genrecog.c (validate_pattern): Do not warn for VOIDmode CALLs as the source of a...
[gcc.git] / gcc / genrecog.c
1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 /* This program is used to produce insn-recog.c, which contains a
24 function called `recog' plus its subroutines. These functions
25 contain a decision tree that recognizes whether an rtx, the
26 argument given to recog, is a valid instruction.
27
28 recog returns -1 if the rtx is not valid. If the rtx is valid,
29 recog returns a nonnegative number which is the insn code number
30 for the pattern that matched. This is the same as the order in the
31 machine description of the entry that matched. This number can be
32 used as an index into various insn_* tables, such as insn_template,
33 insn_outfun, and insn_n_operands (found in insn-output.c).
34
35 The third argument to recog is an optional pointer to an int. If
36 present, recog will accept a pattern if it matches except for
37 missing CLOBBER expressions at the end. In that case, the value
38 pointed to by the optional pointer will be set to the number of
39 CLOBBERs that need to be added (it should be initialized to zero by
40 the caller). If it is set nonzero, the caller should allocate a
41 PARALLEL of the appropriate size, copy the initial entries, and
42 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
43
44 This program also generates the function `split_insns', which
45 returns 0 if the rtl could not be split, or it returns the split
46 rtl as an INSN list.
47
48 This program also generates the function `peephole2_insns', which
49 returns 0 if the rtl could not be matched. If there was a match,
50 the new rtl is returned in an INSN list, and LAST_INSN will point
51 to the last recognized insn in the old sequence. */
52
53 #include "bconfig.h"
54 #include "system.h"
55 #include "coretypes.h"
56 #include "tm.h"
57 #include "rtl.h"
58 #include "errors.h"
59 #include "gensupport.h"
60
61 #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
62 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
63
64 /* A listhead of decision trees. The alternatives to a node are kept
65 in a doubly-linked list so we can easily add nodes to the proper
66 place when merging. */
67
68 struct decision_head
69 {
70 struct decision *first;
71 struct decision *last;
72 };
73
74 /* A single test. The two accept types aren't tests per-se, but
75 their equality (or lack thereof) does affect tree merging so
76 it is convenient to keep them here. */
77
78 struct decision_test
79 {
80 /* A linked list through the tests attached to a node. */
81 struct decision_test *next;
82
83 /* These types are roughly in the order in which we'd like to test them. */
84 enum decision_type
85 {
86 DT_num_insns,
87 DT_mode, DT_code, DT_veclen,
88 DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide, DT_elt_zero_wide_safe,
89 DT_const_int,
90 DT_veclen_ge, DT_dup, DT_pred, DT_c_test,
91 DT_accept_op, DT_accept_insn
92 } type;
93
94 union
95 {
96 int num_insns; /* Number if insn in a define_peephole2. */
97 enum machine_mode mode; /* Machine mode of node. */
98 RTX_CODE code; /* Code to test. */
99
100 struct
101 {
102 const char *name; /* Predicate to call. */
103 const struct pred_data *data;
104 /* Optimization hints for this predicate. */
105 enum machine_mode mode; /* Machine mode for node. */
106 } pred;
107
108 const char *c_test; /* Additional test to perform. */
109 int veclen; /* Length of vector. */
110 int dup; /* Number of operand to compare against. */
111 HOST_WIDE_INT intval; /* Value for XINT for XWINT. */
112 int opno; /* Operand number matched. */
113
114 struct {
115 int code_number; /* Insn number matched. */
116 int lineno; /* Line number of the insn. */
117 int num_clobbers_to_add; /* Number of CLOBBERs to be added. */
118 } insn;
119 } u;
120 };
121
122 /* Data structure for decision tree for recognizing legitimate insns. */
123
124 struct decision
125 {
126 struct decision_head success; /* Nodes to test on success. */
127 struct decision *next; /* Node to test on failure. */
128 struct decision *prev; /* Node whose failure tests us. */
129 struct decision *afterward; /* Node to test on success,
130 but failure of successor nodes. */
131
132 const char *position; /* String denoting position in pattern. */
133
134 struct decision_test *tests; /* The tests for this node. */
135
136 int number; /* Node number, used for labels */
137 int subroutine_number; /* Number of subroutine this node starts */
138 int need_label; /* Label needs to be output. */
139 };
140
141 #define SUBROUTINE_THRESHOLD 100
142
143 static int next_subroutine_number;
144
145 /* We can write three types of subroutines: One for insn recognition,
146 one to split insns, and one for peephole-type optimizations. This
147 defines which type is being written. */
148
149 enum routine_type {
150 RECOG, SPLIT, PEEPHOLE2
151 };
152
153 #define IS_SPLIT(X) ((X) != RECOG)
154
155 /* Next available node number for tree nodes. */
156
157 static int next_number;
158
159 /* Next number to use as an insn_code. */
160
161 static int next_insn_code;
162
163 /* Record the highest depth we ever have so we know how many variables to
164 allocate in each subroutine we make. */
165
166 static int max_depth;
167
168 /* The line number of the start of the pattern currently being processed. */
169 static int pattern_lineno;
170
171 /* Count of errors. */
172 static int error_count;
173 \f
174 /* Predicate handling.
175
176 We construct from the machine description a table mapping each
177 predicate to a list of the rtl codes it can possibly match. The
178 function 'maybe_both_true' uses it to deduce that there are no
179 expressions that can be matches by certain pairs of tree nodes.
180 Also, if a predicate can match only one code, we can hardwire that
181 code into the node testing the predicate.
182
183 Some predicates are flagged as special. validate_pattern will not
184 warn about modeless match_operand expressions if they have a
185 special predicate. Predicates that allow only constants are also
186 treated as special, for this purpose.
187
188 validate_pattern will warn about predicates that allow non-lvalues
189 when they appear in destination operands.
190
191 Calculating the set of rtx codes that can possibly be accepted by a
192 predicate expression EXP requires a three-state logic: any given
193 subexpression may definitively accept a code C (Y), definitively
194 reject a code C (N), or may have an indeterminate effect (I). N
195 and I is N; Y or I is Y; Y and I, N or I are both I. Here are full
196 truth tables.
197
198 a b a&b a|b
199 Y Y Y Y
200 N Y N Y
201 N N N N
202 I Y I Y
203 I N N I
204 I I I I
205
206 We represent Y with 1, N with 0, I with 2. If any code is left in
207 an I state by the complete expression, we must assume that that
208 code can be accepted. */
209
210 #define N 0
211 #define Y 1
212 #define I 2
213
214 #define TRISTATE_AND(a,b) \
215 ((a) == I ? ((b) == N ? N : I) : \
216 (b) == I ? ((a) == N ? N : I) : \
217 (a) && (b))
218
219 #define TRISTATE_OR(a,b) \
220 ((a) == I ? ((b) == Y ? Y : I) : \
221 (b) == I ? ((a) == Y ? Y : I) : \
222 (a) || (b))
223
224 #define TRISTATE_NOT(a) \
225 ((a) == I ? I : !(a))
226
227 /* 0 means no warning about that code yet, 1 means warned. */
228 static char did_you_mean_codes[NUM_RTX_CODE];
229
230 /* Recursively calculate the set of rtx codes accepted by the
231 predicate expression EXP, writing the result to CODES. */
232 static void
233 compute_predicate_codes (rtx exp, char codes[NUM_RTX_CODE])
234 {
235 char op0_codes[NUM_RTX_CODE];
236 char op1_codes[NUM_RTX_CODE];
237 char op2_codes[NUM_RTX_CODE];
238 int i;
239
240 switch (GET_CODE (exp))
241 {
242 case AND:
243 compute_predicate_codes (XEXP (exp, 0), op0_codes);
244 compute_predicate_codes (XEXP (exp, 1), op1_codes);
245 for (i = 0; i < NUM_RTX_CODE; i++)
246 codes[i] = TRISTATE_AND (op0_codes[i], op1_codes[i]);
247 break;
248
249 case IOR:
250 compute_predicate_codes (XEXP (exp, 0), op0_codes);
251 compute_predicate_codes (XEXP (exp, 1), op1_codes);
252 for (i = 0; i < NUM_RTX_CODE; i++)
253 codes[i] = TRISTATE_OR (op0_codes[i], op1_codes[i]);
254 break;
255 case NOT:
256 compute_predicate_codes (XEXP (exp, 0), op0_codes);
257 for (i = 0; i < NUM_RTX_CODE; i++)
258 codes[i] = TRISTATE_NOT (op0_codes[i]);
259 break;
260
261 case IF_THEN_ELSE:
262 /* a ? b : c accepts the same codes as (a & b) | (!a & c). */
263 compute_predicate_codes (XEXP (exp, 0), op0_codes);
264 compute_predicate_codes (XEXP (exp, 1), op1_codes);
265 compute_predicate_codes (XEXP (exp, 2), op2_codes);
266 for (i = 0; i < NUM_RTX_CODE; i++)
267 codes[i] = TRISTATE_OR (TRISTATE_AND (op0_codes[i], op1_codes[i]),
268 TRISTATE_AND (TRISTATE_NOT (op0_codes[i]),
269 op2_codes[i]));
270 break;
271
272 case MATCH_CODE:
273 /* MATCH_CODE allows a specified list of codes. However, if it
274 does not apply to the top level of the expression, it does not
275 constrain the set of codes for the top level. */
276 if (XSTR (exp, 1)[0] != '\0')
277 {
278 memset (codes, Y, NUM_RTX_CODE);
279 break;
280 }
281
282 memset (codes, N, NUM_RTX_CODE);
283 {
284 const char *next_code = XSTR (exp, 0);
285 const char *code;
286
287 if (*next_code == '\0')
288 {
289 message_with_line (pattern_lineno, "empty match_code expression");
290 error_count++;
291 break;
292 }
293
294 while ((code = scan_comma_elt (&next_code)) != 0)
295 {
296 size_t n = next_code - code;
297 int found_it = 0;
298
299 for (i = 0; i < NUM_RTX_CODE; i++)
300 if (!strncmp (code, GET_RTX_NAME (i), n)
301 && GET_RTX_NAME (i)[n] == '\0')
302 {
303 codes[i] = Y;
304 found_it = 1;
305 break;
306 }
307 if (!found_it)
308 {
309 message_with_line (pattern_lineno, "match_code \"%.*s\" matches nothing",
310 (int) n, code);
311 error_count ++;
312 for (i = 0; i < NUM_RTX_CODE; i++)
313 if (!strncasecmp (code, GET_RTX_NAME (i), n)
314 && GET_RTX_NAME (i)[n] == '\0'
315 && !did_you_mean_codes[i])
316 {
317 did_you_mean_codes[i] = 1;
318 message_with_line (pattern_lineno, "(did you mean \"%s\"?)", GET_RTX_NAME (i));
319 }
320 }
321
322 }
323 }
324 break;
325
326 case MATCH_OPERAND:
327 /* MATCH_OPERAND disallows the set of codes that the named predicate
328 disallows, and is indeterminate for the codes that it does allow. */
329 {
330 struct pred_data *p = lookup_predicate (XSTR (exp, 1));
331 if (!p)
332 {
333 message_with_line (pattern_lineno,
334 "reference to unknown predicate '%s'",
335 XSTR (exp, 1));
336 error_count++;
337 break;
338 }
339 for (i = 0; i < NUM_RTX_CODE; i++)
340 codes[i] = p->codes[i] ? I : N;
341 }
342 break;
343
344
345 case MATCH_TEST:
346 /* (match_test WHATEVER) is completely indeterminate. */
347 memset (codes, I, NUM_RTX_CODE);
348 break;
349
350 default:
351 message_with_line (pattern_lineno,
352 "'%s' cannot be used in a define_predicate expression",
353 GET_RTX_NAME (GET_CODE (exp)));
354 error_count++;
355 memset (codes, I, NUM_RTX_CODE);
356 break;
357 }
358 }
359
360 #undef TRISTATE_OR
361 #undef TRISTATE_AND
362 #undef TRISTATE_NOT
363
364 /* Process a define_predicate expression: compute the set of predicates
365 that can be matched, and record this as a known predicate. */
366 static void
367 process_define_predicate (rtx desc)
368 {
369 struct pred_data *pred = XCNEW (struct pred_data);
370 char codes[NUM_RTX_CODE];
371 int i;
372
373 pred->name = XSTR (desc, 0);
374 if (GET_CODE (desc) == DEFINE_SPECIAL_PREDICATE)
375 pred->special = 1;
376
377 compute_predicate_codes (XEXP (desc, 1), codes);
378
379 for (i = 0; i < NUM_RTX_CODE; i++)
380 if (codes[i] != N)
381 add_predicate_code (pred, (enum rtx_code) i);
382
383 add_predicate (pred);
384 }
385 #undef I
386 #undef N
387 #undef Y
388
389 \f
390 static struct decision *new_decision
391 (const char *, struct decision_head *);
392 static struct decision_test *new_decision_test
393 (enum decision_type, struct decision_test ***);
394 static rtx find_operand
395 (rtx, int, rtx);
396 static rtx find_matching_operand
397 (rtx, int);
398 static void validate_pattern
399 (rtx, rtx, rtx, int);
400 static struct decision *add_to_sequence
401 (rtx, struct decision_head *, const char *, enum routine_type, int);
402
403 static int maybe_both_true_2
404 (struct decision_test *, struct decision_test *);
405 static int maybe_both_true_1
406 (struct decision_test *, struct decision_test *);
407 static int maybe_both_true
408 (struct decision *, struct decision *, int);
409
410 static int nodes_identical_1
411 (struct decision_test *, struct decision_test *);
412 static int nodes_identical
413 (struct decision *, struct decision *);
414 static void merge_accept_insn
415 (struct decision *, struct decision *);
416 static void merge_trees
417 (struct decision_head *, struct decision_head *);
418
419 static void factor_tests
420 (struct decision_head *);
421 static void simplify_tests
422 (struct decision_head *);
423 static int break_out_subroutines
424 (struct decision_head *, int);
425 static void find_afterward
426 (struct decision_head *, struct decision *);
427
428 static void change_state
429 (const char *, const char *, const char *);
430 static void print_code
431 (enum rtx_code);
432 static void write_afterward
433 (struct decision *, struct decision *, const char *);
434 static struct decision *write_switch
435 (struct decision *, int);
436 static void write_cond
437 (struct decision_test *, int, enum routine_type);
438 static void write_action
439 (struct decision *, struct decision_test *, int, int,
440 struct decision *, enum routine_type);
441 static int is_unconditional
442 (struct decision_test *, enum routine_type);
443 static int write_node
444 (struct decision *, int, enum routine_type);
445 static void write_tree_1
446 (struct decision_head *, int, enum routine_type);
447 static void write_tree
448 (struct decision_head *, const char *, enum routine_type, int);
449 static void write_subroutine
450 (struct decision_head *, enum routine_type);
451 static void write_subroutines
452 (struct decision_head *, enum routine_type);
453 static void write_header
454 (void);
455
456 static struct decision_head make_insn_sequence
457 (rtx, enum routine_type);
458 static void process_tree
459 (struct decision_head *, enum routine_type);
460
461 static void debug_decision_0
462 (struct decision *, int, int);
463 static void debug_decision_1
464 (struct decision *, int);
465 static void debug_decision_2
466 (struct decision_test *);
467 extern void debug_decision
468 (struct decision *);
469 extern void debug_decision_list
470 (struct decision *);
471 \f
472 /* Create a new node in sequence after LAST. */
473
474 static struct decision *
475 new_decision (const char *position, struct decision_head *last)
476 {
477 struct decision *new_decision = XCNEW (struct decision);
478
479 new_decision->success = *last;
480 new_decision->position = xstrdup (position);
481 new_decision->number = next_number++;
482
483 last->first = last->last = new_decision;
484 return new_decision;
485 }
486
487 /* Create a new test and link it in at PLACE. */
488
489 static struct decision_test *
490 new_decision_test (enum decision_type type, struct decision_test ***pplace)
491 {
492 struct decision_test **place = *pplace;
493 struct decision_test *test;
494
495 test = XNEW (struct decision_test);
496 test->next = *place;
497 test->type = type;
498 *place = test;
499
500 place = &test->next;
501 *pplace = place;
502
503 return test;
504 }
505
506 /* Search for and return operand N, stop when reaching node STOP. */
507
508 static rtx
509 find_operand (rtx pattern, int n, rtx stop)
510 {
511 const char *fmt;
512 RTX_CODE code;
513 int i, j, len;
514 rtx r;
515
516 if (pattern == stop)
517 return stop;
518
519 code = GET_CODE (pattern);
520 if ((code == MATCH_SCRATCH
521 || code == MATCH_OPERAND
522 || code == MATCH_OPERATOR
523 || code == MATCH_PARALLEL)
524 && XINT (pattern, 0) == n)
525 return pattern;
526
527 fmt = GET_RTX_FORMAT (code);
528 len = GET_RTX_LENGTH (code);
529 for (i = 0; i < len; i++)
530 {
531 switch (fmt[i])
532 {
533 case 'e': case 'u':
534 if ((r = find_operand (XEXP (pattern, i), n, stop)) != NULL_RTX)
535 return r;
536 break;
537
538 case 'V':
539 if (! XVEC (pattern, i))
540 break;
541 /* Fall through. */
542
543 case 'E':
544 for (j = 0; j < XVECLEN (pattern, i); j++)
545 if ((r = find_operand (XVECEXP (pattern, i, j), n, stop))
546 != NULL_RTX)
547 return r;
548 break;
549
550 case 'i': case 'w': case '0': case 's':
551 break;
552
553 default:
554 gcc_unreachable ();
555 }
556 }
557
558 return NULL;
559 }
560
561 /* Search for and return operand M, such that it has a matching
562 constraint for operand N. */
563
564 static rtx
565 find_matching_operand (rtx pattern, int n)
566 {
567 const char *fmt;
568 RTX_CODE code;
569 int i, j, len;
570 rtx r;
571
572 code = GET_CODE (pattern);
573 if (code == MATCH_OPERAND
574 && (XSTR (pattern, 2)[0] == '0' + n
575 || (XSTR (pattern, 2)[0] == '%'
576 && XSTR (pattern, 2)[1] == '0' + n)))
577 return pattern;
578
579 fmt = GET_RTX_FORMAT (code);
580 len = GET_RTX_LENGTH (code);
581 for (i = 0; i < len; i++)
582 {
583 switch (fmt[i])
584 {
585 case 'e': case 'u':
586 if ((r = find_matching_operand (XEXP (pattern, i), n)))
587 return r;
588 break;
589
590 case 'V':
591 if (! XVEC (pattern, i))
592 break;
593 /* Fall through. */
594
595 case 'E':
596 for (j = 0; j < XVECLEN (pattern, i); j++)
597 if ((r = find_matching_operand (XVECEXP (pattern, i, j), n)))
598 return r;
599 break;
600
601 case 'i': case 'w': case '0': case 's':
602 break;
603
604 default:
605 gcc_unreachable ();
606 }
607 }
608
609 return NULL;
610 }
611
612
613 /* Check for various errors in patterns. SET is nonnull for a destination,
614 and is the complete set pattern. SET_CODE is '=' for normal sets, and
615 '+' within a context that requires in-out constraints. */
616
617 static void
618 validate_pattern (rtx pattern, rtx insn, rtx set, int set_code)
619 {
620 const char *fmt;
621 RTX_CODE code;
622 size_t i, len;
623 int j;
624
625 code = GET_CODE (pattern);
626 switch (code)
627 {
628 case MATCH_SCRATCH:
629 return;
630 case MATCH_DUP:
631 case MATCH_OP_DUP:
632 case MATCH_PAR_DUP:
633 if (find_operand (insn, XINT (pattern, 0), pattern) == pattern)
634 {
635 message_with_line (pattern_lineno,
636 "operand %i duplicated before defined",
637 XINT (pattern, 0));
638 error_count++;
639 }
640 break;
641 case MATCH_OPERAND:
642 case MATCH_OPERATOR:
643 {
644 const char *pred_name = XSTR (pattern, 1);
645 const struct pred_data *pred;
646 const char *c_test;
647
648 if (GET_CODE (insn) == DEFINE_INSN)
649 c_test = XSTR (insn, 2);
650 else
651 c_test = XSTR (insn, 1);
652
653 if (pred_name[0] != 0)
654 {
655 pred = lookup_predicate (pred_name);
656 if (!pred)
657 message_with_line (pattern_lineno,
658 "warning: unknown predicate '%s'",
659 pred_name);
660 }
661 else
662 pred = 0;
663
664 if (code == MATCH_OPERAND)
665 {
666 const char constraints0 = XSTR (pattern, 2)[0];
667
668 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
669 don't use the MATCH_OPERAND constraint, only the predicate.
670 This is confusing to folks doing new ports, so help them
671 not make the mistake. */
672 if (GET_CODE (insn) == DEFINE_EXPAND
673 || GET_CODE (insn) == DEFINE_SPLIT
674 || GET_CODE (insn) == DEFINE_PEEPHOLE2)
675 {
676 if (constraints0)
677 message_with_line (pattern_lineno,
678 "warning: constraints not supported in %s",
679 rtx_name[GET_CODE (insn)]);
680 }
681
682 /* A MATCH_OPERAND that is a SET should have an output reload. */
683 else if (set && constraints0)
684 {
685 if (set_code == '+')
686 {
687 if (constraints0 == '+')
688 ;
689 /* If we've only got an output reload for this operand,
690 we'd better have a matching input operand. */
691 else if (constraints0 == '='
692 && find_matching_operand (insn, XINT (pattern, 0)))
693 ;
694 else
695 {
696 message_with_line (pattern_lineno,
697 "operand %d missing in-out reload",
698 XINT (pattern, 0));
699 error_count++;
700 }
701 }
702 else if (constraints0 != '=' && constraints0 != '+')
703 {
704 message_with_line (pattern_lineno,
705 "operand %d missing output reload",
706 XINT (pattern, 0));
707 error_count++;
708 }
709 }
710 }
711
712 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
713 while not likely to occur at runtime, results in less efficient
714 code from insn-recog.c. */
715 if (set && pred && pred->allows_non_lvalue)
716 message_with_line (pattern_lineno,
717 "warning: destination operand %d "
718 "allows non-lvalue",
719 XINT (pattern, 0));
720
721 /* A modeless MATCH_OPERAND can be handy when we can check for
722 multiple modes in the c_test. In most other cases, it is a
723 mistake. Only DEFINE_INSN is eligible, since SPLIT and
724 PEEP2 can FAIL within the output pattern. Exclude special
725 predicates, which check the mode themselves. Also exclude
726 predicates that allow only constants. Exclude the SET_DEST
727 of a call instruction, as that is a common idiom. */
728
729 if (GET_MODE (pattern) == VOIDmode
730 && code == MATCH_OPERAND
731 && GET_CODE (insn) == DEFINE_INSN
732 && pred
733 && !pred->special
734 && pred->allows_non_const
735 && strstr (c_test, "operands") == NULL
736 && ! (set
737 && GET_CODE (set) == SET
738 && GET_CODE (SET_SRC (set)) == CALL))
739 message_with_line (pattern_lineno,
740 "warning: operand %d missing mode?",
741 XINT (pattern, 0));
742 return;
743 }
744
745 case SET:
746 {
747 enum machine_mode dmode, smode;
748 rtx dest, src;
749
750 dest = SET_DEST (pattern);
751 src = SET_SRC (pattern);
752
753 /* STRICT_LOW_PART is a wrapper. Its argument is the real
754 destination, and it's mode should match the source. */
755 if (GET_CODE (dest) == STRICT_LOW_PART)
756 dest = XEXP (dest, 0);
757
758 /* Find the referent for a DUP. */
759
760 if (GET_CODE (dest) == MATCH_DUP
761 || GET_CODE (dest) == MATCH_OP_DUP
762 || GET_CODE (dest) == MATCH_PAR_DUP)
763 dest = find_operand (insn, XINT (dest, 0), NULL);
764
765 if (GET_CODE (src) == MATCH_DUP
766 || GET_CODE (src) == MATCH_OP_DUP
767 || GET_CODE (src) == MATCH_PAR_DUP)
768 src = find_operand (insn, XINT (src, 0), NULL);
769
770 dmode = GET_MODE (dest);
771 smode = GET_MODE (src);
772
773 /* The mode of an ADDRESS_OPERAND is the mode of the memory
774 reference, not the mode of the address. */
775 if (GET_CODE (src) == MATCH_OPERAND
776 && ! strcmp (XSTR (src, 1), "address_operand"))
777 ;
778
779 /* The operands of a SET must have the same mode unless one
780 is VOIDmode. */
781 else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
782 {
783 message_with_line (pattern_lineno,
784 "mode mismatch in set: %smode vs %smode",
785 GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
786 error_count++;
787 }
788
789 /* If only one of the operands is VOIDmode, and PC or CC0 is
790 not involved, it's probably a mistake. */
791 else if (dmode != smode
792 && GET_CODE (dest) != PC
793 && GET_CODE (dest) != CC0
794 && GET_CODE (src) != PC
795 && GET_CODE (src) != CC0
796 && GET_CODE (src) != CONST_INT
797 && GET_CODE (src) != CALL)
798 {
799 const char *which;
800 which = (dmode == VOIDmode ? "destination" : "source");
801 message_with_line (pattern_lineno,
802 "warning: %s missing a mode?", which);
803 }
804
805 if (dest != SET_DEST (pattern))
806 validate_pattern (dest, insn, pattern, '=');
807 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
808 validate_pattern (SET_SRC (pattern), insn, NULL_RTX, 0);
809 return;
810 }
811
812 case CLOBBER:
813 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
814 return;
815
816 case ZERO_EXTRACT:
817 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
818 validate_pattern (XEXP (pattern, 1), insn, NULL_RTX, 0);
819 validate_pattern (XEXP (pattern, 2), insn, NULL_RTX, 0);
820 return;
821
822 case STRICT_LOW_PART:
823 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
824 return;
825
826 case LABEL_REF:
827 if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
828 {
829 message_with_line (pattern_lineno,
830 "operand to label_ref %smode not VOIDmode",
831 GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
832 error_count++;
833 }
834 break;
835
836 default:
837 break;
838 }
839
840 fmt = GET_RTX_FORMAT (code);
841 len = GET_RTX_LENGTH (code);
842 for (i = 0; i < len; i++)
843 {
844 switch (fmt[i])
845 {
846 case 'e': case 'u':
847 validate_pattern (XEXP (pattern, i), insn, NULL_RTX, 0);
848 break;
849
850 case 'E':
851 for (j = 0; j < XVECLEN (pattern, i); j++)
852 validate_pattern (XVECEXP (pattern, i, j), insn, NULL_RTX, 0);
853 break;
854
855 case 'i': case 'w': case '0': case 's':
856 break;
857
858 default:
859 gcc_unreachable ();
860 }
861 }
862 }
863
864 /* Create a chain of nodes to verify that an rtl expression matches
865 PATTERN.
866
867 LAST is a pointer to the listhead in the previous node in the chain (or
868 in the calling function, for the first node).
869
870 POSITION is the string representing the current position in the insn.
871
872 INSN_TYPE is the type of insn for which we are emitting code.
873
874 A pointer to the final node in the chain is returned. */
875
876 static struct decision *
877 add_to_sequence (rtx pattern, struct decision_head *last, const char *position,
878 enum routine_type insn_type, int top)
879 {
880 RTX_CODE code;
881 struct decision *this_decision, *sub;
882 struct decision_test *test;
883 struct decision_test **place;
884 char *subpos;
885 size_t i;
886 const char *fmt;
887 int depth = strlen (position);
888 int len;
889 enum machine_mode mode;
890
891 if (depth > max_depth)
892 max_depth = depth;
893
894 subpos = XNEWVAR (char, depth + 2);
895 strcpy (subpos, position);
896 subpos[depth + 1] = 0;
897
898 sub = this_decision = new_decision (position, last);
899 place = &this_decision->tests;
900
901 restart:
902 mode = GET_MODE (pattern);
903 code = GET_CODE (pattern);
904
905 switch (code)
906 {
907 case PARALLEL:
908 /* Toplevel peephole pattern. */
909 if (insn_type == PEEPHOLE2 && top)
910 {
911 int num_insns;
912
913 /* Check we have sufficient insns. This avoids complications
914 because we then know peep2_next_insn never fails. */
915 num_insns = XVECLEN (pattern, 0);
916 if (num_insns > 1)
917 {
918 test = new_decision_test (DT_num_insns, &place);
919 test->u.num_insns = num_insns;
920 last = &sub->success;
921 }
922 else
923 {
924 /* We don't need the node we just created -- unlink it. */
925 last->first = last->last = NULL;
926 }
927
928 for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++)
929 {
930 /* Which insn we're looking at is represented by A-Z. We don't
931 ever use 'A', however; it is always implied. */
932
933 subpos[depth] = (i > 0 ? 'A' + i : 0);
934 sub = add_to_sequence (XVECEXP (pattern, 0, i),
935 last, subpos, insn_type, 0);
936 last = &sub->success;
937 }
938 goto ret;
939 }
940
941 /* Else nothing special. */
942 break;
943
944 case MATCH_PARALLEL:
945 /* The explicit patterns within a match_parallel enforce a minimum
946 length on the vector. The match_parallel predicate may allow
947 for more elements. We do need to check for this minimum here
948 or the code generated to match the internals may reference data
949 beyond the end of the vector. */
950 test = new_decision_test (DT_veclen_ge, &place);
951 test->u.veclen = XVECLEN (pattern, 2);
952 /* Fall through. */
953
954 case MATCH_OPERAND:
955 case MATCH_SCRATCH:
956 case MATCH_OPERATOR:
957 {
958 RTX_CODE was_code = code;
959 const char *pred_name;
960 bool allows_const_int = true;
961
962 if (code == MATCH_SCRATCH)
963 {
964 pred_name = "scratch_operand";
965 code = UNKNOWN;
966 }
967 else
968 {
969 pred_name = XSTR (pattern, 1);
970 if (code == MATCH_PARALLEL)
971 code = PARALLEL;
972 else
973 code = UNKNOWN;
974 }
975
976 if (pred_name[0] != 0)
977 {
978 const struct pred_data *pred;
979
980 test = new_decision_test (DT_pred, &place);
981 test->u.pred.name = pred_name;
982 test->u.pred.mode = mode;
983
984 /* See if we know about this predicate.
985 If we do, remember it for use below.
986
987 We can optimize the generated code a little if either
988 (a) the predicate only accepts one code, or (b) the
989 predicate does not allow CONST_INT, in which case it
990 can match only if the modes match. */
991 pred = lookup_predicate (pred_name);
992 if (pred)
993 {
994 test->u.pred.data = pred;
995 allows_const_int = pred->codes[CONST_INT];
996 if (was_code == MATCH_PARALLEL
997 && pred->singleton != PARALLEL)
998 message_with_line (pattern_lineno,
999 "predicate '%s' used in match_parallel "
1000 "does not allow only PARALLEL", pred->name);
1001 else
1002 code = pred->singleton;
1003 }
1004 else
1005 message_with_line (pattern_lineno,
1006 "warning: unknown predicate '%s' in '%s' expression",
1007 pred_name, GET_RTX_NAME (was_code));
1008 }
1009
1010 /* Can't enforce a mode if we allow const_int. */
1011 if (allows_const_int)
1012 mode = VOIDmode;
1013
1014 /* Accept the operand, i.e. record it in `operands'. */
1015 test = new_decision_test (DT_accept_op, &place);
1016 test->u.opno = XINT (pattern, 0);
1017
1018 if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL)
1019 {
1020 char base = (was_code == MATCH_OPERATOR ? '0' : 'a');
1021 for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++)
1022 {
1023 subpos[depth] = i + base;
1024 sub = add_to_sequence (XVECEXP (pattern, 2, i),
1025 &sub->success, subpos, insn_type, 0);
1026 }
1027 }
1028 goto fini;
1029 }
1030
1031 case MATCH_OP_DUP:
1032 code = UNKNOWN;
1033
1034 test = new_decision_test (DT_dup, &place);
1035 test->u.dup = XINT (pattern, 0);
1036
1037 test = new_decision_test (DT_accept_op, &place);
1038 test->u.opno = XINT (pattern, 0);
1039
1040 for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++)
1041 {
1042 subpos[depth] = i + '0';
1043 sub = add_to_sequence (XVECEXP (pattern, 1, i),
1044 &sub->success, subpos, insn_type, 0);
1045 }
1046 goto fini;
1047
1048 case MATCH_DUP:
1049 case MATCH_PAR_DUP:
1050 code = UNKNOWN;
1051
1052 test = new_decision_test (DT_dup, &place);
1053 test->u.dup = XINT (pattern, 0);
1054 goto fini;
1055
1056 case ADDRESS:
1057 pattern = XEXP (pattern, 0);
1058 goto restart;
1059
1060 default:
1061 break;
1062 }
1063
1064 fmt = GET_RTX_FORMAT (code);
1065 len = GET_RTX_LENGTH (code);
1066
1067 /* Do tests against the current node first. */
1068 for (i = 0; i < (size_t) len; i++)
1069 {
1070 if (fmt[i] == 'i')
1071 {
1072 gcc_assert (i < 2);
1073
1074 if (!i)
1075 {
1076 test = new_decision_test (DT_elt_zero_int, &place);
1077 test->u.intval = XINT (pattern, i);
1078 }
1079 else
1080 {
1081 test = new_decision_test (DT_elt_one_int, &place);
1082 test->u.intval = XINT (pattern, i);
1083 }
1084 }
1085 else if (fmt[i] == 'w')
1086 {
1087 /* If this value actually fits in an int, we can use a switch
1088 statement here, so indicate that. */
1089 enum decision_type type
1090 = ((int) XWINT (pattern, i) == XWINT (pattern, i))
1091 ? DT_elt_zero_wide_safe : DT_elt_zero_wide;
1092
1093 gcc_assert (!i);
1094
1095 test = new_decision_test (type, &place);
1096 test->u.intval = XWINT (pattern, i);
1097 }
1098 else if (fmt[i] == 'E')
1099 {
1100 gcc_assert (!i);
1101
1102 test = new_decision_test (DT_veclen, &place);
1103 test->u.veclen = XVECLEN (pattern, i);
1104 }
1105 }
1106
1107 /* Now test our sub-patterns. */
1108 for (i = 0; i < (size_t) len; i++)
1109 {
1110 switch (fmt[i])
1111 {
1112 case 'e': case 'u':
1113 subpos[depth] = '0' + i;
1114 sub = add_to_sequence (XEXP (pattern, i), &sub->success,
1115 subpos, insn_type, 0);
1116 break;
1117
1118 case 'E':
1119 {
1120 int j;
1121 for (j = 0; j < XVECLEN (pattern, i); j++)
1122 {
1123 subpos[depth] = 'a' + j;
1124 sub = add_to_sequence (XVECEXP (pattern, i, j),
1125 &sub->success, subpos, insn_type, 0);
1126 }
1127 break;
1128 }
1129
1130 case 'i': case 'w':
1131 /* Handled above. */
1132 break;
1133 case '0':
1134 break;
1135
1136 default:
1137 gcc_unreachable ();
1138 }
1139 }
1140
1141 fini:
1142 /* Insert nodes testing mode and code, if they're still relevant,
1143 before any of the nodes we may have added above. */
1144 if (code != UNKNOWN)
1145 {
1146 place = &this_decision->tests;
1147 test = new_decision_test (DT_code, &place);
1148 test->u.code = code;
1149 }
1150
1151 if (mode != VOIDmode)
1152 {
1153 place = &this_decision->tests;
1154 test = new_decision_test (DT_mode, &place);
1155 test->u.mode = mode;
1156 }
1157
1158 /* If we didn't insert any tests or accept nodes, hork. */
1159 gcc_assert (this_decision->tests);
1160
1161 ret:
1162 free (subpos);
1163 return sub;
1164 }
1165 \f
1166 /* A subroutine of maybe_both_true; examines only one test.
1167 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1168
1169 static int
1170 maybe_both_true_2 (struct decision_test *d1, struct decision_test *d2)
1171 {
1172 if (d1->type == d2->type)
1173 {
1174 switch (d1->type)
1175 {
1176 case DT_num_insns:
1177 if (d1->u.num_insns == d2->u.num_insns)
1178 return 1;
1179 else
1180 return -1;
1181
1182 case DT_mode:
1183 return d1->u.mode == d2->u.mode;
1184
1185 case DT_code:
1186 return d1->u.code == d2->u.code;
1187
1188 case DT_veclen:
1189 return d1->u.veclen == d2->u.veclen;
1190
1191 case DT_elt_zero_int:
1192 case DT_elt_one_int:
1193 case DT_elt_zero_wide:
1194 case DT_elt_zero_wide_safe:
1195 return d1->u.intval == d2->u.intval;
1196
1197 default:
1198 break;
1199 }
1200 }
1201
1202 /* If either has a predicate that we know something about, set
1203 things up so that D1 is the one that always has a known
1204 predicate. Then see if they have any codes in common. */
1205
1206 if (d1->type == DT_pred || d2->type == DT_pred)
1207 {
1208 if (d2->type == DT_pred)
1209 {
1210 struct decision_test *tmp;
1211 tmp = d1, d1 = d2, d2 = tmp;
1212 }
1213
1214 /* If D2 tests a mode, see if it matches D1. */
1215 if (d1->u.pred.mode != VOIDmode)
1216 {
1217 if (d2->type == DT_mode)
1218 {
1219 if (d1->u.pred.mode != d2->u.mode
1220 /* The mode of an address_operand predicate is the
1221 mode of the memory, not the operand. It can only
1222 be used for testing the predicate, so we must
1223 ignore it here. */
1224 && strcmp (d1->u.pred.name, "address_operand") != 0)
1225 return 0;
1226 }
1227 /* Don't check two predicate modes here, because if both predicates
1228 accept CONST_INT, then both can still be true even if the modes
1229 are different. If they don't accept CONST_INT, there will be a
1230 separate DT_mode that will make maybe_both_true_1 return 0. */
1231 }
1232
1233 if (d1->u.pred.data)
1234 {
1235 /* If D2 tests a code, see if it is in the list of valid
1236 codes for D1's predicate. */
1237 if (d2->type == DT_code)
1238 {
1239 if (!d1->u.pred.data->codes[d2->u.code])
1240 return 0;
1241 }
1242
1243 /* Otherwise see if the predicates have any codes in common. */
1244 else if (d2->type == DT_pred && d2->u.pred.data)
1245 {
1246 bool common = false;
1247 int c;
1248
1249 for (c = 0; c < NUM_RTX_CODE; c++)
1250 if (d1->u.pred.data->codes[c] && d2->u.pred.data->codes[c])
1251 {
1252 common = true;
1253 break;
1254 }
1255
1256 if (!common)
1257 return 0;
1258 }
1259 }
1260 }
1261
1262 /* Tests vs veclen may be known when strict equality is involved. */
1263 if (d1->type == DT_veclen && d2->type == DT_veclen_ge)
1264 return d1->u.veclen >= d2->u.veclen;
1265 if (d1->type == DT_veclen_ge && d2->type == DT_veclen)
1266 return d2->u.veclen >= d1->u.veclen;
1267
1268 return -1;
1269 }
1270
1271 /* A subroutine of maybe_both_true; examines all the tests for a given node.
1272 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1273
1274 static int
1275 maybe_both_true_1 (struct decision_test *d1, struct decision_test *d2)
1276 {
1277 struct decision_test *t1, *t2;
1278
1279 /* A match_operand with no predicate can match anything. Recognize
1280 this by the existence of a lone DT_accept_op test. */
1281 if (d1->type == DT_accept_op || d2->type == DT_accept_op)
1282 return 1;
1283
1284 /* Eliminate pairs of tests while they can exactly match. */
1285 while (d1 && d2 && d1->type == d2->type)
1286 {
1287 if (maybe_both_true_2 (d1, d2) == 0)
1288 return 0;
1289 d1 = d1->next, d2 = d2->next;
1290 }
1291
1292 /* After that, consider all pairs. */
1293 for (t1 = d1; t1 ; t1 = t1->next)
1294 for (t2 = d2; t2 ; t2 = t2->next)
1295 if (maybe_both_true_2 (t1, t2) == 0)
1296 return 0;
1297
1298 return -1;
1299 }
1300
1301 /* Return 0 if we can prove that there is no RTL that can match both
1302 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
1303 can match both or just that we couldn't prove there wasn't such an RTL).
1304
1305 TOPLEVEL is nonzero if we are to only look at the top level and not
1306 recursively descend. */
1307
1308 static int
1309 maybe_both_true (struct decision *d1, struct decision *d2,
1310 int toplevel)
1311 {
1312 struct decision *p1, *p2;
1313 int cmp;
1314
1315 /* Don't compare strings on the different positions in insn. Doing so
1316 is incorrect and results in false matches from constructs like
1317
1318 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1319 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1320 vs
1321 [(set (match_operand:HI "register_operand" "r")
1322 (match_operand:HI "register_operand" "r"))]
1323
1324 If we are presented with such, we are recursing through the remainder
1325 of a node's success nodes (from the loop at the end of this function).
1326 Skip forward until we come to a position that matches.
1327
1328 Due to the way position strings are constructed, we know that iterating
1329 forward from the lexically lower position (e.g. "00") will run into
1330 the lexically higher position (e.g. "1") and not the other way around.
1331 This saves a bit of effort. */
1332
1333 cmp = strcmp (d1->position, d2->position);
1334 if (cmp != 0)
1335 {
1336 gcc_assert (!toplevel);
1337
1338 /* If the d2->position was lexically lower, swap. */
1339 if (cmp > 0)
1340 p1 = d1, d1 = d2, d2 = p1;
1341
1342 if (d1->success.first == 0)
1343 return 1;
1344 for (p1 = d1->success.first; p1; p1 = p1->next)
1345 if (maybe_both_true (p1, d2, 0))
1346 return 1;
1347
1348 return 0;
1349 }
1350
1351 /* Test the current level. */
1352 cmp = maybe_both_true_1 (d1->tests, d2->tests);
1353 if (cmp >= 0)
1354 return cmp;
1355
1356 /* We can't prove that D1 and D2 cannot both be true. If we are only
1357 to check the top level, return 1. Otherwise, see if we can prove
1358 that all choices in both successors are mutually exclusive. If
1359 either does not have any successors, we can't prove they can't both
1360 be true. */
1361
1362 if (toplevel || d1->success.first == 0 || d2->success.first == 0)
1363 return 1;
1364
1365 for (p1 = d1->success.first; p1; p1 = p1->next)
1366 for (p2 = d2->success.first; p2; p2 = p2->next)
1367 if (maybe_both_true (p1, p2, 0))
1368 return 1;
1369
1370 return 0;
1371 }
1372
1373 /* A subroutine of nodes_identical. Examine two tests for equivalence. */
1374
1375 static int
1376 nodes_identical_1 (struct decision_test *d1, struct decision_test *d2)
1377 {
1378 switch (d1->type)
1379 {
1380 case DT_num_insns:
1381 return d1->u.num_insns == d2->u.num_insns;
1382
1383 case DT_mode:
1384 return d1->u.mode == d2->u.mode;
1385
1386 case DT_code:
1387 return d1->u.code == d2->u.code;
1388
1389 case DT_pred:
1390 return (d1->u.pred.mode == d2->u.pred.mode
1391 && strcmp (d1->u.pred.name, d2->u.pred.name) == 0);
1392
1393 case DT_c_test:
1394 return strcmp (d1->u.c_test, d2->u.c_test) == 0;
1395
1396 case DT_veclen:
1397 case DT_veclen_ge:
1398 return d1->u.veclen == d2->u.veclen;
1399
1400 case DT_dup:
1401 return d1->u.dup == d2->u.dup;
1402
1403 case DT_elt_zero_int:
1404 case DT_elt_one_int:
1405 case DT_elt_zero_wide:
1406 case DT_elt_zero_wide_safe:
1407 return d1->u.intval == d2->u.intval;
1408
1409 case DT_accept_op:
1410 return d1->u.opno == d2->u.opno;
1411
1412 case DT_accept_insn:
1413 /* Differences will be handled in merge_accept_insn. */
1414 return 1;
1415
1416 default:
1417 gcc_unreachable ();
1418 }
1419 }
1420
1421 /* True iff the two nodes are identical (on one level only). Due
1422 to the way these lists are constructed, we shouldn't have to
1423 consider different orderings on the tests. */
1424
1425 static int
1426 nodes_identical (struct decision *d1, struct decision *d2)
1427 {
1428 struct decision_test *t1, *t2;
1429
1430 for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next)
1431 {
1432 if (t1->type != t2->type)
1433 return 0;
1434 if (! nodes_identical_1 (t1, t2))
1435 return 0;
1436 }
1437
1438 /* For success, they should now both be null. */
1439 if (t1 != t2)
1440 return 0;
1441
1442 /* Check that their subnodes are at the same position, as any one set
1443 of sibling decisions must be at the same position. Allowing this
1444 requires complications to find_afterward and when change_state is
1445 invoked. */
1446 if (d1->success.first
1447 && d2->success.first
1448 && strcmp (d1->success.first->position, d2->success.first->position))
1449 return 0;
1450
1451 return 1;
1452 }
1453
1454 /* A subroutine of merge_trees; given two nodes that have been declared
1455 identical, cope with two insn accept states. If they differ in the
1456 number of clobbers, then the conflict was created by make_insn_sequence
1457 and we can drop the with-clobbers version on the floor. If both
1458 nodes have no additional clobbers, we have found an ambiguity in the
1459 source machine description. */
1460
1461 static void
1462 merge_accept_insn (struct decision *oldd, struct decision *addd)
1463 {
1464 struct decision_test *old, *add;
1465
1466 for (old = oldd->tests; old; old = old->next)
1467 if (old->type == DT_accept_insn)
1468 break;
1469 if (old == NULL)
1470 return;
1471
1472 for (add = addd->tests; add; add = add->next)
1473 if (add->type == DT_accept_insn)
1474 break;
1475 if (add == NULL)
1476 return;
1477
1478 /* If one node is for a normal insn and the second is for the base
1479 insn with clobbers stripped off, the second node should be ignored. */
1480
1481 if (old->u.insn.num_clobbers_to_add == 0
1482 && add->u.insn.num_clobbers_to_add > 0)
1483 {
1484 /* Nothing to do here. */
1485 }
1486 else if (old->u.insn.num_clobbers_to_add > 0
1487 && add->u.insn.num_clobbers_to_add == 0)
1488 {
1489 /* In this case, replace OLD with ADD. */
1490 old->u.insn = add->u.insn;
1491 }
1492 else
1493 {
1494 message_with_line (add->u.insn.lineno, "`%s' matches `%s'",
1495 get_insn_name (add->u.insn.code_number),
1496 get_insn_name (old->u.insn.code_number));
1497 message_with_line (old->u.insn.lineno, "previous definition of `%s'",
1498 get_insn_name (old->u.insn.code_number));
1499 error_count++;
1500 }
1501 }
1502
1503 /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1504
1505 static void
1506 merge_trees (struct decision_head *oldh, struct decision_head *addh)
1507 {
1508 struct decision *next, *add;
1509
1510 if (addh->first == 0)
1511 return;
1512 if (oldh->first == 0)
1513 {
1514 *oldh = *addh;
1515 return;
1516 }
1517
1518 /* Trying to merge bits at different positions isn't possible. */
1519 gcc_assert (!strcmp (oldh->first->position, addh->first->position));
1520
1521 for (add = addh->first; add ; add = next)
1522 {
1523 struct decision *old, *insert_before = NULL;
1524
1525 next = add->next;
1526
1527 /* The semantics of pattern matching state that the tests are
1528 done in the order given in the MD file so that if an insn
1529 matches two patterns, the first one will be used. However,
1530 in practice, most, if not all, patterns are unambiguous so
1531 that their order is independent. In that case, we can merge
1532 identical tests and group all similar modes and codes together.
1533
1534 Scan starting from the end of OLDH until we reach a point
1535 where we reach the head of the list or where we pass a
1536 pattern that could also be true if NEW is true. If we find
1537 an identical pattern, we can merge them. Also, record the
1538 last node that tests the same code and mode and the last one
1539 that tests just the same mode.
1540
1541 If we have no match, place NEW after the closest match we found. */
1542
1543 for (old = oldh->last; old; old = old->prev)
1544 {
1545 if (nodes_identical (old, add))
1546 {
1547 merge_accept_insn (old, add);
1548 merge_trees (&old->success, &add->success);
1549 goto merged_nodes;
1550 }
1551
1552 if (maybe_both_true (old, add, 0))
1553 break;
1554
1555 /* Insert the nodes in DT test type order, which is roughly
1556 how expensive/important the test is. Given that the tests
1557 are also ordered within the list, examining the first is
1558 sufficient. */
1559 if ((int) add->tests->type < (int) old->tests->type)
1560 insert_before = old;
1561 }
1562
1563 if (insert_before == NULL)
1564 {
1565 add->next = NULL;
1566 add->prev = oldh->last;
1567 oldh->last->next = add;
1568 oldh->last = add;
1569 }
1570 else
1571 {
1572 if ((add->prev = insert_before->prev) != NULL)
1573 add->prev->next = add;
1574 else
1575 oldh->first = add;
1576 add->next = insert_before;
1577 insert_before->prev = add;
1578 }
1579
1580 merged_nodes:;
1581 }
1582 }
1583 \f
1584 /* Walk the tree looking for sub-nodes that perform common tests.
1585 Factor out the common test into a new node. This enables us
1586 (depending on the test type) to emit switch statements later. */
1587
1588 static void
1589 factor_tests (struct decision_head *head)
1590 {
1591 struct decision *first, *next;
1592
1593 for (first = head->first; first && first->next; first = next)
1594 {
1595 enum decision_type type;
1596 struct decision *new_dec, *old_last;
1597
1598 type = first->tests->type;
1599 next = first->next;
1600
1601 /* Want at least two compatible sequential nodes. */
1602 if (next->tests->type != type)
1603 continue;
1604
1605 /* Don't want all node types, just those we can turn into
1606 switch statements. */
1607 if (type != DT_mode
1608 && type != DT_code
1609 && type != DT_veclen
1610 && type != DT_elt_zero_int
1611 && type != DT_elt_one_int
1612 && type != DT_elt_zero_wide_safe)
1613 continue;
1614
1615 /* If we'd been performing more than one test, create a new node
1616 below our first test. */
1617 if (first->tests->next != NULL)
1618 {
1619 new_dec = new_decision (first->position, &first->success);
1620 new_dec->tests = first->tests->next;
1621 first->tests->next = NULL;
1622 }
1623
1624 /* Crop the node tree off after our first test. */
1625 first->next = NULL;
1626 old_last = head->last;
1627 head->last = first;
1628
1629 /* For each compatible test, adjust to perform only one test in
1630 the top level node, then merge the node back into the tree. */
1631 do
1632 {
1633 struct decision_head h;
1634
1635 if (next->tests->next != NULL)
1636 {
1637 new_dec = new_decision (next->position, &next->success);
1638 new_dec->tests = next->tests->next;
1639 next->tests->next = NULL;
1640 }
1641 new_dec = next;
1642 next = next->next;
1643 new_dec->next = NULL;
1644 h.first = h.last = new_dec;
1645
1646 merge_trees (head, &h);
1647 }
1648 while (next && next->tests->type == type);
1649
1650 /* After we run out of compatible tests, graft the remaining nodes
1651 back onto the tree. */
1652 if (next)
1653 {
1654 next->prev = head->last;
1655 head->last->next = next;
1656 head->last = old_last;
1657 }
1658 }
1659
1660 /* Recurse. */
1661 for (first = head->first; first; first = first->next)
1662 factor_tests (&first->success);
1663 }
1664
1665 /* After factoring, try to simplify the tests on any one node.
1666 Tests that are useful for switch statements are recognizable
1667 by having only a single test on a node -- we'll be manipulating
1668 nodes with multiple tests:
1669
1670 If we have mode tests or code tests that are redundant with
1671 predicates, remove them. */
1672
1673 static void
1674 simplify_tests (struct decision_head *head)
1675 {
1676 struct decision *tree;
1677
1678 for (tree = head->first; tree; tree = tree->next)
1679 {
1680 struct decision_test *a, *b;
1681
1682 a = tree->tests;
1683 b = a->next;
1684 if (b == NULL)
1685 continue;
1686
1687 /* Find a predicate node. */
1688 while (b && b->type != DT_pred)
1689 b = b->next;
1690 if (b)
1691 {
1692 /* Due to how these tests are constructed, we don't even need
1693 to check that the mode and code are compatible -- they were
1694 generated from the predicate in the first place. */
1695 while (a->type == DT_mode || a->type == DT_code)
1696 a = a->next;
1697 tree->tests = a;
1698 }
1699 }
1700
1701 /* Recurse. */
1702 for (tree = head->first; tree; tree = tree->next)
1703 simplify_tests (&tree->success);
1704 }
1705
1706 /* Count the number of subnodes of HEAD. If the number is high enough,
1707 make the first node in HEAD start a separate subroutine in the C code
1708 that is generated. */
1709
1710 static int
1711 break_out_subroutines (struct decision_head *head, int initial)
1712 {
1713 int size = 0;
1714 struct decision *sub;
1715
1716 for (sub = head->first; sub; sub = sub->next)
1717 size += 1 + break_out_subroutines (&sub->success, 0);
1718
1719 if (size > SUBROUTINE_THRESHOLD && ! initial)
1720 {
1721 head->first->subroutine_number = ++next_subroutine_number;
1722 size = 1;
1723 }
1724 return size;
1725 }
1726
1727 /* For each node p, find the next alternative that might be true
1728 when p is true. */
1729
1730 static void
1731 find_afterward (struct decision_head *head, struct decision *real_afterward)
1732 {
1733 struct decision *p, *q, *afterward;
1734
1735 /* We can't propagate alternatives across subroutine boundaries.
1736 This is not incorrect, merely a minor optimization loss. */
1737
1738 p = head->first;
1739 afterward = (p->subroutine_number > 0 ? NULL : real_afterward);
1740
1741 for ( ; p ; p = p->next)
1742 {
1743 /* Find the next node that might be true if this one fails. */
1744 for (q = p->next; q ; q = q->next)
1745 if (maybe_both_true (p, q, 1))
1746 break;
1747
1748 /* If we reached the end of the list without finding one,
1749 use the incoming afterward position. */
1750 if (!q)
1751 q = afterward;
1752 p->afterward = q;
1753 if (q)
1754 q->need_label = 1;
1755 }
1756
1757 /* Recurse. */
1758 for (p = head->first; p ; p = p->next)
1759 if (p->success.first)
1760 find_afterward (&p->success, p->afterward);
1761
1762 /* When we are generating a subroutine, record the real afterward
1763 position in the first node where write_tree can find it, and we
1764 can do the right thing at the subroutine call site. */
1765 p = head->first;
1766 if (p->subroutine_number > 0)
1767 p->afterward = real_afterward;
1768 }
1769 \f
1770 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1771 actions are necessary to move to NEWPOS. If we fail to move to the
1772 new state, branch to node AFTERWARD if nonzero, otherwise return.
1773
1774 Failure to move to the new state can only occur if we are trying to
1775 match multiple insns and we try to step past the end of the stream. */
1776
1777 static void
1778 change_state (const char *oldpos, const char *newpos, const char *indent)
1779 {
1780 int odepth = strlen (oldpos);
1781 int ndepth = strlen (newpos);
1782 int depth;
1783 int old_has_insn, new_has_insn;
1784
1785 /* Pop up as many levels as necessary. */
1786 for (depth = odepth; strncmp (oldpos, newpos, depth) != 0; --depth)
1787 continue;
1788
1789 /* Hunt for the last [A-Z] in both strings. */
1790 for (old_has_insn = odepth - 1; old_has_insn >= 0; --old_has_insn)
1791 if (ISUPPER (oldpos[old_has_insn]))
1792 break;
1793 for (new_has_insn = ndepth - 1; new_has_insn >= 0; --new_has_insn)
1794 if (ISUPPER (newpos[new_has_insn]))
1795 break;
1796
1797 /* Go down to desired level. */
1798 while (depth < ndepth)
1799 {
1800 /* It's a different insn from the first one. */
1801 if (ISUPPER (newpos[depth]))
1802 {
1803 printf ("%stem = peep2_next_insn (%d);\n",
1804 indent, newpos[depth] - 'A');
1805 printf ("%sx%d = PATTERN (tem);\n", indent, depth + 1);
1806 }
1807 else if (ISLOWER (newpos[depth]))
1808 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1809 indent, depth + 1, depth, newpos[depth] - 'a');
1810 else
1811 printf ("%sx%d = XEXP (x%d, %c);\n",
1812 indent, depth + 1, depth, newpos[depth]);
1813 ++depth;
1814 }
1815 }
1816 \f
1817 /* Print the enumerator constant for CODE -- the upcase version of
1818 the name. */
1819
1820 static void
1821 print_code (enum rtx_code code)
1822 {
1823 const char *p;
1824 for (p = GET_RTX_NAME (code); *p; p++)
1825 putchar (TOUPPER (*p));
1826 }
1827
1828 /* Emit code to cross an afterward link -- change state and branch. */
1829
1830 static void
1831 write_afterward (struct decision *start, struct decision *afterward,
1832 const char *indent)
1833 {
1834 if (!afterward || start->subroutine_number > 0)
1835 printf("%sgoto ret0;\n", indent);
1836 else
1837 {
1838 change_state (start->position, afterward->position, indent);
1839 printf ("%sgoto L%d;\n", indent, afterward->number);
1840 }
1841 }
1842
1843 /* Emit a HOST_WIDE_INT as an integer constant expression. We need to take
1844 special care to avoid "decimal constant is so large that it is unsigned"
1845 warnings in the resulting code. */
1846
1847 static void
1848 print_host_wide_int (HOST_WIDE_INT val)
1849 {
1850 HOST_WIDE_INT min = (unsigned HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1);
1851 if (val == min)
1852 printf ("(" HOST_WIDE_INT_PRINT_DEC_C "-1)", val + 1);
1853 else
1854 printf (HOST_WIDE_INT_PRINT_DEC_C, val);
1855 }
1856
1857 /* Emit a switch statement, if possible, for an initial sequence of
1858 nodes at START. Return the first node yet untested. */
1859
1860 static struct decision *
1861 write_switch (struct decision *start, int depth)
1862 {
1863 struct decision *p = start;
1864 enum decision_type type = p->tests->type;
1865 struct decision *needs_label = NULL;
1866
1867 /* If we have two or more nodes in sequence that test the same one
1868 thing, we may be able to use a switch statement. */
1869
1870 if (!p->next
1871 || p->tests->next
1872 || p->next->tests->type != type
1873 || p->next->tests->next
1874 || nodes_identical_1 (p->tests, p->next->tests))
1875 return p;
1876
1877 /* DT_code is special in that we can do interesting things with
1878 known predicates at the same time. */
1879 if (type == DT_code)
1880 {
1881 char codemap[NUM_RTX_CODE];
1882 struct decision *ret;
1883 RTX_CODE code;
1884
1885 memset (codemap, 0, sizeof(codemap));
1886
1887 printf (" switch (GET_CODE (x%d))\n {\n", depth);
1888 code = p->tests->u.code;
1889 do
1890 {
1891 if (p != start && p->need_label && needs_label == NULL)
1892 needs_label = p;
1893
1894 printf (" case ");
1895 print_code (code);
1896 printf (":\n goto L%d;\n", p->success.first->number);
1897 p->success.first->need_label = 1;
1898
1899 codemap[code] = 1;
1900 p = p->next;
1901 }
1902 while (p
1903 && ! p->tests->next
1904 && p->tests->type == DT_code
1905 && ! codemap[code = p->tests->u.code]);
1906
1907 /* If P is testing a predicate that we know about and we haven't
1908 seen any of the codes that are valid for the predicate, we can
1909 write a series of "case" statement, one for each possible code.
1910 Since we are already in a switch, these redundant tests are very
1911 cheap and will reduce the number of predicates called. */
1912
1913 /* Note that while we write out cases for these predicates here,
1914 we don't actually write the test here, as it gets kinda messy.
1915 It is trivial to leave this to later by telling our caller that
1916 we only processed the CODE tests. */
1917 if (needs_label != NULL)
1918 ret = needs_label;
1919 else
1920 ret = p;
1921
1922 while (p && p->tests->type == DT_pred && p->tests->u.pred.data)
1923 {
1924 const struct pred_data *data = p->tests->u.pred.data;
1925 int c;
1926
1927 for (c = 0; c < NUM_RTX_CODE; c++)
1928 if (codemap[c] && data->codes[c])
1929 goto pred_done;
1930
1931 for (c = 0; c < NUM_RTX_CODE; c++)
1932 if (data->codes[c])
1933 {
1934 fputs (" case ", stdout);
1935 print_code ((enum rtx_code) c);
1936 fputs (":\n", stdout);
1937 codemap[c] = 1;
1938 }
1939
1940 printf (" goto L%d;\n", p->number);
1941 p->need_label = 1;
1942 p = p->next;
1943 }
1944
1945 pred_done:
1946 /* Make the default case skip the predicates we managed to match. */
1947
1948 printf (" default:\n");
1949 if (p != ret)
1950 {
1951 if (p)
1952 {
1953 printf (" goto L%d;\n", p->number);
1954 p->need_label = 1;
1955 }
1956 else
1957 write_afterward (start, start->afterward, " ");
1958 }
1959 else
1960 printf (" break;\n");
1961 printf (" }\n");
1962
1963 return ret;
1964 }
1965 else if (type == DT_mode
1966 || type == DT_veclen
1967 || type == DT_elt_zero_int
1968 || type == DT_elt_one_int
1969 || type == DT_elt_zero_wide_safe)
1970 {
1971 const char *indent = "";
1972
1973 /* We cast switch parameter to integer, so we must ensure that the value
1974 fits. */
1975 if (type == DT_elt_zero_wide_safe)
1976 {
1977 indent = " ";
1978 printf(" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n", depth, depth);
1979 }
1980 printf ("%s switch (", indent);
1981 switch (type)
1982 {
1983 case DT_mode:
1984 printf ("GET_MODE (x%d)", depth);
1985 break;
1986 case DT_veclen:
1987 printf ("XVECLEN (x%d, 0)", depth);
1988 break;
1989 case DT_elt_zero_int:
1990 printf ("XINT (x%d, 0)", depth);
1991 break;
1992 case DT_elt_one_int:
1993 printf ("XINT (x%d, 1)", depth);
1994 break;
1995 case DT_elt_zero_wide_safe:
1996 /* Convert result of XWINT to int for portability since some C
1997 compilers won't do it and some will. */
1998 printf ("(int) XWINT (x%d, 0)", depth);
1999 break;
2000 default:
2001 gcc_unreachable ();
2002 }
2003 printf (")\n%s {\n", indent);
2004
2005 do
2006 {
2007 /* Merge trees will not unify identical nodes if their
2008 sub-nodes are at different levels. Thus we must check
2009 for duplicate cases. */
2010 struct decision *q;
2011 for (q = start; q != p; q = q->next)
2012 if (nodes_identical_1 (p->tests, q->tests))
2013 goto case_done;
2014
2015 if (p != start && p->need_label && needs_label == NULL)
2016 needs_label = p;
2017
2018 printf ("%s case ", indent);
2019 switch (type)
2020 {
2021 case DT_mode:
2022 printf ("%smode", GET_MODE_NAME (p->tests->u.mode));
2023 break;
2024 case DT_veclen:
2025 printf ("%d", p->tests->u.veclen);
2026 break;
2027 case DT_elt_zero_int:
2028 case DT_elt_one_int:
2029 case DT_elt_zero_wide:
2030 case DT_elt_zero_wide_safe:
2031 print_host_wide_int (p->tests->u.intval);
2032 break;
2033 default:
2034 gcc_unreachable ();
2035 }
2036 printf (":\n%s goto L%d;\n", indent, p->success.first->number);
2037 p->success.first->need_label = 1;
2038
2039 p = p->next;
2040 }
2041 while (p && p->tests->type == type && !p->tests->next);
2042
2043 case_done:
2044 printf ("%s default:\n%s break;\n%s }\n",
2045 indent, indent, indent);
2046
2047 return needs_label != NULL ? needs_label : p;
2048 }
2049 else
2050 {
2051 /* None of the other tests are amenable. */
2052 return p;
2053 }
2054 }
2055
2056 /* Emit code for one test. */
2057
2058 static void
2059 write_cond (struct decision_test *p, int depth,
2060 enum routine_type subroutine_type)
2061 {
2062 switch (p->type)
2063 {
2064 case DT_num_insns:
2065 printf ("peep2_current_count >= %d", p->u.num_insns);
2066 break;
2067
2068 case DT_mode:
2069 printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode));
2070 break;
2071
2072 case DT_code:
2073 printf ("GET_CODE (x%d) == ", depth);
2074 print_code (p->u.code);
2075 break;
2076
2077 case DT_veclen:
2078 printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen);
2079 break;
2080
2081 case DT_elt_zero_int:
2082 printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval);
2083 break;
2084
2085 case DT_elt_one_int:
2086 printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval);
2087 break;
2088
2089 case DT_elt_zero_wide:
2090 case DT_elt_zero_wide_safe:
2091 printf ("XWINT (x%d, 0) == ", depth);
2092 print_host_wide_int (p->u.intval);
2093 break;
2094
2095 case DT_const_int:
2096 printf ("x%d == const_int_rtx[MAX_SAVED_CONST_INT + (%d)]",
2097 depth, (int) p->u.intval);
2098 break;
2099
2100 case DT_veclen_ge:
2101 printf ("XVECLEN (x%d, 0) >= %d", depth, p->u.veclen);
2102 break;
2103
2104 case DT_dup:
2105 printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup);
2106 break;
2107
2108 case DT_pred:
2109 printf ("%s (x%d, %smode)", p->u.pred.name, depth,
2110 GET_MODE_NAME (p->u.pred.mode));
2111 break;
2112
2113 case DT_c_test:
2114 print_c_condition (p->u.c_test);
2115 break;
2116
2117 case DT_accept_insn:
2118 gcc_assert (subroutine_type == RECOG);
2119 gcc_assert (p->u.insn.num_clobbers_to_add);
2120 printf ("pnum_clobbers != NULL");
2121 break;
2122
2123 default:
2124 gcc_unreachable ();
2125 }
2126 }
2127
2128 /* Emit code for one action. The previous tests have succeeded;
2129 TEST is the last of the chain. In the normal case we simply
2130 perform a state change. For the `accept' tests we must do more work. */
2131
2132 static void
2133 write_action (struct decision *p, struct decision_test *test,
2134 int depth, int uncond, struct decision *success,
2135 enum routine_type subroutine_type)
2136 {
2137 const char *indent;
2138 int want_close = 0;
2139
2140 if (uncond)
2141 indent = " ";
2142 else if (test->type == DT_accept_op || test->type == DT_accept_insn)
2143 {
2144 fputs (" {\n", stdout);
2145 indent = " ";
2146 want_close = 1;
2147 }
2148 else
2149 indent = " ";
2150
2151 if (test->type == DT_accept_op)
2152 {
2153 printf("%soperands[%d] = x%d;\n", indent, test->u.opno, depth);
2154
2155 /* Only allow DT_accept_insn to follow. */
2156 if (test->next)
2157 {
2158 test = test->next;
2159 gcc_assert (test->type == DT_accept_insn);
2160 }
2161 }
2162
2163 /* Sanity check that we're now at the end of the list of tests. */
2164 gcc_assert (!test->next);
2165
2166 if (test->type == DT_accept_insn)
2167 {
2168 switch (subroutine_type)
2169 {
2170 case RECOG:
2171 if (test->u.insn.num_clobbers_to_add != 0)
2172 printf ("%s*pnum_clobbers = %d;\n",
2173 indent, test->u.insn.num_clobbers_to_add);
2174 printf ("%sreturn %d; /* %s */\n", indent,
2175 test->u.insn.code_number,
2176 get_insn_name (test->u.insn.code_number));
2177 break;
2178
2179 case SPLIT:
2180 printf ("%sreturn gen_split_%d (insn, operands);\n",
2181 indent, test->u.insn.code_number);
2182 break;
2183
2184 case PEEPHOLE2:
2185 {
2186 int match_len = 0, i;
2187
2188 for (i = strlen (p->position) - 1; i >= 0; --i)
2189 if (ISUPPER (p->position[i]))
2190 {
2191 match_len = p->position[i] - 'A';
2192 break;
2193 }
2194 printf ("%s*_pmatch_len = %d;\n", indent, match_len);
2195 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
2196 indent, test->u.insn.code_number);
2197 printf ("%sif (tem != 0)\n%s return tem;\n", indent, indent);
2198 }
2199 break;
2200
2201 default:
2202 gcc_unreachable ();
2203 }
2204 }
2205 else
2206 {
2207 printf("%sgoto L%d;\n", indent, success->number);
2208 success->need_label = 1;
2209 }
2210
2211 if (want_close)
2212 fputs (" }\n", stdout);
2213 }
2214
2215 /* Return 1 if the test is always true and has no fallthru path. Return -1
2216 if the test does have a fallthru path, but requires that the condition be
2217 terminated. Otherwise return 0 for a normal test. */
2218 /* ??? is_unconditional is a stupid name for a tri-state function. */
2219
2220 static int
2221 is_unconditional (struct decision_test *t, enum routine_type subroutine_type)
2222 {
2223 if (t->type == DT_accept_op)
2224 return 1;
2225
2226 if (t->type == DT_accept_insn)
2227 {
2228 switch (subroutine_type)
2229 {
2230 case RECOG:
2231 return (t->u.insn.num_clobbers_to_add == 0);
2232 case SPLIT:
2233 return 1;
2234 case PEEPHOLE2:
2235 return -1;
2236 default:
2237 gcc_unreachable ();
2238 }
2239 }
2240
2241 return 0;
2242 }
2243
2244 /* Emit code for one node -- the conditional and the accompanying action.
2245 Return true if there is no fallthru path. */
2246
2247 static int
2248 write_node (struct decision *p, int depth,
2249 enum routine_type subroutine_type)
2250 {
2251 struct decision_test *test, *last_test;
2252 int uncond;
2253
2254 /* Scan the tests and simplify comparisons against small
2255 constants. */
2256 for (test = p->tests; test; test = test->next)
2257 {
2258 if (test->type == DT_code
2259 && test->u.code == CONST_INT
2260 && test->next
2261 && test->next->type == DT_elt_zero_wide_safe
2262 && -MAX_SAVED_CONST_INT <= test->next->u.intval
2263 && test->next->u.intval <= MAX_SAVED_CONST_INT)
2264 {
2265 test->type = DT_const_int;
2266 test->u.intval = test->next->u.intval;
2267 test->next = test->next->next;
2268 }
2269 }
2270
2271 last_test = test = p->tests;
2272 uncond = is_unconditional (test, subroutine_type);
2273 if (uncond == 0)
2274 {
2275 printf (" if (");
2276 write_cond (test, depth, subroutine_type);
2277
2278 while ((test = test->next) != NULL)
2279 {
2280 last_test = test;
2281 if (is_unconditional (test, subroutine_type))
2282 break;
2283
2284 printf ("\n && ");
2285 write_cond (test, depth, subroutine_type);
2286 }
2287
2288 printf (")\n");
2289 }
2290
2291 write_action (p, last_test, depth, uncond, p->success.first, subroutine_type);
2292
2293 return uncond > 0;
2294 }
2295
2296 /* Emit code for all of the sibling nodes of HEAD. */
2297
2298 static void
2299 write_tree_1 (struct decision_head *head, int depth,
2300 enum routine_type subroutine_type)
2301 {
2302 struct decision *p, *next;
2303 int uncond = 0;
2304
2305 for (p = head->first; p ; p = next)
2306 {
2307 /* The label for the first element was printed in write_tree. */
2308 if (p != head->first && p->need_label)
2309 OUTPUT_LABEL (" ", p->number);
2310
2311 /* Attempt to write a switch statement for a whole sequence. */
2312 next = write_switch (p, depth);
2313 if (p != next)
2314 uncond = 0;
2315 else
2316 {
2317 /* Failed -- fall back and write one node. */
2318 uncond = write_node (p, depth, subroutine_type);
2319 next = p->next;
2320 }
2321 }
2322
2323 /* Finished with this chain. Close a fallthru path by branching
2324 to the afterward node. */
2325 if (! uncond)
2326 write_afterward (head->last, head->last->afterward, " ");
2327 }
2328
2329 /* Write out the decision tree starting at HEAD. PREVPOS is the
2330 position at the node that branched to this node. */
2331
2332 static void
2333 write_tree (struct decision_head *head, const char *prevpos,
2334 enum routine_type type, int initial)
2335 {
2336 struct decision *p = head->first;
2337
2338 putchar ('\n');
2339 if (p->need_label)
2340 OUTPUT_LABEL (" ", p->number);
2341
2342 if (! initial && p->subroutine_number > 0)
2343 {
2344 static const char * const name_prefix[] = {
2345 "recog", "split", "peephole2"
2346 };
2347
2348 static const char * const call_suffix[] = {
2349 ", pnum_clobbers", "", ", _pmatch_len"
2350 };
2351
2352 /* This node has been broken out into a separate subroutine.
2353 Call it, test the result, and branch accordingly. */
2354
2355 if (p->afterward)
2356 {
2357 printf (" tem = %s_%d (x0, insn%s);\n",
2358 name_prefix[type], p->subroutine_number, call_suffix[type]);
2359 if (IS_SPLIT (type))
2360 printf (" if (tem != 0)\n return tem;\n");
2361 else
2362 printf (" if (tem >= 0)\n return tem;\n");
2363
2364 change_state (p->position, p->afterward->position, " ");
2365 printf (" goto L%d;\n", p->afterward->number);
2366 }
2367 else
2368 {
2369 printf (" return %s_%d (x0, insn%s);\n",
2370 name_prefix[type], p->subroutine_number, call_suffix[type]);
2371 }
2372 }
2373 else
2374 {
2375 int depth = strlen (p->position);
2376
2377 change_state (prevpos, p->position, " ");
2378 write_tree_1 (head, depth, type);
2379
2380 for (p = head->first; p; p = p->next)
2381 if (p->success.first)
2382 write_tree (&p->success, p->position, type, 0);
2383 }
2384 }
2385
2386 /* Write out a subroutine of type TYPE to do comparisons starting at
2387 node TREE. */
2388
2389 static void
2390 write_subroutine (struct decision_head *head, enum routine_type type)
2391 {
2392 int subfunction = head->first ? head->first->subroutine_number : 0;
2393 const char *s_or_e;
2394 char extension[32];
2395 int i;
2396
2397 s_or_e = subfunction ? "static " : "";
2398
2399 if (subfunction)
2400 sprintf (extension, "_%d", subfunction);
2401 else if (type == RECOG)
2402 extension[0] = '\0';
2403 else
2404 strcpy (extension, "_insns");
2405
2406 switch (type)
2407 {
2408 case RECOG:
2409 printf ("%sint\n\
2410 recog%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", s_or_e, extension);
2411 break;
2412 case SPLIT:
2413 printf ("%srtx\n\
2414 split%s (rtx x0 ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED)\n",
2415 s_or_e, extension);
2416 break;
2417 case PEEPHOLE2:
2418 printf ("%srtx\n\
2419 peephole2%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *_pmatch_len ATTRIBUTE_UNUSED)\n",
2420 s_or_e, extension);
2421 break;
2422 }
2423
2424 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
2425 for (i = 1; i <= max_depth; i++)
2426 printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i);
2427
2428 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int");
2429
2430 if (!subfunction)
2431 printf (" recog_data.insn = NULL_RTX;\n");
2432
2433 if (head->first)
2434 write_tree (head, "", type, 1);
2435 else
2436 printf (" goto ret0;\n");
2437
2438 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1);
2439 }
2440
2441 /* In break_out_subroutines, we discovered the boundaries for the
2442 subroutines, but did not write them out. Do so now. */
2443
2444 static void
2445 write_subroutines (struct decision_head *head, enum routine_type type)
2446 {
2447 struct decision *p;
2448
2449 for (p = head->first; p ; p = p->next)
2450 if (p->success.first)
2451 write_subroutines (&p->success, type);
2452
2453 if (head->first->subroutine_number > 0)
2454 write_subroutine (head, type);
2455 }
2456
2457 /* Begin the output file. */
2458
2459 static void
2460 write_header (void)
2461 {
2462 puts ("\
2463 /* Generated automatically by the program `genrecog' from the target\n\
2464 machine description file. */\n\
2465 \n\
2466 #include \"config.h\"\n\
2467 #include \"system.h\"\n\
2468 #include \"coretypes.h\"\n\
2469 #include \"tm.h\"\n\
2470 #include \"rtl.h\"\n\
2471 #include \"tm_p.h\"\n\
2472 #include \"function.h\"\n\
2473 #include \"insn-config.h\"\n\
2474 #include \"recog.h\"\n\
2475 #include \"real.h\"\n\
2476 #include \"output.h\"\n\
2477 #include \"flags.h\"\n\
2478 #include \"hard-reg-set.h\"\n\
2479 #include \"resource.h\"\n\
2480 #include \"toplev.h\"\n\
2481 #include \"reload.h\"\n\
2482 #include \"regs.h\"\n\
2483 #include \"tm-constrs.h\"\n\
2484 \n");
2485
2486 puts ("\n\
2487 /* `recog' contains a decision tree that recognizes whether the rtx\n\
2488 X0 is a valid instruction.\n\
2489 \n\
2490 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2491 returns a nonnegative number which is the insn code number for the\n\
2492 pattern that matched. This is the same as the order in the machine\n\
2493 description of the entry that matched. This number can be used as an\n\
2494 index into `insn_data' and other tables.\n");
2495 puts ("\
2496 The third argument to recog is an optional pointer to an int. If\n\
2497 present, recog will accept a pattern if it matches except for missing\n\
2498 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2499 the optional pointer will be set to the number of CLOBBERs that need\n\
2500 to be added (it should be initialized to zero by the caller). If it");
2501 puts ("\
2502 is set nonzero, the caller should allocate a PARALLEL of the\n\
2503 appropriate size, copy the initial entries, and call add_clobbers\n\
2504 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2505 ");
2506
2507 puts ("\n\
2508 The function split_insns returns 0 if the rtl could not\n\
2509 be split or the split rtl as an INSN list if it can be.\n\
2510 \n\
2511 The function peephole2_insns returns 0 if the rtl could not\n\
2512 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
2513 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2514 */\n\n");
2515 }
2516
2517 \f
2518 /* Construct and return a sequence of decisions
2519 that will recognize INSN.
2520
2521 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2522
2523 static struct decision_head
2524 make_insn_sequence (rtx insn, enum routine_type type)
2525 {
2526 rtx x;
2527 const char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
2528 int truth = maybe_eval_c_test (c_test);
2529 struct decision *last;
2530 struct decision_test *test, **place;
2531 struct decision_head head;
2532 char c_test_pos[2];
2533
2534 /* We should never see an insn whose C test is false at compile time. */
2535 gcc_assert (truth);
2536
2537 c_test_pos[0] = '\0';
2538 if (type == PEEPHOLE2)
2539 {
2540 int i, j;
2541
2542 /* peephole2 gets special treatment:
2543 - X always gets an outer parallel even if it's only one entry
2544 - we remove all traces of outer-level match_scratch and match_dup
2545 expressions here. */
2546 x = rtx_alloc (PARALLEL);
2547 PUT_MODE (x, VOIDmode);
2548 XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0));
2549 for (i = j = 0; i < XVECLEN (insn, 0); i++)
2550 {
2551 rtx tmp = XVECEXP (insn, 0, i);
2552 if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP)
2553 {
2554 XVECEXP (x, 0, j) = tmp;
2555 j++;
2556 }
2557 }
2558 XVECLEN (x, 0) = j;
2559
2560 c_test_pos[0] = 'A' + j - 1;
2561 c_test_pos[1] = '\0';
2562 }
2563 else if (XVECLEN (insn, type == RECOG) == 1)
2564 x = XVECEXP (insn, type == RECOG, 0);
2565 else
2566 {
2567 x = rtx_alloc (PARALLEL);
2568 XVEC (x, 0) = XVEC (insn, type == RECOG);
2569 PUT_MODE (x, VOIDmode);
2570 }
2571
2572 validate_pattern (x, insn, NULL_RTX, 0);
2573
2574 memset(&head, 0, sizeof(head));
2575 last = add_to_sequence (x, &head, "", type, 1);
2576
2577 /* Find the end of the test chain on the last node. */
2578 for (test = last->tests; test->next; test = test->next)
2579 continue;
2580 place = &test->next;
2581
2582 /* Skip the C test if it's known to be true at compile time. */
2583 if (truth == -1)
2584 {
2585 /* Need a new node if we have another test to add. */
2586 if (test->type == DT_accept_op)
2587 {
2588 last = new_decision (c_test_pos, &last->success);
2589 place = &last->tests;
2590 }
2591 test = new_decision_test (DT_c_test, &place);
2592 test->u.c_test = c_test;
2593 }
2594
2595 test = new_decision_test (DT_accept_insn, &place);
2596 test->u.insn.code_number = next_insn_code;
2597 test->u.insn.lineno = pattern_lineno;
2598 test->u.insn.num_clobbers_to_add = 0;
2599
2600 switch (type)
2601 {
2602 case RECOG:
2603 /* If this is a DEFINE_INSN and X is a PARALLEL, see if it ends
2604 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2605 If so, set up to recognize the pattern without these CLOBBERs. */
2606
2607 if (GET_CODE (x) == PARALLEL)
2608 {
2609 int i;
2610
2611 /* Find the last non-clobber in the parallel. */
2612 for (i = XVECLEN (x, 0); i > 0; i--)
2613 {
2614 rtx y = XVECEXP (x, 0, i - 1);
2615 if (GET_CODE (y) != CLOBBER
2616 || (!REG_P (XEXP (y, 0))
2617 && GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH))
2618 break;
2619 }
2620
2621 if (i != XVECLEN (x, 0))
2622 {
2623 rtx new_rtx;
2624 struct decision_head clobber_head;
2625
2626 /* Build a similar insn without the clobbers. */
2627 if (i == 1)
2628 new_rtx = XVECEXP (x, 0, 0);
2629 else
2630 {
2631 int j;
2632
2633 new_rtx = rtx_alloc (PARALLEL);
2634 XVEC (new_rtx, 0) = rtvec_alloc (i);
2635 for (j = i - 1; j >= 0; j--)
2636 XVECEXP (new_rtx, 0, j) = XVECEXP (x, 0, j);
2637 }
2638
2639 /* Recognize it. */
2640 memset (&clobber_head, 0, sizeof(clobber_head));
2641 last = add_to_sequence (new_rtx, &clobber_head, "", type, 1);
2642
2643 /* Find the end of the test chain on the last node. */
2644 for (test = last->tests; test->next; test = test->next)
2645 continue;
2646
2647 /* We definitely have a new test to add -- create a new
2648 node if needed. */
2649 place = &test->next;
2650 if (test->type == DT_accept_op)
2651 {
2652 last = new_decision ("", &last->success);
2653 place = &last->tests;
2654 }
2655
2656 /* Skip the C test if it's known to be true at compile
2657 time. */
2658 if (truth == -1)
2659 {
2660 test = new_decision_test (DT_c_test, &place);
2661 test->u.c_test = c_test;
2662 }
2663
2664 test = new_decision_test (DT_accept_insn, &place);
2665 test->u.insn.code_number = next_insn_code;
2666 test->u.insn.lineno = pattern_lineno;
2667 test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i;
2668
2669 merge_trees (&head, &clobber_head);
2670 }
2671 }
2672 break;
2673
2674 case SPLIT:
2675 /* Define the subroutine we will call below and emit in genemit. */
2676 printf ("extern rtx gen_split_%d (rtx, rtx *);\n", next_insn_code);
2677 break;
2678
2679 case PEEPHOLE2:
2680 /* Define the subroutine we will call below and emit in genemit. */
2681 printf ("extern rtx gen_peephole2_%d (rtx, rtx *);\n",
2682 next_insn_code);
2683 break;
2684 }
2685
2686 return head;
2687 }
2688
2689 static void
2690 process_tree (struct decision_head *head, enum routine_type subroutine_type)
2691 {
2692 if (head->first == NULL)
2693 {
2694 /* We can elide peephole2_insns, but not recog or split_insns. */
2695 if (subroutine_type == PEEPHOLE2)
2696 return;
2697 }
2698 else
2699 {
2700 factor_tests (head);
2701
2702 next_subroutine_number = 0;
2703 break_out_subroutines (head, 1);
2704 find_afterward (head, NULL);
2705
2706 /* We run this after find_afterward, because find_afterward needs
2707 the redundant DT_mode tests on predicates to determine whether
2708 two tests can both be true or not. */
2709 simplify_tests(head);
2710
2711 write_subroutines (head, subroutine_type);
2712 }
2713
2714 write_subroutine (head, subroutine_type);
2715 }
2716 \f
2717 extern int main (int, char **);
2718
2719 int
2720 main (int argc, char **argv)
2721 {
2722 rtx desc;
2723 struct decision_head recog_tree, split_tree, peephole2_tree, h;
2724
2725 progname = "genrecog";
2726
2727 memset (&recog_tree, 0, sizeof recog_tree);
2728 memset (&split_tree, 0, sizeof split_tree);
2729 memset (&peephole2_tree, 0, sizeof peephole2_tree);
2730
2731 if (init_md_reader_args (argc, argv) != SUCCESS_EXIT_CODE)
2732 return (FATAL_EXIT_CODE);
2733
2734 next_insn_code = 0;
2735
2736 write_header ();
2737
2738 /* Read the machine description. */
2739
2740 while (1)
2741 {
2742 desc = read_md_rtx (&pattern_lineno, &next_insn_code);
2743 if (desc == NULL)
2744 break;
2745
2746 switch (GET_CODE (desc))
2747 {
2748 case DEFINE_PREDICATE:
2749 case DEFINE_SPECIAL_PREDICATE:
2750 process_define_predicate (desc);
2751 break;
2752
2753 case DEFINE_INSN:
2754 h = make_insn_sequence (desc, RECOG);
2755 merge_trees (&recog_tree, &h);
2756 break;
2757
2758 case DEFINE_SPLIT:
2759 h = make_insn_sequence (desc, SPLIT);
2760 merge_trees (&split_tree, &h);
2761 break;
2762
2763 case DEFINE_PEEPHOLE2:
2764 h = make_insn_sequence (desc, PEEPHOLE2);
2765 merge_trees (&peephole2_tree, &h);
2766
2767 default:
2768 /* do nothing */;
2769 }
2770 }
2771
2772 if (error_count || have_error)
2773 return FATAL_EXIT_CODE;
2774
2775 puts ("\n\n");
2776
2777 process_tree (&recog_tree, RECOG);
2778 process_tree (&split_tree, SPLIT);
2779 process_tree (&peephole2_tree, PEEPHOLE2);
2780
2781 fflush (stdout);
2782 return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
2783 }
2784 \f
2785 static void
2786 debug_decision_2 (struct decision_test *test)
2787 {
2788 switch (test->type)
2789 {
2790 case DT_num_insns:
2791 fprintf (stderr, "num_insns=%d", test->u.num_insns);
2792 break;
2793 case DT_mode:
2794 fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode));
2795 break;
2796 case DT_code:
2797 fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code));
2798 break;
2799 case DT_veclen:
2800 fprintf (stderr, "veclen=%d", test->u.veclen);
2801 break;
2802 case DT_elt_zero_int:
2803 fprintf (stderr, "elt0_i=%d", (int) test->u.intval);
2804 break;
2805 case DT_elt_one_int:
2806 fprintf (stderr, "elt1_i=%d", (int) test->u.intval);
2807 break;
2808 case DT_elt_zero_wide:
2809 fprintf (stderr, "elt0_w=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2810 break;
2811 case DT_elt_zero_wide_safe:
2812 fprintf (stderr, "elt0_ws=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2813 break;
2814 case DT_veclen_ge:
2815 fprintf (stderr, "veclen>=%d", test->u.veclen);
2816 break;
2817 case DT_dup:
2818 fprintf (stderr, "dup=%d", test->u.dup);
2819 break;
2820 case DT_pred:
2821 fprintf (stderr, "pred=(%s,%s)",
2822 test->u.pred.name, GET_MODE_NAME(test->u.pred.mode));
2823 break;
2824 case DT_c_test:
2825 {
2826 char sub[16+4];
2827 strncpy (sub, test->u.c_test, sizeof(sub));
2828 memcpy (sub+16, "...", 4);
2829 fprintf (stderr, "c_test=\"%s\"", sub);
2830 }
2831 break;
2832 case DT_accept_op:
2833 fprintf (stderr, "A_op=%d", test->u.opno);
2834 break;
2835 case DT_accept_insn:
2836 fprintf (stderr, "A_insn=(%d,%d)",
2837 test->u.insn.code_number, test->u.insn.num_clobbers_to_add);
2838 break;
2839
2840 default:
2841 gcc_unreachable ();
2842 }
2843 }
2844
2845 static void
2846 debug_decision_1 (struct decision *d, int indent)
2847 {
2848 int i;
2849 struct decision_test *test;
2850
2851 if (d == NULL)
2852 {
2853 for (i = 0; i < indent; ++i)
2854 putc (' ', stderr);
2855 fputs ("(nil)\n", stderr);
2856 return;
2857 }
2858
2859 for (i = 0; i < indent; ++i)
2860 putc (' ', stderr);
2861
2862 putc ('{', stderr);
2863 test = d->tests;
2864 if (test)
2865 {
2866 debug_decision_2 (test);
2867 while ((test = test->next) != NULL)
2868 {
2869 fputs (" + ", stderr);
2870 debug_decision_2 (test);
2871 }
2872 }
2873 fprintf (stderr, "} %d n %d a %d\n", d->number,
2874 (d->next ? d->next->number : -1),
2875 (d->afterward ? d->afterward->number : -1));
2876 }
2877
2878 static void
2879 debug_decision_0 (struct decision *d, int indent, int maxdepth)
2880 {
2881 struct decision *n;
2882 int i;
2883
2884 if (maxdepth < 0)
2885 return;
2886 if (d == NULL)
2887 {
2888 for (i = 0; i < indent; ++i)
2889 putc (' ', stderr);
2890 fputs ("(nil)\n", stderr);
2891 return;
2892 }
2893
2894 debug_decision_1 (d, indent);
2895 for (n = d->success.first; n ; n = n->next)
2896 debug_decision_0 (n, indent + 2, maxdepth - 1);
2897 }
2898
2899 void
2900 debug_decision (struct decision *d)
2901 {
2902 debug_decision_0 (d, 0, 1000000);
2903 }
2904
2905 void
2906 debug_decision_list (struct decision *d)
2907 {
2908 while (d)
2909 {
2910 debug_decision_0 (d, 0, 0);
2911 d = d->next;
2912 }
2913 }