usage.adb: Change "pragma inline" to "pragma Inline" in information and error messages
[gcc.git] / gcc / ggc-common.c
1 /* Simple garbage collection for the GNU compiler.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* Generic garbage collection (GC) functions and data, not specific to
23 any particular GC implementation. */
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "hashtab.h"
29 #include "ggc.h"
30 #include "toplev.h"
31 #include "params.h"
32 #include "hosthooks.h"
33 #include "hosthooks-def.h"
34
35 #ifdef HAVE_SYS_RESOURCE_H
36 # include <sys/resource.h>
37 #endif
38
39 #ifdef HAVE_MMAP_FILE
40 # include <sys/mman.h>
41 # ifdef HAVE_MINCORE
42 /* This is on Solaris. */
43 # include <sys/types.h>
44 # endif
45 #endif
46
47 #ifndef MAP_FAILED
48 # define MAP_FAILED ((void *)-1)
49 #endif
50
51 #ifdef ENABLE_VALGRIND_CHECKING
52 # ifdef HAVE_VALGRIND_MEMCHECK_H
53 # include <valgrind/memcheck.h>
54 # elif defined HAVE_MEMCHECK_H
55 # include <memcheck.h>
56 # else
57 # include <valgrind.h>
58 # endif
59 #else
60 /* Avoid #ifdef:s when we can help it. */
61 #define VALGRIND_DISCARD(x)
62 #endif
63
64 /* When set, ggc_collect will do collection. */
65 bool ggc_force_collect;
66
67 /* Statistics about the allocation. */
68 static ggc_statistics *ggc_stats;
69
70 struct traversal_state;
71
72 static int ggc_htab_delete (void **, void *);
73 static hashval_t saving_htab_hash (const void *);
74 static int saving_htab_eq (const void *, const void *);
75 static int call_count (void **, void *);
76 static int call_alloc (void **, void *);
77 static int compare_ptr_data (const void *, const void *);
78 static void relocate_ptrs (void *, void *);
79 static void write_pch_globals (const struct ggc_root_tab * const *tab,
80 struct traversal_state *state);
81 static double ggc_rlimit_bound (double);
82
83 /* Maintain global roots that are preserved during GC. */
84
85 /* Process a slot of an htab by deleting it if it has not been marked. */
86
87 static int
88 ggc_htab_delete (void **slot, void *info)
89 {
90 const struct ggc_cache_tab *r = (const struct ggc_cache_tab *) info;
91
92 if (! (*r->marked_p) (*slot))
93 htab_clear_slot (*r->base, slot);
94 else
95 (*r->cb) (*slot);
96
97 return 1;
98 }
99
100 /* Iterate through all registered roots and mark each element. */
101
102 void
103 ggc_mark_roots (void)
104 {
105 const struct ggc_root_tab *const *rt;
106 const struct ggc_root_tab *rti;
107 const struct ggc_cache_tab *const *ct;
108 const struct ggc_cache_tab *cti;
109 size_t i;
110
111 for (rt = gt_ggc_deletable_rtab; *rt; rt++)
112 for (rti = *rt; rti->base != NULL; rti++)
113 memset (rti->base, 0, rti->stride);
114
115 for (rt = gt_ggc_rtab; *rt; rt++)
116 for (rti = *rt; rti->base != NULL; rti++)
117 for (i = 0; i < rti->nelt; i++)
118 (*rti->cb)(*(void **)((char *)rti->base + rti->stride * i));
119
120 ggc_mark_stringpool ();
121
122 /* Now scan all hash tables that have objects which are to be deleted if
123 they are not already marked. */
124 for (ct = gt_ggc_cache_rtab; *ct; ct++)
125 for (cti = *ct; cti->base != NULL; cti++)
126 if (*cti->base)
127 {
128 ggc_set_mark (*cti->base);
129 htab_traverse_noresize (*cti->base, ggc_htab_delete, (void *) cti);
130 ggc_set_mark ((*cti->base)->entries);
131 }
132 }
133
134 /* Allocate a block of memory, then clear it. */
135 void *
136 ggc_alloc_cleared_stat (size_t size MEM_STAT_DECL)
137 {
138 void *buf = ggc_alloc_stat (size PASS_MEM_STAT);
139 memset (buf, 0, size);
140 return buf;
141 }
142
143 /* Resize a block of memory, possibly re-allocating it. */
144 void *
145 ggc_realloc_stat (void *x, size_t size MEM_STAT_DECL)
146 {
147 void *r;
148 size_t old_size;
149
150 if (x == NULL)
151 return ggc_alloc_stat (size PASS_MEM_STAT);
152
153 old_size = ggc_get_size (x);
154
155 if (size <= old_size)
156 {
157 /* Mark the unwanted memory as unaccessible. We also need to make
158 the "new" size accessible, since ggc_get_size returns the size of
159 the pool, not the size of the individually allocated object, the
160 size which was previously made accessible. Unfortunately, we
161 don't know that previously allocated size. Without that
162 knowledge we have to lose some initialization-tracking for the
163 old parts of the object. An alternative is to mark the whole
164 old_size as reachable, but that would lose tracking of writes
165 after the end of the object (by small offsets). Discard the
166 handle to avoid handle leak. */
167 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS ((char *) x + size,
168 old_size - size));
169 VALGRIND_DISCARD (VALGRIND_MAKE_READABLE (x, size));
170 return x;
171 }
172
173 r = ggc_alloc_stat (size PASS_MEM_STAT);
174
175 /* Since ggc_get_size returns the size of the pool, not the size of the
176 individually allocated object, we'd access parts of the old object
177 that were marked invalid with the memcpy below. We lose a bit of the
178 initialization-tracking since some of it may be uninitialized. */
179 VALGRIND_DISCARD (VALGRIND_MAKE_READABLE (x, old_size));
180
181 memcpy (r, x, old_size);
182
183 /* The old object is not supposed to be used anymore. */
184 ggc_free (x);
185
186 return r;
187 }
188
189 /* Like ggc_alloc_cleared, but performs a multiplication. */
190 void *
191 ggc_calloc (size_t s1, size_t s2)
192 {
193 return ggc_alloc_cleared (s1 * s2);
194 }
195
196 /* These are for splay_tree_new_ggc. */
197 void *
198 ggc_splay_alloc (int sz, void *nl)
199 {
200 gcc_assert (!nl);
201 return ggc_alloc (sz);
202 }
203
204 void
205 ggc_splay_dont_free (void * x ATTRIBUTE_UNUSED, void *nl)
206 {
207 gcc_assert (!nl);
208 }
209
210 /* Print statistics that are independent of the collector in use. */
211 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
212 ? (x) \
213 : ((x) < 1024*1024*10 \
214 ? (x) / 1024 \
215 : (x) / (1024*1024))))
216 #define LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
217
218 void
219 ggc_print_common_statistics (FILE *stream ATTRIBUTE_UNUSED,
220 ggc_statistics *stats)
221 {
222 /* Set the pointer so that during collection we will actually gather
223 the statistics. */
224 ggc_stats = stats;
225
226 /* Then do one collection to fill in the statistics. */
227 ggc_collect ();
228
229 /* At present, we don't really gather any interesting statistics. */
230
231 /* Don't gather statistics any more. */
232 ggc_stats = NULL;
233 }
234 \f
235 /* Functions for saving and restoring GCable memory to disk. */
236
237 static htab_t saving_htab;
238
239 struct ptr_data
240 {
241 void *obj;
242 void *note_ptr_cookie;
243 gt_note_pointers note_ptr_fn;
244 gt_handle_reorder reorder_fn;
245 size_t size;
246 void *new_addr;
247 };
248
249 #define POINTER_HASH(x) (hashval_t)((long)x >> 3)
250
251 /* Register an object in the hash table. */
252
253 int
254 gt_pch_note_object (void *obj, void *note_ptr_cookie,
255 gt_note_pointers note_ptr_fn)
256 {
257 struct ptr_data **slot;
258
259 if (obj == NULL || obj == (void *) 1)
260 return 0;
261
262 slot = (struct ptr_data **)
263 htab_find_slot_with_hash (saving_htab, obj, POINTER_HASH (obj),
264 INSERT);
265 if (*slot != NULL)
266 {
267 gcc_assert ((*slot)->note_ptr_fn == note_ptr_fn
268 && (*slot)->note_ptr_cookie == note_ptr_cookie);
269 return 0;
270 }
271
272 *slot = xcalloc (sizeof (struct ptr_data), 1);
273 (*slot)->obj = obj;
274 (*slot)->note_ptr_fn = note_ptr_fn;
275 (*slot)->note_ptr_cookie = note_ptr_cookie;
276 if (note_ptr_fn == gt_pch_p_S)
277 (*slot)->size = strlen (obj) + 1;
278 else
279 (*slot)->size = ggc_get_size (obj);
280 return 1;
281 }
282
283 /* Register an object in the hash table. */
284
285 void
286 gt_pch_note_reorder (void *obj, void *note_ptr_cookie,
287 gt_handle_reorder reorder_fn)
288 {
289 struct ptr_data *data;
290
291 if (obj == NULL || obj == (void *) 1)
292 return;
293
294 data = htab_find_with_hash (saving_htab, obj, POINTER_HASH (obj));
295 gcc_assert (data && data->note_ptr_cookie == note_ptr_cookie);
296
297 data->reorder_fn = reorder_fn;
298 }
299
300 /* Hash and equality functions for saving_htab, callbacks for htab_create. */
301
302 static hashval_t
303 saving_htab_hash (const void *p)
304 {
305 return POINTER_HASH (((struct ptr_data *)p)->obj);
306 }
307
308 static int
309 saving_htab_eq (const void *p1, const void *p2)
310 {
311 return ((struct ptr_data *)p1)->obj == p2;
312 }
313
314 /* Handy state for the traversal functions. */
315
316 struct traversal_state
317 {
318 FILE *f;
319 struct ggc_pch_data *d;
320 size_t count;
321 struct ptr_data **ptrs;
322 size_t ptrs_i;
323 };
324
325 /* Callbacks for htab_traverse. */
326
327 static int
328 call_count (void **slot, void *state_p)
329 {
330 struct ptr_data *d = (struct ptr_data *)*slot;
331 struct traversal_state *state = (struct traversal_state *)state_p;
332
333 ggc_pch_count_object (state->d, d->obj, d->size, d->note_ptr_fn == gt_pch_p_S);
334 state->count++;
335 return 1;
336 }
337
338 static int
339 call_alloc (void **slot, void *state_p)
340 {
341 struct ptr_data *d = (struct ptr_data *)*slot;
342 struct traversal_state *state = (struct traversal_state *)state_p;
343
344 d->new_addr = ggc_pch_alloc_object (state->d, d->obj, d->size, d->note_ptr_fn == gt_pch_p_S);
345 state->ptrs[state->ptrs_i++] = d;
346 return 1;
347 }
348
349 /* Callback for qsort. */
350
351 static int
352 compare_ptr_data (const void *p1_p, const void *p2_p)
353 {
354 struct ptr_data *p1 = *(struct ptr_data *const *)p1_p;
355 struct ptr_data *p2 = *(struct ptr_data *const *)p2_p;
356 return (((size_t)p1->new_addr > (size_t)p2->new_addr)
357 - ((size_t)p1->new_addr < (size_t)p2->new_addr));
358 }
359
360 /* Callbacks for note_ptr_fn. */
361
362 static void
363 relocate_ptrs (void *ptr_p, void *state_p)
364 {
365 void **ptr = (void **)ptr_p;
366 struct traversal_state *state ATTRIBUTE_UNUSED
367 = (struct traversal_state *)state_p;
368 struct ptr_data *result;
369
370 if (*ptr == NULL || *ptr == (void *)1)
371 return;
372
373 result = htab_find_with_hash (saving_htab, *ptr, POINTER_HASH (*ptr));
374 gcc_assert (result);
375 *ptr = result->new_addr;
376 }
377
378 /* Write out, after relocation, the pointers in TAB. */
379 static void
380 write_pch_globals (const struct ggc_root_tab * const *tab,
381 struct traversal_state *state)
382 {
383 const struct ggc_root_tab *const *rt;
384 const struct ggc_root_tab *rti;
385 size_t i;
386
387 for (rt = tab; *rt; rt++)
388 for (rti = *rt; rti->base != NULL; rti++)
389 for (i = 0; i < rti->nelt; i++)
390 {
391 void *ptr = *(void **)((char *)rti->base + rti->stride * i);
392 struct ptr_data *new_ptr;
393 if (ptr == NULL || ptr == (void *)1)
394 {
395 if (fwrite (&ptr, sizeof (void *), 1, state->f)
396 != 1)
397 fatal_error ("can't write PCH file: %m");
398 }
399 else
400 {
401 new_ptr = htab_find_with_hash (saving_htab, ptr,
402 POINTER_HASH (ptr));
403 if (fwrite (&new_ptr->new_addr, sizeof (void *), 1, state->f)
404 != 1)
405 fatal_error ("can't write PCH file: %m");
406 }
407 }
408 }
409
410 /* Hold the information we need to mmap the file back in. */
411
412 struct mmap_info
413 {
414 size_t offset;
415 size_t size;
416 void *preferred_base;
417 };
418
419 /* Write out the state of the compiler to F. */
420
421 void
422 gt_pch_save (FILE *f)
423 {
424 const struct ggc_root_tab *const *rt;
425 const struct ggc_root_tab *rti;
426 size_t i;
427 struct traversal_state state;
428 char *this_object = NULL;
429 size_t this_object_size = 0;
430 struct mmap_info mmi;
431 const size_t mmap_offset_alignment = host_hooks.gt_pch_alloc_granularity();
432
433 gt_pch_save_stringpool ();
434
435 saving_htab = htab_create (50000, saving_htab_hash, saving_htab_eq, free);
436
437 for (rt = gt_ggc_rtab; *rt; rt++)
438 for (rti = *rt; rti->base != NULL; rti++)
439 for (i = 0; i < rti->nelt; i++)
440 (*rti->pchw)(*(void **)((char *)rti->base + rti->stride * i));
441
442 for (rt = gt_pch_cache_rtab; *rt; rt++)
443 for (rti = *rt; rti->base != NULL; rti++)
444 for (i = 0; i < rti->nelt; i++)
445 (*rti->pchw)(*(void **)((char *)rti->base + rti->stride * i));
446
447 /* Prepare the objects for writing, determine addresses and such. */
448 state.f = f;
449 state.d = init_ggc_pch();
450 state.count = 0;
451 htab_traverse (saving_htab, call_count, &state);
452
453 mmi.size = ggc_pch_total_size (state.d);
454
455 /* Try to arrange things so that no relocation is necessary, but
456 don't try very hard. On most platforms, this will always work,
457 and on the rest it's a lot of work to do better.
458 (The extra work goes in HOST_HOOKS_GT_PCH_GET_ADDRESS and
459 HOST_HOOKS_GT_PCH_USE_ADDRESS.) */
460 mmi.preferred_base = host_hooks.gt_pch_get_address (mmi.size, fileno (f));
461
462 ggc_pch_this_base (state.d, mmi.preferred_base);
463
464 state.ptrs = xmalloc (state.count * sizeof (*state.ptrs));
465 state.ptrs_i = 0;
466 htab_traverse (saving_htab, call_alloc, &state);
467 qsort (state.ptrs, state.count, sizeof (*state.ptrs), compare_ptr_data);
468
469 /* Write out all the scalar variables. */
470 for (rt = gt_pch_scalar_rtab; *rt; rt++)
471 for (rti = *rt; rti->base != NULL; rti++)
472 if (fwrite (rti->base, rti->stride, 1, f) != 1)
473 fatal_error ("can't write PCH file: %m");
474
475 /* Write out all the global pointers, after translation. */
476 write_pch_globals (gt_ggc_rtab, &state);
477 write_pch_globals (gt_pch_cache_rtab, &state);
478
479 ggc_pch_prepare_write (state.d, state.f);
480
481 /* Pad the PCH file so that the mmapped area starts on an allocation
482 granularity (usually page) boundary. */
483 {
484 long o;
485 o = ftell (state.f) + sizeof (mmi);
486 if (o == -1)
487 fatal_error ("can't get position in PCH file: %m");
488 mmi.offset = mmap_offset_alignment - o % mmap_offset_alignment;
489 if (mmi.offset == mmap_offset_alignment)
490 mmi.offset = 0;
491 mmi.offset += o;
492 }
493 if (fwrite (&mmi, sizeof (mmi), 1, state.f) != 1)
494 fatal_error ("can't write PCH file: %m");
495 if (mmi.offset != 0
496 && fseek (state.f, mmi.offset, SEEK_SET) != 0)
497 fatal_error ("can't write padding to PCH file: %m");
498
499 /* Actually write out the objects. */
500 for (i = 0; i < state.count; i++)
501 {
502 if (this_object_size < state.ptrs[i]->size)
503 {
504 this_object_size = state.ptrs[i]->size;
505 this_object = xrealloc (this_object, this_object_size);
506 }
507 memcpy (this_object, state.ptrs[i]->obj, state.ptrs[i]->size);
508 if (state.ptrs[i]->reorder_fn != NULL)
509 state.ptrs[i]->reorder_fn (state.ptrs[i]->obj,
510 state.ptrs[i]->note_ptr_cookie,
511 relocate_ptrs, &state);
512 state.ptrs[i]->note_ptr_fn (state.ptrs[i]->obj,
513 state.ptrs[i]->note_ptr_cookie,
514 relocate_ptrs, &state);
515 ggc_pch_write_object (state.d, state.f, state.ptrs[i]->obj,
516 state.ptrs[i]->new_addr, state.ptrs[i]->size,
517 state.ptrs[i]->note_ptr_fn == gt_pch_p_S);
518 if (state.ptrs[i]->note_ptr_fn != gt_pch_p_S)
519 memcpy (state.ptrs[i]->obj, this_object, state.ptrs[i]->size);
520 }
521 ggc_pch_finish (state.d, state.f);
522 gt_pch_fixup_stringpool ();
523
524 free (state.ptrs);
525 htab_delete (saving_htab);
526 }
527
528 /* Read the state of the compiler back in from F. */
529
530 void
531 gt_pch_restore (FILE *f)
532 {
533 const struct ggc_root_tab *const *rt;
534 const struct ggc_root_tab *rti;
535 size_t i;
536 struct mmap_info mmi;
537 int result;
538
539 /* Delete any deletable objects. This makes ggc_pch_read much
540 faster, as it can be sure that no GCable objects remain other
541 than the ones just read in. */
542 for (rt = gt_ggc_deletable_rtab; *rt; rt++)
543 for (rti = *rt; rti->base != NULL; rti++)
544 memset (rti->base, 0, rti->stride);
545
546 /* Read in all the scalar variables. */
547 for (rt = gt_pch_scalar_rtab; *rt; rt++)
548 for (rti = *rt; rti->base != NULL; rti++)
549 if (fread (rti->base, rti->stride, 1, f) != 1)
550 fatal_error ("can't read PCH file: %m");
551
552 /* Read in all the global pointers, in 6 easy loops. */
553 for (rt = gt_ggc_rtab; *rt; rt++)
554 for (rti = *rt; rti->base != NULL; rti++)
555 for (i = 0; i < rti->nelt; i++)
556 if (fread ((char *)rti->base + rti->stride * i,
557 sizeof (void *), 1, f) != 1)
558 fatal_error ("can't read PCH file: %m");
559
560 for (rt = gt_pch_cache_rtab; *rt; rt++)
561 for (rti = *rt; rti->base != NULL; rti++)
562 for (i = 0; i < rti->nelt; i++)
563 if (fread ((char *)rti->base + rti->stride * i,
564 sizeof (void *), 1, f) != 1)
565 fatal_error ("can't read PCH file: %m");
566
567 if (fread (&mmi, sizeof (mmi), 1, f) != 1)
568 fatal_error ("can't read PCH file: %m");
569
570 result = host_hooks.gt_pch_use_address (mmi.preferred_base, mmi.size,
571 fileno (f), mmi.offset);
572 if (result < 0)
573 fatal_error ("had to relocate PCH");
574 if (result == 0)
575 {
576 if (fseek (f, mmi.offset, SEEK_SET) != 0
577 || fread (mmi.preferred_base, mmi.size, 1, f) != 1)
578 fatal_error ("can't read PCH file: %m");
579 }
580 else if (fseek (f, mmi.offset + mmi.size, SEEK_SET) != 0)
581 fatal_error ("can't read PCH file: %m");
582
583 ggc_pch_read (f, mmi.preferred_base);
584
585 gt_pch_restore_stringpool ();
586 }
587
588 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS when mmap is not present.
589 Select no address whatsoever, and let gt_pch_save choose what it will with
590 malloc, presumably. */
591
592 void *
593 default_gt_pch_get_address (size_t size ATTRIBUTE_UNUSED,
594 int fd ATTRIBUTE_UNUSED)
595 {
596 return NULL;
597 }
598
599 /* Default version of HOST_HOOKS_GT_PCH_USE_ADDRESS when mmap is not present.
600 Allocate SIZE bytes with malloc. Return 0 if the address we got is the
601 same as base, indicating that the memory has been allocated but needs to
602 be read in from the file. Return -1 if the address differs, to relocation
603 of the PCH file would be required. */
604
605 int
606 default_gt_pch_use_address (void *base, size_t size, int fd ATTRIBUTE_UNUSED,
607 size_t offset ATTRIBUTE_UNUSED)
608 {
609 void *addr = xmalloc (size);
610 return (addr == base) - 1;
611 }
612
613 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS. Return the
614 alignment required for allocating virtual memory. Usually this is the
615 same as pagesize. */
616
617 size_t
618 default_gt_pch_alloc_granularity (void)
619 {
620 return getpagesize();
621 }
622
623 #if HAVE_MMAP_FILE
624 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS when mmap is present.
625 We temporarily allocate SIZE bytes, and let the kernel place the data
626 wherever it will. If it worked, that's our spot, if not we're likely
627 to be in trouble. */
628
629 void *
630 mmap_gt_pch_get_address (size_t size, int fd)
631 {
632 void *ret;
633
634 ret = mmap (NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
635 if (ret == (void *) MAP_FAILED)
636 ret = NULL;
637 else
638 munmap (ret, size);
639
640 return ret;
641 }
642
643 /* Default version of HOST_HOOKS_GT_PCH_USE_ADDRESS when mmap is present.
644 Map SIZE bytes of FD+OFFSET at BASE. Return 1 if we succeeded at
645 mapping the data at BASE, -1 if we couldn't.
646
647 This version assumes that the kernel honors the START operand of mmap
648 even without MAP_FIXED if START through START+SIZE are not currently
649 mapped with something. */
650
651 int
652 mmap_gt_pch_use_address (void *base, size_t size, int fd, size_t offset)
653 {
654 void *addr;
655
656 /* We're called with size == 0 if we're not planning to load a PCH
657 file at all. This allows the hook to free any static space that
658 we might have allocated at link time. */
659 if (size == 0)
660 return -1;
661
662 addr = mmap (base, size, PROT_READ | PROT_WRITE, MAP_PRIVATE,
663 fd, offset);
664
665 return addr == base ? 1 : -1;
666 }
667 #endif /* HAVE_MMAP_FILE */
668
669 /* Modify the bound based on rlimits. */
670 static double
671 ggc_rlimit_bound (double limit)
672 {
673 #if defined(HAVE_GETRLIMIT)
674 struct rlimit rlim;
675 # if defined (RLIMIT_AS)
676 /* RLIMIT_AS is what POSIX says is the limit on mmap. Presumably
677 any OS which has RLIMIT_AS also has a working mmap that GCC will use. */
678 if (getrlimit (RLIMIT_AS, &rlim) == 0
679 && rlim.rlim_cur != (rlim_t) RLIM_INFINITY
680 && rlim.rlim_cur < limit)
681 limit = rlim.rlim_cur;
682 # elif defined (RLIMIT_DATA)
683 /* ... but some older OSs bound mmap based on RLIMIT_DATA, or we
684 might be on an OS that has a broken mmap. (Others don't bound
685 mmap at all, apparently.) */
686 if (getrlimit (RLIMIT_DATA, &rlim) == 0
687 && rlim.rlim_cur != (rlim_t) RLIM_INFINITY
688 && rlim.rlim_cur < limit
689 /* Darwin has this horribly bogus default setting of
690 RLIMIT_DATA, to 6144Kb. No-one notices because RLIMIT_DATA
691 appears to be ignored. Ignore such silliness. If a limit
692 this small was actually effective for mmap, GCC wouldn't even
693 start up. */
694 && rlim.rlim_cur >= 8 * 1024 * 1024)
695 limit = rlim.rlim_cur;
696 # endif /* RLIMIT_AS or RLIMIT_DATA */
697 #endif /* HAVE_GETRLIMIT */
698
699 return limit;
700 }
701
702 /* Heuristic to set a default for GGC_MIN_EXPAND. */
703 int
704 ggc_min_expand_heuristic (void)
705 {
706 double min_expand = physmem_total();
707
708 /* Adjust for rlimits. */
709 min_expand = ggc_rlimit_bound (min_expand);
710
711 /* The heuristic is a percentage equal to 30% + 70%*(RAM/1GB), yielding
712 a lower bound of 30% and an upper bound of 100% (when RAM >= 1GB). */
713 min_expand /= 1024*1024*1024;
714 min_expand *= 70;
715 min_expand = MIN (min_expand, 70);
716 min_expand += 30;
717
718 return min_expand;
719 }
720
721 /* Heuristic to set a default for GGC_MIN_HEAPSIZE. */
722 int
723 ggc_min_heapsize_heuristic (void)
724 {
725 double phys_kbytes = physmem_total();
726 double limit_kbytes = ggc_rlimit_bound (phys_kbytes * 2);
727
728 phys_kbytes /= 1024; /* Convert to Kbytes. */
729 limit_kbytes /= 1024;
730
731 /* The heuristic is RAM/8, with a lower bound of 4M and an upper
732 bound of 128M (when RAM >= 1GB). */
733 phys_kbytes /= 8;
734
735 #if defined(HAVE_GETRLIMIT) && defined (RLIMIT_RSS)
736 /* Try not to overrun the RSS limit while doing garbage collection.
737 The RSS limit is only advisory, so no margin is subtracted. */
738 {
739 struct rlimit rlim;
740 if (getrlimit (RLIMIT_RSS, &rlim) == 0
741 && rlim.rlim_cur != (rlim_t) RLIM_INFINITY)
742 phys_kbytes = MIN (phys_kbytes, rlim.rlim_cur / 1024);
743 }
744 # endif
745
746 /* Don't blindly run over our data limit; do GC at least when the
747 *next* GC would be within 16Mb of the limit. If GCC does hit the
748 data limit, compilation will fail, so this tries to be
749 conservative. */
750 limit_kbytes = MAX (0, limit_kbytes - 16 * 1024);
751 limit_kbytes = (limit_kbytes * 100) / (110 + ggc_min_expand_heuristic());
752 phys_kbytes = MIN (phys_kbytes, limit_kbytes);
753
754 phys_kbytes = MAX (phys_kbytes, 4 * 1024);
755 phys_kbytes = MIN (phys_kbytes, 128 * 1024);
756
757 return phys_kbytes;
758 }
759
760 void
761 init_ggc_heuristics (void)
762 {
763 #if !defined ENABLE_GC_CHECKING && !defined ENABLE_GC_ALWAYS_COLLECT
764 set_param_value ("ggc-min-expand", ggc_min_expand_heuristic());
765 set_param_value ("ggc-min-heapsize", ggc_min_heapsize_heuristic());
766 #endif
767 }
768
769 #ifdef GATHER_STATISTICS
770
771 /* Datastructure used to store per-call-site statistics. */
772 struct loc_descriptor
773 {
774 const char *file;
775 int line;
776 const char *function;
777 int times;
778 size_t allocated;
779 size_t overhead;
780 size_t freed;
781 size_t collected;
782 };
783
784 /* Hashtable used for statistics. */
785 static htab_t loc_hash;
786
787 /* Hash table helpers functions. */
788 static hashval_t
789 hash_descriptor (const void *p)
790 {
791 const struct loc_descriptor *d = p;
792
793 return htab_hash_pointer (d->function) | d->line;
794 }
795
796 static int
797 eq_descriptor (const void *p1, const void *p2)
798 {
799 const struct loc_descriptor *d = p1;
800 const struct loc_descriptor *d2 = p2;
801
802 return (d->file == d2->file && d->line == d2->line
803 && d->function == d2->function);
804 }
805
806 /* Hashtable converting address of allocated field to loc descriptor. */
807 static htab_t ptr_hash;
808 struct ptr_hash_entry
809 {
810 void *ptr;
811 struct loc_descriptor *loc;
812 size_t size;
813 };
814
815 /* Hash table helpers functions. */
816 static hashval_t
817 hash_ptr (const void *p)
818 {
819 const struct ptr_hash_entry *d = p;
820
821 return htab_hash_pointer (d->ptr);
822 }
823
824 static int
825 eq_ptr (const void *p1, const void *p2)
826 {
827 const struct ptr_hash_entry *p = p1;
828
829 return (p->ptr == p2);
830 }
831
832 /* Return descriptor for given call site, create new one if needed. */
833 static struct loc_descriptor *
834 loc_descriptor (const char *name, int line, const char *function)
835 {
836 struct loc_descriptor loc;
837 struct loc_descriptor **slot;
838
839 loc.file = name;
840 loc.line = line;
841 loc.function = function;
842 if (!loc_hash)
843 loc_hash = htab_create (10, hash_descriptor, eq_descriptor, NULL);
844
845 slot = (struct loc_descriptor **) htab_find_slot (loc_hash, &loc, 1);
846 if (*slot)
847 return *slot;
848 *slot = xcalloc (sizeof (**slot), 1);
849 (*slot)->file = name;
850 (*slot)->line = line;
851 (*slot)->function = function;
852 return *slot;
853 }
854
855 /* Record ALLOCATED and OVERHEAD bytes to descriptor NAME:LINE (FUNCTION). */
856 void
857 ggc_record_overhead (size_t allocated, size_t overhead, void *ptr,
858 const char *name, int line, const char *function)
859 {
860 struct loc_descriptor *loc = loc_descriptor (name, line, function);
861 struct ptr_hash_entry *p = xmalloc (sizeof (struct ptr_hash_entry));
862 PTR *slot;
863
864 p->ptr = ptr;
865 p->loc = loc;
866 p->size = allocated + overhead;
867 if (!ptr_hash)
868 ptr_hash = htab_create (10, hash_ptr, eq_ptr, NULL);
869 slot = htab_find_slot_with_hash (ptr_hash, ptr, htab_hash_pointer (ptr), INSERT);
870 gcc_assert (!*slot);
871 *slot = p;
872
873 loc->times++;
874 loc->allocated+=allocated;
875 loc->overhead+=overhead;
876 }
877
878 /* Helper function for prune_overhead_list. See if SLOT is still marked and
879 remove it from hashtable if it is not. */
880 static int
881 ggc_prune_ptr (void **slot, void *b ATTRIBUTE_UNUSED)
882 {
883 struct ptr_hash_entry *p = *slot;
884 if (!ggc_marked_p (p->ptr))
885 {
886 p->loc->collected += p->size;
887 htab_clear_slot (ptr_hash, slot);
888 free (p);
889 }
890 return 1;
891 }
892
893 /* After live values has been marked, walk all recorded pointers and see if
894 they are still live. */
895 void
896 ggc_prune_overhead_list (void)
897 {
898 htab_traverse (ptr_hash, ggc_prune_ptr, NULL);
899 }
900
901 /* Notice that the pointer has been freed. */
902 void ggc_free_overhead (void *ptr)
903 {
904 PTR *slot = htab_find_slot_with_hash (ptr_hash, ptr, htab_hash_pointer (ptr),
905 NO_INSERT);
906 struct ptr_hash_entry *p = *slot;
907 p->loc->freed += p->size;
908 htab_clear_slot (ptr_hash, slot);
909 free (p);
910 }
911
912 /* Helper for qsort; sort descriptors by amount of memory consumed. */
913 static int
914 cmp_statistic (const void *loc1, const void *loc2)
915 {
916 struct loc_descriptor *l1 = *(struct loc_descriptor **) loc1;
917 struct loc_descriptor *l2 = *(struct loc_descriptor **) loc2;
918 return ((l1->allocated + l1->overhead - l1->freed) -
919 (l2->allocated + l2->overhead - l2->freed));
920 }
921
922 /* Collect array of the descriptors from hashtable. */
923 struct loc_descriptor **loc_array;
924 static int
925 add_statistics (void **slot, void *b)
926 {
927 int *n = (int *)b;
928 loc_array[*n] = (struct loc_descriptor *) *slot;
929 (*n)++;
930 return 1;
931 }
932
933 /* Dump per-site memory statistics. */
934 #endif
935 void dump_ggc_loc_statistics (void)
936 {
937 #ifdef GATHER_STATISTICS
938 int nentries = 0;
939 char s[4096];
940 size_t collected = 0, freed = 0, allocated = 0, overhead = 0, times = 0;
941 int i;
942
943 ggc_force_collect = true;
944 ggc_collect ();
945
946 loc_array = xcalloc (sizeof (*loc_array), loc_hash->n_elements);
947 fprintf (stderr, "-------------------------------------------------------\n");
948 fprintf (stderr, "\n%-48s %10s %10s %10s %10s %10s\n",
949 "source location", "Garbage", "Freed", "Leak", "Overhead", "Times");
950 fprintf (stderr, "-------------------------------------------------------\n");
951 htab_traverse (loc_hash, add_statistics, &nentries);
952 qsort (loc_array, nentries, sizeof (*loc_array), cmp_statistic);
953 for (i = 0; i < nentries; i++)
954 {
955 struct loc_descriptor *d = loc_array[i];
956 allocated += d->allocated;
957 times += d->times;
958 freed += d->freed;
959 collected += d->collected;
960 overhead += d->overhead;
961 }
962 for (i = 0; i < nentries; i++)
963 {
964 struct loc_descriptor *d = loc_array[i];
965 if (d->allocated)
966 {
967 const char *s1 = d->file;
968 const char *s2;
969 while ((s2 = strstr (s1, "gcc/")))
970 s1 = s2 + 4;
971 sprintf (s, "%s:%i (%s)", s1, d->line, d->function);
972 s[48] = 0;
973 fprintf (stderr, "%-48s %10li:%4.1f%% %10li:%4.1f%% %10li:%4.1f%% %10li:%4.1f%% %10li\n", s,
974 (long)d->collected,
975 (d->collected) * 100.0 / collected,
976 (long)d->freed,
977 (d->freed) * 100.0 / freed,
978 (long)(d->allocated + d->overhead - d->freed - d->collected),
979 (d->allocated + d->overhead - d->freed - d->collected) * 100.0
980 / (allocated + overhead - freed - collected),
981 (long)d->overhead,
982 d->overhead * 100.0 / overhead,
983 (long)d->times);
984 }
985 }
986 fprintf (stderr, "%-48s %10ld %10ld %10ld %10ld %10ld\n",
987 "Total", (long)collected, (long)freed,
988 (long)(allocated + overhead - freed - collected), (long)overhead,
989 (long)times);
990 fprintf (stderr, "%-48s %10s %10s %10s %10s %10s\n",
991 "source location", "Garbage", "Freed", "Leak", "Overhead", "Times");
992 fprintf (stderr, "-------------------------------------------------------\n");
993 #endif
994 }