974f2f95fb71516ae9f7ba97d75d0f865726dd4d
[gcc.git] / gcc / ggc-common.c
1 /* Simple garbage collection for the GNU compiler.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* Generic garbage collection (GC) functions and data, not specific to
22 any particular GC implementation. */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "hashtab.h"
28 #include "ggc.h"
29 #include "toplev.h"
30 #include "params.h"
31 #include "hosthooks.h"
32 #include "hosthooks-def.h"
33
34 #ifdef HAVE_SYS_RESOURCE_H
35 # include <sys/resource.h>
36 #endif
37
38 #ifdef HAVE_MMAP_FILE
39 # include <sys/mman.h>
40 # ifdef HAVE_MINCORE
41 /* This is on Solaris. */
42 # include <sys/types.h>
43 # endif
44 #endif
45
46 #ifndef MAP_FAILED
47 # define MAP_FAILED ((void *)-1)
48 #endif
49
50 #ifdef ENABLE_VALGRIND_CHECKING
51 # ifdef HAVE_VALGRIND_MEMCHECK_H
52 # include <valgrind/memcheck.h>
53 # elif defined HAVE_MEMCHECK_H
54 # include <memcheck.h>
55 # else
56 # include <valgrind.h>
57 # endif
58 #else
59 /* Avoid #ifdef:s when we can help it. */
60 #define VALGRIND_DISCARD(x)
61 #endif
62
63 /* When set, ggc_collect will do collection. */
64 bool ggc_force_collect;
65
66 /* Statistics about the allocation. */
67 static ggc_statistics *ggc_stats;
68
69 struct traversal_state;
70
71 static int ggc_htab_delete (void **, void *);
72 static hashval_t saving_htab_hash (const void *);
73 static int saving_htab_eq (const void *, const void *);
74 static int call_count (void **, void *);
75 static int call_alloc (void **, void *);
76 static int compare_ptr_data (const void *, const void *);
77 static void relocate_ptrs (void *, void *);
78 static void write_pch_globals (const struct ggc_root_tab * const *tab,
79 struct traversal_state *state);
80 static double ggc_rlimit_bound (double);
81
82 /* Maintain global roots that are preserved during GC. */
83
84 /* Process a slot of an htab by deleting it if it has not been marked. */
85
86 static int
87 ggc_htab_delete (void **slot, void *info)
88 {
89 const struct ggc_cache_tab *r = (const struct ggc_cache_tab *) info;
90
91 if (! (*r->marked_p) (*slot))
92 htab_clear_slot (*r->base, slot);
93 else
94 (*r->cb) (*slot);
95
96 return 1;
97 }
98
99 /* Iterate through all registered roots and mark each element. */
100
101 void
102 ggc_mark_roots (void)
103 {
104 const struct ggc_root_tab *const *rt;
105 const struct ggc_root_tab *rti;
106 const struct ggc_cache_tab *const *ct;
107 const struct ggc_cache_tab *cti;
108 size_t i;
109
110 for (rt = gt_ggc_deletable_rtab; *rt; rt++)
111 for (rti = *rt; rti->base != NULL; rti++)
112 memset (rti->base, 0, rti->stride);
113
114 for (rt = gt_ggc_rtab; *rt; rt++)
115 for (rti = *rt; rti->base != NULL; rti++)
116 for (i = 0; i < rti->nelt; i++)
117 (*rti->cb)(*(void **)((char *)rti->base + rti->stride * i));
118
119 ggc_mark_stringpool ();
120
121 /* Now scan all hash tables that have objects which are to be deleted if
122 they are not already marked. */
123 for (ct = gt_ggc_cache_rtab; *ct; ct++)
124 for (cti = *ct; cti->base != NULL; cti++)
125 if (*cti->base)
126 {
127 ggc_set_mark (*cti->base);
128 htab_traverse_noresize (*cti->base, ggc_htab_delete, (void *) cti);
129 ggc_set_mark ((*cti->base)->entries);
130 }
131 }
132
133 /* Allocate a block of memory, then clear it. */
134 void *
135 ggc_alloc_cleared_stat (size_t size MEM_STAT_DECL)
136 {
137 void *buf = ggc_alloc_stat (size PASS_MEM_STAT);
138 memset (buf, 0, size);
139 return buf;
140 }
141
142 /* Resize a block of memory, possibly re-allocating it. */
143 void *
144 ggc_realloc_stat (void *x, size_t size MEM_STAT_DECL)
145 {
146 void *r;
147 size_t old_size;
148
149 if (x == NULL)
150 return ggc_alloc_stat (size PASS_MEM_STAT);
151
152 old_size = ggc_get_size (x);
153
154 if (size <= old_size)
155 {
156 /* Mark the unwanted memory as unaccessible. We also need to make
157 the "new" size accessible, since ggc_get_size returns the size of
158 the pool, not the size of the individually allocated object, the
159 size which was previously made accessible. Unfortunately, we
160 don't know that previously allocated size. Without that
161 knowledge we have to lose some initialization-tracking for the
162 old parts of the object. An alternative is to mark the whole
163 old_size as reachable, but that would lose tracking of writes
164 after the end of the object (by small offsets). Discard the
165 handle to avoid handle leak. */
166 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS ((char *) x + size,
167 old_size - size));
168 VALGRIND_DISCARD (VALGRIND_MAKE_READABLE (x, size));
169 return x;
170 }
171
172 r = ggc_alloc_stat (size PASS_MEM_STAT);
173
174 /* Since ggc_get_size returns the size of the pool, not the size of the
175 individually allocated object, we'd access parts of the old object
176 that were marked invalid with the memcpy below. We lose a bit of the
177 initialization-tracking since some of it may be uninitialized. */
178 VALGRIND_DISCARD (VALGRIND_MAKE_READABLE (x, old_size));
179
180 memcpy (r, x, old_size);
181
182 /* The old object is not supposed to be used anymore. */
183 ggc_free (x);
184
185 return r;
186 }
187
188 /* Like ggc_alloc_cleared, but performs a multiplication. */
189 void *
190 ggc_calloc (size_t s1, size_t s2)
191 {
192 return ggc_alloc_cleared (s1 * s2);
193 }
194
195 /* These are for splay_tree_new_ggc. */
196 void *
197 ggc_splay_alloc (int sz, void *nl)
198 {
199 gcc_assert (!nl);
200 return ggc_alloc (sz);
201 }
202
203 void
204 ggc_splay_dont_free (void * x ATTRIBUTE_UNUSED, void *nl)
205 {
206 gcc_assert (!nl);
207 }
208
209 /* Print statistics that are independent of the collector in use. */
210 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
211 ? (x) \
212 : ((x) < 1024*1024*10 \
213 ? (x) / 1024 \
214 : (x) / (1024*1024))))
215 #define LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
216
217 void
218 ggc_print_common_statistics (FILE *stream ATTRIBUTE_UNUSED,
219 ggc_statistics *stats)
220 {
221 /* Set the pointer so that during collection we will actually gather
222 the statistics. */
223 ggc_stats = stats;
224
225 /* Then do one collection to fill in the statistics. */
226 ggc_collect ();
227
228 /* At present, we don't really gather any interesting statistics. */
229
230 /* Don't gather statistics any more. */
231 ggc_stats = NULL;
232 }
233 \f
234 /* Functions for saving and restoring GCable memory to disk. */
235
236 static htab_t saving_htab;
237
238 struct ptr_data
239 {
240 void *obj;
241 void *note_ptr_cookie;
242 gt_note_pointers note_ptr_fn;
243 gt_handle_reorder reorder_fn;
244 size_t size;
245 void *new_addr;
246 enum gt_types_enum type;
247 };
248
249 #define POINTER_HASH(x) (hashval_t)((long)x >> 3)
250
251 /* Register an object in the hash table. */
252
253 int
254 gt_pch_note_object (void *obj, void *note_ptr_cookie,
255 gt_note_pointers note_ptr_fn,
256 enum gt_types_enum type)
257 {
258 struct ptr_data **slot;
259
260 if (obj == NULL || obj == (void *) 1)
261 return 0;
262
263 slot = (struct ptr_data **)
264 htab_find_slot_with_hash (saving_htab, obj, POINTER_HASH (obj),
265 INSERT);
266 if (*slot != NULL)
267 {
268 gcc_assert ((*slot)->note_ptr_fn == note_ptr_fn
269 && (*slot)->note_ptr_cookie == note_ptr_cookie);
270 return 0;
271 }
272
273 *slot = xcalloc (sizeof (struct ptr_data), 1);
274 (*slot)->obj = obj;
275 (*slot)->note_ptr_fn = note_ptr_fn;
276 (*slot)->note_ptr_cookie = note_ptr_cookie;
277 if (note_ptr_fn == gt_pch_p_S)
278 (*slot)->size = strlen (obj) + 1;
279 else
280 (*slot)->size = ggc_get_size (obj);
281 (*slot)->type = type;
282 return 1;
283 }
284
285 /* Register an object in the hash table. */
286
287 void
288 gt_pch_note_reorder (void *obj, void *note_ptr_cookie,
289 gt_handle_reorder reorder_fn)
290 {
291 struct ptr_data *data;
292
293 if (obj == NULL || obj == (void *) 1)
294 return;
295
296 data = htab_find_with_hash (saving_htab, obj, POINTER_HASH (obj));
297 gcc_assert (data && data->note_ptr_cookie == note_ptr_cookie);
298
299 data->reorder_fn = reorder_fn;
300 }
301
302 /* Hash and equality functions for saving_htab, callbacks for htab_create. */
303
304 static hashval_t
305 saving_htab_hash (const void *p)
306 {
307 return POINTER_HASH (((const struct ptr_data *)p)->obj);
308 }
309
310 static int
311 saving_htab_eq (const void *p1, const void *p2)
312 {
313 return ((const struct ptr_data *)p1)->obj == p2;
314 }
315
316 /* Handy state for the traversal functions. */
317
318 struct traversal_state
319 {
320 FILE *f;
321 struct ggc_pch_data *d;
322 size_t count;
323 struct ptr_data **ptrs;
324 size_t ptrs_i;
325 };
326
327 /* Callbacks for htab_traverse. */
328
329 static int
330 call_count (void **slot, void *state_p)
331 {
332 struct ptr_data *d = (struct ptr_data *)*slot;
333 struct traversal_state *state = (struct traversal_state *)state_p;
334
335 ggc_pch_count_object (state->d, d->obj, d->size,
336 d->note_ptr_fn == gt_pch_p_S,
337 d->type);
338 state->count++;
339 return 1;
340 }
341
342 static int
343 call_alloc (void **slot, void *state_p)
344 {
345 struct ptr_data *d = (struct ptr_data *)*slot;
346 struct traversal_state *state = (struct traversal_state *)state_p;
347
348 d->new_addr = ggc_pch_alloc_object (state->d, d->obj, d->size,
349 d->note_ptr_fn == gt_pch_p_S,
350 d->type);
351 state->ptrs[state->ptrs_i++] = d;
352 return 1;
353 }
354
355 /* Callback for qsort. */
356
357 static int
358 compare_ptr_data (const void *p1_p, const void *p2_p)
359 {
360 const struct ptr_data *const p1 = *(const struct ptr_data *const *)p1_p;
361 const struct ptr_data *const p2 = *(const struct ptr_data *const *)p2_p;
362 return (((size_t)p1->new_addr > (size_t)p2->new_addr)
363 - ((size_t)p1->new_addr < (size_t)p2->new_addr));
364 }
365
366 /* Callbacks for note_ptr_fn. */
367
368 static void
369 relocate_ptrs (void *ptr_p, void *state_p)
370 {
371 void **ptr = (void **)ptr_p;
372 struct traversal_state *state ATTRIBUTE_UNUSED
373 = (struct traversal_state *)state_p;
374 struct ptr_data *result;
375
376 if (*ptr == NULL || *ptr == (void *)1)
377 return;
378
379 result = htab_find_with_hash (saving_htab, *ptr, POINTER_HASH (*ptr));
380 gcc_assert (result);
381 *ptr = result->new_addr;
382 }
383
384 /* Write out, after relocation, the pointers in TAB. */
385 static void
386 write_pch_globals (const struct ggc_root_tab * const *tab,
387 struct traversal_state *state)
388 {
389 const struct ggc_root_tab *const *rt;
390 const struct ggc_root_tab *rti;
391 size_t i;
392
393 for (rt = tab; *rt; rt++)
394 for (rti = *rt; rti->base != NULL; rti++)
395 for (i = 0; i < rti->nelt; i++)
396 {
397 void *ptr = *(void **)((char *)rti->base + rti->stride * i);
398 struct ptr_data *new_ptr;
399 if (ptr == NULL || ptr == (void *)1)
400 {
401 if (fwrite (&ptr, sizeof (void *), 1, state->f)
402 != 1)
403 fatal_error ("can't write PCH file: %m");
404 }
405 else
406 {
407 new_ptr = htab_find_with_hash (saving_htab, ptr,
408 POINTER_HASH (ptr));
409 if (fwrite (&new_ptr->new_addr, sizeof (void *), 1, state->f)
410 != 1)
411 fatal_error ("can't write PCH file: %m");
412 }
413 }
414 }
415
416 /* Hold the information we need to mmap the file back in. */
417
418 struct mmap_info
419 {
420 size_t offset;
421 size_t size;
422 void *preferred_base;
423 };
424
425 /* Write out the state of the compiler to F. */
426
427 void
428 gt_pch_save (FILE *f)
429 {
430 const struct ggc_root_tab *const *rt;
431 const struct ggc_root_tab *rti;
432 size_t i;
433 struct traversal_state state;
434 char *this_object = NULL;
435 size_t this_object_size = 0;
436 struct mmap_info mmi;
437 const size_t mmap_offset_alignment = host_hooks.gt_pch_alloc_granularity();
438
439 gt_pch_save_stringpool ();
440
441 saving_htab = htab_create (50000, saving_htab_hash, saving_htab_eq, free);
442
443 for (rt = gt_ggc_rtab; *rt; rt++)
444 for (rti = *rt; rti->base != NULL; rti++)
445 for (i = 0; i < rti->nelt; i++)
446 (*rti->pchw)(*(void **)((char *)rti->base + rti->stride * i));
447
448 for (rt = gt_pch_cache_rtab; *rt; rt++)
449 for (rti = *rt; rti->base != NULL; rti++)
450 for (i = 0; i < rti->nelt; i++)
451 (*rti->pchw)(*(void **)((char *)rti->base + rti->stride * i));
452
453 /* Prepare the objects for writing, determine addresses and such. */
454 state.f = f;
455 state.d = init_ggc_pch();
456 state.count = 0;
457 htab_traverse (saving_htab, call_count, &state);
458
459 mmi.size = ggc_pch_total_size (state.d);
460
461 /* Try to arrange things so that no relocation is necessary, but
462 don't try very hard. On most platforms, this will always work,
463 and on the rest it's a lot of work to do better.
464 (The extra work goes in HOST_HOOKS_GT_PCH_GET_ADDRESS and
465 HOST_HOOKS_GT_PCH_USE_ADDRESS.) */
466 mmi.preferred_base = host_hooks.gt_pch_get_address (mmi.size, fileno (f));
467
468 ggc_pch_this_base (state.d, mmi.preferred_base);
469
470 state.ptrs = XNEWVEC (struct ptr_data *, state.count);
471 state.ptrs_i = 0;
472 htab_traverse (saving_htab, call_alloc, &state);
473 qsort (state.ptrs, state.count, sizeof (*state.ptrs), compare_ptr_data);
474
475 /* Write out all the scalar variables. */
476 for (rt = gt_pch_scalar_rtab; *rt; rt++)
477 for (rti = *rt; rti->base != NULL; rti++)
478 if (fwrite (rti->base, rti->stride, 1, f) != 1)
479 fatal_error ("can't write PCH file: %m");
480
481 /* Write out all the global pointers, after translation. */
482 write_pch_globals (gt_ggc_rtab, &state);
483 write_pch_globals (gt_pch_cache_rtab, &state);
484
485 /* Pad the PCH file so that the mmapped area starts on an allocation
486 granularity (usually page) boundary. */
487 {
488 long o;
489 o = ftell (state.f) + sizeof (mmi);
490 if (o == -1)
491 fatal_error ("can't get position in PCH file: %m");
492 mmi.offset = mmap_offset_alignment - o % mmap_offset_alignment;
493 if (mmi.offset == mmap_offset_alignment)
494 mmi.offset = 0;
495 mmi.offset += o;
496 }
497 if (fwrite (&mmi, sizeof (mmi), 1, state.f) != 1)
498 fatal_error ("can't write PCH file: %m");
499 if (mmi.offset != 0
500 && fseek (state.f, mmi.offset, SEEK_SET) != 0)
501 fatal_error ("can't write padding to PCH file: %m");
502
503 ggc_pch_prepare_write (state.d, state.f);
504
505 /* Actually write out the objects. */
506 for (i = 0; i < state.count; i++)
507 {
508 if (this_object_size < state.ptrs[i]->size)
509 {
510 this_object_size = state.ptrs[i]->size;
511 this_object = xrealloc (this_object, this_object_size);
512 }
513 memcpy (this_object, state.ptrs[i]->obj, state.ptrs[i]->size);
514 if (state.ptrs[i]->reorder_fn != NULL)
515 state.ptrs[i]->reorder_fn (state.ptrs[i]->obj,
516 state.ptrs[i]->note_ptr_cookie,
517 relocate_ptrs, &state);
518 state.ptrs[i]->note_ptr_fn (state.ptrs[i]->obj,
519 state.ptrs[i]->note_ptr_cookie,
520 relocate_ptrs, &state);
521 ggc_pch_write_object (state.d, state.f, state.ptrs[i]->obj,
522 state.ptrs[i]->new_addr, state.ptrs[i]->size,
523 state.ptrs[i]->note_ptr_fn == gt_pch_p_S);
524 if (state.ptrs[i]->note_ptr_fn != gt_pch_p_S)
525 memcpy (state.ptrs[i]->obj, this_object, state.ptrs[i]->size);
526 }
527 ggc_pch_finish (state.d, state.f);
528 gt_pch_fixup_stringpool ();
529
530 free (state.ptrs);
531 htab_delete (saving_htab);
532 }
533
534 /* Read the state of the compiler back in from F. */
535
536 void
537 gt_pch_restore (FILE *f)
538 {
539 const struct ggc_root_tab *const *rt;
540 const struct ggc_root_tab *rti;
541 size_t i;
542 struct mmap_info mmi;
543 int result;
544
545 /* Delete any deletable objects. This makes ggc_pch_read much
546 faster, as it can be sure that no GCable objects remain other
547 than the ones just read in. */
548 for (rt = gt_ggc_deletable_rtab; *rt; rt++)
549 for (rti = *rt; rti->base != NULL; rti++)
550 memset (rti->base, 0, rti->stride);
551
552 /* Read in all the scalar variables. */
553 for (rt = gt_pch_scalar_rtab; *rt; rt++)
554 for (rti = *rt; rti->base != NULL; rti++)
555 if (fread (rti->base, rti->stride, 1, f) != 1)
556 fatal_error ("can't read PCH file: %m");
557
558 /* Read in all the global pointers, in 6 easy loops. */
559 for (rt = gt_ggc_rtab; *rt; rt++)
560 for (rti = *rt; rti->base != NULL; rti++)
561 for (i = 0; i < rti->nelt; i++)
562 if (fread ((char *)rti->base + rti->stride * i,
563 sizeof (void *), 1, f) != 1)
564 fatal_error ("can't read PCH file: %m");
565
566 for (rt = gt_pch_cache_rtab; *rt; rt++)
567 for (rti = *rt; rti->base != NULL; rti++)
568 for (i = 0; i < rti->nelt; i++)
569 if (fread ((char *)rti->base + rti->stride * i,
570 sizeof (void *), 1, f) != 1)
571 fatal_error ("can't read PCH file: %m");
572
573 if (fread (&mmi, sizeof (mmi), 1, f) != 1)
574 fatal_error ("can't read PCH file: %m");
575
576 result = host_hooks.gt_pch_use_address (mmi.preferred_base, mmi.size,
577 fileno (f), mmi.offset);
578 if (result < 0)
579 fatal_error ("had to relocate PCH");
580 if (result == 0)
581 {
582 if (fseek (f, mmi.offset, SEEK_SET) != 0
583 || fread (mmi.preferred_base, mmi.size, 1, f) != 1)
584 fatal_error ("can't read PCH file: %m");
585 }
586 else if (fseek (f, mmi.offset + mmi.size, SEEK_SET) != 0)
587 fatal_error ("can't read PCH file: %m");
588
589 ggc_pch_read (f, mmi.preferred_base);
590
591 gt_pch_restore_stringpool ();
592 }
593
594 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS when mmap is not present.
595 Select no address whatsoever, and let gt_pch_save choose what it will with
596 malloc, presumably. */
597
598 void *
599 default_gt_pch_get_address (size_t size ATTRIBUTE_UNUSED,
600 int fd ATTRIBUTE_UNUSED)
601 {
602 return NULL;
603 }
604
605 /* Default version of HOST_HOOKS_GT_PCH_USE_ADDRESS when mmap is not present.
606 Allocate SIZE bytes with malloc. Return 0 if the address we got is the
607 same as base, indicating that the memory has been allocated but needs to
608 be read in from the file. Return -1 if the address differs, to relocation
609 of the PCH file would be required. */
610
611 int
612 default_gt_pch_use_address (void *base, size_t size, int fd ATTRIBUTE_UNUSED,
613 size_t offset ATTRIBUTE_UNUSED)
614 {
615 void *addr = xmalloc (size);
616 return (addr == base) - 1;
617 }
618
619 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS. Return the
620 alignment required for allocating virtual memory. Usually this is the
621 same as pagesize. */
622
623 size_t
624 default_gt_pch_alloc_granularity (void)
625 {
626 return getpagesize();
627 }
628
629 #if HAVE_MMAP_FILE
630 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS when mmap is present.
631 We temporarily allocate SIZE bytes, and let the kernel place the data
632 wherever it will. If it worked, that's our spot, if not we're likely
633 to be in trouble. */
634
635 void *
636 mmap_gt_pch_get_address (size_t size, int fd)
637 {
638 void *ret;
639
640 ret = mmap (NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
641 if (ret == (void *) MAP_FAILED)
642 ret = NULL;
643 else
644 munmap (ret, size);
645
646 return ret;
647 }
648
649 /* Default version of HOST_HOOKS_GT_PCH_USE_ADDRESS when mmap is present.
650 Map SIZE bytes of FD+OFFSET at BASE. Return 1 if we succeeded at
651 mapping the data at BASE, -1 if we couldn't.
652
653 This version assumes that the kernel honors the START operand of mmap
654 even without MAP_FIXED if START through START+SIZE are not currently
655 mapped with something. */
656
657 int
658 mmap_gt_pch_use_address (void *base, size_t size, int fd, size_t offset)
659 {
660 void *addr;
661
662 /* We're called with size == 0 if we're not planning to load a PCH
663 file at all. This allows the hook to free any static space that
664 we might have allocated at link time. */
665 if (size == 0)
666 return -1;
667
668 addr = mmap (base, size, PROT_READ | PROT_WRITE, MAP_PRIVATE,
669 fd, offset);
670
671 return addr == base ? 1 : -1;
672 }
673 #endif /* HAVE_MMAP_FILE */
674
675 /* Modify the bound based on rlimits. */
676 static double
677 ggc_rlimit_bound (double limit)
678 {
679 #if defined(HAVE_GETRLIMIT)
680 struct rlimit rlim;
681 # if defined (RLIMIT_AS)
682 /* RLIMIT_AS is what POSIX says is the limit on mmap. Presumably
683 any OS which has RLIMIT_AS also has a working mmap that GCC will use. */
684 if (getrlimit (RLIMIT_AS, &rlim) == 0
685 && rlim.rlim_cur != (rlim_t) RLIM_INFINITY
686 && rlim.rlim_cur < limit)
687 limit = rlim.rlim_cur;
688 # elif defined (RLIMIT_DATA)
689 /* ... but some older OSs bound mmap based on RLIMIT_DATA, or we
690 might be on an OS that has a broken mmap. (Others don't bound
691 mmap at all, apparently.) */
692 if (getrlimit (RLIMIT_DATA, &rlim) == 0
693 && rlim.rlim_cur != (rlim_t) RLIM_INFINITY
694 && rlim.rlim_cur < limit
695 /* Darwin has this horribly bogus default setting of
696 RLIMIT_DATA, to 6144Kb. No-one notices because RLIMIT_DATA
697 appears to be ignored. Ignore such silliness. If a limit
698 this small was actually effective for mmap, GCC wouldn't even
699 start up. */
700 && rlim.rlim_cur >= 8 * 1024 * 1024)
701 limit = rlim.rlim_cur;
702 # endif /* RLIMIT_AS or RLIMIT_DATA */
703 #endif /* HAVE_GETRLIMIT */
704
705 return limit;
706 }
707
708 /* Heuristic to set a default for GGC_MIN_EXPAND. */
709 int
710 ggc_min_expand_heuristic (void)
711 {
712 double min_expand = physmem_total();
713
714 /* Adjust for rlimits. */
715 min_expand = ggc_rlimit_bound (min_expand);
716
717 /* The heuristic is a percentage equal to 30% + 70%*(RAM/1GB), yielding
718 a lower bound of 30% and an upper bound of 100% (when RAM >= 1GB). */
719 min_expand /= 1024*1024*1024;
720 min_expand *= 70;
721 min_expand = MIN (min_expand, 70);
722 min_expand += 30;
723
724 return min_expand;
725 }
726
727 /* Heuristic to set a default for GGC_MIN_HEAPSIZE. */
728 int
729 ggc_min_heapsize_heuristic (void)
730 {
731 double phys_kbytes = physmem_total();
732 double limit_kbytes = ggc_rlimit_bound (phys_kbytes * 2);
733
734 phys_kbytes /= 1024; /* Convert to Kbytes. */
735 limit_kbytes /= 1024;
736
737 /* The heuristic is RAM/8, with a lower bound of 4M and an upper
738 bound of 128M (when RAM >= 1GB). */
739 phys_kbytes /= 8;
740
741 #if defined(HAVE_GETRLIMIT) && defined (RLIMIT_RSS)
742 /* Try not to overrun the RSS limit while doing garbage collection.
743 The RSS limit is only advisory, so no margin is subtracted. */
744 {
745 struct rlimit rlim;
746 if (getrlimit (RLIMIT_RSS, &rlim) == 0
747 && rlim.rlim_cur != (rlim_t) RLIM_INFINITY)
748 phys_kbytes = MIN (phys_kbytes, rlim.rlim_cur / 1024);
749 }
750 # endif
751
752 /* Don't blindly run over our data limit; do GC at least when the
753 *next* GC would be within 20Mb of the limit or within a quarter of
754 the limit, whichever is larger. If GCC does hit the data limit,
755 compilation will fail, so this tries to be conservative. */
756 limit_kbytes = MAX (0, limit_kbytes - MAX (limit_kbytes / 4, 20 * 1024));
757 limit_kbytes = (limit_kbytes * 100) / (110 + ggc_min_expand_heuristic());
758 phys_kbytes = MIN (phys_kbytes, limit_kbytes);
759
760 phys_kbytes = MAX (phys_kbytes, 4 * 1024);
761 phys_kbytes = MIN (phys_kbytes, 128 * 1024);
762
763 return phys_kbytes;
764 }
765
766 void
767 init_ggc_heuristics (void)
768 {
769 #if !defined ENABLE_GC_CHECKING && !defined ENABLE_GC_ALWAYS_COLLECT
770 set_param_value ("ggc-min-expand", ggc_min_expand_heuristic());
771 set_param_value ("ggc-min-heapsize", ggc_min_heapsize_heuristic());
772 #endif
773 }
774
775 #ifdef GATHER_STATISTICS
776
777 /* Datastructure used to store per-call-site statistics. */
778 struct loc_descriptor
779 {
780 const char *file;
781 int line;
782 const char *function;
783 int times;
784 size_t allocated;
785 size_t overhead;
786 size_t freed;
787 size_t collected;
788 };
789
790 /* Hashtable used for statistics. */
791 static htab_t loc_hash;
792
793 /* Hash table helpers functions. */
794 static hashval_t
795 hash_descriptor (const void *p)
796 {
797 const struct loc_descriptor *const d = p;
798
799 return htab_hash_pointer (d->function) | d->line;
800 }
801
802 static int
803 eq_descriptor (const void *p1, const void *p2)
804 {
805 const struct loc_descriptor *const d = p1;
806 const struct loc_descriptor *const d2 = p2;
807
808 return (d->file == d2->file && d->line == d2->line
809 && d->function == d2->function);
810 }
811
812 /* Hashtable converting address of allocated field to loc descriptor. */
813 static htab_t ptr_hash;
814 struct ptr_hash_entry
815 {
816 void *ptr;
817 struct loc_descriptor *loc;
818 size_t size;
819 };
820
821 /* Hash table helpers functions. */
822 static hashval_t
823 hash_ptr (const void *p)
824 {
825 const struct ptr_hash_entry *const d = p;
826
827 return htab_hash_pointer (d->ptr);
828 }
829
830 static int
831 eq_ptr (const void *p1, const void *p2)
832 {
833 const struct ptr_hash_entry *const p = p1;
834
835 return (p->ptr == p2);
836 }
837
838 /* Return descriptor for given call site, create new one if needed. */
839 static struct loc_descriptor *
840 loc_descriptor (const char *name, int line, const char *function)
841 {
842 struct loc_descriptor loc;
843 struct loc_descriptor **slot;
844
845 loc.file = name;
846 loc.line = line;
847 loc.function = function;
848 if (!loc_hash)
849 loc_hash = htab_create (10, hash_descriptor, eq_descriptor, NULL);
850
851 slot = (struct loc_descriptor **) htab_find_slot (loc_hash, &loc, 1);
852 if (*slot)
853 return *slot;
854 *slot = xcalloc (sizeof (**slot), 1);
855 (*slot)->file = name;
856 (*slot)->line = line;
857 (*slot)->function = function;
858 return *slot;
859 }
860
861 /* Record ALLOCATED and OVERHEAD bytes to descriptor NAME:LINE (FUNCTION). */
862 void
863 ggc_record_overhead (size_t allocated, size_t overhead, void *ptr,
864 const char *name, int line, const char *function)
865 {
866 struct loc_descriptor *loc = loc_descriptor (name, line, function);
867 struct ptr_hash_entry *p = XNEW (struct ptr_hash_entry);
868 PTR *slot;
869
870 p->ptr = ptr;
871 p->loc = loc;
872 p->size = allocated + overhead;
873 if (!ptr_hash)
874 ptr_hash = htab_create (10, hash_ptr, eq_ptr, NULL);
875 slot = htab_find_slot_with_hash (ptr_hash, ptr, htab_hash_pointer (ptr), INSERT);
876 gcc_assert (!*slot);
877 *slot = p;
878
879 loc->times++;
880 loc->allocated+=allocated;
881 loc->overhead+=overhead;
882 }
883
884 /* Helper function for prune_overhead_list. See if SLOT is still marked and
885 remove it from hashtable if it is not. */
886 static int
887 ggc_prune_ptr (void **slot, void *b ATTRIBUTE_UNUSED)
888 {
889 struct ptr_hash_entry *p = *slot;
890 if (!ggc_marked_p (p->ptr))
891 {
892 p->loc->collected += p->size;
893 htab_clear_slot (ptr_hash, slot);
894 free (p);
895 }
896 return 1;
897 }
898
899 /* After live values has been marked, walk all recorded pointers and see if
900 they are still live. */
901 void
902 ggc_prune_overhead_list (void)
903 {
904 htab_traverse (ptr_hash, ggc_prune_ptr, NULL);
905 }
906
907 /* Notice that the pointer has been freed. */
908 void
909 ggc_free_overhead (void *ptr)
910 {
911 PTR *slot = htab_find_slot_with_hash (ptr_hash, ptr, htab_hash_pointer (ptr),
912 NO_INSERT);
913 struct ptr_hash_entry *p = *slot;
914 p->loc->freed += p->size;
915 htab_clear_slot (ptr_hash, slot);
916 free (p);
917 }
918
919 /* Helper for qsort; sort descriptors by amount of memory consumed. */
920 static int
921 final_cmp_statistic (const void *loc1, const void *loc2)
922 {
923 struct loc_descriptor *l1 = *(struct loc_descriptor **) loc1;
924 struct loc_descriptor *l2 = *(struct loc_descriptor **) loc2;
925 long diff;
926 diff = ((long)(l1->allocated + l1->overhead - l1->freed) -
927 (l2->allocated + l2->overhead - l2->freed));
928 return diff > 0 ? 1 : diff < 0 ? -1 : 0;
929 }
930
931 /* Helper for qsort; sort descriptors by amount of memory consumed. */
932 static int
933 cmp_statistic (const void *loc1, const void *loc2)
934 {
935 struct loc_descriptor *l1 = *(struct loc_descriptor **) loc1;
936 struct loc_descriptor *l2 = *(struct loc_descriptor **) loc2;
937 long diff;
938
939 diff = ((long)(l1->allocated + l1->overhead - l1->freed - l1->collected) -
940 (l2->allocated + l2->overhead - l2->freed - l2->collected));
941 if (diff)
942 return diff > 0 ? 1 : diff < 0 ? -1 : 0;
943 diff = ((long)(l1->allocated + l1->overhead - l1->freed) -
944 (l2->allocated + l2->overhead - l2->freed));
945 return diff > 0 ? 1 : diff < 0 ? -1 : 0;
946 }
947
948 /* Collect array of the descriptors from hashtable. */
949 struct loc_descriptor **loc_array;
950 static int
951 add_statistics (void **slot, void *b)
952 {
953 int *n = (int *)b;
954 loc_array[*n] = (struct loc_descriptor *) *slot;
955 (*n)++;
956 return 1;
957 }
958
959 /* Dump per-site memory statistics. */
960 #endif
961 void
962 dump_ggc_loc_statistics (bool final ATTRIBUTE_UNUSED)
963 {
964 #ifdef GATHER_STATISTICS
965 int nentries = 0;
966 char s[4096];
967 size_t collected = 0, freed = 0, allocated = 0, overhead = 0, times = 0;
968 int i;
969
970 ggc_force_collect = true;
971 ggc_collect ();
972
973 loc_array = xcalloc (sizeof (*loc_array), loc_hash->n_elements);
974 fprintf (stderr, "-------------------------------------------------------\n");
975 fprintf (stderr, "\n%-48s %10s %10s %10s %10s %10s\n",
976 "source location", "Garbage", "Freed", "Leak", "Overhead", "Times");
977 fprintf (stderr, "-------------------------------------------------------\n");
978 htab_traverse (loc_hash, add_statistics, &nentries);
979 qsort (loc_array, nentries, sizeof (*loc_array),
980 final ? final_cmp_statistic : cmp_statistic);
981 for (i = 0; i < nentries; i++)
982 {
983 struct loc_descriptor *d = loc_array[i];
984 allocated += d->allocated;
985 times += d->times;
986 freed += d->freed;
987 collected += d->collected;
988 overhead += d->overhead;
989 }
990 for (i = 0; i < nentries; i++)
991 {
992 struct loc_descriptor *d = loc_array[i];
993 if (d->allocated)
994 {
995 const char *s1 = d->file;
996 const char *s2;
997 while ((s2 = strstr (s1, "gcc/")))
998 s1 = s2 + 4;
999 sprintf (s, "%s:%i (%s)", s1, d->line, d->function);
1000 s[48] = 0;
1001 fprintf (stderr, "%-48s %10li:%4.1f%% %10li:%4.1f%% %10li:%4.1f%% %10li:%4.1f%% %10li\n", s,
1002 (long)d->collected,
1003 (d->collected) * 100.0 / collected,
1004 (long)d->freed,
1005 (d->freed) * 100.0 / freed,
1006 (long)(d->allocated + d->overhead - d->freed - d->collected),
1007 (d->allocated + d->overhead - d->freed - d->collected) * 100.0
1008 / (allocated + overhead - freed - collected),
1009 (long)d->overhead,
1010 d->overhead * 100.0 / overhead,
1011 (long)d->times);
1012 }
1013 }
1014 fprintf (stderr, "%-48s %10ld %10ld %10ld %10ld %10ld\n",
1015 "Total", (long)collected, (long)freed,
1016 (long)(allocated + overhead - freed - collected), (long)overhead,
1017 (long)times);
1018 fprintf (stderr, "%-48s %10s %10s %10s %10s %10s\n",
1019 "source location", "Garbage", "Freed", "Leak", "Overhead", "Times");
1020 fprintf (stderr, "-------------------------------------------------------\n");
1021 ggc_force_collect = false;
1022 #endif
1023 }