genrecog.c (decision_type): Add DT_const_int.
[gcc.git] / gcc / genrecog.c
1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* This program is used to produce insn-recog.c, which contains a
24 function called `recog' plus its subroutines. These functions
25 contain a decision tree that recognizes whether an rtx, the
26 argument given to recog, is a valid instruction.
27
28 recog returns -1 if the rtx is not valid. If the rtx is valid,
29 recog returns a nonnegative number which is the insn code number
30 for the pattern that matched. This is the same as the order in the
31 machine description of the entry that matched. This number can be
32 used as an index into various insn_* tables, such as insn_template,
33 insn_outfun, and insn_n_operands (found in insn-output.c).
34
35 The third argument to recog is an optional pointer to an int. If
36 present, recog will accept a pattern if it matches except for
37 missing CLOBBER expressions at the end. In that case, the value
38 pointed to by the optional pointer will be set to the number of
39 CLOBBERs that need to be added (it should be initialized to zero by
40 the caller). If it is set nonzero, the caller should allocate a
41 PARALLEL of the appropriate size, copy the initial entries, and
42 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
43
44 This program also generates the function `split_insns', which
45 returns 0 if the rtl could not be split, or it returns the split
46 rtl as an INSN list.
47
48 This program also generates the function `peephole2_insns', which
49 returns 0 if the rtl could not be matched. If there was a match,
50 the new rtl is returned in an INSN list, and LAST_INSN will point
51 to the last recognized insn in the old sequence. */
52
53 #include "bconfig.h"
54 #include "system.h"
55 #include "coretypes.h"
56 #include "tm.h"
57 #include "rtl.h"
58 #include "errors.h"
59 #include "gensupport.h"
60
61
62 #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
63 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
64
65 /* Holds an array of names indexed by insn_code_number. */
66 static char **insn_name_ptr = 0;
67 static int insn_name_ptr_size = 0;
68
69 /* A listhead of decision trees. The alternatives to a node are kept
70 in a doubly-linked list so we can easily add nodes to the proper
71 place when merging. */
72
73 struct decision_head
74 {
75 struct decision *first;
76 struct decision *last;
77 };
78
79 /* A single test. The two accept types aren't tests per-se, but
80 their equality (or lack thereof) does affect tree merging so
81 it is convenient to keep them here. */
82
83 struct decision_test
84 {
85 /* A linked list through the tests attached to a node. */
86 struct decision_test *next;
87
88 /* These types are roughly in the order in which we'd like to test them. */
89 enum decision_type
90 {
91 DT_mode, DT_code, DT_veclen,
92 DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide, DT_elt_zero_wide_safe,
93 DT_const_int,
94 DT_veclen_ge, DT_dup, DT_pred, DT_c_test,
95 DT_accept_op, DT_accept_insn
96 } type;
97
98 union
99 {
100 enum machine_mode mode; /* Machine mode of node. */
101 RTX_CODE code; /* Code to test. */
102
103 struct
104 {
105 const char *name; /* Predicate to call. */
106 int index; /* Index into `preds' or -1. */
107 enum machine_mode mode; /* Machine mode for node. */
108 } pred;
109
110 const char *c_test; /* Additional test to perform. */
111 int veclen; /* Length of vector. */
112 int dup; /* Number of operand to compare against. */
113 HOST_WIDE_INT intval; /* Value for XINT for XWINT. */
114 int opno; /* Operand number matched. */
115
116 struct {
117 int code_number; /* Insn number matched. */
118 int lineno; /* Line number of the insn. */
119 int num_clobbers_to_add; /* Number of CLOBBERs to be added. */
120 } insn;
121 } u;
122 };
123
124 /* Data structure for decision tree for recognizing legitimate insns. */
125
126 struct decision
127 {
128 struct decision_head success; /* Nodes to test on success. */
129 struct decision *next; /* Node to test on failure. */
130 struct decision *prev; /* Node whose failure tests us. */
131 struct decision *afterward; /* Node to test on success,
132 but failure of successor nodes. */
133
134 const char *position; /* String denoting position in pattern. */
135
136 struct decision_test *tests; /* The tests for this node. */
137
138 int number; /* Node number, used for labels */
139 int subroutine_number; /* Number of subroutine this node starts */
140 int need_label; /* Label needs to be output. */
141 };
142
143 #define SUBROUTINE_THRESHOLD 100
144
145 static int next_subroutine_number;
146
147 /* We can write three types of subroutines: One for insn recognition,
148 one to split insns, and one for peephole-type optimizations. This
149 defines which type is being written. */
150
151 enum routine_type {
152 RECOG, SPLIT, PEEPHOLE2
153 };
154
155 #define IS_SPLIT(X) ((X) != RECOG)
156
157 /* Next available node number for tree nodes. */
158
159 static int next_number;
160
161 /* Next number to use as an insn_code. */
162
163 static int next_insn_code;
164
165 /* Similar, but counts all expressions in the MD file; used for
166 error messages. */
167
168 static int next_index;
169
170 /* Record the highest depth we ever have so we know how many variables to
171 allocate in each subroutine we make. */
172
173 static int max_depth;
174
175 /* The line number of the start of the pattern currently being processed. */
176 static int pattern_lineno;
177
178 /* Count of errors. */
179 static int error_count;
180 \f
181 /* This table contains a list of the rtl codes that can possibly match a
182 predicate defined in recog.c. The function `maybe_both_true' uses it to
183 deduce that there are no expressions that can be matches by certain pairs
184 of tree nodes. Also, if a predicate can match only one code, we can
185 hardwire that code into the node testing the predicate. */
186
187 static const struct pred_table
188 {
189 const char *const name;
190 const RTX_CODE codes[NUM_RTX_CODE];
191 } preds[] = {
192 {"general_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
193 LABEL_REF, SUBREG, REG, MEM, ADDRESSOF}},
194 #ifdef PREDICATE_CODES
195 PREDICATE_CODES
196 #endif
197 {"address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
198 LABEL_REF, SUBREG, REG, MEM, ADDRESSOF,
199 PLUS, MINUS, MULT}},
200 {"register_operand", {SUBREG, REG, ADDRESSOF}},
201 {"pmode_register_operand", {SUBREG, REG, ADDRESSOF}},
202 {"scratch_operand", {SCRATCH, REG}},
203 {"immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
204 LABEL_REF}},
205 {"const_int_operand", {CONST_INT}},
206 {"const_double_operand", {CONST_INT, CONST_DOUBLE}},
207 {"nonimmediate_operand", {SUBREG, REG, MEM, ADDRESSOF}},
208 {"nonmemory_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
209 LABEL_REF, SUBREG, REG, ADDRESSOF}},
210 {"push_operand", {MEM}},
211 {"pop_operand", {MEM}},
212 {"memory_operand", {SUBREG, MEM}},
213 {"indirect_operand", {SUBREG, MEM}},
214 {"comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU,
215 UNORDERED, ORDERED, UNEQ, UNGE, UNGT, UNLE,
216 UNLT, LTGT}}
217 };
218
219 #define NUM_KNOWN_PREDS ARRAY_SIZE (preds)
220
221 static const char *const special_mode_pred_table[] = {
222 #ifdef SPECIAL_MODE_PREDICATES
223 SPECIAL_MODE_PREDICATES
224 #endif
225 "pmode_register_operand"
226 };
227
228 #define NUM_SPECIAL_MODE_PREDS ARRAY_SIZE (special_mode_pred_table)
229
230 static struct decision *new_decision
231 (const char *, struct decision_head *);
232 static struct decision_test *new_decision_test
233 (enum decision_type, struct decision_test ***);
234 static rtx find_operand
235 (rtx, int);
236 static rtx find_matching_operand
237 (rtx, int);
238 static void validate_pattern
239 (rtx, rtx, rtx, int);
240 static struct decision *add_to_sequence
241 (rtx, struct decision_head *, const char *, enum routine_type, int);
242
243 static int maybe_both_true_2
244 (struct decision_test *, struct decision_test *);
245 static int maybe_both_true_1
246 (struct decision_test *, struct decision_test *);
247 static int maybe_both_true
248 (struct decision *, struct decision *, int);
249
250 static int nodes_identical_1
251 (struct decision_test *, struct decision_test *);
252 static int nodes_identical
253 (struct decision *, struct decision *);
254 static void merge_accept_insn
255 (struct decision *, struct decision *);
256 static void merge_trees
257 (struct decision_head *, struct decision_head *);
258
259 static void factor_tests
260 (struct decision_head *);
261 static void simplify_tests
262 (struct decision_head *);
263 static int break_out_subroutines
264 (struct decision_head *, int);
265 static void find_afterward
266 (struct decision_head *, struct decision *);
267
268 static void change_state
269 (const char *, const char *, struct decision *, const char *);
270 static void print_code
271 (enum rtx_code);
272 static void write_afterward
273 (struct decision *, struct decision *, const char *);
274 static struct decision *write_switch
275 (struct decision *, int);
276 static void write_cond
277 (struct decision_test *, int, enum routine_type);
278 static void write_action
279 (struct decision *, struct decision_test *, int, int,
280 struct decision *, enum routine_type);
281 static int is_unconditional
282 (struct decision_test *, enum routine_type);
283 static int write_node
284 (struct decision *, int, enum routine_type);
285 static void write_tree_1
286 (struct decision_head *, int, enum routine_type);
287 static void write_tree
288 (struct decision_head *, const char *, enum routine_type, int);
289 static void write_subroutine
290 (struct decision_head *, enum routine_type);
291 static void write_subroutines
292 (struct decision_head *, enum routine_type);
293 static void write_header
294 (void);
295
296 static struct decision_head make_insn_sequence
297 (rtx, enum routine_type);
298 static void process_tree
299 (struct decision_head *, enum routine_type);
300
301 static void record_insn_name
302 (int, const char *);
303
304 static void debug_decision_0
305 (struct decision *, int, int);
306 static void debug_decision_1
307 (struct decision *, int);
308 static void debug_decision_2
309 (struct decision_test *);
310 extern void debug_decision
311 (struct decision *);
312 extern void debug_decision_list
313 (struct decision *);
314 \f
315 /* Create a new node in sequence after LAST. */
316
317 static struct decision *
318 new_decision (const char *position, struct decision_head *last)
319 {
320 struct decision *new = xcalloc (1, sizeof (struct decision));
321
322 new->success = *last;
323 new->position = xstrdup (position);
324 new->number = next_number++;
325
326 last->first = last->last = new;
327 return new;
328 }
329
330 /* Create a new test and link it in at PLACE. */
331
332 static struct decision_test *
333 new_decision_test (enum decision_type type, struct decision_test ***pplace)
334 {
335 struct decision_test **place = *pplace;
336 struct decision_test *test;
337
338 test = xmalloc (sizeof (*test));
339 test->next = *place;
340 test->type = type;
341 *place = test;
342
343 place = &test->next;
344 *pplace = place;
345
346 return test;
347 }
348
349 /* Search for and return operand N. */
350
351 static rtx
352 find_operand (rtx pattern, int n)
353 {
354 const char *fmt;
355 RTX_CODE code;
356 int i, j, len;
357 rtx r;
358
359 code = GET_CODE (pattern);
360 if ((code == MATCH_SCRATCH
361 || code == MATCH_INSN
362 || code == MATCH_OPERAND
363 || code == MATCH_OPERATOR
364 || code == MATCH_PARALLEL)
365 && XINT (pattern, 0) == n)
366 return pattern;
367
368 fmt = GET_RTX_FORMAT (code);
369 len = GET_RTX_LENGTH (code);
370 for (i = 0; i < len; i++)
371 {
372 switch (fmt[i])
373 {
374 case 'e': case 'u':
375 if ((r = find_operand (XEXP (pattern, i), n)) != NULL_RTX)
376 return r;
377 break;
378
379 case 'V':
380 if (! XVEC (pattern, i))
381 break;
382 /* Fall through. */
383
384 case 'E':
385 for (j = 0; j < XVECLEN (pattern, i); j++)
386 if ((r = find_operand (XVECEXP (pattern, i, j), n)) != NULL_RTX)
387 return r;
388 break;
389
390 case 'i': case 'w': case '0': case 's':
391 break;
392
393 default:
394 abort ();
395 }
396 }
397
398 return NULL;
399 }
400
401 /* Search for and return operand M, such that it has a matching
402 constraint for operand N. */
403
404 static rtx
405 find_matching_operand (rtx pattern, int n)
406 {
407 const char *fmt;
408 RTX_CODE code;
409 int i, j, len;
410 rtx r;
411
412 code = GET_CODE (pattern);
413 if (code == MATCH_OPERAND
414 && (XSTR (pattern, 2)[0] == '0' + n
415 || (XSTR (pattern, 2)[0] == '%'
416 && XSTR (pattern, 2)[1] == '0' + n)))
417 return pattern;
418
419 fmt = GET_RTX_FORMAT (code);
420 len = GET_RTX_LENGTH (code);
421 for (i = 0; i < len; i++)
422 {
423 switch (fmt[i])
424 {
425 case 'e': case 'u':
426 if ((r = find_matching_operand (XEXP (pattern, i), n)))
427 return r;
428 break;
429
430 case 'V':
431 if (! XVEC (pattern, i))
432 break;
433 /* Fall through. */
434
435 case 'E':
436 for (j = 0; j < XVECLEN (pattern, i); j++)
437 if ((r = find_matching_operand (XVECEXP (pattern, i, j), n)))
438 return r;
439 break;
440
441 case 'i': case 'w': case '0': case 's':
442 break;
443
444 default:
445 abort ();
446 }
447 }
448
449 return NULL;
450 }
451
452
453 /* Check for various errors in patterns. SET is nonnull for a destination,
454 and is the complete set pattern. SET_CODE is '=' for normal sets, and
455 '+' within a context that requires in-out constraints. */
456
457 static void
458 validate_pattern (rtx pattern, rtx insn, rtx set, int set_code)
459 {
460 const char *fmt;
461 RTX_CODE code;
462 size_t i, len;
463 int j;
464
465 code = GET_CODE (pattern);
466 switch (code)
467 {
468 case MATCH_SCRATCH:
469 return;
470
471 case MATCH_INSN:
472 case MATCH_OPERAND:
473 case MATCH_OPERATOR:
474 {
475 const char *pred_name = XSTR (pattern, 1);
476 int allows_non_lvalue = 1, allows_non_const = 1;
477 int special_mode_pred = 0;
478 const char *c_test;
479
480 if (GET_CODE (insn) == DEFINE_INSN)
481 c_test = XSTR (insn, 2);
482 else
483 c_test = XSTR (insn, 1);
484
485 if (pred_name[0] != 0)
486 {
487 for (i = 0; i < NUM_KNOWN_PREDS; i++)
488 if (! strcmp (preds[i].name, pred_name))
489 break;
490
491 if (i < NUM_KNOWN_PREDS)
492 {
493 int j;
494
495 allows_non_lvalue = allows_non_const = 0;
496 for (j = 0; preds[i].codes[j] != 0; j++)
497 {
498 RTX_CODE c = preds[i].codes[j];
499 if (c != LABEL_REF
500 && c != SYMBOL_REF
501 && c != CONST_INT
502 && c != CONST_DOUBLE
503 && c != CONST
504 && c != HIGH
505 && c != CONSTANT_P_RTX)
506 allows_non_const = 1;
507
508 if (c != REG
509 && c != SUBREG
510 && c != MEM
511 && c != ADDRESSOF
512 && c != CONCAT
513 && c != PARALLEL
514 && c != STRICT_LOW_PART)
515 allows_non_lvalue = 1;
516 }
517 }
518 else
519 {
520 #ifdef PREDICATE_CODES
521 /* If the port has a list of the predicates it uses but
522 omits one, warn. */
523 message_with_line (pattern_lineno,
524 "warning: `%s' not in PREDICATE_CODES",
525 pred_name);
526 #endif
527 }
528
529 for (i = 0; i < NUM_SPECIAL_MODE_PREDS; ++i)
530 if (strcmp (pred_name, special_mode_pred_table[i]) == 0)
531 {
532 special_mode_pred = 1;
533 break;
534 }
535 }
536
537 if (code == MATCH_OPERAND)
538 {
539 const char constraints0 = XSTR (pattern, 2)[0];
540
541 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
542 don't use the MATCH_OPERAND constraint, only the predicate.
543 This is confusing to folks doing new ports, so help them
544 not make the mistake. */
545 if (GET_CODE (insn) == DEFINE_EXPAND
546 || GET_CODE (insn) == DEFINE_SPLIT
547 || GET_CODE (insn) == DEFINE_PEEPHOLE2)
548 {
549 if (constraints0)
550 message_with_line (pattern_lineno,
551 "warning: constraints not supported in %s",
552 rtx_name[GET_CODE (insn)]);
553 }
554
555 /* A MATCH_OPERAND that is a SET should have an output reload. */
556 else if (set && constraints0)
557 {
558 if (set_code == '+')
559 {
560 if (constraints0 == '+')
561 ;
562 /* If we've only got an output reload for this operand,
563 we'd better have a matching input operand. */
564 else if (constraints0 == '='
565 && find_matching_operand (insn, XINT (pattern, 0)))
566 ;
567 else
568 {
569 message_with_line (pattern_lineno,
570 "operand %d missing in-out reload",
571 XINT (pattern, 0));
572 error_count++;
573 }
574 }
575 else if (constraints0 != '=' && constraints0 != '+')
576 {
577 message_with_line (pattern_lineno,
578 "operand %d missing output reload",
579 XINT (pattern, 0));
580 error_count++;
581 }
582 }
583 }
584
585 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
586 while not likely to occur at runtime, results in less efficient
587 code from insn-recog.c. */
588 if (set
589 && pred_name[0] != '\0'
590 && allows_non_lvalue)
591 {
592 message_with_line (pattern_lineno,
593 "warning: destination operand %d allows non-lvalue",
594 XINT (pattern, 0));
595 }
596
597 /* A modeless MATCH_OPERAND can be handy when we can
598 check for multiple modes in the c_test. In most other cases,
599 it is a mistake. Only DEFINE_INSN is eligible, since SPLIT
600 and PEEP2 can FAIL within the output pattern. Exclude
601 address_operand, since its mode is related to the mode of
602 the memory not the operand. Exclude the SET_DEST of a call
603 instruction, as that is a common idiom. */
604
605 if (GET_MODE (pattern) == VOIDmode
606 && code == MATCH_OPERAND
607 && GET_CODE (insn) == DEFINE_INSN
608 && allows_non_const
609 && ! special_mode_pred
610 && pred_name[0] != '\0'
611 && strcmp (pred_name, "address_operand") != 0
612 && strstr (c_test, "operands") == NULL
613 && ! (set
614 && GET_CODE (set) == SET
615 && GET_CODE (SET_SRC (set)) == CALL))
616 {
617 message_with_line (pattern_lineno,
618 "warning: operand %d missing mode?",
619 XINT (pattern, 0));
620 }
621 return;
622 }
623
624 case SET:
625 {
626 enum machine_mode dmode, smode;
627 rtx dest, src;
628
629 dest = SET_DEST (pattern);
630 src = SET_SRC (pattern);
631
632 /* STRICT_LOW_PART is a wrapper. Its argument is the real
633 destination, and it's mode should match the source. */
634 if (GET_CODE (dest) == STRICT_LOW_PART)
635 dest = XEXP (dest, 0);
636
637 /* Find the referent for a DUP. */
638
639 if (GET_CODE (dest) == MATCH_DUP
640 || GET_CODE (dest) == MATCH_OP_DUP
641 || GET_CODE (dest) == MATCH_PAR_DUP)
642 dest = find_operand (insn, XINT (dest, 0));
643
644 if (GET_CODE (src) == MATCH_DUP
645 || GET_CODE (src) == MATCH_OP_DUP
646 || GET_CODE (src) == MATCH_PAR_DUP)
647 src = find_operand (insn, XINT (src, 0));
648
649 dmode = GET_MODE (dest);
650 smode = GET_MODE (src);
651
652 /* The mode of an ADDRESS_OPERAND is the mode of the memory
653 reference, not the mode of the address. */
654 if (GET_CODE (src) == MATCH_OPERAND
655 && ! strcmp (XSTR (src, 1), "address_operand"))
656 ;
657
658 /* The operands of a SET must have the same mode unless one
659 is VOIDmode. */
660 else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
661 {
662 message_with_line (pattern_lineno,
663 "mode mismatch in set: %smode vs %smode",
664 GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
665 error_count++;
666 }
667
668 /* If only one of the operands is VOIDmode, and PC or CC0 is
669 not involved, it's probably a mistake. */
670 else if (dmode != smode
671 && GET_CODE (dest) != PC
672 && GET_CODE (dest) != CC0
673 && GET_CODE (src) != PC
674 && GET_CODE (src) != CC0
675 && GET_CODE (src) != CONST_INT)
676 {
677 const char *which;
678 which = (dmode == VOIDmode ? "destination" : "source");
679 message_with_line (pattern_lineno,
680 "warning: %s missing a mode?", which);
681 }
682
683 if (dest != SET_DEST (pattern))
684 validate_pattern (dest, insn, pattern, '=');
685 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
686 validate_pattern (SET_SRC (pattern), insn, NULL_RTX, 0);
687 return;
688 }
689
690 case CLOBBER:
691 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
692 return;
693
694 case ZERO_EXTRACT:
695 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
696 validate_pattern (XEXP (pattern, 1), insn, NULL_RTX, 0);
697 validate_pattern (XEXP (pattern, 2), insn, NULL_RTX, 0);
698 return;
699
700 case STRICT_LOW_PART:
701 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
702 return;
703
704 case LABEL_REF:
705 if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
706 {
707 message_with_line (pattern_lineno,
708 "operand to label_ref %smode not VOIDmode",
709 GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
710 error_count++;
711 }
712 break;
713
714 default:
715 break;
716 }
717
718 fmt = GET_RTX_FORMAT (code);
719 len = GET_RTX_LENGTH (code);
720 for (i = 0; i < len; i++)
721 {
722 switch (fmt[i])
723 {
724 case 'e': case 'u':
725 validate_pattern (XEXP (pattern, i), insn, NULL_RTX, 0);
726 break;
727
728 case 'E':
729 for (j = 0; j < XVECLEN (pattern, i); j++)
730 validate_pattern (XVECEXP (pattern, i, j), insn, NULL_RTX, 0);
731 break;
732
733 case 'i': case 'w': case '0': case 's':
734 break;
735
736 default:
737 abort ();
738 }
739 }
740 }
741
742 /* Create a chain of nodes to verify that an rtl expression matches
743 PATTERN.
744
745 LAST is a pointer to the listhead in the previous node in the chain (or
746 in the calling function, for the first node).
747
748 POSITION is the string representing the current position in the insn.
749
750 INSN_TYPE is the type of insn for which we are emitting code.
751
752 A pointer to the final node in the chain is returned. */
753
754 static struct decision *
755 add_to_sequence (rtx pattern, struct decision_head *last, const char *position,
756 enum routine_type insn_type, int top)
757 {
758 RTX_CODE code;
759 struct decision *this, *sub;
760 struct decision_test *test;
761 struct decision_test **place;
762 char *subpos;
763 size_t i;
764 const char *fmt;
765 int depth = strlen (position);
766 int len;
767 enum machine_mode mode;
768
769 if (depth > max_depth)
770 max_depth = depth;
771
772 subpos = xmalloc (depth + 2);
773 strcpy (subpos, position);
774 subpos[depth + 1] = 0;
775
776 sub = this = new_decision (position, last);
777 place = &this->tests;
778
779 restart:
780 mode = GET_MODE (pattern);
781 code = GET_CODE (pattern);
782
783 switch (code)
784 {
785 case PARALLEL:
786 /* Toplevel peephole pattern. */
787 if (insn_type == PEEPHOLE2 && top)
788 {
789 /* We don't need the node we just created -- unlink it. */
790 last->first = last->last = NULL;
791
792 for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++)
793 {
794 /* Which insn we're looking at is represented by A-Z. We don't
795 ever use 'A', however; it is always implied. */
796
797 subpos[depth] = (i > 0 ? 'A' + i : 0);
798 sub = add_to_sequence (XVECEXP (pattern, 0, i),
799 last, subpos, insn_type, 0);
800 last = &sub->success;
801 }
802 goto ret;
803 }
804
805 /* Else nothing special. */
806 break;
807
808 case MATCH_PARALLEL:
809 /* The explicit patterns within a match_parallel enforce a minimum
810 length on the vector. The match_parallel predicate may allow
811 for more elements. We do need to check for this minimum here
812 or the code generated to match the internals may reference data
813 beyond the end of the vector. */
814 test = new_decision_test (DT_veclen_ge, &place);
815 test->u.veclen = XVECLEN (pattern, 2);
816 /* Fall through. */
817
818 case MATCH_OPERAND:
819 case MATCH_SCRATCH:
820 case MATCH_OPERATOR:
821 case MATCH_INSN:
822 {
823 const char *pred_name;
824 RTX_CODE was_code = code;
825 int allows_const_int = 1;
826
827 if (code == MATCH_SCRATCH)
828 {
829 pred_name = "scratch_operand";
830 code = UNKNOWN;
831 }
832 else
833 {
834 pred_name = XSTR (pattern, 1);
835 if (code == MATCH_PARALLEL)
836 code = PARALLEL;
837 else
838 code = UNKNOWN;
839 }
840
841 if (pred_name[0] != 0)
842 {
843 test = new_decision_test (DT_pred, &place);
844 test->u.pred.name = pred_name;
845 test->u.pred.mode = mode;
846
847 /* See if we know about this predicate and save its number.
848 If we do, and it only accepts one code, note that fact.
849
850 If we know that the predicate does not allow CONST_INT,
851 we know that the only way the predicate can match is if
852 the modes match (here we use the kludge of relying on the
853 fact that "address_operand" accepts CONST_INT; otherwise,
854 it would have to be a special case), so we can test the
855 mode (but we need not). This fact should considerably
856 simplify the generated code. */
857
858 for (i = 0; i < NUM_KNOWN_PREDS; i++)
859 if (! strcmp (preds[i].name, pred_name))
860 break;
861
862 if (i < NUM_KNOWN_PREDS)
863 {
864 int j;
865
866 test->u.pred.index = i;
867
868 if (preds[i].codes[1] == 0 && code == UNKNOWN)
869 code = preds[i].codes[0];
870
871 allows_const_int = 0;
872 for (j = 0; preds[i].codes[j] != 0; j++)
873 if (preds[i].codes[j] == CONST_INT)
874 {
875 allows_const_int = 1;
876 break;
877 }
878 }
879 else
880 test->u.pred.index = -1;
881 }
882
883 /* Can't enforce a mode if we allow const_int. */
884 if (allows_const_int)
885 mode = VOIDmode;
886
887 /* Accept the operand, ie. record it in `operands'. */
888 test = new_decision_test (DT_accept_op, &place);
889 test->u.opno = XINT (pattern, 0);
890
891 if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL)
892 {
893 char base = (was_code == MATCH_OPERATOR ? '0' : 'a');
894 for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++)
895 {
896 subpos[depth] = i + base;
897 sub = add_to_sequence (XVECEXP (pattern, 2, i),
898 &sub->success, subpos, insn_type, 0);
899 }
900 }
901 goto fini;
902 }
903
904 case MATCH_OP_DUP:
905 code = UNKNOWN;
906
907 test = new_decision_test (DT_dup, &place);
908 test->u.dup = XINT (pattern, 0);
909
910 test = new_decision_test (DT_accept_op, &place);
911 test->u.opno = XINT (pattern, 0);
912
913 for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++)
914 {
915 subpos[depth] = i + '0';
916 sub = add_to_sequence (XVECEXP (pattern, 1, i),
917 &sub->success, subpos, insn_type, 0);
918 }
919 goto fini;
920
921 case MATCH_DUP:
922 case MATCH_PAR_DUP:
923 code = UNKNOWN;
924
925 test = new_decision_test (DT_dup, &place);
926 test->u.dup = XINT (pattern, 0);
927 goto fini;
928
929 case ADDRESS:
930 pattern = XEXP (pattern, 0);
931 goto restart;
932
933 default:
934 break;
935 }
936
937 fmt = GET_RTX_FORMAT (code);
938 len = GET_RTX_LENGTH (code);
939
940 /* Do tests against the current node first. */
941 for (i = 0; i < (size_t) len; i++)
942 {
943 if (fmt[i] == 'i')
944 {
945 if (i == 0)
946 {
947 test = new_decision_test (DT_elt_zero_int, &place);
948 test->u.intval = XINT (pattern, i);
949 }
950 else if (i == 1)
951 {
952 test = new_decision_test (DT_elt_one_int, &place);
953 test->u.intval = XINT (pattern, i);
954 }
955 else
956 abort ();
957 }
958 else if (fmt[i] == 'w')
959 {
960 /* If this value actually fits in an int, we can use a switch
961 statement here, so indicate that. */
962 enum decision_type type
963 = ((int) XWINT (pattern, i) == XWINT (pattern, i))
964 ? DT_elt_zero_wide_safe : DT_elt_zero_wide;
965
966 if (i != 0)
967 abort ();
968
969 test = new_decision_test (type, &place);
970 test->u.intval = XWINT (pattern, i);
971 }
972 else if (fmt[i] == 'E')
973 {
974 if (i != 0)
975 abort ();
976
977 test = new_decision_test (DT_veclen, &place);
978 test->u.veclen = XVECLEN (pattern, i);
979 }
980 }
981
982 /* Now test our sub-patterns. */
983 for (i = 0; i < (size_t) len; i++)
984 {
985 switch (fmt[i])
986 {
987 case 'e': case 'u':
988 subpos[depth] = '0' + i;
989 sub = add_to_sequence (XEXP (pattern, i), &sub->success,
990 subpos, insn_type, 0);
991 break;
992
993 case 'E':
994 {
995 int j;
996 for (j = 0; j < XVECLEN (pattern, i); j++)
997 {
998 subpos[depth] = 'a' + j;
999 sub = add_to_sequence (XVECEXP (pattern, i, j),
1000 &sub->success, subpos, insn_type, 0);
1001 }
1002 break;
1003 }
1004
1005 case 'i': case 'w':
1006 /* Handled above. */
1007 break;
1008 case '0':
1009 break;
1010
1011 default:
1012 abort ();
1013 }
1014 }
1015
1016 fini:
1017 /* Insert nodes testing mode and code, if they're still relevant,
1018 before any of the nodes we may have added above. */
1019 if (code != UNKNOWN)
1020 {
1021 place = &this->tests;
1022 test = new_decision_test (DT_code, &place);
1023 test->u.code = code;
1024 }
1025
1026 if (mode != VOIDmode)
1027 {
1028 place = &this->tests;
1029 test = new_decision_test (DT_mode, &place);
1030 test->u.mode = mode;
1031 }
1032
1033 /* If we didn't insert any tests or accept nodes, hork. */
1034 if (this->tests == NULL)
1035 abort ();
1036
1037 ret:
1038 free (subpos);
1039 return sub;
1040 }
1041 \f
1042 /* A subroutine of maybe_both_true; examines only one test.
1043 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1044
1045 static int
1046 maybe_both_true_2 (struct decision_test *d1, struct decision_test *d2)
1047 {
1048 if (d1->type == d2->type)
1049 {
1050 switch (d1->type)
1051 {
1052 case DT_mode:
1053 return d1->u.mode == d2->u.mode;
1054
1055 case DT_code:
1056 return d1->u.code == d2->u.code;
1057
1058 case DT_veclen:
1059 return d1->u.veclen == d2->u.veclen;
1060
1061 case DT_elt_zero_int:
1062 case DT_elt_one_int:
1063 case DT_elt_zero_wide:
1064 case DT_elt_zero_wide_safe:
1065 return d1->u.intval == d2->u.intval;
1066
1067 default:
1068 break;
1069 }
1070 }
1071
1072 /* If either has a predicate that we know something about, set
1073 things up so that D1 is the one that always has a known
1074 predicate. Then see if they have any codes in common. */
1075
1076 if (d1->type == DT_pred || d2->type == DT_pred)
1077 {
1078 if (d2->type == DT_pred)
1079 {
1080 struct decision_test *tmp;
1081 tmp = d1, d1 = d2, d2 = tmp;
1082 }
1083
1084 /* If D2 tests a mode, see if it matches D1. */
1085 if (d1->u.pred.mode != VOIDmode)
1086 {
1087 if (d2->type == DT_mode)
1088 {
1089 if (d1->u.pred.mode != d2->u.mode
1090 /* The mode of an address_operand predicate is the
1091 mode of the memory, not the operand. It can only
1092 be used for testing the predicate, so we must
1093 ignore it here. */
1094 && strcmp (d1->u.pred.name, "address_operand") != 0)
1095 return 0;
1096 }
1097 /* Don't check two predicate modes here, because if both predicates
1098 accept CONST_INT, then both can still be true even if the modes
1099 are different. If they don't accept CONST_INT, there will be a
1100 separate DT_mode that will make maybe_both_true_1 return 0. */
1101 }
1102
1103 if (d1->u.pred.index >= 0)
1104 {
1105 /* If D2 tests a code, see if it is in the list of valid
1106 codes for D1's predicate. */
1107 if (d2->type == DT_code)
1108 {
1109 const RTX_CODE *c = &preds[d1->u.pred.index].codes[0];
1110 while (*c != 0)
1111 {
1112 if (*c == d2->u.code)
1113 break;
1114 ++c;
1115 }
1116 if (*c == 0)
1117 return 0;
1118 }
1119
1120 /* Otherwise see if the predicates have any codes in common. */
1121 else if (d2->type == DT_pred && d2->u.pred.index >= 0)
1122 {
1123 const RTX_CODE *c1 = &preds[d1->u.pred.index].codes[0];
1124 int common = 0;
1125
1126 while (*c1 != 0 && !common)
1127 {
1128 const RTX_CODE *c2 = &preds[d2->u.pred.index].codes[0];
1129 while (*c2 != 0 && !common)
1130 {
1131 common = (*c1 == *c2);
1132 ++c2;
1133 }
1134 ++c1;
1135 }
1136
1137 if (!common)
1138 return 0;
1139 }
1140 }
1141 }
1142
1143 /* Tests vs veclen may be known when strict equality is involved. */
1144 if (d1->type == DT_veclen && d2->type == DT_veclen_ge)
1145 return d1->u.veclen >= d2->u.veclen;
1146 if (d1->type == DT_veclen_ge && d2->type == DT_veclen)
1147 return d2->u.veclen >= d1->u.veclen;
1148
1149 return -1;
1150 }
1151
1152 /* A subroutine of maybe_both_true; examines all the tests for a given node.
1153 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1154
1155 static int
1156 maybe_both_true_1 (struct decision_test *d1, struct decision_test *d2)
1157 {
1158 struct decision_test *t1, *t2;
1159
1160 /* A match_operand with no predicate can match anything. Recognize
1161 this by the existence of a lone DT_accept_op test. */
1162 if (d1->type == DT_accept_op || d2->type == DT_accept_op)
1163 return 1;
1164
1165 /* Eliminate pairs of tests while they can exactly match. */
1166 while (d1 && d2 && d1->type == d2->type)
1167 {
1168 if (maybe_both_true_2 (d1, d2) == 0)
1169 return 0;
1170 d1 = d1->next, d2 = d2->next;
1171 }
1172
1173 /* After that, consider all pairs. */
1174 for (t1 = d1; t1 ; t1 = t1->next)
1175 for (t2 = d2; t2 ; t2 = t2->next)
1176 if (maybe_both_true_2 (t1, t2) == 0)
1177 return 0;
1178
1179 return -1;
1180 }
1181
1182 /* Return 0 if we can prove that there is no RTL that can match both
1183 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
1184 can match both or just that we couldn't prove there wasn't such an RTL).
1185
1186 TOPLEVEL is nonzero if we are to only look at the top level and not
1187 recursively descend. */
1188
1189 static int
1190 maybe_both_true (struct decision *d1, struct decision *d2,
1191 int toplevel)
1192 {
1193 struct decision *p1, *p2;
1194 int cmp;
1195
1196 /* Don't compare strings on the different positions in insn. Doing so
1197 is incorrect and results in false matches from constructs like
1198
1199 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1200 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1201 vs
1202 [(set (match_operand:HI "register_operand" "r")
1203 (match_operand:HI "register_operand" "r"))]
1204
1205 If we are presented with such, we are recursing through the remainder
1206 of a node's success nodes (from the loop at the end of this function).
1207 Skip forward until we come to a position that matches.
1208
1209 Due to the way position strings are constructed, we know that iterating
1210 forward from the lexically lower position (e.g. "00") will run into
1211 the lexically higher position (e.g. "1") and not the other way around.
1212 This saves a bit of effort. */
1213
1214 cmp = strcmp (d1->position, d2->position);
1215 if (cmp != 0)
1216 {
1217 if (toplevel)
1218 abort ();
1219
1220 /* If the d2->position was lexically lower, swap. */
1221 if (cmp > 0)
1222 p1 = d1, d1 = d2, d2 = p1;
1223
1224 if (d1->success.first == 0)
1225 return 1;
1226 for (p1 = d1->success.first; p1; p1 = p1->next)
1227 if (maybe_both_true (p1, d2, 0))
1228 return 1;
1229
1230 return 0;
1231 }
1232
1233 /* Test the current level. */
1234 cmp = maybe_both_true_1 (d1->tests, d2->tests);
1235 if (cmp >= 0)
1236 return cmp;
1237
1238 /* We can't prove that D1 and D2 cannot both be true. If we are only
1239 to check the top level, return 1. Otherwise, see if we can prove
1240 that all choices in both successors are mutually exclusive. If
1241 either does not have any successors, we can't prove they can't both
1242 be true. */
1243
1244 if (toplevel || d1->success.first == 0 || d2->success.first == 0)
1245 return 1;
1246
1247 for (p1 = d1->success.first; p1; p1 = p1->next)
1248 for (p2 = d2->success.first; p2; p2 = p2->next)
1249 if (maybe_both_true (p1, p2, 0))
1250 return 1;
1251
1252 return 0;
1253 }
1254
1255 /* A subroutine of nodes_identical. Examine two tests for equivalence. */
1256
1257 static int
1258 nodes_identical_1 (struct decision_test *d1, struct decision_test *d2)
1259 {
1260 switch (d1->type)
1261 {
1262 case DT_mode:
1263 return d1->u.mode == d2->u.mode;
1264
1265 case DT_code:
1266 return d1->u.code == d2->u.code;
1267
1268 case DT_pred:
1269 return (d1->u.pred.mode == d2->u.pred.mode
1270 && strcmp (d1->u.pred.name, d2->u.pred.name) == 0);
1271
1272 case DT_c_test:
1273 return strcmp (d1->u.c_test, d2->u.c_test) == 0;
1274
1275 case DT_veclen:
1276 case DT_veclen_ge:
1277 return d1->u.veclen == d2->u.veclen;
1278
1279 case DT_dup:
1280 return d1->u.dup == d2->u.dup;
1281
1282 case DT_elt_zero_int:
1283 case DT_elt_one_int:
1284 case DT_elt_zero_wide:
1285 case DT_elt_zero_wide_safe:
1286 return d1->u.intval == d2->u.intval;
1287
1288 case DT_accept_op:
1289 return d1->u.opno == d2->u.opno;
1290
1291 case DT_accept_insn:
1292 /* Differences will be handled in merge_accept_insn. */
1293 return 1;
1294
1295 default:
1296 abort ();
1297 }
1298 }
1299
1300 /* True iff the two nodes are identical (on one level only). Due
1301 to the way these lists are constructed, we shouldn't have to
1302 consider different orderings on the tests. */
1303
1304 static int
1305 nodes_identical (struct decision *d1, struct decision *d2)
1306 {
1307 struct decision_test *t1, *t2;
1308
1309 for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next)
1310 {
1311 if (t1->type != t2->type)
1312 return 0;
1313 if (! nodes_identical_1 (t1, t2))
1314 return 0;
1315 }
1316
1317 /* For success, they should now both be null. */
1318 if (t1 != t2)
1319 return 0;
1320
1321 /* Check that their subnodes are at the same position, as any one set
1322 of sibling decisions must be at the same position. Allowing this
1323 requires complications to find_afterward and when change_state is
1324 invoked. */
1325 if (d1->success.first
1326 && d2->success.first
1327 && strcmp (d1->success.first->position, d2->success.first->position))
1328 return 0;
1329
1330 return 1;
1331 }
1332
1333 /* A subroutine of merge_trees; given two nodes that have been declared
1334 identical, cope with two insn accept states. If they differ in the
1335 number of clobbers, then the conflict was created by make_insn_sequence
1336 and we can drop the with-clobbers version on the floor. If both
1337 nodes have no additional clobbers, we have found an ambiguity in the
1338 source machine description. */
1339
1340 static void
1341 merge_accept_insn (struct decision *oldd, struct decision *addd)
1342 {
1343 struct decision_test *old, *add;
1344
1345 for (old = oldd->tests; old; old = old->next)
1346 if (old->type == DT_accept_insn)
1347 break;
1348 if (old == NULL)
1349 return;
1350
1351 for (add = addd->tests; add; add = add->next)
1352 if (add->type == DT_accept_insn)
1353 break;
1354 if (add == NULL)
1355 return;
1356
1357 /* If one node is for a normal insn and the second is for the base
1358 insn with clobbers stripped off, the second node should be ignored. */
1359
1360 if (old->u.insn.num_clobbers_to_add == 0
1361 && add->u.insn.num_clobbers_to_add > 0)
1362 {
1363 /* Nothing to do here. */
1364 }
1365 else if (old->u.insn.num_clobbers_to_add > 0
1366 && add->u.insn.num_clobbers_to_add == 0)
1367 {
1368 /* In this case, replace OLD with ADD. */
1369 old->u.insn = add->u.insn;
1370 }
1371 else
1372 {
1373 message_with_line (add->u.insn.lineno, "`%s' matches `%s'",
1374 get_insn_name (add->u.insn.code_number),
1375 get_insn_name (old->u.insn.code_number));
1376 message_with_line (old->u.insn.lineno, "previous definition of `%s'",
1377 get_insn_name (old->u.insn.code_number));
1378 error_count++;
1379 }
1380 }
1381
1382 /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1383
1384 static void
1385 merge_trees (struct decision_head *oldh, struct decision_head *addh)
1386 {
1387 struct decision *next, *add;
1388
1389 if (addh->first == 0)
1390 return;
1391 if (oldh->first == 0)
1392 {
1393 *oldh = *addh;
1394 return;
1395 }
1396
1397 /* Trying to merge bits at different positions isn't possible. */
1398 if (strcmp (oldh->first->position, addh->first->position))
1399 abort ();
1400
1401 for (add = addh->first; add ; add = next)
1402 {
1403 struct decision *old, *insert_before = NULL;
1404
1405 next = add->next;
1406
1407 /* The semantics of pattern matching state that the tests are
1408 done in the order given in the MD file so that if an insn
1409 matches two patterns, the first one will be used. However,
1410 in practice, most, if not all, patterns are unambiguous so
1411 that their order is independent. In that case, we can merge
1412 identical tests and group all similar modes and codes together.
1413
1414 Scan starting from the end of OLDH until we reach a point
1415 where we reach the head of the list or where we pass a
1416 pattern that could also be true if NEW is true. If we find
1417 an identical pattern, we can merge them. Also, record the
1418 last node that tests the same code and mode and the last one
1419 that tests just the same mode.
1420
1421 If we have no match, place NEW after the closest match we found. */
1422
1423 for (old = oldh->last; old; old = old->prev)
1424 {
1425 if (nodes_identical (old, add))
1426 {
1427 merge_accept_insn (old, add);
1428 merge_trees (&old->success, &add->success);
1429 goto merged_nodes;
1430 }
1431
1432 if (maybe_both_true (old, add, 0))
1433 break;
1434
1435 /* Insert the nodes in DT test type order, which is roughly
1436 how expensive/important the test is. Given that the tests
1437 are also ordered within the list, examining the first is
1438 sufficient. */
1439 if ((int) add->tests->type < (int) old->tests->type)
1440 insert_before = old;
1441 }
1442
1443 if (insert_before == NULL)
1444 {
1445 add->next = NULL;
1446 add->prev = oldh->last;
1447 oldh->last->next = add;
1448 oldh->last = add;
1449 }
1450 else
1451 {
1452 if ((add->prev = insert_before->prev) != NULL)
1453 add->prev->next = add;
1454 else
1455 oldh->first = add;
1456 add->next = insert_before;
1457 insert_before->prev = add;
1458 }
1459
1460 merged_nodes:;
1461 }
1462 }
1463 \f
1464 /* Walk the tree looking for sub-nodes that perform common tests.
1465 Factor out the common test into a new node. This enables us
1466 (depending on the test type) to emit switch statements later. */
1467
1468 static void
1469 factor_tests (struct decision_head *head)
1470 {
1471 struct decision *first, *next;
1472
1473 for (first = head->first; first && first->next; first = next)
1474 {
1475 enum decision_type type;
1476 struct decision *new, *old_last;
1477
1478 type = first->tests->type;
1479 next = first->next;
1480
1481 /* Want at least two compatible sequential nodes. */
1482 if (next->tests->type != type)
1483 continue;
1484
1485 /* Don't want all node types, just those we can turn into
1486 switch statements. */
1487 if (type != DT_mode
1488 && type != DT_code
1489 && type != DT_veclen
1490 && type != DT_elt_zero_int
1491 && type != DT_elt_one_int
1492 && type != DT_elt_zero_wide_safe)
1493 continue;
1494
1495 /* If we'd been performing more than one test, create a new node
1496 below our first test. */
1497 if (first->tests->next != NULL)
1498 {
1499 new = new_decision (first->position, &first->success);
1500 new->tests = first->tests->next;
1501 first->tests->next = NULL;
1502 }
1503
1504 /* Crop the node tree off after our first test. */
1505 first->next = NULL;
1506 old_last = head->last;
1507 head->last = first;
1508
1509 /* For each compatible test, adjust to perform only one test in
1510 the top level node, then merge the node back into the tree. */
1511 do
1512 {
1513 struct decision_head h;
1514
1515 if (next->tests->next != NULL)
1516 {
1517 new = new_decision (next->position, &next->success);
1518 new->tests = next->tests->next;
1519 next->tests->next = NULL;
1520 }
1521 new = next;
1522 next = next->next;
1523 new->next = NULL;
1524 h.first = h.last = new;
1525
1526 merge_trees (head, &h);
1527 }
1528 while (next && next->tests->type == type);
1529
1530 /* After we run out of compatible tests, graft the remaining nodes
1531 back onto the tree. */
1532 if (next)
1533 {
1534 next->prev = head->last;
1535 head->last->next = next;
1536 head->last = old_last;
1537 }
1538 }
1539
1540 /* Recurse. */
1541 for (first = head->first; first; first = first->next)
1542 factor_tests (&first->success);
1543 }
1544
1545 /* After factoring, try to simplify the tests on any one node.
1546 Tests that are useful for switch statements are recognizable
1547 by having only a single test on a node -- we'll be manipulating
1548 nodes with multiple tests:
1549
1550 If we have mode tests or code tests that are redundant with
1551 predicates, remove them. */
1552
1553 static void
1554 simplify_tests (struct decision_head *head)
1555 {
1556 struct decision *tree;
1557
1558 for (tree = head->first; tree; tree = tree->next)
1559 {
1560 struct decision_test *a, *b;
1561
1562 a = tree->tests;
1563 b = a->next;
1564 if (b == NULL)
1565 continue;
1566
1567 /* Find a predicate node. */
1568 while (b && b->type != DT_pred)
1569 b = b->next;
1570 if (b)
1571 {
1572 /* Due to how these tests are constructed, we don't even need
1573 to check that the mode and code are compatible -- they were
1574 generated from the predicate in the first place. */
1575 while (a->type == DT_mode || a->type == DT_code)
1576 a = a->next;
1577 tree->tests = a;
1578 }
1579 }
1580
1581 /* Recurse. */
1582 for (tree = head->first; tree; tree = tree->next)
1583 simplify_tests (&tree->success);
1584 }
1585
1586 /* Count the number of subnodes of HEAD. If the number is high enough,
1587 make the first node in HEAD start a separate subroutine in the C code
1588 that is generated. */
1589
1590 static int
1591 break_out_subroutines (struct decision_head *head, int initial)
1592 {
1593 int size = 0;
1594 struct decision *sub;
1595
1596 for (sub = head->first; sub; sub = sub->next)
1597 size += 1 + break_out_subroutines (&sub->success, 0);
1598
1599 if (size > SUBROUTINE_THRESHOLD && ! initial)
1600 {
1601 head->first->subroutine_number = ++next_subroutine_number;
1602 size = 1;
1603 }
1604 return size;
1605 }
1606
1607 /* For each node p, find the next alternative that might be true
1608 when p is true. */
1609
1610 static void
1611 find_afterward (struct decision_head *head, struct decision *real_afterward)
1612 {
1613 struct decision *p, *q, *afterward;
1614
1615 /* We can't propagate alternatives across subroutine boundaries.
1616 This is not incorrect, merely a minor optimization loss. */
1617
1618 p = head->first;
1619 afterward = (p->subroutine_number > 0 ? NULL : real_afterward);
1620
1621 for ( ; p ; p = p->next)
1622 {
1623 /* Find the next node that might be true if this one fails. */
1624 for (q = p->next; q ; q = q->next)
1625 if (maybe_both_true (p, q, 1))
1626 break;
1627
1628 /* If we reached the end of the list without finding one,
1629 use the incoming afterward position. */
1630 if (!q)
1631 q = afterward;
1632 p->afterward = q;
1633 if (q)
1634 q->need_label = 1;
1635 }
1636
1637 /* Recurse. */
1638 for (p = head->first; p ; p = p->next)
1639 if (p->success.first)
1640 find_afterward (&p->success, p->afterward);
1641
1642 /* When we are generating a subroutine, record the real afterward
1643 position in the first node where write_tree can find it, and we
1644 can do the right thing at the subroutine call site. */
1645 p = head->first;
1646 if (p->subroutine_number > 0)
1647 p->afterward = real_afterward;
1648 }
1649 \f
1650 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1651 actions are necessary to move to NEWPOS. If we fail to move to the
1652 new state, branch to node AFTERWARD if nonzero, otherwise return.
1653
1654 Failure to move to the new state can only occur if we are trying to
1655 match multiple insns and we try to step past the end of the stream. */
1656
1657 static void
1658 change_state (const char *oldpos, const char *newpos,
1659 struct decision *afterward, const char *indent)
1660 {
1661 int odepth = strlen (oldpos);
1662 int ndepth = strlen (newpos);
1663 int depth;
1664 int old_has_insn, new_has_insn;
1665
1666 /* Pop up as many levels as necessary. */
1667 for (depth = odepth; strncmp (oldpos, newpos, depth) != 0; --depth)
1668 continue;
1669
1670 /* Hunt for the last [A-Z] in both strings. */
1671 for (old_has_insn = odepth - 1; old_has_insn >= 0; --old_has_insn)
1672 if (ISUPPER (oldpos[old_has_insn]))
1673 break;
1674 for (new_has_insn = ndepth - 1; new_has_insn >= 0; --new_has_insn)
1675 if (ISUPPER (newpos[new_has_insn]))
1676 break;
1677
1678 /* Go down to desired level. */
1679 while (depth < ndepth)
1680 {
1681 /* It's a different insn from the first one. */
1682 if (ISUPPER (newpos[depth]))
1683 {
1684 /* We can only fail if we're moving down the tree. */
1685 if (old_has_insn >= 0 && oldpos[old_has_insn] >= newpos[depth])
1686 {
1687 printf ("%stem = peep2_next_insn (%d);\n",
1688 indent, newpos[depth] - 'A');
1689 }
1690 else
1691 {
1692 printf ("%stem = peep2_next_insn (%d);\n",
1693 indent, newpos[depth] - 'A');
1694 printf ("%sif (tem == NULL_RTX)\n", indent);
1695 if (afterward)
1696 printf ("%s goto L%d;\n", indent, afterward->number);
1697 else
1698 printf ("%s goto ret0;\n", indent);
1699 }
1700 printf ("%sx%d = PATTERN (tem);\n", indent, depth + 1);
1701 }
1702 else if (ISLOWER (newpos[depth]))
1703 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1704 indent, depth + 1, depth, newpos[depth] - 'a');
1705 else
1706 printf ("%sx%d = XEXP (x%d, %c);\n",
1707 indent, depth + 1, depth, newpos[depth]);
1708 ++depth;
1709 }
1710 }
1711 \f
1712 /* Print the enumerator constant for CODE -- the upcase version of
1713 the name. */
1714
1715 static void
1716 print_code (enum rtx_code code)
1717 {
1718 const char *p;
1719 for (p = GET_RTX_NAME (code); *p; p++)
1720 putchar (TOUPPER (*p));
1721 }
1722
1723 /* Emit code to cross an afterward link -- change state and branch. */
1724
1725 static void
1726 write_afterward (struct decision *start, struct decision *afterward,
1727 const char *indent)
1728 {
1729 if (!afterward || start->subroutine_number > 0)
1730 printf("%sgoto ret0;\n", indent);
1731 else
1732 {
1733 change_state (start->position, afterward->position, NULL, indent);
1734 printf ("%sgoto L%d;\n", indent, afterward->number);
1735 }
1736 }
1737
1738 /* Emit a HOST_WIDE_INT as an integer constant expression. We need to take
1739 special care to avoid "decimal constant is so large that it is unsigned"
1740 warnings in the resulting code. */
1741
1742 static void
1743 print_host_wide_int (HOST_WIDE_INT val)
1744 {
1745 HOST_WIDE_INT min = (unsigned HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1);
1746 if (val == min)
1747 printf ("(" HOST_WIDE_INT_PRINT_DEC_C "-1)", val + 1);
1748 else
1749 printf (HOST_WIDE_INT_PRINT_DEC_C, val);
1750 }
1751
1752 /* Emit a switch statement, if possible, for an initial sequence of
1753 nodes at START. Return the first node yet untested. */
1754
1755 static struct decision *
1756 write_switch (struct decision *start, int depth)
1757 {
1758 struct decision *p = start;
1759 enum decision_type type = p->tests->type;
1760 struct decision *needs_label = NULL;
1761
1762 /* If we have two or more nodes in sequence that test the same one
1763 thing, we may be able to use a switch statement. */
1764
1765 if (!p->next
1766 || p->tests->next
1767 || p->next->tests->type != type
1768 || p->next->tests->next
1769 || nodes_identical_1 (p->tests, p->next->tests))
1770 return p;
1771
1772 /* DT_code is special in that we can do interesting things with
1773 known predicates at the same time. */
1774 if (type == DT_code)
1775 {
1776 char codemap[NUM_RTX_CODE];
1777 struct decision *ret;
1778 RTX_CODE code;
1779
1780 memset (codemap, 0, sizeof(codemap));
1781
1782 printf (" switch (GET_CODE (x%d))\n {\n", depth);
1783 code = p->tests->u.code;
1784 do
1785 {
1786 if (p != start && p->need_label && needs_label == NULL)
1787 needs_label = p;
1788
1789 printf (" case ");
1790 print_code (code);
1791 printf (":\n goto L%d;\n", p->success.first->number);
1792 p->success.first->need_label = 1;
1793
1794 codemap[code] = 1;
1795 p = p->next;
1796 }
1797 while (p
1798 && ! p->tests->next
1799 && p->tests->type == DT_code
1800 && ! codemap[code = p->tests->u.code]);
1801
1802 /* If P is testing a predicate that we know about and we haven't
1803 seen any of the codes that are valid for the predicate, we can
1804 write a series of "case" statement, one for each possible code.
1805 Since we are already in a switch, these redundant tests are very
1806 cheap and will reduce the number of predicates called. */
1807
1808 /* Note that while we write out cases for these predicates here,
1809 we don't actually write the test here, as it gets kinda messy.
1810 It is trivial to leave this to later by telling our caller that
1811 we only processed the CODE tests. */
1812 if (needs_label != NULL)
1813 ret = needs_label;
1814 else
1815 ret = p;
1816
1817 while (p && p->tests->type == DT_pred
1818 && p->tests->u.pred.index >= 0)
1819 {
1820 const RTX_CODE *c;
1821
1822 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1823 if (codemap[(int) *c] != 0)
1824 goto pred_done;
1825
1826 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1827 {
1828 printf (" case ");
1829 print_code (*c);
1830 printf (":\n");
1831 codemap[(int) *c] = 1;
1832 }
1833
1834 printf (" goto L%d;\n", p->number);
1835 p->need_label = 1;
1836 p = p->next;
1837 }
1838
1839 pred_done:
1840 /* Make the default case skip the predicates we managed to match. */
1841
1842 printf (" default:\n");
1843 if (p != ret)
1844 {
1845 if (p)
1846 {
1847 printf (" goto L%d;\n", p->number);
1848 p->need_label = 1;
1849 }
1850 else
1851 write_afterward (start, start->afterward, " ");
1852 }
1853 else
1854 printf (" break;\n");
1855 printf (" }\n");
1856
1857 return ret;
1858 }
1859 else if (type == DT_mode
1860 || type == DT_veclen
1861 || type == DT_elt_zero_int
1862 || type == DT_elt_one_int
1863 || type == DT_elt_zero_wide_safe)
1864 {
1865 const char *indent = "";
1866
1867 /* We cast switch parameter to integer, so we must ensure that the value
1868 fits. */
1869 if (type == DT_elt_zero_wide_safe)
1870 {
1871 indent = " ";
1872 printf(" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n", depth, depth);
1873 }
1874 printf ("%s switch (", indent);
1875 switch (type)
1876 {
1877 case DT_mode:
1878 printf ("GET_MODE (x%d)", depth);
1879 break;
1880 case DT_veclen:
1881 printf ("XVECLEN (x%d, 0)", depth);
1882 break;
1883 case DT_elt_zero_int:
1884 printf ("XINT (x%d, 0)", depth);
1885 break;
1886 case DT_elt_one_int:
1887 printf ("XINT (x%d, 1)", depth);
1888 break;
1889 case DT_elt_zero_wide_safe:
1890 /* Convert result of XWINT to int for portability since some C
1891 compilers won't do it and some will. */
1892 printf ("(int) XWINT (x%d, 0)", depth);
1893 break;
1894 default:
1895 abort ();
1896 }
1897 printf (")\n%s {\n", indent);
1898
1899 do
1900 {
1901 /* Merge trees will not unify identical nodes if their
1902 sub-nodes are at different levels. Thus we must check
1903 for duplicate cases. */
1904 struct decision *q;
1905 for (q = start; q != p; q = q->next)
1906 if (nodes_identical_1 (p->tests, q->tests))
1907 goto case_done;
1908
1909 if (p != start && p->need_label && needs_label == NULL)
1910 needs_label = p;
1911
1912 printf ("%s case ", indent);
1913 switch (type)
1914 {
1915 case DT_mode:
1916 printf ("%smode", GET_MODE_NAME (p->tests->u.mode));
1917 break;
1918 case DT_veclen:
1919 printf ("%d", p->tests->u.veclen);
1920 break;
1921 case DT_elt_zero_int:
1922 case DT_elt_one_int:
1923 case DT_elt_zero_wide:
1924 case DT_elt_zero_wide_safe:
1925 print_host_wide_int (p->tests->u.intval);
1926 break;
1927 default:
1928 abort ();
1929 }
1930 printf (":\n%s goto L%d;\n", indent, p->success.first->number);
1931 p->success.first->need_label = 1;
1932
1933 p = p->next;
1934 }
1935 while (p && p->tests->type == type && !p->tests->next);
1936
1937 case_done:
1938 printf ("%s default:\n%s break;\n%s }\n",
1939 indent, indent, indent);
1940
1941 return needs_label != NULL ? needs_label : p;
1942 }
1943 else
1944 {
1945 /* None of the other tests are amenable. */
1946 return p;
1947 }
1948 }
1949
1950 /* Emit code for one test. */
1951
1952 static void
1953 write_cond (struct decision_test *p, int depth,
1954 enum routine_type subroutine_type)
1955 {
1956 switch (p->type)
1957 {
1958 case DT_mode:
1959 printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode));
1960 break;
1961
1962 case DT_code:
1963 printf ("GET_CODE (x%d) == ", depth);
1964 print_code (p->u.code);
1965 break;
1966
1967 case DT_veclen:
1968 printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen);
1969 break;
1970
1971 case DT_elt_zero_int:
1972 printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval);
1973 break;
1974
1975 case DT_elt_one_int:
1976 printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval);
1977 break;
1978
1979 case DT_elt_zero_wide:
1980 case DT_elt_zero_wide_safe:
1981 printf ("XWINT (x%d, 0) == ", depth);
1982 print_host_wide_int (p->u.intval);
1983 break;
1984
1985 case DT_const_int:
1986 printf ("x%d == const_int_rtx[MAX_SAVED_CONST_INT + (%d)]",
1987 depth, (int) p->u.intval);
1988 break;
1989
1990 case DT_veclen_ge:
1991 printf ("XVECLEN (x%d, 0) >= %d", depth, p->u.veclen);
1992 break;
1993
1994 case DT_dup:
1995 printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup);
1996 break;
1997
1998 case DT_pred:
1999 printf ("%s (x%d, %smode)", p->u.pred.name, depth,
2000 GET_MODE_NAME (p->u.pred.mode));
2001 break;
2002
2003 case DT_c_test:
2004 printf ("(%s)", p->u.c_test);
2005 break;
2006
2007 case DT_accept_insn:
2008 switch (subroutine_type)
2009 {
2010 case RECOG:
2011 if (p->u.insn.num_clobbers_to_add == 0)
2012 abort ();
2013 printf ("pnum_clobbers != NULL");
2014 break;
2015
2016 default:
2017 abort ();
2018 }
2019 break;
2020
2021 default:
2022 abort ();
2023 }
2024 }
2025
2026 /* Emit code for one action. The previous tests have succeeded;
2027 TEST is the last of the chain. In the normal case we simply
2028 perform a state change. For the `accept' tests we must do more work. */
2029
2030 static void
2031 write_action (struct decision *p, struct decision_test *test,
2032 int depth, int uncond, struct decision *success,
2033 enum routine_type subroutine_type)
2034 {
2035 const char *indent;
2036 int want_close = 0;
2037
2038 if (uncond)
2039 indent = " ";
2040 else if (test->type == DT_accept_op || test->type == DT_accept_insn)
2041 {
2042 fputs (" {\n", stdout);
2043 indent = " ";
2044 want_close = 1;
2045 }
2046 else
2047 indent = " ";
2048
2049 if (test->type == DT_accept_op)
2050 {
2051 printf("%soperands[%d] = x%d;\n", indent, test->u.opno, depth);
2052
2053 /* Only allow DT_accept_insn to follow. */
2054 if (test->next)
2055 {
2056 test = test->next;
2057 if (test->type != DT_accept_insn)
2058 abort ();
2059 }
2060 }
2061
2062 /* Sanity check that we're now at the end of the list of tests. */
2063 if (test->next)
2064 abort ();
2065
2066 if (test->type == DT_accept_insn)
2067 {
2068 switch (subroutine_type)
2069 {
2070 case RECOG:
2071 if (test->u.insn.num_clobbers_to_add != 0)
2072 printf ("%s*pnum_clobbers = %d;\n",
2073 indent, test->u.insn.num_clobbers_to_add);
2074 printf ("%sreturn %d;\n", indent, test->u.insn.code_number);
2075 break;
2076
2077 case SPLIT:
2078 printf ("%sreturn gen_split_%d (operands);\n",
2079 indent, test->u.insn.code_number);
2080 break;
2081
2082 case PEEPHOLE2:
2083 {
2084 int match_len = 0, i;
2085
2086 for (i = strlen (p->position) - 1; i >= 0; --i)
2087 if (ISUPPER (p->position[i]))
2088 {
2089 match_len = p->position[i] - 'A';
2090 break;
2091 }
2092 printf ("%s*_pmatch_len = %d;\n", indent, match_len);
2093 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
2094 indent, test->u.insn.code_number);
2095 printf ("%sif (tem != 0)\n%s return tem;\n", indent, indent);
2096 }
2097 break;
2098
2099 default:
2100 abort ();
2101 }
2102 }
2103 else
2104 {
2105 printf("%sgoto L%d;\n", indent, success->number);
2106 success->need_label = 1;
2107 }
2108
2109 if (want_close)
2110 fputs (" }\n", stdout);
2111 }
2112
2113 /* Return 1 if the test is always true and has no fallthru path. Return -1
2114 if the test does have a fallthru path, but requires that the condition be
2115 terminated. Otherwise return 0 for a normal test. */
2116 /* ??? is_unconditional is a stupid name for a tri-state function. */
2117
2118 static int
2119 is_unconditional (struct decision_test *t, enum routine_type subroutine_type)
2120 {
2121 if (t->type == DT_accept_op)
2122 return 1;
2123
2124 if (t->type == DT_accept_insn)
2125 {
2126 switch (subroutine_type)
2127 {
2128 case RECOG:
2129 return (t->u.insn.num_clobbers_to_add == 0);
2130 case SPLIT:
2131 return 1;
2132 case PEEPHOLE2:
2133 return -1;
2134 default:
2135 abort ();
2136 }
2137 }
2138
2139 return 0;
2140 }
2141
2142 /* Emit code for one node -- the conditional and the accompanying action.
2143 Return true if there is no fallthru path. */
2144
2145 static int
2146 write_node (struct decision *p, int depth,
2147 enum routine_type subroutine_type)
2148 {
2149 struct decision_test *test, *last_test;
2150 int uncond;
2151
2152 /* Scan the tests and simplify comparisons against small
2153 constants. */
2154 for (test = p->tests; test; test = test->next)
2155 {
2156 if (test->type == DT_code
2157 && test->u.code == CONST_INT
2158 && test->next
2159 && test->next->type == DT_elt_zero_wide_safe
2160 && -MAX_SAVED_CONST_INT <= test->next->u.intval
2161 && test->next->u.intval <= MAX_SAVED_CONST_INT)
2162 {
2163 test->type = DT_const_int;
2164 test->u.intval = test->next->u.intval;
2165 test->next = test->next->next;
2166 }
2167 }
2168
2169 last_test = test = p->tests;
2170 uncond = is_unconditional (test, subroutine_type);
2171 if (uncond == 0)
2172 {
2173 printf (" if (");
2174 write_cond (test, depth, subroutine_type);
2175
2176 while ((test = test->next) != NULL)
2177 {
2178 last_test = test;
2179 if (is_unconditional (test, subroutine_type))
2180 break;
2181
2182 printf ("\n && ");
2183 write_cond (test, depth, subroutine_type);
2184 }
2185
2186 printf (")\n");
2187 }
2188
2189 write_action (p, last_test, depth, uncond, p->success.first, subroutine_type);
2190
2191 return uncond > 0;
2192 }
2193
2194 /* Emit code for all of the sibling nodes of HEAD. */
2195
2196 static void
2197 write_tree_1 (struct decision_head *head, int depth,
2198 enum routine_type subroutine_type)
2199 {
2200 struct decision *p, *next;
2201 int uncond = 0;
2202
2203 for (p = head->first; p ; p = next)
2204 {
2205 /* The label for the first element was printed in write_tree. */
2206 if (p != head->first && p->need_label)
2207 OUTPUT_LABEL (" ", p->number);
2208
2209 /* Attempt to write a switch statement for a whole sequence. */
2210 next = write_switch (p, depth);
2211 if (p != next)
2212 uncond = 0;
2213 else
2214 {
2215 /* Failed -- fall back and write one node. */
2216 uncond = write_node (p, depth, subroutine_type);
2217 next = p->next;
2218 }
2219 }
2220
2221 /* Finished with this chain. Close a fallthru path by branching
2222 to the afterward node. */
2223 if (! uncond)
2224 write_afterward (head->last, head->last->afterward, " ");
2225 }
2226
2227 /* Write out the decision tree starting at HEAD. PREVPOS is the
2228 position at the node that branched to this node. */
2229
2230 static void
2231 write_tree (struct decision_head *head, const char *prevpos,
2232 enum routine_type type, int initial)
2233 {
2234 struct decision *p = head->first;
2235
2236 putchar ('\n');
2237 if (p->need_label)
2238 OUTPUT_LABEL (" ", p->number);
2239
2240 if (! initial && p->subroutine_number > 0)
2241 {
2242 static const char * const name_prefix[] = {
2243 "recog", "split", "peephole2"
2244 };
2245
2246 static const char * const call_suffix[] = {
2247 ", pnum_clobbers", "", ", _pmatch_len"
2248 };
2249
2250 /* This node has been broken out into a separate subroutine.
2251 Call it, test the result, and branch accordingly. */
2252
2253 if (p->afterward)
2254 {
2255 printf (" tem = %s_%d (x0, insn%s);\n",
2256 name_prefix[type], p->subroutine_number, call_suffix[type]);
2257 if (IS_SPLIT (type))
2258 printf (" if (tem != 0)\n return tem;\n");
2259 else
2260 printf (" if (tem >= 0)\n return tem;\n");
2261
2262 change_state (p->position, p->afterward->position, NULL, " ");
2263 printf (" goto L%d;\n", p->afterward->number);
2264 }
2265 else
2266 {
2267 printf (" return %s_%d (x0, insn%s);\n",
2268 name_prefix[type], p->subroutine_number, call_suffix[type]);
2269 }
2270 }
2271 else
2272 {
2273 int depth = strlen (p->position);
2274
2275 change_state (prevpos, p->position, head->last->afterward, " ");
2276 write_tree_1 (head, depth, type);
2277
2278 for (p = head->first; p; p = p->next)
2279 if (p->success.first)
2280 write_tree (&p->success, p->position, type, 0);
2281 }
2282 }
2283
2284 /* Write out a subroutine of type TYPE to do comparisons starting at
2285 node TREE. */
2286
2287 static void
2288 write_subroutine (struct decision_head *head, enum routine_type type)
2289 {
2290 int subfunction = head->first ? head->first->subroutine_number : 0;
2291 const char *s_or_e;
2292 char extension[32];
2293 int i;
2294
2295 s_or_e = subfunction ? "static " : "";
2296
2297 if (subfunction)
2298 sprintf (extension, "_%d", subfunction);
2299 else if (type == RECOG)
2300 extension[0] = '\0';
2301 else
2302 strcpy (extension, "_insns");
2303
2304 switch (type)
2305 {
2306 case RECOG:
2307 printf ("%sint\n\
2308 recog%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", s_or_e, extension);
2309 break;
2310 case SPLIT:
2311 printf ("%srtx\n\
2312 split%s (rtx x0 ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED)\n",
2313 s_or_e, extension);
2314 break;
2315 case PEEPHOLE2:
2316 printf ("%srtx\n\
2317 peephole2%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *_pmatch_len ATTRIBUTE_UNUSED)\n",
2318 s_or_e, extension);
2319 break;
2320 }
2321
2322 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
2323 for (i = 1; i <= max_depth; i++)
2324 printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i);
2325
2326 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int");
2327
2328 if (!subfunction)
2329 printf (" recog_data.insn = NULL_RTX;\n");
2330
2331 if (head->first)
2332 write_tree (head, "", type, 1);
2333 else
2334 printf (" goto ret0;\n");
2335
2336 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1);
2337 }
2338
2339 /* In break_out_subroutines, we discovered the boundaries for the
2340 subroutines, but did not write them out. Do so now. */
2341
2342 static void
2343 write_subroutines (struct decision_head *head, enum routine_type type)
2344 {
2345 struct decision *p;
2346
2347 for (p = head->first; p ; p = p->next)
2348 if (p->success.first)
2349 write_subroutines (&p->success, type);
2350
2351 if (head->first->subroutine_number > 0)
2352 write_subroutine (head, type);
2353 }
2354
2355 /* Begin the output file. */
2356
2357 static void
2358 write_header (void)
2359 {
2360 puts ("\
2361 /* Generated automatically by the program `genrecog' from the target\n\
2362 machine description file. */\n\
2363 \n\
2364 #include \"config.h\"\n\
2365 #include \"system.h\"\n\
2366 #include \"coretypes.h\"\n\
2367 #include \"tm.h\"\n\
2368 #include \"rtl.h\"\n\
2369 #include \"tm_p.h\"\n\
2370 #include \"function.h\"\n\
2371 #include \"insn-config.h\"\n\
2372 #include \"recog.h\"\n\
2373 #include \"real.h\"\n\
2374 #include \"output.h\"\n\
2375 #include \"flags.h\"\n\
2376 #include \"hard-reg-set.h\"\n\
2377 #include \"resource.h\"\n\
2378 #include \"toplev.h\"\n\
2379 #include \"reload.h\"\n\
2380 \n");
2381
2382 puts ("\n\
2383 /* `recog' contains a decision tree that recognizes whether the rtx\n\
2384 X0 is a valid instruction.\n\
2385 \n\
2386 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2387 returns a nonnegative number which is the insn code number for the\n\
2388 pattern that matched. This is the same as the order in the machine\n\
2389 description of the entry that matched. This number can be used as an\n\
2390 index into `insn_data' and other tables.\n");
2391 puts ("\
2392 The third argument to recog is an optional pointer to an int. If\n\
2393 present, recog will accept a pattern if it matches except for missing\n\
2394 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2395 the optional pointer will be set to the number of CLOBBERs that need\n\
2396 to be added (it should be initialized to zero by the caller). If it");
2397 puts ("\
2398 is set nonzero, the caller should allocate a PARALLEL of the\n\
2399 appropriate size, copy the initial entries, and call add_clobbers\n\
2400 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2401 ");
2402
2403 puts ("\n\
2404 The function split_insns returns 0 if the rtl could not\n\
2405 be split or the split rtl as an INSN list if it can be.\n\
2406 \n\
2407 The function peephole2_insns returns 0 if the rtl could not\n\
2408 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
2409 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2410 */\n\n");
2411 }
2412
2413 \f
2414 /* Construct and return a sequence of decisions
2415 that will recognize INSN.
2416
2417 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2418
2419 static struct decision_head
2420 make_insn_sequence (rtx insn, enum routine_type type)
2421 {
2422 rtx x;
2423 const char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
2424 int truth = maybe_eval_c_test (c_test);
2425 struct decision *last;
2426 struct decision_test *test, **place;
2427 struct decision_head head;
2428 char c_test_pos[2];
2429
2430 /* We should never see an insn whose C test is false at compile time. */
2431 if (truth == 0)
2432 abort ();
2433
2434 record_insn_name (next_insn_code, (type == RECOG ? XSTR (insn, 0) : NULL));
2435
2436 c_test_pos[0] = '\0';
2437 if (type == PEEPHOLE2)
2438 {
2439 int i, j;
2440
2441 /* peephole2 gets special treatment:
2442 - X always gets an outer parallel even if it's only one entry
2443 - we remove all traces of outer-level match_scratch and match_dup
2444 expressions here. */
2445 x = rtx_alloc (PARALLEL);
2446 PUT_MODE (x, VOIDmode);
2447 XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0));
2448 for (i = j = 0; i < XVECLEN (insn, 0); i++)
2449 {
2450 rtx tmp = XVECEXP (insn, 0, i);
2451 if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP)
2452 {
2453 XVECEXP (x, 0, j) = tmp;
2454 j++;
2455 }
2456 }
2457 XVECLEN (x, 0) = j;
2458
2459 c_test_pos[0] = 'A' + j - 1;
2460 c_test_pos[1] = '\0';
2461 }
2462 else if (XVECLEN (insn, type == RECOG) == 1)
2463 x = XVECEXP (insn, type == RECOG, 0);
2464 else
2465 {
2466 x = rtx_alloc (PARALLEL);
2467 XVEC (x, 0) = XVEC (insn, type == RECOG);
2468 PUT_MODE (x, VOIDmode);
2469 }
2470
2471 validate_pattern (x, insn, NULL_RTX, 0);
2472
2473 memset(&head, 0, sizeof(head));
2474 last = add_to_sequence (x, &head, "", type, 1);
2475
2476 /* Find the end of the test chain on the last node. */
2477 for (test = last->tests; test->next; test = test->next)
2478 continue;
2479 place = &test->next;
2480
2481 /* Skip the C test if it's known to be true at compile time. */
2482 if (truth == -1)
2483 {
2484 /* Need a new node if we have another test to add. */
2485 if (test->type == DT_accept_op)
2486 {
2487 last = new_decision (c_test_pos, &last->success);
2488 place = &last->tests;
2489 }
2490 test = new_decision_test (DT_c_test, &place);
2491 test->u.c_test = c_test;
2492 }
2493
2494 test = new_decision_test (DT_accept_insn, &place);
2495 test->u.insn.code_number = next_insn_code;
2496 test->u.insn.lineno = pattern_lineno;
2497 test->u.insn.num_clobbers_to_add = 0;
2498
2499 switch (type)
2500 {
2501 case RECOG:
2502 /* If this is a DEFINE_INSN and X is a PARALLEL, see if it ends
2503 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2504 If so, set up to recognize the pattern without these CLOBBERs. */
2505
2506 if (GET_CODE (x) == PARALLEL)
2507 {
2508 int i;
2509
2510 /* Find the last non-clobber in the parallel. */
2511 for (i = XVECLEN (x, 0); i > 0; i--)
2512 {
2513 rtx y = XVECEXP (x, 0, i - 1);
2514 if (GET_CODE (y) != CLOBBER
2515 || (GET_CODE (XEXP (y, 0)) != REG
2516 && GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH))
2517 break;
2518 }
2519
2520 if (i != XVECLEN (x, 0))
2521 {
2522 rtx new;
2523 struct decision_head clobber_head;
2524
2525 /* Build a similar insn without the clobbers. */
2526 if (i == 1)
2527 new = XVECEXP (x, 0, 0);
2528 else
2529 {
2530 int j;
2531
2532 new = rtx_alloc (PARALLEL);
2533 XVEC (new, 0) = rtvec_alloc (i);
2534 for (j = i - 1; j >= 0; j--)
2535 XVECEXP (new, 0, j) = XVECEXP (x, 0, j);
2536 }
2537
2538 /* Recognize it. */
2539 memset (&clobber_head, 0, sizeof(clobber_head));
2540 last = add_to_sequence (new, &clobber_head, "", type, 1);
2541
2542 /* Find the end of the test chain on the last node. */
2543 for (test = last->tests; test->next; test = test->next)
2544 continue;
2545
2546 /* We definitely have a new test to add -- create a new
2547 node if needed. */
2548 place = &test->next;
2549 if (test->type == DT_accept_op)
2550 {
2551 last = new_decision ("", &last->success);
2552 place = &last->tests;
2553 }
2554
2555 /* Skip the C test if it's known to be true at compile
2556 time. */
2557 if (truth == -1)
2558 {
2559 test = new_decision_test (DT_c_test, &place);
2560 test->u.c_test = c_test;
2561 }
2562
2563 test = new_decision_test (DT_accept_insn, &place);
2564 test->u.insn.code_number = next_insn_code;
2565 test->u.insn.lineno = pattern_lineno;
2566 test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i;
2567
2568 merge_trees (&head, &clobber_head);
2569 }
2570 }
2571 break;
2572
2573 case SPLIT:
2574 /* Define the subroutine we will call below and emit in genemit. */
2575 printf ("extern rtx gen_split_%d (rtx *);\n", next_insn_code);
2576 break;
2577
2578 case PEEPHOLE2:
2579 /* Define the subroutine we will call below and emit in genemit. */
2580 printf ("extern rtx gen_peephole2_%d (rtx, rtx *);\n",
2581 next_insn_code);
2582 break;
2583 }
2584
2585 return head;
2586 }
2587
2588 static void
2589 process_tree (struct decision_head *head, enum routine_type subroutine_type)
2590 {
2591 if (head->first == NULL)
2592 {
2593 /* We can elide peephole2_insns, but not recog or split_insns. */
2594 if (subroutine_type == PEEPHOLE2)
2595 return;
2596 }
2597 else
2598 {
2599 factor_tests (head);
2600
2601 next_subroutine_number = 0;
2602 break_out_subroutines (head, 1);
2603 find_afterward (head, NULL);
2604
2605 /* We run this after find_afterward, because find_afterward needs
2606 the redundant DT_mode tests on predicates to determine whether
2607 two tests can both be true or not. */
2608 simplify_tests(head);
2609
2610 write_subroutines (head, subroutine_type);
2611 }
2612
2613 write_subroutine (head, subroutine_type);
2614 }
2615 \f
2616 extern int main (int, char **);
2617
2618 int
2619 main (int argc, char **argv)
2620 {
2621 rtx desc;
2622 struct decision_head recog_tree, split_tree, peephole2_tree, h;
2623
2624 progname = "genrecog";
2625
2626 memset (&recog_tree, 0, sizeof recog_tree);
2627 memset (&split_tree, 0, sizeof split_tree);
2628 memset (&peephole2_tree, 0, sizeof peephole2_tree);
2629
2630 if (argc <= 1)
2631 fatal ("no input file name");
2632
2633 if (init_md_reader_args (argc, argv) != SUCCESS_EXIT_CODE)
2634 return (FATAL_EXIT_CODE);
2635
2636 next_insn_code = 0;
2637 next_index = 0;
2638
2639 write_header ();
2640
2641 /* Read the machine description. */
2642
2643 while (1)
2644 {
2645 desc = read_md_rtx (&pattern_lineno, &next_insn_code);
2646 if (desc == NULL)
2647 break;
2648
2649 if (GET_CODE (desc) == DEFINE_INSN)
2650 {
2651 h = make_insn_sequence (desc, RECOG);
2652 merge_trees (&recog_tree, &h);
2653 }
2654 else if (GET_CODE (desc) == DEFINE_SPLIT)
2655 {
2656 h = make_insn_sequence (desc, SPLIT);
2657 merge_trees (&split_tree, &h);
2658 }
2659 else if (GET_CODE (desc) == DEFINE_PEEPHOLE2)
2660 {
2661 h = make_insn_sequence (desc, PEEPHOLE2);
2662 merge_trees (&peephole2_tree, &h);
2663 }
2664
2665 next_index++;
2666 }
2667
2668 if (error_count)
2669 return FATAL_EXIT_CODE;
2670
2671 puts ("\n\n");
2672
2673 process_tree (&recog_tree, RECOG);
2674 process_tree (&split_tree, SPLIT);
2675 process_tree (&peephole2_tree, PEEPHOLE2);
2676
2677 fflush (stdout);
2678 return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
2679 }
2680 \f
2681 /* Define this so we can link with print-rtl.o to get debug_rtx function. */
2682 const char *
2683 get_insn_name (int code)
2684 {
2685 if (code < insn_name_ptr_size)
2686 return insn_name_ptr[code];
2687 else
2688 return NULL;
2689 }
2690
2691 static void
2692 record_insn_name (int code, const char *name)
2693 {
2694 static const char *last_real_name = "insn";
2695 static int last_real_code = 0;
2696 char *new;
2697
2698 if (insn_name_ptr_size <= code)
2699 {
2700 int new_size;
2701 new_size = (insn_name_ptr_size ? insn_name_ptr_size * 2 : 512);
2702 insn_name_ptr = xrealloc (insn_name_ptr, sizeof(char *) * new_size);
2703 memset (insn_name_ptr + insn_name_ptr_size, 0,
2704 sizeof(char *) * (new_size - insn_name_ptr_size));
2705 insn_name_ptr_size = new_size;
2706 }
2707
2708 if (!name || name[0] == '\0')
2709 {
2710 new = xmalloc (strlen (last_real_name) + 10);
2711 sprintf (new, "%s+%d", last_real_name, code - last_real_code);
2712 }
2713 else
2714 {
2715 last_real_name = new = xstrdup (name);
2716 last_real_code = code;
2717 }
2718
2719 insn_name_ptr[code] = new;
2720 }
2721 \f
2722 static void
2723 debug_decision_2 (struct decision_test *test)
2724 {
2725 switch (test->type)
2726 {
2727 case DT_mode:
2728 fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode));
2729 break;
2730 case DT_code:
2731 fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code));
2732 break;
2733 case DT_veclen:
2734 fprintf (stderr, "veclen=%d", test->u.veclen);
2735 break;
2736 case DT_elt_zero_int:
2737 fprintf (stderr, "elt0_i=%d", (int) test->u.intval);
2738 break;
2739 case DT_elt_one_int:
2740 fprintf (stderr, "elt1_i=%d", (int) test->u.intval);
2741 break;
2742 case DT_elt_zero_wide:
2743 fprintf (stderr, "elt0_w=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2744 break;
2745 case DT_elt_zero_wide_safe:
2746 fprintf (stderr, "elt0_ws=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2747 break;
2748 case DT_veclen_ge:
2749 fprintf (stderr, "veclen>=%d", test->u.veclen);
2750 break;
2751 case DT_dup:
2752 fprintf (stderr, "dup=%d", test->u.dup);
2753 break;
2754 case DT_pred:
2755 fprintf (stderr, "pred=(%s,%s)",
2756 test->u.pred.name, GET_MODE_NAME(test->u.pred.mode));
2757 break;
2758 case DT_c_test:
2759 {
2760 char sub[16+4];
2761 strncpy (sub, test->u.c_test, sizeof(sub));
2762 memcpy (sub+16, "...", 4);
2763 fprintf (stderr, "c_test=\"%s\"", sub);
2764 }
2765 break;
2766 case DT_accept_op:
2767 fprintf (stderr, "A_op=%d", test->u.opno);
2768 break;
2769 case DT_accept_insn:
2770 fprintf (stderr, "A_insn=(%d,%d)",
2771 test->u.insn.code_number, test->u.insn.num_clobbers_to_add);
2772 break;
2773
2774 default:
2775 abort ();
2776 }
2777 }
2778
2779 static void
2780 debug_decision_1 (struct decision *d, int indent)
2781 {
2782 int i;
2783 struct decision_test *test;
2784
2785 if (d == NULL)
2786 {
2787 for (i = 0; i < indent; ++i)
2788 putc (' ', stderr);
2789 fputs ("(nil)\n", stderr);
2790 return;
2791 }
2792
2793 for (i = 0; i < indent; ++i)
2794 putc (' ', stderr);
2795
2796 putc ('{', stderr);
2797 test = d->tests;
2798 if (test)
2799 {
2800 debug_decision_2 (test);
2801 while ((test = test->next) != NULL)
2802 {
2803 fputs (" + ", stderr);
2804 debug_decision_2 (test);
2805 }
2806 }
2807 fprintf (stderr, "} %d n %d a %d\n", d->number,
2808 (d->next ? d->next->number : -1),
2809 (d->afterward ? d->afterward->number : -1));
2810 }
2811
2812 static void
2813 debug_decision_0 (struct decision *d, int indent, int maxdepth)
2814 {
2815 struct decision *n;
2816 int i;
2817
2818 if (maxdepth < 0)
2819 return;
2820 if (d == NULL)
2821 {
2822 for (i = 0; i < indent; ++i)
2823 putc (' ', stderr);
2824 fputs ("(nil)\n", stderr);
2825 return;
2826 }
2827
2828 debug_decision_1 (d, indent);
2829 for (n = d->success.first; n ; n = n->next)
2830 debug_decision_0 (n, indent + 2, maxdepth - 1);
2831 }
2832
2833 void
2834 debug_decision (struct decision *d)
2835 {
2836 debug_decision_0 (d, 0, 1000000);
2837 }
2838
2839 void
2840 debug_decision_list (struct decision *d)
2841 {
2842 while (d)
2843 {
2844 debug_decision_0 (d, 0, 0);
2845 d = d->next;
2846 }
2847 }