final.c (peephole): Delete prototype.
[gcc.git] / gcc / genrecog.c
1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 88, 92-95, 97-98, 1999 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This program is used to produce insn-recog.c, which contains a
23 function called `recog' plus its subroutines. These functions
24 contain a decision tree that recognizes whether an rtx, the
25 argument given to recog, is a valid instruction.
26
27 recog returns -1 if the rtx is not valid. If the rtx is valid,
28 recog returns a nonnegative number which is the insn code number
29 for the pattern that matched. This is the same as the order in the
30 machine description of the entry that matched. This number can be
31 used as an index into various insn_* tables, such as insn_template,
32 insn_outfun, and insn_n_operands (found in insn-output.c).
33
34 The third argument to recog is an optional pointer to an int. If
35 present, recog will accept a pattern if it matches except for
36 missing CLOBBER expressions at the end. In that case, the value
37 pointed to by the optional pointer will be set to the number of
38 CLOBBERs that need to be added (it should be initialized to zero by
39 the caller). If it is set nonzero, the caller should allocate a
40 PARALLEL of the appropriate size, copy the initial entries, and
41 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
42
43 This program also generates the function `split_insns', which
44 returns 0 if the rtl could not be split, or it returns the split
45 rtl in a SEQUENCE.
46
47 This program also generates the function `peephole2_insns', which
48 returns 0 if the rtl could not be matched. If there was a match,
49 the new rtl is returned in a SEQUENCE, and LAST_INSN will point
50 to the last recognized insn in the old sequence. */
51
52 #include "hconfig.h"
53 #include "system.h"
54 #include "rtl.h"
55 #include "obstack.h"
56 #include "errors.h"
57
58 #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
59 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
60
61 static struct obstack obstack;
62 struct obstack *rtl_obstack = &obstack;
63
64 #define obstack_chunk_alloc xmalloc
65 #define obstack_chunk_free free
66
67 /* Holds an array of names indexed by insn_code_number. */
68 static char **insn_name_ptr = 0;
69 static int insn_name_ptr_size = 0;
70
71 /* A listhead of decision trees. The alternatives to a node are kept
72 in a doublely-linked list so we can easily add nodes to the proper
73 place when merging. */
74
75 struct decision_head
76 {
77 struct decision *first;
78 struct decision *last;
79 };
80
81 /* A single test. The two accept types aren't tests per-se, but
82 their equality (or lack thereof) does affect tree merging so
83 it is convenient to keep them here. */
84
85 struct decision_test
86 {
87 /* A linked list through the tests attached to a node. */
88 struct decision_test *next;
89
90 /* These types are roughly in the order in which we'd like to test them. */
91 enum decision_type {
92 DT_mode, DT_code, DT_veclen,
93 DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide,
94 DT_dup, DT_pred, DT_c_test,
95 DT_accept_op, DT_accept_insn
96 } type;
97
98 union
99 {
100 enum machine_mode mode; /* Machine mode of node. */
101 RTX_CODE code; /* Code to test. */
102
103 struct
104 {
105 const char *name; /* Predicate to call. */
106 int index; /* Index into `preds' or -1. */
107 enum machine_mode mode; /* Machine mode for node. */
108 } pred;
109
110 const char *c_test; /* Additional test to perform. */
111 int veclen; /* Length of vector. */
112 int dup; /* Number of operand to compare against. */
113 HOST_WIDE_INT intval; /* Value for XINT for XWINT. */
114 int opno; /* Operand number matched. */
115
116 struct {
117 int code_number; /* Insn number matched. */
118 int lineno; /* Line number of the insn. */
119 int num_clobbers_to_add; /* Number of CLOBBERs to be added. */
120 } insn;
121 } u;
122 };
123
124 /* Data structure for decision tree for recognizing legitimate insns. */
125
126 struct decision
127 {
128 struct decision_head success; /* Nodes to test on success. */
129 struct decision *next; /* Node to test on failure. */
130 struct decision *prev; /* Node whose failure tests us. */
131 struct decision *afterward; /* Node to test on success,
132 but failure of successor nodes. */
133
134 const char *position; /* String denoting position in pattern. */
135
136 struct decision_test *tests; /* The tests for this node. */
137
138 int number; /* Node number, used for labels */
139 int subroutine_number; /* Number of subroutine this node starts */
140 int need_label; /* Label needs to be output. */
141 };
142
143 #define SUBROUTINE_THRESHOLD 100
144
145 static int next_subroutine_number;
146
147 /* We can write three types of subroutines: One for insn recognition,
148 one to split insns, and one for peephole-type optimizations. This
149 defines which type is being written. */
150
151 enum routine_type {
152 RECOG, SPLIT, PEEPHOLE2
153 };
154
155 #define IS_SPLIT(X) ((X) != RECOG)
156
157 /* Next available node number for tree nodes. */
158
159 static int next_number;
160
161 /* Next number to use as an insn_code. */
162
163 static int next_insn_code;
164
165 /* Similar, but counts all expressions in the MD file; used for
166 error messages. */
167
168 static int next_index;
169
170 /* Record the highest depth we ever have so we know how many variables to
171 allocate in each subroutine we make. */
172
173 static int max_depth;
174
175 /* The line number of the start of the pattern currently being processed. */
176 static int pattern_lineno;
177
178 /* Count of errors. */
179 static int error_count;
180 \f
181 /* This table contains a list of the rtl codes that can possibly match a
182 predicate defined in recog.c. The function `maybe_both_true' uses it to
183 deduce that there are no expressions that can be matches by certain pairs
184 of tree nodes. Also, if a predicate can match only one code, we can
185 hardwire that code into the node testing the predicate. */
186
187 static struct pred_table
188 {
189 const char *name;
190 RTX_CODE codes[NUM_RTX_CODE];
191 } preds[] = {
192 {"general_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
193 LABEL_REF, SUBREG, REG, MEM}},
194 #ifdef PREDICATE_CODES
195 PREDICATE_CODES
196 #endif
197 {"address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
198 LABEL_REF, SUBREG, REG, MEM, PLUS, MINUS, MULT}},
199 {"register_operand", {SUBREG, REG}},
200 {"pmode_register_operand", {SUBREG, REG}},
201 {"scratch_operand", {SCRATCH, REG}},
202 {"immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
203 LABEL_REF}},
204 {"const_int_operand", {CONST_INT}},
205 {"const_double_operand", {CONST_INT, CONST_DOUBLE}},
206 {"nonimmediate_operand", {SUBREG, REG, MEM}},
207 {"nonmemory_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
208 LABEL_REF, SUBREG, REG}},
209 {"push_operand", {MEM}},
210 {"pop_operand", {MEM}},
211 {"memory_operand", {SUBREG, MEM}},
212 {"indirect_operand", {SUBREG, MEM}},
213 {"comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU}},
214 {"mode_independent_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
215 LABEL_REF, SUBREG, REG, MEM}}
216 };
217
218 #define NUM_KNOWN_PREDS (sizeof preds / sizeof preds[0])
219
220 static const char * special_mode_pred_table[] = {
221 #ifdef SPECIAL_MODE_PREDICATES
222 SPECIAL_MODE_PREDICATES
223 #endif
224 "pmode_register_operand"
225 };
226
227 #define NUM_SPECIAL_MODE_PREDS \
228 (sizeof (special_mode_pred_table) / sizeof (special_mode_pred_table[0]))
229
230 static void message_with_line
231 PVPROTO ((int, const char *, ...)) ATTRIBUTE_PRINTF_2;
232
233 static struct decision *new_decision
234 PROTO((const char *, struct decision_head *));
235 static struct decision_test *new_decision_test
236 PROTO((enum decision_type, struct decision_test ***));
237 static rtx find_operand
238 PROTO((rtx, int));
239 static void validate_pattern
240 PROTO((rtx, rtx, rtx));
241 static struct decision *add_to_sequence
242 PROTO((rtx, struct decision_head *, const char *, enum routine_type, int));
243
244 static int maybe_both_true_2
245 PROTO((struct decision_test *, struct decision_test *));
246 static int maybe_both_true_1
247 PROTO((struct decision_test *, struct decision_test *));
248 static int maybe_both_true
249 PROTO((struct decision *, struct decision *, int));
250
251 static int nodes_identical_1
252 PROTO((struct decision_test *, struct decision_test *));
253 static int nodes_identical
254 PROTO((struct decision *, struct decision *));
255 static void merge_accept_insn
256 PROTO((struct decision *, struct decision *));
257 static void merge_trees
258 PROTO((struct decision_head *, struct decision_head *));
259
260 static void factor_tests
261 PROTO((struct decision_head *));
262 static void simplify_tests
263 PROTO((struct decision_head *));
264 static int break_out_subroutines
265 PROTO((struct decision_head *, int));
266 static void find_afterward
267 PROTO((struct decision_head *, struct decision *));
268
269 static void change_state
270 PROTO((const char *, const char *, struct decision *, const char *));
271 static void print_code
272 PROTO((enum rtx_code));
273 static void write_afterward
274 PROTO((struct decision *, struct decision *, const char *));
275 static struct decision *write_switch
276 PROTO((struct decision *, int));
277 static void write_cond
278 PROTO((struct decision_test *, int, enum routine_type));
279 static void write_action
280 PROTO((struct decision_test *, int, int, struct decision *,
281 enum routine_type));
282 static int is_unconditional
283 PROTO((struct decision_test *, enum routine_type));
284 static int write_node
285 PROTO((struct decision *, int, enum routine_type));
286 static void write_tree_1
287 PROTO((struct decision_head *, int, enum routine_type));
288 static void write_tree
289 PROTO((struct decision_head *, const char *, enum routine_type, int));
290 static void write_subroutine
291 PROTO((struct decision_head *, enum routine_type));
292 static void write_subroutines
293 PROTO((struct decision_head *, enum routine_type));
294 static void write_header
295 PROTO((void));
296
297 static struct decision_head make_insn_sequence
298 PROTO((rtx, enum routine_type));
299 static void process_tree
300 PROTO((struct decision_head *, enum routine_type));
301
302 static void record_insn_name
303 PROTO((int, const char *));
304
305 static void debug_decision_0
306 PROTO((struct decision *, int, int));
307 static void debug_decision_1
308 PROTO((struct decision *, int));
309 static void debug_decision_2
310 PROTO((struct decision_test *));
311 extern void debug_decision
312 PROTO((struct decision *));
313 extern void debug_decision_list
314 PROTO((struct decision *));
315 \f
316 static void
317 message_with_line VPROTO ((int lineno, const char *msg, ...))
318 {
319 #ifndef ANSI_PROTOTYPES
320 int lineno;
321 const char *msg;
322 #endif
323 va_list ap;
324
325 VA_START (ap, msg);
326
327 #ifndef ANSI_PROTOTYPES
328 lineno = va_arg (ap, int);
329 msg = va_arg (ap, const char *);
330 #endif
331
332 fprintf (stderr, "%s:%d: ", read_rtx_filename, lineno);
333 vfprintf (stderr, msg, ap);
334 fputc ('\n', stderr);
335
336 va_end (ap);
337 }
338 \f
339 /* Create a new node in sequence after LAST. */
340
341 static struct decision *
342 new_decision (position, last)
343 const char *position;
344 struct decision_head *last;
345 {
346 register struct decision *new
347 = (struct decision *) xmalloc (sizeof (struct decision));
348
349 memset (new, 0, sizeof (*new));
350 new->success = *last;
351 new->position = xstrdup (position);
352 new->number = next_number++;
353
354 last->first = last->last = new;
355 return new;
356 }
357
358 /* Create a new test and link it in at PLACE. */
359
360 static struct decision_test *
361 new_decision_test (type, pplace)
362 enum decision_type type;
363 struct decision_test ***pplace;
364 {
365 struct decision_test **place = *pplace;
366 struct decision_test *test;
367
368 test = (struct decision_test *) xmalloc (sizeof (*test));
369 test->next = *place;
370 test->type = type;
371 *place = test;
372
373 place = &test->next;
374 *pplace = place;
375
376 return test;
377 }
378
379 /* Search for and return operand N. */
380
381 static rtx
382 find_operand (pattern, n)
383 rtx pattern;
384 int n;
385 {
386 const char *fmt;
387 RTX_CODE code;
388 int i, j, len;
389 rtx r;
390
391 code = GET_CODE (pattern);
392 if ((code == MATCH_SCRATCH
393 || code == MATCH_INSN
394 || code == MATCH_OPERAND
395 || code == MATCH_OPERATOR
396 || code == MATCH_PARALLEL)
397 && XINT (pattern, 0) == n)
398 return pattern;
399
400 fmt = GET_RTX_FORMAT (code);
401 len = GET_RTX_LENGTH (code);
402 for (i = 0; i < len; i++)
403 {
404 switch (fmt[i])
405 {
406 case 'e': case 'u':
407 if ((r = find_operand (XEXP (pattern, i), n)) != NULL_RTX)
408 return r;
409 break;
410
411 case 'E':
412 for (j = 0; j < XVECLEN (pattern, i); j++)
413 if ((r = find_operand (XVECEXP (pattern, i, j), n)) != NULL_RTX)
414 return r;
415 break;
416
417 case 'i': case 'w': case '0': case 's':
418 break;
419
420 default:
421 abort ();
422 }
423 }
424
425 return NULL;
426 }
427
428 /* Check for various errors in patterns. SET is nonnull for a destination,
429 and is the complete set pattern. */
430
431 static void
432 validate_pattern (pattern, insn, set)
433 rtx pattern;
434 rtx insn;
435 rtx set;
436 {
437 const char *fmt;
438 RTX_CODE code;
439 size_t i, len;
440 int j;
441
442 code = GET_CODE (pattern);
443 switch (code)
444 {
445 case MATCH_SCRATCH:
446 return;
447
448 case MATCH_INSN:
449 case MATCH_OPERAND:
450 case MATCH_OPERATOR:
451 {
452 const char *pred_name = XSTR (pattern, 1);
453 int allows_non_lvalue = 1, allows_non_const = 1;
454 int special_mode_pred = 0;
455 const char *c_test;
456
457 if (GET_CODE (insn) == DEFINE_INSN)
458 c_test = XSTR (insn, 2);
459 else
460 c_test = XSTR (insn, 1);
461
462 if (pred_name[0] != 0)
463 {
464 for (i = 0; i < NUM_KNOWN_PREDS; i++)
465 if (! strcmp (preds[i].name, pred_name))
466 break;
467
468 if (i < NUM_KNOWN_PREDS)
469 {
470 int j;
471
472 allows_non_lvalue = allows_non_const = 0;
473 for (j = 0; preds[i].codes[j] != 0; j++)
474 {
475 RTX_CODE c = preds[i].codes[j];
476 if (c != LABEL_REF
477 && c != SYMBOL_REF
478 && c != CONST_INT
479 && c != CONST_DOUBLE
480 && c != CONST
481 && c != HIGH
482 && c != CONSTANT_P_RTX)
483 allows_non_const = 1;
484
485 if (c != REG
486 && c != SUBREG
487 && c != MEM
488 && c != CONCAT
489 && c != PARALLEL
490 && c != STRICT_LOW_PART)
491 allows_non_lvalue = 1;
492 }
493 }
494 else
495 {
496 #ifdef PREDICATE_CODES
497 /* If the port has a list of the predicates it uses but
498 omits one, warn. */
499 message_with_line (pattern_lineno,
500 "warning: `%s' not in PREDICATE_CODES",
501 pred_name);
502 #endif
503 }
504
505 for (i = 0; i < NUM_SPECIAL_MODE_PREDS; ++i)
506 if (strcmp (pred_name, special_mode_pred_table[i]) == 0)
507 {
508 special_mode_pred = 1;
509 break;
510 }
511 }
512
513 /* A MATCH_OPERAND that is a SET should have an output reload. */
514 if (set
515 && code == MATCH_OPERAND
516 && XSTR (pattern, 2)[0] != '\0'
517 && XSTR (pattern, 2)[0] != '='
518 && XSTR (pattern, 2)[0] != '+')
519 {
520 message_with_line (pattern_lineno,
521 "operand %d missing output reload",
522 XINT (pattern, 0));
523 error_count++;
524 }
525
526 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
527 while not likely to occur at runtime, results in less efficient
528 code from insn-recog.c. */
529 if (set
530 && pred_name[0] != '\0'
531 && allows_non_lvalue)
532 {
533 message_with_line (pattern_lineno,
534 "warning: destination operand %d allows non-lvalue",
535 XINT (pattern, 0));
536 }
537
538 /* A modeless MATCH_OPERAND can be handy when we can
539 check for multiple modes in the c_test. In most other cases,
540 it is a mistake. Only DEFINE_INSN is eligible, since SPLIT
541 and PEEP2 can FAIL within the output pattern. Exclude
542 address_operand, since its mode is related to the mode of
543 the memory not the operand. Exclude the SET_DEST of a call
544 instruction, as that is a common idiom. */
545
546 if (GET_MODE (pattern) == VOIDmode
547 && code == MATCH_OPERAND
548 && GET_CODE (insn) == DEFINE_INSN
549 && allows_non_const
550 && ! special_mode_pred
551 && pred_name[0] != '\0'
552 && strcmp (pred_name, "address_operand") != 0
553 && strstr (c_test, "operands") == NULL
554 && ! (set
555 && GET_CODE (set) == SET
556 && GET_CODE (SET_SRC (set)) == CALL))
557 {
558 message_with_line (pattern_lineno,
559 "warning: operand %d missing mode?",
560 XINT (pattern, 0));
561 }
562 return;
563 }
564
565 case SET:
566 {
567 enum machine_mode dmode, smode;
568 rtx dest, src;
569
570 dest = SET_DEST (pattern);
571 src = SET_SRC (pattern);
572
573 /* Find the referant for a DUP. */
574
575 if (GET_CODE (dest) == MATCH_DUP
576 || GET_CODE (dest) == MATCH_OP_DUP
577 || GET_CODE (dest) == MATCH_PAR_DUP)
578 dest = find_operand (insn, XINT (dest, 0));
579
580 if (GET_CODE (src) == MATCH_DUP
581 || GET_CODE (src) == MATCH_OP_DUP
582 || GET_CODE (src) == MATCH_PAR_DUP)
583 src = find_operand (insn, XINT (src, 0));
584
585 /* STRICT_LOW_PART is a wrapper. Its argument is the real
586 destination, and it's mode should match the source. */
587 if (GET_CODE (dest) == STRICT_LOW_PART)
588 dest = XEXP (dest, 0);
589
590 dmode = GET_MODE (dest);
591 smode = GET_MODE (src);
592
593 /* The mode of an ADDRESS_OPERAND is the mode of the memory
594 reference, not the mode of the address. */
595 if (GET_CODE (src) == MATCH_OPERAND
596 && ! strcmp (XSTR (src, 1), "address_operand"))
597 ;
598
599 /* The operands of a SET must have the same mode unless one
600 is VOIDmode. */
601 else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
602 {
603 message_with_line (pattern_lineno,
604 "mode mismatch in set: %smode vs %smode",
605 GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
606 error_count++;
607 }
608
609 /* If only one of the operands is VOIDmode, and PC or CC0 is
610 not involved, it's probably a mistake. */
611 else if (dmode != smode
612 && GET_CODE (dest) != PC
613 && GET_CODE (dest) != CC0
614 && GET_CODE (src) != PC
615 && GET_CODE (src) != CC0
616 && GET_CODE (src) != CONST_INT)
617 {
618 const char *which;
619 which = (dmode == VOIDmode ? "destination" : "source");
620 message_with_line (pattern_lineno,
621 "warning: %s missing a mode?", which);
622 }
623
624 if (dest != SET_DEST (pattern))
625 validate_pattern (dest, insn, pattern);
626 validate_pattern (SET_DEST (pattern), insn, pattern);
627 validate_pattern (SET_SRC (pattern), insn, NULL_RTX);
628 return;
629 }
630
631 case CLOBBER:
632 validate_pattern (SET_DEST (pattern), insn, pattern);
633 return;
634
635 case LABEL_REF:
636 if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
637 {
638 message_with_line (pattern_lineno,
639 "operand to label_ref %smode not VOIDmode",
640 GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
641 error_count++;
642 }
643 break;
644
645 default:
646 break;
647 }
648
649 fmt = GET_RTX_FORMAT (code);
650 len = GET_RTX_LENGTH (code);
651 for (i = 0; i < len; i++)
652 {
653 switch (fmt[i])
654 {
655 case 'e': case 'u':
656 validate_pattern (XEXP (pattern, i), insn, NULL_RTX);
657 break;
658
659 case 'E':
660 for (j = 0; j < XVECLEN (pattern, i); j++)
661 validate_pattern (XVECEXP (pattern, i, j), insn, NULL_RTX);
662 break;
663
664 case 'i': case 'w': case '0': case 's':
665 break;
666
667 default:
668 abort ();
669 }
670 }
671 }
672
673 /* Create a chain of nodes to verify that an rtl expression matches
674 PATTERN.
675
676 LAST is a pointer to the listhead in the previous node in the chain (or
677 in the calling function, for the first node).
678
679 POSITION is the string representing the current position in the insn.
680
681 INSN_TYPE is the type of insn for which we are emitting code.
682
683 A pointer to the final node in the chain is returned. */
684
685 static struct decision *
686 add_to_sequence (pattern, last, position, insn_type, top)
687 rtx pattern;
688 struct decision_head *last;
689 const char *position;
690 enum routine_type insn_type;
691 int top;
692 {
693 RTX_CODE code;
694 struct decision *this, *sub;
695 struct decision_test *test;
696 struct decision_test **place;
697 char *subpos;
698 register size_t i;
699 register const char *fmt;
700 int depth = strlen (position);
701 int len;
702 enum machine_mode mode;
703
704 if (depth > max_depth)
705 max_depth = depth;
706
707 subpos = (char *) alloca (depth + 2);
708 strcpy (subpos, position);
709 subpos[depth + 1] = 0;
710
711 sub = this = new_decision (position, last);
712 place = &this->tests;
713
714 restart:
715 mode = GET_MODE (pattern);
716 code = GET_CODE (pattern);
717
718 switch (code)
719 {
720 case PARALLEL:
721 /* Toplevel peephole pattern. */
722 if (insn_type == PEEPHOLE2 && top)
723 {
724 /* We don't need the node we just created -- unlink it. */
725 last->first = last->last = NULL;
726
727 for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++)
728 {
729 /* Which insn we're looking at is represented by A-Z. We don't
730 ever use 'A', however; it is always implied. */
731
732 subpos[depth] = (i > 0 ? 'A' + i : 0);
733 sub = add_to_sequence (XVECEXP (pattern, 0, i),
734 last, subpos, insn_type, 0);
735 last = &sub->success;
736 }
737 return sub;
738 }
739
740 /* Else nothing special. */
741 break;
742
743 case MATCH_OPERAND:
744 case MATCH_SCRATCH:
745 case MATCH_OPERATOR:
746 case MATCH_PARALLEL:
747 case MATCH_INSN:
748 {
749 const char *pred_name;
750 RTX_CODE was_code = code;
751 int allows_const_int = 1;
752
753 if (code == MATCH_SCRATCH)
754 {
755 pred_name = "scratch_operand";
756 code = UNKNOWN;
757 }
758 else
759 {
760 pred_name = XSTR (pattern, 1);
761 if (code == MATCH_PARALLEL)
762 code = PARALLEL;
763 else
764 code = UNKNOWN;
765 }
766
767 /* We know exactly what const_int_operand matches -- any CONST_INT. */
768 if (strcmp ("const_int_operand", pred_name) == 0)
769 {
770 code = CONST_INT;
771 mode = VOIDmode;
772 }
773 else if (pred_name[0] != 0)
774 {
775 test = new_decision_test (DT_pred, &place);
776 test->u.pred.name = pred_name;
777 test->u.pred.mode = mode;
778
779 /* See if we know about this predicate and save its number. If
780 we do, and it only accepts one code, note that fact. The
781 predicate `const_int_operand' only tests for a CONST_INT, so
782 if we do so we can avoid calling it at all.
783
784 Finally, if we know that the predicate does not allow
785 CONST_INT, we know that the only way the predicate can match
786 is if the modes match (here we use the kludge of relying on
787 the fact that "address_operand" accepts CONST_INT; otherwise,
788 it would have to be a special case), so we can test the mode
789 (but we need not). This fact should considerably simplify the
790 generated code. */
791
792 for (i = 0; i < NUM_KNOWN_PREDS; i++)
793 if (! strcmp (preds[i].name, pred_name))
794 break;
795
796 if (i < NUM_KNOWN_PREDS)
797 {
798 int j;
799
800 test->u.pred.index = i;
801
802 if (preds[i].codes[1] == 0 && code == UNKNOWN)
803 code = preds[i].codes[0];
804
805 allows_const_int = 0;
806 for (j = 0; preds[i].codes[j] != 0; j++)
807 if (preds[i].codes[j] == CONST_INT)
808 {
809 allows_const_int = 1;
810 break;
811 }
812 }
813 else
814 test->u.pred.index = -1;
815 }
816
817 /* Can't enforce a mode if we allow const_int. */
818 if (allows_const_int)
819 mode = VOIDmode;
820
821 /* Accept the operand, ie. record it in `operands'. */
822 test = new_decision_test (DT_accept_op, &place);
823 test->u.opno = XINT (pattern, 0);
824
825 if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL)
826 {
827 char base = (was_code == MATCH_OPERATOR ? '0' : 'a');
828 for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++)
829 {
830 subpos[depth] = i + base;
831 sub = add_to_sequence (XVECEXP (pattern, 2, i),
832 &sub->success, subpos, insn_type, 0);
833 }
834 }
835 goto fini;
836 }
837
838 case MATCH_OP_DUP:
839 code = UNKNOWN;
840
841 test = new_decision_test (DT_dup, &place);
842 test->u.dup = XINT (pattern, 0);
843
844 test = new_decision_test (DT_accept_op, &place);
845 test->u.opno = XINT (pattern, 0);
846
847 for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++)
848 {
849 subpos[depth] = i + '0';
850 sub = add_to_sequence (XVECEXP (pattern, 1, i),
851 &sub->success, subpos, insn_type, 0);
852 }
853 goto fini;
854
855 case MATCH_DUP:
856 case MATCH_PAR_DUP:
857 code = UNKNOWN;
858
859 test = new_decision_test (DT_dup, &place);
860 test->u.dup = XINT (pattern, 0);
861 goto fini;
862
863 case ADDRESS:
864 pattern = XEXP (pattern, 0);
865 goto restart;
866
867 default:
868 break;
869 }
870
871 fmt = GET_RTX_FORMAT (code);
872 len = GET_RTX_LENGTH (code);
873
874 /* Do tests against the current node first. */
875 for (i = 0; i < (size_t) len; i++)
876 {
877 if (fmt[i] == 'i')
878 {
879 if (i == 0)
880 {
881 test = new_decision_test (DT_elt_zero_int, &place);
882 test->u.intval = XINT (pattern, i);
883 }
884 else if (i == 1)
885 {
886 test = new_decision_test (DT_elt_one_int, &place);
887 test->u.intval = XINT (pattern, i);
888 }
889 else
890 abort ();
891 }
892 else if (fmt[i] == 'w')
893 {
894 if (i != 0)
895 abort ();
896
897 test = new_decision_test (DT_elt_zero_wide, &place);
898 test->u.intval = XWINT (pattern, i);
899 }
900 else if (fmt[i] == 'E')
901 {
902 if (i != 0)
903 abort ();
904
905 test = new_decision_test (DT_veclen, &place);
906 test->u.veclen = XVECLEN (pattern, i);
907 }
908 }
909
910 /* Now test our sub-patterns. */
911 for (i = 0; i < (size_t) len; i++)
912 {
913 switch (fmt[i])
914 {
915 case 'e': case 'u':
916 subpos[depth] = '0' + i;
917 sub = add_to_sequence (XEXP (pattern, i), &sub->success,
918 subpos, insn_type, 0);
919 break;
920
921 case 'E':
922 {
923 register int j;
924 for (j = 0; j < XVECLEN (pattern, i); j++)
925 {
926 subpos[depth] = 'a' + j;
927 sub = add_to_sequence (XVECEXP (pattern, i, j),
928 &sub->success, subpos, insn_type, 0);
929 }
930 break;
931 }
932
933 case 'i': case 'w':
934 /* Handled above. */
935 break;
936 case '0':
937 break;
938
939 default:
940 abort ();
941 }
942 }
943
944 fini:
945 /* Insert nodes testing mode and code, if they're still relevant,
946 before any of the nodes we may have added above. */
947 if (code != UNKNOWN)
948 {
949 place = &this->tests;
950 test = new_decision_test (DT_code, &place);
951 test->u.code = code;
952 }
953
954 if (mode != VOIDmode)
955 {
956 place = &this->tests;
957 test = new_decision_test (DT_mode, &place);
958 test->u.mode = mode;
959 }
960
961 /* If we didn't insert any tests or accept nodes, hork. */
962 if (this->tests == NULL)
963 abort ();
964
965 return sub;
966 }
967 \f
968 /* A subroutine of maybe_both_true; examines only one test.
969 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
970
971 static int
972 maybe_both_true_2 (d1, d2)
973 struct decision_test *d1, *d2;
974 {
975 if (d1->type == d2->type)
976 {
977 switch (d1->type)
978 {
979 case DT_mode:
980 return d1->u.mode == d2->u.mode;
981
982 case DT_code:
983 return d1->u.code == d2->u.code;
984
985 case DT_veclen:
986 return d1->u.veclen == d2->u.veclen;
987
988 case DT_elt_zero_int:
989 case DT_elt_one_int:
990 case DT_elt_zero_wide:
991 return d1->u.intval == d2->u.intval;
992
993 default:
994 break;
995 }
996 }
997
998 /* If either has a predicate that we know something about, set
999 things up so that D1 is the one that always has a known
1000 predicate. Then see if they have any codes in common. */
1001
1002 if (d1->type == DT_pred || d2->type == DT_pred)
1003 {
1004 if (d2->type == DT_pred)
1005 {
1006 struct decision_test *tmp;
1007 tmp = d1, d1 = d2, d2 = tmp;
1008 }
1009
1010 /* If D2 tests a mode, see if it matches D1. */
1011 if (d1->u.pred.mode != VOIDmode)
1012 {
1013 if (d2->type == DT_mode)
1014 {
1015 if (d1->u.pred.mode != d2->u.mode)
1016 return 0;
1017 }
1018 /* Don't check two predicate modes here, because if both predicates
1019 accept CONST_INT, then both can still be true even if the modes
1020 are different. If they don't accept CONST_INT, there will be a
1021 separate DT_mode that will make maybe_both_true_1 return 0. */
1022 }
1023
1024 if (d1->u.pred.index >= 0)
1025 {
1026 /* If D2 tests a code, see if it is in the list of valid
1027 codes for D1's predicate. */
1028 if (d2->type == DT_code)
1029 {
1030 const RTX_CODE *c = &preds[d1->u.pred.index].codes[0];
1031 while (*c != 0)
1032 {
1033 if (*c == d2->u.code)
1034 break;
1035 ++c;
1036 }
1037 if (*c == 0)
1038 return 0;
1039 }
1040
1041 /* Otherwise see if the predicates have any codes in common. */
1042 else if (d2->type == DT_pred && d2->u.pred.index >= 0)
1043 {
1044 const RTX_CODE *c1 = &preds[d1->u.pred.index].codes[0];
1045 int common = 0;
1046
1047 while (*c1 != 0 && !common)
1048 {
1049 const RTX_CODE *c2 = &preds[d2->u.pred.index].codes[0];
1050 while (*c2 != 0 && !common)
1051 {
1052 common = (*c1 == *c2);
1053 ++c2;
1054 }
1055 ++c1;
1056 }
1057
1058 if (!common)
1059 return 0;
1060 }
1061 }
1062 }
1063
1064 return -1;
1065 }
1066
1067 /* A subroutine of maybe_both_true; examines all the tests for a given node.
1068 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1069
1070 static int
1071 maybe_both_true_1 (d1, d2)
1072 struct decision_test *d1, *d2;
1073 {
1074 struct decision_test *t1, *t2;
1075
1076 /* A match_operand with no predicate can match anything. Recognize
1077 this by the existance of a lone DT_accept_op test. */
1078 if (d1->type == DT_accept_op || d2->type == DT_accept_op)
1079 return 1;
1080
1081 /* Eliminate pairs of tests while they can exactly match. */
1082 while (d1 && d2 && d1->type == d2->type)
1083 {
1084 if (maybe_both_true_2 (d1, d2) == 0)
1085 return 0;
1086 d1 = d1->next, d2 = d2->next;
1087 }
1088
1089 /* After that, consider all pairs. */
1090 for (t1 = d1; t1 ; t1 = t1->next)
1091 for (t2 = d2; t2 ; t2 = t2->next)
1092 if (maybe_both_true_2 (t1, t2) == 0)
1093 return 0;
1094
1095 return -1;
1096 }
1097
1098 /* Return 0 if we can prove that there is no RTL that can match both
1099 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
1100 can match both or just that we couldn't prove there wasn't such an RTL).
1101
1102 TOPLEVEL is non-zero if we are to only look at the top level and not
1103 recursively descend. */
1104
1105 static int
1106 maybe_both_true (d1, d2, toplevel)
1107 struct decision *d1, *d2;
1108 int toplevel;
1109 {
1110 struct decision *p1, *p2;
1111 int cmp;
1112
1113 /* Don't compare strings on the different positions in insn. Doing so
1114 is incorrect and results in false matches from constructs like
1115
1116 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1117 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1118 vs
1119 [(set (match_operand:HI "register_operand" "r")
1120 (match_operand:HI "register_operand" "r"))]
1121
1122 If we are presented with such, we are recursing through the remainder
1123 of a node's success nodes (from the loop at the end of this function).
1124 Skip forward until we come to a position that matches.
1125
1126 Due to the way position strings are constructed, we know that iterating
1127 forward from the lexically lower position (e.g. "00") will run into
1128 the lexically higher position (e.g. "1") and not the other way around.
1129 This saves a bit of effort. */
1130
1131 cmp = strcmp (d1->position, d2->position);
1132 if (cmp != 0)
1133 {
1134 if (toplevel)
1135 abort();
1136
1137 /* If the d2->position was lexically lower, swap. */
1138 if (cmp > 0)
1139 p1 = d1, d1 = d2, d2 = p1;
1140
1141 if (d1->success.first == 0)
1142 return 0;
1143 for (p1 = d1->success.first; p1; p1 = p1->next)
1144 if (maybe_both_true (p1, d2, 0))
1145 return 1;
1146
1147 return 0;
1148 }
1149
1150 /* Test the current level. */
1151 cmp = maybe_both_true_1 (d1->tests, d2->tests);
1152 if (cmp >= 0)
1153 return cmp;
1154
1155 /* We can't prove that D1 and D2 cannot both be true. If we are only
1156 to check the top level, return 1. Otherwise, see if we can prove
1157 that all choices in both successors are mutually exclusive. If
1158 either does not have any successors, we can't prove they can't both
1159 be true. */
1160
1161 if (toplevel || d1->success.first == 0 || d2->success.first == 0)
1162 return 1;
1163
1164 for (p1 = d1->success.first; p1; p1 = p1->next)
1165 for (p2 = d2->success.first; p2; p2 = p2->next)
1166 if (maybe_both_true (p1, p2, 0))
1167 return 1;
1168
1169 return 0;
1170 }
1171
1172 /* A subroutine of nodes_identical. Examine two tests for equivalence. */
1173
1174 static int
1175 nodes_identical_1 (d1, d2)
1176 struct decision_test *d1, *d2;
1177 {
1178 switch (d1->type)
1179 {
1180 case DT_mode:
1181 return d1->u.mode == d2->u.mode;
1182
1183 case DT_code:
1184 return d1->u.code == d2->u.code;
1185
1186 case DT_pred:
1187 return (d1->u.pred.mode == d2->u.pred.mode
1188 && strcmp (d1->u.pred.name, d2->u.pred.name) == 0);
1189
1190 case DT_c_test:
1191 return strcmp (d1->u.c_test, d2->u.c_test) == 0;
1192
1193 case DT_veclen:
1194 return d1->u.veclen == d2->u.veclen;
1195
1196 case DT_dup:
1197 return d1->u.dup == d2->u.dup;
1198
1199 case DT_elt_zero_int:
1200 case DT_elt_one_int:
1201 case DT_elt_zero_wide:
1202 return d1->u.intval == d2->u.intval;
1203
1204 case DT_accept_op:
1205 return d1->u.opno == d2->u.opno;
1206
1207 case DT_accept_insn:
1208 /* Differences will be handled in merge_accept_insn. */
1209 return 1;
1210
1211 default:
1212 abort ();
1213 }
1214 }
1215
1216 /* True iff the two nodes are identical (on one level only). Due
1217 to the way these lists are constructed, we shouldn't have to
1218 consider different orderings on the tests. */
1219
1220 static int
1221 nodes_identical (d1, d2)
1222 struct decision *d1, *d2;
1223 {
1224 struct decision_test *t1, *t2;
1225
1226 for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next)
1227 {
1228 if (t1->type != t2->type)
1229 return 0;
1230 if (! nodes_identical_1 (t1, t2))
1231 return 0;
1232 }
1233
1234 /* For success, they should now both be null. */
1235 if (t1 != t2)
1236 return 0;
1237
1238 /* Check that their subnodes are at the same position, as any one set
1239 of sibling decisions must be at the same position. */
1240 if (d1->success.first
1241 && d2->success.first
1242 && strcmp (d1->success.first->position, d2->success.first->position))
1243 return 0;
1244
1245 return 1;
1246 }
1247
1248 /* A subroutine of merge_trees; given two nodes that have been declared
1249 identical, cope with two insn accept states. If they differ in the
1250 number of clobbers, then the conflict was created by make_insn_sequence
1251 and we can drop the with-clobbers version on the floor. If both
1252 nodes have no additional clobbers, we have found an ambiguity in the
1253 source machine description. */
1254
1255 static void
1256 merge_accept_insn (oldd, addd)
1257 struct decision *oldd, *addd;
1258 {
1259 struct decision_test *old, *add;
1260
1261 for (old = oldd->tests; old; old = old->next)
1262 if (old->type == DT_accept_insn)
1263 break;
1264 if (old == NULL)
1265 return;
1266
1267 for (add = addd->tests; add; add = add->next)
1268 if (add->type == DT_accept_insn)
1269 break;
1270 if (add == NULL)
1271 return;
1272
1273 /* If one node is for a normal insn and the second is for the base
1274 insn with clobbers stripped off, the second node should be ignored. */
1275
1276 if (old->u.insn.num_clobbers_to_add == 0
1277 && add->u.insn.num_clobbers_to_add > 0)
1278 {
1279 /* Nothing to do here. */
1280 }
1281 else if (old->u.insn.num_clobbers_to_add > 0
1282 && add->u.insn.num_clobbers_to_add == 0)
1283 {
1284 /* In this case, replace OLD with ADD. */
1285 old->u.insn = add->u.insn;
1286 }
1287 else
1288 {
1289 message_with_line (add->u.insn.lineno, "`%s' matches `%s'",
1290 get_insn_name (add->u.insn.code_number),
1291 get_insn_name (old->u.insn.code_number));
1292 message_with_line (old->u.insn.lineno, "previous definition of `%s'",
1293 get_insn_name (old->u.insn.code_number));
1294 error_count++;
1295 }
1296 }
1297
1298 /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1299
1300 static void
1301 merge_trees (oldh, addh)
1302 struct decision_head *oldh, *addh;
1303 {
1304 struct decision *next, *add;
1305
1306 if (addh->first == 0)
1307 return;
1308 if (oldh->first == 0)
1309 {
1310 *oldh = *addh;
1311 return;
1312 }
1313
1314 /* Trying to merge bits at different positions isn't possible. */
1315 if (strcmp (oldh->first->position, addh->first->position))
1316 abort ();
1317
1318 for (add = addh->first; add ; add = next)
1319 {
1320 struct decision *old, *insert_before = NULL;
1321
1322 next = add->next;
1323
1324 /* The semantics of pattern matching state that the tests are
1325 done in the order given in the MD file so that if an insn
1326 matches two patterns, the first one will be used. However,
1327 in practice, most, if not all, patterns are unambiguous so
1328 that their order is independent. In that case, we can merge
1329 identical tests and group all similar modes and codes together.
1330
1331 Scan starting from the end of OLDH until we reach a point
1332 where we reach the head of the list or where we pass a
1333 pattern that could also be true if NEW is true. If we find
1334 an identical pattern, we can merge them. Also, record the
1335 last node that tests the same code and mode and the last one
1336 that tests just the same mode.
1337
1338 If we have no match, place NEW after the closest match we found. */
1339
1340 for (old = oldh->last; old; old = old->prev)
1341 {
1342 if (nodes_identical (old, add))
1343 {
1344 merge_accept_insn (old, add);
1345 merge_trees (&old->success, &add->success);
1346 goto merged_nodes;
1347 }
1348
1349 if (maybe_both_true (old, add, 0))
1350 break;
1351
1352 /* Insert the nodes in DT test type order, which is roughly
1353 how expensive/important the test is. Given that the tests
1354 are also ordered within the list, examining the first is
1355 sufficient. */
1356 if (add->tests->type < old->tests->type)
1357 insert_before = old;
1358 }
1359
1360 if (insert_before == NULL)
1361 {
1362 add->next = NULL;
1363 add->prev = oldh->last;
1364 oldh->last->next = add;
1365 oldh->last = add;
1366 }
1367 else
1368 {
1369 if ((add->prev = insert_before->prev) != NULL)
1370 add->prev->next = add;
1371 else
1372 oldh->first = add;
1373 add->next = insert_before;
1374 insert_before->prev = add;
1375 }
1376
1377 merged_nodes:;
1378 }
1379 }
1380 \f
1381 /* Walk the tree looking for sub-nodes that perform common tests.
1382 Factor out the common test into a new node. This enables us
1383 (depending on the test type) to emit switch statements later. */
1384
1385 static void
1386 factor_tests (head)
1387 struct decision_head *head;
1388 {
1389 struct decision *first, *next;
1390
1391 for (first = head->first; first && first->next; first = next)
1392 {
1393 enum decision_type type;
1394 struct decision *new, *old_last;
1395
1396 type = first->tests->type;
1397 next = first->next;
1398
1399 /* Want at least two compatible sequential nodes. */
1400 if (next->tests->type != type)
1401 continue;
1402
1403 /* Don't want all node types, just those we can turn into
1404 switch statements. */
1405 if (type != DT_mode
1406 && type != DT_code
1407 && type != DT_veclen
1408 && type != DT_elt_zero_int
1409 && type != DT_elt_one_int
1410 && type != DT_elt_zero_wide)
1411 continue;
1412
1413 /* If we'd been performing more than one test, create a new node
1414 below our first test. */
1415 if (first->tests->next != NULL)
1416 {
1417 new = new_decision (first->position, &first->success);
1418 new->tests = first->tests->next;
1419 first->tests->next = NULL;
1420 }
1421
1422 /* Crop the node tree off after our first test. */
1423 first->next = NULL;
1424 old_last = head->last;
1425 head->last = first;
1426
1427 /* For each compatible test, adjust to perform only one test in
1428 the top level node, then merge the node back into the tree. */
1429 do
1430 {
1431 struct decision_head h;
1432
1433 if (next->tests->next != NULL)
1434 {
1435 new = new_decision (next->position, &next->success);
1436 new->tests = next->tests->next;
1437 next->tests->next = NULL;
1438 }
1439 new = next;
1440 next = next->next;
1441 new->next = NULL;
1442 h.first = h.last = new;
1443
1444 merge_trees (head, &h);
1445 }
1446 while (next && next->tests->type == type);
1447
1448 /* After we run out of compatible tests, graft the remaining nodes
1449 back onto the tree. */
1450 if (next)
1451 {
1452 next->prev = head->last;
1453 head->last->next = next;
1454 head->last = old_last;
1455 }
1456 }
1457
1458 /* Recurse. */
1459 for (first = head->first; first; first = first->next)
1460 factor_tests (&first->success);
1461 }
1462
1463 /* After factoring, try to simplify the tests on any one node.
1464 Tests that are useful for switch statements are recognizable
1465 by having only a single test on a node -- we'll be manipulating
1466 nodes with multiple tests:
1467
1468 If we have mode tests or code tests that are redundant with
1469 predicates, remove them. */
1470
1471 static void
1472 simplify_tests (head)
1473 struct decision_head *head;
1474 {
1475 struct decision *tree;
1476
1477 for (tree = head->first; tree; tree = tree->next)
1478 {
1479 struct decision_test *a, *b;
1480
1481 a = tree->tests;
1482 b = a->next;
1483 if (b == NULL)
1484 continue;
1485
1486 /* Find a predicate node. */
1487 while (b && b->type != DT_pred)
1488 b = b->next;
1489 if (b)
1490 {
1491 /* Due to how these tests are constructed, we don't even need
1492 to check that the mode and code are compatible -- they were
1493 generated from the predicate in the first place. */
1494 while (a->type == DT_mode || a->type == DT_code)
1495 a = a->next;
1496 tree->tests = a;
1497 }
1498 }
1499
1500 /* Recurse. */
1501 for (tree = head->first; tree; tree = tree->next)
1502 simplify_tests (&tree->success);
1503 }
1504
1505 /* Count the number of subnodes of HEAD. If the number is high enough,
1506 make the first node in HEAD start a separate subroutine in the C code
1507 that is generated. */
1508
1509 static int
1510 break_out_subroutines (head, initial)
1511 struct decision_head *head;
1512 int initial;
1513 {
1514 int size = 0;
1515 struct decision *sub;
1516
1517 for (sub = head->first; sub; sub = sub->next)
1518 size += 1 + break_out_subroutines (&sub->success, 0);
1519
1520 if (size > SUBROUTINE_THRESHOLD && ! initial)
1521 {
1522 head->first->subroutine_number = ++next_subroutine_number;
1523 size = 1;
1524 }
1525 return size;
1526 }
1527
1528 /* For each node p, find the next alternative that might be true
1529 when p is true. */
1530
1531 static void
1532 find_afterward (head, real_afterward)
1533 struct decision_head *head;
1534 struct decision *real_afterward;
1535 {
1536 struct decision *p, *q, *afterward;
1537
1538 /* We can't propogate alternatives across subroutine boundaries.
1539 This is not incorrect, merely a minor optimization loss. */
1540
1541 p = head->first;
1542 afterward = (p->subroutine_number > 0 ? NULL : real_afterward);
1543
1544 for ( ; p ; p = p->next)
1545 {
1546 /* Find the next node that might be true if this one fails. */
1547 for (q = p->next; q ; q = q->next)
1548 if (maybe_both_true (p, q, 1))
1549 break;
1550
1551 /* If we reached the end of the list without finding one,
1552 use the incoming afterward position. */
1553 if (!q)
1554 q = afterward;
1555 p->afterward = q;
1556 if (q)
1557 q->need_label = 1;
1558 }
1559
1560 /* Recurse. */
1561 for (p = head->first; p ; p = p->next)
1562 if (p->success.first)
1563 find_afterward (&p->success, p->afterward);
1564
1565 /* When we are generating a subroutine, record the real afterward
1566 position in the first node where write_tree can find it, and we
1567 can do the right thing at the subroutine call site. */
1568 p = head->first;
1569 if (p->subroutine_number > 0)
1570 p->afterward = real_afterward;
1571 }
1572 \f
1573 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1574 actions are necessary to move to NEWPOS. If we fail to move to the
1575 new state, branch to node AFTERWARD if non-zero, otherwise return.
1576
1577 Failure to move to the new state can only occur if we are trying to
1578 match multiple insns and we try to step past the end of the stream. */
1579
1580 static void
1581 change_state (oldpos, newpos, afterward, indent)
1582 const char *oldpos;
1583 const char *newpos;
1584 struct decision *afterward;
1585 const char *indent;
1586 {
1587 int odepth = strlen (oldpos);
1588 int ndepth = strlen (newpos);
1589 int depth;
1590 int old_has_insn, new_has_insn;
1591
1592 /* Pop up as many levels as necessary. */
1593 for (depth = odepth; strncmp (oldpos, newpos, depth) != 0; --depth)
1594 continue;
1595
1596 /* Hunt for the last [A-Z] in both strings. */
1597 for (old_has_insn = odepth - 1; old_has_insn >= 0; --old_has_insn)
1598 if (oldpos[old_has_insn] >= 'A' && oldpos[old_has_insn] <= 'Z')
1599 break;
1600 for (new_has_insn = odepth - 1; new_has_insn >= 0; --new_has_insn)
1601 if (newpos[new_has_insn] >= 'A' && newpos[new_has_insn] <= 'Z')
1602 break;
1603
1604 /* Make sure to reset the _last_insn pointer when popping back up. */
1605 if (old_has_insn >= 0 && new_has_insn < 0)
1606 printf ("%s_last_insn = insn;\n", indent);
1607
1608 /* Go down to desired level. */
1609 while (depth < ndepth)
1610 {
1611 /* It's a different insn from the first one. */
1612 if (newpos[depth] >= 'A' && newpos[depth] <= 'Z')
1613 {
1614 /* We can only fail if we're moving down the tree. */
1615 if (old_has_insn >= 0 && oldpos[old_has_insn] >= newpos[depth])
1616 {
1617 printf ("%s_last_insn = recog_next_insn (insn, %d);\n",
1618 indent, newpos[depth] - 'A');
1619 }
1620 else
1621 {
1622 printf ("%stem = recog_next_insn (insn, %d);\n",
1623 indent, newpos[depth] - 'A');
1624 printf ("%sif (tem == NULL_RTX)\n", indent);
1625 if (afterward)
1626 printf ("%s goto L%d;\n", indent, afterward->number);
1627 else
1628 printf ("%s goto ret0;\n", indent);
1629 printf ("%s_last_insn = tem;\n", indent);
1630 }
1631 printf ("%sx%d = PATTERN (_last_insn);\n", indent, depth + 1);
1632 }
1633 else if (newpos[depth] >= 'a' && newpos[depth] <= 'z')
1634 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1635 indent, depth + 1, depth, newpos[depth] - 'a');
1636 else
1637 printf ("%sx%d = XEXP (x%d, %c);\n",
1638 indent, depth + 1, depth, newpos[depth]);
1639 ++depth;
1640 }
1641 }
1642 \f
1643 /* Print the enumerator constant for CODE -- the upcase version of
1644 the name. */
1645
1646 static void
1647 print_code (code)
1648 enum rtx_code code;
1649 {
1650 register const char *p;
1651 for (p = GET_RTX_NAME (code); *p; p++)
1652 putchar (TOUPPER (*p));
1653 }
1654
1655 /* Emit code to cross an afterward link -- change state and branch. */
1656
1657 static void
1658 write_afterward (start, afterward, indent)
1659 struct decision *start;
1660 struct decision *afterward;
1661 const char *indent;
1662 {
1663 if (!afterward || start->subroutine_number > 0)
1664 printf("%sgoto ret0;\n", indent);
1665 else
1666 {
1667 change_state (start->position, afterward->position, NULL, indent);
1668 printf ("%sgoto L%d;\n", indent, afterward->number);
1669 }
1670 }
1671
1672 /* Emit a switch statement, if possible, for an initial sequence of
1673 nodes at START. Return the first node yet untested. */
1674
1675 static struct decision *
1676 write_switch (start, depth)
1677 struct decision *start;
1678 int depth;
1679 {
1680 struct decision *p = start;
1681 enum decision_type type = p->tests->type;
1682
1683 /* If we have two or more nodes in sequence that test the same one
1684 thing, we may be able to use a switch statement. */
1685
1686 if (!p->next
1687 || p->tests->next
1688 || p->next->tests->type != type
1689 || p->next->tests->next)
1690 return p;
1691
1692 /* DT_code is special in that we can do interesting things with
1693 known predicates at the same time. */
1694 if (type == DT_code)
1695 {
1696 char codemap[NUM_RTX_CODE];
1697 struct decision *ret;
1698
1699 memset (codemap, 0, sizeof(codemap));
1700
1701 printf (" switch (GET_CODE (x%d))\n {\n", depth);
1702 do
1703 {
1704 RTX_CODE code = p->tests->u.code;
1705 printf (" case ");
1706 print_code (code);
1707 printf (":\n goto L%d;\n", p->success.first->number);
1708 p->success.first->need_label = 1;
1709
1710 codemap[code] = 1;
1711 p = p->next;
1712 }
1713 while (p && p->tests->type == DT_code && !p->tests->next);
1714
1715 /* If P is testing a predicate that we know about and we haven't
1716 seen any of the codes that are valid for the predicate, we can
1717 write a series of "case" statement, one for each possible code.
1718 Since we are already in a switch, these redundant tests are very
1719 cheap and will reduce the number of predicates called. */
1720
1721 /* Note that while we write out cases for these predicates here,
1722 we don't actually write the test here, as it gets kinda messy.
1723 It is trivial to leave this to later by telling our caller that
1724 we only processed the CODE tests. */
1725 ret = p;
1726
1727 while (p && p->tests->type == DT_pred
1728 && p->tests->u.pred.index >= 0)
1729 {
1730 const RTX_CODE *c;
1731
1732 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1733 if (codemap[(int) *c] != 0)
1734 goto pred_done;
1735
1736 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1737 {
1738 printf (" case ");
1739 print_code (*c);
1740 printf (":\n");
1741 codemap[(int) *c] = 1;
1742 }
1743
1744 printf (" goto L%d;\n", p->number);
1745 p->need_label = 1;
1746 p = p->next;
1747 }
1748
1749 pred_done:
1750 /* Make the default case skip the predicates we managed to match. */
1751
1752 printf (" default:\n");
1753 if (p != ret)
1754 {
1755 if (p)
1756 {
1757 printf (" goto L%d;\n", p->number);
1758 p->need_label = 1;
1759 }
1760 else
1761 write_afterward (start, start->afterward, " ");
1762 }
1763 else
1764 printf (" break;\n");
1765 printf (" }\n");
1766
1767 return ret;
1768 }
1769 else if (type == DT_mode
1770 || type == DT_veclen
1771 || type == DT_elt_zero_int
1772 || type == DT_elt_one_int
1773 || type == DT_elt_zero_wide)
1774 {
1775 const char *str;
1776
1777 printf (" switch (");
1778 switch (type)
1779 {
1780 case DT_mode:
1781 str = "GET_MODE (x%d)";
1782 break;
1783 case DT_veclen:
1784 str = "XVECLEN (x%d, 0)";
1785 break;
1786 case DT_elt_zero_int:
1787 str = "XINT (x%d, 0)";
1788 break;
1789 case DT_elt_one_int:
1790 str = "XINT (x%d, 1)";
1791 break;
1792 case DT_elt_zero_wide:
1793 str = "XWINT (x%d, 0)";
1794 break;
1795 default:
1796 abort ();
1797 }
1798 printf (str, depth);
1799 printf (")\n {\n");
1800
1801 do
1802 {
1803 printf (" case ");
1804 switch (type)
1805 {
1806 case DT_mode:
1807 printf ("%smode", GET_MODE_NAME (p->tests->u.mode));
1808 break;
1809 case DT_veclen:
1810 printf ("%d", p->tests->u.veclen);
1811 break;
1812 case DT_elt_zero_int:
1813 case DT_elt_one_int:
1814 case DT_elt_zero_wide:
1815 printf (HOST_WIDE_INT_PRINT_DEC, p->tests->u.intval);
1816 break;
1817 default:
1818 abort ();
1819 }
1820 printf (":\n goto L%d;\n", p->success.first->number);
1821 p->success.first->need_label = 1;
1822
1823 p = p->next;
1824 }
1825 while (p && p->tests->type == type && !p->tests->next);
1826
1827 printf (" default:\n break;\n }\n");
1828
1829 return p;
1830 }
1831 else
1832 {
1833 /* None of the other tests are ameanable. */
1834 return p;
1835 }
1836 }
1837
1838 /* Emit code for one test. */
1839
1840 static void
1841 write_cond (p, depth, subroutine_type)
1842 struct decision_test *p;
1843 int depth;
1844 enum routine_type subroutine_type;
1845 {
1846 switch (p->type)
1847 {
1848 case DT_mode:
1849 printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode));
1850 break;
1851
1852 case DT_code:
1853 printf ("GET_CODE (x%d) == ", depth);
1854 print_code (p->u.code);
1855 break;
1856
1857 case DT_veclen:
1858 printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen);
1859 break;
1860
1861 case DT_elt_zero_int:
1862 printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval);
1863 break;
1864
1865 case DT_elt_one_int:
1866 printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval);
1867 break;
1868
1869 case DT_elt_zero_wide:
1870 printf ("XWINT (x%d, 0) == ", depth);
1871 printf (HOST_WIDE_INT_PRINT_DEC, p->u.intval);
1872 break;
1873
1874 case DT_dup:
1875 printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup);
1876 break;
1877
1878 case DT_pred:
1879 printf ("%s (x%d, %smode)", p->u.pred.name, depth,
1880 GET_MODE_NAME (p->u.pred.mode));
1881 break;
1882
1883 case DT_c_test:
1884 printf ("(%s)", p->u.c_test);
1885 break;
1886
1887 case DT_accept_insn:
1888 switch (subroutine_type)
1889 {
1890 case RECOG:
1891 if (p->u.insn.num_clobbers_to_add == 0)
1892 abort ();
1893 printf ("pnum_clobbers != NULL");
1894 break;
1895
1896 default:
1897 abort ();
1898 }
1899 break;
1900
1901 default:
1902 abort ();
1903 }
1904 }
1905
1906 /* Emit code for one action. The previous tests have succeeded;
1907 TEST is the last of the chain. In the normal case we simply
1908 perform a state change. For the `accept' tests we must do more work. */
1909
1910 static void
1911 write_action (test, depth, uncond, success, subroutine_type)
1912 struct decision_test *test;
1913 int depth, uncond;
1914 struct decision *success;
1915 enum routine_type subroutine_type;
1916 {
1917 const char *indent;
1918 int want_close = 0;
1919
1920 if (uncond)
1921 indent = " ";
1922 else if (test->type == DT_accept_op || test->type == DT_accept_insn)
1923 {
1924 fputs (" {\n", stdout);
1925 indent = " ";
1926 want_close = 1;
1927 }
1928 else
1929 indent = " ";
1930
1931 if (test->type == DT_accept_op)
1932 {
1933 printf("%soperands[%d] = x%d;\n", indent, test->u.opno, depth);
1934
1935 /* Only allow DT_accept_insn to follow. */
1936 if (test->next)
1937 {
1938 test = test->next;
1939 if (test->type != DT_accept_insn)
1940 abort ();
1941 }
1942 }
1943
1944 /* Sanity check that we're now at the end of the list of tests. */
1945 if (test->next)
1946 abort ();
1947
1948 if (test->type == DT_accept_insn)
1949 {
1950 switch (subroutine_type)
1951 {
1952 case RECOG:
1953 if (test->u.insn.num_clobbers_to_add != 0)
1954 printf ("%s*pnum_clobbers = %d;\n",
1955 indent, test->u.insn.num_clobbers_to_add);
1956 printf ("%sreturn %d;\n", indent, test->u.insn.code_number);
1957 break;
1958
1959 case SPLIT:
1960 printf ("%sreturn gen_split_%d (operands);\n",
1961 indent, test->u.insn.code_number);
1962 break;
1963
1964 case PEEPHOLE2:
1965 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
1966 indent, test->u.insn.code_number);
1967 printf ("%sif (tem != 0)\n%s goto ret1;\n", indent, indent);
1968 break;
1969
1970 default:
1971 abort ();
1972 }
1973 }
1974 else
1975 {
1976 printf("%sgoto L%d;\n", indent, success->number);
1977 success->need_label = 1;
1978 }
1979
1980 if (want_close)
1981 fputs (" }\n", stdout);
1982 }
1983
1984 /* Return 1 if the test is always true and has no fallthru path. Return -1
1985 if the test does have a fallthru path, but requires that the condition be
1986 terminated. Otherwise return 0 for a normal test. */
1987 /* ??? is_unconditional is a stupid name for a tri-state function. */
1988
1989 static int
1990 is_unconditional (t, subroutine_type)
1991 struct decision_test *t;
1992 enum routine_type subroutine_type;
1993 {
1994 if (t->type == DT_accept_op)
1995 return 1;
1996
1997 if (t->type == DT_accept_insn)
1998 {
1999 switch (subroutine_type)
2000 {
2001 case RECOG:
2002 return (t->u.insn.num_clobbers_to_add == 0);
2003 case SPLIT:
2004 return 1;
2005 case PEEPHOLE2:
2006 return -1;
2007 default:
2008 abort ();
2009 }
2010 }
2011
2012 return 0;
2013 }
2014
2015 /* Emit code for one node -- the conditional and the accompanying action.
2016 Return true if there is no fallthru path. */
2017
2018 static int
2019 write_node (p, depth, subroutine_type)
2020 struct decision *p;
2021 int depth;
2022 enum routine_type subroutine_type;
2023 {
2024 struct decision_test *test, *last_test;
2025 int uncond;
2026
2027 last_test = test = p->tests;
2028 uncond = is_unconditional (test, subroutine_type);
2029 if (uncond == 0)
2030 {
2031 printf (" if (");
2032 write_cond (test, depth, subroutine_type);
2033
2034 while ((test = test->next) != NULL)
2035 {
2036 int uncond2;
2037
2038 last_test = test;
2039 uncond2 = is_unconditional (test, subroutine_type);
2040 if (uncond2 != 0)
2041 break;
2042
2043 printf ("\n && ");
2044 write_cond (test, depth, subroutine_type);
2045 }
2046
2047 printf (")\n");
2048 }
2049
2050 write_action (last_test, depth, uncond, p->success.first, subroutine_type);
2051
2052 return uncond > 0;
2053 }
2054
2055 /* Emit code for all of the sibling nodes of HEAD. */
2056
2057 static void
2058 write_tree_1 (head, depth, subroutine_type)
2059 struct decision_head *head;
2060 int depth;
2061 enum routine_type subroutine_type;
2062 {
2063 struct decision *p, *next;
2064 int uncond = 0;
2065
2066 for (p = head->first; p ; p = next)
2067 {
2068 /* The label for the first element was printed in write_tree. */
2069 if (p != head->first && p->need_label)
2070 OUTPUT_LABEL (" ", p->number);
2071
2072 /* Attempt to write a switch statement for a whole sequence. */
2073 next = write_switch (p, depth);
2074 if (p != next)
2075 uncond = 0;
2076 else
2077 {
2078 /* Failed -- fall back and write one node. */
2079 uncond = write_node (p, depth, subroutine_type);
2080 next = p->next;
2081 }
2082 }
2083
2084 /* Finished with this chain. Close a fallthru path by branching
2085 to the afterward node. */
2086 if (! uncond)
2087 write_afterward (head->last, head->last->afterward, " ");
2088 }
2089
2090 /* Write out the decision tree starting at HEAD. PREVPOS is the
2091 position at the node that branched to this node. */
2092
2093 static void
2094 write_tree (head, prevpos, type, initial)
2095 struct decision_head *head;
2096 const char *prevpos;
2097 enum routine_type type;
2098 int initial;
2099 {
2100 register struct decision *p = head->first;
2101
2102 putchar ('\n');
2103 if (p->need_label)
2104 OUTPUT_LABEL (" ", p->number);
2105
2106 if (! initial && p->subroutine_number > 0)
2107 {
2108 static const char * const name_prefix[] = {
2109 "recog", "split", "peephole2"
2110 };
2111
2112 static const char * const call_suffix[] = {
2113 ", pnum_clobbers", "", ", _plast_insn"
2114 };
2115
2116 /* This node has been broken out into a separate subroutine.
2117 Call it, test the result, and branch accordingly. */
2118
2119 if (p->afterward)
2120 {
2121 printf (" tem = %s_%d (x0, insn%s);\n",
2122 name_prefix[type], p->subroutine_number, call_suffix[type]);
2123 if (IS_SPLIT (type))
2124 printf (" if (tem != 0)\n return tem;\n");
2125 else
2126 printf (" if (tem >= 0)\n return tem;\n");
2127
2128 change_state (p->position, p->afterward->position, NULL, " ");
2129 printf (" goto L%d;\n", p->afterward->number);
2130 }
2131 else
2132 {
2133 printf (" return %s_%d (x0, insn%s);\n",
2134 name_prefix[type], p->subroutine_number, call_suffix[type]);
2135 }
2136 }
2137 else
2138 {
2139 int depth = strlen (p->position);
2140
2141 change_state (prevpos, p->position, head->last->afterward, " ");
2142 write_tree_1 (head, depth, type);
2143
2144 for (p = head->first; p; p = p->next)
2145 if (p->success.first)
2146 write_tree (&p->success, p->position, type, 0);
2147 }
2148 }
2149
2150 /* Write out a subroutine of type TYPE to do comparisons starting at
2151 node TREE. */
2152
2153 static void
2154 write_subroutine (head, type)
2155 struct decision_head *head;
2156 enum routine_type type;
2157 {
2158 static const char * const proto_pattern[] = {
2159 "%sint recog%s PROTO ((rtx, rtx, int *));\n",
2160 "%srtx split%s PROTO ((rtx, rtx));\n",
2161 "%srtx peephole2%s PROTO ((rtx, rtx, rtx *));\n"
2162 };
2163
2164 static const char * const decl_pattern[] = {
2165 "%sint\n\
2166 recog%s (x0, insn, pnum_clobbers)\n\
2167 register rtx x0;\n\
2168 rtx insn ATTRIBUTE_UNUSED;\n\
2169 int *pnum_clobbers ATTRIBUTE_UNUSED;\n",
2170
2171 "%srtx\n\
2172 split%s (x0, insn)\n\
2173 register rtx x0;\n\
2174 rtx insn ATTRIBUTE_UNUSED;\n",
2175
2176 "%srtx\n\
2177 peephole2%s (x0, insn, _plast_insn)\n\
2178 register rtx x0;\n\
2179 rtx insn ATTRIBUTE_UNUSED;\n\
2180 rtx *_plast_insn ATTRIBUTE_UNUSED;\n"
2181 };
2182
2183 int subfunction = head->first ? head->first->subroutine_number : 0;
2184 const char *s_or_e;
2185 char extension[32];
2186 int i;
2187
2188 s_or_e = subfunction ? "static " : "";
2189
2190 if (subfunction)
2191 sprintf (extension, "_%d", subfunction);
2192 else if (type == RECOG)
2193 extension[0] = '\0';
2194 else
2195 strcpy (extension, "_insns");
2196
2197 printf (proto_pattern[type], s_or_e, extension);
2198 printf (decl_pattern[type], s_or_e, extension);
2199
2200 printf ("{\n register rtx * const operands = &recog_data.operand[0];\n");
2201 for (i = 1; i <= max_depth; i++)
2202 printf (" register rtx x%d ATTRIBUTE_UNUSED;\n", i);
2203
2204 if (type == PEEPHOLE2)
2205 printf (" register rtx _last_insn = insn;\n");
2206 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int");
2207
2208 if (head->first)
2209 write_tree (head, "", type, 1);
2210 else
2211 printf (" goto ret0;\n");
2212
2213 if (type == PEEPHOLE2)
2214 printf (" ret1:\n *_plast_insn = _last_insn;\n return tem;\n");
2215 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1);
2216 }
2217
2218 /* In break_out_subroutines, we discovered the boundaries for the
2219 subroutines, but did not write them out. Do so now. */
2220
2221 static void
2222 write_subroutines (head, type)
2223 struct decision_head *head;
2224 enum routine_type type;
2225 {
2226 struct decision *p;
2227
2228 for (p = head->first; p ; p = p->next)
2229 if (p->success.first)
2230 write_subroutines (&p->success, type);
2231
2232 if (head->first->subroutine_number > 0)
2233 write_subroutine (head, type);
2234 }
2235
2236 /* Begin the output file. */
2237
2238 static void
2239 write_header ()
2240 {
2241 puts ("\
2242 /* Generated automatically by the program `genrecog' from the target\n\
2243 machine description file. */\n\
2244 \n\
2245 #include \"config.h\"\n\
2246 #include \"system.h\"\n\
2247 #include \"rtl.h\"\n\
2248 #include \"tm_p.h\"\n\
2249 #include \"function.h\"\n\
2250 #include \"insn-config.h\"\n\
2251 #include \"recog.h\"\n\
2252 #include \"real.h\"\n\
2253 #include \"output.h\"\n\
2254 #include \"flags.h\"\n\
2255 #include \"hard-reg-set.h\"\n\
2256 #include \"resource.h\"\n\
2257 \n");
2258
2259 puts ("\n\
2260 /* `recog' contains a decision tree that recognizes whether the rtx\n\
2261 X0 is a valid instruction.\n\
2262 \n\
2263 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2264 returns a nonnegative number which is the insn code number for the\n\
2265 pattern that matched. This is the same as the order in the machine\n\
2266 description of the entry that matched. This number can be used as an\n\
2267 index into `insn_data' and other tables.\n\
2268 \n\
2269 The third argument to recog is an optional pointer to an int. If\n\
2270 present, recog will accept a pattern if it matches except for missing\n\
2271 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2272 the optional pointer will be set to the number of CLOBBERs that need\n\
2273 to be added (it should be initialized to zero by the caller). If it\n\
2274 is set nonzero, the caller should allocate a PARALLEL of the\n\
2275 appropriate size, copy the initial entries, and call add_clobbers\n\
2276 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2277 ");
2278
2279 puts ("\n\
2280 The function split_insns returns 0 if the rtl could not\n\
2281 be split or the split rtl in a SEQUENCE if it can be.\n\
2282 \n\
2283 The function peephole2_insns returns 0 if the rtl could not\n\
2284 be matched. If there was a match, the new rtl is returned in a SEQUENCE,\n\
2285 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2286 */\n\n");
2287 }
2288
2289 \f
2290 /* Construct and return a sequence of decisions
2291 that will recognize INSN.
2292
2293 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2294
2295 static struct decision_head
2296 make_insn_sequence (insn, type)
2297 rtx insn;
2298 enum routine_type type;
2299 {
2300 rtx x;
2301 const char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
2302 struct decision *last;
2303 struct decision_test *test, **place;
2304 struct decision_head head;
2305
2306 record_insn_name (next_insn_code, (type == RECOG ? XSTR (insn, 0) : NULL));
2307
2308 if (type == PEEPHOLE2)
2309 {
2310 int i, j;
2311
2312 /* peephole2 gets special treatment:
2313 - X always gets an outer parallel even if it's only one entry
2314 - we remove all traces of outer-level match_scratch and match_dup
2315 expressions here. */
2316 x = rtx_alloc (PARALLEL);
2317 PUT_MODE (x, VOIDmode);
2318 XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0));
2319 for (i = j = 0; i < XVECLEN (insn, 0); i++)
2320 {
2321 rtx tmp = XVECEXP (insn, 0, i);
2322 if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP)
2323 {
2324 XVECEXP (x, 0, j) = tmp;
2325 j++;
2326 }
2327 }
2328 XVECLEN (x, 0) = j;
2329 }
2330 else if (XVECLEN (insn, type == RECOG) == 1)
2331 x = XVECEXP (insn, type == RECOG, 0);
2332 else
2333 {
2334 x = rtx_alloc (PARALLEL);
2335 XVEC (x, 0) = XVEC (insn, type == RECOG);
2336 PUT_MODE (x, VOIDmode);
2337 }
2338
2339 validate_pattern (x, insn, NULL_RTX);
2340
2341 memset(&head, 0, sizeof(head));
2342 last = add_to_sequence (x, &head, "", type, 1);
2343
2344 /* Find the end of the test chain on the last node. */
2345 for (test = last->tests; test->next; test = test->next)
2346 continue;
2347 place = &test->next;
2348
2349 if (c_test[0])
2350 {
2351 /* Need a new node if we have another test to add. */
2352 if (test->type == DT_accept_op)
2353 {
2354 last = new_decision ("", &last->success);
2355 place = &last->tests;
2356 }
2357 test = new_decision_test (DT_c_test, &place);
2358 test->u.c_test = c_test;
2359 }
2360
2361 test = new_decision_test (DT_accept_insn, &place);
2362 test->u.insn.code_number = next_insn_code;
2363 test->u.insn.lineno = pattern_lineno;
2364 test->u.insn.num_clobbers_to_add = 0;
2365
2366 switch (type)
2367 {
2368 case RECOG:
2369 /* If this is an DEFINE_INSN and X is a PARALLEL, see if it ends
2370 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2371 If so, set up to recognize the pattern without these CLOBBERs. */
2372
2373 if (GET_CODE (x) == PARALLEL)
2374 {
2375 int i;
2376
2377 /* Find the last non-clobber in the parallel. */
2378 for (i = XVECLEN (x, 0); i > 0; i--)
2379 {
2380 rtx y = XVECEXP (x, 0, i - 1);
2381 if (GET_CODE (y) != CLOBBER
2382 || (GET_CODE (XEXP (y, 0)) != REG
2383 && GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH))
2384 break;
2385 }
2386
2387 if (i != XVECLEN (x, 0))
2388 {
2389 rtx new;
2390 struct decision_head clobber_head;
2391
2392 /* Build a similar insn without the clobbers. */
2393 if (i == 1)
2394 new = XVECEXP (x, 0, 0);
2395 else
2396 {
2397 int j;
2398
2399 new = rtx_alloc (PARALLEL);
2400 XVEC (new, 0) = rtvec_alloc (i);
2401 for (j = i - 1; j >= 0; j--)
2402 XVECEXP (new, 0, j) = XVECEXP (x, 0, j);
2403 }
2404
2405 /* Recognize it. */
2406 memset (&clobber_head, 0, sizeof(clobber_head));
2407 last = add_to_sequence (new, &clobber_head, "", type, 1);
2408
2409 /* Find the end of the test chain on the last node. */
2410 for (test = last->tests; test->next; test = test->next)
2411 continue;
2412
2413 /* We definitely have a new test to add -- create a new
2414 node if needed. */
2415 place = &test->next;
2416 if (test->type == DT_accept_op)
2417 {
2418 last = new_decision ("", &last->success);
2419 place = &last->tests;
2420 }
2421
2422 if (c_test[0])
2423 {
2424 test = new_decision_test (DT_c_test, &place);
2425 test->u.c_test = c_test;
2426 }
2427
2428 test = new_decision_test (DT_accept_insn, &place);
2429 test->u.insn.code_number = next_insn_code;
2430 test->u.insn.lineno = pattern_lineno;
2431 test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i;
2432
2433 merge_trees (&head, &clobber_head);
2434 }
2435 }
2436 break;
2437
2438 case SPLIT:
2439 /* Define the subroutine we will call below and emit in genemit. */
2440 printf ("extern rtx gen_split_%d PROTO ((rtx *));\n", next_insn_code);
2441 break;
2442
2443 case PEEPHOLE2:
2444 /* Define the subroutine we will call below and emit in genemit. */
2445 printf ("extern rtx gen_peephole2_%d PROTO ((rtx, rtx *));\n",
2446 next_insn_code);
2447 break;
2448 }
2449 next_insn_code++;
2450
2451 return head;
2452 }
2453
2454 static void
2455 process_tree (head, subroutine_type)
2456 struct decision_head *head;
2457 enum routine_type subroutine_type;
2458 {
2459 if (head->first == NULL)
2460 {
2461 /* We can elide peephole2_insns, but not recog or split_insns. */
2462 if (subroutine_type == PEEPHOLE2)
2463 return;
2464 }
2465 else
2466 {
2467 factor_tests (head);
2468
2469 next_subroutine_number = 0;
2470 break_out_subroutines (head, 1);
2471 find_afterward (head, NULL);
2472
2473 /* We run this after find_afterward, because find_afterward needs
2474 the redundant DT_mode tests on predicates to determine whether
2475 two tests can both be true or not. */
2476 simplify_tests(head);
2477
2478 write_subroutines (head, subroutine_type);
2479 }
2480
2481 write_subroutine (head, subroutine_type);
2482 }
2483 \f
2484 extern int main PROTO ((int, char **));
2485
2486 int
2487 main (argc, argv)
2488 int argc;
2489 char **argv;
2490 {
2491 rtx desc;
2492 struct decision_head recog_tree, split_tree, peephole2_tree, h;
2493 FILE *infile;
2494 register int c;
2495
2496 progname = "genrecog";
2497 obstack_init (rtl_obstack);
2498
2499 memset (&recog_tree, 0, sizeof recog_tree);
2500 memset (&split_tree, 0, sizeof split_tree);
2501 memset (&peephole2_tree, 0, sizeof peephole2_tree);
2502
2503 if (argc <= 1)
2504 fatal ("No input file name.");
2505
2506 infile = fopen (argv[1], "r");
2507 if (infile == 0)
2508 {
2509 perror (argv[1]);
2510 return FATAL_EXIT_CODE;
2511 }
2512 read_rtx_filename = argv[1];
2513
2514 next_insn_code = 0;
2515 next_index = 0;
2516
2517 write_header ();
2518
2519 /* Read the machine description. */
2520
2521 while (1)
2522 {
2523 c = read_skip_spaces (infile);
2524 if (c == EOF)
2525 break;
2526 ungetc (c, infile);
2527 pattern_lineno = read_rtx_lineno;
2528
2529 desc = read_rtx (infile);
2530 if (GET_CODE (desc) == DEFINE_INSN)
2531 {
2532 h = make_insn_sequence (desc, RECOG);
2533 merge_trees (&recog_tree, &h);
2534 }
2535 else if (GET_CODE (desc) == DEFINE_SPLIT)
2536 {
2537 h = make_insn_sequence (desc, SPLIT);
2538 merge_trees (&split_tree, &h);
2539 }
2540 else if (GET_CODE (desc) == DEFINE_PEEPHOLE2)
2541 {
2542 h = make_insn_sequence (desc, PEEPHOLE2);
2543 merge_trees (&peephole2_tree, &h);
2544 }
2545
2546 if (GET_CODE (desc) == DEFINE_PEEPHOLE
2547 || GET_CODE (desc) == DEFINE_EXPAND)
2548 next_insn_code++;
2549 next_index++;
2550 }
2551
2552 if (error_count)
2553 return FATAL_EXIT_CODE;
2554
2555 puts ("\n\n");
2556
2557 process_tree (&recog_tree, RECOG);
2558 process_tree (&split_tree, SPLIT);
2559 process_tree (&peephole2_tree, PEEPHOLE2);
2560
2561 fflush (stdout);
2562 return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
2563 }
2564 \f
2565 /* Define this so we can link with print-rtl.o to get debug_rtx function. */
2566 const char *
2567 get_insn_name (code)
2568 int code;
2569 {
2570 if (code < insn_name_ptr_size)
2571 return insn_name_ptr[code];
2572 else
2573 return NULL;
2574 }
2575
2576 static void
2577 record_insn_name (code, name)
2578 int code;
2579 const char *name;
2580 {
2581 static const char *last_real_name = "insn";
2582 static int last_real_code = 0;
2583 char *new;
2584
2585 if (insn_name_ptr_size <= code)
2586 {
2587 int new_size;
2588 new_size = (insn_name_ptr_size ? insn_name_ptr_size * 2 : 512);
2589 insn_name_ptr =
2590 (char **) xrealloc (insn_name_ptr, sizeof(char *) * new_size);
2591 memset (insn_name_ptr + insn_name_ptr_size, 0,
2592 sizeof(char *) * (new_size - insn_name_ptr_size));
2593 insn_name_ptr_size = new_size;
2594 }
2595
2596 if (!name || name[0] == '\0')
2597 {
2598 new = xmalloc (strlen (last_real_name) + 10);
2599 sprintf (new, "%s+%d", last_real_name, code - last_real_code);
2600 }
2601 else
2602 {
2603 last_real_name = new = xstrdup (name);
2604 last_real_code = code;
2605 }
2606
2607 insn_name_ptr[code] = new;
2608 }
2609 \f
2610 char *
2611 xstrdup (input)
2612 const char *input;
2613 {
2614 register size_t len = strlen (input) + 1;
2615 register char *output = xmalloc (len);
2616 memcpy (output, input, len);
2617 return output;
2618 }
2619
2620 PTR
2621 xrealloc (old, size)
2622 PTR old;
2623 size_t size;
2624 {
2625 register PTR ptr;
2626 if (old)
2627 ptr = (PTR) realloc (old, size);
2628 else
2629 ptr = (PTR) malloc (size);
2630 if (!ptr)
2631 fatal ("virtual memory exhausted");
2632 return ptr;
2633 }
2634
2635 PTR
2636 xmalloc (size)
2637 size_t size;
2638 {
2639 register PTR val = (PTR) malloc (size);
2640
2641 if (val == 0)
2642 fatal ("virtual memory exhausted");
2643 return val;
2644 }
2645 \f
2646 static void
2647 debug_decision_2 (test)
2648 struct decision_test *test;
2649 {
2650 switch (test->type)
2651 {
2652 case DT_mode:
2653 fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode));
2654 break;
2655 case DT_code:
2656 fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code));
2657 break;
2658 case DT_veclen:
2659 fprintf (stderr, "veclen=%d", test->u.veclen);
2660 break;
2661 case DT_elt_zero_int:
2662 fprintf (stderr, "elt0_i=%d", (int) test->u.intval);
2663 break;
2664 case DT_elt_one_int:
2665 fprintf (stderr, "elt1_i=%d", (int) test->u.intval);
2666 break;
2667 case DT_elt_zero_wide:
2668 fprintf (stderr, "elt0_w=");
2669 fprintf (stderr, HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2670 break;
2671 case DT_dup:
2672 fprintf (stderr, "dup=%d", test->u.dup);
2673 break;
2674 case DT_pred:
2675 fprintf (stderr, "pred=(%s,%s)",
2676 test->u.pred.name, GET_MODE_NAME(test->u.pred.mode));
2677 break;
2678 case DT_c_test:
2679 {
2680 char sub[16+4];
2681 strncpy (sub, test->u.c_test, sizeof(sub));
2682 memcpy (sub+16, "...", 4);
2683 fprintf (stderr, "c_test=\"%s\"", sub);
2684 }
2685 break;
2686 case DT_accept_op:
2687 fprintf (stderr, "A_op=%d", test->u.opno);
2688 break;
2689 case DT_accept_insn:
2690 fprintf (stderr, "A_insn=(%d,%d)",
2691 test->u.insn.code_number, test->u.insn.num_clobbers_to_add);
2692 break;
2693
2694 default:
2695 abort ();
2696 }
2697 }
2698
2699 static void
2700 debug_decision_1 (d, indent)
2701 struct decision *d;
2702 int indent;
2703 {
2704 int i;
2705 struct decision_test *test;
2706
2707 if (d == NULL)
2708 {
2709 for (i = 0; i < indent; ++i)
2710 putc (' ', stderr);
2711 fputs ("(nil)\n", stderr);
2712 return;
2713 }
2714
2715 for (i = 0; i < indent; ++i)
2716 putc (' ', stderr);
2717
2718 putc ('{', stderr);
2719 test = d->tests;
2720 if (test)
2721 {
2722 debug_decision_2 (test);
2723 while ((test = test->next) != NULL)
2724 {
2725 fputs (" + ", stderr);
2726 debug_decision_2 (test);
2727 }
2728 }
2729 fprintf (stderr, "} %d n %d a %d\n", d->number,
2730 (d->next ? d->next->number : -1),
2731 (d->afterward ? d->afterward->number : -1));
2732 }
2733
2734 static void
2735 debug_decision_0 (d, indent, maxdepth)
2736 struct decision *d;
2737 int indent, maxdepth;
2738 {
2739 struct decision *n;
2740 int i;
2741
2742 if (maxdepth < 0)
2743 return;
2744 if (d == NULL)
2745 {
2746 for (i = 0; i < indent; ++i)
2747 putc (' ', stderr);
2748 fputs ("(nil)\n", stderr);
2749 return;
2750 }
2751
2752 debug_decision_1 (d, indent);
2753 for (n = d->success.first; n ; n = n->next)
2754 debug_decision_0 (n, indent + 2, maxdepth - 1);
2755 }
2756
2757 void
2758 debug_decision (d)
2759 struct decision *d;
2760 {
2761 debug_decision_0 (d, 0, 1000000);
2762 }
2763
2764 void
2765 debug_decision_list (d)
2766 struct decision *d;
2767 {
2768 while (d)
2769 {
2770 debug_decision_0 (d, 0, 0);
2771 d = d->next;
2772 }
2773 }