dc756fe7644133ad02c4c46b00cd5ba8f6f28a34
[gcc.git] / gcc / genrecog.c
1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* This program is used to produce insn-recog.c, which contains a
24 function called `recog' plus its subroutines. These functions
25 contain a decision tree that recognizes whether an rtx, the
26 argument given to recog, is a valid instruction.
27
28 recog returns -1 if the rtx is not valid. If the rtx is valid,
29 recog returns a nonnegative number which is the insn code number
30 for the pattern that matched. This is the same as the order in the
31 machine description of the entry that matched. This number can be
32 used as an index into various insn_* tables, such as insn_template,
33 insn_outfun, and insn_n_operands (found in insn-output.c).
34
35 The third argument to recog is an optional pointer to an int. If
36 present, recog will accept a pattern if it matches except for
37 missing CLOBBER expressions at the end. In that case, the value
38 pointed to by the optional pointer will be set to the number of
39 CLOBBERs that need to be added (it should be initialized to zero by
40 the caller). If it is set nonzero, the caller should allocate a
41 PARALLEL of the appropriate size, copy the initial entries, and
42 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
43
44 This program also generates the function `split_insns', which
45 returns 0 if the rtl could not be split, or it returns the split
46 rtl as an INSN list.
47
48 This program also generates the function `peephole2_insns', which
49 returns 0 if the rtl could not be matched. If there was a match,
50 the new rtl is returned in an INSN list, and LAST_INSN will point
51 to the last recognized insn in the old sequence. */
52
53 #include "bconfig.h"
54 #include "system.h"
55 #include "coretypes.h"
56 #include "tm.h"
57 #include "rtl.h"
58 #include "errors.h"
59 #include "gensupport.h"
60
61
62 #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
63 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
64
65 /* Holds an array of names indexed by insn_code_number. */
66 static char **insn_name_ptr = 0;
67 static int insn_name_ptr_size = 0;
68
69 /* A listhead of decision trees. The alternatives to a node are kept
70 in a doubly-linked list so we can easily add nodes to the proper
71 place when merging. */
72
73 struct decision_head
74 {
75 struct decision *first;
76 struct decision *last;
77 };
78
79 /* A single test. The two accept types aren't tests per-se, but
80 their equality (or lack thereof) does affect tree merging so
81 it is convenient to keep them here. */
82
83 struct decision_test
84 {
85 /* A linked list through the tests attached to a node. */
86 struct decision_test *next;
87
88 /* These types are roughly in the order in which we'd like to test them. */
89 enum decision_type
90 {
91 DT_mode, DT_code, DT_veclen,
92 DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide, DT_elt_zero_wide_safe,
93 DT_veclen_ge, DT_dup, DT_pred, DT_c_test,
94 DT_accept_op, DT_accept_insn
95 } type;
96
97 union
98 {
99 enum machine_mode mode; /* Machine mode of node. */
100 RTX_CODE code; /* Code to test. */
101
102 struct
103 {
104 const char *name; /* Predicate to call. */
105 int index; /* Index into `preds' or -1. */
106 enum machine_mode mode; /* Machine mode for node. */
107 } pred;
108
109 const char *c_test; /* Additional test to perform. */
110 int veclen; /* Length of vector. */
111 int dup; /* Number of operand to compare against. */
112 HOST_WIDE_INT intval; /* Value for XINT for XWINT. */
113 int opno; /* Operand number matched. */
114
115 struct {
116 int code_number; /* Insn number matched. */
117 int lineno; /* Line number of the insn. */
118 int num_clobbers_to_add; /* Number of CLOBBERs to be added. */
119 } insn;
120 } u;
121 };
122
123 /* Data structure for decision tree for recognizing legitimate insns. */
124
125 struct decision
126 {
127 struct decision_head success; /* Nodes to test on success. */
128 struct decision *next; /* Node to test on failure. */
129 struct decision *prev; /* Node whose failure tests us. */
130 struct decision *afterward; /* Node to test on success,
131 but failure of successor nodes. */
132
133 const char *position; /* String denoting position in pattern. */
134
135 struct decision_test *tests; /* The tests for this node. */
136
137 int number; /* Node number, used for labels */
138 int subroutine_number; /* Number of subroutine this node starts */
139 int need_label; /* Label needs to be output. */
140 };
141
142 #define SUBROUTINE_THRESHOLD 100
143
144 static int next_subroutine_number;
145
146 /* We can write three types of subroutines: One for insn recognition,
147 one to split insns, and one for peephole-type optimizations. This
148 defines which type is being written. */
149
150 enum routine_type {
151 RECOG, SPLIT, PEEPHOLE2
152 };
153
154 #define IS_SPLIT(X) ((X) != RECOG)
155
156 /* Next available node number for tree nodes. */
157
158 static int next_number;
159
160 /* Next number to use as an insn_code. */
161
162 static int next_insn_code;
163
164 /* Similar, but counts all expressions in the MD file; used for
165 error messages. */
166
167 static int next_index;
168
169 /* Record the highest depth we ever have so we know how many variables to
170 allocate in each subroutine we make. */
171
172 static int max_depth;
173
174 /* The line number of the start of the pattern currently being processed. */
175 static int pattern_lineno;
176
177 /* Count of errors. */
178 static int error_count;
179 \f
180 /* This table contains a list of the rtl codes that can possibly match a
181 predicate defined in recog.c. The function `maybe_both_true' uses it to
182 deduce that there are no expressions that can be matches by certain pairs
183 of tree nodes. Also, if a predicate can match only one code, we can
184 hardwire that code into the node testing the predicate. */
185
186 static const struct pred_table
187 {
188 const char *const name;
189 const RTX_CODE codes[NUM_RTX_CODE];
190 } preds[] = {
191 {"general_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
192 LABEL_REF, SUBREG, REG, MEM, ADDRESSOF}},
193 #ifdef PREDICATE_CODES
194 PREDICATE_CODES
195 #endif
196 {"address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
197 LABEL_REF, SUBREG, REG, MEM, ADDRESSOF,
198 PLUS, MINUS, MULT}},
199 {"register_operand", {SUBREG, REG, ADDRESSOF}},
200 {"pmode_register_operand", {SUBREG, REG, ADDRESSOF}},
201 {"scratch_operand", {SCRATCH, REG}},
202 {"immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
203 LABEL_REF}},
204 {"const_int_operand", {CONST_INT}},
205 {"const_double_operand", {CONST_INT, CONST_DOUBLE}},
206 {"nonimmediate_operand", {SUBREG, REG, MEM, ADDRESSOF}},
207 {"nonmemory_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
208 LABEL_REF, SUBREG, REG, ADDRESSOF}},
209 {"push_operand", {MEM}},
210 {"pop_operand", {MEM}},
211 {"memory_operand", {SUBREG, MEM}},
212 {"indirect_operand", {SUBREG, MEM}},
213 {"comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU,
214 UNORDERED, ORDERED, UNEQ, UNGE, UNGT, UNLE,
215 UNLT, LTGT}}
216 };
217
218 #define NUM_KNOWN_PREDS ARRAY_SIZE (preds)
219
220 static const char *const special_mode_pred_table[] = {
221 #ifdef SPECIAL_MODE_PREDICATES
222 SPECIAL_MODE_PREDICATES
223 #endif
224 "pmode_register_operand"
225 };
226
227 #define NUM_SPECIAL_MODE_PREDS ARRAY_SIZE (special_mode_pred_table)
228
229 static struct decision *new_decision
230 (const char *, struct decision_head *);
231 static struct decision_test *new_decision_test
232 (enum decision_type, struct decision_test ***);
233 static rtx find_operand
234 (rtx, int);
235 static rtx find_matching_operand
236 (rtx, int);
237 static void validate_pattern
238 (rtx, rtx, rtx, int);
239 static struct decision *add_to_sequence
240 (rtx, struct decision_head *, const char *, enum routine_type, int);
241
242 static int maybe_both_true_2
243 (struct decision_test *, struct decision_test *);
244 static int maybe_both_true_1
245 (struct decision_test *, struct decision_test *);
246 static int maybe_both_true
247 (struct decision *, struct decision *, int);
248
249 static int nodes_identical_1
250 (struct decision_test *, struct decision_test *);
251 static int nodes_identical
252 (struct decision *, struct decision *);
253 static void merge_accept_insn
254 (struct decision *, struct decision *);
255 static void merge_trees
256 (struct decision_head *, struct decision_head *);
257
258 static void factor_tests
259 (struct decision_head *);
260 static void simplify_tests
261 (struct decision_head *);
262 static int break_out_subroutines
263 (struct decision_head *, int);
264 static void find_afterward
265 (struct decision_head *, struct decision *);
266
267 static void change_state
268 (const char *, const char *, struct decision *, const char *);
269 static void print_code
270 (enum rtx_code);
271 static void write_afterward
272 (struct decision *, struct decision *, const char *);
273 static struct decision *write_switch
274 (struct decision *, int);
275 static void write_cond
276 (struct decision_test *, int, enum routine_type);
277 static void write_action
278 (struct decision *, struct decision_test *, int, int,
279 struct decision *, enum routine_type);
280 static int is_unconditional
281 (struct decision_test *, enum routine_type);
282 static int write_node
283 (struct decision *, int, enum routine_type);
284 static void write_tree_1
285 (struct decision_head *, int, enum routine_type);
286 static void write_tree
287 (struct decision_head *, const char *, enum routine_type, int);
288 static void write_subroutine
289 (struct decision_head *, enum routine_type);
290 static void write_subroutines
291 (struct decision_head *, enum routine_type);
292 static void write_header
293 (void);
294
295 static struct decision_head make_insn_sequence
296 (rtx, enum routine_type);
297 static void process_tree
298 (struct decision_head *, enum routine_type);
299
300 static void record_insn_name
301 (int, const char *);
302
303 static void debug_decision_0
304 (struct decision *, int, int);
305 static void debug_decision_1
306 (struct decision *, int);
307 static void debug_decision_2
308 (struct decision_test *);
309 extern void debug_decision
310 (struct decision *);
311 extern void debug_decision_list
312 (struct decision *);
313 \f
314 /* Create a new node in sequence after LAST. */
315
316 static struct decision *
317 new_decision (const char *position, struct decision_head *last)
318 {
319 struct decision *new = xcalloc (1, sizeof (struct decision));
320
321 new->success = *last;
322 new->position = xstrdup (position);
323 new->number = next_number++;
324
325 last->first = last->last = new;
326 return new;
327 }
328
329 /* Create a new test and link it in at PLACE. */
330
331 static struct decision_test *
332 new_decision_test (enum decision_type type, struct decision_test ***pplace)
333 {
334 struct decision_test **place = *pplace;
335 struct decision_test *test;
336
337 test = xmalloc (sizeof (*test));
338 test->next = *place;
339 test->type = type;
340 *place = test;
341
342 place = &test->next;
343 *pplace = place;
344
345 return test;
346 }
347
348 /* Search for and return operand N. */
349
350 static rtx
351 find_operand (rtx pattern, int n)
352 {
353 const char *fmt;
354 RTX_CODE code;
355 int i, j, len;
356 rtx r;
357
358 code = GET_CODE (pattern);
359 if ((code == MATCH_SCRATCH
360 || code == MATCH_INSN
361 || code == MATCH_OPERAND
362 || code == MATCH_OPERATOR
363 || code == MATCH_PARALLEL)
364 && XINT (pattern, 0) == n)
365 return pattern;
366
367 fmt = GET_RTX_FORMAT (code);
368 len = GET_RTX_LENGTH (code);
369 for (i = 0; i < len; i++)
370 {
371 switch (fmt[i])
372 {
373 case 'e': case 'u':
374 if ((r = find_operand (XEXP (pattern, i), n)) != NULL_RTX)
375 return r;
376 break;
377
378 case 'V':
379 if (! XVEC (pattern, i))
380 break;
381 /* Fall through. */
382
383 case 'E':
384 for (j = 0; j < XVECLEN (pattern, i); j++)
385 if ((r = find_operand (XVECEXP (pattern, i, j), n)) != NULL_RTX)
386 return r;
387 break;
388
389 case 'i': case 'w': case '0': case 's':
390 break;
391
392 default:
393 abort ();
394 }
395 }
396
397 return NULL;
398 }
399
400 /* Search for and return operand M, such that it has a matching
401 constraint for operand N. */
402
403 static rtx
404 find_matching_operand (rtx pattern, int n)
405 {
406 const char *fmt;
407 RTX_CODE code;
408 int i, j, len;
409 rtx r;
410
411 code = GET_CODE (pattern);
412 if (code == MATCH_OPERAND
413 && (XSTR (pattern, 2)[0] == '0' + n
414 || (XSTR (pattern, 2)[0] == '%'
415 && XSTR (pattern, 2)[1] == '0' + n)))
416 return pattern;
417
418 fmt = GET_RTX_FORMAT (code);
419 len = GET_RTX_LENGTH (code);
420 for (i = 0; i < len; i++)
421 {
422 switch (fmt[i])
423 {
424 case 'e': case 'u':
425 if ((r = find_matching_operand (XEXP (pattern, i), n)))
426 return r;
427 break;
428
429 case 'V':
430 if (! XVEC (pattern, i))
431 break;
432 /* Fall through. */
433
434 case 'E':
435 for (j = 0; j < XVECLEN (pattern, i); j++)
436 if ((r = find_matching_operand (XVECEXP (pattern, i, j), n)))
437 return r;
438 break;
439
440 case 'i': case 'w': case '0': case 's':
441 break;
442
443 default:
444 abort ();
445 }
446 }
447
448 return NULL;
449 }
450
451
452 /* Check for various errors in patterns. SET is nonnull for a destination,
453 and is the complete set pattern. SET_CODE is '=' for normal sets, and
454 '+' within a context that requires in-out constraints. */
455
456 static void
457 validate_pattern (rtx pattern, rtx insn, rtx set, int set_code)
458 {
459 const char *fmt;
460 RTX_CODE code;
461 size_t i, len;
462 int j;
463
464 code = GET_CODE (pattern);
465 switch (code)
466 {
467 case MATCH_SCRATCH:
468 return;
469
470 case MATCH_INSN:
471 case MATCH_OPERAND:
472 case MATCH_OPERATOR:
473 {
474 const char *pred_name = XSTR (pattern, 1);
475 int allows_non_lvalue = 1, allows_non_const = 1;
476 int special_mode_pred = 0;
477 const char *c_test;
478
479 if (GET_CODE (insn) == DEFINE_INSN)
480 c_test = XSTR (insn, 2);
481 else
482 c_test = XSTR (insn, 1);
483
484 if (pred_name[0] != 0)
485 {
486 for (i = 0; i < NUM_KNOWN_PREDS; i++)
487 if (! strcmp (preds[i].name, pred_name))
488 break;
489
490 if (i < NUM_KNOWN_PREDS)
491 {
492 int j;
493
494 allows_non_lvalue = allows_non_const = 0;
495 for (j = 0; preds[i].codes[j] != 0; j++)
496 {
497 RTX_CODE c = preds[i].codes[j];
498 if (c != LABEL_REF
499 && c != SYMBOL_REF
500 && c != CONST_INT
501 && c != CONST_DOUBLE
502 && c != CONST
503 && c != HIGH
504 && c != CONSTANT_P_RTX)
505 allows_non_const = 1;
506
507 if (c != REG
508 && c != SUBREG
509 && c != MEM
510 && c != ADDRESSOF
511 && c != CONCAT
512 && c != PARALLEL
513 && c != STRICT_LOW_PART)
514 allows_non_lvalue = 1;
515 }
516 }
517 else
518 {
519 #ifdef PREDICATE_CODES
520 /* If the port has a list of the predicates it uses but
521 omits one, warn. */
522 message_with_line (pattern_lineno,
523 "warning: `%s' not in PREDICATE_CODES",
524 pred_name);
525 #endif
526 }
527
528 for (i = 0; i < NUM_SPECIAL_MODE_PREDS; ++i)
529 if (strcmp (pred_name, special_mode_pred_table[i]) == 0)
530 {
531 special_mode_pred = 1;
532 break;
533 }
534 }
535
536 if (code == MATCH_OPERAND)
537 {
538 const char constraints0 = XSTR (pattern, 2)[0];
539
540 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
541 don't use the MATCH_OPERAND constraint, only the predicate.
542 This is confusing to folks doing new ports, so help them
543 not make the mistake. */
544 if (GET_CODE (insn) == DEFINE_EXPAND
545 || GET_CODE (insn) == DEFINE_SPLIT
546 || GET_CODE (insn) == DEFINE_PEEPHOLE2)
547 {
548 if (constraints0)
549 message_with_line (pattern_lineno,
550 "warning: constraints not supported in %s",
551 rtx_name[GET_CODE (insn)]);
552 }
553
554 /* A MATCH_OPERAND that is a SET should have an output reload. */
555 else if (set && constraints0)
556 {
557 if (set_code == '+')
558 {
559 if (constraints0 == '+')
560 ;
561 /* If we've only got an output reload for this operand,
562 we'd better have a matching input operand. */
563 else if (constraints0 == '='
564 && find_matching_operand (insn, XINT (pattern, 0)))
565 ;
566 else
567 {
568 message_with_line (pattern_lineno,
569 "operand %d missing in-out reload",
570 XINT (pattern, 0));
571 error_count++;
572 }
573 }
574 else if (constraints0 != '=' && constraints0 != '+')
575 {
576 message_with_line (pattern_lineno,
577 "operand %d missing output reload",
578 XINT (pattern, 0));
579 error_count++;
580 }
581 }
582 }
583
584 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
585 while not likely to occur at runtime, results in less efficient
586 code from insn-recog.c. */
587 if (set
588 && pred_name[0] != '\0'
589 && allows_non_lvalue)
590 {
591 message_with_line (pattern_lineno,
592 "warning: destination operand %d allows non-lvalue",
593 XINT (pattern, 0));
594 }
595
596 /* A modeless MATCH_OPERAND can be handy when we can
597 check for multiple modes in the c_test. In most other cases,
598 it is a mistake. Only DEFINE_INSN is eligible, since SPLIT
599 and PEEP2 can FAIL within the output pattern. Exclude
600 address_operand, since its mode is related to the mode of
601 the memory not the operand. Exclude the SET_DEST of a call
602 instruction, as that is a common idiom. */
603
604 if (GET_MODE (pattern) == VOIDmode
605 && code == MATCH_OPERAND
606 && GET_CODE (insn) == DEFINE_INSN
607 && allows_non_const
608 && ! special_mode_pred
609 && pred_name[0] != '\0'
610 && strcmp (pred_name, "address_operand") != 0
611 && strstr (c_test, "operands") == NULL
612 && ! (set
613 && GET_CODE (set) == SET
614 && GET_CODE (SET_SRC (set)) == CALL))
615 {
616 message_with_line (pattern_lineno,
617 "warning: operand %d missing mode?",
618 XINT (pattern, 0));
619 }
620 return;
621 }
622
623 case SET:
624 {
625 enum machine_mode dmode, smode;
626 rtx dest, src;
627
628 dest = SET_DEST (pattern);
629 src = SET_SRC (pattern);
630
631 /* STRICT_LOW_PART is a wrapper. Its argument is the real
632 destination, and it's mode should match the source. */
633 if (GET_CODE (dest) == STRICT_LOW_PART)
634 dest = XEXP (dest, 0);
635
636 /* Find the referent for a DUP. */
637
638 if (GET_CODE (dest) == MATCH_DUP
639 || GET_CODE (dest) == MATCH_OP_DUP
640 || GET_CODE (dest) == MATCH_PAR_DUP)
641 dest = find_operand (insn, XINT (dest, 0));
642
643 if (GET_CODE (src) == MATCH_DUP
644 || GET_CODE (src) == MATCH_OP_DUP
645 || GET_CODE (src) == MATCH_PAR_DUP)
646 src = find_operand (insn, XINT (src, 0));
647
648 dmode = GET_MODE (dest);
649 smode = GET_MODE (src);
650
651 /* The mode of an ADDRESS_OPERAND is the mode of the memory
652 reference, not the mode of the address. */
653 if (GET_CODE (src) == MATCH_OPERAND
654 && ! strcmp (XSTR (src, 1), "address_operand"))
655 ;
656
657 /* The operands of a SET must have the same mode unless one
658 is VOIDmode. */
659 else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
660 {
661 message_with_line (pattern_lineno,
662 "mode mismatch in set: %smode vs %smode",
663 GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
664 error_count++;
665 }
666
667 /* If only one of the operands is VOIDmode, and PC or CC0 is
668 not involved, it's probably a mistake. */
669 else if (dmode != smode
670 && GET_CODE (dest) != PC
671 && GET_CODE (dest) != CC0
672 && GET_CODE (src) != PC
673 && GET_CODE (src) != CC0
674 && GET_CODE (src) != CONST_INT)
675 {
676 const char *which;
677 which = (dmode == VOIDmode ? "destination" : "source");
678 message_with_line (pattern_lineno,
679 "warning: %s missing a mode?", which);
680 }
681
682 if (dest != SET_DEST (pattern))
683 validate_pattern (dest, insn, pattern, '=');
684 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
685 validate_pattern (SET_SRC (pattern), insn, NULL_RTX, 0);
686 return;
687 }
688
689 case CLOBBER:
690 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
691 return;
692
693 case ZERO_EXTRACT:
694 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
695 validate_pattern (XEXP (pattern, 1), insn, NULL_RTX, 0);
696 validate_pattern (XEXP (pattern, 2), insn, NULL_RTX, 0);
697 return;
698
699 case STRICT_LOW_PART:
700 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
701 return;
702
703 case LABEL_REF:
704 if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
705 {
706 message_with_line (pattern_lineno,
707 "operand to label_ref %smode not VOIDmode",
708 GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
709 error_count++;
710 }
711 break;
712
713 default:
714 break;
715 }
716
717 fmt = GET_RTX_FORMAT (code);
718 len = GET_RTX_LENGTH (code);
719 for (i = 0; i < len; i++)
720 {
721 switch (fmt[i])
722 {
723 case 'e': case 'u':
724 validate_pattern (XEXP (pattern, i), insn, NULL_RTX, 0);
725 break;
726
727 case 'E':
728 for (j = 0; j < XVECLEN (pattern, i); j++)
729 validate_pattern (XVECEXP (pattern, i, j), insn, NULL_RTX, 0);
730 break;
731
732 case 'i': case 'w': case '0': case 's':
733 break;
734
735 default:
736 abort ();
737 }
738 }
739 }
740
741 /* Create a chain of nodes to verify that an rtl expression matches
742 PATTERN.
743
744 LAST is a pointer to the listhead in the previous node in the chain (or
745 in the calling function, for the first node).
746
747 POSITION is the string representing the current position in the insn.
748
749 INSN_TYPE is the type of insn for which we are emitting code.
750
751 A pointer to the final node in the chain is returned. */
752
753 static struct decision *
754 add_to_sequence (rtx pattern, struct decision_head *last, const char *position,
755 enum routine_type insn_type, int top)
756 {
757 RTX_CODE code;
758 struct decision *this, *sub;
759 struct decision_test *test;
760 struct decision_test **place;
761 char *subpos;
762 size_t i;
763 const char *fmt;
764 int depth = strlen (position);
765 int len;
766 enum machine_mode mode;
767
768 if (depth > max_depth)
769 max_depth = depth;
770
771 subpos = xmalloc (depth + 2);
772 strcpy (subpos, position);
773 subpos[depth + 1] = 0;
774
775 sub = this = new_decision (position, last);
776 place = &this->tests;
777
778 restart:
779 mode = GET_MODE (pattern);
780 code = GET_CODE (pattern);
781
782 switch (code)
783 {
784 case PARALLEL:
785 /* Toplevel peephole pattern. */
786 if (insn_type == PEEPHOLE2 && top)
787 {
788 /* We don't need the node we just created -- unlink it. */
789 last->first = last->last = NULL;
790
791 for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++)
792 {
793 /* Which insn we're looking at is represented by A-Z. We don't
794 ever use 'A', however; it is always implied. */
795
796 subpos[depth] = (i > 0 ? 'A' + i : 0);
797 sub = add_to_sequence (XVECEXP (pattern, 0, i),
798 last, subpos, insn_type, 0);
799 last = &sub->success;
800 }
801 goto ret;
802 }
803
804 /* Else nothing special. */
805 break;
806
807 case MATCH_PARALLEL:
808 /* The explicit patterns within a match_parallel enforce a minimum
809 length on the vector. The match_parallel predicate may allow
810 for more elements. We do need to check for this minimum here
811 or the code generated to match the internals may reference data
812 beyond the end of the vector. */
813 test = new_decision_test (DT_veclen_ge, &place);
814 test->u.veclen = XVECLEN (pattern, 2);
815 /* Fall through. */
816
817 case MATCH_OPERAND:
818 case MATCH_SCRATCH:
819 case MATCH_OPERATOR:
820 case MATCH_INSN:
821 {
822 const char *pred_name;
823 RTX_CODE was_code = code;
824 int allows_const_int = 1;
825
826 if (code == MATCH_SCRATCH)
827 {
828 pred_name = "scratch_operand";
829 code = UNKNOWN;
830 }
831 else
832 {
833 pred_name = XSTR (pattern, 1);
834 if (code == MATCH_PARALLEL)
835 code = PARALLEL;
836 else
837 code = UNKNOWN;
838 }
839
840 if (pred_name[0] != 0)
841 {
842 test = new_decision_test (DT_pred, &place);
843 test->u.pred.name = pred_name;
844 test->u.pred.mode = mode;
845
846 /* See if we know about this predicate and save its number.
847 If we do, and it only accepts one code, note that fact.
848
849 If we know that the predicate does not allow CONST_INT,
850 we know that the only way the predicate can match is if
851 the modes match (here we use the kludge of relying on the
852 fact that "address_operand" accepts CONST_INT; otherwise,
853 it would have to be a special case), so we can test the
854 mode (but we need not). This fact should considerably
855 simplify the generated code. */
856
857 for (i = 0; i < NUM_KNOWN_PREDS; i++)
858 if (! strcmp (preds[i].name, pred_name))
859 break;
860
861 if (i < NUM_KNOWN_PREDS)
862 {
863 int j;
864
865 test->u.pred.index = i;
866
867 if (preds[i].codes[1] == 0 && code == UNKNOWN)
868 code = preds[i].codes[0];
869
870 allows_const_int = 0;
871 for (j = 0; preds[i].codes[j] != 0; j++)
872 if (preds[i].codes[j] == CONST_INT)
873 {
874 allows_const_int = 1;
875 break;
876 }
877 }
878 else
879 test->u.pred.index = -1;
880 }
881
882 /* Can't enforce a mode if we allow const_int. */
883 if (allows_const_int)
884 mode = VOIDmode;
885
886 /* Accept the operand, ie. record it in `operands'. */
887 test = new_decision_test (DT_accept_op, &place);
888 test->u.opno = XINT (pattern, 0);
889
890 if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL)
891 {
892 char base = (was_code == MATCH_OPERATOR ? '0' : 'a');
893 for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++)
894 {
895 subpos[depth] = i + base;
896 sub = add_to_sequence (XVECEXP (pattern, 2, i),
897 &sub->success, subpos, insn_type, 0);
898 }
899 }
900 goto fini;
901 }
902
903 case MATCH_OP_DUP:
904 code = UNKNOWN;
905
906 test = new_decision_test (DT_dup, &place);
907 test->u.dup = XINT (pattern, 0);
908
909 test = new_decision_test (DT_accept_op, &place);
910 test->u.opno = XINT (pattern, 0);
911
912 for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++)
913 {
914 subpos[depth] = i + '0';
915 sub = add_to_sequence (XVECEXP (pattern, 1, i),
916 &sub->success, subpos, insn_type, 0);
917 }
918 goto fini;
919
920 case MATCH_DUP:
921 case MATCH_PAR_DUP:
922 code = UNKNOWN;
923
924 test = new_decision_test (DT_dup, &place);
925 test->u.dup = XINT (pattern, 0);
926 goto fini;
927
928 case ADDRESS:
929 pattern = XEXP (pattern, 0);
930 goto restart;
931
932 default:
933 break;
934 }
935
936 fmt = GET_RTX_FORMAT (code);
937 len = GET_RTX_LENGTH (code);
938
939 /* Do tests against the current node first. */
940 for (i = 0; i < (size_t) len; i++)
941 {
942 if (fmt[i] == 'i')
943 {
944 if (i == 0)
945 {
946 test = new_decision_test (DT_elt_zero_int, &place);
947 test->u.intval = XINT (pattern, i);
948 }
949 else if (i == 1)
950 {
951 test = new_decision_test (DT_elt_one_int, &place);
952 test->u.intval = XINT (pattern, i);
953 }
954 else
955 abort ();
956 }
957 else if (fmt[i] == 'w')
958 {
959 /* If this value actually fits in an int, we can use a switch
960 statement here, so indicate that. */
961 enum decision_type type
962 = ((int) XWINT (pattern, i) == XWINT (pattern, i))
963 ? DT_elt_zero_wide_safe : DT_elt_zero_wide;
964
965 if (i != 0)
966 abort ();
967
968 test = new_decision_test (type, &place);
969 test->u.intval = XWINT (pattern, i);
970 }
971 else if (fmt[i] == 'E')
972 {
973 if (i != 0)
974 abort ();
975
976 test = new_decision_test (DT_veclen, &place);
977 test->u.veclen = XVECLEN (pattern, i);
978 }
979 }
980
981 /* Now test our sub-patterns. */
982 for (i = 0; i < (size_t) len; i++)
983 {
984 switch (fmt[i])
985 {
986 case 'e': case 'u':
987 subpos[depth] = '0' + i;
988 sub = add_to_sequence (XEXP (pattern, i), &sub->success,
989 subpos, insn_type, 0);
990 break;
991
992 case 'E':
993 {
994 int j;
995 for (j = 0; j < XVECLEN (pattern, i); j++)
996 {
997 subpos[depth] = 'a' + j;
998 sub = add_to_sequence (XVECEXP (pattern, i, j),
999 &sub->success, subpos, insn_type, 0);
1000 }
1001 break;
1002 }
1003
1004 case 'i': case 'w':
1005 /* Handled above. */
1006 break;
1007 case '0':
1008 break;
1009
1010 default:
1011 abort ();
1012 }
1013 }
1014
1015 fini:
1016 /* Insert nodes testing mode and code, if they're still relevant,
1017 before any of the nodes we may have added above. */
1018 if (code != UNKNOWN)
1019 {
1020 place = &this->tests;
1021 test = new_decision_test (DT_code, &place);
1022 test->u.code = code;
1023 }
1024
1025 if (mode != VOIDmode)
1026 {
1027 place = &this->tests;
1028 test = new_decision_test (DT_mode, &place);
1029 test->u.mode = mode;
1030 }
1031
1032 /* If we didn't insert any tests or accept nodes, hork. */
1033 if (this->tests == NULL)
1034 abort ();
1035
1036 ret:
1037 free (subpos);
1038 return sub;
1039 }
1040 \f
1041 /* A subroutine of maybe_both_true; examines only one test.
1042 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1043
1044 static int
1045 maybe_both_true_2 (struct decision_test *d1, struct decision_test *d2)
1046 {
1047 if (d1->type == d2->type)
1048 {
1049 switch (d1->type)
1050 {
1051 case DT_mode:
1052 return d1->u.mode == d2->u.mode;
1053
1054 case DT_code:
1055 return d1->u.code == d2->u.code;
1056
1057 case DT_veclen:
1058 return d1->u.veclen == d2->u.veclen;
1059
1060 case DT_elt_zero_int:
1061 case DT_elt_one_int:
1062 case DT_elt_zero_wide:
1063 case DT_elt_zero_wide_safe:
1064 return d1->u.intval == d2->u.intval;
1065
1066 default:
1067 break;
1068 }
1069 }
1070
1071 /* If either has a predicate that we know something about, set
1072 things up so that D1 is the one that always has a known
1073 predicate. Then see if they have any codes in common. */
1074
1075 if (d1->type == DT_pred || d2->type == DT_pred)
1076 {
1077 if (d2->type == DT_pred)
1078 {
1079 struct decision_test *tmp;
1080 tmp = d1, d1 = d2, d2 = tmp;
1081 }
1082
1083 /* If D2 tests a mode, see if it matches D1. */
1084 if (d1->u.pred.mode != VOIDmode)
1085 {
1086 if (d2->type == DT_mode)
1087 {
1088 if (d1->u.pred.mode != d2->u.mode
1089 /* The mode of an address_operand predicate is the
1090 mode of the memory, not the operand. It can only
1091 be used for testing the predicate, so we must
1092 ignore it here. */
1093 && strcmp (d1->u.pred.name, "address_operand") != 0)
1094 return 0;
1095 }
1096 /* Don't check two predicate modes here, because if both predicates
1097 accept CONST_INT, then both can still be true even if the modes
1098 are different. If they don't accept CONST_INT, there will be a
1099 separate DT_mode that will make maybe_both_true_1 return 0. */
1100 }
1101
1102 if (d1->u.pred.index >= 0)
1103 {
1104 /* If D2 tests a code, see if it is in the list of valid
1105 codes for D1's predicate. */
1106 if (d2->type == DT_code)
1107 {
1108 const RTX_CODE *c = &preds[d1->u.pred.index].codes[0];
1109 while (*c != 0)
1110 {
1111 if (*c == d2->u.code)
1112 break;
1113 ++c;
1114 }
1115 if (*c == 0)
1116 return 0;
1117 }
1118
1119 /* Otherwise see if the predicates have any codes in common. */
1120 else if (d2->type == DT_pred && d2->u.pred.index >= 0)
1121 {
1122 const RTX_CODE *c1 = &preds[d1->u.pred.index].codes[0];
1123 int common = 0;
1124
1125 while (*c1 != 0 && !common)
1126 {
1127 const RTX_CODE *c2 = &preds[d2->u.pred.index].codes[0];
1128 while (*c2 != 0 && !common)
1129 {
1130 common = (*c1 == *c2);
1131 ++c2;
1132 }
1133 ++c1;
1134 }
1135
1136 if (!common)
1137 return 0;
1138 }
1139 }
1140 }
1141
1142 /* Tests vs veclen may be known when strict equality is involved. */
1143 if (d1->type == DT_veclen && d2->type == DT_veclen_ge)
1144 return d1->u.veclen >= d2->u.veclen;
1145 if (d1->type == DT_veclen_ge && d2->type == DT_veclen)
1146 return d2->u.veclen >= d1->u.veclen;
1147
1148 return -1;
1149 }
1150
1151 /* A subroutine of maybe_both_true; examines all the tests for a given node.
1152 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1153
1154 static int
1155 maybe_both_true_1 (struct decision_test *d1, struct decision_test *d2)
1156 {
1157 struct decision_test *t1, *t2;
1158
1159 /* A match_operand with no predicate can match anything. Recognize
1160 this by the existence of a lone DT_accept_op test. */
1161 if (d1->type == DT_accept_op || d2->type == DT_accept_op)
1162 return 1;
1163
1164 /* Eliminate pairs of tests while they can exactly match. */
1165 while (d1 && d2 && d1->type == d2->type)
1166 {
1167 if (maybe_both_true_2 (d1, d2) == 0)
1168 return 0;
1169 d1 = d1->next, d2 = d2->next;
1170 }
1171
1172 /* After that, consider all pairs. */
1173 for (t1 = d1; t1 ; t1 = t1->next)
1174 for (t2 = d2; t2 ; t2 = t2->next)
1175 if (maybe_both_true_2 (t1, t2) == 0)
1176 return 0;
1177
1178 return -1;
1179 }
1180
1181 /* Return 0 if we can prove that there is no RTL that can match both
1182 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
1183 can match both or just that we couldn't prove there wasn't such an RTL).
1184
1185 TOPLEVEL is nonzero if we are to only look at the top level and not
1186 recursively descend. */
1187
1188 static int
1189 maybe_both_true (struct decision *d1, struct decision *d2,
1190 int toplevel)
1191 {
1192 struct decision *p1, *p2;
1193 int cmp;
1194
1195 /* Don't compare strings on the different positions in insn. Doing so
1196 is incorrect and results in false matches from constructs like
1197
1198 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1199 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1200 vs
1201 [(set (match_operand:HI "register_operand" "r")
1202 (match_operand:HI "register_operand" "r"))]
1203
1204 If we are presented with such, we are recursing through the remainder
1205 of a node's success nodes (from the loop at the end of this function).
1206 Skip forward until we come to a position that matches.
1207
1208 Due to the way position strings are constructed, we know that iterating
1209 forward from the lexically lower position (e.g. "00") will run into
1210 the lexically higher position (e.g. "1") and not the other way around.
1211 This saves a bit of effort. */
1212
1213 cmp = strcmp (d1->position, d2->position);
1214 if (cmp != 0)
1215 {
1216 if (toplevel)
1217 abort ();
1218
1219 /* If the d2->position was lexically lower, swap. */
1220 if (cmp > 0)
1221 p1 = d1, d1 = d2, d2 = p1;
1222
1223 if (d1->success.first == 0)
1224 return 1;
1225 for (p1 = d1->success.first; p1; p1 = p1->next)
1226 if (maybe_both_true (p1, d2, 0))
1227 return 1;
1228
1229 return 0;
1230 }
1231
1232 /* Test the current level. */
1233 cmp = maybe_both_true_1 (d1->tests, d2->tests);
1234 if (cmp >= 0)
1235 return cmp;
1236
1237 /* We can't prove that D1 and D2 cannot both be true. If we are only
1238 to check the top level, return 1. Otherwise, see if we can prove
1239 that all choices in both successors are mutually exclusive. If
1240 either does not have any successors, we can't prove they can't both
1241 be true. */
1242
1243 if (toplevel || d1->success.first == 0 || d2->success.first == 0)
1244 return 1;
1245
1246 for (p1 = d1->success.first; p1; p1 = p1->next)
1247 for (p2 = d2->success.first; p2; p2 = p2->next)
1248 if (maybe_both_true (p1, p2, 0))
1249 return 1;
1250
1251 return 0;
1252 }
1253
1254 /* A subroutine of nodes_identical. Examine two tests for equivalence. */
1255
1256 static int
1257 nodes_identical_1 (struct decision_test *d1, struct decision_test *d2)
1258 {
1259 switch (d1->type)
1260 {
1261 case DT_mode:
1262 return d1->u.mode == d2->u.mode;
1263
1264 case DT_code:
1265 return d1->u.code == d2->u.code;
1266
1267 case DT_pred:
1268 return (d1->u.pred.mode == d2->u.pred.mode
1269 && strcmp (d1->u.pred.name, d2->u.pred.name) == 0);
1270
1271 case DT_c_test:
1272 return strcmp (d1->u.c_test, d2->u.c_test) == 0;
1273
1274 case DT_veclen:
1275 case DT_veclen_ge:
1276 return d1->u.veclen == d2->u.veclen;
1277
1278 case DT_dup:
1279 return d1->u.dup == d2->u.dup;
1280
1281 case DT_elt_zero_int:
1282 case DT_elt_one_int:
1283 case DT_elt_zero_wide:
1284 case DT_elt_zero_wide_safe:
1285 return d1->u.intval == d2->u.intval;
1286
1287 case DT_accept_op:
1288 return d1->u.opno == d2->u.opno;
1289
1290 case DT_accept_insn:
1291 /* Differences will be handled in merge_accept_insn. */
1292 return 1;
1293
1294 default:
1295 abort ();
1296 }
1297 }
1298
1299 /* True iff the two nodes are identical (on one level only). Due
1300 to the way these lists are constructed, we shouldn't have to
1301 consider different orderings on the tests. */
1302
1303 static int
1304 nodes_identical (struct decision *d1, struct decision *d2)
1305 {
1306 struct decision_test *t1, *t2;
1307
1308 for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next)
1309 {
1310 if (t1->type != t2->type)
1311 return 0;
1312 if (! nodes_identical_1 (t1, t2))
1313 return 0;
1314 }
1315
1316 /* For success, they should now both be null. */
1317 if (t1 != t2)
1318 return 0;
1319
1320 /* Check that their subnodes are at the same position, as any one set
1321 of sibling decisions must be at the same position. Allowing this
1322 requires complications to find_afterward and when change_state is
1323 invoked. */
1324 if (d1->success.first
1325 && d2->success.first
1326 && strcmp (d1->success.first->position, d2->success.first->position))
1327 return 0;
1328
1329 return 1;
1330 }
1331
1332 /* A subroutine of merge_trees; given two nodes that have been declared
1333 identical, cope with two insn accept states. If they differ in the
1334 number of clobbers, then the conflict was created by make_insn_sequence
1335 and we can drop the with-clobbers version on the floor. If both
1336 nodes have no additional clobbers, we have found an ambiguity in the
1337 source machine description. */
1338
1339 static void
1340 merge_accept_insn (struct decision *oldd, struct decision *addd)
1341 {
1342 struct decision_test *old, *add;
1343
1344 for (old = oldd->tests; old; old = old->next)
1345 if (old->type == DT_accept_insn)
1346 break;
1347 if (old == NULL)
1348 return;
1349
1350 for (add = addd->tests; add; add = add->next)
1351 if (add->type == DT_accept_insn)
1352 break;
1353 if (add == NULL)
1354 return;
1355
1356 /* If one node is for a normal insn and the second is for the base
1357 insn with clobbers stripped off, the second node should be ignored. */
1358
1359 if (old->u.insn.num_clobbers_to_add == 0
1360 && add->u.insn.num_clobbers_to_add > 0)
1361 {
1362 /* Nothing to do here. */
1363 }
1364 else if (old->u.insn.num_clobbers_to_add > 0
1365 && add->u.insn.num_clobbers_to_add == 0)
1366 {
1367 /* In this case, replace OLD with ADD. */
1368 old->u.insn = add->u.insn;
1369 }
1370 else
1371 {
1372 message_with_line (add->u.insn.lineno, "`%s' matches `%s'",
1373 get_insn_name (add->u.insn.code_number),
1374 get_insn_name (old->u.insn.code_number));
1375 message_with_line (old->u.insn.lineno, "previous definition of `%s'",
1376 get_insn_name (old->u.insn.code_number));
1377 error_count++;
1378 }
1379 }
1380
1381 /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1382
1383 static void
1384 merge_trees (struct decision_head *oldh, struct decision_head *addh)
1385 {
1386 struct decision *next, *add;
1387
1388 if (addh->first == 0)
1389 return;
1390 if (oldh->first == 0)
1391 {
1392 *oldh = *addh;
1393 return;
1394 }
1395
1396 /* Trying to merge bits at different positions isn't possible. */
1397 if (strcmp (oldh->first->position, addh->first->position))
1398 abort ();
1399
1400 for (add = addh->first; add ; add = next)
1401 {
1402 struct decision *old, *insert_before = NULL;
1403
1404 next = add->next;
1405
1406 /* The semantics of pattern matching state that the tests are
1407 done in the order given in the MD file so that if an insn
1408 matches two patterns, the first one will be used. However,
1409 in practice, most, if not all, patterns are unambiguous so
1410 that their order is independent. In that case, we can merge
1411 identical tests and group all similar modes and codes together.
1412
1413 Scan starting from the end of OLDH until we reach a point
1414 where we reach the head of the list or where we pass a
1415 pattern that could also be true if NEW is true. If we find
1416 an identical pattern, we can merge them. Also, record the
1417 last node that tests the same code and mode and the last one
1418 that tests just the same mode.
1419
1420 If we have no match, place NEW after the closest match we found. */
1421
1422 for (old = oldh->last; old; old = old->prev)
1423 {
1424 if (nodes_identical (old, add))
1425 {
1426 merge_accept_insn (old, add);
1427 merge_trees (&old->success, &add->success);
1428 goto merged_nodes;
1429 }
1430
1431 if (maybe_both_true (old, add, 0))
1432 break;
1433
1434 /* Insert the nodes in DT test type order, which is roughly
1435 how expensive/important the test is. Given that the tests
1436 are also ordered within the list, examining the first is
1437 sufficient. */
1438 if ((int) add->tests->type < (int) old->tests->type)
1439 insert_before = old;
1440 }
1441
1442 if (insert_before == NULL)
1443 {
1444 add->next = NULL;
1445 add->prev = oldh->last;
1446 oldh->last->next = add;
1447 oldh->last = add;
1448 }
1449 else
1450 {
1451 if ((add->prev = insert_before->prev) != NULL)
1452 add->prev->next = add;
1453 else
1454 oldh->first = add;
1455 add->next = insert_before;
1456 insert_before->prev = add;
1457 }
1458
1459 merged_nodes:;
1460 }
1461 }
1462 \f
1463 /* Walk the tree looking for sub-nodes that perform common tests.
1464 Factor out the common test into a new node. This enables us
1465 (depending on the test type) to emit switch statements later. */
1466
1467 static void
1468 factor_tests (struct decision_head *head)
1469 {
1470 struct decision *first, *next;
1471
1472 for (first = head->first; first && first->next; first = next)
1473 {
1474 enum decision_type type;
1475 struct decision *new, *old_last;
1476
1477 type = first->tests->type;
1478 next = first->next;
1479
1480 /* Want at least two compatible sequential nodes. */
1481 if (next->tests->type != type)
1482 continue;
1483
1484 /* Don't want all node types, just those we can turn into
1485 switch statements. */
1486 if (type != DT_mode
1487 && type != DT_code
1488 && type != DT_veclen
1489 && type != DT_elt_zero_int
1490 && type != DT_elt_one_int
1491 && type != DT_elt_zero_wide_safe)
1492 continue;
1493
1494 /* If we'd been performing more than one test, create a new node
1495 below our first test. */
1496 if (first->tests->next != NULL)
1497 {
1498 new = new_decision (first->position, &first->success);
1499 new->tests = first->tests->next;
1500 first->tests->next = NULL;
1501 }
1502
1503 /* Crop the node tree off after our first test. */
1504 first->next = NULL;
1505 old_last = head->last;
1506 head->last = first;
1507
1508 /* For each compatible test, adjust to perform only one test in
1509 the top level node, then merge the node back into the tree. */
1510 do
1511 {
1512 struct decision_head h;
1513
1514 if (next->tests->next != NULL)
1515 {
1516 new = new_decision (next->position, &next->success);
1517 new->tests = next->tests->next;
1518 next->tests->next = NULL;
1519 }
1520 new = next;
1521 next = next->next;
1522 new->next = NULL;
1523 h.first = h.last = new;
1524
1525 merge_trees (head, &h);
1526 }
1527 while (next && next->tests->type == type);
1528
1529 /* After we run out of compatible tests, graft the remaining nodes
1530 back onto the tree. */
1531 if (next)
1532 {
1533 next->prev = head->last;
1534 head->last->next = next;
1535 head->last = old_last;
1536 }
1537 }
1538
1539 /* Recurse. */
1540 for (first = head->first; first; first = first->next)
1541 factor_tests (&first->success);
1542 }
1543
1544 /* After factoring, try to simplify the tests on any one node.
1545 Tests that are useful for switch statements are recognizable
1546 by having only a single test on a node -- we'll be manipulating
1547 nodes with multiple tests:
1548
1549 If we have mode tests or code tests that are redundant with
1550 predicates, remove them. */
1551
1552 static void
1553 simplify_tests (struct decision_head *head)
1554 {
1555 struct decision *tree;
1556
1557 for (tree = head->first; tree; tree = tree->next)
1558 {
1559 struct decision_test *a, *b;
1560
1561 a = tree->tests;
1562 b = a->next;
1563 if (b == NULL)
1564 continue;
1565
1566 /* Find a predicate node. */
1567 while (b && b->type != DT_pred)
1568 b = b->next;
1569 if (b)
1570 {
1571 /* Due to how these tests are constructed, we don't even need
1572 to check that the mode and code are compatible -- they were
1573 generated from the predicate in the first place. */
1574 while (a->type == DT_mode || a->type == DT_code)
1575 a = a->next;
1576 tree->tests = a;
1577 }
1578 }
1579
1580 /* Recurse. */
1581 for (tree = head->first; tree; tree = tree->next)
1582 simplify_tests (&tree->success);
1583 }
1584
1585 /* Count the number of subnodes of HEAD. If the number is high enough,
1586 make the first node in HEAD start a separate subroutine in the C code
1587 that is generated. */
1588
1589 static int
1590 break_out_subroutines (struct decision_head *head, int initial)
1591 {
1592 int size = 0;
1593 struct decision *sub;
1594
1595 for (sub = head->first; sub; sub = sub->next)
1596 size += 1 + break_out_subroutines (&sub->success, 0);
1597
1598 if (size > SUBROUTINE_THRESHOLD && ! initial)
1599 {
1600 head->first->subroutine_number = ++next_subroutine_number;
1601 size = 1;
1602 }
1603 return size;
1604 }
1605
1606 /* For each node p, find the next alternative that might be true
1607 when p is true. */
1608
1609 static void
1610 find_afterward (struct decision_head *head, struct decision *real_afterward)
1611 {
1612 struct decision *p, *q, *afterward;
1613
1614 /* We can't propagate alternatives across subroutine boundaries.
1615 This is not incorrect, merely a minor optimization loss. */
1616
1617 p = head->first;
1618 afterward = (p->subroutine_number > 0 ? NULL : real_afterward);
1619
1620 for ( ; p ; p = p->next)
1621 {
1622 /* Find the next node that might be true if this one fails. */
1623 for (q = p->next; q ; q = q->next)
1624 if (maybe_both_true (p, q, 1))
1625 break;
1626
1627 /* If we reached the end of the list without finding one,
1628 use the incoming afterward position. */
1629 if (!q)
1630 q = afterward;
1631 p->afterward = q;
1632 if (q)
1633 q->need_label = 1;
1634 }
1635
1636 /* Recurse. */
1637 for (p = head->first; p ; p = p->next)
1638 if (p->success.first)
1639 find_afterward (&p->success, p->afterward);
1640
1641 /* When we are generating a subroutine, record the real afterward
1642 position in the first node where write_tree can find it, and we
1643 can do the right thing at the subroutine call site. */
1644 p = head->first;
1645 if (p->subroutine_number > 0)
1646 p->afterward = real_afterward;
1647 }
1648 \f
1649 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1650 actions are necessary to move to NEWPOS. If we fail to move to the
1651 new state, branch to node AFTERWARD if nonzero, otherwise return.
1652
1653 Failure to move to the new state can only occur if we are trying to
1654 match multiple insns and we try to step past the end of the stream. */
1655
1656 static void
1657 change_state (const char *oldpos, const char *newpos,
1658 struct decision *afterward, const char *indent)
1659 {
1660 int odepth = strlen (oldpos);
1661 int ndepth = strlen (newpos);
1662 int depth;
1663 int old_has_insn, new_has_insn;
1664
1665 /* Pop up as many levels as necessary. */
1666 for (depth = odepth; strncmp (oldpos, newpos, depth) != 0; --depth)
1667 continue;
1668
1669 /* Hunt for the last [A-Z] in both strings. */
1670 for (old_has_insn = odepth - 1; old_has_insn >= 0; --old_has_insn)
1671 if (ISUPPER (oldpos[old_has_insn]))
1672 break;
1673 for (new_has_insn = ndepth - 1; new_has_insn >= 0; --new_has_insn)
1674 if (ISUPPER (newpos[new_has_insn]))
1675 break;
1676
1677 /* Go down to desired level. */
1678 while (depth < ndepth)
1679 {
1680 /* It's a different insn from the first one. */
1681 if (ISUPPER (newpos[depth]))
1682 {
1683 /* We can only fail if we're moving down the tree. */
1684 if (old_has_insn >= 0 && oldpos[old_has_insn] >= newpos[depth])
1685 {
1686 printf ("%stem = peep2_next_insn (%d);\n",
1687 indent, newpos[depth] - 'A');
1688 }
1689 else
1690 {
1691 printf ("%stem = peep2_next_insn (%d);\n",
1692 indent, newpos[depth] - 'A');
1693 printf ("%sif (tem == NULL_RTX)\n", indent);
1694 if (afterward)
1695 printf ("%s goto L%d;\n", indent, afterward->number);
1696 else
1697 printf ("%s goto ret0;\n", indent);
1698 }
1699 printf ("%sx%d = PATTERN (tem);\n", indent, depth + 1);
1700 }
1701 else if (ISLOWER (newpos[depth]))
1702 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1703 indent, depth + 1, depth, newpos[depth] - 'a');
1704 else
1705 printf ("%sx%d = XEXP (x%d, %c);\n",
1706 indent, depth + 1, depth, newpos[depth]);
1707 ++depth;
1708 }
1709 }
1710 \f
1711 /* Print the enumerator constant for CODE -- the upcase version of
1712 the name. */
1713
1714 static void
1715 print_code (enum rtx_code code)
1716 {
1717 const char *p;
1718 for (p = GET_RTX_NAME (code); *p; p++)
1719 putchar (TOUPPER (*p));
1720 }
1721
1722 /* Emit code to cross an afterward link -- change state and branch. */
1723
1724 static void
1725 write_afterward (struct decision *start, struct decision *afterward,
1726 const char *indent)
1727 {
1728 if (!afterward || start->subroutine_number > 0)
1729 printf("%sgoto ret0;\n", indent);
1730 else
1731 {
1732 change_state (start->position, afterward->position, NULL, indent);
1733 printf ("%sgoto L%d;\n", indent, afterward->number);
1734 }
1735 }
1736
1737 /* Emit a HOST_WIDE_INT as an integer constant expression. We need to take
1738 special care to avoid "decimal constant is so large that it is unsigned"
1739 warnings in the resulting code. */
1740
1741 static void
1742 print_host_wide_int (HOST_WIDE_INT val)
1743 {
1744 HOST_WIDE_INT min = (unsigned HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1);
1745 if (val == min)
1746 printf ("(" HOST_WIDE_INT_PRINT_DEC_C "-1)", val + 1);
1747 else
1748 printf (HOST_WIDE_INT_PRINT_DEC_C, val);
1749 }
1750
1751 /* Emit a switch statement, if possible, for an initial sequence of
1752 nodes at START. Return the first node yet untested. */
1753
1754 static struct decision *
1755 write_switch (struct decision *start, int depth)
1756 {
1757 struct decision *p = start;
1758 enum decision_type type = p->tests->type;
1759 struct decision *needs_label = NULL;
1760
1761 /* If we have two or more nodes in sequence that test the same one
1762 thing, we may be able to use a switch statement. */
1763
1764 if (!p->next
1765 || p->tests->next
1766 || p->next->tests->type != type
1767 || p->next->tests->next
1768 || nodes_identical_1 (p->tests, p->next->tests))
1769 return p;
1770
1771 /* DT_code is special in that we can do interesting things with
1772 known predicates at the same time. */
1773 if (type == DT_code)
1774 {
1775 char codemap[NUM_RTX_CODE];
1776 struct decision *ret;
1777 RTX_CODE code;
1778
1779 memset (codemap, 0, sizeof(codemap));
1780
1781 printf (" switch (GET_CODE (x%d))\n {\n", depth);
1782 code = p->tests->u.code;
1783 do
1784 {
1785 if (p != start && p->need_label && needs_label == NULL)
1786 needs_label = p;
1787
1788 printf (" case ");
1789 print_code (code);
1790 printf (":\n goto L%d;\n", p->success.first->number);
1791 p->success.first->need_label = 1;
1792
1793 codemap[code] = 1;
1794 p = p->next;
1795 }
1796 while (p
1797 && ! p->tests->next
1798 && p->tests->type == DT_code
1799 && ! codemap[code = p->tests->u.code]);
1800
1801 /* If P is testing a predicate that we know about and we haven't
1802 seen any of the codes that are valid for the predicate, we can
1803 write a series of "case" statement, one for each possible code.
1804 Since we are already in a switch, these redundant tests are very
1805 cheap and will reduce the number of predicates called. */
1806
1807 /* Note that while we write out cases for these predicates here,
1808 we don't actually write the test here, as it gets kinda messy.
1809 It is trivial to leave this to later by telling our caller that
1810 we only processed the CODE tests. */
1811 if (needs_label != NULL)
1812 ret = needs_label;
1813 else
1814 ret = p;
1815
1816 while (p && p->tests->type == DT_pred
1817 && p->tests->u.pred.index >= 0)
1818 {
1819 const RTX_CODE *c;
1820
1821 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1822 if (codemap[(int) *c] != 0)
1823 goto pred_done;
1824
1825 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1826 {
1827 printf (" case ");
1828 print_code (*c);
1829 printf (":\n");
1830 codemap[(int) *c] = 1;
1831 }
1832
1833 printf (" goto L%d;\n", p->number);
1834 p->need_label = 1;
1835 p = p->next;
1836 }
1837
1838 pred_done:
1839 /* Make the default case skip the predicates we managed to match. */
1840
1841 printf (" default:\n");
1842 if (p != ret)
1843 {
1844 if (p)
1845 {
1846 printf (" goto L%d;\n", p->number);
1847 p->need_label = 1;
1848 }
1849 else
1850 write_afterward (start, start->afterward, " ");
1851 }
1852 else
1853 printf (" break;\n");
1854 printf (" }\n");
1855
1856 return ret;
1857 }
1858 else if (type == DT_mode
1859 || type == DT_veclen
1860 || type == DT_elt_zero_int
1861 || type == DT_elt_one_int
1862 || type == DT_elt_zero_wide_safe)
1863 {
1864 const char *indent = "";
1865
1866 /* We cast switch parameter to integer, so we must ensure that the value
1867 fits. */
1868 if (type == DT_elt_zero_wide_safe)
1869 {
1870 indent = " ";
1871 printf(" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n", depth, depth);
1872 }
1873 printf ("%s switch (", indent);
1874 switch (type)
1875 {
1876 case DT_mode:
1877 printf ("GET_MODE (x%d)", depth);
1878 break;
1879 case DT_veclen:
1880 printf ("XVECLEN (x%d, 0)", depth);
1881 break;
1882 case DT_elt_zero_int:
1883 printf ("XINT (x%d, 0)", depth);
1884 break;
1885 case DT_elt_one_int:
1886 printf ("XINT (x%d, 1)", depth);
1887 break;
1888 case DT_elt_zero_wide_safe:
1889 /* Convert result of XWINT to int for portability since some C
1890 compilers won't do it and some will. */
1891 printf ("(int) XWINT (x%d, 0)", depth);
1892 break;
1893 default:
1894 abort ();
1895 }
1896 printf (")\n%s {\n", indent);
1897
1898 do
1899 {
1900 /* Merge trees will not unify identical nodes if their
1901 sub-nodes are at different levels. Thus we must check
1902 for duplicate cases. */
1903 struct decision *q;
1904 for (q = start; q != p; q = q->next)
1905 if (nodes_identical_1 (p->tests, q->tests))
1906 goto case_done;
1907
1908 if (p != start && p->need_label && needs_label == NULL)
1909 needs_label = p;
1910
1911 printf ("%s case ", indent);
1912 switch (type)
1913 {
1914 case DT_mode:
1915 printf ("%smode", GET_MODE_NAME (p->tests->u.mode));
1916 break;
1917 case DT_veclen:
1918 printf ("%d", p->tests->u.veclen);
1919 break;
1920 case DT_elt_zero_int:
1921 case DT_elt_one_int:
1922 case DT_elt_zero_wide:
1923 case DT_elt_zero_wide_safe:
1924 print_host_wide_int (p->tests->u.intval);
1925 break;
1926 default:
1927 abort ();
1928 }
1929 printf (":\n%s goto L%d;\n", indent, p->success.first->number);
1930 p->success.first->need_label = 1;
1931
1932 p = p->next;
1933 }
1934 while (p && p->tests->type == type && !p->tests->next);
1935
1936 case_done:
1937 printf ("%s default:\n%s break;\n%s }\n",
1938 indent, indent, indent);
1939
1940 return needs_label != NULL ? needs_label : p;
1941 }
1942 else
1943 {
1944 /* None of the other tests are amenable. */
1945 return p;
1946 }
1947 }
1948
1949 /* Emit code for one test. */
1950
1951 static void
1952 write_cond (struct decision_test *p, int depth,
1953 enum routine_type subroutine_type)
1954 {
1955 switch (p->type)
1956 {
1957 case DT_mode:
1958 printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode));
1959 break;
1960
1961 case DT_code:
1962 printf ("GET_CODE (x%d) == ", depth);
1963 print_code (p->u.code);
1964 break;
1965
1966 case DT_veclen:
1967 printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen);
1968 break;
1969
1970 case DT_elt_zero_int:
1971 printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval);
1972 break;
1973
1974 case DT_elt_one_int:
1975 printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval);
1976 break;
1977
1978 case DT_elt_zero_wide:
1979 case DT_elt_zero_wide_safe:
1980 printf ("XWINT (x%d, 0) == ", depth);
1981 print_host_wide_int (p->u.intval);
1982 break;
1983
1984 case DT_veclen_ge:
1985 printf ("XVECLEN (x%d, 0) >= %d", depth, p->u.veclen);
1986 break;
1987
1988 case DT_dup:
1989 printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup);
1990 break;
1991
1992 case DT_pred:
1993 printf ("%s (x%d, %smode)", p->u.pred.name, depth,
1994 GET_MODE_NAME (p->u.pred.mode));
1995 break;
1996
1997 case DT_c_test:
1998 printf ("(%s)", p->u.c_test);
1999 break;
2000
2001 case DT_accept_insn:
2002 switch (subroutine_type)
2003 {
2004 case RECOG:
2005 if (p->u.insn.num_clobbers_to_add == 0)
2006 abort ();
2007 printf ("pnum_clobbers != NULL");
2008 break;
2009
2010 default:
2011 abort ();
2012 }
2013 break;
2014
2015 default:
2016 abort ();
2017 }
2018 }
2019
2020 /* Emit code for one action. The previous tests have succeeded;
2021 TEST is the last of the chain. In the normal case we simply
2022 perform a state change. For the `accept' tests we must do more work. */
2023
2024 static void
2025 write_action (struct decision *p, struct decision_test *test,
2026 int depth, int uncond, struct decision *success,
2027 enum routine_type subroutine_type)
2028 {
2029 const char *indent;
2030 int want_close = 0;
2031
2032 if (uncond)
2033 indent = " ";
2034 else if (test->type == DT_accept_op || test->type == DT_accept_insn)
2035 {
2036 fputs (" {\n", stdout);
2037 indent = " ";
2038 want_close = 1;
2039 }
2040 else
2041 indent = " ";
2042
2043 if (test->type == DT_accept_op)
2044 {
2045 printf("%soperands[%d] = x%d;\n", indent, test->u.opno, depth);
2046
2047 /* Only allow DT_accept_insn to follow. */
2048 if (test->next)
2049 {
2050 test = test->next;
2051 if (test->type != DT_accept_insn)
2052 abort ();
2053 }
2054 }
2055
2056 /* Sanity check that we're now at the end of the list of tests. */
2057 if (test->next)
2058 abort ();
2059
2060 if (test->type == DT_accept_insn)
2061 {
2062 switch (subroutine_type)
2063 {
2064 case RECOG:
2065 if (test->u.insn.num_clobbers_to_add != 0)
2066 printf ("%s*pnum_clobbers = %d;\n",
2067 indent, test->u.insn.num_clobbers_to_add);
2068 printf ("%sreturn %d;\n", indent, test->u.insn.code_number);
2069 break;
2070
2071 case SPLIT:
2072 printf ("%sreturn gen_split_%d (operands);\n",
2073 indent, test->u.insn.code_number);
2074 break;
2075
2076 case PEEPHOLE2:
2077 {
2078 int match_len = 0, i;
2079
2080 for (i = strlen (p->position) - 1; i >= 0; --i)
2081 if (ISUPPER (p->position[i]))
2082 {
2083 match_len = p->position[i] - 'A';
2084 break;
2085 }
2086 printf ("%s*_pmatch_len = %d;\n", indent, match_len);
2087 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
2088 indent, test->u.insn.code_number);
2089 printf ("%sif (tem != 0)\n%s return tem;\n", indent, indent);
2090 }
2091 break;
2092
2093 default:
2094 abort ();
2095 }
2096 }
2097 else
2098 {
2099 printf("%sgoto L%d;\n", indent, success->number);
2100 success->need_label = 1;
2101 }
2102
2103 if (want_close)
2104 fputs (" }\n", stdout);
2105 }
2106
2107 /* Return 1 if the test is always true and has no fallthru path. Return -1
2108 if the test does have a fallthru path, but requires that the condition be
2109 terminated. Otherwise return 0 for a normal test. */
2110 /* ??? is_unconditional is a stupid name for a tri-state function. */
2111
2112 static int
2113 is_unconditional (struct decision_test *t, enum routine_type subroutine_type)
2114 {
2115 if (t->type == DT_accept_op)
2116 return 1;
2117
2118 if (t->type == DT_accept_insn)
2119 {
2120 switch (subroutine_type)
2121 {
2122 case RECOG:
2123 return (t->u.insn.num_clobbers_to_add == 0);
2124 case SPLIT:
2125 return 1;
2126 case PEEPHOLE2:
2127 return -1;
2128 default:
2129 abort ();
2130 }
2131 }
2132
2133 return 0;
2134 }
2135
2136 /* Emit code for one node -- the conditional and the accompanying action.
2137 Return true if there is no fallthru path. */
2138
2139 static int
2140 write_node (struct decision *p, int depth,
2141 enum routine_type subroutine_type)
2142 {
2143 struct decision_test *test, *last_test;
2144 int uncond;
2145
2146 last_test = test = p->tests;
2147 uncond = is_unconditional (test, subroutine_type);
2148 if (uncond == 0)
2149 {
2150 printf (" if (");
2151 write_cond (test, depth, subroutine_type);
2152
2153 while ((test = test->next) != NULL)
2154 {
2155 last_test = test;
2156 if (is_unconditional (test, subroutine_type))
2157 break;
2158
2159 printf ("\n && ");
2160 write_cond (test, depth, subroutine_type);
2161 }
2162
2163 printf (")\n");
2164 }
2165
2166 write_action (p, last_test, depth, uncond, p->success.first, subroutine_type);
2167
2168 return uncond > 0;
2169 }
2170
2171 /* Emit code for all of the sibling nodes of HEAD. */
2172
2173 static void
2174 write_tree_1 (struct decision_head *head, int depth,
2175 enum routine_type subroutine_type)
2176 {
2177 struct decision *p, *next;
2178 int uncond = 0;
2179
2180 for (p = head->first; p ; p = next)
2181 {
2182 /* The label for the first element was printed in write_tree. */
2183 if (p != head->first && p->need_label)
2184 OUTPUT_LABEL (" ", p->number);
2185
2186 /* Attempt to write a switch statement for a whole sequence. */
2187 next = write_switch (p, depth);
2188 if (p != next)
2189 uncond = 0;
2190 else
2191 {
2192 /* Failed -- fall back and write one node. */
2193 uncond = write_node (p, depth, subroutine_type);
2194 next = p->next;
2195 }
2196 }
2197
2198 /* Finished with this chain. Close a fallthru path by branching
2199 to the afterward node. */
2200 if (! uncond)
2201 write_afterward (head->last, head->last->afterward, " ");
2202 }
2203
2204 /* Write out the decision tree starting at HEAD. PREVPOS is the
2205 position at the node that branched to this node. */
2206
2207 static void
2208 write_tree (struct decision_head *head, const char *prevpos,
2209 enum routine_type type, int initial)
2210 {
2211 struct decision *p = head->first;
2212
2213 putchar ('\n');
2214 if (p->need_label)
2215 OUTPUT_LABEL (" ", p->number);
2216
2217 if (! initial && p->subroutine_number > 0)
2218 {
2219 static const char * const name_prefix[] = {
2220 "recog", "split", "peephole2"
2221 };
2222
2223 static const char * const call_suffix[] = {
2224 ", pnum_clobbers", "", ", _pmatch_len"
2225 };
2226
2227 /* This node has been broken out into a separate subroutine.
2228 Call it, test the result, and branch accordingly. */
2229
2230 if (p->afterward)
2231 {
2232 printf (" tem = %s_%d (x0, insn%s);\n",
2233 name_prefix[type], p->subroutine_number, call_suffix[type]);
2234 if (IS_SPLIT (type))
2235 printf (" if (tem != 0)\n return tem;\n");
2236 else
2237 printf (" if (tem >= 0)\n return tem;\n");
2238
2239 change_state (p->position, p->afterward->position, NULL, " ");
2240 printf (" goto L%d;\n", p->afterward->number);
2241 }
2242 else
2243 {
2244 printf (" return %s_%d (x0, insn%s);\n",
2245 name_prefix[type], p->subroutine_number, call_suffix[type]);
2246 }
2247 }
2248 else
2249 {
2250 int depth = strlen (p->position);
2251
2252 change_state (prevpos, p->position, head->last->afterward, " ");
2253 write_tree_1 (head, depth, type);
2254
2255 for (p = head->first; p; p = p->next)
2256 if (p->success.first)
2257 write_tree (&p->success, p->position, type, 0);
2258 }
2259 }
2260
2261 /* Write out a subroutine of type TYPE to do comparisons starting at
2262 node TREE. */
2263
2264 static void
2265 write_subroutine (struct decision_head *head, enum routine_type type)
2266 {
2267 int subfunction = head->first ? head->first->subroutine_number : 0;
2268 const char *s_or_e;
2269 char extension[32];
2270 int i;
2271
2272 s_or_e = subfunction ? "static " : "";
2273
2274 if (subfunction)
2275 sprintf (extension, "_%d", subfunction);
2276 else if (type == RECOG)
2277 extension[0] = '\0';
2278 else
2279 strcpy (extension, "_insns");
2280
2281 switch (type)
2282 {
2283 case RECOG:
2284 printf ("%sint\n\
2285 recog%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", s_or_e, extension);
2286 break;
2287 case SPLIT:
2288 printf ("%srtx\n\
2289 split%s (rtx x0 ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED)\n",
2290 s_or_e, extension);
2291 break;
2292 case PEEPHOLE2:
2293 printf ("%srtx\n\
2294 peephole2%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *_pmatch_len ATTRIBUTE_UNUSED)\n",
2295 s_or_e, extension);
2296 break;
2297 }
2298
2299 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
2300 for (i = 1; i <= max_depth; i++)
2301 printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i);
2302
2303 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int");
2304
2305 if (!subfunction)
2306 printf (" recog_data.insn = NULL_RTX;\n");
2307
2308 if (head->first)
2309 write_tree (head, "", type, 1);
2310 else
2311 printf (" goto ret0;\n");
2312
2313 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1);
2314 }
2315
2316 /* In break_out_subroutines, we discovered the boundaries for the
2317 subroutines, but did not write them out. Do so now. */
2318
2319 static void
2320 write_subroutines (struct decision_head *head, enum routine_type type)
2321 {
2322 struct decision *p;
2323
2324 for (p = head->first; p ; p = p->next)
2325 if (p->success.first)
2326 write_subroutines (&p->success, type);
2327
2328 if (head->first->subroutine_number > 0)
2329 write_subroutine (head, type);
2330 }
2331
2332 /* Begin the output file. */
2333
2334 static void
2335 write_header (void)
2336 {
2337 puts ("\
2338 /* Generated automatically by the program `genrecog' from the target\n\
2339 machine description file. */\n\
2340 \n\
2341 #include \"config.h\"\n\
2342 #include \"system.h\"\n\
2343 #include \"coretypes.h\"\n\
2344 #include \"tm.h\"\n\
2345 #include \"rtl.h\"\n\
2346 #include \"tm_p.h\"\n\
2347 #include \"function.h\"\n\
2348 #include \"insn-config.h\"\n\
2349 #include \"recog.h\"\n\
2350 #include \"real.h\"\n\
2351 #include \"output.h\"\n\
2352 #include \"flags.h\"\n\
2353 #include \"hard-reg-set.h\"\n\
2354 #include \"resource.h\"\n\
2355 #include \"toplev.h\"\n\
2356 #include \"reload.h\"\n\
2357 \n");
2358
2359 puts ("\n\
2360 /* `recog' contains a decision tree that recognizes whether the rtx\n\
2361 X0 is a valid instruction.\n\
2362 \n\
2363 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2364 returns a nonnegative number which is the insn code number for the\n\
2365 pattern that matched. This is the same as the order in the machine\n\
2366 description of the entry that matched. This number can be used as an\n\
2367 index into `insn_data' and other tables.\n");
2368 puts ("\
2369 The third argument to recog is an optional pointer to an int. If\n\
2370 present, recog will accept a pattern if it matches except for missing\n\
2371 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2372 the optional pointer will be set to the number of CLOBBERs that need\n\
2373 to be added (it should be initialized to zero by the caller). If it");
2374 puts ("\
2375 is set nonzero, the caller should allocate a PARALLEL of the\n\
2376 appropriate size, copy the initial entries, and call add_clobbers\n\
2377 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2378 ");
2379
2380 puts ("\n\
2381 The function split_insns returns 0 if the rtl could not\n\
2382 be split or the split rtl as an INSN list if it can be.\n\
2383 \n\
2384 The function peephole2_insns returns 0 if the rtl could not\n\
2385 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
2386 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2387 */\n\n");
2388 }
2389
2390 \f
2391 /* Construct and return a sequence of decisions
2392 that will recognize INSN.
2393
2394 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2395
2396 static struct decision_head
2397 make_insn_sequence (rtx insn, enum routine_type type)
2398 {
2399 rtx x;
2400 const char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
2401 int truth = maybe_eval_c_test (c_test);
2402 struct decision *last;
2403 struct decision_test *test, **place;
2404 struct decision_head head;
2405 char c_test_pos[2];
2406
2407 /* We should never see an insn whose C test is false at compile time. */
2408 if (truth == 0)
2409 abort ();
2410
2411 record_insn_name (next_insn_code, (type == RECOG ? XSTR (insn, 0) : NULL));
2412
2413 c_test_pos[0] = '\0';
2414 if (type == PEEPHOLE2)
2415 {
2416 int i, j;
2417
2418 /* peephole2 gets special treatment:
2419 - X always gets an outer parallel even if it's only one entry
2420 - we remove all traces of outer-level match_scratch and match_dup
2421 expressions here. */
2422 x = rtx_alloc (PARALLEL);
2423 PUT_MODE (x, VOIDmode);
2424 XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0));
2425 for (i = j = 0; i < XVECLEN (insn, 0); i++)
2426 {
2427 rtx tmp = XVECEXP (insn, 0, i);
2428 if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP)
2429 {
2430 XVECEXP (x, 0, j) = tmp;
2431 j++;
2432 }
2433 }
2434 XVECLEN (x, 0) = j;
2435
2436 c_test_pos[0] = 'A' + j - 1;
2437 c_test_pos[1] = '\0';
2438 }
2439 else if (XVECLEN (insn, type == RECOG) == 1)
2440 x = XVECEXP (insn, type == RECOG, 0);
2441 else
2442 {
2443 x = rtx_alloc (PARALLEL);
2444 XVEC (x, 0) = XVEC (insn, type == RECOG);
2445 PUT_MODE (x, VOIDmode);
2446 }
2447
2448 validate_pattern (x, insn, NULL_RTX, 0);
2449
2450 memset(&head, 0, sizeof(head));
2451 last = add_to_sequence (x, &head, "", type, 1);
2452
2453 /* Find the end of the test chain on the last node. */
2454 for (test = last->tests; test->next; test = test->next)
2455 continue;
2456 place = &test->next;
2457
2458 /* Skip the C test if it's known to be true at compile time. */
2459 if (truth == -1)
2460 {
2461 /* Need a new node if we have another test to add. */
2462 if (test->type == DT_accept_op)
2463 {
2464 last = new_decision (c_test_pos, &last->success);
2465 place = &last->tests;
2466 }
2467 test = new_decision_test (DT_c_test, &place);
2468 test->u.c_test = c_test;
2469 }
2470
2471 test = new_decision_test (DT_accept_insn, &place);
2472 test->u.insn.code_number = next_insn_code;
2473 test->u.insn.lineno = pattern_lineno;
2474 test->u.insn.num_clobbers_to_add = 0;
2475
2476 switch (type)
2477 {
2478 case RECOG:
2479 /* If this is a DEFINE_INSN and X is a PARALLEL, see if it ends
2480 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2481 If so, set up to recognize the pattern without these CLOBBERs. */
2482
2483 if (GET_CODE (x) == PARALLEL)
2484 {
2485 int i;
2486
2487 /* Find the last non-clobber in the parallel. */
2488 for (i = XVECLEN (x, 0); i > 0; i--)
2489 {
2490 rtx y = XVECEXP (x, 0, i - 1);
2491 if (GET_CODE (y) != CLOBBER
2492 || (GET_CODE (XEXP (y, 0)) != REG
2493 && GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH))
2494 break;
2495 }
2496
2497 if (i != XVECLEN (x, 0))
2498 {
2499 rtx new;
2500 struct decision_head clobber_head;
2501
2502 /* Build a similar insn without the clobbers. */
2503 if (i == 1)
2504 new = XVECEXP (x, 0, 0);
2505 else
2506 {
2507 int j;
2508
2509 new = rtx_alloc (PARALLEL);
2510 XVEC (new, 0) = rtvec_alloc (i);
2511 for (j = i - 1; j >= 0; j--)
2512 XVECEXP (new, 0, j) = XVECEXP (x, 0, j);
2513 }
2514
2515 /* Recognize it. */
2516 memset (&clobber_head, 0, sizeof(clobber_head));
2517 last = add_to_sequence (new, &clobber_head, "", type, 1);
2518
2519 /* Find the end of the test chain on the last node. */
2520 for (test = last->tests; test->next; test = test->next)
2521 continue;
2522
2523 /* We definitely have a new test to add -- create a new
2524 node if needed. */
2525 place = &test->next;
2526 if (test->type == DT_accept_op)
2527 {
2528 last = new_decision ("", &last->success);
2529 place = &last->tests;
2530 }
2531
2532 /* Skip the C test if it's known to be true at compile
2533 time. */
2534 if (truth == -1)
2535 {
2536 test = new_decision_test (DT_c_test, &place);
2537 test->u.c_test = c_test;
2538 }
2539
2540 test = new_decision_test (DT_accept_insn, &place);
2541 test->u.insn.code_number = next_insn_code;
2542 test->u.insn.lineno = pattern_lineno;
2543 test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i;
2544
2545 merge_trees (&head, &clobber_head);
2546 }
2547 }
2548 break;
2549
2550 case SPLIT:
2551 /* Define the subroutine we will call below and emit in genemit. */
2552 printf ("extern rtx gen_split_%d (rtx *);\n", next_insn_code);
2553 break;
2554
2555 case PEEPHOLE2:
2556 /* Define the subroutine we will call below and emit in genemit. */
2557 printf ("extern rtx gen_peephole2_%d (rtx, rtx *);\n",
2558 next_insn_code);
2559 break;
2560 }
2561
2562 return head;
2563 }
2564
2565 static void
2566 process_tree (struct decision_head *head, enum routine_type subroutine_type)
2567 {
2568 if (head->first == NULL)
2569 {
2570 /* We can elide peephole2_insns, but not recog or split_insns. */
2571 if (subroutine_type == PEEPHOLE2)
2572 return;
2573 }
2574 else
2575 {
2576 factor_tests (head);
2577
2578 next_subroutine_number = 0;
2579 break_out_subroutines (head, 1);
2580 find_afterward (head, NULL);
2581
2582 /* We run this after find_afterward, because find_afterward needs
2583 the redundant DT_mode tests on predicates to determine whether
2584 two tests can both be true or not. */
2585 simplify_tests(head);
2586
2587 write_subroutines (head, subroutine_type);
2588 }
2589
2590 write_subroutine (head, subroutine_type);
2591 }
2592 \f
2593 extern int main (int, char **);
2594
2595 int
2596 main (int argc, char **argv)
2597 {
2598 rtx desc;
2599 struct decision_head recog_tree, split_tree, peephole2_tree, h;
2600
2601 progname = "genrecog";
2602
2603 memset (&recog_tree, 0, sizeof recog_tree);
2604 memset (&split_tree, 0, sizeof split_tree);
2605 memset (&peephole2_tree, 0, sizeof peephole2_tree);
2606
2607 if (argc <= 1)
2608 fatal ("no input file name");
2609
2610 if (init_md_reader_args (argc, argv) != SUCCESS_EXIT_CODE)
2611 return (FATAL_EXIT_CODE);
2612
2613 next_insn_code = 0;
2614 next_index = 0;
2615
2616 write_header ();
2617
2618 /* Read the machine description. */
2619
2620 while (1)
2621 {
2622 desc = read_md_rtx (&pattern_lineno, &next_insn_code);
2623 if (desc == NULL)
2624 break;
2625
2626 if (GET_CODE (desc) == DEFINE_INSN)
2627 {
2628 h = make_insn_sequence (desc, RECOG);
2629 merge_trees (&recog_tree, &h);
2630 }
2631 else if (GET_CODE (desc) == DEFINE_SPLIT)
2632 {
2633 h = make_insn_sequence (desc, SPLIT);
2634 merge_trees (&split_tree, &h);
2635 }
2636 else if (GET_CODE (desc) == DEFINE_PEEPHOLE2)
2637 {
2638 h = make_insn_sequence (desc, PEEPHOLE2);
2639 merge_trees (&peephole2_tree, &h);
2640 }
2641
2642 next_index++;
2643 }
2644
2645 if (error_count)
2646 return FATAL_EXIT_CODE;
2647
2648 puts ("\n\n");
2649
2650 process_tree (&recog_tree, RECOG);
2651 process_tree (&split_tree, SPLIT);
2652 process_tree (&peephole2_tree, PEEPHOLE2);
2653
2654 fflush (stdout);
2655 return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
2656 }
2657 \f
2658 /* Define this so we can link with print-rtl.o to get debug_rtx function. */
2659 const char *
2660 get_insn_name (int code)
2661 {
2662 if (code < insn_name_ptr_size)
2663 return insn_name_ptr[code];
2664 else
2665 return NULL;
2666 }
2667
2668 static void
2669 record_insn_name (int code, const char *name)
2670 {
2671 static const char *last_real_name = "insn";
2672 static int last_real_code = 0;
2673 char *new;
2674
2675 if (insn_name_ptr_size <= code)
2676 {
2677 int new_size;
2678 new_size = (insn_name_ptr_size ? insn_name_ptr_size * 2 : 512);
2679 insn_name_ptr = xrealloc (insn_name_ptr, sizeof(char *) * new_size);
2680 memset (insn_name_ptr + insn_name_ptr_size, 0,
2681 sizeof(char *) * (new_size - insn_name_ptr_size));
2682 insn_name_ptr_size = new_size;
2683 }
2684
2685 if (!name || name[0] == '\0')
2686 {
2687 new = xmalloc (strlen (last_real_name) + 10);
2688 sprintf (new, "%s+%d", last_real_name, code - last_real_code);
2689 }
2690 else
2691 {
2692 last_real_name = new = xstrdup (name);
2693 last_real_code = code;
2694 }
2695
2696 insn_name_ptr[code] = new;
2697 }
2698 \f
2699 static void
2700 debug_decision_2 (struct decision_test *test)
2701 {
2702 switch (test->type)
2703 {
2704 case DT_mode:
2705 fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode));
2706 break;
2707 case DT_code:
2708 fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code));
2709 break;
2710 case DT_veclen:
2711 fprintf (stderr, "veclen=%d", test->u.veclen);
2712 break;
2713 case DT_elt_zero_int:
2714 fprintf (stderr, "elt0_i=%d", (int) test->u.intval);
2715 break;
2716 case DT_elt_one_int:
2717 fprintf (stderr, "elt1_i=%d", (int) test->u.intval);
2718 break;
2719 case DT_elt_zero_wide:
2720 fprintf (stderr, "elt0_w=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2721 break;
2722 case DT_elt_zero_wide_safe:
2723 fprintf (stderr, "elt0_ws=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2724 break;
2725 case DT_veclen_ge:
2726 fprintf (stderr, "veclen>=%d", test->u.veclen);
2727 break;
2728 case DT_dup:
2729 fprintf (stderr, "dup=%d", test->u.dup);
2730 break;
2731 case DT_pred:
2732 fprintf (stderr, "pred=(%s,%s)",
2733 test->u.pred.name, GET_MODE_NAME(test->u.pred.mode));
2734 break;
2735 case DT_c_test:
2736 {
2737 char sub[16+4];
2738 strncpy (sub, test->u.c_test, sizeof(sub));
2739 memcpy (sub+16, "...", 4);
2740 fprintf (stderr, "c_test=\"%s\"", sub);
2741 }
2742 break;
2743 case DT_accept_op:
2744 fprintf (stderr, "A_op=%d", test->u.opno);
2745 break;
2746 case DT_accept_insn:
2747 fprintf (stderr, "A_insn=(%d,%d)",
2748 test->u.insn.code_number, test->u.insn.num_clobbers_to_add);
2749 break;
2750
2751 default:
2752 abort ();
2753 }
2754 }
2755
2756 static void
2757 debug_decision_1 (struct decision *d, int indent)
2758 {
2759 int i;
2760 struct decision_test *test;
2761
2762 if (d == NULL)
2763 {
2764 for (i = 0; i < indent; ++i)
2765 putc (' ', stderr);
2766 fputs ("(nil)\n", stderr);
2767 return;
2768 }
2769
2770 for (i = 0; i < indent; ++i)
2771 putc (' ', stderr);
2772
2773 putc ('{', stderr);
2774 test = d->tests;
2775 if (test)
2776 {
2777 debug_decision_2 (test);
2778 while ((test = test->next) != NULL)
2779 {
2780 fputs (" + ", stderr);
2781 debug_decision_2 (test);
2782 }
2783 }
2784 fprintf (stderr, "} %d n %d a %d\n", d->number,
2785 (d->next ? d->next->number : -1),
2786 (d->afterward ? d->afterward->number : -1));
2787 }
2788
2789 static void
2790 debug_decision_0 (struct decision *d, int indent, int maxdepth)
2791 {
2792 struct decision *n;
2793 int i;
2794
2795 if (maxdepth < 0)
2796 return;
2797 if (d == NULL)
2798 {
2799 for (i = 0; i < indent; ++i)
2800 putc (' ', stderr);
2801 fputs ("(nil)\n", stderr);
2802 return;
2803 }
2804
2805 debug_decision_1 (d, indent);
2806 for (n = d->success.first; n ; n = n->next)
2807 debug_decision_0 (n, indent + 2, maxdepth - 1);
2808 }
2809
2810 void
2811 debug_decision (struct decision *d)
2812 {
2813 debug_decision_0 (d, 0, 1000000);
2814 }
2815
2816 void
2817 debug_decision_list (struct decision *d)
2818 {
2819 while (d)
2820 {
2821 debug_decision_0 (d, 0, 0);
2822 d = d->next;
2823 }
2824 }