rtl.c (read_rtx): Use atol/atoq based upon disposition of HOST_WIDE_INT.
[gcc.git] / gcc / genrecog.c
1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 88, 92, 93, 94, 95, 1997 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This program is used to produce insn-recog.c, which contains
23 a function called `recog' plus its subroutines.
24 These functions contain a decision tree
25 that recognizes whether an rtx, the argument given to recog,
26 is a valid instruction.
27
28 recog returns -1 if the rtx is not valid.
29 If the rtx is valid, recog returns a nonnegative number
30 which is the insn code number for the pattern that matched.
31 This is the same as the order in the machine description of the
32 entry that matched. This number can be used as an index into various
33 insn_* tables, such as insn_template, insn_outfun, and insn_n_operands
34 (found in insn-output.c).
35
36 The third argument to recog is an optional pointer to an int.
37 If present, recog will accept a pattern if it matches except for
38 missing CLOBBER expressions at the end. In that case, the value
39 pointed to by the optional pointer will be set to the number of
40 CLOBBERs that need to be added (it should be initialized to zero by
41 the caller). If it is set nonzero, the caller should allocate a
42 PARALLEL of the appropriate size, copy the initial entries, and call
43 add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
44
45 This program also generates the function `split_insns',
46 which returns 0 if the rtl could not be split, or
47 it returns the split rtl in a SEQUENCE. */
48
49 #include <stdio.h>
50 #include "hconfig.h"
51 #include "rtl.h"
52 #include "obstack.h"
53
54 static struct obstack obstack;
55 struct obstack *rtl_obstack = &obstack;
56
57 #define obstack_chunk_alloc xmalloc
58 #define obstack_chunk_free free
59
60 extern void free ();
61 extern rtx read_rtx ();
62
63 /* Data structure for a listhead of decision trees. The alternatives
64 to a node are kept in a doublely-linked list so we can easily add nodes
65 to the proper place when merging. */
66
67 struct decision_head { struct decision *first, *last; };
68
69 /* Data structure for decision tree for recognizing
70 legitimate instructions. */
71
72 struct decision
73 {
74 int number; /* Node number, used for labels */
75 char *position; /* String denoting position in pattern */
76 RTX_CODE code; /* Code to test for or UNKNOWN to suppress */
77 char ignore_code; /* If non-zero, need not test code */
78 char ignore_mode; /* If non-zero, need not test mode */
79 int veclen; /* Length of vector, if nonzero */
80 enum machine_mode mode; /* Machine mode of node */
81 char enforce_mode; /* If non-zero, test `mode' */
82 char retest_code, retest_mode; /* See write_tree_1 */
83 int test_elt_zero_int; /* Nonzero if should test XINT (rtl, 0) */
84 int elt_zero_int; /* Required value for XINT (rtl, 0) */
85 int test_elt_one_int; /* Nonzero if should test XINT (rtl, 1) */
86 int elt_one_int; /* Required value for XINT (rtl, 1) */
87 int test_elt_zero_wide; /* Nonzero if should test XWINT (rtl, 0) */
88 HOST_WIDE_INT elt_zero_wide; /* Required value for XWINT (rtl, 0) */
89 char *tests; /* If nonzero predicate to call */
90 int pred; /* `preds' index of predicate or -1 */
91 char *c_test; /* Additional test to perform */
92 struct decision_head success; /* Nodes to test on success */
93 int insn_code_number; /* Insn number matched, if success */
94 int num_clobbers_to_add; /* Number of CLOBBERs to be added to pattern */
95 struct decision *next; /* Node to test on failure */
96 struct decision *prev; /* Node whose failure tests us */
97 struct decision *afterward; /* Node to test on success, but failure of
98 successor nodes */
99 int opno; /* Operand number, if >= 0 */
100 int dupno; /* Number of operand to compare against */
101 int label_needed; /* Nonzero if label needed when writing tree */
102 int subroutine_number; /* Number of subroutine this node starts */
103 };
104
105 #define SUBROUTINE_THRESHOLD 50
106
107 static int next_subroutine_number;
108
109 /* We can write two types of subroutines: One for insn recognition and
110 one to split insns. This defines which type is being written. */
111
112 enum routine_type {RECOG, SPLIT};
113
114 /* Next available node number for tree nodes. */
115
116 static int next_number;
117
118 /* Next number to use as an insn_code. */
119
120 static int next_insn_code;
121
122 /* Similar, but counts all expressions in the MD file; used for
123 error messages. */
124
125 static int next_index;
126
127 /* Record the highest depth we ever have so we know how many variables to
128 allocate in each subroutine we make. */
129
130 static int max_depth;
131 \f
132 /* This table contains a list of the rtl codes that can possibly match a
133 predicate defined in recog.c. The function `not_both_true' uses it to
134 deduce that there are no expressions that can be matches by certain pairs
135 of tree nodes. Also, if a predicate can match only one code, we can
136 hardwire that code into the node testing the predicate. */
137
138 static struct pred_table
139 {
140 char *name;
141 RTX_CODE codes[NUM_RTX_CODE];
142 } preds[]
143 = {{"general_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
144 LABEL_REF, SUBREG, REG, MEM}},
145 #ifdef PREDICATE_CODES
146 PREDICATE_CODES
147 #endif
148 {"address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
149 LABEL_REF, SUBREG, REG, MEM, PLUS, MINUS, MULT}},
150 {"register_operand", {SUBREG, REG}},
151 {"scratch_operand", {SCRATCH, REG}},
152 {"immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
153 LABEL_REF}},
154 {"const_int_operand", {CONST_INT}},
155 {"const_double_operand", {CONST_INT, CONST_DOUBLE}},
156 {"nonimmediate_operand", {SUBREG, REG, MEM}},
157 {"nonmemory_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
158 LABEL_REF, SUBREG, REG}},
159 {"push_operand", {MEM}},
160 {"memory_operand", {SUBREG, MEM}},
161 {"indirect_operand", {SUBREG, MEM}},
162 {"comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU}},
163 {"mode_independent_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
164 LABEL_REF, SUBREG, REG, MEM}}};
165
166 #define NUM_KNOWN_PREDS (sizeof preds / sizeof preds[0])
167
168 static struct decision_head make_insn_sequence PROTO((rtx, enum routine_type));
169 static struct decision *add_to_sequence PROTO((rtx, struct decision_head *,
170 char *));
171 static int not_both_true PROTO((struct decision *, struct decision *,
172 int));
173 static int position_merit PROTO((struct decision *, enum machine_mode,
174 enum rtx_code));
175 static struct decision_head merge_trees PROTO((struct decision_head,
176 struct decision_head));
177 static int break_out_subroutines PROTO((struct decision_head,
178 enum routine_type, int));
179 static void write_subroutine PROTO((struct decision *, enum routine_type));
180 static void write_tree_1 PROTO((struct decision *, char *,
181 struct decision *, enum routine_type));
182 static void print_code PROTO((enum rtx_code));
183 static int same_codes PROTO((struct decision *, enum rtx_code));
184 static void clear_codes PROTO((struct decision *));
185 static int same_modes PROTO((struct decision *, enum machine_mode));
186 static void clear_modes PROTO((struct decision *));
187 static void write_tree PROTO((struct decision *, char *,
188 struct decision *, int,
189 enum routine_type));
190 static void change_state PROTO((char *, char *, int));
191 static char *copystr PROTO((char *));
192 static void mybzero PROTO((char *, unsigned));
193 static void mybcopy PROTO((char *, char *, unsigned));
194 static char *concat PROTO((char *, char *));
195 static void fatal PROTO((char *));
196 char *xrealloc PROTO((char *, unsigned));
197 char *xmalloc PROTO((unsigned));
198 void fancy_abort PROTO((void));
199 \f
200 /* Construct and return a sequence of decisions
201 that will recognize INSN.
202
203 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
204
205 static struct decision_head
206 make_insn_sequence (insn, type)
207 rtx insn;
208 enum routine_type type;
209 {
210 rtx x;
211 char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
212 struct decision *last;
213 struct decision_head head;
214
215 if (XVECLEN (insn, type == RECOG) == 1)
216 x = XVECEXP (insn, type == RECOG, 0);
217 else
218 {
219 x = rtx_alloc (PARALLEL);
220 XVEC (x, 0) = XVEC (insn, type == RECOG);
221 PUT_MODE (x, VOIDmode);
222 }
223
224 last = add_to_sequence (x, &head, "");
225
226 if (c_test[0])
227 last->c_test = c_test;
228 last->insn_code_number = next_insn_code;
229 last->num_clobbers_to_add = 0;
230
231 /* If this is not a DEFINE_SPLIT and X is a PARALLEL, see if it ends with a
232 group of CLOBBERs of (hard) registers or MATCH_SCRATCHes. If so, set up
233 to recognize the pattern without these CLOBBERs. */
234
235 if (type == RECOG && GET_CODE (x) == PARALLEL)
236 {
237 int i;
238
239 for (i = XVECLEN (x, 0); i > 0; i--)
240 if (GET_CODE (XVECEXP (x, 0, i - 1)) != CLOBBER
241 || (GET_CODE (XEXP (XVECEXP (x, 0, i - 1), 0)) != REG
242 && GET_CODE (XEXP (XVECEXP (x, 0, i - 1), 0)) != MATCH_SCRATCH))
243 break;
244
245 if (i != XVECLEN (x, 0))
246 {
247 rtx new;
248 struct decision_head clobber_head;
249
250 if (i == 1)
251 new = XVECEXP (x, 0, 0);
252 else
253 {
254 int j;
255
256 new = rtx_alloc (PARALLEL);
257 XVEC (new, 0) = rtvec_alloc (i);
258 for (j = i - 1; j >= 0; j--)
259 XVECEXP (new, 0, j) = XVECEXP (x, 0, j);
260 }
261
262 last = add_to_sequence (new, &clobber_head, "");
263
264 if (c_test[0])
265 last->c_test = c_test;
266 last->insn_code_number = next_insn_code;
267 last->num_clobbers_to_add = XVECLEN (x, 0) - i;
268
269 head = merge_trees (head, clobber_head);
270 }
271 }
272
273 next_insn_code++;
274
275 if (type == SPLIT)
276 /* Define the subroutine we will call below and emit in genemit. */
277 printf ("extern rtx gen_split_%d ();\n", last->insn_code_number);
278
279 return head;
280 }
281 \f
282 /* Create a chain of nodes to verify that an rtl expression matches
283 PATTERN.
284
285 LAST is a pointer to the listhead in the previous node in the chain (or
286 in the calling function, for the first node).
287
288 POSITION is the string representing the current position in the insn.
289
290 A pointer to the final node in the chain is returned. */
291
292 static struct decision *
293 add_to_sequence (pattern, last, position)
294 rtx pattern;
295 struct decision_head *last;
296 char *position;
297 {
298 register RTX_CODE code;
299 register struct decision *new
300 = (struct decision *) xmalloc (sizeof (struct decision));
301 struct decision *this;
302 char *newpos;
303 register char *fmt;
304 register int i;
305 int depth = strlen (position);
306 int len;
307
308 if (depth > max_depth)
309 max_depth = depth;
310
311 new->number = next_number++;
312 new->position = copystr (position);
313 new->ignore_code = 0;
314 new->ignore_mode = 0;
315 new->enforce_mode = 1;
316 new->retest_code = new->retest_mode = 0;
317 new->veclen = 0;
318 new->test_elt_zero_int = 0;
319 new->test_elt_one_int = 0;
320 new->test_elt_zero_wide = 0;
321 new->elt_zero_int = 0;
322 new->elt_one_int = 0;
323 new->elt_zero_wide = 0;
324 new->tests = 0;
325 new->pred = -1;
326 new->c_test = 0;
327 new->success.first = new->success.last = 0;
328 new->insn_code_number = -1;
329 new->num_clobbers_to_add = 0;
330 new->next = 0;
331 new->prev = 0;
332 new->afterward = 0;
333 new->opno = -1;
334 new->dupno = -1;
335 new->label_needed = 0;
336 new->subroutine_number = 0;
337
338 this = new;
339
340 last->first = last->last = new;
341
342 newpos = (char *) alloca (depth + 2);
343 strcpy (newpos, position);
344 newpos[depth + 1] = 0;
345
346 restart:
347
348 new->mode = GET_MODE (pattern);
349 new->code = code = GET_CODE (pattern);
350
351 switch (code)
352 {
353 case MATCH_OPERAND:
354 case MATCH_SCRATCH:
355 case MATCH_OPERATOR:
356 case MATCH_PARALLEL:
357 new->opno = XINT (pattern, 0);
358 new->code = (code == MATCH_PARALLEL ? PARALLEL : UNKNOWN);
359 new->enforce_mode = 0;
360
361 if (code == MATCH_SCRATCH)
362 new->tests = "scratch_operand";
363 else
364 new->tests = XSTR (pattern, 1);
365
366 if (*new->tests == 0)
367 new->tests = 0;
368
369 /* See if we know about this predicate and save its number. If we do,
370 and it only accepts one code, note that fact. The predicate
371 `const_int_operand' only tests for a CONST_INT, so if we do so we
372 can avoid calling it at all.
373
374 Finally, if we know that the predicate does not allow CONST_INT, we
375 know that the only way the predicate can match is if the modes match
376 (here we use the kludge of relying on the fact that "address_operand"
377 accepts CONST_INT; otherwise, it would have to be a special case),
378 so we can test the mode (but we need not). This fact should
379 considerably simplify the generated code. */
380
381 if (new->tests)
382 {
383 for (i = 0; i < NUM_KNOWN_PREDS; i++)
384 if (! strcmp (preds[i].name, new->tests))
385 {
386 int j;
387 int allows_const_int = 0;
388
389 new->pred = i;
390
391 if (preds[i].codes[1] == 0 && new->code == UNKNOWN)
392 {
393 new->code = preds[i].codes[0];
394 if (! strcmp ("const_int_operand", new->tests))
395 new->tests = 0, new->pred = -1;
396 }
397
398 for (j = 0; j < NUM_RTX_CODE && preds[i].codes[j] != 0; j++)
399 if (preds[i].codes[j] == CONST_INT)
400 allows_const_int = 1;
401
402 if (! allows_const_int)
403 new->enforce_mode = new->ignore_mode= 1;
404
405 break;
406 }
407
408 #ifdef PREDICATE_CODES
409 /* If the port has a list of the predicates it uses but omits
410 one, warn. */
411 if (i == NUM_KNOWN_PREDS)
412 fprintf (stderr, "Warning: `%s' not in PREDICATE_CODES\n",
413 new->tests);
414 #endif
415 }
416
417 if (code == MATCH_OPERATOR || code == MATCH_PARALLEL)
418 {
419 for (i = 0; i < XVECLEN (pattern, 2); i++)
420 {
421 newpos[depth] = i + (code == MATCH_OPERATOR ? '0': 'a');
422 new = add_to_sequence (XVECEXP (pattern, 2, i),
423 &new->success, newpos);
424 }
425 }
426
427 return new;
428
429 case MATCH_OP_DUP:
430 new->opno = XINT (pattern, 0);
431 new->dupno = XINT (pattern, 0);
432 new->code = UNKNOWN;
433 new->tests = 0;
434 for (i = 0; i < XVECLEN (pattern, 1); i++)
435 {
436 newpos[depth] = i + '0';
437 new = add_to_sequence (XVECEXP (pattern, 1, i),
438 &new->success, newpos);
439 }
440 return new;
441
442 case MATCH_DUP:
443 case MATCH_PAR_DUP:
444 new->dupno = XINT (pattern, 0);
445 new->code = UNKNOWN;
446 new->enforce_mode = 0;
447 return new;
448
449 case ADDRESS:
450 pattern = XEXP (pattern, 0);
451 goto restart;
452
453 case SET:
454 newpos[depth] = '0';
455 new = add_to_sequence (SET_DEST (pattern), &new->success, newpos);
456 this->success.first->enforce_mode = 1;
457 newpos[depth] = '1';
458 new = add_to_sequence (SET_SRC (pattern), &new->success, newpos);
459
460 /* If set are setting CC0 from anything other than a COMPARE, we
461 must enforce the mode so that we do not produce ambiguous insns. */
462 if (GET_CODE (SET_DEST (pattern)) == CC0
463 && GET_CODE (SET_SRC (pattern)) != COMPARE)
464 this->success.first->enforce_mode = 1;
465 return new;
466
467 case SIGN_EXTEND:
468 case ZERO_EXTEND:
469 case STRICT_LOW_PART:
470 newpos[depth] = '0';
471 new = add_to_sequence (XEXP (pattern, 0), &new->success, newpos);
472 this->success.first->enforce_mode = 1;
473 return new;
474
475 case SUBREG:
476 this->test_elt_one_int = 1;
477 this->elt_one_int = XINT (pattern, 1);
478 newpos[depth] = '0';
479 new = add_to_sequence (XEXP (pattern, 0), &new->success, newpos);
480 this->success.first->enforce_mode = 1;
481 return new;
482
483 case ZERO_EXTRACT:
484 case SIGN_EXTRACT:
485 newpos[depth] = '0';
486 new = add_to_sequence (XEXP (pattern, 0), &new->success, newpos);
487 this->success.first->enforce_mode = 1;
488 newpos[depth] = '1';
489 new = add_to_sequence (XEXP (pattern, 1), &new->success, newpos);
490 newpos[depth] = '2';
491 new = add_to_sequence (XEXP (pattern, 2), &new->success, newpos);
492 return new;
493
494 case EQ: case NE: case LE: case LT: case GE: case GT:
495 case LEU: case LTU: case GEU: case GTU:
496 /* If the first operand is (cc0), we don't have to do anything
497 special. */
498 if (GET_CODE (XEXP (pattern, 0)) == CC0)
499 break;
500
501 /* ... fall through ... */
502
503 case COMPARE:
504 /* Enforce the mode on the first operand to avoid ambiguous insns. */
505 newpos[depth] = '0';
506 new = add_to_sequence (XEXP (pattern, 0), &new->success, newpos);
507 this->success.first->enforce_mode = 1;
508 newpos[depth] = '1';
509 new = add_to_sequence (XEXP (pattern, 1), &new->success, newpos);
510 return new;
511
512 default:
513 break;
514 }
515
516 fmt = GET_RTX_FORMAT (code);
517 len = GET_RTX_LENGTH (code);
518 for (i = 0; i < len; i++)
519 {
520 newpos[depth] = '0' + i;
521 if (fmt[i] == 'e' || fmt[i] == 'u')
522 new = add_to_sequence (XEXP (pattern, i), &new->success, newpos);
523 else if (fmt[i] == 'i' && i == 0)
524 {
525 this->test_elt_zero_int = 1;
526 this->elt_zero_int = XINT (pattern, i);
527 }
528 else if (fmt[i] == 'i' && i == 1)
529 {
530 this->test_elt_one_int = 1;
531 this->elt_one_int = XINT (pattern, i);
532 }
533 else if (fmt[i] == 'w' && i == 0)
534 {
535 this->test_elt_zero_wide = 1;
536 this->elt_zero_wide = XWINT (pattern, i);
537 }
538 else if (fmt[i] == 'E')
539 {
540 register int j;
541 /* We do not handle a vector appearing as other than
542 the first item, just because nothing uses them
543 and by handling only the special case
544 we can use one element in newpos for either
545 the item number of a subexpression
546 or the element number in a vector. */
547 if (i != 0)
548 abort ();
549 this->veclen = XVECLEN (pattern, i);
550 for (j = 0; j < XVECLEN (pattern, i); j++)
551 {
552 newpos[depth] = 'a' + j;
553 new = add_to_sequence (XVECEXP (pattern, i, j),
554 &new->success, newpos);
555 }
556 }
557 else if (fmt[i] != '0')
558 abort ();
559 }
560 return new;
561 }
562 \f
563 /* Return 1 if we can prove that there is no RTL that can match both
564 D1 and D2. Otherwise, return 0 (it may be that there is an RTL that
565 can match both or just that we couldn't prove there wasn't such an RTL).
566
567 TOPLEVEL is non-zero if we are to only look at the top level and not
568 recursively descend. */
569
570 static int
571 not_both_true (d1, d2, toplevel)
572 struct decision *d1, *d2;
573 int toplevel;
574 {
575 struct decision *p1, *p2;
576
577 /* If they are both to test modes and the modes are different, they aren't
578 both true. Similarly for codes, integer elements, and vector lengths. */
579
580 if ((d1->enforce_mode && d2->enforce_mode
581 && d1->mode != VOIDmode && d2->mode != VOIDmode && d1->mode != d2->mode)
582 || (d1->code != UNKNOWN && d2->code != UNKNOWN && d1->code != d2->code)
583 || (d1->test_elt_zero_int && d2->test_elt_zero_int
584 && d1->elt_zero_int != d2->elt_zero_int)
585 || (d1->test_elt_one_int && d2->test_elt_one_int
586 && d1->elt_one_int != d2->elt_one_int)
587 || (d1->test_elt_zero_wide && d2->test_elt_zero_wide
588 && d1->elt_zero_wide != d2->elt_zero_wide)
589 || (d1->veclen && d2->veclen && d1->veclen != d2->veclen))
590 return 1;
591
592 /* If either is a wild-card MATCH_OPERAND without a predicate, it can match
593 absolutely anything, so we can't say that no intersection is possible.
594 This case is detected by having a zero TESTS field with a code of
595 UNKNOWN. */
596
597 if ((d1->tests == 0 && d1->code == UNKNOWN)
598 || (d2->tests == 0 && d2->code == UNKNOWN))
599 return 0;
600
601 /* If either has a predicate that we know something about, set things up so
602 that D1 is the one that always has a known predicate. Then see if they
603 have any codes in common. */
604
605 if (d1->pred >= 0 || d2->pred >= 0)
606 {
607 int i, j;
608
609 if (d2->pred >= 0)
610 p1 = d1, d1 = d2, d2 = p1;
611
612 /* If D2 tests an explicit code, see if it is in the list of valid codes
613 for D1's predicate. */
614 if (d2->code != UNKNOWN)
615 {
616 for (i = 0; i < NUM_RTX_CODE && preds[d1->pred].codes[i] != 0; i++)
617 if (preds[d1->pred].codes[i] == d2->code)
618 break;
619
620 if (preds[d1->pred].codes[i] == 0)
621 return 1;
622 }
623
624 /* Otherwise see if the predicates have any codes in common. */
625
626 else if (d2->pred >= 0)
627 {
628 for (i = 0; i < NUM_RTX_CODE && preds[d1->pred].codes[i] != 0; i++)
629 {
630 for (j = 0; j < NUM_RTX_CODE; j++)
631 if (preds[d2->pred].codes[j] == 0
632 || preds[d2->pred].codes[j] == preds[d1->pred].codes[i])
633 break;
634
635 if (preds[d2->pred].codes[j] != 0)
636 break;
637 }
638
639 if (preds[d1->pred].codes[i] == 0)
640 return 1;
641 }
642 }
643
644 /* If we got here, we can't prove that D1 and D2 cannot both be true.
645 If we are only to check the top level, return 0. Otherwise, see if
646 we can prove that all choices in both successors are mutually
647 exclusive. If either does not have any successors, we can't prove
648 they can't both be true. */
649
650 if (toplevel || d1->success.first == 0 || d2->success.first == 0)
651 return 0;
652
653 for (p1 = d1->success.first; p1; p1 = p1->next)
654 for (p2 = d2->success.first; p2; p2 = p2->next)
655 if (! not_both_true (p1, p2, 0))
656 return 0;
657
658 return 1;
659 }
660 \f
661 /* Assuming that we can reorder all the alternatives at a specific point in
662 the tree (see discussion in merge_trees), we would prefer an ordering of
663 nodes where groups of consecutive nodes test the same mode and, within each
664 mode, groups of nodes test the same code. With this order, we can
665 construct nested switch statements, the inner one to test the code and
666 the outer one to test the mode.
667
668 We would like to list nodes testing for specific codes before those
669 that test predicates to avoid unnecessary function calls. Similarly,
670 tests for specific modes should precede nodes that allow any mode.
671
672 This function returns the merit (with 0 being the best) of inserting
673 a test involving the specified MODE and CODE after node P. If P is
674 zero, we are to determine the merit of inserting the test at the front
675 of the list. */
676
677 static int
678 position_merit (p, mode, code)
679 struct decision *p;
680 enum machine_mode mode;
681 enum rtx_code code;
682 {
683 enum machine_mode p_mode;
684
685 /* The only time the front of the list is anything other than the worst
686 position is if we are testing a mode that isn't VOIDmode. */
687 if (p == 0)
688 return mode == VOIDmode ? 3 : 2;
689
690 p_mode = p->enforce_mode ? p->mode : VOIDmode;
691
692 /* The best case is if the codes and modes both match. */
693 if (p_mode == mode && p->code== code)
694 return 0;
695
696 /* If the codes don't match, the next best case is if the modes match.
697 In that case, the best position for this node depends on whether
698 we are testing for a specific code or not. If we are, the best place
699 is after some other test for an explicit code and our mode or after
700 the last test in the previous mode if every test in our mode is for
701 an unknown code.
702
703 If we are testing for UNKNOWN, then the next best case is at the end of
704 our mode. */
705
706 if ((code != UNKNOWN
707 && ((p_mode == mode && p->code != UNKNOWN)
708 || (p_mode != mode && p->next
709 && (p->next->enforce_mode ? p->next->mode : VOIDmode) == mode
710 && (p->next->code == UNKNOWN))))
711 || (code == UNKNOWN && p_mode == mode
712 && (p->next == 0
713 || (p->next->enforce_mode ? p->next->mode : VOIDmode) != mode)))
714 return 1;
715
716 /* The third best case occurs when nothing is testing MODE. If MODE
717 is not VOIDmode, then the third best case is after something of any
718 mode that is not VOIDmode. If we are testing VOIDmode, the third best
719 place is the end of the list. */
720
721 if (p_mode != mode
722 && ((mode != VOIDmode && p_mode != VOIDmode)
723 || (mode == VOIDmode && p->next == 0)))
724 return 2;
725
726 /* Otherwise, we have the worst case. */
727 return 3;
728 }
729 \f
730 /* Merge two decision tree listheads OLDH and ADDH,
731 modifying OLDH destructively, and return the merged tree. */
732
733 static struct decision_head
734 merge_trees (oldh, addh)
735 register struct decision_head oldh, addh;
736 {
737 struct decision *add, *next;
738
739 if (oldh.first == 0)
740 return addh;
741
742 if (addh.first == 0)
743 return oldh;
744
745 /* If we are adding things at different positions, something is wrong. */
746 if (strcmp (oldh.first->position, addh.first->position))
747 abort ();
748
749 for (add = addh.first; add; add = next)
750 {
751 enum machine_mode add_mode = add->enforce_mode ? add->mode : VOIDmode;
752 struct decision *best_position = 0;
753 int best_merit = 4;
754 struct decision *old;
755
756 next = add->next;
757
758 /* The semantics of pattern matching state that the tests are done in
759 the order given in the MD file so that if an insn matches two
760 patterns, the first one will be used. However, in practice, most,
761 if not all, patterns are unambiguous so that their order is
762 independent. In that case, we can merge identical tests and
763 group all similar modes and codes together.
764
765 Scan starting from the end of OLDH until we reach a point
766 where we reach the head of the list or where we pass a pattern
767 that could also be true if NEW is true. If we find an identical
768 pattern, we can merge them. Also, record the last node that tests
769 the same code and mode and the last one that tests just the same mode.
770
771 If we have no match, place NEW after the closest match we found. */
772
773 for (old = oldh.last; old; old = old->prev)
774 {
775 int our_merit;
776
777 /* If we don't have anything to test except an additional test,
778 do not consider the two nodes equal. If we did, the test below
779 would cause an infinite recursion. */
780 if (old->tests == 0 && old->test_elt_zero_int == 0
781 && old->test_elt_one_int == 0 && old->veclen == 0
782 && old->test_elt_zero_wide == 0
783 && old->dupno == -1 && old->mode == VOIDmode
784 && old->code == UNKNOWN
785 && (old->c_test != 0 || add->c_test != 0))
786 ;
787
788 else if ((old->tests == add->tests
789 || (old->pred >= 0 && old->pred == add->pred)
790 || (old->tests && add->tests
791 && !strcmp (old->tests, add->tests)))
792 && old->test_elt_zero_int == add->test_elt_zero_int
793 && old->elt_zero_int == add->elt_zero_int
794 && old->test_elt_one_int == add->test_elt_one_int
795 && old->elt_one_int == add->elt_one_int
796 && old->test_elt_zero_wide == add->test_elt_zero_wide
797 && old->elt_zero_wide == add->elt_zero_wide
798 && old->veclen == add->veclen
799 && old->dupno == add->dupno
800 && old->opno == add->opno
801 && old->code == add->code
802 && old->enforce_mode == add->enforce_mode
803 && old->mode == add->mode)
804 {
805 /* If the additional test is not the same, split both nodes
806 into nodes that just contain all things tested before the
807 additional test and nodes that contain the additional test
808 and actions when it is true. This optimization is important
809 because of the case where we have almost identical patterns
810 with different tests on target flags. */
811
812 if (old->c_test != add->c_test
813 && ! (old->c_test && add->c_test
814 && !strcmp (old->c_test, add->c_test)))
815 {
816 if (old->insn_code_number >= 0 || old->opno >= 0)
817 {
818 struct decision *split
819 = (struct decision *) xmalloc (sizeof (struct decision));
820
821 mybcopy ((char *) old, (char *) split,
822 sizeof (struct decision));
823
824 old->success.first = old->success.last = split;
825 old->c_test = 0;
826 old->opno = -1;
827 old->insn_code_number = -1;
828 old->num_clobbers_to_add = 0;
829
830 split->number = next_number++;
831 split->next = split->prev = 0;
832 split->mode = VOIDmode;
833 split->code = UNKNOWN;
834 split->veclen = 0;
835 split->test_elt_zero_int = 0;
836 split->test_elt_one_int = 0;
837 split->test_elt_zero_wide = 0;
838 split->tests = 0;
839 split->pred = -1;
840 split->dupno = -1;
841 }
842
843 if (add->insn_code_number >= 0 || add->opno >= 0)
844 {
845 struct decision *split
846 = (struct decision *) xmalloc (sizeof (struct decision));
847
848 mybcopy ((char *) add, (char *) split,
849 sizeof (struct decision));
850
851 add->success.first = add->success.last = split;
852 add->c_test = 0;
853 add->opno = -1;
854 add->insn_code_number = -1;
855 add->num_clobbers_to_add = 0;
856
857 split->number = next_number++;
858 split->next = split->prev = 0;
859 split->mode = VOIDmode;
860 split->code = UNKNOWN;
861 split->veclen = 0;
862 split->test_elt_zero_int = 0;
863 split->test_elt_one_int = 0;
864 split->test_elt_zero_wide = 0;
865 split->tests = 0;
866 split->pred = -1;
867 split->dupno = -1;
868 }
869 }
870
871 if (old->insn_code_number >= 0 && add->insn_code_number >= 0)
872 {
873 /* If one node is for a normal insn and the second is
874 for the base insn with clobbers stripped off, the
875 second node should be ignored. */
876
877 if (old->num_clobbers_to_add == 0
878 && add->num_clobbers_to_add > 0)
879 /* Nothing to do here. */
880 ;
881 else if (old->num_clobbers_to_add > 0
882 && add->num_clobbers_to_add == 0)
883 {
884 /* In this case, replace OLD with ADD. */
885 old->insn_code_number = add->insn_code_number;
886 old->num_clobbers_to_add = 0;
887 }
888 else
889 fatal ("Two actions at one point in tree");
890 }
891
892 if (old->insn_code_number == -1)
893 old->insn_code_number = add->insn_code_number;
894 old->success = merge_trees (old->success, add->success);
895 add = 0;
896 break;
897 }
898
899 /* Unless we have already found the best possible insert point,
900 see if this position is better. If so, record it. */
901
902 if (best_merit != 0
903 && ((our_merit = position_merit (old, add_mode, add->code))
904 < best_merit))
905 best_merit = our_merit, best_position = old;
906
907 if (! not_both_true (old, add, 0))
908 break;
909 }
910
911 /* If ADD was duplicate, we are done. */
912 if (add == 0)
913 continue;
914
915 /* Otherwise, find the best place to insert ADD. Normally this is
916 BEST_POSITION. However, if we went all the way to the top of
917 the list, it might be better to insert at the top. */
918
919 if (best_position == 0)
920 abort ();
921
922 if (old == 0
923 && position_merit (NULL_PTR, add_mode, add->code) < best_merit)
924 {
925 add->prev = 0;
926 add->next = oldh.first;
927 oldh.first->prev = add;
928 oldh.first = add;
929 }
930
931 else
932 {
933 add->prev = best_position;
934 add->next = best_position->next;
935 best_position->next = add;
936 if (best_position == oldh.last)
937 oldh.last = add;
938 else
939 add->next->prev = add;
940 }
941 }
942
943 return oldh;
944 }
945 \f
946 /* Count the number of subnodes of HEAD. If the number is high enough,
947 make the first node in HEAD start a separate subroutine in the C code
948 that is generated.
949
950 TYPE gives the type of routine we are writing.
951
952 INITIAL is non-zero if this is the highest-level node. We never write
953 it out here. */
954
955 static int
956 break_out_subroutines (head, type, initial)
957 struct decision_head head;
958 enum routine_type type;
959 int initial;
960 {
961 int size = 0;
962 struct decision *sub;
963
964 for (sub = head.first; sub; sub = sub->next)
965 size += 1 + break_out_subroutines (sub->success, type, 0);
966
967 if (size > SUBROUTINE_THRESHOLD && ! initial)
968 {
969 head.first->subroutine_number = ++next_subroutine_number;
970 write_subroutine (head.first, type);
971 size = 1;
972 }
973 return size;
974 }
975 \f
976 /* Write out a subroutine of type TYPE to do comparisons starting at node
977 TREE. */
978
979 static void
980 write_subroutine (tree, type)
981 struct decision *tree;
982 enum routine_type type;
983 {
984 int i;
985
986 if (type == SPLIT)
987 printf ("rtx\nsplit");
988 else
989 printf ("int\nrecog");
990
991 if (tree != 0 && tree->subroutine_number > 0)
992 printf ("_%d", tree->subroutine_number);
993 else if (type == SPLIT)
994 printf ("_insns");
995
996 printf (" (x0, insn");
997 if (type == RECOG)
998 printf (", pnum_clobbers");
999
1000 printf (")\n");
1001 printf (" register rtx x0;\n rtx insn;\n");
1002 if (type == RECOG)
1003 printf (" int *pnum_clobbers;\n");
1004
1005 printf ("{\n");
1006 printf (" register rtx *ro = &recog_operand[0];\n");
1007
1008 printf (" register rtx ");
1009 for (i = 1; i < max_depth; i++)
1010 printf ("x%d, ", i);
1011
1012 printf ("x%d;\n", max_depth);
1013 printf (" %s tem;\n", type == SPLIT ? "rtx" : "int");
1014 write_tree (tree, "", NULL_PTR, 1, type);
1015 printf (" ret0: return %d;\n}\n\n", type == SPLIT ? 0 : -1);
1016 }
1017 \f
1018 /* This table is used to indent the recog_* functions when we are inside
1019 conditions or switch statements. We only support small indentations
1020 and always indent at least two spaces. */
1021
1022 static char *indents[]
1023 = {" ", " ", " ", " ", " ", " ", " ", " ",
1024 "\t", "\t ", "\t ", "\t ", "\t ", "\t ", "\t ",
1025 "\t\t", "\t\t ", "\t\t ", "\t\t ", "\t\t ", "\t\t "};
1026
1027 /* Write out C code to perform the decisions in TREE for a subroutine of
1028 type TYPE. If all of the choices fail, branch to node AFTERWARD, if
1029 non-zero, otherwise return. PREVPOS is the position of the node that
1030 branched to this test.
1031
1032 When we merged all alternatives, we tried to set up a convenient order.
1033 Specifically, tests involving the same mode are all grouped together,
1034 followed by a group that does not contain a mode test. Within each group
1035 of the same mode, we also group tests with the same code, followed by a
1036 group that does not test a code.
1037
1038 Occasionally, we cannot arbitrarily reorder the tests so that multiple
1039 sequence of groups as described above are present.
1040
1041 We generate two nested switch statements, the outer statement for
1042 testing modes, and the inner switch for testing RTX codes. It is
1043 not worth optimizing cases when only a small number of modes or
1044 codes is tested, since the compiler can do that when compiling the
1045 resulting function. We do check for when every test is the same mode
1046 or code. */
1047
1048 static void
1049 write_tree_1 (tree, prevpos, afterward, type)
1050 struct decision *tree;
1051 char *prevpos;
1052 struct decision *afterward;
1053 enum routine_type type;
1054 {
1055 register struct decision *p, *p1;
1056 register int depth = tree ? strlen (tree->position) : 0;
1057 enum machine_mode switch_mode = VOIDmode;
1058 RTX_CODE switch_code = UNKNOWN;
1059 int uncond = 0;
1060 char modemap[NUM_MACHINE_MODES];
1061 char codemap[NUM_RTX_CODE];
1062 int indent = 2;
1063 int i;
1064
1065 /* One tricky area is what is the exact state when we branch to a
1066 node's label. There are two cases where we branch: when looking at
1067 successors to a node, or when a set of tests fails.
1068
1069 In the former case, we are always branching to the first node in a
1070 decision list and we want all required tests to be performed. We
1071 put the labels for such nodes in front of any switch or test statements.
1072 These branches are done without updating the position to that of the
1073 target node.
1074
1075 In the latter case, we are branching to a node that is not the first
1076 node in a decision list. We have already checked that it is possible
1077 for both the node we originally tested at this level and the node we
1078 are branching to to be both match some pattern. That means that they
1079 usually will be testing the same mode and code. So it is normally safe
1080 for such labels to be inside switch statements, since the tests done
1081 by virtue of arriving at that label will usually already have been
1082 done. The exception is a branch from a node that does not test a
1083 mode or code to one that does. In such cases, we set the `retest_mode'
1084 or `retest_code' flags. That will ensure that we start a new switch
1085 at that position and put the label before the switch.
1086
1087 The branches in the latter case must set the position to that of the
1088 target node. */
1089
1090
1091 printf ("\n");
1092 if (tree && tree->subroutine_number == 0)
1093 {
1094 printf (" L%d:\n", tree->number);
1095 tree->label_needed = 0;
1096 }
1097
1098 if (tree)
1099 {
1100 change_state (prevpos, tree->position, 2);
1101 prevpos = tree->position;
1102 }
1103
1104 for (p = tree; p; p = p->next)
1105 {
1106 enum machine_mode mode = p->enforce_mode ? p->mode : VOIDmode;
1107 int need_bracket;
1108 int wrote_bracket = 0;
1109 int inner_indent;
1110
1111 if (p->success.first == 0 && p->insn_code_number < 0)
1112 abort ();
1113
1114 /* Find the next alternative to p that might be true when p is true.
1115 Test that one next if p's successors fail. */
1116
1117 for (p1 = p->next; p1 && not_both_true (p, p1, 1); p1 = p1->next)
1118 ;
1119 p->afterward = p1;
1120
1121 if (p1)
1122 {
1123 if (mode == VOIDmode && p1->enforce_mode && p1->mode != VOIDmode)
1124 p1->retest_mode = 1;
1125 if (p->code == UNKNOWN && p1->code != UNKNOWN)
1126 p1->retest_code = 1;
1127 p1->label_needed = 1;
1128 }
1129
1130 /* If we have a different code or mode than the last node and
1131 are in a switch on codes, we must either end the switch or
1132 go to another case. We must also end the switch if this
1133 node needs a label and to retest either the mode or code. */
1134
1135 if (switch_code != UNKNOWN
1136 && (switch_code != p->code || switch_mode != mode
1137 || (p->label_needed && (p->retest_mode || p->retest_code))))
1138 {
1139 enum rtx_code code = p->code;
1140
1141 /* If P is testing a predicate that we know about and we haven't
1142 seen any of the codes that are valid for the predicate, we
1143 can write a series of "case" statement, one for each possible
1144 code. Since we are already in a switch, these redundant tests
1145 are very cheap and will reduce the number of predicate called. */
1146
1147 if (p->pred >= 0)
1148 {
1149 for (i = 0; i < NUM_RTX_CODE && preds[p->pred].codes[i] != 0; i++)
1150 if (codemap[(int) preds[p->pred].codes[i]])
1151 break;
1152
1153 if (preds[p->pred].codes[i] == 0)
1154 code = MATCH_OPERAND;
1155 }
1156
1157 if (code == UNKNOWN || codemap[(int) code]
1158 || switch_mode != mode
1159 || (p->label_needed && (p->retest_mode || p->retest_code)))
1160 {
1161 printf ("%s}\n", indents[indent - 2]);
1162 switch_code = UNKNOWN;
1163 indent -= 4;
1164 }
1165 else
1166 {
1167 if (! uncond)
1168 printf ("%sbreak;\n", indents[indent]);
1169
1170 if (code == MATCH_OPERAND)
1171 {
1172 for (i = 0; i < NUM_RTX_CODE && preds[p->pred].codes[i] != 0; i++)
1173 {
1174 printf ("%scase ", indents[indent - 2]);
1175 print_code (preds[p->pred].codes[i]);
1176 printf (":\n");
1177 codemap[(int) preds[p->pred].codes[i]] = 1;
1178 }
1179 }
1180 else
1181 {
1182 printf ("%scase ", indents[indent - 2]);
1183 print_code (code);
1184 printf (":\n");
1185 codemap[(int) p->code] = 1;
1186 }
1187
1188 switch_code = code;
1189 }
1190
1191 uncond = 0;
1192 }
1193
1194 /* If we were previously in a switch on modes and now have a different
1195 mode, end at least the case, and maybe end the switch if we are
1196 not testing a mode or testing a mode whose case we already saw. */
1197
1198 if (switch_mode != VOIDmode
1199 && (switch_mode != mode || (p->label_needed && p->retest_mode)))
1200 {
1201 if (mode == VOIDmode || modemap[(int) mode]
1202 || (p->label_needed && p->retest_mode))
1203 {
1204 printf ("%s}\n", indents[indent - 2]);
1205 switch_mode = VOIDmode;
1206 indent -= 4;
1207 }
1208 else
1209 {
1210 if (! uncond)
1211 printf (" break;\n");
1212 printf (" case %smode:\n", GET_MODE_NAME (mode));
1213 switch_mode = mode;
1214 modemap[(int) mode] = 1;
1215 }
1216
1217 uncond = 0;
1218 }
1219
1220 /* If we are about to write dead code, something went wrong. */
1221 if (! p->label_needed && uncond)
1222 abort ();
1223
1224 /* If we need a label and we will want to retest the mode or code at
1225 that label, write the label now. We have already ensured that
1226 things will be valid for the test. */
1227
1228 if (p->label_needed && (p->retest_mode || p->retest_code))
1229 {
1230 printf ("%sL%d:\n", indents[indent - 2], p->number);
1231 p->label_needed = 0;
1232 }
1233
1234 uncond = 0;
1235
1236 /* If we are not in any switches, see if we can shortcut things
1237 by checking for identical modes and codes. */
1238
1239 if (switch_mode == VOIDmode && switch_code == UNKNOWN)
1240 {
1241 /* If p and its alternatives all want the same mode,
1242 reject all others at once, first, then ignore the mode. */
1243
1244 if (mode != VOIDmode && p->next && same_modes (p, mode))
1245 {
1246 printf (" if (GET_MODE (x%d) != %smode)\n",
1247 depth, GET_MODE_NAME (p->mode));
1248 if (afterward)
1249 {
1250 printf (" {\n");
1251 change_state (p->position, afterward->position, 6);
1252 printf (" goto L%d;\n }\n", afterward->number);
1253 }
1254 else
1255 printf (" goto ret0;\n");
1256 clear_modes (p);
1257 mode = VOIDmode;
1258 }
1259
1260 /* If p and its alternatives all want the same code,
1261 reject all others at once, first, then ignore the code. */
1262
1263 if (p->code != UNKNOWN && p->next && same_codes (p, p->code))
1264 {
1265 printf (" if (GET_CODE (x%d) != ", depth);
1266 print_code (p->code);
1267 printf (")\n");
1268 if (afterward)
1269 {
1270 printf (" {\n");
1271 change_state (p->position, afterward->position, indent + 4);
1272 printf (" goto L%d;\n }\n", afterward->number);
1273 }
1274 else
1275 printf (" goto ret0;\n");
1276 clear_codes (p);
1277 }
1278 }
1279
1280 /* If we are not in a mode switch and we are testing for a specific
1281 mode, start a mode switch unless we have just one node or the next
1282 node is not testing a mode (we have already tested for the case of
1283 more than one mode, but all of the same mode). */
1284
1285 if (switch_mode == VOIDmode && mode != VOIDmode && p->next != 0
1286 && p->next->enforce_mode && p->next->mode != VOIDmode)
1287 {
1288 mybzero (modemap, sizeof modemap);
1289 printf ("%sswitch (GET_MODE (x%d))\n", indents[indent], depth);
1290 printf ("%s{\n", indents[indent + 2]);
1291 indent += 4;
1292 printf ("%sdefault:\n%sbreak;\n", indents[indent - 2],
1293 indents[indent]);
1294 printf ("%scase %smode:\n", indents[indent - 2],
1295 GET_MODE_NAME (mode));
1296 modemap[(int) mode] = 1;
1297 switch_mode = mode;
1298 }
1299
1300 /* Similarly for testing codes. */
1301
1302 if (switch_code == UNKNOWN && p->code != UNKNOWN && ! p->ignore_code
1303 && p->next != 0 && p->next->code != UNKNOWN)
1304 {
1305 mybzero (codemap, sizeof codemap);
1306 printf ("%sswitch (GET_CODE (x%d))\n", indents[indent], depth);
1307 printf ("%s{\n", indents[indent + 2]);
1308 indent += 4;
1309 printf ("%sdefault:\n%sbreak;\n", indents[indent - 2],
1310 indents[indent]);
1311 printf ("%scase ", indents[indent - 2]);
1312 print_code (p->code);
1313 printf (":\n");
1314 codemap[(int) p->code] = 1;
1315 switch_code = p->code;
1316 }
1317
1318 /* Now that most mode and code tests have been done, we can write out
1319 a label for an inner node, if we haven't already. */
1320 if (p->label_needed)
1321 printf ("%sL%d:\n", indents[indent - 2], p->number);
1322
1323 inner_indent = indent;
1324
1325 /* The only way we can have to do a mode or code test here is if
1326 this node needs such a test but is the only node to be tested.
1327 In that case, we won't have started a switch. Note that this is
1328 the only way the switch and test modes can disagree. */
1329
1330 if ((mode != switch_mode && ! p->ignore_mode)
1331 || (p->code != switch_code && p->code != UNKNOWN && ! p->ignore_code)
1332 || p->test_elt_zero_int || p->test_elt_one_int
1333 || p->test_elt_zero_wide || p->veclen
1334 || p->dupno >= 0 || p->tests || p->num_clobbers_to_add)
1335 {
1336 printf ("%sif (", indents[indent]);
1337
1338 if (mode != switch_mode && ! p->ignore_mode)
1339 printf ("GET_MODE (x%d) == %smode && ",
1340 depth, GET_MODE_NAME (mode));
1341 if (p->code != switch_code && p->code != UNKNOWN && ! p->ignore_code)
1342 {
1343 printf ("GET_CODE (x%d) == ", depth);
1344 print_code (p->code);
1345 printf (" && ");
1346 }
1347
1348 if (p->test_elt_zero_int)
1349 printf ("XINT (x%d, 0) == %d && ", depth, p->elt_zero_int);
1350 if (p->test_elt_one_int)
1351 printf ("XINT (x%d, 1) == %d && ", depth, p->elt_one_int);
1352 if (p->test_elt_zero_wide)
1353 {
1354 /* Set offset to 1 iff the number might get propagated to
1355 unsigned long by ANSI C rules, else 0.
1356 Prospective hosts are required to have at least 32 bit
1357 ints, and integer constants in machine descriptions
1358 must fit in 32 bit, thus it suffices to check only
1359 for 1 << 31 . */
1360 HOST_WIDE_INT offset = p->elt_zero_wide == -2147483647 - 1;
1361 printf ("XWINT (x%d, 0) == ", depth);
1362 printf (HOST_WIDE_INT_PRINT_DEC, p->elt_zero_wide + offset);
1363 printf ("%s && ", offset ? "-1" : "");
1364 }
1365 if (p->veclen)
1366 printf ("XVECLEN (x%d, 0) == %d && ", depth, p->veclen);
1367 if (p->dupno >= 0)
1368 printf ("rtx_equal_p (x%d, ro[%d]) && ", depth, p->dupno);
1369 if (p->num_clobbers_to_add)
1370 printf ("pnum_clobbers != 0 && ");
1371 if (p->tests)
1372 printf ("%s (x%d, %smode)", p->tests, depth,
1373 GET_MODE_NAME (p->mode));
1374 else
1375 printf ("1");
1376
1377 printf (")\n");
1378 inner_indent += 2;
1379 }
1380 else
1381 uncond = 1;
1382
1383 need_bracket = ! uncond;
1384
1385 if (p->opno >= 0)
1386 {
1387 if (need_bracket)
1388 {
1389 printf ("%s{\n", indents[inner_indent]);
1390 inner_indent += 2;
1391 wrote_bracket = 1;
1392 need_bracket = 0;
1393 }
1394
1395 printf ("%sro[%d] = x%d;\n", indents[inner_indent], p->opno, depth);
1396 }
1397
1398 if (p->c_test)
1399 {
1400 printf ("%sif (%s)\n", indents[inner_indent], p->c_test);
1401 inner_indent += 2;
1402 uncond = 0;
1403 need_bracket = 1;
1404 }
1405
1406 if (p->insn_code_number >= 0)
1407 {
1408 if (type == SPLIT)
1409 printf ("%sreturn gen_split_%d (operands);\n",
1410 indents[inner_indent], p->insn_code_number);
1411 else
1412 {
1413 if (p->num_clobbers_to_add)
1414 {
1415 if (need_bracket)
1416 {
1417 printf ("%s{\n", indents[inner_indent]);
1418 inner_indent += 2;
1419 }
1420
1421 printf ("%s*pnum_clobbers = %d;\n",
1422 indents[inner_indent], p->num_clobbers_to_add);
1423 printf ("%sreturn %d;\n",
1424 indents[inner_indent], p->insn_code_number);
1425
1426 if (need_bracket)
1427 {
1428 inner_indent -= 2;
1429 printf ("%s}\n", indents[inner_indent]);
1430 }
1431 }
1432 else
1433 printf ("%sreturn %d;\n",
1434 indents[inner_indent], p->insn_code_number);
1435 }
1436 }
1437 else
1438 printf ("%sgoto L%d;\n", indents[inner_indent],
1439 p->success.first->number);
1440
1441 if (wrote_bracket)
1442 printf ("%s}\n", indents[inner_indent - 2]);
1443 }
1444
1445 /* We have now tested all alternatives. End any switches we have open
1446 and branch to the alternative node unless we know that we can't fall
1447 through to the branch. */
1448
1449 if (switch_code != UNKNOWN)
1450 {
1451 printf ("%s}\n", indents[indent - 2]);
1452 indent -= 4;
1453 uncond = 0;
1454 }
1455
1456 if (switch_mode != VOIDmode)
1457 {
1458 printf ("%s}\n", indents[indent - 2]);
1459 indent -= 4;
1460 uncond = 0;
1461 }
1462
1463 if (indent != 2)
1464 abort ();
1465
1466 if (uncond)
1467 return;
1468
1469 if (afterward)
1470 {
1471 change_state (prevpos, afterward->position, 2);
1472 printf (" goto L%d;\n", afterward->number);
1473 }
1474 else
1475 printf (" goto ret0;\n");
1476 }
1477
1478 static void
1479 print_code (code)
1480 enum rtx_code code;
1481 {
1482 register char *p1;
1483 for (p1 = GET_RTX_NAME (code); *p1; p1++)
1484 {
1485 if (*p1 >= 'a' && *p1 <= 'z')
1486 putchar (*p1 + 'A' - 'a');
1487 else
1488 putchar (*p1);
1489 }
1490 }
1491
1492 static int
1493 same_codes (p, code)
1494 register struct decision *p;
1495 register enum rtx_code code;
1496 {
1497 for (; p; p = p->next)
1498 if (p->code != code)
1499 return 0;
1500
1501 return 1;
1502 }
1503
1504 static void
1505 clear_codes (p)
1506 register struct decision *p;
1507 {
1508 for (; p; p = p->next)
1509 p->ignore_code = 1;
1510 }
1511
1512 static int
1513 same_modes (p, mode)
1514 register struct decision *p;
1515 register enum machine_mode mode;
1516 {
1517 for (; p; p = p->next)
1518 if ((p->enforce_mode ? p->mode : VOIDmode) != mode)
1519 return 0;
1520
1521 return 1;
1522 }
1523
1524 static void
1525 clear_modes (p)
1526 register struct decision *p;
1527 {
1528 for (; p; p = p->next)
1529 p->enforce_mode = 0;
1530 }
1531 \f
1532 /* Write out the decision tree starting at TREE for a subroutine of type TYPE.
1533
1534 PREVPOS is the position at the node that branched to this node.
1535
1536 INITIAL is nonzero if this is the first node we are writing in a subroutine.
1537
1538 If all nodes are false, branch to the node AFTERWARD. */
1539
1540 static void
1541 write_tree (tree, prevpos, afterward, initial, type)
1542 struct decision *tree;
1543 char *prevpos;
1544 struct decision *afterward;
1545 int initial;
1546 enum routine_type type;
1547 {
1548 register struct decision *p;
1549 char *name_prefix = (type == SPLIT ? "split" : "recog");
1550 char *call_suffix = (type == SPLIT ? "" : ", pnum_clobbers");
1551
1552 if (! initial && tree->subroutine_number > 0)
1553 {
1554 printf (" L%d:\n", tree->number);
1555
1556 if (afterward)
1557 {
1558 printf (" tem = %s_%d (x0, insn%s);\n",
1559 name_prefix, tree->subroutine_number, call_suffix);
1560 if (type == SPLIT)
1561 printf (" if (tem != 0) return tem;\n");
1562 else
1563 printf (" if (tem >= 0) return tem;\n");
1564 change_state (tree->position, afterward->position, 2);
1565 printf (" goto L%d;\n", afterward->number);
1566 }
1567 else
1568 printf (" return %s_%d (x0, insn%s);\n",
1569 name_prefix, tree->subroutine_number, call_suffix);
1570 return;
1571 }
1572
1573 write_tree_1 (tree, prevpos, afterward, type);
1574
1575 for (p = tree; p; p = p->next)
1576 if (p->success.first)
1577 write_tree (p->success.first, p->position,
1578 p->afterward ? p->afterward : afterward, 0, type);
1579 }
1580
1581 \f
1582 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1583 actions are necessary to move to NEWPOS.
1584
1585 INDENT says how many blanks to place at the front of lines. */
1586
1587 static void
1588 change_state (oldpos, newpos, indent)
1589 char *oldpos;
1590 char *newpos;
1591 int indent;
1592 {
1593 int odepth = strlen (oldpos);
1594 int depth = odepth;
1595 int ndepth = strlen (newpos);
1596
1597 /* Pop up as many levels as necessary. */
1598
1599 while (strncmp (oldpos, newpos, depth))
1600 --depth;
1601
1602 /* Go down to desired level. */
1603
1604 while (depth < ndepth)
1605 {
1606 if (newpos[depth] >= 'a' && newpos[depth] <= 'z')
1607 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1608 indents[indent], depth + 1, depth, newpos[depth] - 'a');
1609 else
1610 printf ("%sx%d = XEXP (x%d, %c);\n",
1611 indents[indent], depth + 1, depth, newpos[depth]);
1612 ++depth;
1613 }
1614 }
1615 \f
1616 static char *
1617 copystr (s1)
1618 char *s1;
1619 {
1620 register char *tem;
1621
1622 if (s1 == 0)
1623 return 0;
1624
1625 tem = (char *) xmalloc (strlen (s1) + 1);
1626 strcpy (tem, s1);
1627
1628 return tem;
1629 }
1630
1631 static void
1632 mybzero (b, length)
1633 register char *b;
1634 register unsigned length;
1635 {
1636 while (length-- > 0)
1637 *b++ = 0;
1638 }
1639
1640 static void
1641 mybcopy (in, out, length)
1642 register char *in, *out;
1643 register unsigned length;
1644 {
1645 while (length-- > 0)
1646 *out++ = *in++;
1647 }
1648
1649 static char *
1650 concat (s1, s2)
1651 char *s1, *s2;
1652 {
1653 register char *tem;
1654
1655 if (s1 == 0)
1656 return s2;
1657 if (s2 == 0)
1658 return s1;
1659
1660 tem = (char *) xmalloc (strlen (s1) + strlen (s2) + 2);
1661 strcpy (tem, s1);
1662 strcat (tem, " ");
1663 strcat (tem, s2);
1664
1665 return tem;
1666 }
1667
1668 char *
1669 xrealloc (ptr, size)
1670 char *ptr;
1671 unsigned size;
1672 {
1673 char *result = (char *) realloc (ptr, size);
1674 if (!result)
1675 fatal ("virtual memory exhausted");
1676 return result;
1677 }
1678
1679 char *
1680 xmalloc (size)
1681 unsigned size;
1682 {
1683 register char *val = (char *) malloc (size);
1684
1685 if (val == 0)
1686 fatal ("virtual memory exhausted");
1687 return val;
1688 }
1689
1690 static void
1691 fatal (s)
1692 char *s;
1693 {
1694 fprintf (stderr, "genrecog: ");
1695 fprintf (stderr, s);
1696 fprintf (stderr, "\n");
1697 fprintf (stderr, "after %d definitions\n", next_index);
1698 exit (FATAL_EXIT_CODE);
1699 }
1700
1701 /* More 'friendly' abort that prints the line and file.
1702 config.h can #define abort fancy_abort if you like that sort of thing. */
1703
1704 void
1705 fancy_abort ()
1706 {
1707 fatal ("Internal gcc abort.");
1708 }
1709 \f
1710 int
1711 main (argc, argv)
1712 int argc;
1713 char **argv;
1714 {
1715 rtx desc;
1716 struct decision_head recog_tree;
1717 struct decision_head split_tree;
1718 FILE *infile;
1719 register int c;
1720
1721 obstack_init (rtl_obstack);
1722 recog_tree.first = recog_tree.last = split_tree.first = split_tree.last = 0;
1723
1724 if (argc <= 1)
1725 fatal ("No input file name.");
1726
1727 infile = fopen (argv[1], "r");
1728 if (infile == 0)
1729 {
1730 perror (argv[1]);
1731 exit (FATAL_EXIT_CODE);
1732 }
1733
1734 init_rtl ();
1735 next_insn_code = 0;
1736 next_index = 0;
1737
1738 printf ("/* Generated automatically by the program `genrecog'\n\
1739 from the machine description file `md'. */\n\n");
1740
1741 printf ("#include \"config.h\"\n");
1742 printf ("#include <stdio.h>\n");
1743 printf ("#include \"rtl.h\"\n");
1744 printf ("#include \"insn-config.h\"\n");
1745 printf ("#include \"recog.h\"\n");
1746 printf ("#include \"real.h\"\n");
1747 printf ("#include \"output.h\"\n");
1748 printf ("#include \"flags.h\"\n");
1749 printf ("\n");
1750
1751 /* Read the machine description. */
1752
1753 while (1)
1754 {
1755 c = read_skip_spaces (infile);
1756 if (c == EOF)
1757 break;
1758 ungetc (c, infile);
1759
1760 desc = read_rtx (infile);
1761 if (GET_CODE (desc) == DEFINE_INSN)
1762 recog_tree = merge_trees (recog_tree,
1763 make_insn_sequence (desc, RECOG));
1764 else if (GET_CODE (desc) == DEFINE_SPLIT)
1765 split_tree = merge_trees (split_tree,
1766 make_insn_sequence (desc, SPLIT));
1767 if (GET_CODE (desc) == DEFINE_PEEPHOLE
1768 || GET_CODE (desc) == DEFINE_EXPAND)
1769 next_insn_code++;
1770 next_index++;
1771 }
1772
1773 printf ("\n\
1774 /* `recog' contains a decision tree\n\
1775 that recognizes whether the rtx X0 is a valid instruction.\n\
1776 \n\
1777 recog returns -1 if the rtx is not valid.\n\
1778 If the rtx is valid, recog returns a nonnegative number\n\
1779 which is the insn code number for the pattern that matched.\n");
1780 printf (" This is the same as the order in the machine description of\n\
1781 the entry that matched. This number can be used as an index into\n\
1782 entry that matched. This number can be used as an index into various\n\
1783 insn_* tables, such as insn_templates, insn_outfun, and insn_n_operands\n\
1784 (found in insn-output.c).\n\n");
1785 printf (" The third argument to recog is an optional pointer to an int.\n\
1786 If present, recog will accept a pattern if it matches except for\n\
1787 missing CLOBBER expressions at the end. In that case, the value\n\
1788 pointed to by the optional pointer will be set to the number of\n\
1789 CLOBBERs that need to be added (it should be initialized to zero by\n\
1790 the caller). If it is set nonzero, the caller should allocate a\n\
1791 PARALLEL of the appropriate size, copy the initial entries, and call\n\
1792 add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.");
1793
1794 if (split_tree.first)
1795 printf ("\n\n The function split_insns returns 0 if the rtl could not\n\
1796 be split or the split rtl in a SEQUENCE if it can be.");
1797
1798 printf ("*/\n\n");
1799
1800 printf ("rtx recog_operand[MAX_RECOG_OPERANDS];\n\n");
1801 printf ("rtx *recog_operand_loc[MAX_RECOG_OPERANDS];\n\n");
1802 printf ("rtx *recog_dup_loc[MAX_DUP_OPERANDS];\n\n");
1803 printf ("char recog_dup_num[MAX_DUP_OPERANDS];\n\n");
1804 printf ("#define operands recog_operand\n\n");
1805
1806 next_subroutine_number = 0;
1807 break_out_subroutines (recog_tree, RECOG, 1);
1808 write_subroutine (recog_tree.first, RECOG);
1809
1810 next_subroutine_number = 0;
1811 break_out_subroutines (split_tree, SPLIT, 1);
1812 write_subroutine (split_tree.first, SPLIT);
1813
1814 fflush (stdout);
1815 exit (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
1816 /* NOTREACHED */
1817 return 0;
1818 }