cond.md (stzx_16): Use register_operand for operand 0.
[gcc.git] / gcc / ggc-common.c
1 /* Simple garbage collection for the GNU compiler.
2 Copyright (C) 1999-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* Generic garbage collection (GC) functions and data, not specific to
21 any particular GC implementation. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "hash-table.h"
27 #include "ggc.h"
28 #include "ggc-internal.h"
29 #include "diagnostic-core.h"
30 #include "params.h"
31 #include "hosthooks.h"
32 #include "hosthooks-def.h"
33 #include "plugin.h"
34 #include "vec.h"
35 #include "timevar.h"
36
37 /* When set, ggc_collect will do collection. */
38 bool ggc_force_collect;
39
40 /* When true, protect the contents of the identifier hash table. */
41 bool ggc_protect_identifiers = true;
42
43 /* Statistics about the allocation. */
44 static ggc_statistics *ggc_stats;
45
46 struct traversal_state;
47
48 static int ggc_htab_delete (void **, void *);
49 static int compare_ptr_data (const void *, const void *);
50 static void relocate_ptrs (void *, void *);
51 static void write_pch_globals (const struct ggc_root_tab * const *tab,
52 struct traversal_state *state);
53
54 /* Maintain global roots that are preserved during GC. */
55
56 /* Process a slot of an htab by deleting it if it has not been marked. */
57
58 static int
59 ggc_htab_delete (void **slot, void *info)
60 {
61 const struct ggc_cache_tab *r = (const struct ggc_cache_tab *) info;
62
63 if (! (*r->marked_p) (*slot))
64 htab_clear_slot (*r->base, slot);
65 else
66 (*r->cb) (*slot);
67
68 return 1;
69 }
70
71
72 /* This extra vector of dynamically registered root_tab-s is used by
73 ggc_mark_roots and gives the ability to dynamically add new GGC root
74 tables, for instance from some plugins; this vector is on the heap
75 since it is used by GGC internally. */
76 typedef const struct ggc_root_tab *const_ggc_root_tab_t;
77 static vec<const_ggc_root_tab_t> extra_root_vec;
78
79 /* Dynamically register a new GGC root table RT. This is useful for
80 plugins. */
81
82 void
83 ggc_register_root_tab (const struct ggc_root_tab* rt)
84 {
85 if (rt)
86 extra_root_vec.safe_push (rt);
87 }
88
89 /* This extra vector of dynamically registered cache_tab-s is used by
90 ggc_mark_roots and gives the ability to dynamically add new GGC cache
91 tables, for instance from some plugins; this vector is on the heap
92 since it is used by GGC internally. */
93 typedef const struct ggc_cache_tab *const_ggc_cache_tab_t;
94 static vec<const_ggc_cache_tab_t> extra_cache_vec;
95
96 /* Dynamically register a new GGC cache table CT. This is useful for
97 plugins. */
98
99 void
100 ggc_register_cache_tab (const struct ggc_cache_tab* ct)
101 {
102 if (ct)
103 extra_cache_vec.safe_push (ct);
104 }
105
106 /* Scan a hash table that has objects which are to be deleted if they are not
107 already marked. */
108
109 static void
110 ggc_scan_cache_tab (const_ggc_cache_tab_t ctp)
111 {
112 const struct ggc_cache_tab *cti;
113
114 for (cti = ctp; cti->base != NULL; cti++)
115 if (*cti->base)
116 {
117 ggc_set_mark (*cti->base);
118 htab_traverse_noresize (*cti->base, ggc_htab_delete,
119 CONST_CAST (void *, (const void *)cti));
120 ggc_set_mark ((*cti->base)->entries);
121 }
122 }
123
124 /* Mark all the roots in the table RT. */
125
126 static void
127 ggc_mark_root_tab (const_ggc_root_tab_t rt)
128 {
129 size_t i;
130
131 for ( ; rt->base != NULL; rt++)
132 for (i = 0; i < rt->nelt; i++)
133 (*rt->cb) (*(void **) ((char *)rt->base + rt->stride * i));
134 }
135
136 /* Iterate through all registered roots and mark each element. */
137
138 void
139 ggc_mark_roots (void)
140 {
141 const struct ggc_root_tab *const *rt;
142 const_ggc_root_tab_t rtp, rti;
143 const struct ggc_cache_tab *const *ct;
144 const_ggc_cache_tab_t ctp;
145 size_t i;
146
147 for (rt = gt_ggc_deletable_rtab; *rt; rt++)
148 for (rti = *rt; rti->base != NULL; rti++)
149 memset (rti->base, 0, rti->stride);
150
151 for (rt = gt_ggc_rtab; *rt; rt++)
152 ggc_mark_root_tab (*rt);
153
154 FOR_EACH_VEC_ELT (extra_root_vec, i, rtp)
155 ggc_mark_root_tab (rtp);
156
157 if (ggc_protect_identifiers)
158 ggc_mark_stringpool ();
159
160 /* Now scan all hash tables that have objects which are to be deleted if
161 they are not already marked. */
162 for (ct = gt_ggc_cache_rtab; *ct; ct++)
163 ggc_scan_cache_tab (*ct);
164
165 FOR_EACH_VEC_ELT (extra_cache_vec, i, ctp)
166 ggc_scan_cache_tab (ctp);
167
168 if (! ggc_protect_identifiers)
169 ggc_purge_stringpool ();
170
171 /* Some plugins may call ggc_set_mark from here. */
172 invoke_plugin_callbacks (PLUGIN_GGC_MARKING, NULL);
173 }
174
175 /* Allocate a block of memory, then clear it. */
176 void *
177 ggc_internal_cleared_alloc_stat (size_t size MEM_STAT_DECL)
178 {
179 void *buf = ggc_internal_alloc_stat (size PASS_MEM_STAT);
180 memset (buf, 0, size);
181 return buf;
182 }
183
184 /* Resize a block of memory, possibly re-allocating it. */
185 void *
186 ggc_realloc_stat (void *x, size_t size MEM_STAT_DECL)
187 {
188 void *r;
189 size_t old_size;
190
191 if (x == NULL)
192 return ggc_internal_alloc_stat (size PASS_MEM_STAT);
193
194 old_size = ggc_get_size (x);
195
196 if (size <= old_size)
197 {
198 /* Mark the unwanted memory as unaccessible. We also need to make
199 the "new" size accessible, since ggc_get_size returns the size of
200 the pool, not the size of the individually allocated object, the
201 size which was previously made accessible. Unfortunately, we
202 don't know that previously allocated size. Without that
203 knowledge we have to lose some initialization-tracking for the
204 old parts of the object. An alternative is to mark the whole
205 old_size as reachable, but that would lose tracking of writes
206 after the end of the object (by small offsets). Discard the
207 handle to avoid handle leak. */
208 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) x + size,
209 old_size - size));
210 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (x, size));
211 return x;
212 }
213
214 r = ggc_internal_alloc_stat (size PASS_MEM_STAT);
215
216 /* Since ggc_get_size returns the size of the pool, not the size of the
217 individually allocated object, we'd access parts of the old object
218 that were marked invalid with the memcpy below. We lose a bit of the
219 initialization-tracking since some of it may be uninitialized. */
220 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (x, old_size));
221
222 memcpy (r, x, old_size);
223
224 /* The old object is not supposed to be used anymore. */
225 ggc_free (x);
226
227 return r;
228 }
229
230 void *
231 ggc_cleared_alloc_htab_ignore_args (size_t c ATTRIBUTE_UNUSED,
232 size_t n ATTRIBUTE_UNUSED)
233 {
234 gcc_assert (c * n == sizeof (struct htab));
235 return ggc_alloc_cleared_htab ();
236 }
237
238 /* TODO: once we actually use type information in GGC, create a new tag
239 gt_gcc_ptr_array and use it for pointer arrays. */
240 void *
241 ggc_cleared_alloc_ptr_array_two_args (size_t c, size_t n)
242 {
243 gcc_assert (sizeof (PTR *) == n);
244 return ggc_internal_cleared_vec_alloc (sizeof (PTR *), c);
245 }
246
247 /* These are for splay_tree_new_ggc. */
248 void *
249 ggc_splay_alloc (int sz, void *nl)
250 {
251 gcc_assert (!nl);
252 return ggc_internal_alloc (sz);
253 }
254
255 void
256 ggc_splay_dont_free (void * x ATTRIBUTE_UNUSED, void *nl)
257 {
258 gcc_assert (!nl);
259 }
260
261 /* Print statistics that are independent of the collector in use. */
262 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
263 ? (x) \
264 : ((x) < 1024*1024*10 \
265 ? (x) / 1024 \
266 : (x) / (1024*1024))))
267 #define LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
268
269 void
270 ggc_print_common_statistics (FILE *stream ATTRIBUTE_UNUSED,
271 ggc_statistics *stats)
272 {
273 /* Set the pointer so that during collection we will actually gather
274 the statistics. */
275 ggc_stats = stats;
276
277 /* Then do one collection to fill in the statistics. */
278 ggc_collect ();
279
280 /* At present, we don't really gather any interesting statistics. */
281
282 /* Don't gather statistics any more. */
283 ggc_stats = NULL;
284 }
285 \f
286 /* Functions for saving and restoring GCable memory to disk. */
287
288 struct ptr_data
289 {
290 void *obj;
291 void *note_ptr_cookie;
292 gt_note_pointers note_ptr_fn;
293 gt_handle_reorder reorder_fn;
294 size_t size;
295 void *new_addr;
296 };
297
298 #define POINTER_HASH(x) (hashval_t)((intptr_t)x >> 3)
299
300 /* Helper for hashing saving_htab. */
301
302 struct saving_hasher : typed_free_remove <ptr_data>
303 {
304 typedef ptr_data value_type;
305 typedef void compare_type;
306 static inline hashval_t hash (const value_type *);
307 static inline bool equal (const value_type *, const compare_type *);
308 };
309
310 inline hashval_t
311 saving_hasher::hash (const value_type *p)
312 {
313 return POINTER_HASH (p->obj);
314 }
315
316 inline bool
317 saving_hasher::equal (const value_type *p1, const compare_type *p2)
318 {
319 return p1->obj == p2;
320 }
321
322 static hash_table <saving_hasher> saving_htab;
323
324 /* Register an object in the hash table. */
325
326 int
327 gt_pch_note_object (void *obj, void *note_ptr_cookie,
328 gt_note_pointers note_ptr_fn)
329 {
330 struct ptr_data **slot;
331
332 if (obj == NULL || obj == (void *) 1)
333 return 0;
334
335 slot = (struct ptr_data **)
336 saving_htab.find_slot_with_hash (obj, POINTER_HASH (obj), INSERT);
337 if (*slot != NULL)
338 {
339 gcc_assert ((*slot)->note_ptr_fn == note_ptr_fn
340 && (*slot)->note_ptr_cookie == note_ptr_cookie);
341 return 0;
342 }
343
344 *slot = XCNEW (struct ptr_data);
345 (*slot)->obj = obj;
346 (*slot)->note_ptr_fn = note_ptr_fn;
347 (*slot)->note_ptr_cookie = note_ptr_cookie;
348 if (note_ptr_fn == gt_pch_p_S)
349 (*slot)->size = strlen ((const char *)obj) + 1;
350 else
351 (*slot)->size = ggc_get_size (obj);
352 return 1;
353 }
354
355 /* Register an object in the hash table. */
356
357 void
358 gt_pch_note_reorder (void *obj, void *note_ptr_cookie,
359 gt_handle_reorder reorder_fn)
360 {
361 struct ptr_data *data;
362
363 if (obj == NULL || obj == (void *) 1)
364 return;
365
366 data = (struct ptr_data *)
367 saving_htab.find_with_hash (obj, POINTER_HASH (obj));
368 gcc_assert (data && data->note_ptr_cookie == note_ptr_cookie);
369
370 data->reorder_fn = reorder_fn;
371 }
372
373 /* Handy state for the traversal functions. */
374
375 struct traversal_state
376 {
377 FILE *f;
378 struct ggc_pch_data *d;
379 size_t count;
380 struct ptr_data **ptrs;
381 size_t ptrs_i;
382 };
383
384 /* Callbacks for htab_traverse. */
385
386 int
387 ggc_call_count (ptr_data **slot, traversal_state *state)
388 {
389 struct ptr_data *d = *slot;
390
391 ggc_pch_count_object (state->d, d->obj, d->size,
392 d->note_ptr_fn == gt_pch_p_S);
393 state->count++;
394 return 1;
395 }
396
397 int
398 ggc_call_alloc (ptr_data **slot, traversal_state *state)
399 {
400 struct ptr_data *d = *slot;
401
402 d->new_addr = ggc_pch_alloc_object (state->d, d->obj, d->size,
403 d->note_ptr_fn == gt_pch_p_S);
404 state->ptrs[state->ptrs_i++] = d;
405 return 1;
406 }
407
408 /* Callback for qsort. */
409
410 static int
411 compare_ptr_data (const void *p1_p, const void *p2_p)
412 {
413 const struct ptr_data *const p1 = *(const struct ptr_data *const *)p1_p;
414 const struct ptr_data *const p2 = *(const struct ptr_data *const *)p2_p;
415 return (((size_t)p1->new_addr > (size_t)p2->new_addr)
416 - ((size_t)p1->new_addr < (size_t)p2->new_addr));
417 }
418
419 /* Callbacks for note_ptr_fn. */
420
421 static void
422 relocate_ptrs (void *ptr_p, void *state_p)
423 {
424 void **ptr = (void **)ptr_p;
425 struct traversal_state *state ATTRIBUTE_UNUSED
426 = (struct traversal_state *)state_p;
427 struct ptr_data *result;
428
429 if (*ptr == NULL || *ptr == (void *)1)
430 return;
431
432 result = (struct ptr_data *)
433 saving_htab.find_with_hash (*ptr, POINTER_HASH (*ptr));
434 gcc_assert (result);
435 *ptr = result->new_addr;
436 }
437
438 /* Write out, after relocation, the pointers in TAB. */
439 static void
440 write_pch_globals (const struct ggc_root_tab * const *tab,
441 struct traversal_state *state)
442 {
443 const struct ggc_root_tab *const *rt;
444 const struct ggc_root_tab *rti;
445 size_t i;
446
447 for (rt = tab; *rt; rt++)
448 for (rti = *rt; rti->base != NULL; rti++)
449 for (i = 0; i < rti->nelt; i++)
450 {
451 void *ptr = *(void **)((char *)rti->base + rti->stride * i);
452 struct ptr_data *new_ptr;
453 if (ptr == NULL || ptr == (void *)1)
454 {
455 if (fwrite (&ptr, sizeof (void *), 1, state->f)
456 != 1)
457 fatal_error ("can%'t write PCH file: %m");
458 }
459 else
460 {
461 new_ptr = (struct ptr_data *)
462 saving_htab.find_with_hash (ptr, POINTER_HASH (ptr));
463 if (fwrite (&new_ptr->new_addr, sizeof (void *), 1, state->f)
464 != 1)
465 fatal_error ("can%'t write PCH file: %m");
466 }
467 }
468 }
469
470 /* Hold the information we need to mmap the file back in. */
471
472 struct mmap_info
473 {
474 size_t offset;
475 size_t size;
476 void *preferred_base;
477 };
478
479 /* Write out the state of the compiler to F. */
480
481 void
482 gt_pch_save (FILE *f)
483 {
484 const struct ggc_root_tab *const *rt;
485 const struct ggc_root_tab *rti;
486 size_t i;
487 struct traversal_state state;
488 char *this_object = NULL;
489 size_t this_object_size = 0;
490 struct mmap_info mmi;
491 const size_t mmap_offset_alignment = host_hooks.gt_pch_alloc_granularity ();
492
493 gt_pch_save_stringpool ();
494
495 timevar_push (TV_PCH_PTR_REALLOC);
496 saving_htab.create (50000);
497
498 for (rt = gt_ggc_rtab; *rt; rt++)
499 for (rti = *rt; rti->base != NULL; rti++)
500 for (i = 0; i < rti->nelt; i++)
501 (*rti->pchw)(*(void **)((char *)rti->base + rti->stride * i));
502
503 for (rt = gt_pch_cache_rtab; *rt; rt++)
504 for (rti = *rt; rti->base != NULL; rti++)
505 for (i = 0; i < rti->nelt; i++)
506 (*rti->pchw)(*(void **)((char *)rti->base + rti->stride * i));
507
508 /* Prepare the objects for writing, determine addresses and such. */
509 state.f = f;
510 state.d = init_ggc_pch ();
511 state.count = 0;
512 saving_htab.traverse <traversal_state *, ggc_call_count> (&state);
513
514 mmi.size = ggc_pch_total_size (state.d);
515
516 /* Try to arrange things so that no relocation is necessary, but
517 don't try very hard. On most platforms, this will always work,
518 and on the rest it's a lot of work to do better.
519 (The extra work goes in HOST_HOOKS_GT_PCH_GET_ADDRESS and
520 HOST_HOOKS_GT_PCH_USE_ADDRESS.) */
521 mmi.preferred_base = host_hooks.gt_pch_get_address (mmi.size, fileno (f));
522
523 ggc_pch_this_base (state.d, mmi.preferred_base);
524
525 state.ptrs = XNEWVEC (struct ptr_data *, state.count);
526 state.ptrs_i = 0;
527
528 saving_htab.traverse <traversal_state *, ggc_call_alloc> (&state);
529 timevar_pop (TV_PCH_PTR_REALLOC);
530
531 timevar_push (TV_PCH_PTR_SORT);
532 qsort (state.ptrs, state.count, sizeof (*state.ptrs), compare_ptr_data);
533 timevar_pop (TV_PCH_PTR_SORT);
534
535 /* Write out all the scalar variables. */
536 for (rt = gt_pch_scalar_rtab; *rt; rt++)
537 for (rti = *rt; rti->base != NULL; rti++)
538 if (fwrite (rti->base, rti->stride, 1, f) != 1)
539 fatal_error ("can%'t write PCH file: %m");
540
541 /* Write out all the global pointers, after translation. */
542 write_pch_globals (gt_ggc_rtab, &state);
543 write_pch_globals (gt_pch_cache_rtab, &state);
544
545 /* Pad the PCH file so that the mmapped area starts on an allocation
546 granularity (usually page) boundary. */
547 {
548 long o;
549 o = ftell (state.f) + sizeof (mmi);
550 if (o == -1)
551 fatal_error ("can%'t get position in PCH file: %m");
552 mmi.offset = mmap_offset_alignment - o % mmap_offset_alignment;
553 if (mmi.offset == mmap_offset_alignment)
554 mmi.offset = 0;
555 mmi.offset += o;
556 }
557 if (fwrite (&mmi, sizeof (mmi), 1, state.f) != 1)
558 fatal_error ("can%'t write PCH file: %m");
559 if (mmi.offset != 0
560 && fseek (state.f, mmi.offset, SEEK_SET) != 0)
561 fatal_error ("can%'t write padding to PCH file: %m");
562
563 ggc_pch_prepare_write (state.d, state.f);
564
565 #if defined ENABLE_VALGRIND_CHECKING && defined VALGRIND_GET_VBITS
566 vec<char> vbits = vNULL;
567 #endif
568
569 /* Actually write out the objects. */
570 for (i = 0; i < state.count; i++)
571 {
572 if (this_object_size < state.ptrs[i]->size)
573 {
574 this_object_size = state.ptrs[i]->size;
575 this_object = XRESIZEVAR (char, this_object, this_object_size);
576 }
577 #if defined ENABLE_VALGRIND_CHECKING && defined VALGRIND_GET_VBITS
578 /* obj might contain uninitialized bytes, e.g. in the trailing
579 padding of the object. Avoid warnings by making the memory
580 temporarily defined and then restoring previous state. */
581 int get_vbits = 0;
582 size_t valid_size = state.ptrs[i]->size;
583 if (__builtin_expect (RUNNING_ON_VALGRIND, 0))
584 {
585 if (vbits.length () < valid_size)
586 vbits.safe_grow (valid_size);
587 get_vbits = VALGRIND_GET_VBITS (state.ptrs[i]->obj,
588 vbits.address (), valid_size);
589 if (get_vbits == 3)
590 {
591 /* We assume that first part of obj is addressable, and
592 the rest is unaddressable. Find out where the boundary is
593 using binary search. */
594 size_t lo = 0, hi = valid_size;
595 while (hi > lo)
596 {
597 size_t mid = (lo + hi) / 2;
598 get_vbits = VALGRIND_GET_VBITS ((char *) state.ptrs[i]->obj
599 + mid, vbits.address (),
600 1);
601 if (get_vbits == 3)
602 hi = mid;
603 else if (get_vbits == 1)
604 lo = mid + 1;
605 else
606 break;
607 }
608 if (get_vbits == 1 || get_vbits == 3)
609 {
610 valid_size = lo;
611 get_vbits = VALGRIND_GET_VBITS (state.ptrs[i]->obj,
612 vbits.address (),
613 valid_size);
614 }
615 }
616 if (get_vbits == 1)
617 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (state.ptrs[i]->obj,
618 state.ptrs[i]->size));
619 }
620 #endif
621 memcpy (this_object, state.ptrs[i]->obj, state.ptrs[i]->size);
622 if (state.ptrs[i]->reorder_fn != NULL)
623 state.ptrs[i]->reorder_fn (state.ptrs[i]->obj,
624 state.ptrs[i]->note_ptr_cookie,
625 relocate_ptrs, &state);
626 state.ptrs[i]->note_ptr_fn (state.ptrs[i]->obj,
627 state.ptrs[i]->note_ptr_cookie,
628 relocate_ptrs, &state);
629 ggc_pch_write_object (state.d, state.f, state.ptrs[i]->obj,
630 state.ptrs[i]->new_addr, state.ptrs[i]->size,
631 state.ptrs[i]->note_ptr_fn == gt_pch_p_S);
632 if (state.ptrs[i]->note_ptr_fn != gt_pch_p_S)
633 memcpy (state.ptrs[i]->obj, this_object, state.ptrs[i]->size);
634 #if defined ENABLE_VALGRIND_CHECKING && defined VALGRIND_GET_VBITS
635 if (__builtin_expect (get_vbits == 1, 0))
636 {
637 (void) VALGRIND_SET_VBITS (state.ptrs[i]->obj, vbits.address (),
638 valid_size);
639 if (valid_size != state.ptrs[i]->size)
640 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *)
641 state.ptrs[i]->obj
642 + valid_size,
643 state.ptrs[i]->size
644 - valid_size));
645 }
646 #endif
647 }
648 #if defined ENABLE_VALGRIND_CHECKING && defined VALGRIND_GET_VBITS
649 vbits.release ();
650 #endif
651
652 ggc_pch_finish (state.d, state.f);
653 gt_pch_fixup_stringpool ();
654
655 XDELETE (state.ptrs);
656 XDELETE (this_object);
657 saving_htab.dispose ();
658 }
659
660 /* Read the state of the compiler back in from F. */
661
662 void
663 gt_pch_restore (FILE *f)
664 {
665 const struct ggc_root_tab *const *rt;
666 const struct ggc_root_tab *rti;
667 size_t i;
668 struct mmap_info mmi;
669 int result;
670
671 /* Delete any deletable objects. This makes ggc_pch_read much
672 faster, as it can be sure that no GCable objects remain other
673 than the ones just read in. */
674 for (rt = gt_ggc_deletable_rtab; *rt; rt++)
675 for (rti = *rt; rti->base != NULL; rti++)
676 memset (rti->base, 0, rti->stride);
677
678 /* Read in all the scalar variables. */
679 for (rt = gt_pch_scalar_rtab; *rt; rt++)
680 for (rti = *rt; rti->base != NULL; rti++)
681 if (fread (rti->base, rti->stride, 1, f) != 1)
682 fatal_error ("can%'t read PCH file: %m");
683
684 /* Read in all the global pointers, in 6 easy loops. */
685 for (rt = gt_ggc_rtab; *rt; rt++)
686 for (rti = *rt; rti->base != NULL; rti++)
687 for (i = 0; i < rti->nelt; i++)
688 if (fread ((char *)rti->base + rti->stride * i,
689 sizeof (void *), 1, f) != 1)
690 fatal_error ("can%'t read PCH file: %m");
691
692 for (rt = gt_pch_cache_rtab; *rt; rt++)
693 for (rti = *rt; rti->base != NULL; rti++)
694 for (i = 0; i < rti->nelt; i++)
695 if (fread ((char *)rti->base + rti->stride * i,
696 sizeof (void *), 1, f) != 1)
697 fatal_error ("can%'t read PCH file: %m");
698
699 if (fread (&mmi, sizeof (mmi), 1, f) != 1)
700 fatal_error ("can%'t read PCH file: %m");
701
702 result = host_hooks.gt_pch_use_address (mmi.preferred_base, mmi.size,
703 fileno (f), mmi.offset);
704 if (result < 0)
705 fatal_error ("had to relocate PCH");
706 if (result == 0)
707 {
708 if (fseek (f, mmi.offset, SEEK_SET) != 0
709 || fread (mmi.preferred_base, mmi.size, 1, f) != 1)
710 fatal_error ("can%'t read PCH file: %m");
711 }
712 else if (fseek (f, mmi.offset + mmi.size, SEEK_SET) != 0)
713 fatal_error ("can%'t read PCH file: %m");
714
715 ggc_pch_read (f, mmi.preferred_base);
716
717 gt_pch_restore_stringpool ();
718 }
719
720 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS when mmap is not present.
721 Select no address whatsoever, and let gt_pch_save choose what it will with
722 malloc, presumably. */
723
724 void *
725 default_gt_pch_get_address (size_t size ATTRIBUTE_UNUSED,
726 int fd ATTRIBUTE_UNUSED)
727 {
728 return NULL;
729 }
730
731 /* Default version of HOST_HOOKS_GT_PCH_USE_ADDRESS when mmap is not present.
732 Allocate SIZE bytes with malloc. Return 0 if the address we got is the
733 same as base, indicating that the memory has been allocated but needs to
734 be read in from the file. Return -1 if the address differs, to relocation
735 of the PCH file would be required. */
736
737 int
738 default_gt_pch_use_address (void *base, size_t size, int fd ATTRIBUTE_UNUSED,
739 size_t offset ATTRIBUTE_UNUSED)
740 {
741 void *addr = xmalloc (size);
742 return (addr == base) - 1;
743 }
744
745 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS. Return the
746 alignment required for allocating virtual memory. Usually this is the
747 same as pagesize. */
748
749 size_t
750 default_gt_pch_alloc_granularity (void)
751 {
752 return getpagesize ();
753 }
754
755 #if HAVE_MMAP_FILE
756 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS when mmap is present.
757 We temporarily allocate SIZE bytes, and let the kernel place the data
758 wherever it will. If it worked, that's our spot, if not we're likely
759 to be in trouble. */
760
761 void *
762 mmap_gt_pch_get_address (size_t size, int fd)
763 {
764 void *ret;
765
766 ret = mmap (NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
767 if (ret == (void *) MAP_FAILED)
768 ret = NULL;
769 else
770 munmap ((caddr_t) ret, size);
771
772 return ret;
773 }
774
775 /* Default version of HOST_HOOKS_GT_PCH_USE_ADDRESS when mmap is present.
776 Map SIZE bytes of FD+OFFSET at BASE. Return 1 if we succeeded at
777 mapping the data at BASE, -1 if we couldn't.
778
779 This version assumes that the kernel honors the START operand of mmap
780 even without MAP_FIXED if START through START+SIZE are not currently
781 mapped with something. */
782
783 int
784 mmap_gt_pch_use_address (void *base, size_t size, int fd, size_t offset)
785 {
786 void *addr;
787
788 /* We're called with size == 0 if we're not planning to load a PCH
789 file at all. This allows the hook to free any static space that
790 we might have allocated at link time. */
791 if (size == 0)
792 return -1;
793
794 addr = mmap ((caddr_t) base, size, PROT_READ | PROT_WRITE, MAP_PRIVATE,
795 fd, offset);
796
797 return addr == base ? 1 : -1;
798 }
799 #endif /* HAVE_MMAP_FILE */
800
801 #if !defined ENABLE_GC_CHECKING && !defined ENABLE_GC_ALWAYS_COLLECT
802
803 /* Modify the bound based on rlimits. */
804 static double
805 ggc_rlimit_bound (double limit)
806 {
807 #if defined(HAVE_GETRLIMIT)
808 struct rlimit rlim;
809 # if defined (RLIMIT_AS)
810 /* RLIMIT_AS is what POSIX says is the limit on mmap. Presumably
811 any OS which has RLIMIT_AS also has a working mmap that GCC will use. */
812 if (getrlimit (RLIMIT_AS, &rlim) == 0
813 && rlim.rlim_cur != (rlim_t) RLIM_INFINITY
814 && rlim.rlim_cur < limit)
815 limit = rlim.rlim_cur;
816 # elif defined (RLIMIT_DATA)
817 /* ... but some older OSs bound mmap based on RLIMIT_DATA, or we
818 might be on an OS that has a broken mmap. (Others don't bound
819 mmap at all, apparently.) */
820 if (getrlimit (RLIMIT_DATA, &rlim) == 0
821 && rlim.rlim_cur != (rlim_t) RLIM_INFINITY
822 && rlim.rlim_cur < limit
823 /* Darwin has this horribly bogus default setting of
824 RLIMIT_DATA, to 6144Kb. No-one notices because RLIMIT_DATA
825 appears to be ignored. Ignore such silliness. If a limit
826 this small was actually effective for mmap, GCC wouldn't even
827 start up. */
828 && rlim.rlim_cur >= 8 * 1024 * 1024)
829 limit = rlim.rlim_cur;
830 # endif /* RLIMIT_AS or RLIMIT_DATA */
831 #endif /* HAVE_GETRLIMIT */
832
833 return limit;
834 }
835
836 /* Heuristic to set a default for GGC_MIN_EXPAND. */
837 static int
838 ggc_min_expand_heuristic (void)
839 {
840 double min_expand = physmem_total ();
841
842 /* Adjust for rlimits. */
843 min_expand = ggc_rlimit_bound (min_expand);
844
845 /* The heuristic is a percentage equal to 30% + 70%*(RAM/1GB), yielding
846 a lower bound of 30% and an upper bound of 100% (when RAM >= 1GB). */
847 min_expand /= 1024*1024*1024;
848 min_expand *= 70;
849 min_expand = MIN (min_expand, 70);
850 min_expand += 30;
851
852 return min_expand;
853 }
854
855 /* Heuristic to set a default for GGC_MIN_HEAPSIZE. */
856 static int
857 ggc_min_heapsize_heuristic (void)
858 {
859 double phys_kbytes = physmem_total ();
860 double limit_kbytes = ggc_rlimit_bound (phys_kbytes * 2);
861
862 phys_kbytes /= 1024; /* Convert to Kbytes. */
863 limit_kbytes /= 1024;
864
865 /* The heuristic is RAM/8, with a lower bound of 4M and an upper
866 bound of 128M (when RAM >= 1GB). */
867 phys_kbytes /= 8;
868
869 #if defined(HAVE_GETRLIMIT) && defined (RLIMIT_RSS)
870 /* Try not to overrun the RSS limit while doing garbage collection.
871 The RSS limit is only advisory, so no margin is subtracted. */
872 {
873 struct rlimit rlim;
874 if (getrlimit (RLIMIT_RSS, &rlim) == 0
875 && rlim.rlim_cur != (rlim_t) RLIM_INFINITY)
876 phys_kbytes = MIN (phys_kbytes, rlim.rlim_cur / 1024);
877 }
878 # endif
879
880 /* Don't blindly run over our data limit; do GC at least when the
881 *next* GC would be within 20Mb of the limit or within a quarter of
882 the limit, whichever is larger. If GCC does hit the data limit,
883 compilation will fail, so this tries to be conservative. */
884 limit_kbytes = MAX (0, limit_kbytes - MAX (limit_kbytes / 4, 20 * 1024));
885 limit_kbytes = (limit_kbytes * 100) / (110 + ggc_min_expand_heuristic ());
886 phys_kbytes = MIN (phys_kbytes, limit_kbytes);
887
888 phys_kbytes = MAX (phys_kbytes, 4 * 1024);
889 phys_kbytes = MIN (phys_kbytes, 128 * 1024);
890
891 return phys_kbytes;
892 }
893 #endif
894
895 void
896 init_ggc_heuristics (void)
897 {
898 #if !defined ENABLE_GC_CHECKING && !defined ENABLE_GC_ALWAYS_COLLECT
899 set_default_param_value (GGC_MIN_EXPAND, ggc_min_expand_heuristic ());
900 set_default_param_value (GGC_MIN_HEAPSIZE, ggc_min_heapsize_heuristic ());
901 #endif
902 }
903
904 /* Datastructure used to store per-call-site statistics. */
905 struct loc_descriptor
906 {
907 const char *file;
908 int line;
909 const char *function;
910 int times;
911 size_t allocated;
912 size_t overhead;
913 size_t freed;
914 size_t collected;
915 };
916
917 /* Hash table helper. */
918
919 struct loc_desc_hasher : typed_noop_remove <loc_descriptor>
920 {
921 typedef loc_descriptor value_type;
922 typedef loc_descriptor compare_type;
923 static inline hashval_t hash (const value_type *);
924 static inline bool equal (const value_type *, const compare_type *);
925 };
926
927 inline hashval_t
928 loc_desc_hasher::hash (const value_type *d)
929 {
930 return htab_hash_pointer (d->function) | d->line;
931 }
932
933 inline bool
934 loc_desc_hasher::equal (const value_type *d, const compare_type *d2)
935 {
936 return (d->file == d2->file && d->line == d2->line
937 && d->function == d2->function);
938 }
939
940 /* Hashtable used for statistics. */
941 static hash_table <loc_desc_hasher> loc_hash;
942
943 struct ptr_hash_entry
944 {
945 void *ptr;
946 struct loc_descriptor *loc;
947 size_t size;
948 };
949
950 /* Helper for ptr_hash table. */
951
952 struct ptr_hash_hasher : typed_noop_remove <ptr_hash_entry>
953 {
954 typedef ptr_hash_entry value_type;
955 typedef void compare_type;
956 static inline hashval_t hash (const value_type *);
957 static inline bool equal (const value_type *, const compare_type *);
958 };
959
960 inline hashval_t
961 ptr_hash_hasher::hash (const value_type *d)
962 {
963 return htab_hash_pointer (d->ptr);
964 }
965
966 inline bool
967 ptr_hash_hasher::equal (const value_type *p, const compare_type *p2)
968 {
969 return (p->ptr == p2);
970 }
971
972 /* Hashtable converting address of allocated field to loc descriptor. */
973 static hash_table <ptr_hash_hasher> ptr_hash;
974
975 /* Return descriptor for given call site, create new one if needed. */
976 static struct loc_descriptor *
977 make_loc_descriptor (const char *name, int line, const char *function)
978 {
979 struct loc_descriptor loc;
980 struct loc_descriptor **slot;
981
982 loc.file = name;
983 loc.line = line;
984 loc.function = function;
985 if (!loc_hash.is_created ())
986 loc_hash.create (10);
987
988 slot = loc_hash.find_slot (&loc, INSERT);
989 if (*slot)
990 return *slot;
991 *slot = XCNEW (struct loc_descriptor);
992 (*slot)->file = name;
993 (*slot)->line = line;
994 (*slot)->function = function;
995 return *slot;
996 }
997
998 /* Record ALLOCATED and OVERHEAD bytes to descriptor NAME:LINE (FUNCTION). */
999 void
1000 ggc_record_overhead (size_t allocated, size_t overhead, void *ptr,
1001 const char *name, int line, const char *function)
1002 {
1003 struct loc_descriptor *loc = make_loc_descriptor (name, line, function);
1004 struct ptr_hash_entry *p = XNEW (struct ptr_hash_entry);
1005 ptr_hash_entry **slot;
1006
1007 p->ptr = ptr;
1008 p->loc = loc;
1009 p->size = allocated + overhead;
1010 if (!ptr_hash.is_created ())
1011 ptr_hash.create (10);
1012 slot = ptr_hash.find_slot_with_hash (ptr, htab_hash_pointer (ptr), INSERT);
1013 gcc_assert (!*slot);
1014 *slot = p;
1015
1016 loc->times++;
1017 loc->allocated+=allocated;
1018 loc->overhead+=overhead;
1019 }
1020
1021 /* Helper function for prune_overhead_list. See if SLOT is still marked and
1022 remove it from hashtable if it is not. */
1023 int
1024 ggc_prune_ptr (ptr_hash_entry **slot, void *b ATTRIBUTE_UNUSED)
1025 {
1026 struct ptr_hash_entry *p = *slot;
1027 if (!ggc_marked_p (p->ptr))
1028 {
1029 p->loc->collected += p->size;
1030 ptr_hash.clear_slot (slot);
1031 free (p);
1032 }
1033 return 1;
1034 }
1035
1036 /* After live values has been marked, walk all recorded pointers and see if
1037 they are still live. */
1038 void
1039 ggc_prune_overhead_list (void)
1040 {
1041 ptr_hash.traverse <void *, ggc_prune_ptr> (NULL);
1042 }
1043
1044 /* Notice that the pointer has been freed. */
1045 void
1046 ggc_free_overhead (void *ptr)
1047 {
1048 ptr_hash_entry **slot;
1049 slot = ptr_hash.find_slot_with_hash (ptr, htab_hash_pointer (ptr), NO_INSERT);
1050 struct ptr_hash_entry *p;
1051 /* The pointer might be not found if a PCH read happened between allocation
1052 and ggc_free () call. FIXME: account memory properly in the presence of
1053 PCH. */
1054 if (!slot)
1055 return;
1056 p = (struct ptr_hash_entry *) *slot;
1057 p->loc->freed += p->size;
1058 ptr_hash.clear_slot (slot);
1059 free (p);
1060 }
1061
1062 /* Helper for qsort; sort descriptors by amount of memory consumed. */
1063 static int
1064 final_cmp_statistic (const void *loc1, const void *loc2)
1065 {
1066 const struct loc_descriptor *const l1 =
1067 *(const struct loc_descriptor *const *) loc1;
1068 const struct loc_descriptor *const l2 =
1069 *(const struct loc_descriptor *const *) loc2;
1070 long diff;
1071 diff = ((long)(l1->allocated + l1->overhead - l1->freed) -
1072 (l2->allocated + l2->overhead - l2->freed));
1073 return diff > 0 ? 1 : diff < 0 ? -1 : 0;
1074 }
1075
1076 /* Helper for qsort; sort descriptors by amount of memory consumed. */
1077 static int
1078 cmp_statistic (const void *loc1, const void *loc2)
1079 {
1080 const struct loc_descriptor *const l1 =
1081 *(const struct loc_descriptor *const *) loc1;
1082 const struct loc_descriptor *const l2 =
1083 *(const struct loc_descriptor *const *) loc2;
1084 long diff;
1085
1086 diff = ((long)(l1->allocated + l1->overhead - l1->freed - l1->collected) -
1087 (l2->allocated + l2->overhead - l2->freed - l2->collected));
1088 if (diff)
1089 return diff > 0 ? 1 : diff < 0 ? -1 : 0;
1090 diff = ((long)(l1->allocated + l1->overhead - l1->freed) -
1091 (l2->allocated + l2->overhead - l2->freed));
1092 return diff > 0 ? 1 : diff < 0 ? -1 : 0;
1093 }
1094
1095 /* Collect array of the descriptors from hashtable. */
1096 static struct loc_descriptor **loc_array;
1097 int
1098 ggc_add_statistics (loc_descriptor **slot, int *n)
1099 {
1100 loc_array[*n] = *slot;
1101 (*n)++;
1102 return 1;
1103 }
1104
1105 /* Dump per-site memory statistics. */
1106
1107 void
1108 dump_ggc_loc_statistics (bool final)
1109 {
1110 int nentries = 0;
1111 char s[4096];
1112 size_t collected = 0, freed = 0, allocated = 0, overhead = 0, times = 0;
1113 int i;
1114
1115 if (! GATHER_STATISTICS)
1116 return;
1117
1118 ggc_force_collect = true;
1119 ggc_collect ();
1120
1121 loc_array = XCNEWVEC (struct loc_descriptor *,
1122 loc_hash.elements_with_deleted ());
1123 fprintf (stderr, "-------------------------------------------------------\n");
1124 fprintf (stderr, "\n%-48s %10s %10s %10s %10s %10s\n",
1125 "source location", "Garbage", "Freed", "Leak", "Overhead", "Times");
1126 fprintf (stderr, "-------------------------------------------------------\n");
1127 loc_hash.traverse <int *, ggc_add_statistics> (&nentries);
1128 qsort (loc_array, nentries, sizeof (*loc_array),
1129 final ? final_cmp_statistic : cmp_statistic);
1130 for (i = 0; i < nentries; i++)
1131 {
1132 struct loc_descriptor *d = loc_array[i];
1133 allocated += d->allocated;
1134 times += d->times;
1135 freed += d->freed;
1136 collected += d->collected;
1137 overhead += d->overhead;
1138 }
1139 for (i = 0; i < nentries; i++)
1140 {
1141 struct loc_descriptor *d = loc_array[i];
1142 if (d->allocated)
1143 {
1144 const char *s1 = d->file;
1145 const char *s2;
1146 while ((s2 = strstr (s1, "gcc/")))
1147 s1 = s2 + 4;
1148 sprintf (s, "%s:%i (%s)", s1, d->line, d->function);
1149 s[48] = 0;
1150 fprintf (stderr, "%-48s %10li:%4.1f%% %10li:%4.1f%% %10li:%4.1f%% %10li:%4.1f%% %10li\n", s,
1151 (long)d->collected,
1152 (d->collected) * 100.0 / collected,
1153 (long)d->freed,
1154 (d->freed) * 100.0 / freed,
1155 (long)(d->allocated + d->overhead - d->freed - d->collected),
1156 (d->allocated + d->overhead - d->freed - d->collected) * 100.0
1157 / (allocated + overhead - freed - collected),
1158 (long)d->overhead,
1159 d->overhead * 100.0 / overhead,
1160 (long)d->times);
1161 }
1162 }
1163 fprintf (stderr, "%-48s %10ld %10ld %10ld %10ld %10ld\n",
1164 "Total", (long)collected, (long)freed,
1165 (long)(allocated + overhead - freed - collected), (long)overhead,
1166 (long)times);
1167 fprintf (stderr, "%-48s %10s %10s %10s %10s %10s\n",
1168 "source location", "Garbage", "Freed", "Leak", "Overhead", "Times");
1169 fprintf (stderr, "-------------------------------------------------------\n");
1170 ggc_force_collect = false;
1171 }