re PR fortran/25217 (Derived type dummy argument having intent(out) attribute)
[gcc.git] / gcc / genrecog.c
1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22
23 /* This program is used to produce insn-recog.c, which contains a
24 function called `recog' plus its subroutines. These functions
25 contain a decision tree that recognizes whether an rtx, the
26 argument given to recog, is a valid instruction.
27
28 recog returns -1 if the rtx is not valid. If the rtx is valid,
29 recog returns a nonnegative number which is the insn code number
30 for the pattern that matched. This is the same as the order in the
31 machine description of the entry that matched. This number can be
32 used as an index into various insn_* tables, such as insn_template,
33 insn_outfun, and insn_n_operands (found in insn-output.c).
34
35 The third argument to recog is an optional pointer to an int. If
36 present, recog will accept a pattern if it matches except for
37 missing CLOBBER expressions at the end. In that case, the value
38 pointed to by the optional pointer will be set to the number of
39 CLOBBERs that need to be added (it should be initialized to zero by
40 the caller). If it is set nonzero, the caller should allocate a
41 PARALLEL of the appropriate size, copy the initial entries, and
42 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
43
44 This program also generates the function `split_insns', which
45 returns 0 if the rtl could not be split, or it returns the split
46 rtl as an INSN list.
47
48 This program also generates the function `peephole2_insns', which
49 returns 0 if the rtl could not be matched. If there was a match,
50 the new rtl is returned in an INSN list, and LAST_INSN will point
51 to the last recognized insn in the old sequence. */
52
53 #include "bconfig.h"
54 #include "system.h"
55 #include "coretypes.h"
56 #include "tm.h"
57 #include "rtl.h"
58 #include "errors.h"
59 #include "gensupport.h"
60
61 #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
62 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
63
64 /* A listhead of decision trees. The alternatives to a node are kept
65 in a doubly-linked list so we can easily add nodes to the proper
66 place when merging. */
67
68 struct decision_head
69 {
70 struct decision *first;
71 struct decision *last;
72 };
73
74 /* A single test. The two accept types aren't tests per-se, but
75 their equality (or lack thereof) does affect tree merging so
76 it is convenient to keep them here. */
77
78 struct decision_test
79 {
80 /* A linked list through the tests attached to a node. */
81 struct decision_test *next;
82
83 /* These types are roughly in the order in which we'd like to test them. */
84 enum decision_type
85 {
86 DT_num_insns,
87 DT_mode, DT_code, DT_veclen,
88 DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide, DT_elt_zero_wide_safe,
89 DT_const_int,
90 DT_veclen_ge, DT_dup, DT_pred, DT_c_test,
91 DT_accept_op, DT_accept_insn
92 } type;
93
94 union
95 {
96 int num_insns; /* Number if insn in a define_peephole2. */
97 enum machine_mode mode; /* Machine mode of node. */
98 RTX_CODE code; /* Code to test. */
99
100 struct
101 {
102 const char *name; /* Predicate to call. */
103 const struct pred_data *data;
104 /* Optimization hints for this predicate. */
105 enum machine_mode mode; /* Machine mode for node. */
106 } pred;
107
108 const char *c_test; /* Additional test to perform. */
109 int veclen; /* Length of vector. */
110 int dup; /* Number of operand to compare against. */
111 HOST_WIDE_INT intval; /* Value for XINT for XWINT. */
112 int opno; /* Operand number matched. */
113
114 struct {
115 int code_number; /* Insn number matched. */
116 int lineno; /* Line number of the insn. */
117 int num_clobbers_to_add; /* Number of CLOBBERs to be added. */
118 } insn;
119 } u;
120 };
121
122 /* Data structure for decision tree for recognizing legitimate insns. */
123
124 struct decision
125 {
126 struct decision_head success; /* Nodes to test on success. */
127 struct decision *next; /* Node to test on failure. */
128 struct decision *prev; /* Node whose failure tests us. */
129 struct decision *afterward; /* Node to test on success,
130 but failure of successor nodes. */
131
132 const char *position; /* String denoting position in pattern. */
133
134 struct decision_test *tests; /* The tests for this node. */
135
136 int number; /* Node number, used for labels */
137 int subroutine_number; /* Number of subroutine this node starts */
138 int need_label; /* Label needs to be output. */
139 };
140
141 #define SUBROUTINE_THRESHOLD 100
142
143 static int next_subroutine_number;
144
145 /* We can write three types of subroutines: One for insn recognition,
146 one to split insns, and one for peephole-type optimizations. This
147 defines which type is being written. */
148
149 enum routine_type {
150 RECOG, SPLIT, PEEPHOLE2
151 };
152
153 #define IS_SPLIT(X) ((X) != RECOG)
154
155 /* Next available node number for tree nodes. */
156
157 static int next_number;
158
159 /* Next number to use as an insn_code. */
160
161 static int next_insn_code;
162
163 /* Record the highest depth we ever have so we know how many variables to
164 allocate in each subroutine we make. */
165
166 static int max_depth;
167
168 /* The line number of the start of the pattern currently being processed. */
169 static int pattern_lineno;
170
171 /* Count of errors. */
172 static int error_count;
173 \f
174 /* Predicate handling.
175
176 We construct from the machine description a table mapping each
177 predicate to a list of the rtl codes it can possibly match. The
178 function 'maybe_both_true' uses it to deduce that there are no
179 expressions that can be matches by certain pairs of tree nodes.
180 Also, if a predicate can match only one code, we can hardwire that
181 code into the node testing the predicate.
182
183 Some predicates are flagged as special. validate_pattern will not
184 warn about modeless match_operand expressions if they have a
185 special predicate. Predicates that allow only constants are also
186 treated as special, for this purpose.
187
188 validate_pattern will warn about predicates that allow non-lvalues
189 when they appear in destination operands.
190
191 Calculating the set of rtx codes that can possibly be accepted by a
192 predicate expression EXP requires a three-state logic: any given
193 subexpression may definitively accept a code C (Y), definitively
194 reject a code C (N), or may have an indeterminate effect (I). N
195 and I is N; Y or I is Y; Y and I, N or I are both I. Here are full
196 truth tables.
197
198 a b a&b a|b
199 Y Y Y Y
200 N Y N Y
201 N N N N
202 I Y I Y
203 I N N I
204 I I I I
205
206 We represent Y with 1, N with 0, I with 2. If any code is left in
207 an I state by the complete expression, we must assume that that
208 code can be accepted. */
209
210 #define N 0
211 #define Y 1
212 #define I 2
213
214 #define TRISTATE_AND(a,b) \
215 ((a) == I ? ((b) == N ? N : I) : \
216 (b) == I ? ((a) == N ? N : I) : \
217 (a) && (b))
218
219 #define TRISTATE_OR(a,b) \
220 ((a) == I ? ((b) == Y ? Y : I) : \
221 (b) == I ? ((a) == Y ? Y : I) : \
222 (a) || (b))
223
224 #define TRISTATE_NOT(a) \
225 ((a) == I ? I : !(a))
226
227 /* 0 means no warning about that code yet, 1 means warned. */
228 static char did_you_mean_codes[NUM_RTX_CODE];
229
230 /* Recursively calculate the set of rtx codes accepted by the
231 predicate expression EXP, writing the result to CODES. */
232 static void
233 compute_predicate_codes (rtx exp, char codes[NUM_RTX_CODE])
234 {
235 char op0_codes[NUM_RTX_CODE];
236 char op1_codes[NUM_RTX_CODE];
237 char op2_codes[NUM_RTX_CODE];
238 int i;
239
240 switch (GET_CODE (exp))
241 {
242 case AND:
243 compute_predicate_codes (XEXP (exp, 0), op0_codes);
244 compute_predicate_codes (XEXP (exp, 1), op1_codes);
245 for (i = 0; i < NUM_RTX_CODE; i++)
246 codes[i] = TRISTATE_AND (op0_codes[i], op1_codes[i]);
247 break;
248
249 case IOR:
250 compute_predicate_codes (XEXP (exp, 0), op0_codes);
251 compute_predicate_codes (XEXP (exp, 1), op1_codes);
252 for (i = 0; i < NUM_RTX_CODE; i++)
253 codes[i] = TRISTATE_OR (op0_codes[i], op1_codes[i]);
254 break;
255 case NOT:
256 compute_predicate_codes (XEXP (exp, 0), op0_codes);
257 for (i = 0; i < NUM_RTX_CODE; i++)
258 codes[i] = TRISTATE_NOT (op0_codes[i]);
259 break;
260
261 case IF_THEN_ELSE:
262 /* a ? b : c accepts the same codes as (a & b) | (!a & c). */
263 compute_predicate_codes (XEXP (exp, 0), op0_codes);
264 compute_predicate_codes (XEXP (exp, 1), op1_codes);
265 compute_predicate_codes (XEXP (exp, 2), op2_codes);
266 for (i = 0; i < NUM_RTX_CODE; i++)
267 codes[i] = TRISTATE_OR (TRISTATE_AND (op0_codes[i], op1_codes[i]),
268 TRISTATE_AND (TRISTATE_NOT (op0_codes[i]),
269 op2_codes[i]));
270 break;
271
272 case MATCH_CODE:
273 /* MATCH_CODE allows a specified list of codes. However, if it
274 does not apply to the top level of the expression, it does not
275 constrain the set of codes for the top level. */
276 if (XSTR (exp, 1)[0] != '\0')
277 {
278 memset (codes, Y, NUM_RTX_CODE);
279 break;
280 }
281
282 memset (codes, N, NUM_RTX_CODE);
283 {
284 const char *next_code = XSTR (exp, 0);
285 const char *code;
286
287 if (*next_code == '\0')
288 {
289 message_with_line (pattern_lineno, "empty match_code expression");
290 error_count++;
291 break;
292 }
293
294 while ((code = scan_comma_elt (&next_code)) != 0)
295 {
296 size_t n = next_code - code;
297 int found_it = 0;
298
299 for (i = 0; i < NUM_RTX_CODE; i++)
300 if (!strncmp (code, GET_RTX_NAME (i), n)
301 && GET_RTX_NAME (i)[n] == '\0')
302 {
303 codes[i] = Y;
304 found_it = 1;
305 break;
306 }
307 if (!found_it)
308 {
309 message_with_line (pattern_lineno, "match_code \"%.*s\" matches nothing",
310 (int) n, code);
311 error_count ++;
312 for (i = 0; i < NUM_RTX_CODE; i++)
313 if (!strncasecmp (code, GET_RTX_NAME (i), n)
314 && GET_RTX_NAME (i)[n] == '\0'
315 && !did_you_mean_codes[i])
316 {
317 did_you_mean_codes[i] = 1;
318 message_with_line (pattern_lineno, "(did you mean \"%s\"?)", GET_RTX_NAME (i));
319 }
320 }
321
322 }
323 }
324 break;
325
326 case MATCH_OPERAND:
327 /* MATCH_OPERAND disallows the set of codes that the named predicate
328 disallows, and is indeterminate for the codes that it does allow. */
329 {
330 struct pred_data *p = lookup_predicate (XSTR (exp, 1));
331 if (!p)
332 {
333 message_with_line (pattern_lineno,
334 "reference to unknown predicate '%s'",
335 XSTR (exp, 1));
336 error_count++;
337 break;
338 }
339 for (i = 0; i < NUM_RTX_CODE; i++)
340 codes[i] = p->codes[i] ? I : N;
341 }
342 break;
343
344
345 case MATCH_TEST:
346 /* (match_test WHATEVER) is completely indeterminate. */
347 memset (codes, I, NUM_RTX_CODE);
348 break;
349
350 default:
351 message_with_line (pattern_lineno,
352 "'%s' cannot be used in a define_predicate expression",
353 GET_RTX_NAME (GET_CODE (exp)));
354 error_count++;
355 memset (codes, I, NUM_RTX_CODE);
356 break;
357 }
358 }
359
360 #undef TRISTATE_OR
361 #undef TRISTATE_AND
362 #undef TRISTATE_NOT
363
364 /* Process a define_predicate expression: compute the set of predicates
365 that can be matched, and record this as a known predicate. */
366 static void
367 process_define_predicate (rtx desc)
368 {
369 struct pred_data *pred = xcalloc (sizeof (struct pred_data), 1);
370 char codes[NUM_RTX_CODE];
371 bool seen_one = false;
372 int i;
373
374 pred->name = XSTR (desc, 0);
375 if (GET_CODE (desc) == DEFINE_SPECIAL_PREDICATE)
376 pred->special = 1;
377
378 compute_predicate_codes (XEXP (desc, 1), codes);
379
380 for (i = 0; i < NUM_RTX_CODE; i++)
381 if (codes[i] != N)
382 {
383 pred->codes[i] = true;
384 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
385 pred->allows_non_const = true;
386 if (i != REG
387 && i != SUBREG
388 && i != MEM
389 && i != CONCAT
390 && i != PARALLEL
391 && i != STRICT_LOW_PART)
392 pred->allows_non_lvalue = true;
393
394 if (seen_one)
395 pred->singleton = UNKNOWN;
396 else
397 {
398 pred->singleton = i;
399 seen_one = true;
400 }
401 }
402 add_predicate (pred);
403 }
404 #undef I
405 #undef N
406 #undef Y
407
408 \f
409 static struct decision *new_decision
410 (const char *, struct decision_head *);
411 static struct decision_test *new_decision_test
412 (enum decision_type, struct decision_test ***);
413 static rtx find_operand
414 (rtx, int, rtx);
415 static rtx find_matching_operand
416 (rtx, int);
417 static void validate_pattern
418 (rtx, rtx, rtx, int);
419 static struct decision *add_to_sequence
420 (rtx, struct decision_head *, const char *, enum routine_type, int);
421
422 static int maybe_both_true_2
423 (struct decision_test *, struct decision_test *);
424 static int maybe_both_true_1
425 (struct decision_test *, struct decision_test *);
426 static int maybe_both_true
427 (struct decision *, struct decision *, int);
428
429 static int nodes_identical_1
430 (struct decision_test *, struct decision_test *);
431 static int nodes_identical
432 (struct decision *, struct decision *);
433 static void merge_accept_insn
434 (struct decision *, struct decision *);
435 static void merge_trees
436 (struct decision_head *, struct decision_head *);
437
438 static void factor_tests
439 (struct decision_head *);
440 static void simplify_tests
441 (struct decision_head *);
442 static int break_out_subroutines
443 (struct decision_head *, int);
444 static void find_afterward
445 (struct decision_head *, struct decision *);
446
447 static void change_state
448 (const char *, const char *, const char *);
449 static void print_code
450 (enum rtx_code);
451 static void write_afterward
452 (struct decision *, struct decision *, const char *);
453 static struct decision *write_switch
454 (struct decision *, int);
455 static void write_cond
456 (struct decision_test *, int, enum routine_type);
457 static void write_action
458 (struct decision *, struct decision_test *, int, int,
459 struct decision *, enum routine_type);
460 static int is_unconditional
461 (struct decision_test *, enum routine_type);
462 static int write_node
463 (struct decision *, int, enum routine_type);
464 static void write_tree_1
465 (struct decision_head *, int, enum routine_type);
466 static void write_tree
467 (struct decision_head *, const char *, enum routine_type, int);
468 static void write_subroutine
469 (struct decision_head *, enum routine_type);
470 static void write_subroutines
471 (struct decision_head *, enum routine_type);
472 static void write_header
473 (void);
474
475 static struct decision_head make_insn_sequence
476 (rtx, enum routine_type);
477 static void process_tree
478 (struct decision_head *, enum routine_type);
479
480 static void debug_decision_0
481 (struct decision *, int, int);
482 static void debug_decision_1
483 (struct decision *, int);
484 static void debug_decision_2
485 (struct decision_test *);
486 extern void debug_decision
487 (struct decision *);
488 extern void debug_decision_list
489 (struct decision *);
490 \f
491 /* Create a new node in sequence after LAST. */
492
493 static struct decision *
494 new_decision (const char *position, struct decision_head *last)
495 {
496 struct decision *new = xcalloc (1, sizeof (struct decision));
497
498 new->success = *last;
499 new->position = xstrdup (position);
500 new->number = next_number++;
501
502 last->first = last->last = new;
503 return new;
504 }
505
506 /* Create a new test and link it in at PLACE. */
507
508 static struct decision_test *
509 new_decision_test (enum decision_type type, struct decision_test ***pplace)
510 {
511 struct decision_test **place = *pplace;
512 struct decision_test *test;
513
514 test = XNEW (struct decision_test);
515 test->next = *place;
516 test->type = type;
517 *place = test;
518
519 place = &test->next;
520 *pplace = place;
521
522 return test;
523 }
524
525 /* Search for and return operand N, stop when reaching node STOP. */
526
527 static rtx
528 find_operand (rtx pattern, int n, rtx stop)
529 {
530 const char *fmt;
531 RTX_CODE code;
532 int i, j, len;
533 rtx r;
534
535 if (pattern == stop)
536 return stop;
537
538 code = GET_CODE (pattern);
539 if ((code == MATCH_SCRATCH
540 || code == MATCH_OPERAND
541 || code == MATCH_OPERATOR
542 || code == MATCH_PARALLEL)
543 && XINT (pattern, 0) == n)
544 return pattern;
545
546 fmt = GET_RTX_FORMAT (code);
547 len = GET_RTX_LENGTH (code);
548 for (i = 0; i < len; i++)
549 {
550 switch (fmt[i])
551 {
552 case 'e': case 'u':
553 if ((r = find_operand (XEXP (pattern, i), n, stop)) != NULL_RTX)
554 return r;
555 break;
556
557 case 'V':
558 if (! XVEC (pattern, i))
559 break;
560 /* Fall through. */
561
562 case 'E':
563 for (j = 0; j < XVECLEN (pattern, i); j++)
564 if ((r = find_operand (XVECEXP (pattern, i, j), n, stop))
565 != NULL_RTX)
566 return r;
567 break;
568
569 case 'i': case 'w': case '0': case 's':
570 break;
571
572 default:
573 gcc_unreachable ();
574 }
575 }
576
577 return NULL;
578 }
579
580 /* Search for and return operand M, such that it has a matching
581 constraint for operand N. */
582
583 static rtx
584 find_matching_operand (rtx pattern, int n)
585 {
586 const char *fmt;
587 RTX_CODE code;
588 int i, j, len;
589 rtx r;
590
591 code = GET_CODE (pattern);
592 if (code == MATCH_OPERAND
593 && (XSTR (pattern, 2)[0] == '0' + n
594 || (XSTR (pattern, 2)[0] == '%'
595 && XSTR (pattern, 2)[1] == '0' + n)))
596 return pattern;
597
598 fmt = GET_RTX_FORMAT (code);
599 len = GET_RTX_LENGTH (code);
600 for (i = 0; i < len; i++)
601 {
602 switch (fmt[i])
603 {
604 case 'e': case 'u':
605 if ((r = find_matching_operand (XEXP (pattern, i), n)))
606 return r;
607 break;
608
609 case 'V':
610 if (! XVEC (pattern, i))
611 break;
612 /* Fall through. */
613
614 case 'E':
615 for (j = 0; j < XVECLEN (pattern, i); j++)
616 if ((r = find_matching_operand (XVECEXP (pattern, i, j), n)))
617 return r;
618 break;
619
620 case 'i': case 'w': case '0': case 's':
621 break;
622
623 default:
624 gcc_unreachable ();
625 }
626 }
627
628 return NULL;
629 }
630
631
632 /* Check for various errors in patterns. SET is nonnull for a destination,
633 and is the complete set pattern. SET_CODE is '=' for normal sets, and
634 '+' within a context that requires in-out constraints. */
635
636 static void
637 validate_pattern (rtx pattern, rtx insn, rtx set, int set_code)
638 {
639 const char *fmt;
640 RTX_CODE code;
641 size_t i, len;
642 int j;
643
644 code = GET_CODE (pattern);
645 switch (code)
646 {
647 case MATCH_SCRATCH:
648 return;
649 case MATCH_DUP:
650 case MATCH_OP_DUP:
651 case MATCH_PAR_DUP:
652 if (find_operand (insn, XINT (pattern, 0), pattern) == pattern)
653 {
654 message_with_line (pattern_lineno,
655 "operand %i duplicated before defined",
656 XINT (pattern, 0));
657 error_count++;
658 }
659 break;
660 case MATCH_OPERAND:
661 case MATCH_OPERATOR:
662 {
663 const char *pred_name = XSTR (pattern, 1);
664 const struct pred_data *pred;
665 const char *c_test;
666
667 if (GET_CODE (insn) == DEFINE_INSN)
668 c_test = XSTR (insn, 2);
669 else
670 c_test = XSTR (insn, 1);
671
672 if (pred_name[0] != 0)
673 {
674 pred = lookup_predicate (pred_name);
675 if (!pred)
676 message_with_line (pattern_lineno,
677 "warning: unknown predicate '%s'",
678 pred_name);
679 }
680 else
681 pred = 0;
682
683 if (code == MATCH_OPERAND)
684 {
685 const char constraints0 = XSTR (pattern, 2)[0];
686
687 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
688 don't use the MATCH_OPERAND constraint, only the predicate.
689 This is confusing to folks doing new ports, so help them
690 not make the mistake. */
691 if (GET_CODE (insn) == DEFINE_EXPAND
692 || GET_CODE (insn) == DEFINE_SPLIT
693 || GET_CODE (insn) == DEFINE_PEEPHOLE2)
694 {
695 if (constraints0)
696 message_with_line (pattern_lineno,
697 "warning: constraints not supported in %s",
698 rtx_name[GET_CODE (insn)]);
699 }
700
701 /* A MATCH_OPERAND that is a SET should have an output reload. */
702 else if (set && constraints0)
703 {
704 if (set_code == '+')
705 {
706 if (constraints0 == '+')
707 ;
708 /* If we've only got an output reload for this operand,
709 we'd better have a matching input operand. */
710 else if (constraints0 == '='
711 && find_matching_operand (insn, XINT (pattern, 0)))
712 ;
713 else
714 {
715 message_with_line (pattern_lineno,
716 "operand %d missing in-out reload",
717 XINT (pattern, 0));
718 error_count++;
719 }
720 }
721 else if (constraints0 != '=' && constraints0 != '+')
722 {
723 message_with_line (pattern_lineno,
724 "operand %d missing output reload",
725 XINT (pattern, 0));
726 error_count++;
727 }
728 }
729 }
730
731 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
732 while not likely to occur at runtime, results in less efficient
733 code from insn-recog.c. */
734 if (set && pred && pred->allows_non_lvalue)
735 message_with_line (pattern_lineno,
736 "warning: destination operand %d "
737 "allows non-lvalue",
738 XINT (pattern, 0));
739
740 /* A modeless MATCH_OPERAND can be handy when we can check for
741 multiple modes in the c_test. In most other cases, it is a
742 mistake. Only DEFINE_INSN is eligible, since SPLIT and
743 PEEP2 can FAIL within the output pattern. Exclude special
744 predicates, which check the mode themselves. Also exclude
745 predicates that allow only constants. Exclude the SET_DEST
746 of a call instruction, as that is a common idiom. */
747
748 if (GET_MODE (pattern) == VOIDmode
749 && code == MATCH_OPERAND
750 && GET_CODE (insn) == DEFINE_INSN
751 && pred
752 && !pred->special
753 && pred->allows_non_const
754 && strstr (c_test, "operands") == NULL
755 && ! (set
756 && GET_CODE (set) == SET
757 && GET_CODE (SET_SRC (set)) == CALL))
758 message_with_line (pattern_lineno,
759 "warning: operand %d missing mode?",
760 XINT (pattern, 0));
761 return;
762 }
763
764 case SET:
765 {
766 enum machine_mode dmode, smode;
767 rtx dest, src;
768
769 dest = SET_DEST (pattern);
770 src = SET_SRC (pattern);
771
772 /* STRICT_LOW_PART is a wrapper. Its argument is the real
773 destination, and it's mode should match the source. */
774 if (GET_CODE (dest) == STRICT_LOW_PART)
775 dest = XEXP (dest, 0);
776
777 /* Find the referent for a DUP. */
778
779 if (GET_CODE (dest) == MATCH_DUP
780 || GET_CODE (dest) == MATCH_OP_DUP
781 || GET_CODE (dest) == MATCH_PAR_DUP)
782 dest = find_operand (insn, XINT (dest, 0), NULL);
783
784 if (GET_CODE (src) == MATCH_DUP
785 || GET_CODE (src) == MATCH_OP_DUP
786 || GET_CODE (src) == MATCH_PAR_DUP)
787 src = find_operand (insn, XINT (src, 0), NULL);
788
789 dmode = GET_MODE (dest);
790 smode = GET_MODE (src);
791
792 /* The mode of an ADDRESS_OPERAND is the mode of the memory
793 reference, not the mode of the address. */
794 if (GET_CODE (src) == MATCH_OPERAND
795 && ! strcmp (XSTR (src, 1), "address_operand"))
796 ;
797
798 /* The operands of a SET must have the same mode unless one
799 is VOIDmode. */
800 else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
801 {
802 message_with_line (pattern_lineno,
803 "mode mismatch in set: %smode vs %smode",
804 GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
805 error_count++;
806 }
807
808 /* If only one of the operands is VOIDmode, and PC or CC0 is
809 not involved, it's probably a mistake. */
810 else if (dmode != smode
811 && GET_CODE (dest) != PC
812 && GET_CODE (dest) != CC0
813 && GET_CODE (src) != PC
814 && GET_CODE (src) != CC0
815 && GET_CODE (src) != CONST_INT)
816 {
817 const char *which;
818 which = (dmode == VOIDmode ? "destination" : "source");
819 message_with_line (pattern_lineno,
820 "warning: %s missing a mode?", which);
821 }
822
823 if (dest != SET_DEST (pattern))
824 validate_pattern (dest, insn, pattern, '=');
825 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
826 validate_pattern (SET_SRC (pattern), insn, NULL_RTX, 0);
827 return;
828 }
829
830 case CLOBBER:
831 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
832 return;
833
834 case ZERO_EXTRACT:
835 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
836 validate_pattern (XEXP (pattern, 1), insn, NULL_RTX, 0);
837 validate_pattern (XEXP (pattern, 2), insn, NULL_RTX, 0);
838 return;
839
840 case STRICT_LOW_PART:
841 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
842 return;
843
844 case LABEL_REF:
845 if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
846 {
847 message_with_line (pattern_lineno,
848 "operand to label_ref %smode not VOIDmode",
849 GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
850 error_count++;
851 }
852 break;
853
854 default:
855 break;
856 }
857
858 fmt = GET_RTX_FORMAT (code);
859 len = GET_RTX_LENGTH (code);
860 for (i = 0; i < len; i++)
861 {
862 switch (fmt[i])
863 {
864 case 'e': case 'u':
865 validate_pattern (XEXP (pattern, i), insn, NULL_RTX, 0);
866 break;
867
868 case 'E':
869 for (j = 0; j < XVECLEN (pattern, i); j++)
870 validate_pattern (XVECEXP (pattern, i, j), insn, NULL_RTX, 0);
871 break;
872
873 case 'i': case 'w': case '0': case 's':
874 break;
875
876 default:
877 gcc_unreachable ();
878 }
879 }
880 }
881
882 /* Create a chain of nodes to verify that an rtl expression matches
883 PATTERN.
884
885 LAST is a pointer to the listhead in the previous node in the chain (or
886 in the calling function, for the first node).
887
888 POSITION is the string representing the current position in the insn.
889
890 INSN_TYPE is the type of insn for which we are emitting code.
891
892 A pointer to the final node in the chain is returned. */
893
894 static struct decision *
895 add_to_sequence (rtx pattern, struct decision_head *last, const char *position,
896 enum routine_type insn_type, int top)
897 {
898 RTX_CODE code;
899 struct decision *this, *sub;
900 struct decision_test *test;
901 struct decision_test **place;
902 char *subpos;
903 size_t i;
904 const char *fmt;
905 int depth = strlen (position);
906 int len;
907 enum machine_mode mode;
908
909 if (depth > max_depth)
910 max_depth = depth;
911
912 subpos = xmalloc (depth + 2);
913 strcpy (subpos, position);
914 subpos[depth + 1] = 0;
915
916 sub = this = new_decision (position, last);
917 place = &this->tests;
918
919 restart:
920 mode = GET_MODE (pattern);
921 code = GET_CODE (pattern);
922
923 switch (code)
924 {
925 case PARALLEL:
926 /* Toplevel peephole pattern. */
927 if (insn_type == PEEPHOLE2 && top)
928 {
929 int num_insns;
930
931 /* Check we have sufficient insns. This avoids complications
932 because we then know peep2_next_insn never fails. */
933 num_insns = XVECLEN (pattern, 0);
934 if (num_insns > 1)
935 {
936 test = new_decision_test (DT_num_insns, &place);
937 test->u.num_insns = num_insns;
938 last = &sub->success;
939 }
940 else
941 {
942 /* We don't need the node we just created -- unlink it. */
943 last->first = last->last = NULL;
944 }
945
946 for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++)
947 {
948 /* Which insn we're looking at is represented by A-Z. We don't
949 ever use 'A', however; it is always implied. */
950
951 subpos[depth] = (i > 0 ? 'A' + i : 0);
952 sub = add_to_sequence (XVECEXP (pattern, 0, i),
953 last, subpos, insn_type, 0);
954 last = &sub->success;
955 }
956 goto ret;
957 }
958
959 /* Else nothing special. */
960 break;
961
962 case MATCH_PARALLEL:
963 /* The explicit patterns within a match_parallel enforce a minimum
964 length on the vector. The match_parallel predicate may allow
965 for more elements. We do need to check for this minimum here
966 or the code generated to match the internals may reference data
967 beyond the end of the vector. */
968 test = new_decision_test (DT_veclen_ge, &place);
969 test->u.veclen = XVECLEN (pattern, 2);
970 /* Fall through. */
971
972 case MATCH_OPERAND:
973 case MATCH_SCRATCH:
974 case MATCH_OPERATOR:
975 {
976 RTX_CODE was_code = code;
977 const char *pred_name;
978 bool allows_const_int = true;
979
980 if (code == MATCH_SCRATCH)
981 {
982 pred_name = "scratch_operand";
983 code = UNKNOWN;
984 }
985 else
986 {
987 pred_name = XSTR (pattern, 1);
988 if (code == MATCH_PARALLEL)
989 code = PARALLEL;
990 else
991 code = UNKNOWN;
992 }
993
994 if (pred_name[0] != 0)
995 {
996 const struct pred_data *pred;
997
998 test = new_decision_test (DT_pred, &place);
999 test->u.pred.name = pred_name;
1000 test->u.pred.mode = mode;
1001
1002 /* See if we know about this predicate.
1003 If we do, remember it for use below.
1004
1005 We can optimize the generated code a little if either
1006 (a) the predicate only accepts one code, or (b) the
1007 predicate does not allow CONST_INT, in which case it
1008 can match only if the modes match. */
1009 pred = lookup_predicate (pred_name);
1010 if (pred)
1011 {
1012 test->u.pred.data = pred;
1013 allows_const_int = pred->codes[CONST_INT];
1014 if (was_code == MATCH_PARALLEL
1015 && pred->singleton != PARALLEL)
1016 message_with_line (pattern_lineno,
1017 "predicate '%s' used in match_parallel "
1018 "does not allow only PARALLEL", pred->name);
1019 else
1020 code = pred->singleton;
1021 }
1022 else
1023 message_with_line (pattern_lineno,
1024 "warning: unknown predicate '%s' in '%s' expression",
1025 pred_name, GET_RTX_NAME (was_code));
1026 }
1027
1028 /* Can't enforce a mode if we allow const_int. */
1029 if (allows_const_int)
1030 mode = VOIDmode;
1031
1032 /* Accept the operand, i.e. record it in `operands'. */
1033 test = new_decision_test (DT_accept_op, &place);
1034 test->u.opno = XINT (pattern, 0);
1035
1036 if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL)
1037 {
1038 char base = (was_code == MATCH_OPERATOR ? '0' : 'a');
1039 for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++)
1040 {
1041 subpos[depth] = i + base;
1042 sub = add_to_sequence (XVECEXP (pattern, 2, i),
1043 &sub->success, subpos, insn_type, 0);
1044 }
1045 }
1046 goto fini;
1047 }
1048
1049 case MATCH_OP_DUP:
1050 code = UNKNOWN;
1051
1052 test = new_decision_test (DT_dup, &place);
1053 test->u.dup = XINT (pattern, 0);
1054
1055 test = new_decision_test (DT_accept_op, &place);
1056 test->u.opno = XINT (pattern, 0);
1057
1058 for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++)
1059 {
1060 subpos[depth] = i + '0';
1061 sub = add_to_sequence (XVECEXP (pattern, 1, i),
1062 &sub->success, subpos, insn_type, 0);
1063 }
1064 goto fini;
1065
1066 case MATCH_DUP:
1067 case MATCH_PAR_DUP:
1068 code = UNKNOWN;
1069
1070 test = new_decision_test (DT_dup, &place);
1071 test->u.dup = XINT (pattern, 0);
1072 goto fini;
1073
1074 case ADDRESS:
1075 pattern = XEXP (pattern, 0);
1076 goto restart;
1077
1078 default:
1079 break;
1080 }
1081
1082 fmt = GET_RTX_FORMAT (code);
1083 len = GET_RTX_LENGTH (code);
1084
1085 /* Do tests against the current node first. */
1086 for (i = 0; i < (size_t) len; i++)
1087 {
1088 if (fmt[i] == 'i')
1089 {
1090 gcc_assert (i < 2);
1091
1092 if (!i)
1093 {
1094 test = new_decision_test (DT_elt_zero_int, &place);
1095 test->u.intval = XINT (pattern, i);
1096 }
1097 else
1098 {
1099 test = new_decision_test (DT_elt_one_int, &place);
1100 test->u.intval = XINT (pattern, i);
1101 }
1102 }
1103 else if (fmt[i] == 'w')
1104 {
1105 /* If this value actually fits in an int, we can use a switch
1106 statement here, so indicate that. */
1107 enum decision_type type
1108 = ((int) XWINT (pattern, i) == XWINT (pattern, i))
1109 ? DT_elt_zero_wide_safe : DT_elt_zero_wide;
1110
1111 gcc_assert (!i);
1112
1113 test = new_decision_test (type, &place);
1114 test->u.intval = XWINT (pattern, i);
1115 }
1116 else if (fmt[i] == 'E')
1117 {
1118 gcc_assert (!i);
1119
1120 test = new_decision_test (DT_veclen, &place);
1121 test->u.veclen = XVECLEN (pattern, i);
1122 }
1123 }
1124
1125 /* Now test our sub-patterns. */
1126 for (i = 0; i < (size_t) len; i++)
1127 {
1128 switch (fmt[i])
1129 {
1130 case 'e': case 'u':
1131 subpos[depth] = '0' + i;
1132 sub = add_to_sequence (XEXP (pattern, i), &sub->success,
1133 subpos, insn_type, 0);
1134 break;
1135
1136 case 'E':
1137 {
1138 int j;
1139 for (j = 0; j < XVECLEN (pattern, i); j++)
1140 {
1141 subpos[depth] = 'a' + j;
1142 sub = add_to_sequence (XVECEXP (pattern, i, j),
1143 &sub->success, subpos, insn_type, 0);
1144 }
1145 break;
1146 }
1147
1148 case 'i': case 'w':
1149 /* Handled above. */
1150 break;
1151 case '0':
1152 break;
1153
1154 default:
1155 gcc_unreachable ();
1156 }
1157 }
1158
1159 fini:
1160 /* Insert nodes testing mode and code, if they're still relevant,
1161 before any of the nodes we may have added above. */
1162 if (code != UNKNOWN)
1163 {
1164 place = &this->tests;
1165 test = new_decision_test (DT_code, &place);
1166 test->u.code = code;
1167 }
1168
1169 if (mode != VOIDmode)
1170 {
1171 place = &this->tests;
1172 test = new_decision_test (DT_mode, &place);
1173 test->u.mode = mode;
1174 }
1175
1176 /* If we didn't insert any tests or accept nodes, hork. */
1177 gcc_assert (this->tests);
1178
1179 ret:
1180 free (subpos);
1181 return sub;
1182 }
1183 \f
1184 /* A subroutine of maybe_both_true; examines only one test.
1185 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1186
1187 static int
1188 maybe_both_true_2 (struct decision_test *d1, struct decision_test *d2)
1189 {
1190 if (d1->type == d2->type)
1191 {
1192 switch (d1->type)
1193 {
1194 case DT_num_insns:
1195 if (d1->u.num_insns == d2->u.num_insns)
1196 return 1;
1197 else
1198 return -1;
1199
1200 case DT_mode:
1201 return d1->u.mode == d2->u.mode;
1202
1203 case DT_code:
1204 return d1->u.code == d2->u.code;
1205
1206 case DT_veclen:
1207 return d1->u.veclen == d2->u.veclen;
1208
1209 case DT_elt_zero_int:
1210 case DT_elt_one_int:
1211 case DT_elt_zero_wide:
1212 case DT_elt_zero_wide_safe:
1213 return d1->u.intval == d2->u.intval;
1214
1215 default:
1216 break;
1217 }
1218 }
1219
1220 /* If either has a predicate that we know something about, set
1221 things up so that D1 is the one that always has a known
1222 predicate. Then see if they have any codes in common. */
1223
1224 if (d1->type == DT_pred || d2->type == DT_pred)
1225 {
1226 if (d2->type == DT_pred)
1227 {
1228 struct decision_test *tmp;
1229 tmp = d1, d1 = d2, d2 = tmp;
1230 }
1231
1232 /* If D2 tests a mode, see if it matches D1. */
1233 if (d1->u.pred.mode != VOIDmode)
1234 {
1235 if (d2->type == DT_mode)
1236 {
1237 if (d1->u.pred.mode != d2->u.mode
1238 /* The mode of an address_operand predicate is the
1239 mode of the memory, not the operand. It can only
1240 be used for testing the predicate, so we must
1241 ignore it here. */
1242 && strcmp (d1->u.pred.name, "address_operand") != 0)
1243 return 0;
1244 }
1245 /* Don't check two predicate modes here, because if both predicates
1246 accept CONST_INT, then both can still be true even if the modes
1247 are different. If they don't accept CONST_INT, there will be a
1248 separate DT_mode that will make maybe_both_true_1 return 0. */
1249 }
1250
1251 if (d1->u.pred.data)
1252 {
1253 /* If D2 tests a code, see if it is in the list of valid
1254 codes for D1's predicate. */
1255 if (d2->type == DT_code)
1256 {
1257 if (!d1->u.pred.data->codes[d2->u.code])
1258 return 0;
1259 }
1260
1261 /* Otherwise see if the predicates have any codes in common. */
1262 else if (d2->type == DT_pred && d2->u.pred.data)
1263 {
1264 bool common = false;
1265 enum rtx_code c;
1266
1267 for (c = 0; c < NUM_RTX_CODE; c++)
1268 if (d1->u.pred.data->codes[c] && d2->u.pred.data->codes[c])
1269 {
1270 common = true;
1271 break;
1272 }
1273
1274 if (!common)
1275 return 0;
1276 }
1277 }
1278 }
1279
1280 /* Tests vs veclen may be known when strict equality is involved. */
1281 if (d1->type == DT_veclen && d2->type == DT_veclen_ge)
1282 return d1->u.veclen >= d2->u.veclen;
1283 if (d1->type == DT_veclen_ge && d2->type == DT_veclen)
1284 return d2->u.veclen >= d1->u.veclen;
1285
1286 return -1;
1287 }
1288
1289 /* A subroutine of maybe_both_true; examines all the tests for a given node.
1290 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1291
1292 static int
1293 maybe_both_true_1 (struct decision_test *d1, struct decision_test *d2)
1294 {
1295 struct decision_test *t1, *t2;
1296
1297 /* A match_operand with no predicate can match anything. Recognize
1298 this by the existence of a lone DT_accept_op test. */
1299 if (d1->type == DT_accept_op || d2->type == DT_accept_op)
1300 return 1;
1301
1302 /* Eliminate pairs of tests while they can exactly match. */
1303 while (d1 && d2 && d1->type == d2->type)
1304 {
1305 if (maybe_both_true_2 (d1, d2) == 0)
1306 return 0;
1307 d1 = d1->next, d2 = d2->next;
1308 }
1309
1310 /* After that, consider all pairs. */
1311 for (t1 = d1; t1 ; t1 = t1->next)
1312 for (t2 = d2; t2 ; t2 = t2->next)
1313 if (maybe_both_true_2 (t1, t2) == 0)
1314 return 0;
1315
1316 return -1;
1317 }
1318
1319 /* Return 0 if we can prove that there is no RTL that can match both
1320 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
1321 can match both or just that we couldn't prove there wasn't such an RTL).
1322
1323 TOPLEVEL is nonzero if we are to only look at the top level and not
1324 recursively descend. */
1325
1326 static int
1327 maybe_both_true (struct decision *d1, struct decision *d2,
1328 int toplevel)
1329 {
1330 struct decision *p1, *p2;
1331 int cmp;
1332
1333 /* Don't compare strings on the different positions in insn. Doing so
1334 is incorrect and results in false matches from constructs like
1335
1336 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1337 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1338 vs
1339 [(set (match_operand:HI "register_operand" "r")
1340 (match_operand:HI "register_operand" "r"))]
1341
1342 If we are presented with such, we are recursing through the remainder
1343 of a node's success nodes (from the loop at the end of this function).
1344 Skip forward until we come to a position that matches.
1345
1346 Due to the way position strings are constructed, we know that iterating
1347 forward from the lexically lower position (e.g. "00") will run into
1348 the lexically higher position (e.g. "1") and not the other way around.
1349 This saves a bit of effort. */
1350
1351 cmp = strcmp (d1->position, d2->position);
1352 if (cmp != 0)
1353 {
1354 gcc_assert (!toplevel);
1355
1356 /* If the d2->position was lexically lower, swap. */
1357 if (cmp > 0)
1358 p1 = d1, d1 = d2, d2 = p1;
1359
1360 if (d1->success.first == 0)
1361 return 1;
1362 for (p1 = d1->success.first; p1; p1 = p1->next)
1363 if (maybe_both_true (p1, d2, 0))
1364 return 1;
1365
1366 return 0;
1367 }
1368
1369 /* Test the current level. */
1370 cmp = maybe_both_true_1 (d1->tests, d2->tests);
1371 if (cmp >= 0)
1372 return cmp;
1373
1374 /* We can't prove that D1 and D2 cannot both be true. If we are only
1375 to check the top level, return 1. Otherwise, see if we can prove
1376 that all choices in both successors are mutually exclusive. If
1377 either does not have any successors, we can't prove they can't both
1378 be true. */
1379
1380 if (toplevel || d1->success.first == 0 || d2->success.first == 0)
1381 return 1;
1382
1383 for (p1 = d1->success.first; p1; p1 = p1->next)
1384 for (p2 = d2->success.first; p2; p2 = p2->next)
1385 if (maybe_both_true (p1, p2, 0))
1386 return 1;
1387
1388 return 0;
1389 }
1390
1391 /* A subroutine of nodes_identical. Examine two tests for equivalence. */
1392
1393 static int
1394 nodes_identical_1 (struct decision_test *d1, struct decision_test *d2)
1395 {
1396 switch (d1->type)
1397 {
1398 case DT_num_insns:
1399 return d1->u.num_insns == d2->u.num_insns;
1400
1401 case DT_mode:
1402 return d1->u.mode == d2->u.mode;
1403
1404 case DT_code:
1405 return d1->u.code == d2->u.code;
1406
1407 case DT_pred:
1408 return (d1->u.pred.mode == d2->u.pred.mode
1409 && strcmp (d1->u.pred.name, d2->u.pred.name) == 0);
1410
1411 case DT_c_test:
1412 return strcmp (d1->u.c_test, d2->u.c_test) == 0;
1413
1414 case DT_veclen:
1415 case DT_veclen_ge:
1416 return d1->u.veclen == d2->u.veclen;
1417
1418 case DT_dup:
1419 return d1->u.dup == d2->u.dup;
1420
1421 case DT_elt_zero_int:
1422 case DT_elt_one_int:
1423 case DT_elt_zero_wide:
1424 case DT_elt_zero_wide_safe:
1425 return d1->u.intval == d2->u.intval;
1426
1427 case DT_accept_op:
1428 return d1->u.opno == d2->u.opno;
1429
1430 case DT_accept_insn:
1431 /* Differences will be handled in merge_accept_insn. */
1432 return 1;
1433
1434 default:
1435 gcc_unreachable ();
1436 }
1437 }
1438
1439 /* True iff the two nodes are identical (on one level only). Due
1440 to the way these lists are constructed, we shouldn't have to
1441 consider different orderings on the tests. */
1442
1443 static int
1444 nodes_identical (struct decision *d1, struct decision *d2)
1445 {
1446 struct decision_test *t1, *t2;
1447
1448 for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next)
1449 {
1450 if (t1->type != t2->type)
1451 return 0;
1452 if (! nodes_identical_1 (t1, t2))
1453 return 0;
1454 }
1455
1456 /* For success, they should now both be null. */
1457 if (t1 != t2)
1458 return 0;
1459
1460 /* Check that their subnodes are at the same position, as any one set
1461 of sibling decisions must be at the same position. Allowing this
1462 requires complications to find_afterward and when change_state is
1463 invoked. */
1464 if (d1->success.first
1465 && d2->success.first
1466 && strcmp (d1->success.first->position, d2->success.first->position))
1467 return 0;
1468
1469 return 1;
1470 }
1471
1472 /* A subroutine of merge_trees; given two nodes that have been declared
1473 identical, cope with two insn accept states. If they differ in the
1474 number of clobbers, then the conflict was created by make_insn_sequence
1475 and we can drop the with-clobbers version on the floor. If both
1476 nodes have no additional clobbers, we have found an ambiguity in the
1477 source machine description. */
1478
1479 static void
1480 merge_accept_insn (struct decision *oldd, struct decision *addd)
1481 {
1482 struct decision_test *old, *add;
1483
1484 for (old = oldd->tests; old; old = old->next)
1485 if (old->type == DT_accept_insn)
1486 break;
1487 if (old == NULL)
1488 return;
1489
1490 for (add = addd->tests; add; add = add->next)
1491 if (add->type == DT_accept_insn)
1492 break;
1493 if (add == NULL)
1494 return;
1495
1496 /* If one node is for a normal insn and the second is for the base
1497 insn with clobbers stripped off, the second node should be ignored. */
1498
1499 if (old->u.insn.num_clobbers_to_add == 0
1500 && add->u.insn.num_clobbers_to_add > 0)
1501 {
1502 /* Nothing to do here. */
1503 }
1504 else if (old->u.insn.num_clobbers_to_add > 0
1505 && add->u.insn.num_clobbers_to_add == 0)
1506 {
1507 /* In this case, replace OLD with ADD. */
1508 old->u.insn = add->u.insn;
1509 }
1510 else
1511 {
1512 message_with_line (add->u.insn.lineno, "`%s' matches `%s'",
1513 get_insn_name (add->u.insn.code_number),
1514 get_insn_name (old->u.insn.code_number));
1515 message_with_line (old->u.insn.lineno, "previous definition of `%s'",
1516 get_insn_name (old->u.insn.code_number));
1517 error_count++;
1518 }
1519 }
1520
1521 /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1522
1523 static void
1524 merge_trees (struct decision_head *oldh, struct decision_head *addh)
1525 {
1526 struct decision *next, *add;
1527
1528 if (addh->first == 0)
1529 return;
1530 if (oldh->first == 0)
1531 {
1532 *oldh = *addh;
1533 return;
1534 }
1535
1536 /* Trying to merge bits at different positions isn't possible. */
1537 gcc_assert (!strcmp (oldh->first->position, addh->first->position));
1538
1539 for (add = addh->first; add ; add = next)
1540 {
1541 struct decision *old, *insert_before = NULL;
1542
1543 next = add->next;
1544
1545 /* The semantics of pattern matching state that the tests are
1546 done in the order given in the MD file so that if an insn
1547 matches two patterns, the first one will be used. However,
1548 in practice, most, if not all, patterns are unambiguous so
1549 that their order is independent. In that case, we can merge
1550 identical tests and group all similar modes and codes together.
1551
1552 Scan starting from the end of OLDH until we reach a point
1553 where we reach the head of the list or where we pass a
1554 pattern that could also be true if NEW is true. If we find
1555 an identical pattern, we can merge them. Also, record the
1556 last node that tests the same code and mode and the last one
1557 that tests just the same mode.
1558
1559 If we have no match, place NEW after the closest match we found. */
1560
1561 for (old = oldh->last; old; old = old->prev)
1562 {
1563 if (nodes_identical (old, add))
1564 {
1565 merge_accept_insn (old, add);
1566 merge_trees (&old->success, &add->success);
1567 goto merged_nodes;
1568 }
1569
1570 if (maybe_both_true (old, add, 0))
1571 break;
1572
1573 /* Insert the nodes in DT test type order, which is roughly
1574 how expensive/important the test is. Given that the tests
1575 are also ordered within the list, examining the first is
1576 sufficient. */
1577 if ((int) add->tests->type < (int) old->tests->type)
1578 insert_before = old;
1579 }
1580
1581 if (insert_before == NULL)
1582 {
1583 add->next = NULL;
1584 add->prev = oldh->last;
1585 oldh->last->next = add;
1586 oldh->last = add;
1587 }
1588 else
1589 {
1590 if ((add->prev = insert_before->prev) != NULL)
1591 add->prev->next = add;
1592 else
1593 oldh->first = add;
1594 add->next = insert_before;
1595 insert_before->prev = add;
1596 }
1597
1598 merged_nodes:;
1599 }
1600 }
1601 \f
1602 /* Walk the tree looking for sub-nodes that perform common tests.
1603 Factor out the common test into a new node. This enables us
1604 (depending on the test type) to emit switch statements later. */
1605
1606 static void
1607 factor_tests (struct decision_head *head)
1608 {
1609 struct decision *first, *next;
1610
1611 for (first = head->first; first && first->next; first = next)
1612 {
1613 enum decision_type type;
1614 struct decision *new, *old_last;
1615
1616 type = first->tests->type;
1617 next = first->next;
1618
1619 /* Want at least two compatible sequential nodes. */
1620 if (next->tests->type != type)
1621 continue;
1622
1623 /* Don't want all node types, just those we can turn into
1624 switch statements. */
1625 if (type != DT_mode
1626 && type != DT_code
1627 && type != DT_veclen
1628 && type != DT_elt_zero_int
1629 && type != DT_elt_one_int
1630 && type != DT_elt_zero_wide_safe)
1631 continue;
1632
1633 /* If we'd been performing more than one test, create a new node
1634 below our first test. */
1635 if (first->tests->next != NULL)
1636 {
1637 new = new_decision (first->position, &first->success);
1638 new->tests = first->tests->next;
1639 first->tests->next = NULL;
1640 }
1641
1642 /* Crop the node tree off after our first test. */
1643 first->next = NULL;
1644 old_last = head->last;
1645 head->last = first;
1646
1647 /* For each compatible test, adjust to perform only one test in
1648 the top level node, then merge the node back into the tree. */
1649 do
1650 {
1651 struct decision_head h;
1652
1653 if (next->tests->next != NULL)
1654 {
1655 new = new_decision (next->position, &next->success);
1656 new->tests = next->tests->next;
1657 next->tests->next = NULL;
1658 }
1659 new = next;
1660 next = next->next;
1661 new->next = NULL;
1662 h.first = h.last = new;
1663
1664 merge_trees (head, &h);
1665 }
1666 while (next && next->tests->type == type);
1667
1668 /* After we run out of compatible tests, graft the remaining nodes
1669 back onto the tree. */
1670 if (next)
1671 {
1672 next->prev = head->last;
1673 head->last->next = next;
1674 head->last = old_last;
1675 }
1676 }
1677
1678 /* Recurse. */
1679 for (first = head->first; first; first = first->next)
1680 factor_tests (&first->success);
1681 }
1682
1683 /* After factoring, try to simplify the tests on any one node.
1684 Tests that are useful for switch statements are recognizable
1685 by having only a single test on a node -- we'll be manipulating
1686 nodes with multiple tests:
1687
1688 If we have mode tests or code tests that are redundant with
1689 predicates, remove them. */
1690
1691 static void
1692 simplify_tests (struct decision_head *head)
1693 {
1694 struct decision *tree;
1695
1696 for (tree = head->first; tree; tree = tree->next)
1697 {
1698 struct decision_test *a, *b;
1699
1700 a = tree->tests;
1701 b = a->next;
1702 if (b == NULL)
1703 continue;
1704
1705 /* Find a predicate node. */
1706 while (b && b->type != DT_pred)
1707 b = b->next;
1708 if (b)
1709 {
1710 /* Due to how these tests are constructed, we don't even need
1711 to check that the mode and code are compatible -- they were
1712 generated from the predicate in the first place. */
1713 while (a->type == DT_mode || a->type == DT_code)
1714 a = a->next;
1715 tree->tests = a;
1716 }
1717 }
1718
1719 /* Recurse. */
1720 for (tree = head->first; tree; tree = tree->next)
1721 simplify_tests (&tree->success);
1722 }
1723
1724 /* Count the number of subnodes of HEAD. If the number is high enough,
1725 make the first node in HEAD start a separate subroutine in the C code
1726 that is generated. */
1727
1728 static int
1729 break_out_subroutines (struct decision_head *head, int initial)
1730 {
1731 int size = 0;
1732 struct decision *sub;
1733
1734 for (sub = head->first; sub; sub = sub->next)
1735 size += 1 + break_out_subroutines (&sub->success, 0);
1736
1737 if (size > SUBROUTINE_THRESHOLD && ! initial)
1738 {
1739 head->first->subroutine_number = ++next_subroutine_number;
1740 size = 1;
1741 }
1742 return size;
1743 }
1744
1745 /* For each node p, find the next alternative that might be true
1746 when p is true. */
1747
1748 static void
1749 find_afterward (struct decision_head *head, struct decision *real_afterward)
1750 {
1751 struct decision *p, *q, *afterward;
1752
1753 /* We can't propagate alternatives across subroutine boundaries.
1754 This is not incorrect, merely a minor optimization loss. */
1755
1756 p = head->first;
1757 afterward = (p->subroutine_number > 0 ? NULL : real_afterward);
1758
1759 for ( ; p ; p = p->next)
1760 {
1761 /* Find the next node that might be true if this one fails. */
1762 for (q = p->next; q ; q = q->next)
1763 if (maybe_both_true (p, q, 1))
1764 break;
1765
1766 /* If we reached the end of the list without finding one,
1767 use the incoming afterward position. */
1768 if (!q)
1769 q = afterward;
1770 p->afterward = q;
1771 if (q)
1772 q->need_label = 1;
1773 }
1774
1775 /* Recurse. */
1776 for (p = head->first; p ; p = p->next)
1777 if (p->success.first)
1778 find_afterward (&p->success, p->afterward);
1779
1780 /* When we are generating a subroutine, record the real afterward
1781 position in the first node where write_tree can find it, and we
1782 can do the right thing at the subroutine call site. */
1783 p = head->first;
1784 if (p->subroutine_number > 0)
1785 p->afterward = real_afterward;
1786 }
1787 \f
1788 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1789 actions are necessary to move to NEWPOS. If we fail to move to the
1790 new state, branch to node AFTERWARD if nonzero, otherwise return.
1791
1792 Failure to move to the new state can only occur if we are trying to
1793 match multiple insns and we try to step past the end of the stream. */
1794
1795 static void
1796 change_state (const char *oldpos, const char *newpos, const char *indent)
1797 {
1798 int odepth = strlen (oldpos);
1799 int ndepth = strlen (newpos);
1800 int depth;
1801 int old_has_insn, new_has_insn;
1802
1803 /* Pop up as many levels as necessary. */
1804 for (depth = odepth; strncmp (oldpos, newpos, depth) != 0; --depth)
1805 continue;
1806
1807 /* Hunt for the last [A-Z] in both strings. */
1808 for (old_has_insn = odepth - 1; old_has_insn >= 0; --old_has_insn)
1809 if (ISUPPER (oldpos[old_has_insn]))
1810 break;
1811 for (new_has_insn = ndepth - 1; new_has_insn >= 0; --new_has_insn)
1812 if (ISUPPER (newpos[new_has_insn]))
1813 break;
1814
1815 /* Go down to desired level. */
1816 while (depth < ndepth)
1817 {
1818 /* It's a different insn from the first one. */
1819 if (ISUPPER (newpos[depth]))
1820 {
1821 printf ("%stem = peep2_next_insn (%d);\n",
1822 indent, newpos[depth] - 'A');
1823 printf ("%sx%d = PATTERN (tem);\n", indent, depth + 1);
1824 }
1825 else if (ISLOWER (newpos[depth]))
1826 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1827 indent, depth + 1, depth, newpos[depth] - 'a');
1828 else
1829 printf ("%sx%d = XEXP (x%d, %c);\n",
1830 indent, depth + 1, depth, newpos[depth]);
1831 ++depth;
1832 }
1833 }
1834 \f
1835 /* Print the enumerator constant for CODE -- the upcase version of
1836 the name. */
1837
1838 static void
1839 print_code (enum rtx_code code)
1840 {
1841 const char *p;
1842 for (p = GET_RTX_NAME (code); *p; p++)
1843 putchar (TOUPPER (*p));
1844 }
1845
1846 /* Emit code to cross an afterward link -- change state and branch. */
1847
1848 static void
1849 write_afterward (struct decision *start, struct decision *afterward,
1850 const char *indent)
1851 {
1852 if (!afterward || start->subroutine_number > 0)
1853 printf("%sgoto ret0;\n", indent);
1854 else
1855 {
1856 change_state (start->position, afterward->position, indent);
1857 printf ("%sgoto L%d;\n", indent, afterward->number);
1858 }
1859 }
1860
1861 /* Emit a HOST_WIDE_INT as an integer constant expression. We need to take
1862 special care to avoid "decimal constant is so large that it is unsigned"
1863 warnings in the resulting code. */
1864
1865 static void
1866 print_host_wide_int (HOST_WIDE_INT val)
1867 {
1868 HOST_WIDE_INT min = (unsigned HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1);
1869 if (val == min)
1870 printf ("(" HOST_WIDE_INT_PRINT_DEC_C "-1)", val + 1);
1871 else
1872 printf (HOST_WIDE_INT_PRINT_DEC_C, val);
1873 }
1874
1875 /* Emit a switch statement, if possible, for an initial sequence of
1876 nodes at START. Return the first node yet untested. */
1877
1878 static struct decision *
1879 write_switch (struct decision *start, int depth)
1880 {
1881 struct decision *p = start;
1882 enum decision_type type = p->tests->type;
1883 struct decision *needs_label = NULL;
1884
1885 /* If we have two or more nodes in sequence that test the same one
1886 thing, we may be able to use a switch statement. */
1887
1888 if (!p->next
1889 || p->tests->next
1890 || p->next->tests->type != type
1891 || p->next->tests->next
1892 || nodes_identical_1 (p->tests, p->next->tests))
1893 return p;
1894
1895 /* DT_code is special in that we can do interesting things with
1896 known predicates at the same time. */
1897 if (type == DT_code)
1898 {
1899 char codemap[NUM_RTX_CODE];
1900 struct decision *ret;
1901 RTX_CODE code;
1902
1903 memset (codemap, 0, sizeof(codemap));
1904
1905 printf (" switch (GET_CODE (x%d))\n {\n", depth);
1906 code = p->tests->u.code;
1907 do
1908 {
1909 if (p != start && p->need_label && needs_label == NULL)
1910 needs_label = p;
1911
1912 printf (" case ");
1913 print_code (code);
1914 printf (":\n goto L%d;\n", p->success.first->number);
1915 p->success.first->need_label = 1;
1916
1917 codemap[code] = 1;
1918 p = p->next;
1919 }
1920 while (p
1921 && ! p->tests->next
1922 && p->tests->type == DT_code
1923 && ! codemap[code = p->tests->u.code]);
1924
1925 /* If P is testing a predicate that we know about and we haven't
1926 seen any of the codes that are valid for the predicate, we can
1927 write a series of "case" statement, one for each possible code.
1928 Since we are already in a switch, these redundant tests are very
1929 cheap and will reduce the number of predicates called. */
1930
1931 /* Note that while we write out cases for these predicates here,
1932 we don't actually write the test here, as it gets kinda messy.
1933 It is trivial to leave this to later by telling our caller that
1934 we only processed the CODE tests. */
1935 if (needs_label != NULL)
1936 ret = needs_label;
1937 else
1938 ret = p;
1939
1940 while (p && p->tests->type == DT_pred && p->tests->u.pred.data)
1941 {
1942 const struct pred_data *data = p->tests->u.pred.data;
1943 RTX_CODE c;
1944 for (c = 0; c < NUM_RTX_CODE; c++)
1945 if (codemap[c] && data->codes[c])
1946 goto pred_done;
1947
1948 for (c = 0; c < NUM_RTX_CODE; c++)
1949 if (data->codes[c])
1950 {
1951 fputs (" case ", stdout);
1952 print_code (c);
1953 fputs (":\n", stdout);
1954 codemap[c] = 1;
1955 }
1956
1957 printf (" goto L%d;\n", p->number);
1958 p->need_label = 1;
1959 p = p->next;
1960 }
1961
1962 pred_done:
1963 /* Make the default case skip the predicates we managed to match. */
1964
1965 printf (" default:\n");
1966 if (p != ret)
1967 {
1968 if (p)
1969 {
1970 printf (" goto L%d;\n", p->number);
1971 p->need_label = 1;
1972 }
1973 else
1974 write_afterward (start, start->afterward, " ");
1975 }
1976 else
1977 printf (" break;\n");
1978 printf (" }\n");
1979
1980 return ret;
1981 }
1982 else if (type == DT_mode
1983 || type == DT_veclen
1984 || type == DT_elt_zero_int
1985 || type == DT_elt_one_int
1986 || type == DT_elt_zero_wide_safe)
1987 {
1988 const char *indent = "";
1989
1990 /* We cast switch parameter to integer, so we must ensure that the value
1991 fits. */
1992 if (type == DT_elt_zero_wide_safe)
1993 {
1994 indent = " ";
1995 printf(" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n", depth, depth);
1996 }
1997 printf ("%s switch (", indent);
1998 switch (type)
1999 {
2000 case DT_mode:
2001 printf ("GET_MODE (x%d)", depth);
2002 break;
2003 case DT_veclen:
2004 printf ("XVECLEN (x%d, 0)", depth);
2005 break;
2006 case DT_elt_zero_int:
2007 printf ("XINT (x%d, 0)", depth);
2008 break;
2009 case DT_elt_one_int:
2010 printf ("XINT (x%d, 1)", depth);
2011 break;
2012 case DT_elt_zero_wide_safe:
2013 /* Convert result of XWINT to int for portability since some C
2014 compilers won't do it and some will. */
2015 printf ("(int) XWINT (x%d, 0)", depth);
2016 break;
2017 default:
2018 gcc_unreachable ();
2019 }
2020 printf (")\n%s {\n", indent);
2021
2022 do
2023 {
2024 /* Merge trees will not unify identical nodes if their
2025 sub-nodes are at different levels. Thus we must check
2026 for duplicate cases. */
2027 struct decision *q;
2028 for (q = start; q != p; q = q->next)
2029 if (nodes_identical_1 (p->tests, q->tests))
2030 goto case_done;
2031
2032 if (p != start && p->need_label && needs_label == NULL)
2033 needs_label = p;
2034
2035 printf ("%s case ", indent);
2036 switch (type)
2037 {
2038 case DT_mode:
2039 printf ("%smode", GET_MODE_NAME (p->tests->u.mode));
2040 break;
2041 case DT_veclen:
2042 printf ("%d", p->tests->u.veclen);
2043 break;
2044 case DT_elt_zero_int:
2045 case DT_elt_one_int:
2046 case DT_elt_zero_wide:
2047 case DT_elt_zero_wide_safe:
2048 print_host_wide_int (p->tests->u.intval);
2049 break;
2050 default:
2051 gcc_unreachable ();
2052 }
2053 printf (":\n%s goto L%d;\n", indent, p->success.first->number);
2054 p->success.first->need_label = 1;
2055
2056 p = p->next;
2057 }
2058 while (p && p->tests->type == type && !p->tests->next);
2059
2060 case_done:
2061 printf ("%s default:\n%s break;\n%s }\n",
2062 indent, indent, indent);
2063
2064 return needs_label != NULL ? needs_label : p;
2065 }
2066 else
2067 {
2068 /* None of the other tests are amenable. */
2069 return p;
2070 }
2071 }
2072
2073 /* Emit code for one test. */
2074
2075 static void
2076 write_cond (struct decision_test *p, int depth,
2077 enum routine_type subroutine_type)
2078 {
2079 switch (p->type)
2080 {
2081 case DT_num_insns:
2082 printf ("peep2_current_count >= %d", p->u.num_insns);
2083 break;
2084
2085 case DT_mode:
2086 printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode));
2087 break;
2088
2089 case DT_code:
2090 printf ("GET_CODE (x%d) == ", depth);
2091 print_code (p->u.code);
2092 break;
2093
2094 case DT_veclen:
2095 printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen);
2096 break;
2097
2098 case DT_elt_zero_int:
2099 printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval);
2100 break;
2101
2102 case DT_elt_one_int:
2103 printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval);
2104 break;
2105
2106 case DT_elt_zero_wide:
2107 case DT_elt_zero_wide_safe:
2108 printf ("XWINT (x%d, 0) == ", depth);
2109 print_host_wide_int (p->u.intval);
2110 break;
2111
2112 case DT_const_int:
2113 printf ("x%d == const_int_rtx[MAX_SAVED_CONST_INT + (%d)]",
2114 depth, (int) p->u.intval);
2115 break;
2116
2117 case DT_veclen_ge:
2118 printf ("XVECLEN (x%d, 0) >= %d", depth, p->u.veclen);
2119 break;
2120
2121 case DT_dup:
2122 printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup);
2123 break;
2124
2125 case DT_pred:
2126 printf ("%s (x%d, %smode)", p->u.pred.name, depth,
2127 GET_MODE_NAME (p->u.pred.mode));
2128 break;
2129
2130 case DT_c_test:
2131 print_c_condition (p->u.c_test);
2132 break;
2133
2134 case DT_accept_insn:
2135 gcc_assert (subroutine_type == RECOG);
2136 gcc_assert (p->u.insn.num_clobbers_to_add);
2137 printf ("pnum_clobbers != NULL");
2138 break;
2139
2140 default:
2141 gcc_unreachable ();
2142 }
2143 }
2144
2145 /* Emit code for one action. The previous tests have succeeded;
2146 TEST is the last of the chain. In the normal case we simply
2147 perform a state change. For the `accept' tests we must do more work. */
2148
2149 static void
2150 write_action (struct decision *p, struct decision_test *test,
2151 int depth, int uncond, struct decision *success,
2152 enum routine_type subroutine_type)
2153 {
2154 const char *indent;
2155 int want_close = 0;
2156
2157 if (uncond)
2158 indent = " ";
2159 else if (test->type == DT_accept_op || test->type == DT_accept_insn)
2160 {
2161 fputs (" {\n", stdout);
2162 indent = " ";
2163 want_close = 1;
2164 }
2165 else
2166 indent = " ";
2167
2168 if (test->type == DT_accept_op)
2169 {
2170 printf("%soperands[%d] = x%d;\n", indent, test->u.opno, depth);
2171
2172 /* Only allow DT_accept_insn to follow. */
2173 if (test->next)
2174 {
2175 test = test->next;
2176 gcc_assert (test->type == DT_accept_insn);
2177 }
2178 }
2179
2180 /* Sanity check that we're now at the end of the list of tests. */
2181 gcc_assert (!test->next);
2182
2183 if (test->type == DT_accept_insn)
2184 {
2185 switch (subroutine_type)
2186 {
2187 case RECOG:
2188 if (test->u.insn.num_clobbers_to_add != 0)
2189 printf ("%s*pnum_clobbers = %d;\n",
2190 indent, test->u.insn.num_clobbers_to_add);
2191 printf ("%sreturn %d; /* %s */\n", indent,
2192 test->u.insn.code_number,
2193 get_insn_name (test->u.insn.code_number));
2194 break;
2195
2196 case SPLIT:
2197 printf ("%sreturn gen_split_%d (insn, operands);\n",
2198 indent, test->u.insn.code_number);
2199 break;
2200
2201 case PEEPHOLE2:
2202 {
2203 int match_len = 0, i;
2204
2205 for (i = strlen (p->position) - 1; i >= 0; --i)
2206 if (ISUPPER (p->position[i]))
2207 {
2208 match_len = p->position[i] - 'A';
2209 break;
2210 }
2211 printf ("%s*_pmatch_len = %d;\n", indent, match_len);
2212 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
2213 indent, test->u.insn.code_number);
2214 printf ("%sif (tem != 0)\n%s return tem;\n", indent, indent);
2215 }
2216 break;
2217
2218 default:
2219 gcc_unreachable ();
2220 }
2221 }
2222 else
2223 {
2224 printf("%sgoto L%d;\n", indent, success->number);
2225 success->need_label = 1;
2226 }
2227
2228 if (want_close)
2229 fputs (" }\n", stdout);
2230 }
2231
2232 /* Return 1 if the test is always true and has no fallthru path. Return -1
2233 if the test does have a fallthru path, but requires that the condition be
2234 terminated. Otherwise return 0 for a normal test. */
2235 /* ??? is_unconditional is a stupid name for a tri-state function. */
2236
2237 static int
2238 is_unconditional (struct decision_test *t, enum routine_type subroutine_type)
2239 {
2240 if (t->type == DT_accept_op)
2241 return 1;
2242
2243 if (t->type == DT_accept_insn)
2244 {
2245 switch (subroutine_type)
2246 {
2247 case RECOG:
2248 return (t->u.insn.num_clobbers_to_add == 0);
2249 case SPLIT:
2250 return 1;
2251 case PEEPHOLE2:
2252 return -1;
2253 default:
2254 gcc_unreachable ();
2255 }
2256 }
2257
2258 return 0;
2259 }
2260
2261 /* Emit code for one node -- the conditional and the accompanying action.
2262 Return true if there is no fallthru path. */
2263
2264 static int
2265 write_node (struct decision *p, int depth,
2266 enum routine_type subroutine_type)
2267 {
2268 struct decision_test *test, *last_test;
2269 int uncond;
2270
2271 /* Scan the tests and simplify comparisons against small
2272 constants. */
2273 for (test = p->tests; test; test = test->next)
2274 {
2275 if (test->type == DT_code
2276 && test->u.code == CONST_INT
2277 && test->next
2278 && test->next->type == DT_elt_zero_wide_safe
2279 && -MAX_SAVED_CONST_INT <= test->next->u.intval
2280 && test->next->u.intval <= MAX_SAVED_CONST_INT)
2281 {
2282 test->type = DT_const_int;
2283 test->u.intval = test->next->u.intval;
2284 test->next = test->next->next;
2285 }
2286 }
2287
2288 last_test = test = p->tests;
2289 uncond = is_unconditional (test, subroutine_type);
2290 if (uncond == 0)
2291 {
2292 printf (" if (");
2293 write_cond (test, depth, subroutine_type);
2294
2295 while ((test = test->next) != NULL)
2296 {
2297 last_test = test;
2298 if (is_unconditional (test, subroutine_type))
2299 break;
2300
2301 printf ("\n && ");
2302 write_cond (test, depth, subroutine_type);
2303 }
2304
2305 printf (")\n");
2306 }
2307
2308 write_action (p, last_test, depth, uncond, p->success.first, subroutine_type);
2309
2310 return uncond > 0;
2311 }
2312
2313 /* Emit code for all of the sibling nodes of HEAD. */
2314
2315 static void
2316 write_tree_1 (struct decision_head *head, int depth,
2317 enum routine_type subroutine_type)
2318 {
2319 struct decision *p, *next;
2320 int uncond = 0;
2321
2322 for (p = head->first; p ; p = next)
2323 {
2324 /* The label for the first element was printed in write_tree. */
2325 if (p != head->first && p->need_label)
2326 OUTPUT_LABEL (" ", p->number);
2327
2328 /* Attempt to write a switch statement for a whole sequence. */
2329 next = write_switch (p, depth);
2330 if (p != next)
2331 uncond = 0;
2332 else
2333 {
2334 /* Failed -- fall back and write one node. */
2335 uncond = write_node (p, depth, subroutine_type);
2336 next = p->next;
2337 }
2338 }
2339
2340 /* Finished with this chain. Close a fallthru path by branching
2341 to the afterward node. */
2342 if (! uncond)
2343 write_afterward (head->last, head->last->afterward, " ");
2344 }
2345
2346 /* Write out the decision tree starting at HEAD. PREVPOS is the
2347 position at the node that branched to this node. */
2348
2349 static void
2350 write_tree (struct decision_head *head, const char *prevpos,
2351 enum routine_type type, int initial)
2352 {
2353 struct decision *p = head->first;
2354
2355 putchar ('\n');
2356 if (p->need_label)
2357 OUTPUT_LABEL (" ", p->number);
2358
2359 if (! initial && p->subroutine_number > 0)
2360 {
2361 static const char * const name_prefix[] = {
2362 "recog", "split", "peephole2"
2363 };
2364
2365 static const char * const call_suffix[] = {
2366 ", pnum_clobbers", "", ", _pmatch_len"
2367 };
2368
2369 /* This node has been broken out into a separate subroutine.
2370 Call it, test the result, and branch accordingly. */
2371
2372 if (p->afterward)
2373 {
2374 printf (" tem = %s_%d (x0, insn%s);\n",
2375 name_prefix[type], p->subroutine_number, call_suffix[type]);
2376 if (IS_SPLIT (type))
2377 printf (" if (tem != 0)\n return tem;\n");
2378 else
2379 printf (" if (tem >= 0)\n return tem;\n");
2380
2381 change_state (p->position, p->afterward->position, " ");
2382 printf (" goto L%d;\n", p->afterward->number);
2383 }
2384 else
2385 {
2386 printf (" return %s_%d (x0, insn%s);\n",
2387 name_prefix[type], p->subroutine_number, call_suffix[type]);
2388 }
2389 }
2390 else
2391 {
2392 int depth = strlen (p->position);
2393
2394 change_state (prevpos, p->position, " ");
2395 write_tree_1 (head, depth, type);
2396
2397 for (p = head->first; p; p = p->next)
2398 if (p->success.first)
2399 write_tree (&p->success, p->position, type, 0);
2400 }
2401 }
2402
2403 /* Write out a subroutine of type TYPE to do comparisons starting at
2404 node TREE. */
2405
2406 static void
2407 write_subroutine (struct decision_head *head, enum routine_type type)
2408 {
2409 int subfunction = head->first ? head->first->subroutine_number : 0;
2410 const char *s_or_e;
2411 char extension[32];
2412 int i;
2413
2414 s_or_e = subfunction ? "static " : "";
2415
2416 if (subfunction)
2417 sprintf (extension, "_%d", subfunction);
2418 else if (type == RECOG)
2419 extension[0] = '\0';
2420 else
2421 strcpy (extension, "_insns");
2422
2423 switch (type)
2424 {
2425 case RECOG:
2426 printf ("%sint\n\
2427 recog%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", s_or_e, extension);
2428 break;
2429 case SPLIT:
2430 printf ("%srtx\n\
2431 split%s (rtx x0 ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED)\n",
2432 s_or_e, extension);
2433 break;
2434 case PEEPHOLE2:
2435 printf ("%srtx\n\
2436 peephole2%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *_pmatch_len ATTRIBUTE_UNUSED)\n",
2437 s_or_e, extension);
2438 break;
2439 }
2440
2441 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
2442 for (i = 1; i <= max_depth; i++)
2443 printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i);
2444
2445 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int");
2446
2447 if (!subfunction)
2448 printf (" recog_data.insn = NULL_RTX;\n");
2449
2450 if (head->first)
2451 write_tree (head, "", type, 1);
2452 else
2453 printf (" goto ret0;\n");
2454
2455 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1);
2456 }
2457
2458 /* In break_out_subroutines, we discovered the boundaries for the
2459 subroutines, but did not write them out. Do so now. */
2460
2461 static void
2462 write_subroutines (struct decision_head *head, enum routine_type type)
2463 {
2464 struct decision *p;
2465
2466 for (p = head->first; p ; p = p->next)
2467 if (p->success.first)
2468 write_subroutines (&p->success, type);
2469
2470 if (head->first->subroutine_number > 0)
2471 write_subroutine (head, type);
2472 }
2473
2474 /* Begin the output file. */
2475
2476 static void
2477 write_header (void)
2478 {
2479 puts ("\
2480 /* Generated automatically by the program `genrecog' from the target\n\
2481 machine description file. */\n\
2482 \n\
2483 #include \"config.h\"\n\
2484 #include \"system.h\"\n\
2485 #include \"coretypes.h\"\n\
2486 #include \"tm.h\"\n\
2487 #include \"rtl.h\"\n\
2488 #include \"tm_p.h\"\n\
2489 #include \"function.h\"\n\
2490 #include \"insn-config.h\"\n\
2491 #include \"recog.h\"\n\
2492 #include \"real.h\"\n\
2493 #include \"output.h\"\n\
2494 #include \"flags.h\"\n\
2495 #include \"hard-reg-set.h\"\n\
2496 #include \"resource.h\"\n\
2497 #include \"toplev.h\"\n\
2498 #include \"reload.h\"\n\
2499 #include \"tm-constrs.h\"\n\
2500 \n");
2501
2502 puts ("\n\
2503 /* `recog' contains a decision tree that recognizes whether the rtx\n\
2504 X0 is a valid instruction.\n\
2505 \n\
2506 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2507 returns a nonnegative number which is the insn code number for the\n\
2508 pattern that matched. This is the same as the order in the machine\n\
2509 description of the entry that matched. This number can be used as an\n\
2510 index into `insn_data' and other tables.\n");
2511 puts ("\
2512 The third argument to recog is an optional pointer to an int. If\n\
2513 present, recog will accept a pattern if it matches except for missing\n\
2514 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2515 the optional pointer will be set to the number of CLOBBERs that need\n\
2516 to be added (it should be initialized to zero by the caller). If it");
2517 puts ("\
2518 is set nonzero, the caller should allocate a PARALLEL of the\n\
2519 appropriate size, copy the initial entries, and call add_clobbers\n\
2520 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2521 ");
2522
2523 puts ("\n\
2524 The function split_insns returns 0 if the rtl could not\n\
2525 be split or the split rtl as an INSN list if it can be.\n\
2526 \n\
2527 The function peephole2_insns returns 0 if the rtl could not\n\
2528 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
2529 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2530 */\n\n");
2531 }
2532
2533 \f
2534 /* Construct and return a sequence of decisions
2535 that will recognize INSN.
2536
2537 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2538
2539 static struct decision_head
2540 make_insn_sequence (rtx insn, enum routine_type type)
2541 {
2542 rtx x;
2543 const char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
2544 int truth = maybe_eval_c_test (c_test);
2545 struct decision *last;
2546 struct decision_test *test, **place;
2547 struct decision_head head;
2548 char c_test_pos[2];
2549
2550 /* We should never see an insn whose C test is false at compile time. */
2551 gcc_assert (truth);
2552
2553 c_test_pos[0] = '\0';
2554 if (type == PEEPHOLE2)
2555 {
2556 int i, j;
2557
2558 /* peephole2 gets special treatment:
2559 - X always gets an outer parallel even if it's only one entry
2560 - we remove all traces of outer-level match_scratch and match_dup
2561 expressions here. */
2562 x = rtx_alloc (PARALLEL);
2563 PUT_MODE (x, VOIDmode);
2564 XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0));
2565 for (i = j = 0; i < XVECLEN (insn, 0); i++)
2566 {
2567 rtx tmp = XVECEXP (insn, 0, i);
2568 if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP)
2569 {
2570 XVECEXP (x, 0, j) = tmp;
2571 j++;
2572 }
2573 }
2574 XVECLEN (x, 0) = j;
2575
2576 c_test_pos[0] = 'A' + j - 1;
2577 c_test_pos[1] = '\0';
2578 }
2579 else if (XVECLEN (insn, type == RECOG) == 1)
2580 x = XVECEXP (insn, type == RECOG, 0);
2581 else
2582 {
2583 x = rtx_alloc (PARALLEL);
2584 XVEC (x, 0) = XVEC (insn, type == RECOG);
2585 PUT_MODE (x, VOIDmode);
2586 }
2587
2588 validate_pattern (x, insn, NULL_RTX, 0);
2589
2590 memset(&head, 0, sizeof(head));
2591 last = add_to_sequence (x, &head, "", type, 1);
2592
2593 /* Find the end of the test chain on the last node. */
2594 for (test = last->tests; test->next; test = test->next)
2595 continue;
2596 place = &test->next;
2597
2598 /* Skip the C test if it's known to be true at compile time. */
2599 if (truth == -1)
2600 {
2601 /* Need a new node if we have another test to add. */
2602 if (test->type == DT_accept_op)
2603 {
2604 last = new_decision (c_test_pos, &last->success);
2605 place = &last->tests;
2606 }
2607 test = new_decision_test (DT_c_test, &place);
2608 test->u.c_test = c_test;
2609 }
2610
2611 test = new_decision_test (DT_accept_insn, &place);
2612 test->u.insn.code_number = next_insn_code;
2613 test->u.insn.lineno = pattern_lineno;
2614 test->u.insn.num_clobbers_to_add = 0;
2615
2616 switch (type)
2617 {
2618 case RECOG:
2619 /* If this is a DEFINE_INSN and X is a PARALLEL, see if it ends
2620 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2621 If so, set up to recognize the pattern without these CLOBBERs. */
2622
2623 if (GET_CODE (x) == PARALLEL)
2624 {
2625 int i;
2626
2627 /* Find the last non-clobber in the parallel. */
2628 for (i = XVECLEN (x, 0); i > 0; i--)
2629 {
2630 rtx y = XVECEXP (x, 0, i - 1);
2631 if (GET_CODE (y) != CLOBBER
2632 || (!REG_P (XEXP (y, 0))
2633 && GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH))
2634 break;
2635 }
2636
2637 if (i != XVECLEN (x, 0))
2638 {
2639 rtx new;
2640 struct decision_head clobber_head;
2641
2642 /* Build a similar insn without the clobbers. */
2643 if (i == 1)
2644 new = XVECEXP (x, 0, 0);
2645 else
2646 {
2647 int j;
2648
2649 new = rtx_alloc (PARALLEL);
2650 XVEC (new, 0) = rtvec_alloc (i);
2651 for (j = i - 1; j >= 0; j--)
2652 XVECEXP (new, 0, j) = XVECEXP (x, 0, j);
2653 }
2654
2655 /* Recognize it. */
2656 memset (&clobber_head, 0, sizeof(clobber_head));
2657 last = add_to_sequence (new, &clobber_head, "", type, 1);
2658
2659 /* Find the end of the test chain on the last node. */
2660 for (test = last->tests; test->next; test = test->next)
2661 continue;
2662
2663 /* We definitely have a new test to add -- create a new
2664 node if needed. */
2665 place = &test->next;
2666 if (test->type == DT_accept_op)
2667 {
2668 last = new_decision ("", &last->success);
2669 place = &last->tests;
2670 }
2671
2672 /* Skip the C test if it's known to be true at compile
2673 time. */
2674 if (truth == -1)
2675 {
2676 test = new_decision_test (DT_c_test, &place);
2677 test->u.c_test = c_test;
2678 }
2679
2680 test = new_decision_test (DT_accept_insn, &place);
2681 test->u.insn.code_number = next_insn_code;
2682 test->u.insn.lineno = pattern_lineno;
2683 test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i;
2684
2685 merge_trees (&head, &clobber_head);
2686 }
2687 }
2688 break;
2689
2690 case SPLIT:
2691 /* Define the subroutine we will call below and emit in genemit. */
2692 printf ("extern rtx gen_split_%d (rtx, rtx *);\n", next_insn_code);
2693 break;
2694
2695 case PEEPHOLE2:
2696 /* Define the subroutine we will call below and emit in genemit. */
2697 printf ("extern rtx gen_peephole2_%d (rtx, rtx *);\n",
2698 next_insn_code);
2699 break;
2700 }
2701
2702 return head;
2703 }
2704
2705 static void
2706 process_tree (struct decision_head *head, enum routine_type subroutine_type)
2707 {
2708 if (head->first == NULL)
2709 {
2710 /* We can elide peephole2_insns, but not recog or split_insns. */
2711 if (subroutine_type == PEEPHOLE2)
2712 return;
2713 }
2714 else
2715 {
2716 factor_tests (head);
2717
2718 next_subroutine_number = 0;
2719 break_out_subroutines (head, 1);
2720 find_afterward (head, NULL);
2721
2722 /* We run this after find_afterward, because find_afterward needs
2723 the redundant DT_mode tests on predicates to determine whether
2724 two tests can both be true or not. */
2725 simplify_tests(head);
2726
2727 write_subroutines (head, subroutine_type);
2728 }
2729
2730 write_subroutine (head, subroutine_type);
2731 }
2732 \f
2733 extern int main (int, char **);
2734
2735 int
2736 main (int argc, char **argv)
2737 {
2738 rtx desc;
2739 struct decision_head recog_tree, split_tree, peephole2_tree, h;
2740
2741 progname = "genrecog";
2742
2743 memset (&recog_tree, 0, sizeof recog_tree);
2744 memset (&split_tree, 0, sizeof split_tree);
2745 memset (&peephole2_tree, 0, sizeof peephole2_tree);
2746
2747 if (init_md_reader_args (argc, argv) != SUCCESS_EXIT_CODE)
2748 return (FATAL_EXIT_CODE);
2749
2750 next_insn_code = 0;
2751
2752 write_header ();
2753
2754 /* Read the machine description. */
2755
2756 while (1)
2757 {
2758 desc = read_md_rtx (&pattern_lineno, &next_insn_code);
2759 if (desc == NULL)
2760 break;
2761
2762 switch (GET_CODE (desc))
2763 {
2764 case DEFINE_PREDICATE:
2765 case DEFINE_SPECIAL_PREDICATE:
2766 process_define_predicate (desc);
2767 break;
2768
2769 case DEFINE_INSN:
2770 h = make_insn_sequence (desc, RECOG);
2771 merge_trees (&recog_tree, &h);
2772 break;
2773
2774 case DEFINE_SPLIT:
2775 h = make_insn_sequence (desc, SPLIT);
2776 merge_trees (&split_tree, &h);
2777 break;
2778
2779 case DEFINE_PEEPHOLE2:
2780 h = make_insn_sequence (desc, PEEPHOLE2);
2781 merge_trees (&peephole2_tree, &h);
2782
2783 default:
2784 /* do nothing */;
2785 }
2786 }
2787
2788 if (error_count || have_error)
2789 return FATAL_EXIT_CODE;
2790
2791 puts ("\n\n");
2792
2793 process_tree (&recog_tree, RECOG);
2794 process_tree (&split_tree, SPLIT);
2795 process_tree (&peephole2_tree, PEEPHOLE2);
2796
2797 fflush (stdout);
2798 return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
2799 }
2800 \f
2801 static void
2802 debug_decision_2 (struct decision_test *test)
2803 {
2804 switch (test->type)
2805 {
2806 case DT_num_insns:
2807 fprintf (stderr, "num_insns=%d", test->u.num_insns);
2808 break;
2809 case DT_mode:
2810 fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode));
2811 break;
2812 case DT_code:
2813 fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code));
2814 break;
2815 case DT_veclen:
2816 fprintf (stderr, "veclen=%d", test->u.veclen);
2817 break;
2818 case DT_elt_zero_int:
2819 fprintf (stderr, "elt0_i=%d", (int) test->u.intval);
2820 break;
2821 case DT_elt_one_int:
2822 fprintf (stderr, "elt1_i=%d", (int) test->u.intval);
2823 break;
2824 case DT_elt_zero_wide:
2825 fprintf (stderr, "elt0_w=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2826 break;
2827 case DT_elt_zero_wide_safe:
2828 fprintf (stderr, "elt0_ws=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2829 break;
2830 case DT_veclen_ge:
2831 fprintf (stderr, "veclen>=%d", test->u.veclen);
2832 break;
2833 case DT_dup:
2834 fprintf (stderr, "dup=%d", test->u.dup);
2835 break;
2836 case DT_pred:
2837 fprintf (stderr, "pred=(%s,%s)",
2838 test->u.pred.name, GET_MODE_NAME(test->u.pred.mode));
2839 break;
2840 case DT_c_test:
2841 {
2842 char sub[16+4];
2843 strncpy (sub, test->u.c_test, sizeof(sub));
2844 memcpy (sub+16, "...", 4);
2845 fprintf (stderr, "c_test=\"%s\"", sub);
2846 }
2847 break;
2848 case DT_accept_op:
2849 fprintf (stderr, "A_op=%d", test->u.opno);
2850 break;
2851 case DT_accept_insn:
2852 fprintf (stderr, "A_insn=(%d,%d)",
2853 test->u.insn.code_number, test->u.insn.num_clobbers_to_add);
2854 break;
2855
2856 default:
2857 gcc_unreachable ();
2858 }
2859 }
2860
2861 static void
2862 debug_decision_1 (struct decision *d, int indent)
2863 {
2864 int i;
2865 struct decision_test *test;
2866
2867 if (d == NULL)
2868 {
2869 for (i = 0; i < indent; ++i)
2870 putc (' ', stderr);
2871 fputs ("(nil)\n", stderr);
2872 return;
2873 }
2874
2875 for (i = 0; i < indent; ++i)
2876 putc (' ', stderr);
2877
2878 putc ('{', stderr);
2879 test = d->tests;
2880 if (test)
2881 {
2882 debug_decision_2 (test);
2883 while ((test = test->next) != NULL)
2884 {
2885 fputs (" + ", stderr);
2886 debug_decision_2 (test);
2887 }
2888 }
2889 fprintf (stderr, "} %d n %d a %d\n", d->number,
2890 (d->next ? d->next->number : -1),
2891 (d->afterward ? d->afterward->number : -1));
2892 }
2893
2894 static void
2895 debug_decision_0 (struct decision *d, int indent, int maxdepth)
2896 {
2897 struct decision *n;
2898 int i;
2899
2900 if (maxdepth < 0)
2901 return;
2902 if (d == NULL)
2903 {
2904 for (i = 0; i < indent; ++i)
2905 putc (' ', stderr);
2906 fputs ("(nil)\n", stderr);
2907 return;
2908 }
2909
2910 debug_decision_1 (d, indent);
2911 for (n = d->success.first; n ; n = n->next)
2912 debug_decision_0 (n, indent + 2, maxdepth - 1);
2913 }
2914
2915 void
2916 debug_decision (struct decision *d)
2917 {
2918 debug_decision_0 (d, 0, 1000000);
2919 }
2920
2921 void
2922 debug_decision_list (struct decision *d)
2923 {
2924 while (d)
2925 {
2926 debug_decision_0 (d, 0, 0);
2927 d = d->next;
2928 }
2929 }