 }
1676
1677 /* Recurse. */
1678 for (first = head->first; first; first = first->next)
1679 factor_tests (&first->success);
1680 }
1681
1682 /* After factoring, try to simplify the tests on any one node.
1683 Tests that are useful for switch statements are recognizable
1684 by having only a single test on a node -- we'll be manipulating
1685 nodes with multiple tests:
1686
1687 If we have mode tests or code tests that are redundant with
1688 predicates, remove them. */
1689
1690 static void
1691 simplify_tests (struct decision_head *head)
1692 {
1693 struct decision *tree;
1694
1695 for (tree = head->first; tree; tree = tree->next)
1696 {
1697 struct decision_test *a, *b;
1698
1699 a = tree->tests;
1700 b = a->next;
1701 if (b == NULL)
1702 continue;
1703
1704 /* Find a predicate node. */
1705 while (b && b->type != DT_pred)
1706 b = b->next;
1707 if (b)
1708 {
1709 /* Due to how these tests are constructed, we don't even need
1710 to check that the mode and code are compatible -- they were
1711 generated from the predicate in the first place. */
1712 while (a->type == DT_mode || a->type == DT_code)
1713 a = a->next;
1714 tree->tests = a;
1715 }
1716 }
1717
1718 /* Recurse. */
1719 for (tree = head->first; tree; tree = tree->next)
1720 simplify_tests (&tree->success);
1721 }
1722
1723 /* Count the number of subnodes of HEAD. If the number is high enough,
1724 make the first node in HEAD start a separate subroutine in the C code
1725 that is generated. */
1726
1727 static int
1728 break_out_subroutines (struct decision_head *head, int initial)
1729 {
1730 int size = 0;
1731 struct decision *sub;
1732
1733 for (sub = head->first; sub; sub = sub->next)
1734 size += 1 + break_out_subroutines (&sub->success, 0);
1735
1736 if (size > SUBROUTINE_THRESHOLD && ! initial)
1737 {
1738 head->first->subroutine_number = ++next_subroutine_number;
1739 size = 1;
1740 }
1741 return size;
1742 }
1743
1744 /* For each node p, find the next alternative that might be true
1745 when p is true. */
1746
1747 static void
1748 find_afterward (struct decision_head *head, struct decision *real_afterward)
1749 {
1750 struct decision *p, *q, *afterward;
1751
1752 /* We can't propagate alternatives across subroutine boundaries.
1753 This is not incorrect, merely a minor optimization loss. */
1754
1755 p = head->first;
1756 afterward = (p->subroutine_number > 0 ? NULL : real_afterward);
1757
1758 for ( ; p ; p = p->next)
1759 {
1760 /* Find the next node that might be true if this one fails. */
1761 for (q = p->next; q ; q = q->next)
1762 if (maybe_both_true (p, q, 1))
1763 break;
1764
1765 /* If we reached the end of the list without finding one,
1766 use the incoming afterward position. */
1767 if (!q)
1768 q = afterward;
1769 p->afterward = q;
1770 if (q)
1771 q->need_label = 1;
1772 }
1773
1774 /* Recurse. */
1775 for (p = head->first; p ; p = p->next)
1776 if (p->success.first)
1777 find_afterward (&p->success, p->afterward);
1778
1779 /* When we are generating a subroutine, record the real afterward
1780 position in the first node where write_tree can find it, and we
1781 can do the right thing at the subroutine call site. */
1782 p = head->first;
1783 if (p->subroutine_number > 0)
1784 p->afterward = real_afterward;
1785 }
1786 \f
1787 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1788 actions are necessary to move to NEWPOS. If we fail to move to the
1789 new state, branch to node AFTERWARD if nonzero, otherwise return.
1790
1791 Failure to move to the new state can only occur if we are trying to
1792 match multiple insns and we try to step past the end of the stream. */
1793
1794 static void
1795 change_state (const char *oldpos, const char *newpos, const char *indent)
1796 {
1797 int odepth = strlen (oldpos);
1798 int ndepth = strlen (newpos);
1799 int depth;
1800 int old_has_insn, new_has_insn;
1801
1802 /* Pop up as many levels as necessary. */
1803 for (depth = odepth; strncmp (oldpos, newpos, depth) != 0; --depth)
1804 continue;
1805
1806 /* Hunt for the last [A-Z] in both strings. */
1807 for (old_has_insn = odepth - 1; old_has_insn >= 0; --old_has_insn)
1808 if (ISUPPER (oldpos[old_has_insn]))
1809 break;
1810 for (new_has_insn = ndepth - 1; new_has_insn >= 0; --new_has_insn)
1811 if (ISUPPER (newpos[new_has_insn]))
1812 break;
1813
1814 /* Go down to desired level. */
1815 while (depth < ndepth)
1816 {
1817 /* It's a different insn from the first one. */
1818 if (ISUPPER (newpos[depth]))
1819 {
1820 printf ("%stem = peep2_next_insn (%d);\n",
1821 indent, newpos[depth] - 'A');
1822 printf ("%sx%d = PATTERN (tem);\n", indent, depth + 1);
1823 }
1824 else if (ISLOWER (newpos[depth]))
1825 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1826 indent, depth + 1, depth, newpos[depth] - 'a');
1827 else
1828 printf ("%sx%d = XEXP (x%d, %c);\n",
1829 indent, depth + 1, depth, newpos[depth]);
1830 ++depth;
1831 }
1832 }
1833 \f
1834 /* Print the enumerator constant for CODE -- the upcase version of
1835 the name. */
1836
1837 static void
1838 print_code (enum rtx_code code)
1839 {
1840 const char *p;
1841 for (p = GET_RTX_NAME (code); *p; p++)
1842 putchar (TOUPPER (*p));
1843 }
1844
1845 /* Emit code to cross an afterward link -- change state and branch. */
1846
1847 static void
1848 write_afterward (struct decision *start, struct decision *afterward,
1849 const char *indent)
1850 {
1851 if (!afterward || start->subroutine_number > 0)
1852 printf("%sgoto ret0;\n", indent);
1853 else
1854 {
1855 change_state (start->position, afterward->position, indent);
1856 printf ("%sgoto L%d;\n", indent, afterward->number);
1857 }
1858 }
1859
1860 /* Emit a HOST_WIDE_INT as an integer constant expression. We need to take
1861 special care to avoid "decimal constant is so large that it is unsigned"
1862 warnings in the resulting code. */
1863
1864 static void
1865 print_host_wide_int (HOST_WIDE_INT val)
1866 {
1867 HOST_WIDE_INT min = (unsigned HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1);
1868 if (val == min)
1869 printf ("(" HOST_WIDE_INT_PRINT_DEC_C "-1)", val + 1);
1870 else
1871 printf (HOST_WIDE_INT_PRINT_DEC_C, val);
1872 }
1873
1874 /* Emit a switch statement, if possible, for an initial sequence of
1875 nodes at START. Return the first node yet untested. */
1876
1877 static struct decision *
1878 write_switch (struct decision *start, int depth)
1879 {
1880 struct decision *p = start;
1881 enum decision_type type = p->tests->type;
1882 struct decision *needs_label = NULL;
1883
1884 /* If we have two or more nodes in sequence that test the same one
1885 thing, we may be able to use a switch statement. */
1886
1887 if (!p->next
1888 || p->tests->next
1889 || p->next->tests->type != type
1890 || p->next->tests->next
1891 || nodes_identical_1 (p->tests, p->next->tests))
1892 return p;
1893
1894 /* DT_code is special in that we can do interesting things with
1895 known predicates at the same time. */
1896 if (type == DT_code)
1897 {
1898 char codemap[NUM_RTX_CODE];
1899 struct decision *ret;
1900 RTX_CODE code;
1901
1902 memset (codemap, 0, sizeof(codemap));
1903
1904 printf (" switch (GET_CODE (x%d))\n {\n", depth);
1905 code = p->tests->u.code;
1906 do
1907 {
1908 if (p != start && p->need_label && needs_label == NULL)
1909 needs_label = p;
1910
1911 printf (" case ");
1912 print_code (code);
1913 printf (":\n goto L%d;\n", p->success.first->number);
1914 p->success.first->need_label = 1;
1915
1916 codemap[code] = 1;
1917 p = p->next;
1918 }
1919 while (p
1920 && ! p->tests->next
1921 && p->tests->type == DT_code
1922 && ! codemap[code = p->tests->u.code]);
1923
1924 /* If P is testing a predicate that we know about and we haven't
1925 seen any of the codes that are valid for the predicate, we can
1926 write a series of "case" statement, one for each possible code.
1927 Since we are already in a switch, these redundant tests are very
1928 cheap and will reduce the number of predicates called. */
1929
1930 /* Note that while we write out cases for these predicates here,
1931 we don't actually write the test here, as it gets kinda messy.
1932 It is trivial to leave this to later by telling our caller that
1933 we only processed the CODE tests. */
1934 if (needs_label != NULL)
1935 ret = needs_label;
1936 else
1937 ret = p;
1938
1939 while (p && p->tests->type == DT_pred && p->tests->u.pred.data)
1940 {
1941 const struct pred_data *data = p->tests->u.pred.data;
1942 RTX_CODE c;
1943 for (c = 0; c < NUM_RTX_CODE; c++)
1944 if (codemap[c] && data->codes[c])
1945 goto pred_done;
1946
1947 for (c = 0; c < NUM_RTX_CODE; c++)
1948 if (data->codes[c])
1949 {
1950 fputs (" case ", stdout);
1951 print_code (c);
1952 fputs (":\n", stdout);
1953 codemap[c] = 1;
1954 }
1955
1956 printf (" goto L%d;\n", p->number);
1957 p->need_label = 1;
1958 p = p->next;
1959 }
1960
1961 pred_done:
1962 /* Make the default case skip the predicates we managed to match. */
1963
1964 printf (" default:\n");
1965 if (p != ret)
1966 {
1967 if (p)
1968 {
1969 printf (" goto L%d;\n", p->number);
1970 p->need_label = 1;
1971 }
1972 else
1973 write_afterward (start, start->afterward, " ");
1974 }
1975 else
1976 printf (" break;\n");
1977 printf (" }\n");
1978
1979 return ret;
1980 }
1981 else if (type == DT_mode
1982 || type == DT_veclen
1983 || type == DT_elt_zero_int
1984 || type == DT_elt_one_int
1985 || type == DT_elt_zero_wide_safe)
1986 {
1987 const char *indent = "";
1988
1989 /* We cast switch parameter to integer, so we must ensure that the value
1990 fits. */
1991 if (type == DT_elt_zero_wide_safe)
1992 {
1993 indent = " ";
1994 printf(" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n", depth, depth);
1995 }
1996 printf ("%s switch (", indent);
1997 switch (type)
1998 {
1999 case DT_mode:
2000 printf ("GET_MODE (x%d)", depth);
2001 break;
2002 case DT_veclen:
2003 printf ("XVECLEN (x%d, 0)", depth);
2004 break;
2005 case DT_elt_zero_int:
2006 printf ("XINT (x%d, 0)", depth);
2007 break;
2008 case DT_elt_one_int:
2009 printf ("XINT (x%d, 1)", depth);
2010 break;
2011 case DT_elt_zero_wide_safe:
2012 /* Convert result of XWINT to int for portability since some C
2013 compilers won't do it and some will. */
2014 printf ("(int) XWINT (x%d, 0)", depth);
2015 break;
2016 default:
2017 gcc_unreachable ();
2018 }
2019 printf (")\n%s {\n", indent);
2020
2021 do
2022 {
2023 /* Merge trees will not unify identical nodes if their
2024 sub-nodes are at different levels. Thus we must check
2025 for duplicate cases. */
2026 struct decision *q;
2027 for (q = start; q != p; q = q->next)
2028 if (nodes_identical_1 (p->tests, q->tests))
2029 goto case_done;
2030
2031 if (p != start && p->need_label && needs_label == NULL)
2032 needs_label = p;
2033
2034 printf ("%s case ", indent);
2035 switch (type)
2036 {
2037 case DT_mode:
2038 printf ("%smode", GET_MODE_NAME (p->tests->u.mode));
2039 break;
2040 case DT_veclen:
2041 printf ("%d", p->tests->u.veclen);
2042 break;
2043 case DT_elt_zero_int:
2044 case DT_elt_one_int:
2045 case DT_elt_zero_wide:
2046 case DT_elt_zero_wide_safe:
2047 print_host_wide_int (p->tests->u.intval);
2048 break;
2049 default:
2050 gcc_unreachable ();
2051 }
2052 printf (":\n%s goto L%d;\n", indent, p->success.first->number);
2053 p->success.first->need_label = 1;
2054
2055 p = p->next;
2056 }
2057 while (p && p->tests->type == type && !p->tests->next);
2058
2059 case_done:
2060 printf ("%s default:\n%s break;\n%s }\n",
2061 indent, indent, indent);
2062
2063 return needs_label != NULL ? needs_label : p;
2064 }
2065 else
2066 {
2067 /* None of the other tests are amenable. */
2068 return p;
2069 }
2070 }
2071
2072 /* Emit code for one test. */
2073
2074 static void
2075 write_cond (struct decision_test *p, int depth,
2076 enum routine_type subroutine_type)
2077 {
2078 switch (p->type)
2079 {
2080 case DT_num_insns:
2081 printf ("peep2_current_count >= %d", p->u.num_insns);
2082 break;
2083
2084 case DT_mode:
2085 printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode));
2086 break;
2087
2088 case DT_code:
2089 printf ("GET_CODE (x%d) == ", depth);
2090 print_code (p->u.code);
2091 break;
2092
2093 case DT_veclen:
2094 printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen);
2095 break;
2096
2097 case DT_elt_zero_int:
2098 printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval);
2099 break;
2100
2101 case DT_elt_one_int:
2102 printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval);
2103 break;
2104
2105 case DT_elt_zero_wide:
2106 case DT_elt_zero_wide_safe:
2107 printf ("XWINT (x%d, 0) == ", depth);
2108 print_host_wide_int (p->u.intval);
2109 break;
2110
2111 case DT_const_int:
2112 printf ("x%d == const_int_rtx[MAX_SAVED_CONST_INT + (%d)]",
2113 depth, (int) p->u.intval);
2114 break;
2115
2116 case DT_veclen_ge:
2117 printf ("XVECLEN (x%d, 0) >= %d", depth, p->u.veclen);
2118 break;
2119
2120 case DT_dup:
2121 printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup);
2122 break;
2123
2124 case DT_pred:
2125 printf ("%s (x%d, %smode)", p->u.pred.name, depth,
2126 GET_MODE_NAME (p->u.pred.mode));
2127 break;
2128
2129 case DT_c_test:
2130 print_c_condition (p->u.c_test);
2131 break;
2132
2133 case DT_accept_insn:
2134 gcc_assert (subroutine_type == RECOG);
2135 gcc_assert (p->u.insn.num_clobbers_to_add);
2136 printf ("pnum_clobbers != NULL");
2137 break;
2138
2139 default:
2140 gcc_unreachable ();
2141 }
2142 }
2143
2144 /* Emit code for one action. The previous tests have succeeded;
2145 TEST is the last of the chain. In the normal case we simply
2146 perform a state change. For the `accept' tests we must do more work. */
2147
2148 static void
2149 write_action (struct decision *p, struct decision_test *test,
2150 int depth, int uncond, struct decision *success,
2151 enum routine_type subroutine_type)
2152 {
2153 const char *indent;
2154 int want_close = 0;
2155
2156 if (uncond)
2157 indent = " ";
2158 else if (test->type == DT_accept_op || test->type == DT_accept_insn)
2159 {
2160 fputs (" {\n", stdout);
2161 indent = " ";
2162 want_close = 1;
2163 }
2164 else
2165 indent = " ";
2166
2167 if (test->type == DT_accept_op)
2168 {
2169 printf("%soperands[%d] = x%d;\n", indent, test->u.opno, depth);
2170
2171 /* Only allow DT_accept_insn to follow. */
2172 if (test->next)
2173 {
2174 test = test->next;
2175 gcc_assert (test->type == DT_accept_insn);
2176 }
2177 }
2178
2179 /* Sanity check that we're now at the end of the list of tests. */
2180 gcc_assert (!test->next);
2181
2182 if (test->type == DT_accept_insn)
2183 {
2184 switch (subroutine_type)
2185 {
2186 case RECOG:
2187 if (test->u.insn.num_clobbers_to_add != 0)
2188 printf ("%s*pnum_clobbers = %d;\n",
2189 indent, test->u.insn.num_clobbers_to_add);
2190 printf ("%sreturn %d; /* %s */\n", indent,
2191 test->u.insn.code_number,
2192 insn_name_ptr[test->u.insn.code_number]);
2193 break;
2194
2195 case SPLIT:
2196 printf ("%sreturn gen_split_%d (insn, operands);\n",
2197 indent, test->u.insn.code_number);
2198 break;
2199
2200 case PEEPHOLE2:
2201 {
2202 int match_len = 0, i;
2203
2204 for (i = strlen (p->position) - 1; i >= 0; --i)
2205 if (ISUPPER (p->position[i]))
2206 {
2207 match_len = p->position[i] - 'A';
2208 break;
2209 }
2210 printf ("%s*_pmatch_len = %d;\n", indent, match_len);
2211 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
2212 indent, test->u.insn.code_number);
2213 printf ("%sif (tem != 0)\n%s return tem;\n", indent, indent);
2214 }
2215 break;
2216
2217 default:
2218 gcc_unreachable ();
2219 }
2220 }
2221 else
2222 {
2223 printf("%sgoto L%d;\n", indent, success->number);
2224 success->need_label = 1;
2225 }
2226
2227 if (want_close)
2228 fputs (" }\n", stdout);
2229 }
2230
2231 /* Return 1 if the test is always true and has no fallthru path. Return -1
2232 if the test does have a fallthru path, but requires that the condition be
2233 terminated. Otherwise return 0 for a normal test. */
2234 /* ??? is_unconditional is a stupid name for a tri-state function. */
2235
2236 static int
2237 is_unconditional (struct decision_test *t, enum routine_type subroutine_type)
2238 {
2239 if (t->type == DT_accept_op)
2240 return 1;
2241
2242 if (t->type == DT_accept_insn)
2243 {
2244 switch (subroutine_type)
2245 {
2246 case RECOG:
2247 return (t->u.insn.num_clobbers_to_add == 0);
2248 case SPLIT:
2249 return 1;
2250 case PEEPHOLE2:
2251 return -1;
2252 default:
2253 gcc_unreachable ();
2254 }
2255 }
2256
2257 return 0;
2258 }
2259
2260 /* Emit code for one node -- the conditional and the accompanying action.
2261 Return true if there is no fallthru path. */
2262
2263 static int
2264 write_node (struct decision *p, int depth,
2265 enum routine_type subroutine_type)
2266 {
2267 struct decision_test *test, *last_test;
2268 int uncond;
2269
2270 /* Scan the tests and simplify comparisons against small
2271 constants. */
2272 for (test = p->tests; test; test = test->next)
2273 {
2274 if (test->type == DT_code
2275 && test->u.code == CONST_INT
2276 && test->next
2277 && test->next->type == DT_elt_zero_wide_safe
2278 && -MAX_SAVED_CONST_INT <= test->next->u.intval
2279 && test->next->u.intval <= MAX_SAVED_CONST_INT)
2280 {
2281 test->type = DT_const_int;
2282 test->u.intval = test->next->u.intval;
2283 test->next = test->next->next;
2284 }
2285 }
2286
2287 last_test = test = p->tests;
2288 uncond = is_unconditional (test, subroutine_type);
2289 if (uncond == 0)
2290 {
2291 printf (" if (");
2292 write_cond (test, depth, subroutine_type);
2293
2294 while ((test = test->next) != NULL)
2295 {
2296 last_test = test;
2297 if (is_unconditional (test, subroutine_type))
2298 break;
2299
2300 printf ("\n && ");
2301 write_cond (test, depth, subroutine_type);
2302 }
2303
2304 printf (")\n");
2305 }
2306
2307 write_action (p, last_test, depth, uncond, p->success.first, subroutine_type);
2308
2309 return uncond > 0;
2310 }
2311
2312 /* Emit code for all of the sibling nodes of HEAD. */
2313
2314 static void
2315 write_tree_1 (struct decision_head *head, int depth,
2316 enum routine_type subroutine_type)
2317 {
2318 struct decision *p, *next;
2319 int uncond = 0;
2320
2321 for (p = head->first; p ; p = next)
2322 {
2323 /* The label for the first element was printed in write_tree. */
2324 if (p != head->first && p->need_label)
2325 OUTPUT_LABEL (" ", p->number);
2326
2327 /* Attempt to write a switch statement for a whole sequence. */
2328 next = write_switch (p, depth);
2329 if (p != next)
2330 uncond = 0;
2331 else
2332 {
2333 /* Failed -- fall back and write one node. */
2334 uncond = write_node (p, depth, subroutine_type);
2335 next = p->next;
2336 }
2337 }
2338
2339 /* Finished with this chain. Close a fallthru path by branching
2340 to the afterward node. */
2341 if (! uncond)
2342 write_afterward (head->last, head->last->afterward, " ");
2343 }
2344
2345 /* Write out the decision tree starting at HEAD. PREVPOS is the
2346 position at the node that branched to this node. */
2347
2348 static void
2349 write_tree (struct decision_head *head, const char *prevpos,
2350 enum routine_type type, int initial)
2351 {
2352 struct decision *p = head->first;
2353
2354 putchar ('\n');
2355 if (p->need_label)
2356 OUTPUT_LABEL (" ", p->number);
2357
2358 if (! initial && p->subroutine_number > 0)
2359 {
2360 static const char * const name_prefix[] = {
2361 "recog", "split", "peephole2"
2362 };
2363
2364 static const char * const call_suffix[] = {
2365 ", pnum_clobbers", "", ", _pmatch_len"
2366 };
2367
2368 /* This node has been broken out into a separate subroutine.
2369 Call it, test the result, and branch accordingly. */
2370
2371 if (p->afterward)
2372 {
2373 printf (" tem = %s_%d (x0, insn%s);\n",
2374 name_prefix[type], p->subroutine_number, call_suffix[type]);
2375 if (IS_SPLIT (type))
2376 printf (" if (tem != 0)\n return tem;\n");
2377 else
2378 printf (" if (tem >= 0)\n return tem;\n");
2379
2380 change_state (p->position, p->afterward->position, " ");
2381 printf (" goto L%d;\n", p->afterward->number);
2382 }
2383 else
2384 {
2385 printf (" return %s_%d (x0, insn%s);\n",
2386 name_prefix[type], p->subroutine_number, call_suffix[type]);
2387 }
2388 }
2389 else
2390 {
2391 int depth = strlen (p->position);
2392
2393 change_state (prevpos, p->position, " ");
2394 write_tree_1 (head, depth, type);
2395
2396 for (p = head->first; p; p = p->next)
2397 if (p->success.first)
2398 write_tree (&p->success, p->position, type, 0);
2399 }
2400 }
2401
2402 /* Write out a subroutine of type TYPE to do comparisons starting at
2403 node TREE. */
2404
2405 static void
2406 write_subroutine (struct decision_head *head, enum routine_type type)
2407 {
2408 int subfunction = head->first ? head->first->subroutine_number : 0;
2409 const char *s_or_e;
2410 char extension[32];
2411 int i;
2412
2413 s_or_e = subfunction ? "static " : "";
2414
2415 if (subfunction)
2416 sprintf (extension, "_%d", subfunction);
2417 else if (type == RECOG)
2418 extension[0] = '\0';
2419 else
2420 strcpy (extension, "_insns");
2421
2422 switch (type)
2423 {
2424 case RECOG:
2425 printf ("%sint\n\
2426 recog%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", s_or_e, extension);
2427 break;
2428 case SPLIT:
2429 printf ("%srtx\n\
2430 split%s (rtx x0 ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED)\n",
2431 s_or_e, extension);
2432 break;
2433 case PEEPHOLE2:
2434 printf ("%srtx\n\
2435 peephole2%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *_pmatch_len ATTRIBUTE_UNUSED)\n",
2436 s_or_e, extension);
2437 break;
2438 }
2439
2440 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
2441 for (i = 1; i <= max_depth; i++)
2442 printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i);
2443
2444 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int");
2445
2446 if (!subfunction)
2447 printf (" recog_data.insn = NULL_RTX;\n");
2448
2449 if (head->first)
2450 write_tree (head, "", type, 1);
2451 else
2452 printf (" goto ret0;\n");
2453
2454 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1);
2455 }
2456
2457 /* In break_out_subroutines, we discovered the boundaries for the
2458 subroutines, but did not write them out. Do so now. */
2459
2460 static void
2461 write_subroutines (struct decision_head *head, enum routine_type type)
2462 {
2463 struct decision *p;
2464
2465 for (p = head->first; p ; p = p->next)
2466 if (p->success.first)
2467 write_subroutines (&p->success, type);
2468
2469 if (head->first->subroutine_number > 0)
2470 write_subroutine (head, type);
2471 }
2472
2473 /* Begin the output file. */
2474
2475 static void
2476 write_header (void)
2477 {
2478 puts ("\
2479 /* Generated automatically by the program `genrecog' from the target\n\
2480 machine description file. */\n\
2481 \n\
2482 #include \"config.h\"\n\
2483 #include \"system.h\"\n\
2484 #include \"coretypes.h\"\n\
2485 #include \"tm.h\"\n\
2486 #include \"rtl.h\"\n\
2487 #include \"tm_p.h\"\n\
2488 #include \"function.h\"\n\
2489 #include \"insn-config.h\"\n\
2490 #include \"recog.h\"\n\
2491 #include \"real.h\"\n\
2492 #include \"output.h\"\n\
2493 #include \"flags.h\"\n\
2494 #include \"hard-reg-set.h\"\n\
2495 #include \"resource.h\"\n\
2496 #include \"toplev.h\"\n\
2497 #include \"reload.h\"\n\
2498 \n");
2499
2500 puts ("\n\
2501 /* `recog' contains a decision tree that recognizes whether the rtx\n\
2502 X0 is a valid instruction.\n\
2503 \n\
2504 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2505 returns a nonnegative number which is the insn code number for the\n\
2506 pattern that matched. This is the same as the order in the machine\n\
2507 description of the entry that matched. This number can be used as an\n\
2508 index into `insn_data' and other tables.\n");
2509 puts ("\
2510 The third argument to recog is an optional pointer to an int. If\n\
2511 present, recog will accept a pattern if it matches except for missing\n\
2512 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2513 the optional pointer will be set to the number of CLOBBERs that need\n\
2514 to be added (it should be initialized to zero by the caller). If it");
2515 puts ("\
2516 is set nonzero, the caller should allocate a PARALLEL of the\n\
2517 appropriate size, copy the initial entries, and call add_clobbers\n\
2518 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2519 ");
2520
2521 puts ("\n\
2522 The function split_insns returns 0 if the rtl could not\n\
2523 be split or the split rtl as an INSN list if it can be.\n\
2524 \n\
2525 The function peephole2_insns returns 0 if the rtl could not\n\
2526 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
2527 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2528 */\n\n");
2529 }
2530
2531 \f
2532 /* Construct and return a sequence of decisions
2533 that will recognize INSN.
2534
2535 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2536
2537 static struct decision_head
2538 make_insn_sequence (rtx insn, enum routine_type type)
2539 {
2540 rtx x;
2541 const char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
2542 int truth = maybe_eval_c_test (c_test);
2543 struct decision *last;
2544 struct decision_test *test, **place;
2545 struct decision_head head;
2546 char c_test_pos[2];
2547
2548 /* We should never see an insn whose C test is false at compile time. */
2549 gcc_assert (truth);
2550
2551 record_insn_name (next_insn_code, (type == RECOG ? XSTR (insn, 0) : NULL));
2552
2553 c_test_pos[0] = '\0';
2554 if (type == PEEPHOLE2)
2555 {
2556 int i, j;
2557
2558 /* peephole2 gets special treatment:
2559 - X always gets an outer parallel even if it's only one entry
2560 - we remove all traces of outer-level match_scratch and match_dup
2561 expressions here. */
2562 x = rtx_alloc (PARALLEL);
2563 PUT_MODE (x, VOIDmode);
2564 XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0));
2565 for (i = j = 0; i < XVECLEN (insn, 0); i++)
2566 {
2567 rtx tmp = XVECEXP (insn, 0, i);
2568 if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP)
2569 {
2570 XVECEXP (x, 0, j) = tmp;
2571 j++;
2572 }
2573 }
2574 XVECLEN (x, 0) = j;
2575
2576 c_test_pos[0] = 'A' + j - 1;
2577 c_test_pos[1] = '\0';
2578 }
2579 else if (XVECLEN (insn, type == RECOG) == 1)
2580 x = XVECEXP (insn, type == RECOG, 0);
2581 else
2582 {
2583 x = rtx_alloc (PARALLEL);
2584 XVEC (x, 0) = XVEC (insn, type == RECOG);
2585 PUT_MODE (x, VOIDmode);
2586 }
2587
2588 validate_pattern (x, insn, NULL_RTX, 0);
2589
2590 memset(&head, 0, sizeof(head));
2591 last = add_to_sequence (x, &head, "", type, 1);
2592
2593 /* Find the end of the test chain on the last node. */
2594 for (test = last->tests; test->next; test = test->next)
2595 continue;
2596 place = &test->next;
2597
2598 /* Skip the C test if it's known to be true at compile time. */
2599 if (truth == -1)
2600 {
2601 /* Need a new node if we have another test to add. */
2602 if (test->type == DT_accept_op)
2603 {
2604 last = new_decision (c_test_pos, &last->success);
2605 place = &last->tests;
2606 }
2607 test = new_decision_test (DT_c_test, &place);
2608 test->u.c_test = c_test;
2609 }
2610
2611 test = new_decision_test (DT_accept_insn, &place);
2612 test->u.insn.code_number = next_insn_code;
2613 test->u.insn.lineno = pattern_lineno;
2614 test->u.insn.num_clobbers_to_add = 0;
2615
2616 switch (type)
2617 {
2618 case RECOG:
2619 /* If this is a DEFINE_INSN and X is a PARALLEL, see if it ends
2620 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2621 If so, set up to recognize the pattern without these CLOBBERs. */
2622
2623 if (GET_CODE (x) == PARALLEL)
2624 {
2625 int i;
2626
2627 /* Find the last non-clobber in the parallel. */
2628 for (i = XVECLEN (x, 0); i > 0; i--)
2629 {
2630 rtx y = XVECEXP (x, 0, i - 1);
2631 if (GET_CODE (y) != CLOBBER
2632 || (!REG_P (XEXP (y, 0))
2633 && GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH))
2634 break;
2635 }
2636
2637 if (i != XVECLEN (x, 0))
2638 {
2639 rtx new;
2640 struct decision_head clobber_head;
2641
2642 /* Build a similar insn without the clobbers. */
2643 if (i == 1)
2644 new = XVECEXP (x, 0, 0);
2645 else
2646 {
2647 int j;
2648
2649 new = rtx_alloc (PARALLEL);
2650 XVEC (new, 0) = rtvec_alloc (i);
2651 for (j = i - 1; j >= 0; j--)
2652 XVECEXP (new, 0, j) = XVECEXP (x, 0, j);
2653 }
2654
2655 /* Recognize it. */
2656 memset (&clobber_head, 0, sizeof(clobber_head));
2657 last = add_to_sequence (new, &clobber_head, "", type, 1);
2658
2659 /* Find the end of the test chain on the last node. */
2660 for (test = last->tests; test->next; test = test->next)
2661 continue;
2662
2663 /* We definitely have a new test to add -- create a new
2664 node if needed. */
2665 place = &test->next;
2666 if (test->type == DT_accept_op)
2667 {
2668 last = new_decision ("", &last->success);
2669 place = &last->tests;
2670 }
2671
2672 /* Skip the C test if it's known to be true at compile
2673 time. */
2674 if (truth == -1)
2675 {
2676 test = new_decision_test (DT_c_test, &place);
2677 test->u.c_test = c_test;
2678 }
2679
2680 test = new_decision_test (DT_accept_insn, &place);
2681 test->u.insn.code_number = next_insn_code;
2682 test->u.insn.lineno = pattern_lineno;
2683 test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i;
2684
2685 merge_trees (&head, &clobber_head);
2686 }
2687 }
2688 break;
2689
2690 case SPLIT:
2691 /* Define the subroutine we will call below and emit in genemit. */
2692 printf ("extern rtx gen_split_%d (rtx, rtx *);\n", next_insn_code);
2693 break;
2694
2695 case PEEPHOLE2:
2696 /* Define the subroutine we will call below and emit in genemit. */
2697 printf ("extern rtx gen_peephole2_%d (rtx, rtx *);\n",
2698 next_insn_code);
2699 break;
2700 }
2701
2702 return head;
2703 }
2704
2705 static void
2706 process_tree (struct decision_head *head, enum routine_type subroutine_type)
2707 {
2708 if (head->first == NULL)
2709 {
2710 /* We can elide peephole2_insns, but not recog or split_insns. */
2711 if (subroutine_type == PEEPHOLE2)
2712 return;
2713 }
2714 else
2715 {
2716 factor_tests (head);
2717
2718 next_subroutine_number = 0;
2719 break_out_subroutines (head, 1);
2720 find_afterward (head, NULL);
2721
2722 /* We run this after find_afterward, because find_afterward needs
2723 the redundant DT_mode tests on predicates to determine whether
2724 two tests can both be true or not. */
2725 simplify_tests(head);
2726
2727 write_subroutines (head, subroutine_type);
2728 }
2729
2730 write_subroutine (head, subroutine_type);
2731 }
2732 \f
2733 extern int main (int, char **);
2734
2735 int
2736 main (int argc, char **argv)
2737 {
2738 rtx desc;
2739 struct decision_head recog_tree, split_tree, peephole2_tree, h;
2740
2741 progname = "genrecog";
2742
2743 memset (&recog_tree, 0, sizeof recog_tree);
2744 memset (&split_tree, 0, sizeof split_tree);
2745 memset (&peephole2_tree, 0, sizeof peephole2_tree);
2746
2747 if (init_md_reader_args (argc, argv) != SUCCESS_EXIT_CODE)
2748 return (FATAL_EXIT_CODE);
2749
2750 next_insn_code = 0;
2751
2752 write_header ();
2753
2754 /* Read the machine description. */
2755
2756 while (1)
2757 {
2758 desc = read_md_rtx (&pattern_lineno, &next_insn_code);
2759 if (desc == NULL)
2760 break;
2761
2762 switch (GET_CODE (desc))
2763 {
2764 case DEFINE_PREDICATE:
2765 case DEFINE_SPECIAL_PREDICATE:
2766 process_define_predicate (desc);
2767 break;
2768
2769 case DEFINE_INSN:
2770 h = make_insn_sequence (desc, RECOG);
2771 merge_trees (&recog_tree, &h);
2772 break;
2773
2774 case DEFINE_SPLIT:
2775 h = make_insn_sequence (desc, SPLIT);
2776 merge_trees (&split_tree, &h);
2777 break;
2778
2779 case DEFINE_PEEPHOLE2:
2780 h = make_insn_sequence (desc, PEEPHOLE2);
2781 merge_trees (&peephole2_tree, &h);
2782
2783 default:
2784 /* do nothing */;
2785 }
2786 }
2787
2788 if (error_count || have_error)
2789 return FATAL_EXIT_CODE;
2790
2791 puts ("\n\n");
2792
2793 process_tree (&recog_tree, RECOG);
2794 process_tree (&split_tree, SPLIT);
2795 process_tree (&peephole2_tree, PEEPHOLE2);
2796
2797 fflush (stdout);
2798 return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
2799 }
2800 \f
2801 /* Define this so we can link with print-rtl.o to get debug_rtx function. */
2802 const char *
2803 get_insn_name (int code)
2804 {
2805 if (code < insn_name_ptr_size)
2806 return insn_name_ptr[code];
2807 else
2808 return NULL;
2809 }
2810
2811 static void
2812 record_insn_name (int code, const char *name)
2813 {
2814 static const char *last_real_name = "insn";
2815 static int last_real_code = 0;
2816 char *new;
2817
2818 if (insn_name_ptr_size <= code)
2819 {
2820 int new_size;
2821 new_size = (insn_name_ptr_size ? insn_name_ptr_size * 2 : 512);
2822 insn_name_ptr = xrealloc (insn_name_ptr, sizeof(char *) * new_size);
2823 memset (insn_name_ptr + insn_name_ptr_size, 0,
2824 sizeof(char *) * (new_size - insn_name_ptr_size));
2825 insn_name_ptr_size = new_size;
2826 }
2827
2828 if (!name || name[0] == '\0')
2829 {
2830 new = xmalloc (strlen (last_real_name) + 10);
2831 sprintf (new, "%s+%d", last_real_name, code - last_real_code);
2832 }
2833 else
2834 {
2835 last_real_name = new = xstrdup (name);
2836 last_real_code = code;
2837 }
2838
2839 insn_name_ptr[code] = new;
2840 }
2841 \f
2842 static void
2843 debug_decision_2 (struct decision_test *test)
2844 {
2845 switch (test->type)
2846 {
2847 case DT_num_insns:
2848 fprintf (stderr, "num_insns=%d", test->u.num_insns);
2849 break;
2850 case DT_mode:
2851 fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode));
2852 break;
2853 case DT_code:
2854 fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code));
2855 break;
2856 case DT_veclen:
2857 fprintf (stderr, "veclen=%d", test->u.veclen);
2858 break;
2859 case DT_elt_zero_int:
2860 fprintf (stderr, "elt0_i=%d", (int) test->u.intval);
2861 break;
2862 case DT_elt_one_int:
2863 fprintf (stderr, "elt1_i=%d", (int) test->u.intval);
2864 break;
2865 case DT_elt_zero_wide:
2866 fprintf (stderr, "elt0_w=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2867 break;
2868 case DT_elt_zero_wide_safe:
2869 fprintf (stderr, "elt0_ws=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2870 break;
2871 case DT_veclen_ge:
2872 fprintf (stderr, "veclen>=%d", test->u.veclen);
2873 break;
2874 case DT_dup:
2875 fprintf (stderr, "dup=%d", test->u.dup);
2876 break;
2877 case DT_pred:
2878 fprintf (stderr, "pred=(%s,%s)",
2879 test->u.pred.name, GET_MODE_NAME(test->u.pred.mode));
2880 break;
2881 case DT_c_test:
2882 {
2883 char sub[16+4];
2884 strncpy (sub, test->u.c_test, sizeof(sub));
2885 memcpy (sub+16, "...", 4);
2886 fprintf (stderr, "c_test=\"%s\"", sub);
2887 }
2888 break;
2889 case DT_accept_op:
2890 fprintf (stderr, "A_op=%d", test->u.opno);
2891 break;
2892 case DT_accept_insn:
2893 fprintf (stderr, "A_insn=(%d,%d)",
2894 test->u.insn.code_number, test->u.insn.num_clobbers_to_add);
2895 break;
2896
2897 default:
2898 gcc_unreachable ();
2899 }
2900 }
2901
2902 static void
2903 debug_decision_1 (struct decision *d, int indent)
2904 {
2905 int i;
2906 struct decision_test *test;
2907
2908 if (d == NULL)
2909 {
2910 for (i = 0; i < indent; ++i)
2911 putc (' ', stderr);
2912 fputs ("(nil)\n", stderr);
2913 return;
2914 }
2915
2916 for (i = 0; i < indent; ++i)
2917 putc (' ', stderr);
2918
2919 putc ('{', stderr);
2920 test = d->tests;
2921 if (test)
2922 {
2923 debug_decision_2 (test);
2924 while ((test = test->next) != NULL)
2925 {
2926 fputs (" + ", stderr);
2927 debug_decision_2 (test);
2928 }
2929 }
2930 fprintf (stderr, "} %d n %d a %d\n", d->number,
2931 (d->next ? d->next->number : -1),
2932 (d->afterward ? d->afterward->number : -1));
2933 }
2934
2935 static void
2936 debug_decision_0 (struct decision *d, int indent, int maxdepth)
2937 {
2938 struct decision *n;
2939 int i;
2940
2941 if (maxdepth < 0)
2942 return;
2943 if (d == NULL)
2944 {
2945 for (i = 0; i < indent; ++i)
2946 putc (' ', stderr);
2947 fputs ("(nil)\n", stderr);
2948 return;
2949 }
2950
2951 debug_decision_1 (d, indent);
2952 for (n = d->success.first; n ; n = n->next)
2953 debug_decision_0 (n, indent + 2, maxdepth - 1);
2954 }
2955
2956 void
2957 debug_decision (struct decision *d)
2958 {
2959 debug_decision_0 (d, 0, 1000000);
2960 }
2961
2962 void
2963 debug_decision_list (struct decision *d)
2964 {
2965 while (d)
2966 {
2967 debug_decision_0 (d, 0, 0);
2968 d = d->next;
2969 }
2970 }