Fix for problem with unnecessary volatile mems.
[gcc.git] / gcc / ggc-page.c
1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "toplev.h"
29 #include "flags.h"
30 #include "ggc.h"
31 #include "timevar.h"
32 #include "params.h"
33 #ifdef ENABLE_VALGRIND_CHECKING
34 # ifdef HAVE_VALGRIND_MEMCHECK_H
35 # include <valgrind/memcheck.h>
36 # elif defined HAVE_MEMCHECK_H
37 # include <memcheck.h>
38 # else
39 # include <valgrind.h>
40 # endif
41 #else
42 /* Avoid #ifdef:s when we can help it. */
43 #define VALGRIND_DISCARD(x)
44 #endif
45
46 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
47 file open. Prefer either to valloc. */
48 #ifdef HAVE_MMAP_ANON
49 # undef HAVE_MMAP_DEV_ZERO
50
51 # include <sys/mman.h>
52 # ifndef MAP_FAILED
53 # define MAP_FAILED -1
54 # endif
55 # if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
56 # define MAP_ANONYMOUS MAP_ANON
57 # endif
58 # define USING_MMAP
59
60 #endif
61
62 #ifdef HAVE_MMAP_DEV_ZERO
63
64 # include <sys/mman.h>
65 # ifndef MAP_FAILED
66 # define MAP_FAILED -1
67 # endif
68 # define USING_MMAP
69
70 #endif
71
72 #ifndef USING_MMAP
73 #define USING_MALLOC_PAGE_GROUPS
74 #endif
75
76 /* Stategy:
77
78 This garbage-collecting allocator allocates objects on one of a set
79 of pages. Each page can allocate objects of a single size only;
80 available sizes are powers of two starting at four bytes. The size
81 of an allocation request is rounded up to the next power of two
82 (`order'), and satisfied from the appropriate page.
83
84 Each page is recorded in a page-entry, which also maintains an
85 in-use bitmap of object positions on the page. This allows the
86 allocation state of a particular object to be flipped without
87 touching the page itself.
88
89 Each page-entry also has a context depth, which is used to track
90 pushing and popping of allocation contexts. Only objects allocated
91 in the current (highest-numbered) context may be collected.
92
93 Page entries are arranged in an array of singly-linked lists. The
94 array is indexed by the allocation size, in bits, of the pages on
95 it; i.e. all pages on a list allocate objects of the same size.
96 Pages are ordered on the list such that all non-full pages precede
97 all full pages, with non-full pages arranged in order of decreasing
98 context depth.
99
100 Empty pages (of all orders) are kept on a single page cache list,
101 and are considered first when new pages are required; they are
102 deallocated at the start of the next collection if they haven't
103 been recycled by then. */
104
105 /* Define GGC_DEBUG_LEVEL to print debugging information.
106 0: No debugging output.
107 1: GC statistics only.
108 2: Page-entry allocations/deallocations as well.
109 3: Object allocations as well.
110 4: Object marks as well. */
111 #define GGC_DEBUG_LEVEL (0)
112 \f
113 #ifndef HOST_BITS_PER_PTR
114 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
115 #endif
116
117 \f
118 /* A two-level tree is used to look up the page-entry for a given
119 pointer. Two chunks of the pointer's bits are extracted to index
120 the first and second levels of the tree, as follows:
121
122 HOST_PAGE_SIZE_BITS
123 32 | |
124 msb +----------------+----+------+------+ lsb
125 | | |
126 PAGE_L1_BITS |
127 | |
128 PAGE_L2_BITS
129
130 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
131 pages are aligned on system page boundaries. The next most
132 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
133 index values in the lookup table, respectively.
134
135 For 32-bit architectures and the settings below, there are no
136 leftover bits. For architectures with wider pointers, the lookup
137 tree points to a list of pages, which must be scanned to find the
138 correct one. */
139
140 #define PAGE_L1_BITS (8)
141 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
142 #define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
143 #define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
144
145 #define LOOKUP_L1(p) \
146 (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
147
148 #define LOOKUP_L2(p) \
149 (((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
150
151 /* The number of objects per allocation page, for objects on a page of
152 the indicated ORDER. */
153 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
154
155 /* The number of objects in P. */
156 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
157
158 /* The size of an object on a page of the indicated ORDER. */
159 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
160
161 /* For speed, we avoid doing a general integer divide to locate the
162 offset in the allocation bitmap, by precalculating numbers M, S
163 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
164 within the page which is evenly divisible by the object size Z. */
165 #define DIV_MULT(ORDER) inverse_table[ORDER].mult
166 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
167 #define OFFSET_TO_BIT(OFFSET, ORDER) \
168 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
169
170 /* The number of extra orders, not corresponding to power-of-two sized
171 objects. */
172
173 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
174
175 #define RTL_SIZE(NSLOTS) \
176 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
177
178 #define TREE_EXP_SIZE(OPS) \
179 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
180
181 /* The Ith entry is the maximum size of an object to be stored in the
182 Ith extra order. Adding a new entry to this array is the *only*
183 thing you need to do to add a new special allocation size. */
184
185 static const size_t extra_order_size_table[] = {
186 sizeof (struct tree_decl),
187 sizeof (struct tree_list),
188 TREE_EXP_SIZE (2),
189 RTL_SIZE (2), /* MEM, PLUS, etc. */
190 RTL_SIZE (9), /* INSN */
191 };
192
193 /* The total number of orders. */
194
195 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
196
197 /* We use this structure to determine the alignment required for
198 allocations. For power-of-two sized allocations, that's not a
199 problem, but it does matter for odd-sized allocations. */
200
201 struct max_alignment {
202 char c;
203 union {
204 HOST_WIDEST_INT i;
205 long double d;
206 } u;
207 };
208
209 /* The biggest alignment required. */
210
211 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
212
213 /* Compute the smallest nonnegative number which when added to X gives
214 a multiple of F. */
215
216 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
217
218 /* Compute the smallest multiple of F that is >= X. */
219
220 #define ROUND_UP(x, f) (CEIL (x, f) * (f))
221
222 /* The Ith entry is the number of objects on a page or order I. */
223
224 static unsigned objects_per_page_table[NUM_ORDERS];
225
226 /* The Ith entry is the size of an object on a page of order I. */
227
228 static size_t object_size_table[NUM_ORDERS];
229
230 /* The Ith entry is a pair of numbers (mult, shift) such that
231 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
232 for all k evenly divisible by OBJECT_SIZE(I). */
233
234 static struct
235 {
236 size_t mult;
237 unsigned int shift;
238 }
239 inverse_table[NUM_ORDERS];
240
241 /* A page_entry records the status of an allocation page. This
242 structure is dynamically sized to fit the bitmap in_use_p. */
243 typedef struct page_entry
244 {
245 /* The next page-entry with objects of the same size, or NULL if
246 this is the last page-entry. */
247 struct page_entry *next;
248
249 /* The number of bytes allocated. (This will always be a multiple
250 of the host system page size.) */
251 size_t bytes;
252
253 /* The address at which the memory is allocated. */
254 char *page;
255
256 #ifdef USING_MALLOC_PAGE_GROUPS
257 /* Back pointer to the page group this page came from. */
258 struct page_group *group;
259 #endif
260
261 /* This is the index in the by_depth varray where this page table
262 can be found. */
263 unsigned long index_by_depth;
264
265 /* Context depth of this page. */
266 unsigned short context_depth;
267
268 /* The number of free objects remaining on this page. */
269 unsigned short num_free_objects;
270
271 /* A likely candidate for the bit position of a free object for the
272 next allocation from this page. */
273 unsigned short next_bit_hint;
274
275 /* The lg of size of objects allocated from this page. */
276 unsigned char order;
277
278 /* A bit vector indicating whether or not objects are in use. The
279 Nth bit is one if the Nth object on this page is allocated. This
280 array is dynamically sized. */
281 unsigned long in_use_p[1];
282 } page_entry;
283
284 #ifdef USING_MALLOC_PAGE_GROUPS
285 /* A page_group describes a large allocation from malloc, from which
286 we parcel out aligned pages. */
287 typedef struct page_group
288 {
289 /* A linked list of all extant page groups. */
290 struct page_group *next;
291
292 /* The address we received from malloc. */
293 char *allocation;
294
295 /* The size of the block. */
296 size_t alloc_size;
297
298 /* A bitmask of pages in use. */
299 unsigned int in_use;
300 } page_group;
301 #endif
302
303 #if HOST_BITS_PER_PTR <= 32
304
305 /* On 32-bit hosts, we use a two level page table, as pictured above. */
306 typedef page_entry **page_table[PAGE_L1_SIZE];
307
308 #else
309
310 /* On 64-bit hosts, we use the same two level page tables plus a linked
311 list that disambiguates the top 32-bits. There will almost always be
312 exactly one entry in the list. */
313 typedef struct page_table_chain
314 {
315 struct page_table_chain *next;
316 size_t high_bits;
317 page_entry **table[PAGE_L1_SIZE];
318 } *page_table;
319
320 #endif
321
322 /* The rest of the global variables. */
323 static struct globals
324 {
325 /* The Nth element in this array is a page with objects of size 2^N.
326 If there are any pages with free objects, they will be at the
327 head of the list. NULL if there are no page-entries for this
328 object size. */
329 page_entry *pages[NUM_ORDERS];
330
331 /* The Nth element in this array is the last page with objects of
332 size 2^N. NULL if there are no page-entries for this object
333 size. */
334 page_entry *page_tails[NUM_ORDERS];
335
336 /* Lookup table for associating allocation pages with object addresses. */
337 page_table lookup;
338
339 /* The system's page size. */
340 size_t pagesize;
341 size_t lg_pagesize;
342
343 /* Bytes currently allocated. */
344 size_t allocated;
345
346 /* Bytes currently allocated at the end of the last collection. */
347 size_t allocated_last_gc;
348
349 /* Total amount of memory mapped. */
350 size_t bytes_mapped;
351
352 /* Bit N set if any allocations have been done at context depth N. */
353 unsigned long context_depth_allocations;
354
355 /* Bit N set if any collections have been done at context depth N. */
356 unsigned long context_depth_collections;
357
358 /* The current depth in the context stack. */
359 unsigned short context_depth;
360
361 /* A file descriptor open to /dev/zero for reading. */
362 #if defined (HAVE_MMAP_DEV_ZERO)
363 int dev_zero_fd;
364 #endif
365
366 /* A cache of free system pages. */
367 page_entry *free_pages;
368
369 #ifdef USING_MALLOC_PAGE_GROUPS
370 page_group *page_groups;
371 #endif
372
373 /* The file descriptor for debugging output. */
374 FILE *debug_file;
375
376 /* Current number of elements in use in depth below. */
377 unsigned int depth_in_use;
378
379 /* Maximum number of elements that can be used before resizing. */
380 unsigned int depth_max;
381
382 /* Each element of this arry is an index in by_depth where the given
383 depth starts. This structure is indexed by that given depth we
384 are interested in. */
385 unsigned int *depth;
386
387 /* Current number of elements in use in by_depth below. */
388 unsigned int by_depth_in_use;
389
390 /* Maximum number of elements that can be used before resizing. */
391 unsigned int by_depth_max;
392
393 /* Each element of this array is a pointer to a page_entry, all
394 page_entries can be found in here by increasing depth.
395 index_by_depth in the page_entry is the index into this data
396 structure where that page_entry can be found. This is used to
397 speed up finding all page_entries at a particular depth. */
398 page_entry **by_depth;
399
400 /* Each element is a pointer to the saved in_use_p bits, if any,
401 zero otherwise. We allocate them all together, to enable a
402 better runtime data access pattern. */
403 unsigned long **save_in_use;
404
405 #ifdef GATHER_STATISTICS
406 struct
407 {
408 /* Total memory allocated with ggc_alloc */
409 unsigned long long total_allocated;
410 /* Total overhead for memory to be allocated with ggc_alloc */
411 unsigned long long total_overhead;
412
413 /* Total allocations and overhead for sizes less than 32, 64 and 128.
414 These sizes are interesting because they are typical cache line
415 sizes. */
416
417 unsigned long long total_allocated_under32;
418 unsigned long long total_overhead_under32;
419
420 unsigned long long total_allocated_under64;
421 unsigned long long total_overhead_under64;
422
423 unsigned long long total_allocated_under128;
424 unsigned long long total_overhead_under128;
425
426 /* The overhead for each of the allocation orders. */
427 unsigned long long total_overhead_per_order[NUM_ORDERS];
428 } stats;
429 #endif
430 } G;
431
432 /* The size in bytes required to maintain a bitmap for the objects
433 on a page-entry. */
434 #define BITMAP_SIZE(Num_objects) \
435 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
436
437 /* Allocate pages in chunks of this size, to throttle calls to memory
438 allocation routines. The first page is used, the rest go onto the
439 free list. This cannot be larger than HOST_BITS_PER_INT for the
440 in_use bitmask for page_group. */
441 #define GGC_QUIRE_SIZE 16
442
443 /* Initial guess as to how many page table entries we might need. */
444 #define INITIAL_PTE_COUNT 128
445 \f
446 static int ggc_allocated_p (const void *);
447 static page_entry *lookup_page_table_entry (const void *);
448 static void set_page_table_entry (void *, page_entry *);
449 #ifdef USING_MMAP
450 static char *alloc_anon (char *, size_t);
451 #endif
452 #ifdef USING_MALLOC_PAGE_GROUPS
453 static size_t page_group_index (char *, char *);
454 static void set_page_group_in_use (page_group *, char *);
455 static void clear_page_group_in_use (page_group *, char *);
456 #endif
457 static struct page_entry * alloc_page (unsigned);
458 static void free_page (struct page_entry *);
459 static void release_pages (void);
460 static void clear_marks (void);
461 static void sweep_pages (void);
462 static void ggc_recalculate_in_use_p (page_entry *);
463 static void compute_inverse (unsigned);
464 static inline void adjust_depth (void);
465 static void move_ptes_to_front (int, int);
466
467 #ifdef ENABLE_GC_CHECKING
468 static void poison_pages (void);
469 #endif
470
471 void debug_print_page_list (int);
472 static void push_depth (unsigned int);
473 static void push_by_depth (page_entry *, unsigned long *);
474 struct alloc_zone *rtl_zone = NULL;
475 struct alloc_zone *tree_zone = NULL;
476 struct alloc_zone *garbage_zone = NULL;
477
478 /* Push an entry onto G.depth. */
479
480 inline static void
481 push_depth (unsigned int i)
482 {
483 if (G.depth_in_use >= G.depth_max)
484 {
485 G.depth_max *= 2;
486 G.depth = xrealloc (G.depth, G.depth_max * sizeof (unsigned int));
487 }
488 G.depth[G.depth_in_use++] = i;
489 }
490
491 /* Push an entry onto G.by_depth and G.save_in_use. */
492
493 inline static void
494 push_by_depth (page_entry *p, unsigned long *s)
495 {
496 if (G.by_depth_in_use >= G.by_depth_max)
497 {
498 G.by_depth_max *= 2;
499 G.by_depth = xrealloc (G.by_depth,
500 G.by_depth_max * sizeof (page_entry *));
501 G.save_in_use = xrealloc (G.save_in_use,
502 G.by_depth_max * sizeof (unsigned long *));
503 }
504 G.by_depth[G.by_depth_in_use] = p;
505 G.save_in_use[G.by_depth_in_use++] = s;
506 }
507
508 #if (GCC_VERSION < 3001)
509 #define prefetch(X) ((void) X)
510 #else
511 #define prefetch(X) __builtin_prefetch (X)
512 #endif
513
514 #define save_in_use_p_i(__i) \
515 (G.save_in_use[__i])
516 #define save_in_use_p(__p) \
517 (save_in_use_p_i (__p->index_by_depth))
518
519 /* Returns nonzero if P was allocated in GC'able memory. */
520
521 static inline int
522 ggc_allocated_p (const void *p)
523 {
524 page_entry ***base;
525 size_t L1, L2;
526
527 #if HOST_BITS_PER_PTR <= 32
528 base = &G.lookup[0];
529 #else
530 page_table table = G.lookup;
531 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
532 while (1)
533 {
534 if (table == NULL)
535 return 0;
536 if (table->high_bits == high_bits)
537 break;
538 table = table->next;
539 }
540 base = &table->table[0];
541 #endif
542
543 /* Extract the level 1 and 2 indices. */
544 L1 = LOOKUP_L1 (p);
545 L2 = LOOKUP_L2 (p);
546
547 return base[L1] && base[L1][L2];
548 }
549
550 /* Traverse the page table and find the entry for a page.
551 Die (probably) if the object wasn't allocated via GC. */
552
553 static inline page_entry *
554 lookup_page_table_entry (const void *p)
555 {
556 page_entry ***base;
557 size_t L1, L2;
558
559 #if HOST_BITS_PER_PTR <= 32
560 base = &G.lookup[0];
561 #else
562 page_table table = G.lookup;
563 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
564 while (table->high_bits != high_bits)
565 table = table->next;
566 base = &table->table[0];
567 #endif
568
569 /* Extract the level 1 and 2 indices. */
570 L1 = LOOKUP_L1 (p);
571 L2 = LOOKUP_L2 (p);
572
573 return base[L1][L2];
574 }
575
576 /* Set the page table entry for a page. */
577
578 static void
579 set_page_table_entry (void *p, page_entry *entry)
580 {
581 page_entry ***base;
582 size_t L1, L2;
583
584 #if HOST_BITS_PER_PTR <= 32
585 base = &G.lookup[0];
586 #else
587 page_table table;
588 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
589 for (table = G.lookup; table; table = table->next)
590 if (table->high_bits == high_bits)
591 goto found;
592
593 /* Not found -- allocate a new table. */
594 table = xcalloc (1, sizeof(*table));
595 table->next = G.lookup;
596 table->high_bits = high_bits;
597 G.lookup = table;
598 found:
599 base = &table->table[0];
600 #endif
601
602 /* Extract the level 1 and 2 indices. */
603 L1 = LOOKUP_L1 (p);
604 L2 = LOOKUP_L2 (p);
605
606 if (base[L1] == NULL)
607 base[L1] = xcalloc (PAGE_L2_SIZE, sizeof (page_entry *));
608
609 base[L1][L2] = entry;
610 }
611
612 /* Prints the page-entry for object size ORDER, for debugging. */
613
614 void
615 debug_print_page_list (int order)
616 {
617 page_entry *p;
618 printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
619 (void *) G.page_tails[order]);
620 p = G.pages[order];
621 while (p != NULL)
622 {
623 printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
624 p->num_free_objects);
625 p = p->next;
626 }
627 printf ("NULL\n");
628 fflush (stdout);
629 }
630
631 #ifdef USING_MMAP
632 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
633 (if non-null). The ifdef structure here is intended to cause a
634 compile error unless exactly one of the HAVE_* is defined. */
635
636 static inline char *
637 alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size)
638 {
639 #ifdef HAVE_MMAP_ANON
640 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
641 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
642 #endif
643 #ifdef HAVE_MMAP_DEV_ZERO
644 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
645 MAP_PRIVATE, G.dev_zero_fd, 0);
646 #endif
647
648 if (page == (char *) MAP_FAILED)
649 {
650 perror ("virtual memory exhausted");
651 exit (FATAL_EXIT_CODE);
652 }
653
654 /* Remember that we allocated this memory. */
655 G.bytes_mapped += size;
656
657 /* Pretend we don't have access to the allocated pages. We'll enable
658 access to smaller pieces of the area in ggc_alloc. Discard the
659 handle to avoid handle leak. */
660 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (page, size));
661
662 return page;
663 }
664 #endif
665 #ifdef USING_MALLOC_PAGE_GROUPS
666 /* Compute the index for this page into the page group. */
667
668 static inline size_t
669 page_group_index (char *allocation, char *page)
670 {
671 return (size_t) (page - allocation) >> G.lg_pagesize;
672 }
673
674 /* Set and clear the in_use bit for this page in the page group. */
675
676 static inline void
677 set_page_group_in_use (page_group *group, char *page)
678 {
679 group->in_use |= 1 << page_group_index (group->allocation, page);
680 }
681
682 static inline void
683 clear_page_group_in_use (page_group *group, char *page)
684 {
685 group->in_use &= ~(1 << page_group_index (group->allocation, page));
686 }
687 #endif
688
689 /* Allocate a new page for allocating objects of size 2^ORDER,
690 and return an entry for it. The entry is not added to the
691 appropriate page_table list. */
692
693 static inline struct page_entry *
694 alloc_page (unsigned order)
695 {
696 struct page_entry *entry, *p, **pp;
697 char *page;
698 size_t num_objects;
699 size_t bitmap_size;
700 size_t page_entry_size;
701 size_t entry_size;
702 #ifdef USING_MALLOC_PAGE_GROUPS
703 page_group *group;
704 #endif
705
706 num_objects = OBJECTS_PER_PAGE (order);
707 bitmap_size = BITMAP_SIZE (num_objects + 1);
708 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
709 entry_size = num_objects * OBJECT_SIZE (order);
710 if (entry_size < G.pagesize)
711 entry_size = G.pagesize;
712
713 entry = NULL;
714 page = NULL;
715
716 /* Check the list of free pages for one we can use. */
717 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
718 if (p->bytes == entry_size)
719 break;
720
721 if (p != NULL)
722 {
723 /* Recycle the allocated memory from this page ... */
724 *pp = p->next;
725 page = p->page;
726
727 #ifdef USING_MALLOC_PAGE_GROUPS
728 group = p->group;
729 #endif
730
731 /* ... and, if possible, the page entry itself. */
732 if (p->order == order)
733 {
734 entry = p;
735 memset (entry, 0, page_entry_size);
736 }
737 else
738 free (p);
739 }
740 #ifdef USING_MMAP
741 else if (entry_size == G.pagesize)
742 {
743 /* We want just one page. Allocate a bunch of them and put the
744 extras on the freelist. (Can only do this optimization with
745 mmap for backing store.) */
746 struct page_entry *e, *f = G.free_pages;
747 int i;
748
749 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE);
750
751 /* This loop counts down so that the chain will be in ascending
752 memory order. */
753 for (i = GGC_QUIRE_SIZE - 1; i >= 1; i--)
754 {
755 e = xcalloc (1, page_entry_size);
756 e->order = order;
757 e->bytes = G.pagesize;
758 e->page = page + (i << G.lg_pagesize);
759 e->next = f;
760 f = e;
761 }
762
763 G.free_pages = f;
764 }
765 else
766 page = alloc_anon (NULL, entry_size);
767 #endif
768 #ifdef USING_MALLOC_PAGE_GROUPS
769 else
770 {
771 /* Allocate a large block of memory and serve out the aligned
772 pages therein. This results in much less memory wastage
773 than the traditional implementation of valloc. */
774
775 char *allocation, *a, *enda;
776 size_t alloc_size, head_slop, tail_slop;
777 int multiple_pages = (entry_size == G.pagesize);
778
779 if (multiple_pages)
780 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
781 else
782 alloc_size = entry_size + G.pagesize - 1;
783 allocation = xmalloc (alloc_size);
784
785 page = (char *) (((size_t) allocation + G.pagesize - 1) & -G.pagesize);
786 head_slop = page - allocation;
787 if (multiple_pages)
788 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
789 else
790 tail_slop = alloc_size - entry_size - head_slop;
791 enda = allocation + alloc_size - tail_slop;
792
793 /* We allocated N pages, which are likely not aligned, leaving
794 us with N-1 usable pages. We plan to place the page_group
795 structure somewhere in the slop. */
796 if (head_slop >= sizeof (page_group))
797 group = (page_group *)page - 1;
798 else
799 {
800 /* We magically got an aligned allocation. Too bad, we have
801 to waste a page anyway. */
802 if (tail_slop == 0)
803 {
804 enda -= G.pagesize;
805 tail_slop += G.pagesize;
806 }
807 if (tail_slop < sizeof (page_group))
808 abort ();
809 group = (page_group *)enda;
810 tail_slop -= sizeof (page_group);
811 }
812
813 /* Remember that we allocated this memory. */
814 group->next = G.page_groups;
815 group->allocation = allocation;
816 group->alloc_size = alloc_size;
817 group->in_use = 0;
818 G.page_groups = group;
819 G.bytes_mapped += alloc_size;
820
821 /* If we allocated multiple pages, put the rest on the free list. */
822 if (multiple_pages)
823 {
824 struct page_entry *e, *f = G.free_pages;
825 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
826 {
827 e = xcalloc (1, page_entry_size);
828 e->order = order;
829 e->bytes = G.pagesize;
830 e->page = a;
831 e->group = group;
832 e->next = f;
833 f = e;
834 }
835 G.free_pages = f;
836 }
837 }
838 #endif
839
840 if (entry == NULL)
841 entry = xcalloc (1, page_entry_size);
842
843 entry->bytes = entry_size;
844 entry->page = page;
845 entry->context_depth = G.context_depth;
846 entry->order = order;
847 entry->num_free_objects = num_objects;
848 entry->next_bit_hint = 1;
849
850 G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
851
852 #ifdef USING_MALLOC_PAGE_GROUPS
853 entry->group = group;
854 set_page_group_in_use (group, page);
855 #endif
856
857 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
858 increment the hint. */
859 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
860 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
861
862 set_page_table_entry (page, entry);
863
864 if (GGC_DEBUG_LEVEL >= 2)
865 fprintf (G.debug_file,
866 "Allocating page at %p, object size=%lu, data %p-%p\n",
867 (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
868 page + entry_size - 1);
869
870 return entry;
871 }
872
873 /* Adjust the size of G.depth so that no index greater than the one
874 used by the top of the G.by_depth is used. */
875
876 static inline void
877 adjust_depth (void)
878 {
879 page_entry *top;
880
881 if (G.by_depth_in_use)
882 {
883 top = G.by_depth[G.by_depth_in_use-1];
884
885 /* Peel back indices in depth that index into by_depth, so that
886 as new elements are added to by_depth, we note the indices
887 of those elements, if they are for new context depths. */
888 while (G.depth_in_use > (size_t)top->context_depth+1)
889 --G.depth_in_use;
890 }
891 }
892
893 /* For a page that is no longer needed, put it on the free page list. */
894
895 static inline void
896 free_page (page_entry *entry)
897 {
898 if (GGC_DEBUG_LEVEL >= 2)
899 fprintf (G.debug_file,
900 "Deallocating page at %p, data %p-%p\n", (void *) entry,
901 entry->page, entry->page + entry->bytes - 1);
902
903 /* Mark the page as inaccessible. Discard the handle to avoid handle
904 leak. */
905 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (entry->page, entry->bytes));
906
907 set_page_table_entry (entry->page, NULL);
908
909 #ifdef USING_MALLOC_PAGE_GROUPS
910 clear_page_group_in_use (entry->group, entry->page);
911 #endif
912
913 if (G.by_depth_in_use > 1)
914 {
915 page_entry *top = G.by_depth[G.by_depth_in_use-1];
916
917 /* If they are at the same depth, put top element into freed
918 slot. */
919 if (entry->context_depth == top->context_depth)
920 {
921 int i = entry->index_by_depth;
922 G.by_depth[i] = top;
923 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
924 top->index_by_depth = i;
925 }
926 else
927 {
928 /* We cannot free a page from a context deeper than the
929 current one. */
930 abort ();
931 }
932 }
933 --G.by_depth_in_use;
934
935 adjust_depth ();
936
937 entry->next = G.free_pages;
938 G.free_pages = entry;
939 }
940
941 /* Release the free page cache to the system. */
942
943 static void
944 release_pages (void)
945 {
946 #ifdef USING_MMAP
947 page_entry *p, *next;
948 char *start;
949 size_t len;
950
951 /* Gather up adjacent pages so they are unmapped together. */
952 p = G.free_pages;
953
954 while (p)
955 {
956 start = p->page;
957 next = p->next;
958 len = p->bytes;
959 free (p);
960 p = next;
961
962 while (p && p->page == start + len)
963 {
964 next = p->next;
965 len += p->bytes;
966 free (p);
967 p = next;
968 }
969
970 munmap (start, len);
971 G.bytes_mapped -= len;
972 }
973
974 G.free_pages = NULL;
975 #endif
976 #ifdef USING_MALLOC_PAGE_GROUPS
977 page_entry **pp, *p;
978 page_group **gp, *g;
979
980 /* Remove all pages from free page groups from the list. */
981 pp = &G.free_pages;
982 while ((p = *pp) != NULL)
983 if (p->group->in_use == 0)
984 {
985 *pp = p->next;
986 free (p);
987 }
988 else
989 pp = &p->next;
990
991 /* Remove all free page groups, and release the storage. */
992 gp = &G.page_groups;
993 while ((g = *gp) != NULL)
994 if (g->in_use == 0)
995 {
996 *gp = g->next;
997 G.bytes_mapped -= g->alloc_size;
998 free (g->allocation);
999 }
1000 else
1001 gp = &g->next;
1002 #endif
1003 }
1004
1005 /* This table provides a fast way to determine ceil(log_2(size)) for
1006 allocation requests. The minimum allocation size is eight bytes. */
1007
1008 static unsigned char size_lookup[257] =
1009 {
1010 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1011 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1012 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1013 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1014 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1015 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1016 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1017 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1018 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1019 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1020 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1021 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1022 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1023 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1024 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1025 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1026 8
1027 };
1028
1029 /* Typed allocation function. Does nothing special in this collector. */
1030
1031 void *
1032 ggc_alloc_typed (enum gt_types_enum type ATTRIBUTE_UNUSED, size_t size)
1033 {
1034 return ggc_alloc (size);
1035 }
1036
1037 /* Zone allocation function. Does nothing special in this collector. */
1038
1039 void *
1040 ggc_alloc_zone (size_t size, struct alloc_zone *zone ATTRIBUTE_UNUSED)
1041 {
1042 return ggc_alloc (size);
1043 }
1044
1045 /* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
1046
1047 void *
1048 ggc_alloc (size_t size)
1049 {
1050 unsigned order, word, bit, object_offset;
1051 struct page_entry *entry;
1052 void *result;
1053
1054 if (size <= 256)
1055 order = size_lookup[size];
1056 else
1057 {
1058 order = 9;
1059 while (size > OBJECT_SIZE (order))
1060 order++;
1061 }
1062
1063 /* If there are non-full pages for this size allocation, they are at
1064 the head of the list. */
1065 entry = G.pages[order];
1066
1067 /* If there is no page for this object size, or all pages in this
1068 context are full, allocate a new page. */
1069 if (entry == NULL || entry->num_free_objects == 0)
1070 {
1071 struct page_entry *new_entry;
1072 new_entry = alloc_page (order);
1073
1074 new_entry->index_by_depth = G.by_depth_in_use;
1075 push_by_depth (new_entry, 0);
1076
1077 /* We can skip context depths, if we do, make sure we go all the
1078 way to the new depth. */
1079 while (new_entry->context_depth >= G.depth_in_use)
1080 push_depth (G.by_depth_in_use-1);
1081
1082 /* If this is the only entry, it's also the tail. */
1083 if (entry == NULL)
1084 G.page_tails[order] = new_entry;
1085
1086 /* Put new pages at the head of the page list. */
1087 new_entry->next = entry;
1088 entry = new_entry;
1089 G.pages[order] = new_entry;
1090
1091 /* For a new page, we know the word and bit positions (in the
1092 in_use bitmap) of the first available object -- they're zero. */
1093 new_entry->next_bit_hint = 1;
1094 word = 0;
1095 bit = 0;
1096 object_offset = 0;
1097 }
1098 else
1099 {
1100 /* First try to use the hint left from the previous allocation
1101 to locate a clear bit in the in-use bitmap. We've made sure
1102 that the one-past-the-end bit is always set, so if the hint
1103 has run over, this test will fail. */
1104 unsigned hint = entry->next_bit_hint;
1105 word = hint / HOST_BITS_PER_LONG;
1106 bit = hint % HOST_BITS_PER_LONG;
1107
1108 /* If the hint didn't work, scan the bitmap from the beginning. */
1109 if ((entry->in_use_p[word] >> bit) & 1)
1110 {
1111 word = bit = 0;
1112 while (~entry->in_use_p[word] == 0)
1113 ++word;
1114 while ((entry->in_use_p[word] >> bit) & 1)
1115 ++bit;
1116 hint = word * HOST_BITS_PER_LONG + bit;
1117 }
1118
1119 /* Next time, try the next bit. */
1120 entry->next_bit_hint = hint + 1;
1121
1122 object_offset = hint * OBJECT_SIZE (order);
1123 }
1124
1125 /* Set the in-use bit. */
1126 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1127
1128 /* Keep a running total of the number of free objects. If this page
1129 fills up, we may have to move it to the end of the list if the
1130 next page isn't full. If the next page is full, all subsequent
1131 pages are full, so there's no need to move it. */
1132 if (--entry->num_free_objects == 0
1133 && entry->next != NULL
1134 && entry->next->num_free_objects > 0)
1135 {
1136 G.pages[order] = entry->next;
1137 entry->next = NULL;
1138 G.page_tails[order]->next = entry;
1139 G.page_tails[order] = entry;
1140 }
1141
1142 /* Calculate the object's address. */
1143 result = entry->page + object_offset;
1144
1145 #ifdef ENABLE_GC_CHECKING
1146 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1147 exact same semantics in presence of memory bugs, regardless of
1148 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1149 handle to avoid handle leak. */
1150 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result, OBJECT_SIZE (order)));
1151
1152 /* `Poison' the entire allocated object, including any padding at
1153 the end. */
1154 memset (result, 0xaf, OBJECT_SIZE (order));
1155
1156 /* Make the bytes after the end of the object unaccessible. Discard the
1157 handle to avoid handle leak. */
1158 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS ((char *) result + size,
1159 OBJECT_SIZE (order) - size));
1160 #endif
1161
1162 /* Tell Valgrind that the memory is there, but its content isn't
1163 defined. The bytes at the end of the object are still marked
1164 unaccessible. */
1165 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result, size));
1166
1167 /* Keep track of how many bytes are being allocated. This
1168 information is used in deciding when to collect. */
1169 G.allocated += OBJECT_SIZE (order);
1170
1171 #ifdef GATHER_STATISTICS
1172 {
1173 G.stats.total_overhead += OBJECT_SIZE (order) - size;
1174 G.stats.total_overhead_per_order[order] += OBJECT_SIZE (order) - size;
1175 G.stats.total_allocated += OBJECT_SIZE(order);
1176
1177 if (size <= 32){
1178 G.stats.total_overhead_under32 += OBJECT_SIZE (order) - size;
1179 G.stats.total_allocated_under32 += OBJECT_SIZE(order);
1180 }
1181
1182 if (size <= 64){
1183 G.stats.total_overhead_under64 += OBJECT_SIZE (order) - size;
1184 G.stats.total_allocated_under64 += OBJECT_SIZE(order);
1185 }
1186
1187 if (size <= 128){
1188 G.stats.total_overhead_under128 += OBJECT_SIZE (order) - size;
1189 G.stats.total_allocated_under128 += OBJECT_SIZE(order);
1190 }
1191
1192 }
1193 #endif
1194
1195 if (GGC_DEBUG_LEVEL >= 3)
1196 fprintf (G.debug_file,
1197 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
1198 (unsigned long) size, (unsigned long) OBJECT_SIZE (order), result,
1199 (void *) entry);
1200
1201 return result;
1202 }
1203
1204 /* If P is not marked, marks it and return false. Otherwise return true.
1205 P must have been allocated by the GC allocator; it mustn't point to
1206 static objects, stack variables, or memory allocated with malloc. */
1207
1208 int
1209 ggc_set_mark (const void *p)
1210 {
1211 page_entry *entry;
1212 unsigned bit, word;
1213 unsigned long mask;
1214
1215 /* Look up the page on which the object is alloced. If the object
1216 wasn't allocated by the collector, we'll probably die. */
1217 entry = lookup_page_table_entry (p);
1218 #ifdef ENABLE_CHECKING
1219 if (entry == NULL)
1220 abort ();
1221 #endif
1222
1223 /* Calculate the index of the object on the page; this is its bit
1224 position in the in_use_p bitmap. */
1225 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1226 word = bit / HOST_BITS_PER_LONG;
1227 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1228
1229 /* If the bit was previously set, skip it. */
1230 if (entry->in_use_p[word] & mask)
1231 return 1;
1232
1233 /* Otherwise set it, and decrement the free object count. */
1234 entry->in_use_p[word] |= mask;
1235 entry->num_free_objects -= 1;
1236
1237 if (GGC_DEBUG_LEVEL >= 4)
1238 fprintf (G.debug_file, "Marking %p\n", p);
1239
1240 return 0;
1241 }
1242
1243 /* Return 1 if P has been marked, zero otherwise.
1244 P must have been allocated by the GC allocator; it mustn't point to
1245 static objects, stack variables, or memory allocated with malloc. */
1246
1247 int
1248 ggc_marked_p (const void *p)
1249 {
1250 page_entry *entry;
1251 unsigned bit, word;
1252 unsigned long mask;
1253
1254 /* Look up the page on which the object is alloced. If the object
1255 wasn't allocated by the collector, we'll probably die. */
1256 entry = lookup_page_table_entry (p);
1257 #ifdef ENABLE_CHECKING
1258 if (entry == NULL)
1259 abort ();
1260 #endif
1261
1262 /* Calculate the index of the object on the page; this is its bit
1263 position in the in_use_p bitmap. */
1264 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1265 word = bit / HOST_BITS_PER_LONG;
1266 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1267
1268 return (entry->in_use_p[word] & mask) != 0;
1269 }
1270
1271 /* Return the size of the gc-able object P. */
1272
1273 size_t
1274 ggc_get_size (const void *p)
1275 {
1276 page_entry *pe = lookup_page_table_entry (p);
1277 return OBJECT_SIZE (pe->order);
1278 }
1279 \f
1280 /* Subroutine of init_ggc which computes the pair of numbers used to
1281 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1282
1283 This algorithm is taken from Granlund and Montgomery's paper
1284 "Division by Invariant Integers using Multiplication"
1285 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1286 constants). */
1287
1288 static void
1289 compute_inverse (unsigned order)
1290 {
1291 size_t size, inv;
1292 unsigned int e;
1293
1294 size = OBJECT_SIZE (order);
1295 e = 0;
1296 while (size % 2 == 0)
1297 {
1298 e++;
1299 size >>= 1;
1300 }
1301
1302 inv = size;
1303 while (inv * size != 1)
1304 inv = inv * (2 - inv*size);
1305
1306 DIV_MULT (order) = inv;
1307 DIV_SHIFT (order) = e;
1308 }
1309
1310 /* Initialize the ggc-mmap allocator. */
1311 void
1312 init_ggc (void)
1313 {
1314 unsigned order;
1315
1316 G.pagesize = getpagesize();
1317 G.lg_pagesize = exact_log2 (G.pagesize);
1318
1319 #ifdef HAVE_MMAP_DEV_ZERO
1320 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1321 if (G.dev_zero_fd == -1)
1322 internal_error ("open /dev/zero: %m");
1323 #endif
1324
1325 #if 0
1326 G.debug_file = fopen ("ggc-mmap.debug", "w");
1327 #else
1328 G.debug_file = stdout;
1329 #endif
1330
1331 #ifdef USING_MMAP
1332 /* StunOS has an amazing off-by-one error for the first mmap allocation
1333 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1334 believe, is an unaligned page allocation, which would cause us to
1335 hork badly if we tried to use it. */
1336 {
1337 char *p = alloc_anon (NULL, G.pagesize);
1338 struct page_entry *e;
1339 if ((size_t)p & (G.pagesize - 1))
1340 {
1341 /* How losing. Discard this one and try another. If we still
1342 can't get something useful, give up. */
1343
1344 p = alloc_anon (NULL, G.pagesize);
1345 if ((size_t)p & (G.pagesize - 1))
1346 abort ();
1347 }
1348
1349 /* We have a good page, might as well hold onto it... */
1350 e = xcalloc (1, sizeof (struct page_entry));
1351 e->bytes = G.pagesize;
1352 e->page = p;
1353 e->next = G.free_pages;
1354 G.free_pages = e;
1355 }
1356 #endif
1357
1358 /* Initialize the object size table. */
1359 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1360 object_size_table[order] = (size_t) 1 << order;
1361 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1362 {
1363 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1364
1365 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1366 so that we're sure of getting aligned memory. */
1367 s = ROUND_UP (s, MAX_ALIGNMENT);
1368 object_size_table[order] = s;
1369 }
1370
1371 /* Initialize the objects-per-page and inverse tables. */
1372 for (order = 0; order < NUM_ORDERS; ++order)
1373 {
1374 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1375 if (objects_per_page_table[order] == 0)
1376 objects_per_page_table[order] = 1;
1377 compute_inverse (order);
1378 }
1379
1380 /* Reset the size_lookup array to put appropriately sized objects in
1381 the special orders. All objects bigger than the previous power
1382 of two, but no greater than the special size, should go in the
1383 new order. */
1384 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1385 {
1386 int o;
1387 int i;
1388
1389 o = size_lookup[OBJECT_SIZE (order)];
1390 for (i = OBJECT_SIZE (order); size_lookup [i] == o; --i)
1391 size_lookup[i] = order;
1392 }
1393
1394 G.depth_in_use = 0;
1395 G.depth_max = 10;
1396 G.depth = xmalloc (G.depth_max * sizeof (unsigned int));
1397
1398 G.by_depth_in_use = 0;
1399 G.by_depth_max = INITIAL_PTE_COUNT;
1400 G.by_depth = xmalloc (G.by_depth_max * sizeof (page_entry *));
1401 G.save_in_use = xmalloc (G.by_depth_max * sizeof (unsigned long *));
1402 }
1403
1404 /* Start a new GGC zone. */
1405
1406 struct alloc_zone *
1407 new_ggc_zone (const char *name ATTRIBUTE_UNUSED)
1408 {
1409 return NULL;
1410 }
1411
1412 /* Destroy a GGC zone. */
1413 void
1414 destroy_ggc_zone (struct alloc_zone *zone ATTRIBUTE_UNUSED)
1415 {
1416 }
1417
1418 /* Increment the `GC context'. Objects allocated in an outer context
1419 are never freed, eliminating the need to register their roots. */
1420
1421 void
1422 ggc_push_context (void)
1423 {
1424 ++G.context_depth;
1425
1426 /* Die on wrap. */
1427 if (G.context_depth >= HOST_BITS_PER_LONG)
1428 abort ();
1429 }
1430
1431 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1432 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1433
1434 static void
1435 ggc_recalculate_in_use_p (page_entry *p)
1436 {
1437 unsigned int i;
1438 size_t num_objects;
1439
1440 /* Because the past-the-end bit in in_use_p is always set, we
1441 pretend there is one additional object. */
1442 num_objects = OBJECTS_IN_PAGE (p) + 1;
1443
1444 /* Reset the free object count. */
1445 p->num_free_objects = num_objects;
1446
1447 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
1448 for (i = 0;
1449 i < CEIL (BITMAP_SIZE (num_objects),
1450 sizeof (*p->in_use_p));
1451 ++i)
1452 {
1453 unsigned long j;
1454
1455 /* Something is in use if it is marked, or if it was in use in a
1456 context further down the context stack. */
1457 p->in_use_p[i] |= save_in_use_p (p)[i];
1458
1459 /* Decrement the free object count for every object allocated. */
1460 for (j = p->in_use_p[i]; j; j >>= 1)
1461 p->num_free_objects -= (j & 1);
1462 }
1463
1464 if (p->num_free_objects >= num_objects)
1465 abort ();
1466 }
1467
1468 /* Decrement the `GC context'. All objects allocated since the
1469 previous ggc_push_context are migrated to the outer context. */
1470
1471 void
1472 ggc_pop_context (void)
1473 {
1474 unsigned long omask;
1475 unsigned int depth, i, e;
1476 #ifdef ENABLE_CHECKING
1477 unsigned int order;
1478 #endif
1479
1480 depth = --G.context_depth;
1481 omask = (unsigned long)1 << (depth + 1);
1482
1483 if (!((G.context_depth_allocations | G.context_depth_collections) & omask))
1484 return;
1485
1486 G.context_depth_allocations |= (G.context_depth_allocations & omask) >> 1;
1487 G.context_depth_allocations &= omask - 1;
1488 G.context_depth_collections &= omask - 1;
1489
1490 /* The G.depth array is shortened so that the last index is the
1491 context_depth of the top element of by_depth. */
1492 if (depth+1 < G.depth_in_use)
1493 e = G.depth[depth+1];
1494 else
1495 e = G.by_depth_in_use;
1496
1497 /* We might not have any PTEs of depth depth. */
1498 if (depth < G.depth_in_use)
1499 {
1500
1501 /* First we go through all the pages at depth depth to
1502 recalculate the in use bits. */
1503 for (i = G.depth[depth]; i < e; ++i)
1504 {
1505 page_entry *p;
1506
1507 #ifdef ENABLE_CHECKING
1508 p = G.by_depth[i];
1509
1510 /* Check that all of the pages really are at the depth that
1511 we expect. */
1512 if (p->context_depth != depth)
1513 abort ();
1514 if (p->index_by_depth != i)
1515 abort ();
1516 #endif
1517
1518 prefetch (&save_in_use_p_i (i+8));
1519 prefetch (&save_in_use_p_i (i+16));
1520 if (save_in_use_p_i (i))
1521 {
1522 p = G.by_depth[i];
1523 ggc_recalculate_in_use_p (p);
1524 free (save_in_use_p_i (i));
1525 save_in_use_p_i (i) = 0;
1526 }
1527 }
1528 }
1529
1530 /* Then, we reset all page_entries with a depth greater than depth
1531 to be at depth. */
1532 for (i = e; i < G.by_depth_in_use; ++i)
1533 {
1534 page_entry *p = G.by_depth[i];
1535
1536 /* Check that all of the pages really are at the depth we
1537 expect. */
1538 #ifdef ENABLE_CHECKING
1539 if (p->context_depth <= depth)
1540 abort ();
1541 if (p->index_by_depth != i)
1542 abort ();
1543 #endif
1544 p->context_depth = depth;
1545 }
1546
1547 adjust_depth ();
1548
1549 #ifdef ENABLE_CHECKING
1550 for (order = 2; order < NUM_ORDERS; order++)
1551 {
1552 page_entry *p;
1553
1554 for (p = G.pages[order]; p != NULL; p = p->next)
1555 {
1556 if (p->context_depth > depth)
1557 abort ();
1558 else if (p->context_depth == depth && save_in_use_p (p))
1559 abort ();
1560 }
1561 }
1562 #endif
1563 }
1564 \f
1565 /* Unmark all objects. */
1566
1567 static inline void
1568 clear_marks (void)
1569 {
1570 unsigned order;
1571
1572 for (order = 2; order < NUM_ORDERS; order++)
1573 {
1574 page_entry *p;
1575
1576 for (p = G.pages[order]; p != NULL; p = p->next)
1577 {
1578 size_t num_objects = OBJECTS_IN_PAGE (p);
1579 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1580
1581 #ifdef ENABLE_CHECKING
1582 /* The data should be page-aligned. */
1583 if ((size_t) p->page & (G.pagesize - 1))
1584 abort ();
1585 #endif
1586
1587 /* Pages that aren't in the topmost context are not collected;
1588 nevertheless, we need their in-use bit vectors to store GC
1589 marks. So, back them up first. */
1590 if (p->context_depth < G.context_depth)
1591 {
1592 if (! save_in_use_p (p))
1593 save_in_use_p (p) = xmalloc (bitmap_size);
1594 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
1595 }
1596
1597 /* Reset reset the number of free objects and clear the
1598 in-use bits. These will be adjusted by mark_obj. */
1599 p->num_free_objects = num_objects;
1600 memset (p->in_use_p, 0, bitmap_size);
1601
1602 /* Make sure the one-past-the-end bit is always set. */
1603 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1604 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1605 }
1606 }
1607 }
1608
1609 /* Free all empty pages. Partially empty pages need no attention
1610 because the `mark' bit doubles as an `unused' bit. */
1611
1612 static inline void
1613 sweep_pages (void)
1614 {
1615 unsigned order;
1616
1617 for (order = 2; order < NUM_ORDERS; order++)
1618 {
1619 /* The last page-entry to consider, regardless of entries
1620 placed at the end of the list. */
1621 page_entry * const last = G.page_tails[order];
1622
1623 size_t num_objects;
1624 size_t live_objects;
1625 page_entry *p, *previous;
1626 int done;
1627
1628 p = G.pages[order];
1629 if (p == NULL)
1630 continue;
1631
1632 previous = NULL;
1633 do
1634 {
1635 page_entry *next = p->next;
1636
1637 /* Loop until all entries have been examined. */
1638 done = (p == last);
1639
1640 num_objects = OBJECTS_IN_PAGE (p);
1641
1642 /* Add all live objects on this page to the count of
1643 allocated memory. */
1644 live_objects = num_objects - p->num_free_objects;
1645
1646 G.allocated += OBJECT_SIZE (order) * live_objects;
1647
1648 /* Only objects on pages in the topmost context should get
1649 collected. */
1650 if (p->context_depth < G.context_depth)
1651 ;
1652
1653 /* Remove the page if it's empty. */
1654 else if (live_objects == 0)
1655 {
1656 if (! previous)
1657 G.pages[order] = next;
1658 else
1659 previous->next = next;
1660
1661 /* Are we removing the last element? */
1662 if (p == G.page_tails[order])
1663 G.page_tails[order] = previous;
1664 free_page (p);
1665 p = previous;
1666 }
1667
1668 /* If the page is full, move it to the end. */
1669 else if (p->num_free_objects == 0)
1670 {
1671 /* Don't move it if it's already at the end. */
1672 if (p != G.page_tails[order])
1673 {
1674 /* Move p to the end of the list. */
1675 p->next = NULL;
1676 G.page_tails[order]->next = p;
1677
1678 /* Update the tail pointer... */
1679 G.page_tails[order] = p;
1680
1681 /* ... and the head pointer, if necessary. */
1682 if (! previous)
1683 G.pages[order] = next;
1684 else
1685 previous->next = next;
1686 p = previous;
1687 }
1688 }
1689
1690 /* If we've fallen through to here, it's a page in the
1691 topmost context that is neither full nor empty. Such a
1692 page must precede pages at lesser context depth in the
1693 list, so move it to the head. */
1694 else if (p != G.pages[order])
1695 {
1696 previous->next = p->next;
1697 p->next = G.pages[order];
1698 G.pages[order] = p;
1699 /* Are we moving the last element? */
1700 if (G.page_tails[order] == p)
1701 G.page_tails[order] = previous;
1702 p = previous;
1703 }
1704
1705 previous = p;
1706 p = next;
1707 }
1708 while (! done);
1709
1710 /* Now, restore the in_use_p vectors for any pages from contexts
1711 other than the current one. */
1712 for (p = G.pages[order]; p; p = p->next)
1713 if (p->context_depth != G.context_depth)
1714 ggc_recalculate_in_use_p (p);
1715 }
1716 }
1717
1718 #ifdef ENABLE_GC_CHECKING
1719 /* Clobber all free objects. */
1720
1721 static inline void
1722 poison_pages (void)
1723 {
1724 unsigned order;
1725
1726 for (order = 2; order < NUM_ORDERS; order++)
1727 {
1728 size_t size = OBJECT_SIZE (order);
1729 page_entry *p;
1730
1731 for (p = G.pages[order]; p != NULL; p = p->next)
1732 {
1733 size_t num_objects;
1734 size_t i;
1735
1736 if (p->context_depth != G.context_depth)
1737 /* Since we don't do any collection for pages in pushed
1738 contexts, there's no need to do any poisoning. And
1739 besides, the IN_USE_P array isn't valid until we pop
1740 contexts. */
1741 continue;
1742
1743 num_objects = OBJECTS_IN_PAGE (p);
1744 for (i = 0; i < num_objects; i++)
1745 {
1746 size_t word, bit;
1747 word = i / HOST_BITS_PER_LONG;
1748 bit = i % HOST_BITS_PER_LONG;
1749 if (((p->in_use_p[word] >> bit) & 1) == 0)
1750 {
1751 char *object = p->page + i * size;
1752
1753 /* Keep poison-by-write when we expect to use Valgrind,
1754 so the exact same memory semantics is kept, in case
1755 there are memory errors. We override this request
1756 below. */
1757 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (object, size));
1758 memset (object, 0xa5, size);
1759
1760 /* Drop the handle to avoid handle leak. */
1761 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (object, size));
1762 }
1763 }
1764 }
1765 }
1766 }
1767 #endif
1768
1769 /* Top level mark-and-sweep routine. */
1770
1771 void
1772 ggc_collect (void)
1773 {
1774 /* Avoid frequent unnecessary work by skipping collection if the
1775 total allocations haven't expanded much since the last
1776 collection. */
1777 float allocated_last_gc =
1778 MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
1779
1780 float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
1781
1782 if (G.allocated < allocated_last_gc + min_expand)
1783 return;
1784
1785 timevar_push (TV_GC);
1786 if (!quiet_flag)
1787 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
1788
1789 /* Zero the total allocated bytes. This will be recalculated in the
1790 sweep phase. */
1791 G.allocated = 0;
1792
1793 /* Release the pages we freed the last time we collected, but didn't
1794 reuse in the interim. */
1795 release_pages ();
1796
1797 /* Indicate that we've seen collections at this context depth. */
1798 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
1799
1800 clear_marks ();
1801 ggc_mark_roots ();
1802
1803 #ifdef ENABLE_GC_CHECKING
1804 poison_pages ();
1805 #endif
1806
1807 sweep_pages ();
1808
1809 G.allocated_last_gc = G.allocated;
1810
1811 timevar_pop (TV_GC);
1812
1813 if (!quiet_flag)
1814 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
1815 }
1816
1817 /* Print allocation statistics. */
1818 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
1819 ? (x) \
1820 : ((x) < 1024*1024*10 \
1821 ? (x) / 1024 \
1822 : (x) / (1024*1024))))
1823 #define LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
1824
1825 void
1826 ggc_print_statistics (void)
1827 {
1828 struct ggc_statistics stats;
1829 unsigned int i;
1830 size_t total_overhead = 0;
1831
1832 /* Clear the statistics. */
1833 memset (&stats, 0, sizeof (stats));
1834
1835 /* Make sure collection will really occur. */
1836 G.allocated_last_gc = 0;
1837
1838 /* Collect and print the statistics common across collectors. */
1839 ggc_print_common_statistics (stderr, &stats);
1840
1841 /* Release free pages so that we will not count the bytes allocated
1842 there as part of the total allocated memory. */
1843 release_pages ();
1844
1845 /* Collect some information about the various sizes of
1846 allocation. */
1847 fprintf (stderr, "%-5s %10s %10s %10s\n",
1848 "Size", "Allocated", "Used", "Overhead");
1849 for (i = 0; i < NUM_ORDERS; ++i)
1850 {
1851 page_entry *p;
1852 size_t allocated;
1853 size_t in_use;
1854 size_t overhead;
1855
1856 /* Skip empty entries. */
1857 if (!G.pages[i])
1858 continue;
1859
1860 overhead = allocated = in_use = 0;
1861
1862 /* Figure out the total number of bytes allocated for objects of
1863 this size, and how many of them are actually in use. Also figure
1864 out how much memory the page table is using. */
1865 for (p = G.pages[i]; p; p = p->next)
1866 {
1867 allocated += p->bytes;
1868 in_use +=
1869 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
1870
1871 overhead += (sizeof (page_entry) - sizeof (long)
1872 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
1873 }
1874 fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n",
1875 (unsigned long) OBJECT_SIZE (i),
1876 SCALE (allocated), LABEL (allocated),
1877 SCALE (in_use), LABEL (in_use),
1878 SCALE (overhead), LABEL (overhead));
1879 total_overhead += overhead;
1880 }
1881 fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
1882 SCALE (G.bytes_mapped), LABEL (G.bytes_mapped),
1883 SCALE (G.allocated), LABEL(G.allocated),
1884 SCALE (total_overhead), LABEL (total_overhead));
1885
1886 #ifdef GATHER_STATISTICS
1887 {
1888 fprintf (stderr, "Total Overhead: %10lld\n",
1889 G.stats.total_overhead);
1890 fprintf (stderr, "Total Allocated: %10lld\n",
1891 G.stats.total_allocated);
1892
1893 fprintf (stderr, "Total Overhead under 32B: %10lld\n",
1894 G.stats.total_overhead_under32);
1895 fprintf (stderr, "Total Allocated under 32B: %10lld\n",
1896 G.stats.total_allocated_under32);
1897 fprintf (stderr, "Total Overhead under 64B: %10lld\n",
1898 G.stats.total_overhead_under64);
1899 fprintf (stderr, "Total Allocated under 64B: %10lld\n",
1900 G.stats.total_allocated_under64);
1901 fprintf (stderr, "Total Overhead under 128B: %10lld\n",
1902 G.stats.total_overhead_under128);
1903 fprintf (stderr, "Total Allocated under 128B: %10lld\n",
1904 G.stats.total_allocated_under128);
1905
1906 for (i = 0; i < NUM_ORDERS; i++)
1907 if (G.stats.total_overhead_per_order[i])
1908 fprintf (stderr, "Total Overhead page size %7d: %10lld\n",
1909 OBJECT_SIZE (i), G.stats.total_overhead_per_order[i]);
1910 }
1911 #endif
1912 }
1913 \f
1914 struct ggc_pch_data
1915 {
1916 struct ggc_pch_ondisk
1917 {
1918 unsigned totals[NUM_ORDERS];
1919 } d;
1920 size_t base[NUM_ORDERS];
1921 size_t written[NUM_ORDERS];
1922 };
1923
1924 struct ggc_pch_data *
1925 init_ggc_pch (void)
1926 {
1927 return xcalloc (sizeof (struct ggc_pch_data), 1);
1928 }
1929
1930 void
1931 ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
1932 size_t size, bool is_string ATTRIBUTE_UNUSED)
1933 {
1934 unsigned order;
1935
1936 if (size <= 256)
1937 order = size_lookup[size];
1938 else
1939 {
1940 order = 9;
1941 while (size > OBJECT_SIZE (order))
1942 order++;
1943 }
1944
1945 d->d.totals[order]++;
1946 }
1947
1948 size_t
1949 ggc_pch_total_size (struct ggc_pch_data *d)
1950 {
1951 size_t a = 0;
1952 unsigned i;
1953
1954 for (i = 0; i < NUM_ORDERS; i++)
1955 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
1956 return a;
1957 }
1958
1959 void
1960 ggc_pch_this_base (struct ggc_pch_data *d, void *base)
1961 {
1962 size_t a = (size_t) base;
1963 unsigned i;
1964
1965 for (i = 0; i < NUM_ORDERS; i++)
1966 {
1967 d->base[i] = a;
1968 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
1969 }
1970 }
1971
1972
1973 char *
1974 ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
1975 size_t size, bool is_string ATTRIBUTE_UNUSED)
1976 {
1977 unsigned order;
1978 char *result;
1979
1980 if (size <= 256)
1981 order = size_lookup[size];
1982 else
1983 {
1984 order = 9;
1985 while (size > OBJECT_SIZE (order))
1986 order++;
1987 }
1988
1989 result = (char *) d->base[order];
1990 d->base[order] += OBJECT_SIZE (order);
1991 return result;
1992 }
1993
1994 void
1995 ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
1996 FILE *f ATTRIBUTE_UNUSED)
1997 {
1998 /* Nothing to do. */
1999 }
2000
2001 void
2002 ggc_pch_write_object (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2003 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
2004 size_t size, bool is_string ATTRIBUTE_UNUSED)
2005 {
2006 unsigned order;
2007 static const char emptyBytes[256];
2008
2009 if (size <= 256)
2010 order = size_lookup[size];
2011 else
2012 {
2013 order = 9;
2014 while (size > OBJECT_SIZE (order))
2015 order++;
2016 }
2017
2018 if (fwrite (x, size, 1, f) != 1)
2019 fatal_error ("can't write PCH file: %m");
2020
2021 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2022 object out to OBJECT_SIZE(order). This happens for strings. */
2023
2024 if (size != OBJECT_SIZE (order))
2025 {
2026 unsigned padding = OBJECT_SIZE(order) - size;
2027
2028 /* To speed small writes, we use a nulled-out array that's larger
2029 than most padding requests as the source for our null bytes. This
2030 permits us to do the padding with fwrite() rather than fseek(), and
2031 limits the chance the the OS may try to flush any outstanding
2032 writes. */
2033 if (padding <= sizeof(emptyBytes))
2034 {
2035 if (fwrite (emptyBytes, 1, padding, f) != padding)
2036 fatal_error ("can't write PCH file");
2037 }
2038 else
2039 {
2040 /* Larger than our buffer? Just default to fseek. */
2041 if (fseek (f, padding, SEEK_CUR) != 0)
2042 fatal_error ("can't write PCH file");
2043 }
2044 }
2045
2046 d->written[order]++;
2047 if (d->written[order] == d->d.totals[order]
2048 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2049 G.pagesize),
2050 SEEK_CUR) != 0)
2051 fatal_error ("can't write PCH file: %m");
2052 }
2053
2054 void
2055 ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
2056 {
2057 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
2058 fatal_error ("can't write PCH file: %m");
2059 free (d);
2060 }
2061
2062 /* Move the PCH PTE entries just added to the end of by_depth, to the
2063 front. */
2064
2065 static void
2066 move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
2067 {
2068 unsigned i;
2069
2070 /* First, we swap the new entries to the front of the varrays. */
2071 page_entry **new_by_depth;
2072 unsigned long **new_save_in_use;
2073
2074 new_by_depth = xmalloc (G.by_depth_max * sizeof (page_entry *));
2075 new_save_in_use = xmalloc (G.by_depth_max * sizeof (unsigned long *));
2076
2077 memcpy (&new_by_depth[0],
2078 &G.by_depth[count_old_page_tables],
2079 count_new_page_tables * sizeof (void *));
2080 memcpy (&new_by_depth[count_new_page_tables],
2081 &G.by_depth[0],
2082 count_old_page_tables * sizeof (void *));
2083 memcpy (&new_save_in_use[0],
2084 &G.save_in_use[count_old_page_tables],
2085 count_new_page_tables * sizeof (void *));
2086 memcpy (&new_save_in_use[count_new_page_tables],
2087 &G.save_in_use[0],
2088 count_old_page_tables * sizeof (void *));
2089
2090 free (G.by_depth);
2091 free (G.save_in_use);
2092
2093 G.by_depth = new_by_depth;
2094 G.save_in_use = new_save_in_use;
2095
2096 /* Now update all the index_by_depth fields. */
2097 for (i = G.by_depth_in_use; i > 0; --i)
2098 {
2099 page_entry *p = G.by_depth[i-1];
2100 p->index_by_depth = i-1;
2101 }
2102
2103 /* And last, we update the depth pointers in G.depth. The first
2104 entry is already 0, and context 0 entries always start at index
2105 0, so there is nothing to update in the first slot. We need a
2106 second slot, only if we have old ptes, and if we do, they start
2107 at index count_new_page_tables. */
2108 if (count_old_page_tables)
2109 push_depth (count_new_page_tables);
2110 }
2111
2112 void
2113 ggc_pch_read (FILE *f, void *addr)
2114 {
2115 struct ggc_pch_ondisk d;
2116 unsigned i;
2117 char *offs = addr;
2118 unsigned long count_old_page_tables;
2119 unsigned long count_new_page_tables;
2120
2121 count_old_page_tables = G.by_depth_in_use;
2122
2123 /* We've just read in a PCH file. So, every object that used to be
2124 allocated is now free. */
2125 clear_marks ();
2126 #ifdef ENABLE_GC_CHECKING
2127 poison_pages ();
2128 #endif
2129
2130 /* No object read from a PCH file should ever be freed. So, set the
2131 context depth to 1, and set the depth of all the currently-allocated
2132 pages to be 1 too. PCH pages will have depth 0. */
2133 if (G.context_depth != 0)
2134 abort ();
2135 G.context_depth = 1;
2136 for (i = 0; i < NUM_ORDERS; i++)
2137 {
2138 page_entry *p;
2139 for (p = G.pages[i]; p != NULL; p = p->next)
2140 p->context_depth = G.context_depth;
2141 }
2142
2143 /* Allocate the appropriate page-table entries for the pages read from
2144 the PCH file. */
2145 if (fread (&d, sizeof (d), 1, f) != 1)
2146 fatal_error ("can't read PCH file: %m");
2147
2148 for (i = 0; i < NUM_ORDERS; i++)
2149 {
2150 struct page_entry *entry;
2151 char *pte;
2152 size_t bytes;
2153 size_t num_objs;
2154 size_t j;
2155
2156 if (d.totals[i] == 0)
2157 continue;
2158
2159 bytes = ROUND_UP (d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2160 num_objs = bytes / OBJECT_SIZE (i);
2161 entry = xcalloc (1, (sizeof (struct page_entry)
2162 - sizeof (long)
2163 + BITMAP_SIZE (num_objs + 1)));
2164 entry->bytes = bytes;
2165 entry->page = offs;
2166 entry->context_depth = 0;
2167 offs += bytes;
2168 entry->num_free_objects = 0;
2169 entry->order = i;
2170
2171 for (j = 0;
2172 j + HOST_BITS_PER_LONG <= num_objs + 1;
2173 j += HOST_BITS_PER_LONG)
2174 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2175 for (; j < num_objs + 1; j++)
2176 entry->in_use_p[j / HOST_BITS_PER_LONG]
2177 |= 1L << (j % HOST_BITS_PER_LONG);
2178
2179 for (pte = entry->page;
2180 pte < entry->page + entry->bytes;
2181 pte += G.pagesize)
2182 set_page_table_entry (pte, entry);
2183
2184 if (G.page_tails[i] != NULL)
2185 G.page_tails[i]->next = entry;
2186 else
2187 G.pages[i] = entry;
2188 G.page_tails[i] = entry;
2189
2190 /* We start off by just adding all the new information to the
2191 end of the varrays, later, we will move the new information
2192 to the front of the varrays, as the PCH page tables are at
2193 context 0. */
2194 push_by_depth (entry, 0);
2195 }
2196
2197 /* Now, we update the various data structures that speed page table
2198 handling. */
2199 count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2200
2201 move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2202
2203 /* Update the statistics. */
2204 G.allocated = G.allocated_last_gc = offs - (char *)addr;
2205 }