Makefile.in (build/genmddeps.o): Depend on $(READ_MD_H).
[gcc.git] / gcc / genrecog.c
1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 /* This program is used to produce insn-recog.c, which contains a
24 function called `recog' plus its subroutines. These functions
25 contain a decision tree that recognizes whether an rtx, the
26 argument given to recog, is a valid instruction.
27
28 recog returns -1 if the rtx is not valid. If the rtx is valid,
29 recog returns a nonnegative number which is the insn code number
30 for the pattern that matched. This is the same as the order in the
31 machine description of the entry that matched. This number can be
32 used as an index into various insn_* tables, such as insn_template,
33 insn_outfun, and insn_n_operands (found in insn-output.c).
34
35 The third argument to recog is an optional pointer to an int. If
36 present, recog will accept a pattern if it matches except for
37 missing CLOBBER expressions at the end. In that case, the value
38 pointed to by the optional pointer will be set to the number of
39 CLOBBERs that need to be added (it should be initialized to zero by
40 the caller). If it is set nonzero, the caller should allocate a
41 PARALLEL of the appropriate size, copy the initial entries, and
42 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
43
44 This program also generates the function `split_insns', which
45 returns 0 if the rtl could not be split, or it returns the split
46 rtl as an INSN list.
47
48 This program also generates the function `peephole2_insns', which
49 returns 0 if the rtl could not be matched. If there was a match,
50 the new rtl is returned in an INSN list, and LAST_INSN will point
51 to the last recognized insn in the old sequence. */
52
53 #include "bconfig.h"
54 #include "system.h"
55 #include "coretypes.h"
56 #include "tm.h"
57 #include "rtl.h"
58 #include "errors.h"
59 #include "read-md.h"
60 #include "gensupport.h"
61
62 #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
63 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
64
65 /* A listhead of decision trees. The alternatives to a node are kept
66 in a doubly-linked list so we can easily add nodes to the proper
67 place when merging. */
68
69 struct decision_head
70 {
71 struct decision *first;
72 struct decision *last;
73 };
74
75 /* These types are roughly in the order in which we'd like to test them. */
76 enum decision_type
77 {
78 DT_num_insns,
79 DT_mode, DT_code, DT_veclen,
80 DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide, DT_elt_zero_wide_safe,
81 DT_const_int,
82 DT_veclen_ge, DT_dup, DT_pred, DT_c_test,
83 DT_accept_op, DT_accept_insn
84 };
85
86 /* A single test. The two accept types aren't tests per-se, but
87 their equality (or lack thereof) does affect tree merging so
88 it is convenient to keep them here. */
89
90 struct decision_test
91 {
92 /* A linked list through the tests attached to a node. */
93 struct decision_test *next;
94
95 enum decision_type type;
96
97 union
98 {
99 int num_insns; /* Number if insn in a define_peephole2. */
100 enum machine_mode mode; /* Machine mode of node. */
101 RTX_CODE code; /* Code to test. */
102
103 struct
104 {
105 const char *name; /* Predicate to call. */
106 const struct pred_data *data;
107 /* Optimization hints for this predicate. */
108 enum machine_mode mode; /* Machine mode for node. */
109 } pred;
110
111 const char *c_test; /* Additional test to perform. */
112 int veclen; /* Length of vector. */
113 int dup; /* Number of operand to compare against. */
114 HOST_WIDE_INT intval; /* Value for XINT for XWINT. */
115 int opno; /* Operand number matched. */
116
117 struct {
118 int code_number; /* Insn number matched. */
119 int lineno; /* Line number of the insn. */
120 int num_clobbers_to_add; /* Number of CLOBBERs to be added. */
121 } insn;
122 } u;
123 };
124
125 /* Data structure for decision tree for recognizing legitimate insns. */
126
127 struct decision
128 {
129 struct decision_head success; /* Nodes to test on success. */
130 struct decision *next; /* Node to test on failure. */
131 struct decision *prev; /* Node whose failure tests us. */
132 struct decision *afterward; /* Node to test on success,
133 but failure of successor nodes. */
134
135 const char *position; /* String denoting position in pattern. */
136
137 struct decision_test *tests; /* The tests for this node. */
138
139 int number; /* Node number, used for labels */
140 int subroutine_number; /* Number of subroutine this node starts */
141 int need_label; /* Label needs to be output. */
142 };
143
144 #define SUBROUTINE_THRESHOLD 100
145
146 static int next_subroutine_number;
147
148 /* We can write three types of subroutines: One for insn recognition,
149 one to split insns, and one for peephole-type optimizations. This
150 defines which type is being written. */
151
152 enum routine_type {
153 RECOG, SPLIT, PEEPHOLE2
154 };
155
156 #define IS_SPLIT(X) ((X) != RECOG)
157
158 /* Next available node number for tree nodes. */
159
160 static int next_number;
161
162 /* Next number to use as an insn_code. */
163
164 static int next_insn_code;
165
166 /* Record the highest depth we ever have so we know how many variables to
167 allocate in each subroutine we make. */
168
169 static int max_depth;
170
171 /* The line number of the start of the pattern currently being processed. */
172 static int pattern_lineno;
173 \f
174 /* Predicate handling.
175
176 We construct from the machine description a table mapping each
177 predicate to a list of the rtl codes it can possibly match. The
178 function 'maybe_both_true' uses it to deduce that there are no
179 expressions that can be matches by certain pairs of tree nodes.
180 Also, if a predicate can match only one code, we can hardwire that
181 code into the node testing the predicate.
182
183 Some predicates are flagged as special. validate_pattern will not
184 warn about modeless match_operand expressions if they have a
185 special predicate. Predicates that allow only constants are also
186 treated as special, for this purpose.
187
188 validate_pattern will warn about predicates that allow non-lvalues
189 when they appear in destination operands.
190
191 Calculating the set of rtx codes that can possibly be accepted by a
192 predicate expression EXP requires a three-state logic: any given
193 subexpression may definitively accept a code C (Y), definitively
194 reject a code C (N), or may have an indeterminate effect (I). N
195 and I is N; Y or I is Y; Y and I, N or I are both I. Here are full
196 truth tables.
197
198 a b a&b a|b
199 Y Y Y Y
200 N Y N Y
201 N N N N
202 I Y I Y
203 I N N I
204 I I I I
205
206 We represent Y with 1, N with 0, I with 2. If any code is left in
207 an I state by the complete expression, we must assume that that
208 code can be accepted. */
209
210 #define N 0
211 #define Y 1
212 #define I 2
213
214 #define TRISTATE_AND(a,b) \
215 ((a) == I ? ((b) == N ? N : I) : \
216 (b) == I ? ((a) == N ? N : I) : \
217 (a) && (b))
218
219 #define TRISTATE_OR(a,b) \
220 ((a) == I ? ((b) == Y ? Y : I) : \
221 (b) == I ? ((a) == Y ? Y : I) : \
222 (a) || (b))
223
224 #define TRISTATE_NOT(a) \
225 ((a) == I ? I : !(a))
226
227 /* 0 means no warning about that code yet, 1 means warned. */
228 static char did_you_mean_codes[NUM_RTX_CODE];
229
230 /* Recursively calculate the set of rtx codes accepted by the
231 predicate expression EXP, writing the result to CODES. */
232 static void
233 compute_predicate_codes (rtx exp, char codes[NUM_RTX_CODE])
234 {
235 char op0_codes[NUM_RTX_CODE];
236 char op1_codes[NUM_RTX_CODE];
237 char op2_codes[NUM_RTX_CODE];
238 int i;
239
240 switch (GET_CODE (exp))
241 {
242 case AND:
243 compute_predicate_codes (XEXP (exp, 0), op0_codes);
244 compute_predicate_codes (XEXP (exp, 1), op1_codes);
245 for (i = 0; i < NUM_RTX_CODE; i++)
246 codes[i] = TRISTATE_AND (op0_codes[i], op1_codes[i]);
247 break;
248
249 case IOR:
250 compute_predicate_codes (XEXP (exp, 0), op0_codes);
251 compute_predicate_codes (XEXP (exp, 1), op1_codes);
252 for (i = 0; i < NUM_RTX_CODE; i++)
253 codes[i] = TRISTATE_OR (op0_codes[i], op1_codes[i]);
254 break;
255 case NOT:
256 compute_predicate_codes (XEXP (exp, 0), op0_codes);
257 for (i = 0; i < NUM_RTX_CODE; i++)
258 codes[i] = TRISTATE_NOT (op0_codes[i]);
259 break;
260
261 case IF_THEN_ELSE:
262 /* a ? b : c accepts the same codes as (a & b) | (!a & c). */
263 compute_predicate_codes (XEXP (exp, 0), op0_codes);
264 compute_predicate_codes (XEXP (exp, 1), op1_codes);
265 compute_predicate_codes (XEXP (exp, 2), op2_codes);
266 for (i = 0; i < NUM_RTX_CODE; i++)
267 codes[i] = TRISTATE_OR (TRISTATE_AND (op0_codes[i], op1_codes[i]),
268 TRISTATE_AND (TRISTATE_NOT (op0_codes[i]),
269 op2_codes[i]));
270 break;
271
272 case MATCH_CODE:
273 /* MATCH_CODE allows a specified list of codes. However, if it
274 does not apply to the top level of the expression, it does not
275 constrain the set of codes for the top level. */
276 if (XSTR (exp, 1)[0] != '\0')
277 {
278 memset (codes, Y, NUM_RTX_CODE);
279 break;
280 }
281
282 memset (codes, N, NUM_RTX_CODE);
283 {
284 const char *next_code = XSTR (exp, 0);
285 const char *code;
286
287 if (*next_code == '\0')
288 {
289 error_with_line (pattern_lineno, "empty match_code expression");
290 break;
291 }
292
293 while ((code = scan_comma_elt (&next_code)) != 0)
294 {
295 size_t n = next_code - code;
296 int found_it = 0;
297
298 for (i = 0; i < NUM_RTX_CODE; i++)
299 if (!strncmp (code, GET_RTX_NAME (i), n)
300 && GET_RTX_NAME (i)[n] == '\0')
301 {
302 codes[i] = Y;
303 found_it = 1;
304 break;
305 }
306 if (!found_it)
307 {
308 error_with_line (pattern_lineno,
309 "match_code \"%.*s\" matches nothing",
310 (int) n, code);
311 for (i = 0; i < NUM_RTX_CODE; i++)
312 if (!strncasecmp (code, GET_RTX_NAME (i), n)
313 && GET_RTX_NAME (i)[n] == '\0'
314 && !did_you_mean_codes[i])
315 {
316 did_you_mean_codes[i] = 1;
317 message_with_line (pattern_lineno, "(did you mean \"%s\"?)", GET_RTX_NAME (i));
318 }
319 }
320
321 }
322 }
323 break;
324
325 case MATCH_OPERAND:
326 /* MATCH_OPERAND disallows the set of codes that the named predicate
327 disallows, and is indeterminate for the codes that it does allow. */
328 {
329 struct pred_data *p = lookup_predicate (XSTR (exp, 1));
330 if (!p)
331 {
332 error_with_line (pattern_lineno,
333 "reference to unknown predicate '%s'",
334 XSTR (exp, 1));
335 break;
336 }
337 for (i = 0; i < NUM_RTX_CODE; i++)
338 codes[i] = p->codes[i] ? I : N;
339 }
340 break;
341
342
343 case MATCH_TEST:
344 /* (match_test WHATEVER) is completely indeterminate. */
345 memset (codes, I, NUM_RTX_CODE);
346 break;
347
348 default:
349 error_with_line (pattern_lineno,
350 "'%s' cannot be used in a define_predicate expression",
351 GET_RTX_NAME (GET_CODE (exp)));
352 memset (codes, I, NUM_RTX_CODE);
353 break;
354 }
355 }
356
357 #undef TRISTATE_OR
358 #undef TRISTATE_AND
359 #undef TRISTATE_NOT
360
361 /* Process a define_predicate expression: compute the set of predicates
362 that can be matched, and record this as a known predicate. */
363 static void
364 process_define_predicate (rtx desc)
365 {
366 struct pred_data *pred = XCNEW (struct pred_data);
367 char codes[NUM_RTX_CODE];
368 int i;
369
370 pred->name = XSTR (desc, 0);
371 if (GET_CODE (desc) == DEFINE_SPECIAL_PREDICATE)
372 pred->special = 1;
373
374 compute_predicate_codes (XEXP (desc, 1), codes);
375
376 for (i = 0; i < NUM_RTX_CODE; i++)
377 if (codes[i] != N)
378 add_predicate_code (pred, (enum rtx_code) i);
379
380 add_predicate (pred);
381 }
382 #undef I
383 #undef N
384 #undef Y
385
386 \f
387 static struct decision *new_decision
388 (const char *, struct decision_head *);
389 static struct decision_test *new_decision_test
390 (enum decision_type, struct decision_test ***);
391 static rtx find_operand
392 (rtx, int, rtx);
393 static rtx find_matching_operand
394 (rtx, int);
395 static void validate_pattern
396 (rtx, rtx, rtx, int);
397 static struct decision *add_to_sequence
398 (rtx, struct decision_head *, const char *, enum routine_type, int);
399
400 static int maybe_both_true_2
401 (struct decision_test *, struct decision_test *);
402 static int maybe_both_true_1
403 (struct decision_test *, struct decision_test *);
404 static int maybe_both_true
405 (struct decision *, struct decision *, int);
406
407 static int nodes_identical_1
408 (struct decision_test *, struct decision_test *);
409 static int nodes_identical
410 (struct decision *, struct decision *);
411 static void merge_accept_insn
412 (struct decision *, struct decision *);
413 static void merge_trees
414 (struct decision_head *, struct decision_head *);
415
416 static void factor_tests
417 (struct decision_head *);
418 static void simplify_tests
419 (struct decision_head *);
420 static int break_out_subroutines
421 (struct decision_head *, int);
422 static void find_afterward
423 (struct decision_head *, struct decision *);
424
425 static void change_state
426 (const char *, const char *, const char *);
427 static void print_code
428 (enum rtx_code);
429 static void write_afterward
430 (struct decision *, struct decision *, const char *);
431 static struct decision *write_switch
432 (struct decision *, int);
433 static void write_cond
434 (struct decision_test *, int, enum routine_type);
435 static void write_action
436 (struct decision *, struct decision_test *, int, int,
437 struct decision *, enum routine_type);
438 static int is_unconditional
439 (struct decision_test *, enum routine_type);
440 static int write_node
441 (struct decision *, int, enum routine_type);
442 static void write_tree_1
443 (struct decision_head *, int, enum routine_type);
444 static void write_tree
445 (struct decision_head *, const char *, enum routine_type, int);
446 static void write_subroutine
447 (struct decision_head *, enum routine_type);
448 static void write_subroutines
449 (struct decision_head *, enum routine_type);
450 static void write_header
451 (void);
452
453 static struct decision_head make_insn_sequence
454 (rtx, enum routine_type);
455 static void process_tree
456 (struct decision_head *, enum routine_type);
457
458 static void debug_decision_0
459 (struct decision *, int, int);
460 static void debug_decision_1
461 (struct decision *, int);
462 static void debug_decision_2
463 (struct decision_test *);
464 extern void debug_decision
465 (struct decision *);
466 extern void debug_decision_list
467 (struct decision *);
468 \f
469 /* Create a new node in sequence after LAST. */
470
471 static struct decision *
472 new_decision (const char *position, struct decision_head *last)
473 {
474 struct decision *new_decision = XCNEW (struct decision);
475
476 new_decision->success = *last;
477 new_decision->position = xstrdup (position);
478 new_decision->number = next_number++;
479
480 last->first = last->last = new_decision;
481 return new_decision;
482 }
483
484 /* Create a new test and link it in at PLACE. */
485
486 static struct decision_test *
487 new_decision_test (enum decision_type type, struct decision_test ***pplace)
488 {
489 struct decision_test **place = *pplace;
490 struct decision_test *test;
491
492 test = XNEW (struct decision_test);
493 test->next = *place;
494 test->type = type;
495 *place = test;
496
497 place = &test->next;
498 *pplace = place;
499
500 return test;
501 }
502
503 /* Search for and return operand N, stop when reaching node STOP. */
504
505 static rtx
506 find_operand (rtx pattern, int n, rtx stop)
507 {
508 const char *fmt;
509 RTX_CODE code;
510 int i, j, len;
511 rtx r;
512
513 if (pattern == stop)
514 return stop;
515
516 code = GET_CODE (pattern);
517 if ((code == MATCH_SCRATCH
518 || code == MATCH_OPERAND
519 || code == MATCH_OPERATOR
520 || code == MATCH_PARALLEL)
521 && XINT (pattern, 0) == n)
522 return pattern;
523
524 fmt = GET_RTX_FORMAT (code);
525 len = GET_RTX_LENGTH (code);
526 for (i = 0; i < len; i++)
527 {
528 switch (fmt[i])
529 {
530 case 'e': case 'u':
531 if ((r = find_operand (XEXP (pattern, i), n, stop)) != NULL_RTX)
532 return r;
533 break;
534
535 case 'V':
536 if (! XVEC (pattern, i))
537 break;
538 /* Fall through. */
539
540 case 'E':
541 for (j = 0; j < XVECLEN (pattern, i); j++)
542 if ((r = find_operand (XVECEXP (pattern, i, j), n, stop))
543 != NULL_RTX)
544 return r;
545 break;
546
547 case 'i': case 'w': case '0': case 's':
548 break;
549
550 default:
551 gcc_unreachable ();
552 }
553 }
554
555 return NULL;
556 }
557
558 /* Search for and return operand M, such that it has a matching
559 constraint for operand N. */
560
561 static rtx
562 find_matching_operand (rtx pattern, int n)
563 {
564 const char *fmt;
565 RTX_CODE code;
566 int i, j, len;
567 rtx r;
568
569 code = GET_CODE (pattern);
570 if (code == MATCH_OPERAND
571 && (XSTR (pattern, 2)[0] == '0' + n
572 || (XSTR (pattern, 2)[0] == '%'
573 && XSTR (pattern, 2)[1] == '0' + n)))
574 return pattern;
575
576 fmt = GET_RTX_FORMAT (code);
577 len = GET_RTX_LENGTH (code);
578 for (i = 0; i < len; i++)
579 {
580 switch (fmt[i])
581 {
582 case 'e': case 'u':
583 if ((r = find_matching_operand (XEXP (pattern, i), n)))
584 return r;
585 break;
586
587 case 'V':
588 if (! XVEC (pattern, i))
589 break;
590 /* Fall through. */
591
592 case 'E':
593 for (j = 0; j < XVECLEN (pattern, i); j++)
594 if ((r = find_matching_operand (XVECEXP (pattern, i, j), n)))
595 return r;
596 break;
597
598 case 'i': case 'w': case '0': case 's':
599 break;
600
601 default:
602 gcc_unreachable ();
603 }
604 }
605
606 return NULL;
607 }
608
609
610 /* Check for various errors in patterns. SET is nonnull for a destination,
611 and is the complete set pattern. SET_CODE is '=' for normal sets, and
612 '+' within a context that requires in-out constraints. */
613
614 static void
615 validate_pattern (rtx pattern, rtx insn, rtx set, int set_code)
616 {
617 const char *fmt;
618 RTX_CODE code;
619 size_t i, len;
620 int j;
621
622 code = GET_CODE (pattern);
623 switch (code)
624 {
625 case MATCH_SCRATCH:
626 return;
627 case MATCH_DUP:
628 case MATCH_OP_DUP:
629 case MATCH_PAR_DUP:
630 if (find_operand (insn, XINT (pattern, 0), pattern) == pattern)
631 error_with_line (pattern_lineno,
632 "operand %i duplicated before defined",
633 XINT (pattern, 0));
634 break;
635 case MATCH_OPERAND:
636 case MATCH_OPERATOR:
637 {
638 const char *pred_name = XSTR (pattern, 1);
639 const struct pred_data *pred;
640 const char *c_test;
641
642 if (GET_CODE (insn) == DEFINE_INSN)
643 c_test = XSTR (insn, 2);
644 else
645 c_test = XSTR (insn, 1);
646
647 if (pred_name[0] != 0)
648 {
649 pred = lookup_predicate (pred_name);
650 if (!pred)
651 message_with_line (pattern_lineno,
652 "warning: unknown predicate '%s'",
653 pred_name);
654 }
655 else
656 pred = 0;
657
658 if (code == MATCH_OPERAND)
659 {
660 const char constraints0 = XSTR (pattern, 2)[0];
661
662 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
663 don't use the MATCH_OPERAND constraint, only the predicate.
664 This is confusing to folks doing new ports, so help them
665 not make the mistake. */
666 if (GET_CODE (insn) == DEFINE_EXPAND
667 || GET_CODE (insn) == DEFINE_SPLIT
668 || GET_CODE (insn) == DEFINE_PEEPHOLE2)
669 {
670 if (constraints0)
671 message_with_line (pattern_lineno,
672 "warning: constraints not supported in %s",
673 rtx_name[GET_CODE (insn)]);
674 }
675
676 /* A MATCH_OPERAND that is a SET should have an output reload. */
677 else if (set && constraints0)
678 {
679 if (set_code == '+')
680 {
681 if (constraints0 == '+')
682 ;
683 /* If we've only got an output reload for this operand,
684 we'd better have a matching input operand. */
685 else if (constraints0 == '='
686 && find_matching_operand (insn, XINT (pattern, 0)))
687 ;
688 else
689 error_with_line (pattern_lineno,
690 "operand %d missing in-out reload",
691 XINT (pattern, 0));
692 }
693 else if (constraints0 != '=' && constraints0 != '+')
694 error_with_line (pattern_lineno,
695 "operand %d missing output reload",
696 XINT (pattern, 0));
697 }
698 }
699
700 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
701 while not likely to occur at runtime, results in less efficient
702 code from insn-recog.c. */
703 if (set && pred && pred->allows_non_lvalue)
704 message_with_line (pattern_lineno,
705 "warning: destination operand %d "
706 "allows non-lvalue",
707 XINT (pattern, 0));
708
709 /* A modeless MATCH_OPERAND can be handy when we can check for
710 multiple modes in the c_test. In most other cases, it is a
711 mistake. Only DEFINE_INSN is eligible, since SPLIT and
712 PEEP2 can FAIL within the output pattern. Exclude special
713 predicates, which check the mode themselves. Also exclude
714 predicates that allow only constants. Exclude the SET_DEST
715 of a call instruction, as that is a common idiom. */
716
717 if (GET_MODE (pattern) == VOIDmode
718 && code == MATCH_OPERAND
719 && GET_CODE (insn) == DEFINE_INSN
720 && pred
721 && !pred->special
722 && pred->allows_non_const
723 && strstr (c_test, "operands") == NULL
724 && ! (set
725 && GET_CODE (set) == SET
726 && GET_CODE (SET_SRC (set)) == CALL))
727 message_with_line (pattern_lineno,
728 "warning: operand %d missing mode?",
729 XINT (pattern, 0));
730 return;
731 }
732
733 case SET:
734 {
735 enum machine_mode dmode, smode;
736 rtx dest, src;
737
738 dest = SET_DEST (pattern);
739 src = SET_SRC (pattern);
740
741 /* STRICT_LOW_PART is a wrapper. Its argument is the real
742 destination, and it's mode should match the source. */
743 if (GET_CODE (dest) == STRICT_LOW_PART)
744 dest = XEXP (dest, 0);
745
746 /* Find the referent for a DUP. */
747
748 if (GET_CODE (dest) == MATCH_DUP
749 || GET_CODE (dest) == MATCH_OP_DUP
750 || GET_CODE (dest) == MATCH_PAR_DUP)
751 dest = find_operand (insn, XINT (dest, 0), NULL);
752
753 if (GET_CODE (src) == MATCH_DUP
754 || GET_CODE (src) == MATCH_OP_DUP
755 || GET_CODE (src) == MATCH_PAR_DUP)
756 src = find_operand (insn, XINT (src, 0), NULL);
757
758 dmode = GET_MODE (dest);
759 smode = GET_MODE (src);
760
761 /* The mode of an ADDRESS_OPERAND is the mode of the memory
762 reference, not the mode of the address. */
763 if (GET_CODE (src) == MATCH_OPERAND
764 && ! strcmp (XSTR (src, 1), "address_operand"))
765 ;
766
767 /* The operands of a SET must have the same mode unless one
768 is VOIDmode. */
769 else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
770 error_with_line (pattern_lineno,
771 "mode mismatch in set: %smode vs %smode",
772 GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
773
774 /* If only one of the operands is VOIDmode, and PC or CC0 is
775 not involved, it's probably a mistake. */
776 else if (dmode != smode
777 && GET_CODE (dest) != PC
778 && GET_CODE (dest) != CC0
779 && GET_CODE (src) != PC
780 && GET_CODE (src) != CC0
781 && !CONST_INT_P (src)
782 && GET_CODE (src) != CALL)
783 {
784 const char *which;
785 which = (dmode == VOIDmode ? "destination" : "source");
786 message_with_line (pattern_lineno,
787 "warning: %s missing a mode?", which);
788 }
789
790 if (dest != SET_DEST (pattern))
791 validate_pattern (dest, insn, pattern, '=');
792 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
793 validate_pattern (SET_SRC (pattern), insn, NULL_RTX, 0);
794 return;
795 }
796
797 case CLOBBER:
798 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
799 return;
800
801 case ZERO_EXTRACT:
802 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
803 validate_pattern (XEXP (pattern, 1), insn, NULL_RTX, 0);
804 validate_pattern (XEXP (pattern, 2), insn, NULL_RTX, 0);
805 return;
806
807 case STRICT_LOW_PART:
808 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
809 return;
810
811 case LABEL_REF:
812 if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
813 error_with_line (pattern_lineno,
814 "operand to label_ref %smode not VOIDmode",
815 GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
816 break;
817
818 default:
819 break;
820 }
821
822 fmt = GET_RTX_FORMAT (code);
823 len = GET_RTX_LENGTH (code);
824 for (i = 0; i < len; i++)
825 {
826 switch (fmt[i])
827 {
828 case 'e': case 'u':
829 validate_pattern (XEXP (pattern, i), insn, NULL_RTX, 0);
830 break;
831
832 case 'E':
833 for (j = 0; j < XVECLEN (pattern, i); j++)
834 validate_pattern (XVECEXP (pattern, i, j), insn, NULL_RTX, 0);
835 break;
836
837 case 'i': case 'w': case '0': case 's':
838 break;
839
840 default:
841 gcc_unreachable ();
842 }
843 }
844 }
845
846 /* Create a chain of nodes to verify that an rtl expression matches
847 PATTERN.
848
849 LAST is a pointer to the listhead in the previous node in the chain (or
850 in the calling function, for the first node).
851
852 POSITION is the string representing the current position in the insn.
853
854 INSN_TYPE is the type of insn for which we are emitting code.
855
856 A pointer to the final node in the chain is returned. */
857
858 static struct decision *
859 add_to_sequence (rtx pattern, struct decision_head *last, const char *position,
860 enum routine_type insn_type, int top)
861 {
862 RTX_CODE code;
863 struct decision *this_decision, *sub;
864 struct decision_test *test;
865 struct decision_test **place;
866 char *subpos;
867 size_t i;
868 const char *fmt;
869 int depth = strlen (position);
870 int len;
871 enum machine_mode mode;
872
873 if (depth > max_depth)
874 max_depth = depth;
875
876 subpos = XNEWVAR (char, depth + 2);
877 strcpy (subpos, position);
878 subpos[depth + 1] = 0;
879
880 sub = this_decision = new_decision (position, last);
881 place = &this_decision->tests;
882
883 restart:
884 mode = GET_MODE (pattern);
885 code = GET_CODE (pattern);
886
887 switch (code)
888 {
889 case PARALLEL:
890 /* Toplevel peephole pattern. */
891 if (insn_type == PEEPHOLE2 && top)
892 {
893 int num_insns;
894
895 /* Check we have sufficient insns. This avoids complications
896 because we then know peep2_next_insn never fails. */
897 num_insns = XVECLEN (pattern, 0);
898 if (num_insns > 1)
899 {
900 test = new_decision_test (DT_num_insns, &place);
901 test->u.num_insns = num_insns;
902 last = &sub->success;
903 }
904 else
905 {
906 /* We don't need the node we just created -- unlink it. */
907 last->first = last->last = NULL;
908 }
909
910 for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++)
911 {
912 /* Which insn we're looking at is represented by A-Z. We don't
913 ever use 'A', however; it is always implied. */
914
915 subpos[depth] = (i > 0 ? 'A' + i : 0);
916 sub = add_to_sequence (XVECEXP (pattern, 0, i),
917 last, subpos, insn_type, 0);
918 last = &sub->success;
919 }
920 goto ret;
921 }
922
923 /* Else nothing special. */
924 break;
925
926 case MATCH_PARALLEL:
927 /* The explicit patterns within a match_parallel enforce a minimum
928 length on the vector. The match_parallel predicate may allow
929 for more elements. We do need to check for this minimum here
930 or the code generated to match the internals may reference data
931 beyond the end of the vector. */
932 test = new_decision_test (DT_veclen_ge, &place);
933 test->u.veclen = XVECLEN (pattern, 2);
934 /* Fall through. */
935
936 case MATCH_OPERAND:
937 case MATCH_SCRATCH:
938 case MATCH_OPERATOR:
939 {
940 RTX_CODE was_code = code;
941 const char *pred_name;
942 bool allows_const_int = true;
943
944 if (code == MATCH_SCRATCH)
945 {
946 pred_name = "scratch_operand";
947 code = UNKNOWN;
948 }
949 else
950 {
951 pred_name = XSTR (pattern, 1);
952 if (code == MATCH_PARALLEL)
953 code = PARALLEL;
954 else
955 code = UNKNOWN;
956 }
957
958 if (pred_name[0] != 0)
959 {
960 const struct pred_data *pred;
961
962 test = new_decision_test (DT_pred, &place);
963 test->u.pred.name = pred_name;
964 test->u.pred.mode = mode;
965
966 /* See if we know about this predicate.
967 If we do, remember it for use below.
968
969 We can optimize the generated code a little if either
970 (a) the predicate only accepts one code, or (b) the
971 predicate does not allow CONST_INT, in which case it
972 can match only if the modes match. */
973 pred = lookup_predicate (pred_name);
974 if (pred)
975 {
976 test->u.pred.data = pred;
977 allows_const_int = pred->codes[CONST_INT];
978 if (was_code == MATCH_PARALLEL
979 && pred->singleton != PARALLEL)
980 message_with_line (pattern_lineno,
981 "predicate '%s' used in match_parallel "
982 "does not allow only PARALLEL", pred->name);
983 else
984 code = pred->singleton;
985 }
986 else
987 message_with_line (pattern_lineno,
988 "warning: unknown predicate '%s' in '%s' expression",
989 pred_name, GET_RTX_NAME (was_code));
990 }
991
992 /* Can't enforce a mode if we allow const_int. */
993 if (allows_const_int)
994 mode = VOIDmode;
995
996 /* Accept the operand, i.e. record it in `operands'. */
997 test = new_decision_test (DT_accept_op, &place);
998 test->u.opno = XINT (pattern, 0);
999
1000 if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL)
1001 {
1002 char base = (was_code == MATCH_OPERATOR ? '0' : 'a');
1003 for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++)
1004 {
1005 subpos[depth] = i + base;
1006 sub = add_to_sequence (XVECEXP (pattern, 2, i),
1007 &sub->success, subpos, insn_type, 0);
1008 }
1009 }
1010 goto fini;
1011 }
1012
1013 case MATCH_OP_DUP:
1014 code = UNKNOWN;
1015
1016 test = new_decision_test (DT_dup, &place);
1017 test->u.dup = XINT (pattern, 0);
1018
1019 test = new_decision_test (DT_accept_op, &place);
1020 test->u.opno = XINT (pattern, 0);
1021
1022 for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++)
1023 {
1024 subpos[depth] = i + '0';
1025 sub = add_to_sequence (XVECEXP (pattern, 1, i),
1026 &sub->success, subpos, insn_type, 0);
1027 }
1028 goto fini;
1029
1030 case MATCH_DUP:
1031 case MATCH_PAR_DUP:
1032 code = UNKNOWN;
1033
1034 test = new_decision_test (DT_dup, &place);
1035 test->u.dup = XINT (pattern, 0);
1036 goto fini;
1037
1038 case ADDRESS:
1039 pattern = XEXP (pattern, 0);
1040 goto restart;
1041
1042 default:
1043 break;
1044 }
1045
1046 fmt = GET_RTX_FORMAT (code);
1047 len = GET_RTX_LENGTH (code);
1048
1049 /* Do tests against the current node first. */
1050 for (i = 0; i < (size_t) len; i++)
1051 {
1052 if (fmt[i] == 'i')
1053 {
1054 gcc_assert (i < 2);
1055
1056 if (!i)
1057 {
1058 test = new_decision_test (DT_elt_zero_int, &place);
1059 test->u.intval = XINT (pattern, i);
1060 }
1061 else
1062 {
1063 test = new_decision_test (DT_elt_one_int, &place);
1064 test->u.intval = XINT (pattern, i);
1065 }
1066 }
1067 else if (fmt[i] == 'w')
1068 {
1069 /* If this value actually fits in an int, we can use a switch
1070 statement here, so indicate that. */
1071 enum decision_type type
1072 = ((int) XWINT (pattern, i) == XWINT (pattern, i))
1073 ? DT_elt_zero_wide_safe : DT_elt_zero_wide;
1074
1075 gcc_assert (!i);
1076
1077 test = new_decision_test (type, &place);
1078 test->u.intval = XWINT (pattern, i);
1079 }
1080 else if (fmt[i] == 'E')
1081 {
1082 gcc_assert (!i);
1083
1084 test = new_decision_test (DT_veclen, &place);
1085 test->u.veclen = XVECLEN (pattern, i);
1086 }
1087 }
1088
1089 /* Now test our sub-patterns. */
1090 for (i = 0; i < (size_t) len; i++)
1091 {
1092 switch (fmt[i])
1093 {
1094 case 'e': case 'u':
1095 subpos[depth] = '0' + i;
1096 sub = add_to_sequence (XEXP (pattern, i), &sub->success,
1097 subpos, insn_type, 0);
1098 break;
1099
1100 case 'E':
1101 {
1102 int j;
1103 for (j = 0; j < XVECLEN (pattern, i); j++)
1104 {
1105 subpos[depth] = 'a' + j;
1106 sub = add_to_sequence (XVECEXP (pattern, i, j),
1107 &sub->success, subpos, insn_type, 0);
1108 }
1109 break;
1110 }
1111
1112 case 'i': case 'w':
1113 /* Handled above. */
1114 break;
1115 case '0':
1116 break;
1117
1118 default:
1119 gcc_unreachable ();
1120 }
1121 }
1122
1123 fini:
1124 /* Insert nodes testing mode and code, if they're still relevant,
1125 before any of the nodes we may have added above. */
1126 if (code != UNKNOWN)
1127 {
1128 place = &this_decision->tests;
1129 test = new_decision_test (DT_code, &place);
1130 test->u.code = code;
1131 }
1132
1133 if (mode != VOIDmode)
1134 {
1135 place = &this_decision->tests;
1136 test = new_decision_test (DT_mode, &place);
1137 test->u.mode = mode;
1138 }
1139
1140 /* If we didn't insert any tests or accept nodes, hork. */
1141 gcc_assert (this_decision->tests);
1142
1143 ret:
1144 free (subpos);
1145 return sub;
1146 }
1147 \f
1148 /* A subroutine of maybe_both_true; examines only one test.
1149 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1150
1151 static int
1152 maybe_both_true_2 (struct decision_test *d1, struct decision_test *d2)
1153 {
1154 if (d1->type == d2->type)
1155 {
1156 switch (d1->type)
1157 {
1158 case DT_num_insns:
1159 if (d1->u.num_insns == d2->u.num_insns)
1160 return 1;
1161 else
1162 return -1;
1163
1164 case DT_mode:
1165 return d1->u.mode == d2->u.mode;
1166
1167 case DT_code:
1168 return d1->u.code == d2->u.code;
1169
1170 case DT_veclen:
1171 return d1->u.veclen == d2->u.veclen;
1172
1173 case DT_elt_zero_int:
1174 case DT_elt_one_int:
1175 case DT_elt_zero_wide:
1176 case DT_elt_zero_wide_safe:
1177 return d1->u.intval == d2->u.intval;
1178
1179 default:
1180 break;
1181 }
1182 }
1183
1184 /* If either has a predicate that we know something about, set
1185 things up so that D1 is the one that always has a known
1186 predicate. Then see if they have any codes in common. */
1187
1188 if (d1->type == DT_pred || d2->type == DT_pred)
1189 {
1190 if (d2->type == DT_pred)
1191 {
1192 struct decision_test *tmp;
1193 tmp = d1, d1 = d2, d2 = tmp;
1194 }
1195
1196 /* If D2 tests a mode, see if it matches D1. */
1197 if (d1->u.pred.mode != VOIDmode)
1198 {
1199 if (d2->type == DT_mode)
1200 {
1201 if (d1->u.pred.mode != d2->u.mode
1202 /* The mode of an address_operand predicate is the
1203 mode of the memory, not the operand. It can only
1204 be used for testing the predicate, so we must
1205 ignore it here. */
1206 && strcmp (d1->u.pred.name, "address_operand") != 0)
1207 return 0;
1208 }
1209 /* Don't check two predicate modes here, because if both predicates
1210 accept CONST_INT, then both can still be true even if the modes
1211 are different. If they don't accept CONST_INT, there will be a
1212 separate DT_mode that will make maybe_both_true_1 return 0. */
1213 }
1214
1215 if (d1->u.pred.data)
1216 {
1217 /* If D2 tests a code, see if it is in the list of valid
1218 codes for D1's predicate. */
1219 if (d2->type == DT_code)
1220 {
1221 if (!d1->u.pred.data->codes[d2->u.code])
1222 return 0;
1223 }
1224
1225 /* Otherwise see if the predicates have any codes in common. */
1226 else if (d2->type == DT_pred && d2->u.pred.data)
1227 {
1228 bool common = false;
1229 int c;
1230
1231 for (c = 0; c < NUM_RTX_CODE; c++)
1232 if (d1->u.pred.data->codes[c] && d2->u.pred.data->codes[c])
1233 {
1234 common = true;
1235 break;
1236 }
1237
1238 if (!common)
1239 return 0;
1240 }
1241 }
1242 }
1243
1244 /* Tests vs veclen may be known when strict equality is involved. */
1245 if (d1->type == DT_veclen && d2->type == DT_veclen_ge)
1246 return d1->u.veclen >= d2->u.veclen;
1247 if (d1->type == DT_veclen_ge && d2->type == DT_veclen)
1248 return d2->u.veclen >= d1->u.veclen;
1249
1250 return -1;
1251 }
1252
1253 /* A subroutine of maybe_both_true; examines all the tests for a given node.
1254 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1255
1256 static int
1257 maybe_both_true_1 (struct decision_test *d1, struct decision_test *d2)
1258 {
1259 struct decision_test *t1, *t2;
1260
1261 /* A match_operand with no predicate can match anything. Recognize
1262 this by the existence of a lone DT_accept_op test. */
1263 if (d1->type == DT_accept_op || d2->type == DT_accept_op)
1264 return 1;
1265
1266 /* Eliminate pairs of tests while they can exactly match. */
1267 while (d1 && d2 && d1->type == d2->type)
1268 {
1269 if (maybe_both_true_2 (d1, d2) == 0)
1270 return 0;
1271 d1 = d1->next, d2 = d2->next;
1272 }
1273
1274 /* After that, consider all pairs. */
1275 for (t1 = d1; t1 ; t1 = t1->next)
1276 for (t2 = d2; t2 ; t2 = t2->next)
1277 if (maybe_both_true_2 (t1, t2) == 0)
1278 return 0;
1279
1280 return -1;
1281 }
1282
1283 /* Return 0 if we can prove that there is no RTL that can match both
1284 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
1285 can match both or just that we couldn't prove there wasn't such an RTL).
1286
1287 TOPLEVEL is nonzero if we are to only look at the top level and not
1288 recursively descend. */
1289
1290 static int
1291 maybe_both_true (struct decision *d1, struct decision *d2,
1292 int toplevel)
1293 {
1294 struct decision *p1, *p2;
1295 int cmp;
1296
1297 /* Don't compare strings on the different positions in insn. Doing so
1298 is incorrect and results in false matches from constructs like
1299
1300 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1301 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1302 vs
1303 [(set (match_operand:HI "register_operand" "r")
1304 (match_operand:HI "register_operand" "r"))]
1305
1306 If we are presented with such, we are recursing through the remainder
1307 of a node's success nodes (from the loop at the end of this function).
1308 Skip forward until we come to a position that matches.
1309
1310 Due to the way position strings are constructed, we know that iterating
1311 forward from the lexically lower position (e.g. "00") will run into
1312 the lexically higher position (e.g. "1") and not the other way around.
1313 This saves a bit of effort. */
1314
1315 cmp = strcmp (d1->position, d2->position);
1316 if (cmp != 0)
1317 {
1318 gcc_assert (!toplevel);
1319
1320 /* If the d2->position was lexically lower, swap. */
1321 if (cmp > 0)
1322 p1 = d1, d1 = d2, d2 = p1;
1323
1324 if (d1->success.first == 0)
1325 return 1;
1326 for (p1 = d1->success.first; p1; p1 = p1->next)
1327 if (maybe_both_true (p1, d2, 0))
1328 return 1;
1329
1330 return 0;
1331 }
1332
1333 /* Test the current level. */
1334 cmp = maybe_both_true_1 (d1->tests, d2->tests);
1335 if (cmp >= 0)
1336 return cmp;
1337
1338 /* We can't prove that D1 and D2 cannot both be true. If we are only
1339 to check the top level, return 1. Otherwise, see if we can prove
1340 that all choices in both successors are mutually exclusive. If
1341 either does not have any successors, we can't prove they can't both
1342 be true. */
1343
1344 if (toplevel || d1->success.first == 0 || d2->success.first == 0)
1345 return 1;
1346
1347 for (p1 = d1->success.first; p1; p1 = p1->next)
1348 for (p2 = d2->success.first; p2; p2 = p2->next)
1349 if (maybe_both_true (p1, p2, 0))
1350 return 1;
1351
1352 return 0;
1353 }
1354
1355 /* A subroutine of nodes_identical. Examine two tests for equivalence. */
1356
1357 static int
1358 nodes_identical_1 (struct decision_test *d1, struct decision_test *d2)
1359 {
1360 switch (d1->type)
1361 {
1362 case DT_num_insns:
1363 return d1->u.num_insns == d2->u.num_insns;
1364
1365 case DT_mode:
1366 return d1->u.mode == d2->u.mode;
1367
1368 case DT_code:
1369 return d1->u.code == d2->u.code;
1370
1371 case DT_pred:
1372 return (d1->u.pred.mode == d2->u.pred.mode
1373 && strcmp (d1->u.pred.name, d2->u.pred.name) == 0);
1374
1375 case DT_c_test:
1376 return strcmp (d1->u.c_test, d2->u.c_test) == 0;
1377
1378 case DT_veclen:
1379 case DT_veclen_ge:
1380 return d1->u.veclen == d2->u.veclen;
1381
1382 case DT_dup:
1383 return d1->u.dup == d2->u.dup;
1384
1385 case DT_elt_zero_int:
1386 case DT_elt_one_int:
1387 case DT_elt_zero_wide:
1388 case DT_elt_zero_wide_safe:
1389 return d1->u.intval == d2->u.intval;
1390
1391 case DT_accept_op:
1392 return d1->u.opno == d2->u.opno;
1393
1394 case DT_accept_insn:
1395 /* Differences will be handled in merge_accept_insn. */
1396 return 1;
1397
1398 default:
1399 gcc_unreachable ();
1400 }
1401 }
1402
1403 /* True iff the two nodes are identical (on one level only). Due
1404 to the way these lists are constructed, we shouldn't have to
1405 consider different orderings on the tests. */
1406
1407 static int
1408 nodes_identical (struct decision *d1, struct decision *d2)
1409 {
1410 struct decision_test *t1, *t2;
1411
1412 for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next)
1413 {
1414 if (t1->type != t2->type)
1415 return 0;
1416 if (! nodes_identical_1 (t1, t2))
1417 return 0;
1418 }
1419
1420 /* For success, they should now both be null. */
1421 if (t1 != t2)
1422 return 0;
1423
1424 /* Check that their subnodes are at the same position, as any one set
1425 of sibling decisions must be at the same position. Allowing this
1426 requires complications to find_afterward and when change_state is
1427 invoked. */
1428 if (d1->success.first
1429 && d2->success.first
1430 && strcmp (d1->success.first->position, d2->success.first->position))
1431 return 0;
1432
1433 return 1;
1434 }
1435
1436 /* A subroutine of merge_trees; given two nodes that have been declared
1437 identical, cope with two insn accept states. If they differ in the
1438 number of clobbers, then the conflict was created by make_insn_sequence
1439 and we can drop the with-clobbers version on the floor. If both
1440 nodes have no additional clobbers, we have found an ambiguity in the
1441 source machine description. */
1442
1443 static void
1444 merge_accept_insn (struct decision *oldd, struct decision *addd)
1445 {
1446 struct decision_test *old, *add;
1447
1448 for (old = oldd->tests; old; old = old->next)
1449 if (old->type == DT_accept_insn)
1450 break;
1451 if (old == NULL)
1452 return;
1453
1454 for (add = addd->tests; add; add = add->next)
1455 if (add->type == DT_accept_insn)
1456 break;
1457 if (add == NULL)
1458 return;
1459
1460 /* If one node is for a normal insn and the second is for the base
1461 insn with clobbers stripped off, the second node should be ignored. */
1462
1463 if (old->u.insn.num_clobbers_to_add == 0
1464 && add->u.insn.num_clobbers_to_add > 0)
1465 {
1466 /* Nothing to do here. */
1467 }
1468 else if (old->u.insn.num_clobbers_to_add > 0
1469 && add->u.insn.num_clobbers_to_add == 0)
1470 {
1471 /* In this case, replace OLD with ADD. */
1472 old->u.insn = add->u.insn;
1473 }
1474 else
1475 {
1476 error_with_line (add->u.insn.lineno, "`%s' matches `%s'",
1477 get_insn_name (add->u.insn.code_number),
1478 get_insn_name (old->u.insn.code_number));
1479 message_with_line (old->u.insn.lineno, "previous definition of `%s'",
1480 get_insn_name (old->u.insn.code_number));
1481 }
1482 }
1483
1484 /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1485
1486 static void
1487 merge_trees (struct decision_head *oldh, struct decision_head *addh)
1488 {
1489 struct decision *next, *add;
1490
1491 if (addh->first == 0)
1492 return;
1493 if (oldh->first == 0)
1494 {
1495 *oldh = *addh;
1496 return;
1497 }
1498
1499 /* Trying to merge bits at different positions isn't possible. */
1500 gcc_assert (!strcmp (oldh->first->position, addh->first->position));
1501
1502 for (add = addh->first; add ; add = next)
1503 {
1504 struct decision *old, *insert_before = NULL;
1505
1506 next = add->next;
1507
1508 /* The semantics of pattern matching state that the tests are
1509 done in the order given in the MD file so that if an insn
1510 matches two patterns, the first one will be used. However,
1511 in practice, most, if not all, patterns are unambiguous so
1512 that their order is independent. In that case, we can merge
1513 identical tests and group all similar modes and codes together.
1514
1515 Scan starting from the end of OLDH until we reach a point
1516 where we reach the head of the list or where we pass a
1517 pattern that could also be true if NEW is true. If we find
1518 an identical pattern, we can merge them. Also, record the
1519 last node that tests the same code and mode and the last one
1520 that tests just the same mode.
1521
1522 If we have no match, place NEW after the closest match we found. */
1523
1524 for (old = oldh->last; old; old = old->prev)
1525 {
1526 if (nodes_identical (old, add))
1527 {
1528 merge_accept_insn (old, add);
1529 merge_trees (&old->success, &add->success);
1530 goto merged_nodes;
1531 }
1532
1533 if (maybe_both_true (old, add, 0))
1534 break;
1535
1536 /* Insert the nodes in DT test type order, which is roughly
1537 how expensive/important the test is. Given that the tests
1538 are also ordered within the list, examining the first is
1539 sufficient. */
1540 if ((int) add->tests->type < (int) old->tests->type)
1541 insert_before = old;
1542 }
1543
1544 if (insert_before == NULL)
1545 {
1546 add->next = NULL;
1547 add->prev = oldh->last;
1548 oldh->last->next = add;
1549 oldh->last = add;
1550 }
1551 else
1552 {
1553 if ((add->prev = insert_before->prev) != NULL)
1554 add->prev->next = add;
1555 else
1556 oldh->first = add;
1557 add->next = insert_before;
1558 insert_before->prev = add;
1559 }
1560
1561 merged_nodes:;
1562 }
1563 }
1564 \f
1565 /* Walk the tree looking for sub-nodes that perform common tests.
1566 Factor out the common test into a new node. This enables us
1567 (depending on the test type) to emit switch statements later. */
1568
1569 static void
1570 factor_tests (struct decision_head *head)
1571 {
1572 struct decision *first, *next;
1573
1574 for (first = head->first; first && first->next; first = next)
1575 {
1576 enum decision_type type;
1577 struct decision *new_dec, *old_last;
1578
1579 type = first->tests->type;
1580 next = first->next;
1581
1582 /* Want at least two compatible sequential nodes. */
1583 if (next->tests->type != type)
1584 continue;
1585
1586 /* Don't want all node types, just those we can turn into
1587 switch statements. */
1588 if (type != DT_mode
1589 && type != DT_code
1590 && type != DT_veclen
1591 && type != DT_elt_zero_int
1592 && type != DT_elt_one_int
1593 && type != DT_elt_zero_wide_safe)
1594 continue;
1595
1596 /* If we'd been performing more than one test, create a new node
1597 below our first test. */
1598 if (first->tests->next != NULL)
1599 {
1600 new_dec = new_decision (first->position, &first->success);
1601 new_dec->tests = first->tests->next;
1602 first->tests->next = NULL;
1603 }
1604
1605 /* Crop the node tree off after our first test. */
1606 first->next = NULL;
1607 old_last = head->last;
1608 head->last = first;
1609
1610 /* For each compatible test, adjust to perform only one test in
1611 the top level node, then merge the node back into the tree. */
1612 do
1613 {
1614 struct decision_head h;
1615
1616 if (next->tests->next != NULL)
1617 {
1618 new_dec = new_decision (next->position, &next->success);
1619 new_dec->tests = next->tests->next;
1620 next->tests->next = NULL;
1621 }
1622 new_dec = next;
1623 next = next->next;
1624 new_dec->next = NULL;
1625 h.first = h.last = new_dec;
1626
1627 merge_trees (head, &h);
1628 }
1629 while (next && next->tests->type == type);
1630
1631 /* After we run out of compatible tests, graft the remaining nodes
1632 back onto the tree. */
1633 if (next)
1634 {
1635 next->prev = head->last;
1636 head->last->next = next;
1637 head->last = old_last;
1638 }
1639 }
1640
1641 /* Recurse. */
1642 for (first = head->first; first; first = first->next)
1643 factor_tests (&first->success);
1644 }
1645
1646 /* After factoring, try to simplify the tests on any one node.
1647 Tests that are useful for switch statements are recognizable
1648 by having only a single test on a node -- we'll be manipulating
1649 nodes with multiple tests:
1650
1651 If we have mode tests or code tests that are redundant with
1652 predicates, remove them. */
1653
1654 static void
1655 simplify_tests (struct decision_head *head)
1656 {
1657 struct decision *tree;
1658
1659 for (tree = head->first; tree; tree = tree->next)
1660 {
1661 struct decision_test *a, *b;
1662
1663 a = tree->tests;
1664 b = a->next;
1665 if (b == NULL)
1666 continue;
1667
1668 /* Find a predicate node. */
1669 while (b && b->type != DT_pred)
1670 b = b->next;
1671 if (b)
1672 {
1673 /* Due to how these tests are constructed, we don't even need
1674 to check that the mode and code are compatible -- they were
1675 generated from the predicate in the first place. */
1676 while (a->type == DT_mode || a->type == DT_code)
1677 a = a->next;
1678 tree->tests = a;
1679 }
1680 }
1681
1682 /* Recurse. */
1683 for (tree = head->first; tree; tree = tree->next)
1684 simplify_tests (&tree->success);
1685 }
1686
1687 /* Count the number of subnodes of HEAD. If the number is high enough,
1688 make the first node in HEAD start a separate subroutine in the C code
1689 that is generated. */
1690
1691 static int
1692 break_out_subroutines (struct decision_head *head, int initial)
1693 {
1694 int size = 0;
1695 struct decision *sub;
1696
1697 for (sub = head->first; sub; sub = sub->next)
1698 size += 1 + break_out_subroutines (&sub->success, 0);
1699
1700 if (size > SUBROUTINE_THRESHOLD && ! initial)
1701 {
1702 head->first->subroutine_number = ++next_subroutine_number;
1703 size = 1;
1704 }
1705 return size;
1706 }
1707
1708 /* For each node p, find the next alternative that might be true
1709 when p is true. */
1710
1711 static void
1712 find_afterward (struct decision_head *head, struct decision *real_afterward)
1713 {
1714 struct decision *p, *q, *afterward;
1715
1716 /* We can't propagate alternatives across subroutine boundaries.
1717 This is not incorrect, merely a minor optimization loss. */
1718
1719 p = head->first;
1720 afterward = (p->subroutine_number > 0 ? NULL : real_afterward);
1721
1722 for ( ; p ; p = p->next)
1723 {
1724 /* Find the next node that might be true if this one fails. */
1725 for (q = p->next; q ; q = q->next)
1726 if (maybe_both_true (p, q, 1))
1727 break;
1728
1729 /* If we reached the end of the list without finding one,
1730 use the incoming afterward position. */
1731 if (!q)
1732 q = afterward;
1733 p->afterward = q;
1734 if (q)
1735 q->need_label = 1;
1736 }
1737
1738 /* Recurse. */
1739 for (p = head->first; p ; p = p->next)
1740 if (p->success.first)
1741 find_afterward (&p->success, p->afterward);
1742
1743 /* When we are generating a subroutine, record the real afterward
1744 position in the first node where write_tree can find it, and we
1745 can do the right thing at the subroutine call site. */
1746 p = head->first;
1747 if (p->subroutine_number > 0)
1748 p->afterward = real_afterward;
1749 }
1750 \f
1751 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1752 actions are necessary to move to NEWPOS. If we fail to move to the
1753 new state, branch to node AFTERWARD if nonzero, otherwise return.
1754
1755 Failure to move to the new state can only occur if we are trying to
1756 match multiple insns and we try to step past the end of the stream. */
1757
1758 static void
1759 change_state (const char *oldpos, const char *newpos, const char *indent)
1760 {
1761 int odepth = strlen (oldpos);
1762 int ndepth = strlen (newpos);
1763 int depth;
1764 int old_has_insn, new_has_insn;
1765
1766 /* Pop up as many levels as necessary. */
1767 for (depth = odepth; strncmp (oldpos, newpos, depth) != 0; --depth)
1768 continue;
1769
1770 /* Hunt for the last [A-Z] in both strings. */
1771 for (old_has_insn = odepth - 1; old_has_insn >= 0; --old_has_insn)
1772 if (ISUPPER (oldpos[old_has_insn]))
1773 break;
1774 for (new_has_insn = ndepth - 1; new_has_insn >= 0; --new_has_insn)
1775 if (ISUPPER (newpos[new_has_insn]))
1776 break;
1777
1778 /* Go down to desired level. */
1779 while (depth < ndepth)
1780 {
1781 /* It's a different insn from the first one. */
1782 if (ISUPPER (newpos[depth]))
1783 {
1784 printf ("%stem = peep2_next_insn (%d);\n",
1785 indent, newpos[depth] - 'A');
1786 printf ("%sx%d = PATTERN (tem);\n", indent, depth + 1);
1787 }
1788 else if (ISLOWER (newpos[depth]))
1789 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1790 indent, depth + 1, depth, newpos[depth] - 'a');
1791 else
1792 printf ("%sx%d = XEXP (x%d, %c);\n",
1793 indent, depth + 1, depth, newpos[depth]);
1794 ++depth;
1795 }
1796 }
1797 \f
1798 /* Print the enumerator constant for CODE -- the upcase version of
1799 the name. */
1800
1801 static void
1802 print_code (enum rtx_code code)
1803 {
1804 const char *p;
1805 for (p = GET_RTX_NAME (code); *p; p++)
1806 putchar (TOUPPER (*p));
1807 }
1808
1809 /* Emit code to cross an afterward link -- change state and branch. */
1810
1811 static void
1812 write_afterward (struct decision *start, struct decision *afterward,
1813 const char *indent)
1814 {
1815 if (!afterward || start->subroutine_number > 0)
1816 printf("%sgoto ret0;\n", indent);
1817 else
1818 {
1819 change_state (start->position, afterward->position, indent);
1820 printf ("%sgoto L%d;\n", indent, afterward->number);
1821 }
1822 }
1823
1824 /* Emit a HOST_WIDE_INT as an integer constant expression. We need to take
1825 special care to avoid "decimal constant is so large that it is unsigned"
1826 warnings in the resulting code. */
1827
1828 static void
1829 print_host_wide_int (HOST_WIDE_INT val)
1830 {
1831 HOST_WIDE_INT min = (unsigned HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1);
1832 if (val == min)
1833 printf ("(" HOST_WIDE_INT_PRINT_DEC_C "-1)", val + 1);
1834 else
1835 printf (HOST_WIDE_INT_PRINT_DEC_C, val);
1836 }
1837
1838 /* Emit a switch statement, if possible, for an initial sequence of
1839 nodes at START. Return the first node yet untested. */
1840
1841 static struct decision *
1842 write_switch (struct decision *start, int depth)
1843 {
1844 struct decision *p = start;
1845 enum decision_type type = p->tests->type;
1846 struct decision *needs_label = NULL;
1847
1848 /* If we have two or more nodes in sequence that test the same one
1849 thing, we may be able to use a switch statement. */
1850
1851 if (!p->next
1852 || p->tests->next
1853 || p->next->tests->type != type
1854 || p->next->tests->next
1855 || nodes_identical_1 (p->tests, p->next->tests))
1856 return p;
1857
1858 /* DT_code is special in that we can do interesting things with
1859 known predicates at the same time. */
1860 if (type == DT_code)
1861 {
1862 char codemap[NUM_RTX_CODE];
1863 struct decision *ret;
1864 RTX_CODE code;
1865
1866 memset (codemap, 0, sizeof(codemap));
1867
1868 printf (" switch (GET_CODE (x%d))\n {\n", depth);
1869 code = p->tests->u.code;
1870 do
1871 {
1872 if (p != start && p->need_label && needs_label == NULL)
1873 needs_label = p;
1874
1875 printf (" case ");
1876 print_code (code);
1877 printf (":\n goto L%d;\n", p->success.first->number);
1878 p->success.first->need_label = 1;
1879
1880 codemap[code] = 1;
1881 p = p->next;
1882 }
1883 while (p
1884 && ! p->tests->next
1885 && p->tests->type == DT_code
1886 && ! codemap[code = p->tests->u.code]);
1887
1888 /* If P is testing a predicate that we know about and we haven't
1889 seen any of the codes that are valid for the predicate, we can
1890 write a series of "case" statement, one for each possible code.
1891 Since we are already in a switch, these redundant tests are very
1892 cheap and will reduce the number of predicates called. */
1893
1894 /* Note that while we write out cases for these predicates here,
1895 we don't actually write the test here, as it gets kinda messy.
1896 It is trivial to leave this to later by telling our caller that
1897 we only processed the CODE tests. */
1898 if (needs_label != NULL)
1899 ret = needs_label;
1900 else
1901 ret = p;
1902
1903 while (p && p->tests->type == DT_pred && p->tests->u.pred.data)
1904 {
1905 const struct pred_data *data = p->tests->u.pred.data;
1906 int c;
1907
1908 for (c = 0; c < NUM_RTX_CODE; c++)
1909 if (codemap[c] && data->codes[c])
1910 goto pred_done;
1911
1912 for (c = 0; c < NUM_RTX_CODE; c++)
1913 if (data->codes[c])
1914 {
1915 fputs (" case ", stdout);
1916 print_code ((enum rtx_code) c);
1917 fputs (":\n", stdout);
1918 codemap[c] = 1;
1919 }
1920
1921 printf (" goto L%d;\n", p->number);
1922 p->need_label = 1;
1923 p = p->next;
1924 }
1925
1926 pred_done:
1927 /* Make the default case skip the predicates we managed to match. */
1928
1929 printf (" default:\n");
1930 if (p != ret)
1931 {
1932 if (p)
1933 {
1934 printf (" goto L%d;\n", p->number);
1935 p->need_label = 1;
1936 }
1937 else
1938 write_afterward (start, start->afterward, " ");
1939 }
1940 else
1941 printf (" break;\n");
1942 printf (" }\n");
1943
1944 return ret;
1945 }
1946 else if (type == DT_mode
1947 || type == DT_veclen
1948 || type == DT_elt_zero_int
1949 || type == DT_elt_one_int
1950 || type == DT_elt_zero_wide_safe)
1951 {
1952 const char *indent = "";
1953
1954 /* We cast switch parameter to integer, so we must ensure that the value
1955 fits. */
1956 if (type == DT_elt_zero_wide_safe)
1957 {
1958 indent = " ";
1959 printf(" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n", depth, depth);
1960 }
1961 printf ("%s switch (", indent);
1962 switch (type)
1963 {
1964 case DT_mode:
1965 printf ("GET_MODE (x%d)", depth);
1966 break;
1967 case DT_veclen:
1968 printf ("XVECLEN (x%d, 0)", depth);
1969 break;
1970 case DT_elt_zero_int:
1971 printf ("XINT (x%d, 0)", depth);
1972 break;
1973 case DT_elt_one_int:
1974 printf ("XINT (x%d, 1)", depth);
1975 break;
1976 case DT_elt_zero_wide_safe:
1977 /* Convert result of XWINT to int for portability since some C
1978 compilers won't do it and some will. */
1979 printf ("(int) XWINT (x%d, 0)", depth);
1980 break;
1981 default:
1982 gcc_unreachable ();
1983 }
1984 printf (")\n%s {\n", indent);
1985
1986 do
1987 {
1988 /* Merge trees will not unify identical nodes if their
1989 sub-nodes are at different levels. Thus we must check
1990 for duplicate cases. */
1991 struct decision *q;
1992 for (q = start; q != p; q = q->next)
1993 if (nodes_identical_1 (p->tests, q->tests))
1994 goto case_done;
1995
1996 if (p != start && p->need_label && needs_label == NULL)
1997 needs_label = p;
1998
1999 printf ("%s case ", indent);
2000 switch (type)
2001 {
2002 case DT_mode:
2003 printf ("%smode", GET_MODE_NAME (p->tests->u.mode));
2004 break;
2005 case DT_veclen:
2006 printf ("%d", p->tests->u.veclen);
2007 break;
2008 case DT_elt_zero_int:
2009 case DT_elt_one_int:
2010 case DT_elt_zero_wide:
2011 case DT_elt_zero_wide_safe:
2012 print_host_wide_int (p->tests->u.intval);
2013 break;
2014 default:
2015 gcc_unreachable ();
2016 }
2017 printf (":\n%s goto L%d;\n", indent, p->success.first->number);
2018 p->success.first->need_label = 1;
2019
2020 p = p->next;
2021 }
2022 while (p && p->tests->type == type && !p->tests->next);
2023
2024 case_done:
2025 printf ("%s default:\n%s break;\n%s }\n",
2026 indent, indent, indent);
2027
2028 return needs_label != NULL ? needs_label : p;
2029 }
2030 else
2031 {
2032 /* None of the other tests are amenable. */
2033 return p;
2034 }
2035 }
2036
2037 /* Emit code for one test. */
2038
2039 static void
2040 write_cond (struct decision_test *p, int depth,
2041 enum routine_type subroutine_type)
2042 {
2043 switch (p->type)
2044 {
2045 case DT_num_insns:
2046 printf ("peep2_current_count >= %d", p->u.num_insns);
2047 break;
2048
2049 case DT_mode:
2050 printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode));
2051 break;
2052
2053 case DT_code:
2054 printf ("GET_CODE (x%d) == ", depth);
2055 print_code (p->u.code);
2056 break;
2057
2058 case DT_veclen:
2059 printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen);
2060 break;
2061
2062 case DT_elt_zero_int:
2063 printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval);
2064 break;
2065
2066 case DT_elt_one_int:
2067 printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval);
2068 break;
2069
2070 case DT_elt_zero_wide:
2071 case DT_elt_zero_wide_safe:
2072 printf ("XWINT (x%d, 0) == ", depth);
2073 print_host_wide_int (p->u.intval);
2074 break;
2075
2076 case DT_const_int:
2077 printf ("x%d == const_int_rtx[MAX_SAVED_CONST_INT + (%d)]",
2078 depth, (int) p->u.intval);
2079 break;
2080
2081 case DT_veclen_ge:
2082 printf ("XVECLEN (x%d, 0) >= %d", depth, p->u.veclen);
2083 break;
2084
2085 case DT_dup:
2086 printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup);
2087 break;
2088
2089 case DT_pred:
2090 printf ("%s (x%d, %smode)", p->u.pred.name, depth,
2091 GET_MODE_NAME (p->u.pred.mode));
2092 break;
2093
2094 case DT_c_test:
2095 print_c_condition (p->u.c_test);
2096 break;
2097
2098 case DT_accept_insn:
2099 gcc_assert (subroutine_type == RECOG);
2100 gcc_assert (p->u.insn.num_clobbers_to_add);
2101 printf ("pnum_clobbers != NULL");
2102 break;
2103
2104 default:
2105 gcc_unreachable ();
2106 }
2107 }
2108
2109 /* Emit code for one action. The previous tests have succeeded;
2110 TEST is the last of the chain. In the normal case we simply
2111 perform a state change. For the `accept' tests we must do more work. */
2112
2113 static void
2114 write_action (struct decision *p, struct decision_test *test,
2115 int depth, int uncond, struct decision *success,
2116 enum routine_type subroutine_type)
2117 {
2118 const char *indent;
2119 int want_close = 0;
2120
2121 if (uncond)
2122 indent = " ";
2123 else if (test->type == DT_accept_op || test->type == DT_accept_insn)
2124 {
2125 fputs (" {\n", stdout);
2126 indent = " ";
2127 want_close = 1;
2128 }
2129 else
2130 indent = " ";
2131
2132 if (test->type == DT_accept_op)
2133 {
2134 printf("%soperands[%d] = x%d;\n", indent, test->u.opno, depth);
2135
2136 /* Only allow DT_accept_insn to follow. */
2137 if (test->next)
2138 {
2139 test = test->next;
2140 gcc_assert (test->type == DT_accept_insn);
2141 }
2142 }
2143
2144 /* Sanity check that we're now at the end of the list of tests. */
2145 gcc_assert (!test->next);
2146
2147 if (test->type == DT_accept_insn)
2148 {
2149 switch (subroutine_type)
2150 {
2151 case RECOG:
2152 if (test->u.insn.num_clobbers_to_add != 0)
2153 printf ("%s*pnum_clobbers = %d;\n",
2154 indent, test->u.insn.num_clobbers_to_add);
2155 printf ("%sreturn %d; /* %s */\n", indent,
2156 test->u.insn.code_number,
2157 get_insn_name (test->u.insn.code_number));
2158 break;
2159
2160 case SPLIT:
2161 printf ("%sreturn gen_split_%d (insn, operands);\n",
2162 indent, test->u.insn.code_number);
2163 break;
2164
2165 case PEEPHOLE2:
2166 {
2167 int match_len = 0, i;
2168
2169 for (i = strlen (p->position) - 1; i >= 0; --i)
2170 if (ISUPPER (p->position[i]))
2171 {
2172 match_len = p->position[i] - 'A';
2173 break;
2174 }
2175 printf ("%s*_pmatch_len = %d;\n", indent, match_len);
2176 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
2177 indent, test->u.insn.code_number);
2178 printf ("%sif (tem != 0)\n%s return tem;\n", indent, indent);
2179 }
2180 break;
2181
2182 default:
2183 gcc_unreachable ();
2184 }
2185 }
2186 else
2187 {
2188 printf("%sgoto L%d;\n", indent, success->number);
2189 success->need_label = 1;
2190 }
2191
2192 if (want_close)
2193 fputs (" }\n", stdout);
2194 }
2195
2196 /* Return 1 if the test is always true and has no fallthru path. Return -1
2197 if the test does have a fallthru path, but requires that the condition be
2198 terminated. Otherwise return 0 for a normal test. */
2199 /* ??? is_unconditional is a stupid name for a tri-state function. */
2200
2201 static int
2202 is_unconditional (struct decision_test *t, enum routine_type subroutine_type)
2203 {
2204 if (t->type == DT_accept_op)
2205 return 1;
2206
2207 if (t->type == DT_accept_insn)
2208 {
2209 switch (subroutine_type)
2210 {
2211 case RECOG:
2212 return (t->u.insn.num_clobbers_to_add == 0);
2213 case SPLIT:
2214 return 1;
2215 case PEEPHOLE2:
2216 return -1;
2217 default:
2218 gcc_unreachable ();
2219 }
2220 }
2221
2222 return 0;
2223 }
2224
2225 /* Emit code for one node -- the conditional and the accompanying action.
2226 Return true if there is no fallthru path. */
2227
2228 static int
2229 write_node (struct decision *p, int depth,
2230 enum routine_type subroutine_type)
2231 {
2232 struct decision_test *test, *last_test;
2233 int uncond;
2234
2235 /* Scan the tests and simplify comparisons against small
2236 constants. */
2237 for (test = p->tests; test; test = test->next)
2238 {
2239 if (test->type == DT_code
2240 && test->u.code == CONST_INT
2241 && test->next
2242 && test->next->type == DT_elt_zero_wide_safe
2243 && -MAX_SAVED_CONST_INT <= test->next->u.intval
2244 && test->next->u.intval <= MAX_SAVED_CONST_INT)
2245 {
2246 test->type = DT_const_int;
2247 test->u.intval = test->next->u.intval;
2248 test->next = test->next->next;
2249 }
2250 }
2251
2252 last_test = test = p->tests;
2253 uncond = is_unconditional (test, subroutine_type);
2254 if (uncond == 0)
2255 {
2256 printf (" if (");
2257 write_cond (test, depth, subroutine_type);
2258
2259 while ((test = test->next) != NULL)
2260 {
2261 last_test = test;
2262 if (is_unconditional (test, subroutine_type))
2263 break;
2264
2265 printf ("\n && ");
2266 write_cond (test, depth, subroutine_type);
2267 }
2268
2269 printf (")\n");
2270 }
2271
2272 write_action (p, last_test, depth, uncond, p->success.first, subroutine_type);
2273
2274 return uncond > 0;
2275 }
2276
2277 /* Emit code for all of the sibling nodes of HEAD. */
2278
2279 static void
2280 write_tree_1 (struct decision_head *head, int depth,
2281 enum routine_type subroutine_type)
2282 {
2283 struct decision *p, *next;
2284 int uncond = 0;
2285
2286 for (p = head->first; p ; p = next)
2287 {
2288 /* The label for the first element was printed in write_tree. */
2289 if (p != head->first && p->need_label)
2290 OUTPUT_LABEL (" ", p->number);
2291
2292 /* Attempt to write a switch statement for a whole sequence. */
2293 next = write_switch (p, depth);
2294 if (p != next)
2295 uncond = 0;
2296 else
2297 {
2298 /* Failed -- fall back and write one node. */
2299 uncond = write_node (p, depth, subroutine_type);
2300 next = p->next;
2301 }
2302 }
2303
2304 /* Finished with this chain. Close a fallthru path by branching
2305 to the afterward node. */
2306 if (! uncond)
2307 write_afterward (head->last, head->last->afterward, " ");
2308 }
2309
2310 /* Write out the decision tree starting at HEAD. PREVPOS is the
2311 position at the node that branched to this node. */
2312
2313 static void
2314 write_tree (struct decision_head *head, const char *prevpos,
2315 enum routine_type type, int initial)
2316 {
2317 struct decision *p = head->first;
2318
2319 putchar ('\n');
2320 if (p->need_label)
2321 OUTPUT_LABEL (" ", p->number);
2322
2323 if (! initial && p->subroutine_number > 0)
2324 {
2325 static const char * const name_prefix[] = {
2326 "recog", "split", "peephole2"
2327 };
2328
2329 static const char * const call_suffix[] = {
2330 ", pnum_clobbers", "", ", _pmatch_len"
2331 };
2332
2333 /* This node has been broken out into a separate subroutine.
2334 Call it, test the result, and branch accordingly. */
2335
2336 if (p->afterward)
2337 {
2338 printf (" tem = %s_%d (x0, insn%s);\n",
2339 name_prefix[type], p->subroutine_number, call_suffix[type]);
2340 if (IS_SPLIT (type))
2341 printf (" if (tem != 0)\n return tem;\n");
2342 else
2343 printf (" if (tem >= 0)\n return tem;\n");
2344
2345 change_state (p->position, p->afterward->position, " ");
2346 printf (" goto L%d;\n", p->afterward->number);
2347 }
2348 else
2349 {
2350 printf (" return %s_%d (x0, insn%s);\n",
2351 name_prefix[type], p->subroutine_number, call_suffix[type]);
2352 }
2353 }
2354 else
2355 {
2356 int depth = strlen (p->position);
2357
2358 change_state (prevpos, p->position, " ");
2359 write_tree_1 (head, depth, type);
2360
2361 for (p = head->first; p; p = p->next)
2362 if (p->success.first)
2363 write_tree (&p->success, p->position, type, 0);
2364 }
2365 }
2366
2367 /* Write out a subroutine of type TYPE to do comparisons starting at
2368 node TREE. */
2369
2370 static void
2371 write_subroutine (struct decision_head *head, enum routine_type type)
2372 {
2373 int subfunction = head->first ? head->first->subroutine_number : 0;
2374 const char *s_or_e;
2375 char extension[32];
2376 int i;
2377
2378 s_or_e = subfunction ? "static " : "";
2379
2380 if (subfunction)
2381 sprintf (extension, "_%d", subfunction);
2382 else if (type == RECOG)
2383 extension[0] = '\0';
2384 else
2385 strcpy (extension, "_insns");
2386
2387 switch (type)
2388 {
2389 case RECOG:
2390 printf ("%sint\n\
2391 recog%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", s_or_e, extension);
2392 break;
2393 case SPLIT:
2394 printf ("%srtx\n\
2395 split%s (rtx x0 ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED)\n",
2396 s_or_e, extension);
2397 break;
2398 case PEEPHOLE2:
2399 printf ("%srtx\n\
2400 peephole2%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *_pmatch_len ATTRIBUTE_UNUSED)\n",
2401 s_or_e, extension);
2402 break;
2403 }
2404
2405 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
2406 for (i = 1; i <= max_depth; i++)
2407 printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i);
2408
2409 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int");
2410
2411 if (!subfunction)
2412 printf (" recog_data.insn = NULL_RTX;\n");
2413
2414 if (head->first)
2415 write_tree (head, "", type, 1);
2416 else
2417 printf (" goto ret0;\n");
2418
2419 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1);
2420 }
2421
2422 /* In break_out_subroutines, we discovered the boundaries for the
2423 subroutines, but did not write them out. Do so now. */
2424
2425 static void
2426 write_subroutines (struct decision_head *head, enum routine_type type)
2427 {
2428 struct decision *p;
2429
2430 for (p = head->first; p ; p = p->next)
2431 if (p->success.first)
2432 write_subroutines (&p->success, type);
2433
2434 if (head->first->subroutine_number > 0)
2435 write_subroutine (head, type);
2436 }
2437
2438 /* Begin the output file. */
2439
2440 static void
2441 write_header (void)
2442 {
2443 puts ("\
2444 /* Generated automatically by the program `genrecog' from the target\n\
2445 machine description file. */\n\
2446 \n\
2447 #include \"config.h\"\n\
2448 #include \"system.h\"\n\
2449 #include \"coretypes.h\"\n\
2450 #include \"tm.h\"\n\
2451 #include \"rtl.h\"\n\
2452 #include \"tm_p.h\"\n\
2453 #include \"function.h\"\n\
2454 #include \"insn-config.h\"\n\
2455 #include \"recog.h\"\n\
2456 #include \"output.h\"\n\
2457 #include \"flags.h\"\n\
2458 #include \"hard-reg-set.h\"\n\
2459 #include \"resource.h\"\n\
2460 #include \"toplev.h\"\n\
2461 #include \"reload.h\"\n\
2462 #include \"regs.h\"\n\
2463 #include \"tm-constrs.h\"\n\
2464 \n");
2465
2466 puts ("\n\
2467 /* `recog' contains a decision tree that recognizes whether the rtx\n\
2468 X0 is a valid instruction.\n\
2469 \n\
2470 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2471 returns a nonnegative number which is the insn code number for the\n\
2472 pattern that matched. This is the same as the order in the machine\n\
2473 description of the entry that matched. This number can be used as an\n\
2474 index into `insn_data' and other tables.\n");
2475 puts ("\
2476 The third argument to recog is an optional pointer to an int. If\n\
2477 present, recog will accept a pattern if it matches except for missing\n\
2478 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2479 the optional pointer will be set to the number of CLOBBERs that need\n\
2480 to be added (it should be initialized to zero by the caller). If it");
2481 puts ("\
2482 is set nonzero, the caller should allocate a PARALLEL of the\n\
2483 appropriate size, copy the initial entries, and call add_clobbers\n\
2484 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2485 ");
2486
2487 puts ("\n\
2488 The function split_insns returns 0 if the rtl could not\n\
2489 be split or the split rtl as an INSN list if it can be.\n\
2490 \n\
2491 The function peephole2_insns returns 0 if the rtl could not\n\
2492 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
2493 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2494 */\n\n");
2495 }
2496
2497 \f
2498 /* Construct and return a sequence of decisions
2499 that will recognize INSN.
2500
2501 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2502
2503 static struct decision_head
2504 make_insn_sequence (rtx insn, enum routine_type type)
2505 {
2506 rtx x;
2507 const char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
2508 int truth = maybe_eval_c_test (c_test);
2509 struct decision *last;
2510 struct decision_test *test, **place;
2511 struct decision_head head;
2512 char c_test_pos[2];
2513
2514 /* We should never see an insn whose C test is false at compile time. */
2515 gcc_assert (truth);
2516
2517 c_test_pos[0] = '\0';
2518 if (type == PEEPHOLE2)
2519 {
2520 int i, j;
2521
2522 /* peephole2 gets special treatment:
2523 - X always gets an outer parallel even if it's only one entry
2524 - we remove all traces of outer-level match_scratch and match_dup
2525 expressions here. */
2526 x = rtx_alloc (PARALLEL);
2527 PUT_MODE (x, VOIDmode);
2528 XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0));
2529 for (i = j = 0; i < XVECLEN (insn, 0); i++)
2530 {
2531 rtx tmp = XVECEXP (insn, 0, i);
2532 if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP)
2533 {
2534 XVECEXP (x, 0, j) = tmp;
2535 j++;
2536 }
2537 }
2538 XVECLEN (x, 0) = j;
2539
2540 c_test_pos[0] = 'A' + j - 1;
2541 c_test_pos[1] = '\0';
2542 }
2543 else if (XVECLEN (insn, type == RECOG) == 1)
2544 x = XVECEXP (insn, type == RECOG, 0);
2545 else
2546 {
2547 x = rtx_alloc (PARALLEL);
2548 XVEC (x, 0) = XVEC (insn, type == RECOG);
2549 PUT_MODE (x, VOIDmode);
2550 }
2551
2552 validate_pattern (x, insn, NULL_RTX, 0);
2553
2554 memset(&head, 0, sizeof(head));
2555 last = add_to_sequence (x, &head, "", type, 1);
2556
2557 /* Find the end of the test chain on the last node. */
2558 for (test = last->tests; test->next; test = test->next)
2559 continue;
2560 place = &test->next;
2561
2562 /* Skip the C test if it's known to be true at compile time. */
2563 if (truth == -1)
2564 {
2565 /* Need a new node if we have another test to add. */
2566 if (test->type == DT_accept_op)
2567 {
2568 last = new_decision (c_test_pos, &last->success);
2569 place = &last->tests;
2570 }
2571 test = new_decision_test (DT_c_test, &place);
2572 test->u.c_test = c_test;
2573 }
2574
2575 test = new_decision_test (DT_accept_insn, &place);
2576 test->u.insn.code_number = next_insn_code;
2577 test->u.insn.lineno = pattern_lineno;
2578 test->u.insn.num_clobbers_to_add = 0;
2579
2580 switch (type)
2581 {
2582 case RECOG:
2583 /* If this is a DEFINE_INSN and X is a PARALLEL, see if it ends
2584 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2585 If so, set up to recognize the pattern without these CLOBBERs. */
2586
2587 if (GET_CODE (x) == PARALLEL)
2588 {
2589 int i;
2590
2591 /* Find the last non-clobber in the parallel. */
2592 for (i = XVECLEN (x, 0); i > 0; i--)
2593 {
2594 rtx y = XVECEXP (x, 0, i - 1);
2595 if (GET_CODE (y) != CLOBBER
2596 || (!REG_P (XEXP (y, 0))
2597 && GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH))
2598 break;
2599 }
2600
2601 if (i != XVECLEN (x, 0))
2602 {
2603 rtx new_rtx;
2604 struct decision_head clobber_head;
2605
2606 /* Build a similar insn without the clobbers. */
2607 if (i == 1)
2608 new_rtx = XVECEXP (x, 0, 0);
2609 else
2610 {
2611 int j;
2612
2613 new_rtx = rtx_alloc (PARALLEL);
2614 XVEC (new_rtx, 0) = rtvec_alloc (i);
2615 for (j = i - 1; j >= 0; j--)
2616 XVECEXP (new_rtx, 0, j) = XVECEXP (x, 0, j);
2617 }
2618
2619 /* Recognize it. */
2620 memset (&clobber_head, 0, sizeof(clobber_head));
2621 last = add_to_sequence (new_rtx, &clobber_head, "", type, 1);
2622
2623 /* Find the end of the test chain on the last node. */
2624 for (test = last->tests; test->next; test = test->next)
2625 continue;
2626
2627 /* We definitely have a new test to add -- create a new
2628 node if needed. */
2629 place = &test->next;
2630 if (test->type == DT_accept_op)
2631 {
2632 last = new_decision ("", &last->success);
2633 place = &last->tests;
2634 }
2635
2636 /* Skip the C test if it's known to be true at compile
2637 time. */
2638 if (truth == -1)
2639 {
2640 test = new_decision_test (DT_c_test, &place);
2641 test->u.c_test = c_test;
2642 }
2643
2644 test = new_decision_test (DT_accept_insn, &place);
2645 test->u.insn.code_number = next_insn_code;
2646 test->u.insn.lineno = pattern_lineno;
2647 test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i;
2648
2649 merge_trees (&head, &clobber_head);
2650 }
2651 }
2652 break;
2653
2654 case SPLIT:
2655 /* Define the subroutine we will call below and emit in genemit. */
2656 printf ("extern rtx gen_split_%d (rtx, rtx *);\n", next_insn_code);
2657 break;
2658
2659 case PEEPHOLE2:
2660 /* Define the subroutine we will call below and emit in genemit. */
2661 printf ("extern rtx gen_peephole2_%d (rtx, rtx *);\n",
2662 next_insn_code);
2663 break;
2664 }
2665
2666 return head;
2667 }
2668
2669 static void
2670 process_tree (struct decision_head *head, enum routine_type subroutine_type)
2671 {
2672 if (head->first == NULL)
2673 {
2674 /* We can elide peephole2_insns, but not recog or split_insns. */
2675 if (subroutine_type == PEEPHOLE2)
2676 return;
2677 }
2678 else
2679 {
2680 factor_tests (head);
2681
2682 next_subroutine_number = 0;
2683 break_out_subroutines (head, 1);
2684 find_afterward (head, NULL);
2685
2686 /* We run this after find_afterward, because find_afterward needs
2687 the redundant DT_mode tests on predicates to determine whether
2688 two tests can both be true or not. */
2689 simplify_tests(head);
2690
2691 write_subroutines (head, subroutine_type);
2692 }
2693
2694 write_subroutine (head, subroutine_type);
2695 }
2696 \f
2697 extern int main (int, char **);
2698
2699 int
2700 main (int argc, char **argv)
2701 {
2702 rtx desc;
2703 struct decision_head recog_tree, split_tree, peephole2_tree, h;
2704
2705 progname = "genrecog";
2706
2707 memset (&recog_tree, 0, sizeof recog_tree);
2708 memset (&split_tree, 0, sizeof split_tree);
2709 memset (&peephole2_tree, 0, sizeof peephole2_tree);
2710
2711 if (!init_rtx_reader_args (argc, argv))
2712 return (FATAL_EXIT_CODE);
2713
2714 next_insn_code = 0;
2715
2716 write_header ();
2717
2718 /* Read the machine description. */
2719
2720 while (1)
2721 {
2722 desc = read_md_rtx (&pattern_lineno, &next_insn_code);
2723 if (desc == NULL)
2724 break;
2725
2726 switch (GET_CODE (desc))
2727 {
2728 case DEFINE_PREDICATE:
2729 case DEFINE_SPECIAL_PREDICATE:
2730 process_define_predicate (desc);
2731 break;
2732
2733 case DEFINE_INSN:
2734 h = make_insn_sequence (desc, RECOG);
2735 merge_trees (&recog_tree, &h);
2736 break;
2737
2738 case DEFINE_SPLIT:
2739 h = make_insn_sequence (desc, SPLIT);
2740 merge_trees (&split_tree, &h);
2741 break;
2742
2743 case DEFINE_PEEPHOLE2:
2744 h = make_insn_sequence (desc, PEEPHOLE2);
2745 merge_trees (&peephole2_tree, &h);
2746
2747 default:
2748 /* do nothing */;
2749 }
2750 }
2751
2752 if (have_error)
2753 return FATAL_EXIT_CODE;
2754
2755 puts ("\n\n");
2756
2757 process_tree (&recog_tree, RECOG);
2758 process_tree (&split_tree, SPLIT);
2759 process_tree (&peephole2_tree, PEEPHOLE2);
2760
2761 fflush (stdout);
2762 return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
2763 }
2764 \f
2765 static void
2766 debug_decision_2 (struct decision_test *test)
2767 {
2768 switch (test->type)
2769 {
2770 case DT_num_insns:
2771 fprintf (stderr, "num_insns=%d", test->u.num_insns);
2772 break;
2773 case DT_mode:
2774 fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode));
2775 break;
2776 case DT_code:
2777 fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code));
2778 break;
2779 case DT_veclen:
2780 fprintf (stderr, "veclen=%d", test->u.veclen);
2781 break;
2782 case DT_elt_zero_int:
2783 fprintf (stderr, "elt0_i=%d", (int) test->u.intval);
2784 break;
2785 case DT_elt_one_int:
2786 fprintf (stderr, "elt1_i=%d", (int) test->u.intval);
2787 break;
2788 case DT_elt_zero_wide:
2789 fprintf (stderr, "elt0_w=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2790 break;
2791 case DT_elt_zero_wide_safe:
2792 fprintf (stderr, "elt0_ws=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2793 break;
2794 case DT_veclen_ge:
2795 fprintf (stderr, "veclen>=%d", test->u.veclen);
2796 break;
2797 case DT_dup:
2798 fprintf (stderr, "dup=%d", test->u.dup);
2799 break;
2800 case DT_pred:
2801 fprintf (stderr, "pred=(%s,%s)",
2802 test->u.pred.name, GET_MODE_NAME(test->u.pred.mode));
2803 break;
2804 case DT_c_test:
2805 {
2806 char sub[16+4];
2807 strncpy (sub, test->u.c_test, sizeof(sub));
2808 memcpy (sub+16, "...", 4);
2809 fprintf (stderr, "c_test=\"%s\"", sub);
2810 }
2811 break;
2812 case DT_accept_op:
2813 fprintf (stderr, "A_op=%d", test->u.opno);
2814 break;
2815 case DT_accept_insn:
2816 fprintf (stderr, "A_insn=(%d,%d)",
2817 test->u.insn.code_number, test->u.insn.num_clobbers_to_add);
2818 break;
2819
2820 default:
2821 gcc_unreachable ();
2822 }
2823 }
2824
2825 static void
2826 debug_decision_1 (struct decision *d, int indent)
2827 {
2828 int i;
2829 struct decision_test *test;
2830
2831 if (d == NULL)
2832 {
2833 for (i = 0; i < indent; ++i)
2834 putc (' ', stderr);
2835 fputs ("(nil)\n", stderr);
2836 return;
2837 }
2838
2839 for (i = 0; i < indent; ++i)
2840 putc (' ', stderr);
2841
2842 putc ('{', stderr);
2843 test = d->tests;
2844 if (test)
2845 {
2846 debug_decision_2 (test);
2847 while ((test = test->next) != NULL)
2848 {
2849 fputs (" + ", stderr);
2850 debug_decision_2 (test);
2851 }
2852 }
2853 fprintf (stderr, "} %d n %d a %d\n", d->number,
2854 (d->next ? d->next->number : -1),
2855 (d->afterward ? d->afterward->number : -1));
2856 }
2857
2858 static void
2859 debug_decision_0 (struct decision *d, int indent, int maxdepth)
2860 {
2861 struct decision *n;
2862 int i;
2863
2864 if (maxdepth < 0)
2865 return;
2866 if (d == NULL)
2867 {
2868 for (i = 0; i < indent; ++i)
2869 putc (' ', stderr);
2870 fputs ("(nil)\n", stderr);
2871 return;
2872 }
2873
2874 debug_decision_1 (d, indent);
2875 for (n = d->success.first; n ; n = n->next)
2876 debug_decision_0 (n, indent + 2, maxdepth - 1);
2877 }
2878
2879 DEBUG_FUNCTION void
2880 debug_decision (struct decision *d)
2881 {
2882 debug_decision_0 (d, 0, 1000000);
2883 }
2884
2885 DEBUG_FUNCTION void
2886 debug_decision_list (struct decision *d)
2887 {
2888 while (d)
2889 {
2890 debug_decision_0 (d, 0, 0);
2891 d = d->next;
2892 }
2893 }