* jvspec.c (jvgenmain_spec): Don't handle -fnew-verifier.
[gcc.git] / gcc / genrecog.c
1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 /* This program is used to produce insn-recog.c, which contains a
24 function called `recog' plus its subroutines. These functions
25 contain a decision tree that recognizes whether an rtx, the
26 argument given to recog, is a valid instruction.
27
28 recog returns -1 if the rtx is not valid. If the rtx is valid,
29 recog returns a nonnegative number which is the insn code number
30 for the pattern that matched. This is the same as the order in the
31 machine description of the entry that matched. This number can be
32 used as an index into various insn_* tables, such as insn_template,
33 insn_outfun, and insn_n_operands (found in insn-output.c).
34
35 The third argument to recog is an optional pointer to an int. If
36 present, recog will accept a pattern if it matches except for
37 missing CLOBBER expressions at the end. In that case, the value
38 pointed to by the optional pointer will be set to the number of
39 CLOBBERs that need to be added (it should be initialized to zero by
40 the caller). If it is set nonzero, the caller should allocate a
41 PARALLEL of the appropriate size, copy the initial entries, and
42 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
43
44 This program also generates the function `split_insns', which
45 returns 0 if the rtl could not be split, or it returns the split
46 rtl as an INSN list.
47
48 This program also generates the function `peephole2_insns', which
49 returns 0 if the rtl could not be matched. If there was a match,
50 the new rtl is returned in an INSN list, and LAST_INSN will point
51 to the last recognized insn in the old sequence. */
52
53 #include "bconfig.h"
54 #include "system.h"
55 #include "coretypes.h"
56 #include "tm.h"
57 #include "rtl.h"
58 #include "errors.h"
59 #include "read-md.h"
60 #include "gensupport.h"
61
62 #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
63 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
64
65 /* A listhead of decision trees. The alternatives to a node are kept
66 in a doubly-linked list so we can easily add nodes to the proper
67 place when merging. */
68
69 struct decision_head
70 {
71 struct decision *first;
72 struct decision *last;
73 };
74
75 /* These types are roughly in the order in which we'd like to test them. */
76 enum decision_type
77 {
78 DT_num_insns,
79 DT_mode, DT_code, DT_veclen,
80 DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide, DT_elt_zero_wide_safe,
81 DT_const_int,
82 DT_veclen_ge, DT_dup, DT_pred, DT_c_test,
83 DT_accept_op, DT_accept_insn
84 };
85
86 /* A single test. The two accept types aren't tests per-se, but
87 their equality (or lack thereof) does affect tree merging so
88 it is convenient to keep them here. */
89
90 struct decision_test
91 {
92 /* A linked list through the tests attached to a node. */
93 struct decision_test *next;
94
95 enum decision_type type;
96
97 union
98 {
99 int num_insns; /* Number if insn in a define_peephole2. */
100 enum machine_mode mode; /* Machine mode of node. */
101 RTX_CODE code; /* Code to test. */
102
103 struct
104 {
105 const char *name; /* Predicate to call. */
106 const struct pred_data *data;
107 /* Optimization hints for this predicate. */
108 enum machine_mode mode; /* Machine mode for node. */
109 } pred;
110
111 const char *c_test; /* Additional test to perform. */
112 int veclen; /* Length of vector. */
113 int dup; /* Number of operand to compare against. */
114 HOST_WIDE_INT intval; /* Value for XINT for XWINT. */
115 int opno; /* Operand number matched. */
116
117 struct {
118 int code_number; /* Insn number matched. */
119 int lineno; /* Line number of the insn. */
120 int num_clobbers_to_add; /* Number of CLOBBERs to be added. */
121 } insn;
122 } u;
123 };
124
125 /* Data structure for decision tree for recognizing legitimate insns. */
126
127 struct decision
128 {
129 struct decision_head success; /* Nodes to test on success. */
130 struct decision *next; /* Node to test on failure. */
131 struct decision *prev; /* Node whose failure tests us. */
132 struct decision *afterward; /* Node to test on success,
133 but failure of successor nodes. */
134
135 const char *position; /* String denoting position in pattern. */
136
137 struct decision_test *tests; /* The tests for this node. */
138
139 int number; /* Node number, used for labels */
140 int subroutine_number; /* Number of subroutine this node starts */
141 int need_label; /* Label needs to be output. */
142 };
143
144 #define SUBROUTINE_THRESHOLD 100
145
146 static int next_subroutine_number;
147
148 /* We can write three types of subroutines: One for insn recognition,
149 one to split insns, and one for peephole-type optimizations. This
150 defines which type is being written. */
151
152 enum routine_type {
153 RECOG, SPLIT, PEEPHOLE2
154 };
155
156 #define IS_SPLIT(X) ((X) != RECOG)
157
158 /* Next available node number for tree nodes. */
159
160 static int next_number;
161
162 /* Next number to use as an insn_code. */
163
164 static int next_insn_code;
165
166 /* Record the highest depth we ever have so we know how many variables to
167 allocate in each subroutine we make. */
168
169 static int max_depth;
170
171 /* The line number of the start of the pattern currently being processed. */
172 static int pattern_lineno;
173 \f
174 /* Predicate handling.
175
176 We construct from the machine description a table mapping each
177 predicate to a list of the rtl codes it can possibly match. The
178 function 'maybe_both_true' uses it to deduce that there are no
179 expressions that can be matches by certain pairs of tree nodes.
180 Also, if a predicate can match only one code, we can hardwire that
181 code into the node testing the predicate.
182
183 Some predicates are flagged as special. validate_pattern will not
184 warn about modeless match_operand expressions if they have a
185 special predicate. Predicates that allow only constants are also
186 treated as special, for this purpose.
187
188 validate_pattern will warn about predicates that allow non-lvalues
189 when they appear in destination operands.
190
191 Calculating the set of rtx codes that can possibly be accepted by a
192 predicate expression EXP requires a three-state logic: any given
193 subexpression may definitively accept a code C (Y), definitively
194 reject a code C (N), or may have an indeterminate effect (I). N
195 and I is N; Y or I is Y; Y and I, N or I are both I. Here are full
196 truth tables.
197
198 a b a&b a|b
199 Y Y Y Y
200 N Y N Y
201 N N N N
202 I Y I Y
203 I N N I
204 I I I I
205
206 We represent Y with 1, N with 0, I with 2. If any code is left in
207 an I state by the complete expression, we must assume that that
208 code can be accepted. */
209
210 #define N 0
211 #define Y 1
212 #define I 2
213
214 #define TRISTATE_AND(a,b) \
215 ((a) == I ? ((b) == N ? N : I) : \
216 (b) == I ? ((a) == N ? N : I) : \
217 (a) && (b))
218
219 #define TRISTATE_OR(a,b) \
220 ((a) == I ? ((b) == Y ? Y : I) : \
221 (b) == I ? ((a) == Y ? Y : I) : \
222 (a) || (b))
223
224 #define TRISTATE_NOT(a) \
225 ((a) == I ? I : !(a))
226
227 /* 0 means no warning about that code yet, 1 means warned. */
228 static char did_you_mean_codes[NUM_RTX_CODE];
229
230 /* Recursively calculate the set of rtx codes accepted by the
231 predicate expression EXP, writing the result to CODES. */
232 static void
233 compute_predicate_codes (rtx exp, char codes[NUM_RTX_CODE])
234 {
235 char op0_codes[NUM_RTX_CODE];
236 char op1_codes[NUM_RTX_CODE];
237 char op2_codes[NUM_RTX_CODE];
238 int i;
239
240 switch (GET_CODE (exp))
241 {
242 case AND:
243 compute_predicate_codes (XEXP (exp, 0), op0_codes);
244 compute_predicate_codes (XEXP (exp, 1), op1_codes);
245 for (i = 0; i < NUM_RTX_CODE; i++)
246 codes[i] = TRISTATE_AND (op0_codes[i], op1_codes[i]);
247 break;
248
249 case IOR:
250 compute_predicate_codes (XEXP (exp, 0), op0_codes);
251 compute_predicate_codes (XEXP (exp, 1), op1_codes);
252 for (i = 0; i < NUM_RTX_CODE; i++)
253 codes[i] = TRISTATE_OR (op0_codes[i], op1_codes[i]);
254 break;
255 case NOT:
256 compute_predicate_codes (XEXP (exp, 0), op0_codes);
257 for (i = 0; i < NUM_RTX_CODE; i++)
258 codes[i] = TRISTATE_NOT (op0_codes[i]);
259 break;
260
261 case IF_THEN_ELSE:
262 /* a ? b : c accepts the same codes as (a & b) | (!a & c). */
263 compute_predicate_codes (XEXP (exp, 0), op0_codes);
264 compute_predicate_codes (XEXP (exp, 1), op1_codes);
265 compute_predicate_codes (XEXP (exp, 2), op2_codes);
266 for (i = 0; i < NUM_RTX_CODE; i++)
267 codes[i] = TRISTATE_OR (TRISTATE_AND (op0_codes[i], op1_codes[i]),
268 TRISTATE_AND (TRISTATE_NOT (op0_codes[i]),
269 op2_codes[i]));
270 break;
271
272 case MATCH_CODE:
273 /* MATCH_CODE allows a specified list of codes. However, if it
274 does not apply to the top level of the expression, it does not
275 constrain the set of codes for the top level. */
276 if (XSTR (exp, 1)[0] != '\0')
277 {
278 memset (codes, Y, NUM_RTX_CODE);
279 break;
280 }
281
282 memset (codes, N, NUM_RTX_CODE);
283 {
284 const char *next_code = XSTR (exp, 0);
285 const char *code;
286
287 if (*next_code == '\0')
288 {
289 error_with_line (pattern_lineno, "empty match_code expression");
290 break;
291 }
292
293 while ((code = scan_comma_elt (&next_code)) != 0)
294 {
295 size_t n = next_code - code;
296 int found_it = 0;
297
298 for (i = 0; i < NUM_RTX_CODE; i++)
299 if (!strncmp (code, GET_RTX_NAME (i), n)
300 && GET_RTX_NAME (i)[n] == '\0')
301 {
302 codes[i] = Y;
303 found_it = 1;
304 break;
305 }
306 if (!found_it)
307 {
308 error_with_line (pattern_lineno,
309 "match_code \"%.*s\" matches nothing",
310 (int) n, code);
311 for (i = 0; i < NUM_RTX_CODE; i++)
312 if (!strncasecmp (code, GET_RTX_NAME (i), n)
313 && GET_RTX_NAME (i)[n] == '\0'
314 && !did_you_mean_codes[i])
315 {
316 did_you_mean_codes[i] = 1;
317 message_with_line (pattern_lineno, "(did you mean \"%s\"?)", GET_RTX_NAME (i));
318 }
319 }
320
321 }
322 }
323 break;
324
325 case MATCH_OPERAND:
326 /* MATCH_OPERAND disallows the set of codes that the named predicate
327 disallows, and is indeterminate for the codes that it does allow. */
328 {
329 struct pred_data *p = lookup_predicate (XSTR (exp, 1));
330 if (!p)
331 {
332 error_with_line (pattern_lineno,
333 "reference to unknown predicate '%s'",
334 XSTR (exp, 1));
335 break;
336 }
337 for (i = 0; i < NUM_RTX_CODE; i++)
338 codes[i] = p->codes[i] ? I : N;
339 }
340 break;
341
342
343 case MATCH_TEST:
344 /* (match_test WHATEVER) is completely indeterminate. */
345 memset (codes, I, NUM_RTX_CODE);
346 break;
347
348 default:
349 error_with_line (pattern_lineno,
350 "'%s' cannot be used in a define_predicate expression",
351 GET_RTX_NAME (GET_CODE (exp)));
352 memset (codes, I, NUM_RTX_CODE);
353 break;
354 }
355 }
356
357 #undef TRISTATE_OR
358 #undef TRISTATE_AND
359 #undef TRISTATE_NOT
360
361 /* Process a define_predicate expression: compute the set of predicates
362 that can be matched, and record this as a known predicate. */
363 static void
364 process_define_predicate (rtx desc)
365 {
366 struct pred_data *pred = XCNEW (struct pred_data);
367 char codes[NUM_RTX_CODE];
368 int i;
369
370 pred->name = XSTR (desc, 0);
371 if (GET_CODE (desc) == DEFINE_SPECIAL_PREDICATE)
372 pred->special = 1;
373
374 compute_predicate_codes (XEXP (desc, 1), codes);
375
376 for (i = 0; i < NUM_RTX_CODE; i++)
377 if (codes[i] != N)
378 add_predicate_code (pred, (enum rtx_code) i);
379
380 add_predicate (pred);
381 }
382 #undef I
383 #undef N
384 #undef Y
385
386 \f
387 static struct decision *new_decision
388 (const char *, struct decision_head *);
389 static struct decision_test *new_decision_test
390 (enum decision_type, struct decision_test ***);
391 static rtx find_operand
392 (rtx, int, rtx);
393 static rtx find_matching_operand
394 (rtx, int);
395 static void validate_pattern
396 (rtx, rtx, rtx, int);
397 static struct decision *add_to_sequence
398 (rtx, struct decision_head *, const char *, enum routine_type, int);
399
400 static int maybe_both_true_2
401 (struct decision_test *, struct decision_test *);
402 static int maybe_both_true_1
403 (struct decision_test *, struct decision_test *);
404 static int maybe_both_true
405 (struct decision *, struct decision *, int);
406
407 static int nodes_identical_1
408 (struct decision_test *, struct decision_test *);
409 static int nodes_identical
410 (struct decision *, struct decision *);
411 static void merge_accept_insn
412 (struct decision *, struct decision *);
413 static void merge_trees
414 (struct decision_head *, struct decision_head *);
415
416 static void factor_tests
417 (struct decision_head *);
418 static void simplify_tests
419 (struct decision_head *);
420 static int break_out_subroutines
421 (struct decision_head *, int);
422 static void find_afterward
423 (struct decision_head *, struct decision *);
424
425 static void change_state
426 (const char *, const char *, const char *);
427 static void print_code
428 (enum rtx_code);
429 static void write_afterward
430 (struct decision *, struct decision *, const char *);
431 static struct decision *write_switch
432 (struct decision *, int);
433 static void write_cond
434 (struct decision_test *, int, enum routine_type);
435 static void write_action
436 (struct decision *, struct decision_test *, int, int,
437 struct decision *, enum routine_type);
438 static int is_unconditional
439 (struct decision_test *, enum routine_type);
440 static int write_node
441 (struct decision *, int, enum routine_type);
442 static void write_tree_1
443 (struct decision_head *, int, enum routine_type);
444 static void write_tree
445 (struct decision_head *, const char *, enum routine_type, int);
446 static void write_subroutine
447 (struct decision_head *, enum routine_type);
448 static void write_subroutines
449 (struct decision_head *, enum routine_type);
450 static void write_header
451 (void);
452
453 static struct decision_head make_insn_sequence
454 (rtx, enum routine_type);
455 static void process_tree
456 (struct decision_head *, enum routine_type);
457
458 static void debug_decision_0
459 (struct decision *, int, int);
460 static void debug_decision_1
461 (struct decision *, int);
462 static void debug_decision_2
463 (struct decision_test *);
464 extern void debug_decision
465 (struct decision *);
466 extern void debug_decision_list
467 (struct decision *);
468 \f
469 /* Create a new node in sequence after LAST. */
470
471 static struct decision *
472 new_decision (const char *position, struct decision_head *last)
473 {
474 struct decision *new_decision = XCNEW (struct decision);
475
476 new_decision->success = *last;
477 new_decision->position = xstrdup (position);
478 new_decision->number = next_number++;
479
480 last->first = last->last = new_decision;
481 return new_decision;
482 }
483
484 /* Create a new test and link it in at PLACE. */
485
486 static struct decision_test *
487 new_decision_test (enum decision_type type, struct decision_test ***pplace)
488 {
489 struct decision_test **place = *pplace;
490 struct decision_test *test;
491
492 test = XNEW (struct decision_test);
493 test->next = *place;
494 test->type = type;
495 *place = test;
496
497 place = &test->next;
498 *pplace = place;
499
500 return test;
501 }
502
503 /* Search for and return operand N, stop when reaching node STOP. */
504
505 static rtx
506 find_operand (rtx pattern, int n, rtx stop)
507 {
508 const char *fmt;
509 RTX_CODE code;
510 int i, j, len;
511 rtx r;
512
513 if (pattern == stop)
514 return stop;
515
516 code = GET_CODE (pattern);
517 if ((code == MATCH_SCRATCH
518 || code == MATCH_OPERAND
519 || code == MATCH_OPERATOR
520 || code == MATCH_PARALLEL)
521 && XINT (pattern, 0) == n)
522 return pattern;
523
524 fmt = GET_RTX_FORMAT (code);
525 len = GET_RTX_LENGTH (code);
526 for (i = 0; i < len; i++)
527 {
528 switch (fmt[i])
529 {
530 case 'e': case 'u':
531 if ((r = find_operand (XEXP (pattern, i), n, stop)) != NULL_RTX)
532 return r;
533 break;
534
535 case 'V':
536 if (! XVEC (pattern, i))
537 break;
538 /* Fall through. */
539
540 case 'E':
541 for (j = 0; j < XVECLEN (pattern, i); j++)
542 if ((r = find_operand (XVECEXP (pattern, i, j), n, stop))
543 != NULL_RTX)
544 return r;
545 break;
546
547 case 'i': case 'w': case '0': case 's':
548 break;
549
550 default:
551 gcc_unreachable ();
552 }
553 }
554
555 return NULL;
556 }
557
558 /* Search for and return operand M, such that it has a matching
559 constraint for operand N. */
560
561 static rtx
562 find_matching_operand (rtx pattern, int n)
563 {
564 const char *fmt;
565 RTX_CODE code;
566 int i, j, len;
567 rtx r;
568
569 code = GET_CODE (pattern);
570 if (code == MATCH_OPERAND
571 && (XSTR (pattern, 2)[0] == '0' + n
572 || (XSTR (pattern, 2)[0] == '%'
573 && XSTR (pattern, 2)[1] == '0' + n)))
574 return pattern;
575
576 fmt = GET_RTX_FORMAT (code);
577 len = GET_RTX_LENGTH (code);
578 for (i = 0; i < len; i++)
579 {
580 switch (fmt[i])
581 {
582 case 'e': case 'u':
583 if ((r = find_matching_operand (XEXP (pattern, i), n)))
584 return r;
585 break;
586
587 case 'V':
588 if (! XVEC (pattern, i))
589 break;
590 /* Fall through. */
591
592 case 'E':
593 for (j = 0; j < XVECLEN (pattern, i); j++)
594 if ((r = find_matching_operand (XVECEXP (pattern, i, j), n)))
595 return r;
596 break;
597
598 case 'i': case 'w': case '0': case 's':
599 break;
600
601 default:
602 gcc_unreachable ();
603 }
604 }
605
606 return NULL;
607 }
608
609
610 /* Check for various errors in patterns. SET is nonnull for a destination,
611 and is the complete set pattern. SET_CODE is '=' for normal sets, and
612 '+' within a context that requires in-out constraints. */
613
614 static void
615 validate_pattern (rtx pattern, rtx insn, rtx set, int set_code)
616 {
617 const char *fmt;
618 RTX_CODE code;
619 size_t i, len;
620 int j;
621
622 code = GET_CODE (pattern);
623 switch (code)
624 {
625 case MATCH_SCRATCH:
626 return;
627 case MATCH_DUP:
628 case MATCH_OP_DUP:
629 case MATCH_PAR_DUP:
630 if (find_operand (insn, XINT (pattern, 0), pattern) == pattern)
631 error_with_line (pattern_lineno,
632 "operand %i duplicated before defined",
633 XINT (pattern, 0));
634 break;
635 case MATCH_OPERAND:
636 case MATCH_OPERATOR:
637 {
638 const char *pred_name = XSTR (pattern, 1);
639 const struct pred_data *pred;
640 const char *c_test;
641
642 if (GET_CODE (insn) == DEFINE_INSN)
643 c_test = XSTR (insn, 2);
644 else
645 c_test = XSTR (insn, 1);
646
647 if (pred_name[0] != 0)
648 {
649 pred = lookup_predicate (pred_name);
650 if (!pred)
651 message_with_line (pattern_lineno,
652 "warning: unknown predicate '%s'",
653 pred_name);
654 }
655 else
656 pred = 0;
657
658 if (code == MATCH_OPERAND)
659 {
660 const char constraints0 = XSTR (pattern, 2)[0];
661
662 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
663 don't use the MATCH_OPERAND constraint, only the predicate.
664 This is confusing to folks doing new ports, so help them
665 not make the mistake. */
666 if (GET_CODE (insn) == DEFINE_EXPAND
667 || GET_CODE (insn) == DEFINE_SPLIT
668 || GET_CODE (insn) == DEFINE_PEEPHOLE2)
669 {
670 if (constraints0)
671 message_with_line (pattern_lineno,
672 "warning: constraints not supported in %s",
673 rtx_name[GET_CODE (insn)]);
674 }
675
676 /* A MATCH_OPERAND that is a SET should have an output reload. */
677 else if (set && constraints0)
678 {
679 if (set_code == '+')
680 {
681 if (constraints0 == '+')
682 ;
683 /* If we've only got an output reload for this operand,
684 we'd better have a matching input operand. */
685 else if (constraints0 == '='
686 && find_matching_operand (insn, XINT (pattern, 0)))
687 ;
688 else
689 error_with_line (pattern_lineno,
690 "operand %d missing in-out reload",
691 XINT (pattern, 0));
692 }
693 else if (constraints0 != '=' && constraints0 != '+')
694 error_with_line (pattern_lineno,
695 "operand %d missing output reload",
696 XINT (pattern, 0));
697 }
698 }
699
700 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
701 while not likely to occur at runtime, results in less efficient
702 code from insn-recog.c. */
703 if (set && pred && pred->allows_non_lvalue)
704 message_with_line (pattern_lineno,
705 "warning: destination operand %d "
706 "allows non-lvalue",
707 XINT (pattern, 0));
708
709 /* A modeless MATCH_OPERAND can be handy when we can check for
710 multiple modes in the c_test. In most other cases, it is a
711 mistake. Only DEFINE_INSN is eligible, since SPLIT and
712 PEEP2 can FAIL within the output pattern. Exclude special
713 predicates, which check the mode themselves. Also exclude
714 predicates that allow only constants. Exclude the SET_DEST
715 of a call instruction, as that is a common idiom. */
716
717 if (GET_MODE (pattern) == VOIDmode
718 && code == MATCH_OPERAND
719 && GET_CODE (insn) == DEFINE_INSN
720 && pred
721 && !pred->special
722 && pred->allows_non_const
723 && strstr (c_test, "operands") == NULL
724 && ! (set
725 && GET_CODE (set) == SET
726 && GET_CODE (SET_SRC (set)) == CALL))
727 message_with_line (pattern_lineno,
728 "warning: operand %d missing mode?",
729 XINT (pattern, 0));
730 return;
731 }
732
733 case SET:
734 {
735 enum machine_mode dmode, smode;
736 rtx dest, src;
737
738 dest = SET_DEST (pattern);
739 src = SET_SRC (pattern);
740
741 /* STRICT_LOW_PART is a wrapper. Its argument is the real
742 destination, and it's mode should match the source. */
743 if (GET_CODE (dest) == STRICT_LOW_PART)
744 dest = XEXP (dest, 0);
745
746 /* Find the referent for a DUP. */
747
748 if (GET_CODE (dest) == MATCH_DUP
749 || GET_CODE (dest) == MATCH_OP_DUP
750 || GET_CODE (dest) == MATCH_PAR_DUP)
751 dest = find_operand (insn, XINT (dest, 0), NULL);
752
753 if (GET_CODE (src) == MATCH_DUP
754 || GET_CODE (src) == MATCH_OP_DUP
755 || GET_CODE (src) == MATCH_PAR_DUP)
756 src = find_operand (insn, XINT (src, 0), NULL);
757
758 dmode = GET_MODE (dest);
759 smode = GET_MODE (src);
760
761 /* The mode of an ADDRESS_OPERAND is the mode of the memory
762 reference, not the mode of the address. */
763 if (GET_CODE (src) == MATCH_OPERAND
764 && ! strcmp (XSTR (src, 1), "address_operand"))
765 ;
766
767 /* The operands of a SET must have the same mode unless one
768 is VOIDmode. */
769 else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
770 error_with_line (pattern_lineno,
771 "mode mismatch in set: %smode vs %smode",
772 GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
773
774 /* If only one of the operands is VOIDmode, and PC or CC0 is
775 not involved, it's probably a mistake. */
776 else if (dmode != smode
777 && GET_CODE (dest) != PC
778 && GET_CODE (dest) != CC0
779 && GET_CODE (src) != PC
780 && GET_CODE (src) != CC0
781 && !CONST_INT_P (src)
782 && GET_CODE (src) != CALL)
783 {
784 const char *which;
785 which = (dmode == VOIDmode ? "destination" : "source");
786 message_with_line (pattern_lineno,
787 "warning: %s missing a mode?", which);
788 }
789
790 if (dest != SET_DEST (pattern))
791 validate_pattern (dest, insn, pattern, '=');
792 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
793 validate_pattern (SET_SRC (pattern), insn, NULL_RTX, 0);
794 return;
795 }
796
797 case CLOBBER:
798 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
799 return;
800
801 case ZERO_EXTRACT:
802 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
803 validate_pattern (XEXP (pattern, 1), insn, NULL_RTX, 0);
804 validate_pattern (XEXP (pattern, 2), insn, NULL_RTX, 0);
805 return;
806
807 case STRICT_LOW_PART:
808 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
809 return;
810
811 case LABEL_REF:
812 if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
813 error_with_line (pattern_lineno,
814 "operand to label_ref %smode not VOIDmode",
815 GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
816 break;
817
818 default:
819 break;
820 }
821
822 fmt = GET_RTX_FORMAT (code);
823 len = GET_RTX_LENGTH (code);
824 for (i = 0; i < len; i++)
825 {
826 switch (fmt[i])
827 {
828 case 'e': case 'u':
829 validate_pattern (XEXP (pattern, i), insn, NULL_RTX, 0);
830 break;
831
832 case 'E':
833 for (j = 0; j < XVECLEN (pattern, i); j++)
834 validate_pattern (XVECEXP (pattern, i, j), insn, NULL_RTX, 0);
835 break;
836
837 case 'i': case 'w': case '0': case 's':
838 break;
839
840 default:
841 gcc_unreachable ();
842 }
843 }
844 }
845
846 /* Create a chain of nodes to verify that an rtl expression matches
847 PATTERN.
848
849 LAST is a pointer to the listhead in the previous node in the chain (or
850 in the calling function, for the first node).
851
852 POSITION is the string representing the current position in the insn.
853
854 INSN_TYPE is the type of insn for which we are emitting code.
855
856 A pointer to the final node in the chain is returned. */
857
858 static struct decision *
859 add_to_sequence (rtx pattern, struct decision_head *last, const char *position,
860 enum routine_type insn_type, int top)
861 {
862 RTX_CODE code;
863 struct decision *this_decision, *sub;
864 struct decision_test *test;
865 struct decision_test **place;
866 char *subpos;
867 size_t i;
868 const char *fmt;
869 int depth = strlen (position);
870 int len;
871 enum machine_mode mode;
872
873 if (depth > max_depth)
874 max_depth = depth;
875
876 subpos = XNEWVAR (char, depth + 2);
877 strcpy (subpos, position);
878 subpos[depth + 1] = 0;
879
880 sub = this_decision = new_decision (position, last);
881 place = &this_decision->tests;
882
883 restart:
884 mode = GET_MODE (pattern);
885 code = GET_CODE (pattern);
886
887 switch (code)
888 {
889 case PARALLEL:
890 /* Toplevel peephole pattern. */
891 if (insn_type == PEEPHOLE2 && top)
892 {
893 int num_insns;
894
895 /* Check we have sufficient insns. This avoids complications
896 because we then know peep2_next_insn never fails. */
897 num_insns = XVECLEN (pattern, 0);
898 if (num_insns > 1)
899 {
900 test = new_decision_test (DT_num_insns, &place);
901 test->u.num_insns = num_insns;
902 last = &sub->success;
903 }
904 else
905 {
906 /* We don't need the node we just created -- unlink it. */
907 last->first = last->last = NULL;
908 }
909
910 for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++)
911 {
912 /* Which insn we're looking at is represented by A-Z. We don't
913 ever use 'A', however; it is always implied. */
914
915 subpos[depth] = (i > 0 ? 'A' + i : 0);
916 sub = add_to_sequence (XVECEXP (pattern, 0, i),
917 last, subpos, insn_type, 0);
918 last = &sub->success;
919 }
920 goto ret;
921 }
922
923 /* Else nothing special. */
924 break;
925
926 case MATCH_PARALLEL:
927 /* The explicit patterns within a match_parallel enforce a minimum
928 length on the vector. The match_parallel predicate may allow
929 for more elements. We do need to check for this minimum here
930 or the code generated to match the internals may reference data
931 beyond the end of the vector. */
932 test = new_decision_test (DT_veclen_ge, &place);
933 test->u.veclen = XVECLEN (pattern, 2);
934 /* Fall through. */
935
936 case MATCH_OPERAND:
937 case MATCH_SCRATCH:
938 case MATCH_OPERATOR:
939 {
940 RTX_CODE was_code = code;
941 const char *pred_name;
942 bool allows_const_int = true;
943
944 if (code == MATCH_SCRATCH)
945 {
946 pred_name = "scratch_operand";
947 code = UNKNOWN;
948 }
949 else
950 {
951 pred_name = XSTR (pattern, 1);
952 if (code == MATCH_PARALLEL)
953 code = PARALLEL;
954 else
955 code = UNKNOWN;
956 }
957
958 if (pred_name[0] != 0)
959 {
960 const struct pred_data *pred;
961
962 test = new_decision_test (DT_pred, &place);
963 test->u.pred.name = pred_name;
964 test->u.pred.mode = mode;
965
966 /* See if we know about this predicate.
967 If we do, remember it for use below.
968
969 We can optimize the generated code a little if either
970 (a) the predicate only accepts one code, or (b) the
971 predicate does not allow CONST_INT, in which case it
972 can match only if the modes match. */
973 pred = lookup_predicate (pred_name);
974 if (pred)
975 {
976 test->u.pred.data = pred;
977 allows_const_int = pred->codes[CONST_INT];
978 if (was_code == MATCH_PARALLEL
979 && pred->singleton != PARALLEL)
980 message_with_line (pattern_lineno,
981 "predicate '%s' used in match_parallel "
982 "does not allow only PARALLEL", pred->name);
983 else
984 code = pred->singleton;
985 }
986 else
987 message_with_line (pattern_lineno,
988 "warning: unknown predicate '%s' in '%s' expression",
989 pred_name, GET_RTX_NAME (was_code));
990 }
991
992 /* Can't enforce a mode if we allow const_int. */
993 if (allows_const_int)
994 mode = VOIDmode;
995
996 /* Accept the operand, i.e. record it in `operands'. */
997 test = new_decision_test (DT_accept_op, &place);
998 test->u.opno = XINT (pattern, 0);
999
1000 if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL)
1001 {
1002 char base = (was_code == MATCH_OPERATOR ? '0' : 'a');
1003 for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++)
1004 {
1005 subpos[depth] = i + base;
1006 sub = add_to_sequence (XVECEXP (pattern, 2, i),
1007 &sub->success, subpos, insn_type, 0);
1008 }
1009 }
1010 goto fini;
1011 }
1012
1013 case MATCH_OP_DUP:
1014 code = UNKNOWN;
1015
1016 test = new_decision_test (DT_dup, &place);
1017 test->u.dup = XINT (pattern, 0);
1018
1019 test = new_decision_test (DT_accept_op, &place);
1020 test->u.opno = XINT (pattern, 0);
1021
1022 for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++)
1023 {
1024 subpos[depth] = i + '0';
1025 sub = add_to_sequence (XVECEXP (pattern, 1, i),
1026 &sub->success, subpos, insn_type, 0);
1027 }
1028 goto fini;
1029
1030 case MATCH_DUP:
1031 case MATCH_PAR_DUP:
1032 code = UNKNOWN;
1033
1034 test = new_decision_test (DT_dup, &place);
1035 test->u.dup = XINT (pattern, 0);
1036 goto fini;
1037
1038 case ADDRESS:
1039 pattern = XEXP (pattern, 0);
1040 goto restart;
1041
1042 default:
1043 break;
1044 }
1045
1046 fmt = GET_RTX_FORMAT (code);
1047 len = GET_RTX_LENGTH (code);
1048
1049 /* Do tests against the current node first. */
1050 for (i = 0; i < (size_t) len; i++)
1051 {
1052 if (fmt[i] == 'i')
1053 {
1054 gcc_assert (i < 2);
1055
1056 if (!i)
1057 {
1058 test = new_decision_test (DT_elt_zero_int, &place);
1059 test->u.intval = XINT (pattern, i);
1060 }
1061 else
1062 {
1063 test = new_decision_test (DT_elt_one_int, &place);
1064 test->u.intval = XINT (pattern, i);
1065 }
1066 }
1067 else if (fmt[i] == 'w')
1068 {
1069 /* If this value actually fits in an int, we can use a switch
1070 statement here, so indicate that. */
1071 enum decision_type type
1072 = ((int) XWINT (pattern, i) == XWINT (pattern, i))
1073 ? DT_elt_zero_wide_safe : DT_elt_zero_wide;
1074
1075 gcc_assert (!i);
1076
1077 test = new_decision_test (type, &place);
1078 test->u.intval = XWINT (pattern, i);
1079 }
1080 else if (fmt[i] == 'E')
1081 {
1082 gcc_assert (!i);
1083
1084 test = new_decision_test (DT_veclen, &place);
1085 test->u.veclen = XVECLEN (pattern, i);
1086 }
1087 }
1088
1089 /* Now test our sub-patterns. */
1090 for (i = 0; i < (size_t) len; i++)
1091 {
1092 switch (fmt[i])
1093 {
1094 case 'e': case 'u':
1095 subpos[depth] = '0' + i;
1096 sub = add_to_sequence (XEXP (pattern, i), &sub->success,
1097 subpos, insn_type, 0);
1098 break;
1099
1100 case 'E':
1101 {
1102 int j;
1103 for (j = 0; j < XVECLEN (pattern, i); j++)
1104 {
1105 subpos[depth] = 'a' + j;
1106 sub = add_to_sequence (XVECEXP (pattern, i, j),
1107 &sub->success, subpos, insn_type, 0);
1108 }
1109 break;
1110 }
1111
1112 case 'i': case 'w':
1113 /* Handled above. */
1114 break;
1115 case '0':
1116 break;
1117
1118 default:
1119 gcc_unreachable ();
1120 }
1121 }
1122
1123 fini:
1124 /* Insert nodes testing mode and code, if they're still relevant,
1125 before any of the nodes we may have added above. */
1126 if (code != UNKNOWN)
1127 {
1128 place = &this_decision->tests;
1129 test = new_decision_test (DT_code, &place);
1130 test->u.code = code;
1131 }
1132
1133 if (mode != VOIDmode)
1134 {
1135 place = &this_decision->tests;
1136 test = new_decision_test (DT_mode, &place);
1137 test->u.mode = mode;
1138 }
1139
1140 /* If we didn't insert any tests or accept nodes, hork. */
1141 gcc_assert (this_decision->tests);
1142
1143 ret:
1144 free (subpos);
1145 return sub;
1146 }
1147 \f
1148 /* A subroutine of maybe_both_true; examines only one test.
1149 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1150
1151 static int
1152 maybe_both_true_2 (struct decision_test *d1, struct decision_test *d2)
1153 {
1154 if (d1->type == d2->type)
1155 {
1156 switch (d1->type)
1157 {
1158 case DT_num_insns:
1159 if (d1->u.num_insns == d2->u.num_insns)
1160 return 1;
1161 else
1162 return -1;
1163
1164 case DT_mode:
1165 return d1->u.mode == d2->u.mode;
1166
1167 case DT_code:
1168 return d1->u.code == d2->u.code;
1169
1170 case DT_veclen:
1171 return d1->u.veclen == d2->u.veclen;
1172
1173 case DT_elt_zero_int:
1174 case DT_elt_one_int:
1175 case DT_elt_zero_wide:
1176 case DT_elt_zero_wide_safe:
1177 return d1->u.intval == d2->u.intval;
1178
1179 default:
1180 break;
1181 }
1182 }
1183
1184 /* If either has a predicate that we know something about, set
1185 things up so that D1 is the one that always has a known
1186 predicate. Then see if they have any codes in common. */
1187
1188 if (d1->type == DT_pred || d2->type == DT_pred)
1189 {
1190 if (d2->type == DT_pred)
1191 {
1192 struct decision_test *tmp;
1193 tmp = d1, d1 = d2, d2 = tmp;
1194 }
1195
1196 /* If D2 tests a mode, see if it matches D1. */
1197 if (d1->u.pred.mode != VOIDmode)
1198 {
1199 if (d2->type == DT_mode)
1200 {
1201 if (d1->u.pred.mode != d2->u.mode
1202 /* The mode of an address_operand predicate is the
1203 mode of the memory, not the operand. It can only
1204 be used for testing the predicate, so we must
1205 ignore it here. */
1206 && strcmp (d1->u.pred.name, "address_operand") != 0)
1207 return 0;
1208 }
1209 /* Don't check two predicate modes here, because if both predicates
1210 accept CONST_INT, then both can still be true even if the modes
1211 are different. If they don't accept CONST_INT, there will be a
1212 separate DT_mode that will make maybe_both_true_1 return 0. */
1213 }
1214
1215 if (d1->u.pred.data)
1216 {
1217 /* If D2 tests a code, see if it is in the list of valid
1218 codes for D1's predicate. */
1219 if (d2->type == DT_code)
1220 {
1221 if (!d1->u.pred.data->codes[d2->u.code])
1222 return 0;
1223 }
1224
1225 /* Otherwise see if the predicates have any codes in common. */
1226 else if (d2->type == DT_pred && d2->u.pred.data)
1227 {
1228 bool common = false;
1229 int c;
1230
1231 for (c = 0; c < NUM_RTX_CODE; c++)
1232 if (d1->u.pred.data->codes[c] && d2->u.pred.data->codes[c])
1233 {
1234 common = true;
1235 break;
1236 }
1237
1238 if (!common)
1239 return 0;
1240 }
1241 }
1242 }
1243
1244 /* Tests vs veclen may be known when strict equality is involved. */
1245 if (d1->type == DT_veclen && d2->type == DT_veclen_ge)
1246 return d1->u.veclen >= d2->u.veclen;
1247 if (d1->type == DT_veclen_ge && d2->type == DT_veclen)
1248 return d2->u.veclen >= d1->u.veclen;
1249
1250 return -1;
1251 }
1252
1253 /* A subroutine of maybe_both_true; examines all the tests for a given node.
1254 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1255
1256 static int
1257 maybe_both_true_1 (struct decision_test *d1, struct decision_test *d2)
1258 {
1259 struct decision_test *t1, *t2;
1260
1261 /* A match_operand with no predicate can match anything. Recognize
1262 this by the existence of a lone DT_accept_op test. */
1263 if (d1->type == DT_accept_op || d2->type == DT_accept_op)
1264 return 1;
1265
1266 /* Eliminate pairs of tests while they can exactly match. */
1267 while (d1 && d2 && d1->type == d2->type)
1268 {
1269 if (maybe_both_true_2 (d1, d2) == 0)
1270 return 0;
1271 d1 = d1->next, d2 = d2->next;
1272 }
1273
1274 /* After that, consider all pairs. */
1275 for (t1 = d1; t1 ; t1 = t1->next)
1276 for (t2 = d2; t2 ; t2 = t2->next)
1277 if (maybe_both_true_2 (t1, t2) == 0)
1278 return 0;
1279
1280 return -1;
1281 }
1282
1283 /* Return 0 if we can prove that there is no RTL that can match both
1284 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
1285 can match both or just that we couldn't prove there wasn't such an RTL).
1286
1287 TOPLEVEL is nonzero if we are to only look at the top level and not
1288 recursively descend. */
1289
1290 static int
1291 maybe_both_true (struct decision *d1, struct decision *d2,
1292 int toplevel)
1293 {
1294 struct decision *p1, *p2;
1295 int cmp;
1296
1297 /* Don't compare strings on the different positions in insn. Doing so
1298 is incorrect and results in false matches from constructs like
1299
1300 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1301 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1302 vs
1303 [(set (match_operand:HI "register_operand" "r")
1304 (match_operand:HI "register_operand" "r"))]
1305
1306 If we are presented with such, we are recursing through the remainder
1307 of a node's success nodes (from the loop at the end of this function).
1308 Skip forward until we come to a position that matches.
1309
1310 Due to the way position strings are constructed, we know that iterating
1311 forward from the lexically lower position (e.g. "00") will run into
1312 the lexically higher position (e.g. "1") and not the other way around.
1313 This saves a bit of effort. */
1314
1315 cmp = strcmp (d1->position, d2->position);
1316 if (cmp != 0)
1317 {
1318 gcc_assert (!toplevel);
1319
1320 /* If the d2->position was lexically lower, swap. */
1321 if (cmp > 0)
1322 p1 = d1, d1 = d2, d2 = p1;
1323
1324 if (d1->success.first == 0)
1325 return 1;
1326 for (p1 = d1->success.first; p1; p1 = p1->next)
1327 if (maybe_both_true (p1, d2, 0))
1328 return 1;
1329
1330 return 0;
1331 }
1332
1333 /* Test the current level. */
1334 cmp = maybe_both_true_1 (d1->tests, d2->tests);
1335 if (cmp >= 0)
1336 return cmp;
1337
1338 /* We can't prove that D1 and D2 cannot both be true. If we are only
1339 to check the top level, return 1. Otherwise, see if we can prove
1340 that all choices in both successors are mutually exclusive. If
1341 either does not have any successors, we can't prove they can't both
1342 be true. */
1343
1344 if (toplevel || d1->success.first == 0 || d2->success.first == 0)
1345 return 1;
1346
1347 for (p1 = d1->success.first; p1; p1 = p1->next)
1348 for (p2 = d2->success.first; p2; p2 = p2->next)
1349 if (maybe_both_true (p1, p2, 0))
1350 return 1;
1351
1352 return 0;
1353 }
1354
1355 /* A subroutine of nodes_identical. Examine two tests for equivalence. */
1356
1357 static int
1358 nodes_identical_1 (struct decision_test *d1, struct decision_test *d2)
1359 {
1360 switch (d1->type)
1361 {
1362 case DT_num_insns:
1363 return d1->u.num_insns == d2->u.num_insns;
1364
1365 case DT_mode:
1366 return d1->u.mode == d2->u.mode;
1367
1368 case DT_code:
1369 return d1->u.code == d2->u.code;
1370
1371 case DT_pred:
1372 return (d1->u.pred.mode == d2->u.pred.mode
1373 && strcmp (d1->u.pred.name, d2->u.pred.name) == 0);
1374
1375 case DT_c_test:
1376 return strcmp (d1->u.c_test, d2->u.c_test) == 0;
1377
1378 case DT_veclen:
1379 case DT_veclen_ge:
1380 return d1->u.veclen == d2->u.veclen;
1381
1382 case DT_dup:
1383 return d1->u.dup == d2->u.dup;
1384
1385 case DT_elt_zero_int:
1386 case DT_elt_one_int:
1387 case DT_elt_zero_wide:
1388 case DT_elt_zero_wide_safe:
1389 return d1->u.intval == d2->u.intval;
1390
1391 case DT_accept_op:
1392 return d1->u.opno == d2->u.opno;
1393
1394 case DT_accept_insn:
1395 /* Differences will be handled in merge_accept_insn. */
1396 return 1;
1397
1398 default:
1399 gcc_unreachable ();
1400 }
1401 }
1402
1403 /* True iff the two nodes are identical (on one level only). Due
1404 to the way these lists are constructed, we shouldn't have to
1405 consider different orderings on the tests. */
1406
1407 static int
1408 nodes_identical (struct decision *d1, struct decision *d2)
1409 {
1410 struct decision_test *t1, *t2;
1411
1412 for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next)
1413 {
1414 if (t1->type != t2->type)
1415 return 0;
1416 if (! nodes_identical_1 (t1, t2))
1417 return 0;
1418 }
1419
1420 /* For success, they should now both be null. */
1421 if (t1 != t2)
1422 return 0;
1423
1424 /* Check that their subnodes are at the same position, as any one set
1425 of sibling decisions must be at the same position. Allowing this
1426 requires complications to find_afterward and when change_state is
1427 invoked. */
1428 if (d1->success.first
1429 && d2->success.first
1430 && strcmp (d1->success.first->position, d2->success.first->position))
1431 return 0;
1432
1433 return 1;
1434 }
1435
1436 /* A subroutine of merge_trees; given two nodes that have been declared
1437 identical, cope with two insn accept states. If they differ in the
1438 number of clobbers, then the conflict was created by make_insn_sequence
1439 and we can drop the with-clobbers version on the floor. If both
1440 nodes have no additional clobbers, we have found an ambiguity in the
1441 source machine description. */
1442
1443 static void
1444 merge_accept_insn (struct decision *oldd, struct decision *addd)
1445 {
1446 struct decision_test *old, *add;
1447
1448 for (old = oldd->tests; old; old = old->next)
1449 if (old->type == DT_accept_insn)
1450 break;
1451 if (old == NULL)
1452 return;
1453
1454 for (add = addd->tests; add; add = add->next)
1455 if (add->type == DT_accept_insn)
1456 break;
1457 if (add == NULL)
1458 return;
1459
1460 /* If one node is for a normal insn and the second is for the base
1461 insn with clobbers stripped off, the second node should be ignored. */
1462
1463 if (old->u.insn.num_clobbers_to_add == 0
1464 && add->u.insn.num_clobbers_to_add > 0)
1465 {
1466 /* Nothing to do here. */
1467 }
1468 else if (old->u.insn.num_clobbers_to_add > 0
1469 && add->u.insn.num_clobbers_to_add == 0)
1470 {
1471 /* In this case, replace OLD with ADD. */
1472 old->u.insn = add->u.insn;
1473 }
1474 else
1475 {
1476 error_with_line (add->u.insn.lineno, "`%s' matches `%s'",
1477 get_insn_name (add->u.insn.code_number),
1478 get_insn_name (old->u.insn.code_number));
1479 message_with_line (old->u.insn.lineno, "previous definition of `%s'",
1480 get_insn_name (old->u.insn.code_number));
1481 }
1482 }
1483
1484 /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1485
1486 static void
1487 merge_trees (struct decision_head *oldh, struct decision_head *addh)
1488 {
1489 struct decision *next, *add;
1490
1491 if (addh->first == 0)
1492 return;
1493 if (oldh->first == 0)
1494 {
1495 *oldh = *addh;
1496 return;
1497 }
1498
1499 /* Trying to merge bits at different positions isn't possible. */
1500 gcc_assert (!strcmp (oldh->first->position, addh->first->position));
1501
1502 for (add = addh->first; add ; add = next)
1503 {
1504 struct decision *old, *insert_before = NULL;
1505
1506 next = add->next;
1507
1508 /* The semantics of pattern matching state that the tests are
1509 done in the order given in the MD file so that if an insn
1510 matches two patterns, the first one will be used. However,
1511 in practice, most, if not all, patterns are unambiguous so
1512 that their order is independent. In that case, we can merge
1513 identical tests and group all similar modes and codes together.
1514
1515 Scan starting from the end of OLDH until we reach a point
1516 where we reach the head of the list or where we pass a
1517 pattern that could also be true if NEW is true. If we find
1518 an identical pattern, we can merge them. Also, record the
1519 last node that tests the same code and mode and the last one
1520 that tests just the same mode.
1521
1522 If we have no match, place NEW after the closest match we found. */
1523
1524 for (old = oldh->last; old; old = old->prev)
1525 {
1526 if (nodes_identical (old, add))
1527 {
1528 merge_accept_insn (old, add);
1529 merge_trees (&old->success, &add->success);
1530 goto merged_nodes;
1531 }
1532
1533 if (maybe_both_true (old, add, 0))
1534 break;
1535
1536 /* Insert the nodes in DT test type order, which is roughly
1537 how expensive/important the test is. Given that the tests
1538 are also ordered within the list, examining the first is
1539 sufficient. */
1540 if ((int) add->tests->type < (int) old->tests->type)
1541 insert_before = old;
1542 }
1543
1544 if (insert_before == NULL)
1545 {
1546 add->next = NULL;
1547 add->prev = oldh->last;
1548 oldh->last->next = add;
1549 oldh->last = add;
1550 }
1551 else
1552 {
1553 if ((add->prev = insert_before->prev) != NULL)
1554 add->prev->next = add;
1555 else
1556 oldh->first = add;
1557 add->next = insert_before;
1558 insert_before->prev = add;
1559 }
1560
1561 merged_nodes:;
1562 }
1563 }
1564 \f
1565 /* Walk the tree looking for sub-nodes that perform common tests.
1566 Factor out the common test into a new node. This enables us
1567 (depending on the test type) to emit switch statements later. */
1568
1569 static void
1570 factor_tests (struct decision_head *head)
1571 {
1572 struct decision *first, *next;
1573
1574 for (first = head->first; first && first->next; first = next)
1575 {
1576 enum decision_type type;
1577 struct decision *new_dec, *old_last;
1578
1579 type = first->tests->type;
1580 next = first->next;
1581
1582 /* Want at least two compatible sequential nodes. */
1583 if (next->tests->type != type)
1584 continue;
1585
1586 /* Don't want all node types, just those we can turn into
1587 switch statements. */
1588 if (type != DT_mode
1589 && type != DT_code
1590 && type != DT_veclen
1591 && type != DT_elt_zero_int
1592 && type != DT_elt_one_int
1593 && type != DT_elt_zero_wide_safe)
1594 continue;
1595
1596 /* If we'd been performing more than one test, create a new node
1597 below our first test. */
1598 if (first->tests->next != NULL)
1599 {
1600 new_dec = new_decision (first->position, &first->success);
1601 new_dec->tests = first->tests->next;
1602 first->tests->next = NULL;
1603 }
1604
1605 /* Crop the node tree off after our first test. */
1606 first->next = NULL;
1607 old_last = head->last;
1608 head->last = first;
1609
1610 /* For each compatible test, adjust to perform only one test in
1611 the top level node, then merge the node back into the tree. */
1612 do
1613 {
1614 struct decision_head h;
1615
1616 if (next->tests->next != NULL)
1617 {
1618 new_dec = new_decision (next->position, &next->success);
1619 new_dec->tests = next->tests->next;
1620 next->tests->next = NULL;
1621 }
1622 new_dec = next;
1623 next = next->next;
1624 new_dec->next = NULL;
1625 h.first = h.last = new_dec;
1626
1627 merge_trees (head, &h);
1628 }
1629 while (next && next->tests->type == type);
1630
1631 /* After we run out of compatible tests, graft the remaining nodes
1632 back onto the tree. */
1633 if (next)
1634 {
1635 next->prev = head->last;
1636 head->last->next = next;
1637 head->last = old_last;
1638 }
1639 }
1640
1641 /* Recurse. */
1642 for (first = head->first; first; first = first->next)
1643 factor_tests (&first->success);
1644 }
1645
1646 /* After factoring, try to simplify the tests on any one node.
1647 Tests that are useful for switch statements are recognizable
1648 by having only a single test on a node -- we'll be manipulating
1649 nodes with multiple tests:
1650
1651 If we have mode tests or code tests that are redundant with
1652 predicates, remove them. */
1653
1654 static void
1655 simplify_tests (struct decision_head *head)
1656 {
1657 struct decision *tree;
1658
1659 for (tree = head->first; tree; tree = tree->next)
1660 {
1661 struct decision_test *a, *b;
1662
1663 a = tree->tests;
1664 b = a->next;
1665 if (b == NULL)
1666 continue;
1667
1668 /* Find a predicate node. */
1669 while (b && b->type != DT_pred)
1670 b = b->next;
1671 if (b)
1672 {
1673 /* Due to how these tests are constructed, we don't even need
1674 to check that the mode and code are compatible -- they were
1675 generated from the predicate in the first place. */
1676 while (a->type == DT_mode || a->type == DT_code)
1677 a = a->next;
1678 tree->tests = a;
1679 }
1680 }
1681
1682 /* Recurse. */
1683 for (tree = head->first; tree; tree = tree->next)
1684 simplify_tests (&tree->success);
1685 }
1686
1687 /* Count the number of subnodes of HEAD. If the number is high enough,
1688 make the first node in HEAD start a separate subroutine in the C code
1689 that is generated. */
1690
1691 static int
1692 break_out_subroutines (struct decision_head *head, int initial)
1693 {
1694 int size = 0;
1695 struct decision *sub;
1696
1697 for (sub = head->first; sub; sub = sub->next)
1698 size += 1 + break_out_subroutines (&sub->success, 0);
1699
1700 if (size > SUBROUTINE_THRESHOLD && ! initial)
1701 {
1702 head->first->subroutine_number = ++next_subroutine_number;
1703 size = 1;
1704 }
1705 return size;
1706 }
1707
1708 /* For each node p, find the next alternative that might be true
1709 when p is true. */
1710
1711 static void
1712 find_afterward (struct decision_head *head, struct decision *real_afterward)
1713 {
1714 struct decision *p, *q, *afterward;
1715
1716 /* We can't propagate alternatives across subroutine boundaries.
1717 This is not incorrect, merely a minor optimization loss. */
1718
1719 p = head->first;
1720 afterward = (p->subroutine_number > 0 ? NULL : real_afterward);
1721
1722 for ( ; p ; p = p->next)
1723 {
1724 /* Find the next node that might be true if this one fails. */
1725 for (q = p->next; q ; q = q->next)
1726 if (maybe_both_true (p, q, 1))
1727 break;
1728
1729 /* If we reached the end of the list without finding one,
1730 use the incoming afterward position. */
1731 if (!q)
1732 q = afterward;
1733 p->afterward = q;
1734 if (q)
1735 q->need_label = 1;
1736 }
1737
1738 /* Recurse. */
1739 for (p = head->first; p ; p = p->next)
1740 if (p->success.first)
1741 find_afterward (&p->success, p->afterward);
1742
1743 /* When we are generating a subroutine, record the real afterward
1744 position in the first node where write_tree can find it, and we
1745 can do the right thing at the subroutine call site. */
1746 p = head->first;
1747 if (p->subroutine_number > 0)
1748 p->afterward = real_afterward;
1749 }
1750 \f
1751 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1752 actions are necessary to move to NEWPOS. If we fail to move to the
1753 new state, branch to node AFTERWARD if nonzero, otherwise return.
1754
1755 Failure to move to the new state can only occur if we are trying to
1756 match multiple insns and we try to step past the end of the stream. */
1757
1758 static void
1759 change_state (const char *oldpos, const char *newpos, const char *indent)
1760 {
1761 int odepth = strlen (oldpos);
1762 int ndepth = strlen (newpos);
1763 int depth;
1764
1765 /* Pop up as many levels as necessary. */
1766 for (depth = odepth; strncmp (oldpos, newpos, depth) != 0; --depth)
1767 continue;
1768
1769 /* Go down to desired level. */
1770 while (depth < ndepth)
1771 {
1772 /* It's a different insn from the first one. */
1773 if (ISUPPER (newpos[depth]))
1774 {
1775 printf ("%stem = peep2_next_insn (%d);\n",
1776 indent, newpos[depth] - 'A');
1777 printf ("%sx%d = PATTERN (tem);\n", indent, depth + 1);
1778 }
1779 else if (ISLOWER (newpos[depth]))
1780 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1781 indent, depth + 1, depth, newpos[depth] - 'a');
1782 else
1783 printf ("%sx%d = XEXP (x%d, %c);\n",
1784 indent, depth + 1, depth, newpos[depth]);
1785 ++depth;
1786 }
1787 }
1788 \f
1789 /* Print the enumerator constant for CODE -- the upcase version of
1790 the name. */
1791
1792 static void
1793 print_code (enum rtx_code code)
1794 {
1795 const char *p;
1796 for (p = GET_RTX_NAME (code); *p; p++)
1797 putchar (TOUPPER (*p));
1798 }
1799
1800 /* Emit code to cross an afterward link -- change state and branch. */
1801
1802 static void
1803 write_afterward (struct decision *start, struct decision *afterward,
1804 const char *indent)
1805 {
1806 if (!afterward || start->subroutine_number > 0)
1807 printf("%sgoto ret0;\n", indent);
1808 else
1809 {
1810 change_state (start->position, afterward->position, indent);
1811 printf ("%sgoto L%d;\n", indent, afterward->number);
1812 }
1813 }
1814
1815 /* Emit a HOST_WIDE_INT as an integer constant expression. We need to take
1816 special care to avoid "decimal constant is so large that it is unsigned"
1817 warnings in the resulting code. */
1818
1819 static void
1820 print_host_wide_int (HOST_WIDE_INT val)
1821 {
1822 HOST_WIDE_INT min = (unsigned HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1);
1823 if (val == min)
1824 printf ("(" HOST_WIDE_INT_PRINT_DEC_C "-1)", val + 1);
1825 else
1826 printf (HOST_WIDE_INT_PRINT_DEC_C, val);
1827 }
1828
1829 /* Emit a switch statement, if possible, for an initial sequence of
1830 nodes at START. Return the first node yet untested. */
1831
1832 static struct decision *
1833 write_switch (struct decision *start, int depth)
1834 {
1835 struct decision *p = start;
1836 enum decision_type type = p->tests->type;
1837 struct decision *needs_label = NULL;
1838
1839 /* If we have two or more nodes in sequence that test the same one
1840 thing, we may be able to use a switch statement. */
1841
1842 if (!p->next
1843 || p->tests->next
1844 || p->next->tests->type != type
1845 || p->next->tests->next
1846 || nodes_identical_1 (p->tests, p->next->tests))
1847 return p;
1848
1849 /* DT_code is special in that we can do interesting things with
1850 known predicates at the same time. */
1851 if (type == DT_code)
1852 {
1853 char codemap[NUM_RTX_CODE];
1854 struct decision *ret;
1855 RTX_CODE code;
1856
1857 memset (codemap, 0, sizeof(codemap));
1858
1859 printf (" switch (GET_CODE (x%d))\n {\n", depth);
1860 code = p->tests->u.code;
1861 do
1862 {
1863 if (p != start && p->need_label && needs_label == NULL)
1864 needs_label = p;
1865
1866 printf (" case ");
1867 print_code (code);
1868 printf (":\n goto L%d;\n", p->success.first->number);
1869 p->success.first->need_label = 1;
1870
1871 codemap[code] = 1;
1872 p = p->next;
1873 }
1874 while (p
1875 && ! p->tests->next
1876 && p->tests->type == DT_code
1877 && ! codemap[code = p->tests->u.code]);
1878
1879 /* If P is testing a predicate that we know about and we haven't
1880 seen any of the codes that are valid for the predicate, we can
1881 write a series of "case" statement, one for each possible code.
1882 Since we are already in a switch, these redundant tests are very
1883 cheap and will reduce the number of predicates called. */
1884
1885 /* Note that while we write out cases for these predicates here,
1886 we don't actually write the test here, as it gets kinda messy.
1887 It is trivial to leave this to later by telling our caller that
1888 we only processed the CODE tests. */
1889 if (needs_label != NULL)
1890 ret = needs_label;
1891 else
1892 ret = p;
1893
1894 while (p && p->tests->type == DT_pred && p->tests->u.pred.data)
1895 {
1896 const struct pred_data *data = p->tests->u.pred.data;
1897 int c;
1898
1899 for (c = 0; c < NUM_RTX_CODE; c++)
1900 if (codemap[c] && data->codes[c])
1901 goto pred_done;
1902
1903 for (c = 0; c < NUM_RTX_CODE; c++)
1904 if (data->codes[c])
1905 {
1906 fputs (" case ", stdout);
1907 print_code ((enum rtx_code) c);
1908 fputs (":\n", stdout);
1909 codemap[c] = 1;
1910 }
1911
1912 printf (" goto L%d;\n", p->number);
1913 p->need_label = 1;
1914 p = p->next;
1915 }
1916
1917 pred_done:
1918 /* Make the default case skip the predicates we managed to match. */
1919
1920 printf (" default:\n");
1921 if (p != ret)
1922 {
1923 if (p)
1924 {
1925 printf (" goto L%d;\n", p->number);
1926 p->need_label = 1;
1927 }
1928 else
1929 write_afterward (start, start->afterward, " ");
1930 }
1931 else
1932 printf (" break;\n");
1933 printf (" }\n");
1934
1935 return ret;
1936 }
1937 else if (type == DT_mode
1938 || type == DT_veclen
1939 || type == DT_elt_zero_int
1940 || type == DT_elt_one_int
1941 || type == DT_elt_zero_wide_safe)
1942 {
1943 const char *indent = "";
1944
1945 /* We cast switch parameter to integer, so we must ensure that the value
1946 fits. */
1947 if (type == DT_elt_zero_wide_safe)
1948 {
1949 indent = " ";
1950 printf(" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n", depth, depth);
1951 }
1952 printf ("%s switch (", indent);
1953 switch (type)
1954 {
1955 case DT_mode:
1956 printf ("GET_MODE (x%d)", depth);
1957 break;
1958 case DT_veclen:
1959 printf ("XVECLEN (x%d, 0)", depth);
1960 break;
1961 case DT_elt_zero_int:
1962 printf ("XINT (x%d, 0)", depth);
1963 break;
1964 case DT_elt_one_int:
1965 printf ("XINT (x%d, 1)", depth);
1966 break;
1967 case DT_elt_zero_wide_safe:
1968 /* Convert result of XWINT to int for portability since some C
1969 compilers won't do it and some will. */
1970 printf ("(int) XWINT (x%d, 0)", depth);
1971 break;
1972 default:
1973 gcc_unreachable ();
1974 }
1975 printf (")\n%s {\n", indent);
1976
1977 do
1978 {
1979 /* Merge trees will not unify identical nodes if their
1980 sub-nodes are at different levels. Thus we must check
1981 for duplicate cases. */
1982 struct decision *q;
1983 for (q = start; q != p; q = q->next)
1984 if (nodes_identical_1 (p->tests, q->tests))
1985 goto case_done;
1986
1987 if (p != start && p->need_label && needs_label == NULL)
1988 needs_label = p;
1989
1990 printf ("%s case ", indent);
1991 switch (type)
1992 {
1993 case DT_mode:
1994 printf ("%smode", GET_MODE_NAME (p->tests->u.mode));
1995 break;
1996 case DT_veclen:
1997 printf ("%d", p->tests->u.veclen);
1998 break;
1999 case DT_elt_zero_int:
2000 case DT_elt_one_int:
2001 case DT_elt_zero_wide:
2002 case DT_elt_zero_wide_safe:
2003 print_host_wide_int (p->tests->u.intval);
2004 break;
2005 default:
2006 gcc_unreachable ();
2007 }
2008 printf (":\n%s goto L%d;\n", indent, p->success.first->number);
2009 p->success.first->need_label = 1;
2010
2011 p = p->next;
2012 }
2013 while (p && p->tests->type == type && !p->tests->next);
2014
2015 case_done:
2016 printf ("%s default:\n%s break;\n%s }\n",
2017 indent, indent, indent);
2018
2019 return needs_label != NULL ? needs_label : p;
2020 }
2021 else
2022 {
2023 /* None of the other tests are amenable. */
2024 return p;
2025 }
2026 }
2027
2028 /* Emit code for one test. */
2029
2030 static void
2031 write_cond (struct decision_test *p, int depth,
2032 enum routine_type subroutine_type)
2033 {
2034 switch (p->type)
2035 {
2036 case DT_num_insns:
2037 printf ("peep2_current_count >= %d", p->u.num_insns);
2038 break;
2039
2040 case DT_mode:
2041 printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode));
2042 break;
2043
2044 case DT_code:
2045 printf ("GET_CODE (x%d) == ", depth);
2046 print_code (p->u.code);
2047 break;
2048
2049 case DT_veclen:
2050 printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen);
2051 break;
2052
2053 case DT_elt_zero_int:
2054 printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval);
2055 break;
2056
2057 case DT_elt_one_int:
2058 printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval);
2059 break;
2060
2061 case DT_elt_zero_wide:
2062 case DT_elt_zero_wide_safe:
2063 printf ("XWINT (x%d, 0) == ", depth);
2064 print_host_wide_int (p->u.intval);
2065 break;
2066
2067 case DT_const_int:
2068 printf ("x%d == const_int_rtx[MAX_SAVED_CONST_INT + (%d)]",
2069 depth, (int) p->u.intval);
2070 break;
2071
2072 case DT_veclen_ge:
2073 printf ("XVECLEN (x%d, 0) >= %d", depth, p->u.veclen);
2074 break;
2075
2076 case DT_dup:
2077 printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup);
2078 break;
2079
2080 case DT_pred:
2081 printf ("%s (x%d, %smode)", p->u.pred.name, depth,
2082 GET_MODE_NAME (p->u.pred.mode));
2083 break;
2084
2085 case DT_c_test:
2086 print_c_condition (p->u.c_test);
2087 break;
2088
2089 case DT_accept_insn:
2090 gcc_assert (subroutine_type == RECOG);
2091 gcc_assert (p->u.insn.num_clobbers_to_add);
2092 printf ("pnum_clobbers != NULL");
2093 break;
2094
2095 default:
2096 gcc_unreachable ();
2097 }
2098 }
2099
2100 /* Emit code for one action. The previous tests have succeeded;
2101 TEST is the last of the chain. In the normal case we simply
2102 perform a state change. For the `accept' tests we must do more work. */
2103
2104 static void
2105 write_action (struct decision *p, struct decision_test *test,
2106 int depth, int uncond, struct decision *success,
2107 enum routine_type subroutine_type)
2108 {
2109 const char *indent;
2110 int want_close = 0;
2111
2112 if (uncond)
2113 indent = " ";
2114 else if (test->type == DT_accept_op || test->type == DT_accept_insn)
2115 {
2116 fputs (" {\n", stdout);
2117 indent = " ";
2118 want_close = 1;
2119 }
2120 else
2121 indent = " ";
2122
2123 if (test->type == DT_accept_op)
2124 {
2125 printf("%soperands[%d] = x%d;\n", indent, test->u.opno, depth);
2126
2127 /* Only allow DT_accept_insn to follow. */
2128 if (test->next)
2129 {
2130 test = test->next;
2131 gcc_assert (test->type == DT_accept_insn);
2132 }
2133 }
2134
2135 /* Sanity check that we're now at the end of the list of tests. */
2136 gcc_assert (!test->next);
2137
2138 if (test->type == DT_accept_insn)
2139 {
2140 switch (subroutine_type)
2141 {
2142 case RECOG:
2143 if (test->u.insn.num_clobbers_to_add != 0)
2144 printf ("%s*pnum_clobbers = %d;\n",
2145 indent, test->u.insn.num_clobbers_to_add);
2146 printf ("%sreturn %d; /* %s */\n", indent,
2147 test->u.insn.code_number,
2148 get_insn_name (test->u.insn.code_number));
2149 break;
2150
2151 case SPLIT:
2152 printf ("%sreturn gen_split_%d (insn, operands);\n",
2153 indent, test->u.insn.code_number);
2154 break;
2155
2156 case PEEPHOLE2:
2157 {
2158 int match_len = 0, i;
2159
2160 for (i = strlen (p->position) - 1; i >= 0; --i)
2161 if (ISUPPER (p->position[i]))
2162 {
2163 match_len = p->position[i] - 'A';
2164 break;
2165 }
2166 printf ("%s*_pmatch_len = %d;\n", indent, match_len);
2167 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
2168 indent, test->u.insn.code_number);
2169 printf ("%sif (tem != 0)\n%s return tem;\n", indent, indent);
2170 }
2171 break;
2172
2173 default:
2174 gcc_unreachable ();
2175 }
2176 }
2177 else
2178 {
2179 printf("%sgoto L%d;\n", indent, success->number);
2180 success->need_label = 1;
2181 }
2182
2183 if (want_close)
2184 fputs (" }\n", stdout);
2185 }
2186
2187 /* Return 1 if the test is always true and has no fallthru path. Return -1
2188 if the test does have a fallthru path, but requires that the condition be
2189 terminated. Otherwise return 0 for a normal test. */
2190 /* ??? is_unconditional is a stupid name for a tri-state function. */
2191
2192 static int
2193 is_unconditional (struct decision_test *t, enum routine_type subroutine_type)
2194 {
2195 if (t->type == DT_accept_op)
2196 return 1;
2197
2198 if (t->type == DT_accept_insn)
2199 {
2200 switch (subroutine_type)
2201 {
2202 case RECOG:
2203 return (t->u.insn.num_clobbers_to_add == 0);
2204 case SPLIT:
2205 return 1;
2206 case PEEPHOLE2:
2207 return -1;
2208 default:
2209 gcc_unreachable ();
2210 }
2211 }
2212
2213 return 0;
2214 }
2215
2216 /* Emit code for one node -- the conditional and the accompanying action.
2217 Return true if there is no fallthru path. */
2218
2219 static int
2220 write_node (struct decision *p, int depth,
2221 enum routine_type subroutine_type)
2222 {
2223 struct decision_test *test, *last_test;
2224 int uncond;
2225
2226 /* Scan the tests and simplify comparisons against small
2227 constants. */
2228 for (test = p->tests; test; test = test->next)
2229 {
2230 if (test->type == DT_code
2231 && test->u.code == CONST_INT
2232 && test->next
2233 && test->next->type == DT_elt_zero_wide_safe
2234 && -MAX_SAVED_CONST_INT <= test->next->u.intval
2235 && test->next->u.intval <= MAX_SAVED_CONST_INT)
2236 {
2237 test->type = DT_const_int;
2238 test->u.intval = test->next->u.intval;
2239 test->next = test->next->next;
2240 }
2241 }
2242
2243 last_test = test = p->tests;
2244 uncond = is_unconditional (test, subroutine_type);
2245 if (uncond == 0)
2246 {
2247 printf (" if (");
2248 write_cond (test, depth, subroutine_type);
2249
2250 while ((test = test->next) != NULL)
2251 {
2252 last_test = test;
2253 if (is_unconditional (test, subroutine_type))
2254 break;
2255
2256 printf ("\n && ");
2257 write_cond (test, depth, subroutine_type);
2258 }
2259
2260 printf (")\n");
2261 }
2262
2263 write_action (p, last_test, depth, uncond, p->success.first, subroutine_type);
2264
2265 return uncond > 0;
2266 }
2267
2268 /* Emit code for all of the sibling nodes of HEAD. */
2269
2270 static void
2271 write_tree_1 (struct decision_head *head, int depth,
2272 enum routine_type subroutine_type)
2273 {
2274 struct decision *p, *next;
2275 int uncond = 0;
2276
2277 for (p = head->first; p ; p = next)
2278 {
2279 /* The label for the first element was printed in write_tree. */
2280 if (p != head->first && p->need_label)
2281 OUTPUT_LABEL (" ", p->number);
2282
2283 /* Attempt to write a switch statement for a whole sequence. */
2284 next = write_switch (p, depth);
2285 if (p != next)
2286 uncond = 0;
2287 else
2288 {
2289 /* Failed -- fall back and write one node. */
2290 uncond = write_node (p, depth, subroutine_type);
2291 next = p->next;
2292 }
2293 }
2294
2295 /* Finished with this chain. Close a fallthru path by branching
2296 to the afterward node. */
2297 if (! uncond)
2298 write_afterward (head->last, head->last->afterward, " ");
2299 }
2300
2301 /* Write out the decision tree starting at HEAD. PREVPOS is the
2302 position at the node that branched to this node. */
2303
2304 static void
2305 write_tree (struct decision_head *head, const char *prevpos,
2306 enum routine_type type, int initial)
2307 {
2308 struct decision *p = head->first;
2309
2310 putchar ('\n');
2311 if (p->need_label)
2312 OUTPUT_LABEL (" ", p->number);
2313
2314 if (! initial && p->subroutine_number > 0)
2315 {
2316 static const char * const name_prefix[] = {
2317 "recog", "split", "peephole2"
2318 };
2319
2320 static const char * const call_suffix[] = {
2321 ", pnum_clobbers", "", ", _pmatch_len"
2322 };
2323
2324 /* This node has been broken out into a separate subroutine.
2325 Call it, test the result, and branch accordingly. */
2326
2327 if (p->afterward)
2328 {
2329 printf (" tem = %s_%d (x0, insn%s);\n",
2330 name_prefix[type], p->subroutine_number, call_suffix[type]);
2331 if (IS_SPLIT (type))
2332 printf (" if (tem != 0)\n return tem;\n");
2333 else
2334 printf (" if (tem >= 0)\n return tem;\n");
2335
2336 change_state (p->position, p->afterward->position, " ");
2337 printf (" goto L%d;\n", p->afterward->number);
2338 }
2339 else
2340 {
2341 printf (" return %s_%d (x0, insn%s);\n",
2342 name_prefix[type], p->subroutine_number, call_suffix[type]);
2343 }
2344 }
2345 else
2346 {
2347 int depth = strlen (p->position);
2348
2349 change_state (prevpos, p->position, " ");
2350 write_tree_1 (head, depth, type);
2351
2352 for (p = head->first; p; p = p->next)
2353 if (p->success.first)
2354 write_tree (&p->success, p->position, type, 0);
2355 }
2356 }
2357
2358 /* Write out a subroutine of type TYPE to do comparisons starting at
2359 node TREE. */
2360
2361 static void
2362 write_subroutine (struct decision_head *head, enum routine_type type)
2363 {
2364 int subfunction = head->first ? head->first->subroutine_number : 0;
2365 const char *s_or_e;
2366 char extension[32];
2367 int i;
2368
2369 s_or_e = subfunction ? "static " : "";
2370
2371 if (subfunction)
2372 sprintf (extension, "_%d", subfunction);
2373 else if (type == RECOG)
2374 extension[0] = '\0';
2375 else
2376 strcpy (extension, "_insns");
2377
2378 switch (type)
2379 {
2380 case RECOG:
2381 printf ("%sint\n\
2382 recog%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", s_or_e, extension);
2383 break;
2384 case SPLIT:
2385 printf ("%srtx\n\
2386 split%s (rtx x0 ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED)\n",
2387 s_or_e, extension);
2388 break;
2389 case PEEPHOLE2:
2390 printf ("%srtx\n\
2391 peephole2%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *_pmatch_len ATTRIBUTE_UNUSED)\n",
2392 s_or_e, extension);
2393 break;
2394 }
2395
2396 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
2397 for (i = 1; i <= max_depth; i++)
2398 printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i);
2399
2400 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int");
2401
2402 if (!subfunction)
2403 printf (" recog_data.insn = NULL_RTX;\n");
2404
2405 if (head->first)
2406 write_tree (head, "", type, 1);
2407 else
2408 printf (" goto ret0;\n");
2409
2410 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1);
2411 }
2412
2413 /* In break_out_subroutines, we discovered the boundaries for the
2414 subroutines, but did not write them out. Do so now. */
2415
2416 static void
2417 write_subroutines (struct decision_head *head, enum routine_type type)
2418 {
2419 struct decision *p;
2420
2421 for (p = head->first; p ; p = p->next)
2422 if (p->success.first)
2423 write_subroutines (&p->success, type);
2424
2425 if (head->first->subroutine_number > 0)
2426 write_subroutine (head, type);
2427 }
2428
2429 /* Begin the output file. */
2430
2431 static void
2432 write_header (void)
2433 {
2434 puts ("\
2435 /* Generated automatically by the program `genrecog' from the target\n\
2436 machine description file. */\n\
2437 \n\
2438 #include \"config.h\"\n\
2439 #include \"system.h\"\n\
2440 #include \"coretypes.h\"\n\
2441 #include \"tm.h\"\n\
2442 #include \"rtl.h\"\n\
2443 #include \"tm_p.h\"\n\
2444 #include \"function.h\"\n\
2445 #include \"insn-config.h\"\n\
2446 #include \"recog.h\"\n\
2447 #include \"output.h\"\n\
2448 #include \"flags.h\"\n\
2449 #include \"hard-reg-set.h\"\n\
2450 #include \"resource.h\"\n\
2451 #include \"diagnostic-core.h\"\n\
2452 #include \"toplev.h\"\n\
2453 #include \"reload.h\"\n\
2454 #include \"regs.h\"\n\
2455 #include \"tm-constrs.h\"\n\
2456 \n");
2457
2458 puts ("\n\
2459 /* `recog' contains a decision tree that recognizes whether the rtx\n\
2460 X0 is a valid instruction.\n\
2461 \n\
2462 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2463 returns a nonnegative number which is the insn code number for the\n\
2464 pattern that matched. This is the same as the order in the machine\n\
2465 description of the entry that matched. This number can be used as an\n\
2466 index into `insn_data' and other tables.\n");
2467 puts ("\
2468 The third argument to recog is an optional pointer to an int. If\n\
2469 present, recog will accept a pattern if it matches except for missing\n\
2470 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2471 the optional pointer will be set to the number of CLOBBERs that need\n\
2472 to be added (it should be initialized to zero by the caller). If it");
2473 puts ("\
2474 is set nonzero, the caller should allocate a PARALLEL of the\n\
2475 appropriate size, copy the initial entries, and call add_clobbers\n\
2476 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2477 ");
2478
2479 puts ("\n\
2480 The function split_insns returns 0 if the rtl could not\n\
2481 be split or the split rtl as an INSN list if it can be.\n\
2482 \n\
2483 The function peephole2_insns returns 0 if the rtl could not\n\
2484 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
2485 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2486 */\n\n");
2487 }
2488
2489 \f
2490 /* Construct and return a sequence of decisions
2491 that will recognize INSN.
2492
2493 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2494
2495 static struct decision_head
2496 make_insn_sequence (rtx insn, enum routine_type type)
2497 {
2498 rtx x;
2499 const char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
2500 int truth = maybe_eval_c_test (c_test);
2501 struct decision *last;
2502 struct decision_test *test, **place;
2503 struct decision_head head;
2504 char c_test_pos[2];
2505
2506 /* We should never see an insn whose C test is false at compile time. */
2507 gcc_assert (truth);
2508
2509 c_test_pos[0] = '\0';
2510 if (type == PEEPHOLE2)
2511 {
2512 int i, j;
2513
2514 /* peephole2 gets special treatment:
2515 - X always gets an outer parallel even if it's only one entry
2516 - we remove all traces of outer-level match_scratch and match_dup
2517 expressions here. */
2518 x = rtx_alloc (PARALLEL);
2519 PUT_MODE (x, VOIDmode);
2520 XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0));
2521 for (i = j = 0; i < XVECLEN (insn, 0); i++)
2522 {
2523 rtx tmp = XVECEXP (insn, 0, i);
2524 if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP)
2525 {
2526 XVECEXP (x, 0, j) = tmp;
2527 j++;
2528 }
2529 }
2530 XVECLEN (x, 0) = j;
2531
2532 c_test_pos[0] = 'A' + j - 1;
2533 c_test_pos[1] = '\0';
2534 }
2535 else if (XVECLEN (insn, type == RECOG) == 1)
2536 x = XVECEXP (insn, type == RECOG, 0);
2537 else
2538 {
2539 x = rtx_alloc (PARALLEL);
2540 XVEC (x, 0) = XVEC (insn, type == RECOG);
2541 PUT_MODE (x, VOIDmode);
2542 }
2543
2544 validate_pattern (x, insn, NULL_RTX, 0);
2545
2546 memset(&head, 0, sizeof(head));
2547 last = add_to_sequence (x, &head, "", type, 1);
2548
2549 /* Find the end of the test chain on the last node. */
2550 for (test = last->tests; test->next; test = test->next)
2551 continue;
2552 place = &test->next;
2553
2554 /* Skip the C test if it's known to be true at compile time. */
2555 if (truth == -1)
2556 {
2557 /* Need a new node if we have another test to add. */
2558 if (test->type == DT_accept_op)
2559 {
2560 last = new_decision (c_test_pos, &last->success);
2561 place = &last->tests;
2562 }
2563 test = new_decision_test (DT_c_test, &place);
2564 test->u.c_test = c_test;
2565 }
2566
2567 test = new_decision_test (DT_accept_insn, &place);
2568 test->u.insn.code_number = next_insn_code;
2569 test->u.insn.lineno = pattern_lineno;
2570 test->u.insn.num_clobbers_to_add = 0;
2571
2572 switch (type)
2573 {
2574 case RECOG:
2575 /* If this is a DEFINE_INSN and X is a PARALLEL, see if it ends
2576 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2577 If so, set up to recognize the pattern without these CLOBBERs. */
2578
2579 if (GET_CODE (x) == PARALLEL)
2580 {
2581 int i;
2582
2583 /* Find the last non-clobber in the parallel. */
2584 for (i = XVECLEN (x, 0); i > 0; i--)
2585 {
2586 rtx y = XVECEXP (x, 0, i - 1);
2587 if (GET_CODE (y) != CLOBBER
2588 || (!REG_P (XEXP (y, 0))
2589 && GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH))
2590 break;
2591 }
2592
2593 if (i != XVECLEN (x, 0))
2594 {
2595 rtx new_rtx;
2596 struct decision_head clobber_head;
2597
2598 /* Build a similar insn without the clobbers. */
2599 if (i == 1)
2600 new_rtx = XVECEXP (x, 0, 0);
2601 else
2602 {
2603 int j;
2604
2605 new_rtx = rtx_alloc (PARALLEL);
2606 XVEC (new_rtx, 0) = rtvec_alloc (i);
2607 for (j = i - 1; j >= 0; j--)
2608 XVECEXP (new_rtx, 0, j) = XVECEXP (x, 0, j);
2609 }
2610
2611 /* Recognize it. */
2612 memset (&clobber_head, 0, sizeof(clobber_head));
2613 last = add_to_sequence (new_rtx, &clobber_head, "", type, 1);
2614
2615 /* Find the end of the test chain on the last node. */
2616 for (test = last->tests; test->next; test = test->next)
2617 continue;
2618
2619 /* We definitely have a new test to add -- create a new
2620 node if needed. */
2621 place = &test->next;
2622 if (test->type == DT_accept_op)
2623 {
2624 last = new_decision ("", &last->success);
2625 place = &last->tests;
2626 }
2627
2628 /* Skip the C test if it's known to be true at compile
2629 time. */
2630 if (truth == -1)
2631 {
2632 test = new_decision_test (DT_c_test, &place);
2633 test->u.c_test = c_test;
2634 }
2635
2636 test = new_decision_test (DT_accept_insn, &place);
2637 test->u.insn.code_number = next_insn_code;
2638 test->u.insn.lineno = pattern_lineno;
2639 test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i;
2640
2641 merge_trees (&head, &clobber_head);
2642 }
2643 }
2644 break;
2645
2646 case SPLIT:
2647 /* Define the subroutine we will call below and emit in genemit. */
2648 printf ("extern rtx gen_split_%d (rtx, rtx *);\n", next_insn_code);
2649 break;
2650
2651 case PEEPHOLE2:
2652 /* Define the subroutine we will call below and emit in genemit. */
2653 printf ("extern rtx gen_peephole2_%d (rtx, rtx *);\n",
2654 next_insn_code);
2655 break;
2656 }
2657
2658 return head;
2659 }
2660
2661 static void
2662 process_tree (struct decision_head *head, enum routine_type subroutine_type)
2663 {
2664 if (head->first == NULL)
2665 {
2666 /* We can elide peephole2_insns, but not recog or split_insns. */
2667 if (subroutine_type == PEEPHOLE2)
2668 return;
2669 }
2670 else
2671 {
2672 factor_tests (head);
2673
2674 next_subroutine_number = 0;
2675 break_out_subroutines (head, 1);
2676 find_afterward (head, NULL);
2677
2678 /* We run this after find_afterward, because find_afterward needs
2679 the redundant DT_mode tests on predicates to determine whether
2680 two tests can both be true or not. */
2681 simplify_tests(head);
2682
2683 write_subroutines (head, subroutine_type);
2684 }
2685
2686 write_subroutine (head, subroutine_type);
2687 }
2688 \f
2689 extern int main (int, char **);
2690
2691 int
2692 main (int argc, char **argv)
2693 {
2694 rtx desc;
2695 struct decision_head recog_tree, split_tree, peephole2_tree, h;
2696
2697 progname = "genrecog";
2698
2699 memset (&recog_tree, 0, sizeof recog_tree);
2700 memset (&split_tree, 0, sizeof split_tree);
2701 memset (&peephole2_tree, 0, sizeof peephole2_tree);
2702
2703 if (!init_rtx_reader_args (argc, argv))
2704 return (FATAL_EXIT_CODE);
2705
2706 next_insn_code = 0;
2707
2708 write_header ();
2709
2710 /* Read the machine description. */
2711
2712 while (1)
2713 {
2714 desc = read_md_rtx (&pattern_lineno, &next_insn_code);
2715 if (desc == NULL)
2716 break;
2717
2718 switch (GET_CODE (desc))
2719 {
2720 case DEFINE_PREDICATE:
2721 case DEFINE_SPECIAL_PREDICATE:
2722 process_define_predicate (desc);
2723 break;
2724
2725 case DEFINE_INSN:
2726 h = make_insn_sequence (desc, RECOG);
2727 merge_trees (&recog_tree, &h);
2728 break;
2729
2730 case DEFINE_SPLIT:
2731 h = make_insn_sequence (desc, SPLIT);
2732 merge_trees (&split_tree, &h);
2733 break;
2734
2735 case DEFINE_PEEPHOLE2:
2736 h = make_insn_sequence (desc, PEEPHOLE2);
2737 merge_trees (&peephole2_tree, &h);
2738
2739 default:
2740 /* do nothing */;
2741 }
2742 }
2743
2744 if (have_error)
2745 return FATAL_EXIT_CODE;
2746
2747 puts ("\n\n");
2748
2749 process_tree (&recog_tree, RECOG);
2750 process_tree (&split_tree, SPLIT);
2751 process_tree (&peephole2_tree, PEEPHOLE2);
2752
2753 fflush (stdout);
2754 return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
2755 }
2756 \f
2757 static void
2758 debug_decision_2 (struct decision_test *test)
2759 {
2760 switch (test->type)
2761 {
2762 case DT_num_insns:
2763 fprintf (stderr, "num_insns=%d", test->u.num_insns);
2764 break;
2765 case DT_mode:
2766 fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode));
2767 break;
2768 case DT_code:
2769 fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code));
2770 break;
2771 case DT_veclen:
2772 fprintf (stderr, "veclen=%d", test->u.veclen);
2773 break;
2774 case DT_elt_zero_int:
2775 fprintf (stderr, "elt0_i=%d", (int) test->u.intval);
2776 break;
2777 case DT_elt_one_int:
2778 fprintf (stderr, "elt1_i=%d", (int) test->u.intval);
2779 break;
2780 case DT_elt_zero_wide:
2781 fprintf (stderr, "elt0_w=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2782 break;
2783 case DT_elt_zero_wide_safe:
2784 fprintf (stderr, "elt0_ws=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2785 break;
2786 case DT_veclen_ge:
2787 fprintf (stderr, "veclen>=%d", test->u.veclen);
2788 break;
2789 case DT_dup:
2790 fprintf (stderr, "dup=%d", test->u.dup);
2791 break;
2792 case DT_pred:
2793 fprintf (stderr, "pred=(%s,%s)",
2794 test->u.pred.name, GET_MODE_NAME(test->u.pred.mode));
2795 break;
2796 case DT_c_test:
2797 {
2798 char sub[16+4];
2799 strncpy (sub, test->u.c_test, sizeof(sub));
2800 memcpy (sub+16, "...", 4);
2801 fprintf (stderr, "c_test=\"%s\"", sub);
2802 }
2803 break;
2804 case DT_accept_op:
2805 fprintf (stderr, "A_op=%d", test->u.opno);
2806 break;
2807 case DT_accept_insn:
2808 fprintf (stderr, "A_insn=(%d,%d)",
2809 test->u.insn.code_number, test->u.insn.num_clobbers_to_add);
2810 break;
2811
2812 default:
2813 gcc_unreachable ();
2814 }
2815 }
2816
2817 static void
2818 debug_decision_1 (struct decision *d, int indent)
2819 {
2820 int i;
2821 struct decision_test *test;
2822
2823 if (d == NULL)
2824 {
2825 for (i = 0; i < indent; ++i)
2826 putc (' ', stderr);
2827 fputs ("(nil)\n", stderr);
2828 return;
2829 }
2830
2831 for (i = 0; i < indent; ++i)
2832 putc (' ', stderr);
2833
2834 putc ('{', stderr);
2835 test = d->tests;
2836 if (test)
2837 {
2838 debug_decision_2 (test);
2839 while ((test = test->next) != NULL)
2840 {
2841 fputs (" + ", stderr);
2842 debug_decision_2 (test);
2843 }
2844 }
2845 fprintf (stderr, "} %d n %d a %d\n", d->number,
2846 (d->next ? d->next->number : -1),
2847 (d->afterward ? d->afterward->number : -1));
2848 }
2849
2850 static void
2851 debug_decision_0 (struct decision *d, int indent, int maxdepth)
2852 {
2853 struct decision *n;
2854 int i;
2855
2856 if (maxdepth < 0)
2857 return;
2858 if (d == NULL)
2859 {
2860 for (i = 0; i < indent; ++i)
2861 putc (' ', stderr);
2862 fputs ("(nil)\n", stderr);
2863 return;
2864 }
2865
2866 debug_decision_1 (d, indent);
2867 for (n = d->success.first; n ; n = n->next)
2868 debug_decision_0 (n, indent + 2, maxdepth - 1);
2869 }
2870
2871 DEBUG_FUNCTION void
2872 debug_decision (struct decision *d)
2873 {
2874 debug_decision_0 (d, 0, 1000000);
2875 }
2876
2877 DEBUG_FUNCTION void
2878 debug_decision_list (struct decision *d)
2879 {
2880 while (d)
2881 {
2882 debug_decision_0 (d, 0, 0);
2883 d = d->next;
2884 }
2885 }