intrinsic.h (gfc_check_selected_real_kind, [...]): Update prototypes.
[gcc.git] / gcc / ggc-page.c
1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009,
3 2010 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "toplev.h"
29 #include "flags.h"
30 #include "ggc.h"
31 #include "ggc-internal.h"
32 #include "timevar.h"
33 #include "params.h"
34 #include "tree-flow.h"
35 #include "cfgloop.h"
36 #include "plugin.h"
37
38 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
39 file open. Prefer either to valloc. */
40 #ifdef HAVE_MMAP_ANON
41 # undef HAVE_MMAP_DEV_ZERO
42
43 # include <sys/mman.h>
44 # ifndef MAP_FAILED
45 # define MAP_FAILED -1
46 # endif
47 # if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
48 # define MAP_ANONYMOUS MAP_ANON
49 # endif
50 # define USING_MMAP
51
52 #endif
53
54 #ifdef HAVE_MMAP_DEV_ZERO
55
56 # include <sys/mman.h>
57 # ifndef MAP_FAILED
58 # define MAP_FAILED -1
59 # endif
60 # define USING_MMAP
61
62 #endif
63
64 #ifndef USING_MMAP
65 #define USING_MALLOC_PAGE_GROUPS
66 #endif
67
68 /* Strategy:
69
70 This garbage-collecting allocator allocates objects on one of a set
71 of pages. Each page can allocate objects of a single size only;
72 available sizes are powers of two starting at four bytes. The size
73 of an allocation request is rounded up to the next power of two
74 (`order'), and satisfied from the appropriate page.
75
76 Each page is recorded in a page-entry, which also maintains an
77 in-use bitmap of object positions on the page. This allows the
78 allocation state of a particular object to be flipped without
79 touching the page itself.
80
81 Each page-entry also has a context depth, which is used to track
82 pushing and popping of allocation contexts. Only objects allocated
83 in the current (highest-numbered) context may be collected.
84
85 Page entries are arranged in an array of singly-linked lists. The
86 array is indexed by the allocation size, in bits, of the pages on
87 it; i.e. all pages on a list allocate objects of the same size.
88 Pages are ordered on the list such that all non-full pages precede
89 all full pages, with non-full pages arranged in order of decreasing
90 context depth.
91
92 Empty pages (of all orders) are kept on a single page cache list,
93 and are considered first when new pages are required; they are
94 deallocated at the start of the next collection if they haven't
95 been recycled by then. */
96
97 /* Define GGC_DEBUG_LEVEL to print debugging information.
98 0: No debugging output.
99 1: GC statistics only.
100 2: Page-entry allocations/deallocations as well.
101 3: Object allocations as well.
102 4: Object marks as well. */
103 #define GGC_DEBUG_LEVEL (0)
104 \f
105 #ifndef HOST_BITS_PER_PTR
106 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
107 #endif
108
109 \f
110 /* A two-level tree is used to look up the page-entry for a given
111 pointer. Two chunks of the pointer's bits are extracted to index
112 the first and second levels of the tree, as follows:
113
114 HOST_PAGE_SIZE_BITS
115 32 | |
116 msb +----------------+----+------+------+ lsb
117 | | |
118 PAGE_L1_BITS |
119 | |
120 PAGE_L2_BITS
121
122 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
123 pages are aligned on system page boundaries. The next most
124 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
125 index values in the lookup table, respectively.
126
127 For 32-bit architectures and the settings below, there are no
128 leftover bits. For architectures with wider pointers, the lookup
129 tree points to a list of pages, which must be scanned to find the
130 correct one. */
131
132 #define PAGE_L1_BITS (8)
133 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
134 #define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
135 #define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
136
137 #define LOOKUP_L1(p) \
138 (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
139
140 #define LOOKUP_L2(p) \
141 (((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
142
143 /* The number of objects per allocation page, for objects on a page of
144 the indicated ORDER. */
145 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
146
147 /* The number of objects in P. */
148 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
149
150 /* The size of an object on a page of the indicated ORDER. */
151 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
152
153 /* For speed, we avoid doing a general integer divide to locate the
154 offset in the allocation bitmap, by precalculating numbers M, S
155 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
156 within the page which is evenly divisible by the object size Z. */
157 #define DIV_MULT(ORDER) inverse_table[ORDER].mult
158 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
159 #define OFFSET_TO_BIT(OFFSET, ORDER) \
160 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
161
162 /* We use this structure to determine the alignment required for
163 allocations. For power-of-two sized allocations, that's not a
164 problem, but it does matter for odd-sized allocations.
165 We do not care about alignment for floating-point types. */
166
167 struct max_alignment {
168 char c;
169 union {
170 HOST_WIDEST_INT i;
171 void *p;
172 } u;
173 };
174
175 /* The biggest alignment required. */
176
177 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
178
179
180 /* The number of extra orders, not corresponding to power-of-two sized
181 objects. */
182
183 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
184
185 #define RTL_SIZE(NSLOTS) \
186 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
187
188 #define TREE_EXP_SIZE(OPS) \
189 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
190
191 /* The Ith entry is the maximum size of an object to be stored in the
192 Ith extra order. Adding a new entry to this array is the *only*
193 thing you need to do to add a new special allocation size. */
194
195 static const size_t extra_order_size_table[] = {
196 /* Extra orders for small non-power-of-two multiples of MAX_ALIGNMENT.
197 There are a lot of structures with these sizes and explicitly
198 listing them risks orders being dropped because they changed size. */
199 MAX_ALIGNMENT * 3,
200 MAX_ALIGNMENT * 5,
201 MAX_ALIGNMENT * 6,
202 MAX_ALIGNMENT * 7,
203 MAX_ALIGNMENT * 9,
204 MAX_ALIGNMENT * 10,
205 MAX_ALIGNMENT * 11,
206 MAX_ALIGNMENT * 12,
207 MAX_ALIGNMENT * 13,
208 MAX_ALIGNMENT * 14,
209 MAX_ALIGNMENT * 15,
210 sizeof (struct tree_decl_non_common),
211 sizeof (struct tree_field_decl),
212 sizeof (struct tree_parm_decl),
213 sizeof (struct tree_var_decl),
214 sizeof (struct tree_type),
215 sizeof (struct function),
216 sizeof (struct basic_block_def),
217 sizeof (struct cgraph_node),
218 sizeof (struct loop),
219 };
220
221 /* The total number of orders. */
222
223 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
224
225 /* Compute the smallest nonnegative number which when added to X gives
226 a multiple of F. */
227
228 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
229
230 /* Compute the smallest multiple of F that is >= X. */
231
232 #define ROUND_UP(x, f) (CEIL (x, f) * (f))
233
234 /* The Ith entry is the number of objects on a page or order I. */
235
236 static unsigned objects_per_page_table[NUM_ORDERS];
237
238 /* The Ith entry is the size of an object on a page of order I. */
239
240 static size_t object_size_table[NUM_ORDERS];
241
242 /* The Ith entry is a pair of numbers (mult, shift) such that
243 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
244 for all k evenly divisible by OBJECT_SIZE(I). */
245
246 static struct
247 {
248 size_t mult;
249 unsigned int shift;
250 }
251 inverse_table[NUM_ORDERS];
252
253 /* A page_entry records the status of an allocation page. This
254 structure is dynamically sized to fit the bitmap in_use_p. */
255 typedef struct page_entry
256 {
257 /* The next page-entry with objects of the same size, or NULL if
258 this is the last page-entry. */
259 struct page_entry *next;
260
261 /* The previous page-entry with objects of the same size, or NULL if
262 this is the first page-entry. The PREV pointer exists solely to
263 keep the cost of ggc_free manageable. */
264 struct page_entry *prev;
265
266 /* The number of bytes allocated. (This will always be a multiple
267 of the host system page size.) */
268 size_t bytes;
269
270 /* The address at which the memory is allocated. */
271 char *page;
272
273 #ifdef USING_MALLOC_PAGE_GROUPS
274 /* Back pointer to the page group this page came from. */
275 struct page_group *group;
276 #endif
277
278 /* This is the index in the by_depth varray where this page table
279 can be found. */
280 unsigned long index_by_depth;
281
282 /* Context depth of this page. */
283 unsigned short context_depth;
284
285 /* The number of free objects remaining on this page. */
286 unsigned short num_free_objects;
287
288 /* A likely candidate for the bit position of a free object for the
289 next allocation from this page. */
290 unsigned short next_bit_hint;
291
292 /* The lg of size of objects allocated from this page. */
293 unsigned char order;
294
295 /* A bit vector indicating whether or not objects are in use. The
296 Nth bit is one if the Nth object on this page is allocated. This
297 array is dynamically sized. */
298 unsigned long in_use_p[1];
299 } page_entry;
300
301 #ifdef USING_MALLOC_PAGE_GROUPS
302 /* A page_group describes a large allocation from malloc, from which
303 we parcel out aligned pages. */
304 typedef struct page_group
305 {
306 /* A linked list of all extant page groups. */
307 struct page_group *next;
308
309 /* The address we received from malloc. */
310 char *allocation;
311
312 /* The size of the block. */
313 size_t alloc_size;
314
315 /* A bitmask of pages in use. */
316 unsigned int in_use;
317 } page_group;
318 #endif
319
320 #if HOST_BITS_PER_PTR <= 32
321
322 /* On 32-bit hosts, we use a two level page table, as pictured above. */
323 typedef page_entry **page_table[PAGE_L1_SIZE];
324
325 #else
326
327 /* On 64-bit hosts, we use the same two level page tables plus a linked
328 list that disambiguates the top 32-bits. There will almost always be
329 exactly one entry in the list. */
330 typedef struct page_table_chain
331 {
332 struct page_table_chain *next;
333 size_t high_bits;
334 page_entry **table[PAGE_L1_SIZE];
335 } *page_table;
336
337 #endif
338
339 #ifdef ENABLE_GC_ALWAYS_COLLECT
340 /* List of free objects to be verified as actually free on the
341 next collection. */
342 struct free_object
343 {
344 void *object;
345 struct free_object *next;
346 };
347 #endif
348
349 /* The rest of the global variables. */
350 static struct globals
351 {
352 /* The Nth element in this array is a page with objects of size 2^N.
353 If there are any pages with free objects, they will be at the
354 head of the list. NULL if there are no page-entries for this
355 object size. */
356 page_entry *pages[NUM_ORDERS];
357
358 /* The Nth element in this array is the last page with objects of
359 size 2^N. NULL if there are no page-entries for this object
360 size. */
361 page_entry *page_tails[NUM_ORDERS];
362
363 /* Lookup table for associating allocation pages with object addresses. */
364 page_table lookup;
365
366 /* The system's page size. */
367 size_t pagesize;
368 size_t lg_pagesize;
369
370 /* Bytes currently allocated. */
371 size_t allocated;
372
373 /* Bytes currently allocated at the end of the last collection. */
374 size_t allocated_last_gc;
375
376 /* Total amount of memory mapped. */
377 size_t bytes_mapped;
378
379 /* Bit N set if any allocations have been done at context depth N. */
380 unsigned long context_depth_allocations;
381
382 /* Bit N set if any collections have been done at context depth N. */
383 unsigned long context_depth_collections;
384
385 /* The current depth in the context stack. */
386 unsigned short context_depth;
387
388 /* A file descriptor open to /dev/zero for reading. */
389 #if defined (HAVE_MMAP_DEV_ZERO)
390 int dev_zero_fd;
391 #endif
392
393 /* A cache of free system pages. */
394 page_entry *free_pages;
395
396 #ifdef USING_MALLOC_PAGE_GROUPS
397 page_group *page_groups;
398 #endif
399
400 /* The file descriptor for debugging output. */
401 FILE *debug_file;
402
403 /* Current number of elements in use in depth below. */
404 unsigned int depth_in_use;
405
406 /* Maximum number of elements that can be used before resizing. */
407 unsigned int depth_max;
408
409 /* Each element of this array is an index in by_depth where the given
410 depth starts. This structure is indexed by that given depth we
411 are interested in. */
412 unsigned int *depth;
413
414 /* Current number of elements in use in by_depth below. */
415 unsigned int by_depth_in_use;
416
417 /* Maximum number of elements that can be used before resizing. */
418 unsigned int by_depth_max;
419
420 /* Each element of this array is a pointer to a page_entry, all
421 page_entries can be found in here by increasing depth.
422 index_by_depth in the page_entry is the index into this data
423 structure where that page_entry can be found. This is used to
424 speed up finding all page_entries at a particular depth. */
425 page_entry **by_depth;
426
427 /* Each element is a pointer to the saved in_use_p bits, if any,
428 zero otherwise. We allocate them all together, to enable a
429 better runtime data access pattern. */
430 unsigned long **save_in_use;
431
432 #ifdef ENABLE_GC_ALWAYS_COLLECT
433 /* List of free objects to be verified as actually free on the
434 next collection. */
435 struct free_object *free_object_list;
436 #endif
437
438 #ifdef GATHER_STATISTICS
439 struct
440 {
441 /* Total GC-allocated memory. */
442 unsigned long long total_allocated;
443 /* Total overhead for GC-allocated memory. */
444 unsigned long long total_overhead;
445
446 /* Total allocations and overhead for sizes less than 32, 64 and 128.
447 These sizes are interesting because they are typical cache line
448 sizes. */
449
450 unsigned long long total_allocated_under32;
451 unsigned long long total_overhead_under32;
452
453 unsigned long long total_allocated_under64;
454 unsigned long long total_overhead_under64;
455
456 unsigned long long total_allocated_under128;
457 unsigned long long total_overhead_under128;
458
459 /* The allocations for each of the allocation orders. */
460 unsigned long long total_allocated_per_order[NUM_ORDERS];
461
462 /* The overhead for each of the allocation orders. */
463 unsigned long long total_overhead_per_order[NUM_ORDERS];
464 } stats;
465 #endif
466 } G;
467
468 /* The size in bytes required to maintain a bitmap for the objects
469 on a page-entry. */
470 #define BITMAP_SIZE(Num_objects) \
471 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
472
473 /* Allocate pages in chunks of this size, to throttle calls to memory
474 allocation routines. The first page is used, the rest go onto the
475 free list. This cannot be larger than HOST_BITS_PER_INT for the
476 in_use bitmask for page_group. Hosts that need a different value
477 can override this by defining GGC_QUIRE_SIZE explicitly. */
478 #ifndef GGC_QUIRE_SIZE
479 # ifdef USING_MMAP
480 # define GGC_QUIRE_SIZE 256
481 # else
482 # define GGC_QUIRE_SIZE 16
483 # endif
484 #endif
485
486 /* Initial guess as to how many page table entries we might need. */
487 #define INITIAL_PTE_COUNT 128
488 \f
489 static int ggc_allocated_p (const void *);
490 static page_entry *lookup_page_table_entry (const void *);
491 static void set_page_table_entry (void *, page_entry *);
492 #ifdef USING_MMAP
493 static char *alloc_anon (char *, size_t);
494 #endif
495 #ifdef USING_MALLOC_PAGE_GROUPS
496 static size_t page_group_index (char *, char *);
497 static void set_page_group_in_use (page_group *, char *);
498 static void clear_page_group_in_use (page_group *, char *);
499 #endif
500 static struct page_entry * alloc_page (unsigned);
501 static void free_page (struct page_entry *);
502 static void release_pages (void);
503 static void clear_marks (void);
504 static void sweep_pages (void);
505 static void ggc_recalculate_in_use_p (page_entry *);
506 static void compute_inverse (unsigned);
507 static inline void adjust_depth (void);
508 static void move_ptes_to_front (int, int);
509
510 void debug_print_page_list (int);
511 static void push_depth (unsigned int);
512 static void push_by_depth (page_entry *, unsigned long *);
513
514 /* Push an entry onto G.depth. */
515
516 inline static void
517 push_depth (unsigned int i)
518 {
519 if (G.depth_in_use >= G.depth_max)
520 {
521 G.depth_max *= 2;
522 G.depth = XRESIZEVEC (unsigned int, G.depth, G.depth_max);
523 }
524 G.depth[G.depth_in_use++] = i;
525 }
526
527 /* Push an entry onto G.by_depth and G.save_in_use. */
528
529 inline static void
530 push_by_depth (page_entry *p, unsigned long *s)
531 {
532 if (G.by_depth_in_use >= G.by_depth_max)
533 {
534 G.by_depth_max *= 2;
535 G.by_depth = XRESIZEVEC (page_entry *, G.by_depth, G.by_depth_max);
536 G.save_in_use = XRESIZEVEC (unsigned long *, G.save_in_use,
537 G.by_depth_max);
538 }
539 G.by_depth[G.by_depth_in_use] = p;
540 G.save_in_use[G.by_depth_in_use++] = s;
541 }
542
543 #if (GCC_VERSION < 3001)
544 #define prefetch(X) ((void) X)
545 #else
546 #define prefetch(X) __builtin_prefetch (X)
547 #endif
548
549 #define save_in_use_p_i(__i) \
550 (G.save_in_use[__i])
551 #define save_in_use_p(__p) \
552 (save_in_use_p_i (__p->index_by_depth))
553
554 /* Returns nonzero if P was allocated in GC'able memory. */
555
556 static inline int
557 ggc_allocated_p (const void *p)
558 {
559 page_entry ***base;
560 size_t L1, L2;
561
562 #if HOST_BITS_PER_PTR <= 32
563 base = &G.lookup[0];
564 #else
565 page_table table = G.lookup;
566 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
567 while (1)
568 {
569 if (table == NULL)
570 return 0;
571 if (table->high_bits == high_bits)
572 break;
573 table = table->next;
574 }
575 base = &table->table[0];
576 #endif
577
578 /* Extract the level 1 and 2 indices. */
579 L1 = LOOKUP_L1 (p);
580 L2 = LOOKUP_L2 (p);
581
582 return base[L1] && base[L1][L2];
583 }
584
585 /* Traverse the page table and find the entry for a page.
586 Die (probably) if the object wasn't allocated via GC. */
587
588 static inline page_entry *
589 lookup_page_table_entry (const void *p)
590 {
591 page_entry ***base;
592 size_t L1, L2;
593
594 #if HOST_BITS_PER_PTR <= 32
595 base = &G.lookup[0];
596 #else
597 page_table table = G.lookup;
598 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
599 while (table->high_bits != high_bits)
600 table = table->next;
601 base = &table->table[0];
602 #endif
603
604 /* Extract the level 1 and 2 indices. */
605 L1 = LOOKUP_L1 (p);
606 L2 = LOOKUP_L2 (p);
607
608 return base[L1][L2];
609 }
610
611 /* Set the page table entry for a page. */
612
613 static void
614 set_page_table_entry (void *p, page_entry *entry)
615 {
616 page_entry ***base;
617 size_t L1, L2;
618
619 #if HOST_BITS_PER_PTR <= 32
620 base = &G.lookup[0];
621 #else
622 page_table table;
623 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
624 for (table = G.lookup; table; table = table->next)
625 if (table->high_bits == high_bits)
626 goto found;
627
628 /* Not found -- allocate a new table. */
629 table = XCNEW (struct page_table_chain);
630 table->next = G.lookup;
631 table->high_bits = high_bits;
632 G.lookup = table;
633 found:
634 base = &table->table[0];
635 #endif
636
637 /* Extract the level 1 and 2 indices. */
638 L1 = LOOKUP_L1 (p);
639 L2 = LOOKUP_L2 (p);
640
641 if (base[L1] == NULL)
642 base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
643
644 base[L1][L2] = entry;
645 }
646
647 /* Prints the page-entry for object size ORDER, for debugging. */
648
649 DEBUG_FUNCTION void
650 debug_print_page_list (int order)
651 {
652 page_entry *p;
653 printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
654 (void *) G.page_tails[order]);
655 p = G.pages[order];
656 while (p != NULL)
657 {
658 printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
659 p->num_free_objects);
660 p = p->next;
661 }
662 printf ("NULL\n");
663 fflush (stdout);
664 }
665
666 #ifdef USING_MMAP
667 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
668 (if non-null). The ifdef structure here is intended to cause a
669 compile error unless exactly one of the HAVE_* is defined. */
670
671 static inline char *
672 alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size)
673 {
674 #ifdef HAVE_MMAP_ANON
675 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
676 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
677 #endif
678 #ifdef HAVE_MMAP_DEV_ZERO
679 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
680 MAP_PRIVATE, G.dev_zero_fd, 0);
681 #endif
682
683 if (page == (char *) MAP_FAILED)
684 {
685 perror ("virtual memory exhausted");
686 exit (FATAL_EXIT_CODE);
687 }
688
689 /* Remember that we allocated this memory. */
690 G.bytes_mapped += size;
691
692 /* Pretend we don't have access to the allocated pages. We'll enable
693 access to smaller pieces of the area in ggc_internal_alloc. Discard the
694 handle to avoid handle leak. */
695 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size));
696
697 return page;
698 }
699 #endif
700 #ifdef USING_MALLOC_PAGE_GROUPS
701 /* Compute the index for this page into the page group. */
702
703 static inline size_t
704 page_group_index (char *allocation, char *page)
705 {
706 return (size_t) (page - allocation) >> G.lg_pagesize;
707 }
708
709 /* Set and clear the in_use bit for this page in the page group. */
710
711 static inline void
712 set_page_group_in_use (page_group *group, char *page)
713 {
714 group->in_use |= 1 << page_group_index (group->allocation, page);
715 }
716
717 static inline void
718 clear_page_group_in_use (page_group *group, char *page)
719 {
720 group->in_use &= ~(1 << page_group_index (group->allocation, page));
721 }
722 #endif
723
724 /* Allocate a new page for allocating objects of size 2^ORDER,
725 and return an entry for it. The entry is not added to the
726 appropriate page_table list. */
727
728 static inline struct page_entry *
729 alloc_page (unsigned order)
730 {
731 struct page_entry *entry, *p, **pp;
732 char *page;
733 size_t num_objects;
734 size_t bitmap_size;
735 size_t page_entry_size;
736 size_t entry_size;
737 #ifdef USING_MALLOC_PAGE_GROUPS
738 page_group *group;
739 #endif
740
741 num_objects = OBJECTS_PER_PAGE (order);
742 bitmap_size = BITMAP_SIZE (num_objects + 1);
743 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
744 entry_size = num_objects * OBJECT_SIZE (order);
745 if (entry_size < G.pagesize)
746 entry_size = G.pagesize;
747
748 entry = NULL;
749 page = NULL;
750
751 /* Check the list of free pages for one we can use. */
752 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
753 if (p->bytes == entry_size)
754 break;
755
756 if (p != NULL)
757 {
758 /* Recycle the allocated memory from this page ... */
759 *pp = p->next;
760 page = p->page;
761
762 #ifdef USING_MALLOC_PAGE_GROUPS
763 group = p->group;
764 #endif
765
766 /* ... and, if possible, the page entry itself. */
767 if (p->order == order)
768 {
769 entry = p;
770 memset (entry, 0, page_entry_size);
771 }
772 else
773 free (p);
774 }
775 #ifdef USING_MMAP
776 else if (entry_size == G.pagesize)
777 {
778 /* We want just one page. Allocate a bunch of them and put the
779 extras on the freelist. (Can only do this optimization with
780 mmap for backing store.) */
781 struct page_entry *e, *f = G.free_pages;
782 int i;
783
784 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE);
785
786 /* This loop counts down so that the chain will be in ascending
787 memory order. */
788 for (i = GGC_QUIRE_SIZE - 1; i >= 1; i--)
789 {
790 e = XCNEWVAR (struct page_entry, page_entry_size);
791 e->order = order;
792 e->bytes = G.pagesize;
793 e->page = page + (i << G.lg_pagesize);
794 e->next = f;
795 f = e;
796 }
797
798 G.free_pages = f;
799 }
800 else
801 page = alloc_anon (NULL, entry_size);
802 #endif
803 #ifdef USING_MALLOC_PAGE_GROUPS
804 else
805 {
806 /* Allocate a large block of memory and serve out the aligned
807 pages therein. This results in much less memory wastage
808 than the traditional implementation of valloc. */
809
810 char *allocation, *a, *enda;
811 size_t alloc_size, head_slop, tail_slop;
812 int multiple_pages = (entry_size == G.pagesize);
813
814 if (multiple_pages)
815 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
816 else
817 alloc_size = entry_size + G.pagesize - 1;
818 allocation = XNEWVEC (char, alloc_size);
819
820 page = (char *) (((size_t) allocation + G.pagesize - 1) & -G.pagesize);
821 head_slop = page - allocation;
822 if (multiple_pages)
823 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
824 else
825 tail_slop = alloc_size - entry_size - head_slop;
826 enda = allocation + alloc_size - tail_slop;
827
828 /* We allocated N pages, which are likely not aligned, leaving
829 us with N-1 usable pages. We plan to place the page_group
830 structure somewhere in the slop. */
831 if (head_slop >= sizeof (page_group))
832 group = (page_group *)page - 1;
833 else
834 {
835 /* We magically got an aligned allocation. Too bad, we have
836 to waste a page anyway. */
837 if (tail_slop == 0)
838 {
839 enda -= G.pagesize;
840 tail_slop += G.pagesize;
841 }
842 gcc_assert (tail_slop >= sizeof (page_group));
843 group = (page_group *)enda;
844 tail_slop -= sizeof (page_group);
845 }
846
847 /* Remember that we allocated this memory. */
848 group->next = G.page_groups;
849 group->allocation = allocation;
850 group->alloc_size = alloc_size;
851 group->in_use = 0;
852 G.page_groups = group;
853 G.bytes_mapped += alloc_size;
854
855 /* If we allocated multiple pages, put the rest on the free list. */
856 if (multiple_pages)
857 {
858 struct page_entry *e, *f = G.free_pages;
859 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
860 {
861 e = XCNEWVAR (struct page_entry, page_entry_size);
862 e->order = order;
863 e->bytes = G.pagesize;
864 e->page = a;
865 e->group = group;
866 e->next = f;
867 f = e;
868 }
869 G.free_pages = f;
870 }
871 }
872 #endif
873
874 if (entry == NULL)
875 entry = XCNEWVAR (struct page_entry, page_entry_size);
876
877 entry->bytes = entry_size;
878 entry->page = page;
879 entry->context_depth = G.context_depth;
880 entry->order = order;
881 entry->num_free_objects = num_objects;
882 entry->next_bit_hint = 1;
883
884 G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
885
886 #ifdef USING_MALLOC_PAGE_GROUPS
887 entry->group = group;
888 set_page_group_in_use (group, page);
889 #endif
890
891 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
892 increment the hint. */
893 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
894 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
895
896 set_page_table_entry (page, entry);
897
898 if (GGC_DEBUG_LEVEL >= 2)
899 fprintf (G.debug_file,
900 "Allocating page at %p, object size=%lu, data %p-%p\n",
901 (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
902 page + entry_size - 1);
903
904 return entry;
905 }
906
907 /* Adjust the size of G.depth so that no index greater than the one
908 used by the top of the G.by_depth is used. */
909
910 static inline void
911 adjust_depth (void)
912 {
913 page_entry *top;
914
915 if (G.by_depth_in_use)
916 {
917 top = G.by_depth[G.by_depth_in_use-1];
918
919 /* Peel back indices in depth that index into by_depth, so that
920 as new elements are added to by_depth, we note the indices
921 of those elements, if they are for new context depths. */
922 while (G.depth_in_use > (size_t)top->context_depth+1)
923 --G.depth_in_use;
924 }
925 }
926
927 /* For a page that is no longer needed, put it on the free page list. */
928
929 static void
930 free_page (page_entry *entry)
931 {
932 if (GGC_DEBUG_LEVEL >= 2)
933 fprintf (G.debug_file,
934 "Deallocating page at %p, data %p-%p\n", (void *) entry,
935 entry->page, entry->page + entry->bytes - 1);
936
937 /* Mark the page as inaccessible. Discard the handle to avoid handle
938 leak. */
939 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->page, entry->bytes));
940
941 set_page_table_entry (entry->page, NULL);
942
943 #ifdef USING_MALLOC_PAGE_GROUPS
944 clear_page_group_in_use (entry->group, entry->page);
945 #endif
946
947 if (G.by_depth_in_use > 1)
948 {
949 page_entry *top = G.by_depth[G.by_depth_in_use-1];
950 int i = entry->index_by_depth;
951
952 /* We cannot free a page from a context deeper than the current
953 one. */
954 gcc_assert (entry->context_depth == top->context_depth);
955
956 /* Put top element into freed slot. */
957 G.by_depth[i] = top;
958 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
959 top->index_by_depth = i;
960 }
961 --G.by_depth_in_use;
962
963 adjust_depth ();
964
965 entry->next = G.free_pages;
966 G.free_pages = entry;
967 }
968
969 /* Release the free page cache to the system. */
970
971 static void
972 release_pages (void)
973 {
974 #ifdef USING_MMAP
975 page_entry *p, *next;
976 char *start;
977 size_t len;
978
979 /* Gather up adjacent pages so they are unmapped together. */
980 p = G.free_pages;
981
982 while (p)
983 {
984 start = p->page;
985 next = p->next;
986 len = p->bytes;
987 free (p);
988 p = next;
989
990 while (p && p->page == start + len)
991 {
992 next = p->next;
993 len += p->bytes;
994 free (p);
995 p = next;
996 }
997
998 munmap (start, len);
999 G.bytes_mapped -= len;
1000 }
1001
1002 G.free_pages = NULL;
1003 #endif
1004 #ifdef USING_MALLOC_PAGE_GROUPS
1005 page_entry **pp, *p;
1006 page_group **gp, *g;
1007
1008 /* Remove all pages from free page groups from the list. */
1009 pp = &G.free_pages;
1010 while ((p = *pp) != NULL)
1011 if (p->group->in_use == 0)
1012 {
1013 *pp = p->next;
1014 free (p);
1015 }
1016 else
1017 pp = &p->next;
1018
1019 /* Remove all free page groups, and release the storage. */
1020 gp = &G.page_groups;
1021 while ((g = *gp) != NULL)
1022 if (g->in_use == 0)
1023 {
1024 *gp = g->next;
1025 G.bytes_mapped -= g->alloc_size;
1026 free (g->allocation);
1027 }
1028 else
1029 gp = &g->next;
1030 #endif
1031 }
1032
1033 /* This table provides a fast way to determine ceil(log_2(size)) for
1034 allocation requests. The minimum allocation size is eight bytes. */
1035 #define NUM_SIZE_LOOKUP 512
1036 static unsigned char size_lookup[NUM_SIZE_LOOKUP] =
1037 {
1038 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1039 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1040 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1041 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1042 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1043 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1044 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1045 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1046 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1047 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1048 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1049 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1050 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1051 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1052 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1053 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1054 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1055 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1056 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1057 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1058 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1059 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1060 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1061 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1062 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1063 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1064 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1065 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1066 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1067 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1068 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1069 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
1070 };
1071
1072 /* Typed allocation function. Does nothing special in this collector. */
1073
1074 void *
1075 ggc_alloc_typed_stat (enum gt_types_enum type ATTRIBUTE_UNUSED, size_t size
1076 MEM_STAT_DECL)
1077 {
1078 return ggc_internal_alloc_stat (size PASS_MEM_STAT);
1079 }
1080
1081 /* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
1082
1083 void *
1084 ggc_internal_alloc_stat (size_t size MEM_STAT_DECL)
1085 {
1086 size_t order, word, bit, object_offset, object_size;
1087 struct page_entry *entry;
1088 void *result;
1089
1090 if (size < NUM_SIZE_LOOKUP)
1091 {
1092 order = size_lookup[size];
1093 object_size = OBJECT_SIZE (order);
1094 }
1095 else
1096 {
1097 order = 10;
1098 while (size > (object_size = OBJECT_SIZE (order)))
1099 order++;
1100 }
1101
1102 /* If there are non-full pages for this size allocation, they are at
1103 the head of the list. */
1104 entry = G.pages[order];
1105
1106 /* If there is no page for this object size, or all pages in this
1107 context are full, allocate a new page. */
1108 if (entry == NULL || entry->num_free_objects == 0)
1109 {
1110 struct page_entry *new_entry;
1111 new_entry = alloc_page (order);
1112
1113 new_entry->index_by_depth = G.by_depth_in_use;
1114 push_by_depth (new_entry, 0);
1115
1116 /* We can skip context depths, if we do, make sure we go all the
1117 way to the new depth. */
1118 while (new_entry->context_depth >= G.depth_in_use)
1119 push_depth (G.by_depth_in_use-1);
1120
1121 /* If this is the only entry, it's also the tail. If it is not
1122 the only entry, then we must update the PREV pointer of the
1123 ENTRY (G.pages[order]) to point to our new page entry. */
1124 if (entry == NULL)
1125 G.page_tails[order] = new_entry;
1126 else
1127 entry->prev = new_entry;
1128
1129 /* Put new pages at the head of the page list. By definition the
1130 entry at the head of the list always has a NULL pointer. */
1131 new_entry->next = entry;
1132 new_entry->prev = NULL;
1133 entry = new_entry;
1134 G.pages[order] = new_entry;
1135
1136 /* For a new page, we know the word and bit positions (in the
1137 in_use bitmap) of the first available object -- they're zero. */
1138 new_entry->next_bit_hint = 1;
1139 word = 0;
1140 bit = 0;
1141 object_offset = 0;
1142 }
1143 else
1144 {
1145 /* First try to use the hint left from the previous allocation
1146 to locate a clear bit in the in-use bitmap. We've made sure
1147 that the one-past-the-end bit is always set, so if the hint
1148 has run over, this test will fail. */
1149 unsigned hint = entry->next_bit_hint;
1150 word = hint / HOST_BITS_PER_LONG;
1151 bit = hint % HOST_BITS_PER_LONG;
1152
1153 /* If the hint didn't work, scan the bitmap from the beginning. */
1154 if ((entry->in_use_p[word] >> bit) & 1)
1155 {
1156 word = bit = 0;
1157 while (~entry->in_use_p[word] == 0)
1158 ++word;
1159
1160 #if GCC_VERSION >= 3004
1161 bit = __builtin_ctzl (~entry->in_use_p[word]);
1162 #else
1163 while ((entry->in_use_p[word] >> bit) & 1)
1164 ++bit;
1165 #endif
1166
1167 hint = word * HOST_BITS_PER_LONG + bit;
1168 }
1169
1170 /* Next time, try the next bit. */
1171 entry->next_bit_hint = hint + 1;
1172
1173 object_offset = hint * object_size;
1174 }
1175
1176 /* Set the in-use bit. */
1177 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1178
1179 /* Keep a running total of the number of free objects. If this page
1180 fills up, we may have to move it to the end of the list if the
1181 next page isn't full. If the next page is full, all subsequent
1182 pages are full, so there's no need to move it. */
1183 if (--entry->num_free_objects == 0
1184 && entry->next != NULL
1185 && entry->next->num_free_objects > 0)
1186 {
1187 /* We have a new head for the list. */
1188 G.pages[order] = entry->next;
1189
1190 /* We are moving ENTRY to the end of the page table list.
1191 The new page at the head of the list will have NULL in
1192 its PREV field and ENTRY will have NULL in its NEXT field. */
1193 entry->next->prev = NULL;
1194 entry->next = NULL;
1195
1196 /* Append ENTRY to the tail of the list. */
1197 entry->prev = G.page_tails[order];
1198 G.page_tails[order]->next = entry;
1199 G.page_tails[order] = entry;
1200 }
1201
1202 /* Calculate the object's address. */
1203 result = entry->page + object_offset;
1204 #ifdef GATHER_STATISTICS
1205 ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
1206 result PASS_MEM_STAT);
1207 #endif
1208
1209 #ifdef ENABLE_GC_CHECKING
1210 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1211 exact same semantics in presence of memory bugs, regardless of
1212 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1213 handle to avoid handle leak. */
1214 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, object_size));
1215
1216 /* `Poison' the entire allocated object, including any padding at
1217 the end. */
1218 memset (result, 0xaf, object_size);
1219
1220 /* Make the bytes after the end of the object unaccessible. Discard the
1221 handle to avoid handle leak. */
1222 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) result + size,
1223 object_size - size));
1224 #endif
1225
1226 /* Tell Valgrind that the memory is there, but its content isn't
1227 defined. The bytes at the end of the object are still marked
1228 unaccessible. */
1229 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size));
1230
1231 /* Keep track of how many bytes are being allocated. This
1232 information is used in deciding when to collect. */
1233 G.allocated += object_size;
1234
1235 /* For timevar statistics. */
1236 timevar_ggc_mem_total += object_size;
1237
1238 #ifdef GATHER_STATISTICS
1239 {
1240 size_t overhead = object_size - size;
1241
1242 G.stats.total_overhead += overhead;
1243 G.stats.total_allocated += object_size;
1244 G.stats.total_overhead_per_order[order] += overhead;
1245 G.stats.total_allocated_per_order[order] += object_size;
1246
1247 if (size <= 32)
1248 {
1249 G.stats.total_overhead_under32 += overhead;
1250 G.stats.total_allocated_under32 += object_size;
1251 }
1252 if (size <= 64)
1253 {
1254 G.stats.total_overhead_under64 += overhead;
1255 G.stats.total_allocated_under64 += object_size;
1256 }
1257 if (size <= 128)
1258 {
1259 G.stats.total_overhead_under128 += overhead;
1260 G.stats.total_allocated_under128 += object_size;
1261 }
1262 }
1263 #endif
1264
1265 if (GGC_DEBUG_LEVEL >= 3)
1266 fprintf (G.debug_file,
1267 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
1268 (unsigned long) size, (unsigned long) object_size, result,
1269 (void *) entry);
1270
1271 return result;
1272 }
1273
1274 /* Mark function for strings. */
1275
1276 void
1277 gt_ggc_m_S (const void *p)
1278 {
1279 page_entry *entry;
1280 unsigned bit, word;
1281 unsigned long mask;
1282 unsigned long offset;
1283
1284 if (!p || !ggc_allocated_p (p))
1285 return;
1286
1287 /* Look up the page on which the object is alloced. . */
1288 entry = lookup_page_table_entry (p);
1289 gcc_assert (entry);
1290
1291 /* Calculate the index of the object on the page; this is its bit
1292 position in the in_use_p bitmap. Note that because a char* might
1293 point to the middle of an object, we need special code here to
1294 make sure P points to the start of an object. */
1295 offset = ((const char *) p - entry->page) % object_size_table[entry->order];
1296 if (offset)
1297 {
1298 /* Here we've seen a char* which does not point to the beginning
1299 of an allocated object. We assume it points to the middle of
1300 a STRING_CST. */
1301 gcc_assert (offset == offsetof (struct tree_string, str));
1302 p = ((const char *) p) - offset;
1303 gt_ggc_mx_lang_tree_node (CONST_CAST (void *, p));
1304 return;
1305 }
1306
1307 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1308 word = bit / HOST_BITS_PER_LONG;
1309 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1310
1311 /* If the bit was previously set, skip it. */
1312 if (entry->in_use_p[word] & mask)
1313 return;
1314
1315 /* Otherwise set it, and decrement the free object count. */
1316 entry->in_use_p[word] |= mask;
1317 entry->num_free_objects -= 1;
1318
1319 if (GGC_DEBUG_LEVEL >= 4)
1320 fprintf (G.debug_file, "Marking %p\n", p);
1321
1322 return;
1323 }
1324
1325 /* If P is not marked, marks it and return false. Otherwise return true.
1326 P must have been allocated by the GC allocator; it mustn't point to
1327 static objects, stack variables, or memory allocated with malloc. */
1328
1329 int
1330 ggc_set_mark (const void *p)
1331 {
1332 page_entry *entry;
1333 unsigned bit, word;
1334 unsigned long mask;
1335
1336 /* Look up the page on which the object is alloced. If the object
1337 wasn't allocated by the collector, we'll probably die. */
1338 entry = lookup_page_table_entry (p);
1339 gcc_assert (entry);
1340
1341 /* Calculate the index of the object on the page; this is its bit
1342 position in the in_use_p bitmap. */
1343 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1344 word = bit / HOST_BITS_PER_LONG;
1345 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1346
1347 /* If the bit was previously set, skip it. */
1348 if (entry->in_use_p[word] & mask)
1349 return 1;
1350
1351 /* Otherwise set it, and decrement the free object count. */
1352 entry->in_use_p[word] |= mask;
1353 entry->num_free_objects -= 1;
1354
1355 if (GGC_DEBUG_LEVEL >= 4)
1356 fprintf (G.debug_file, "Marking %p\n", p);
1357
1358 return 0;
1359 }
1360
1361 /* Return 1 if P has been marked, zero otherwise.
1362 P must have been allocated by the GC allocator; it mustn't point to
1363 static objects, stack variables, or memory allocated with malloc. */
1364
1365 int
1366 ggc_marked_p (const void *p)
1367 {
1368 page_entry *entry;
1369 unsigned bit, word;
1370 unsigned long mask;
1371
1372 /* Look up the page on which the object is alloced. If the object
1373 wasn't allocated by the collector, we'll probably die. */
1374 entry = lookup_page_table_entry (p);
1375 gcc_assert (entry);
1376
1377 /* Calculate the index of the object on the page; this is its bit
1378 position in the in_use_p bitmap. */
1379 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1380 word = bit / HOST_BITS_PER_LONG;
1381 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1382
1383 return (entry->in_use_p[word] & mask) != 0;
1384 }
1385
1386 /* Return the size of the gc-able object P. */
1387
1388 size_t
1389 ggc_get_size (const void *p)
1390 {
1391 page_entry *pe = lookup_page_table_entry (p);
1392 return OBJECT_SIZE (pe->order);
1393 }
1394
1395 /* Release the memory for object P. */
1396
1397 void
1398 ggc_free (void *p)
1399 {
1400 page_entry *pe = lookup_page_table_entry (p);
1401 size_t order = pe->order;
1402 size_t size = OBJECT_SIZE (order);
1403
1404 #ifdef GATHER_STATISTICS
1405 ggc_free_overhead (p);
1406 #endif
1407
1408 if (GGC_DEBUG_LEVEL >= 3)
1409 fprintf (G.debug_file,
1410 "Freeing object, actual size=%lu, at %p on %p\n",
1411 (unsigned long) size, p, (void *) pe);
1412
1413 #ifdef ENABLE_GC_CHECKING
1414 /* Poison the data, to indicate the data is garbage. */
1415 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (p, size));
1416 memset (p, 0xa5, size);
1417 #endif
1418 /* Let valgrind know the object is free. */
1419 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (p, size));
1420
1421 #ifdef ENABLE_GC_ALWAYS_COLLECT
1422 /* In the completely-anal-checking mode, we do *not* immediately free
1423 the data, but instead verify that the data is *actually* not
1424 reachable the next time we collect. */
1425 {
1426 struct free_object *fo = XNEW (struct free_object);
1427 fo->object = p;
1428 fo->next = G.free_object_list;
1429 G.free_object_list = fo;
1430 }
1431 #else
1432 {
1433 unsigned int bit_offset, word, bit;
1434
1435 G.allocated -= size;
1436
1437 /* Mark the object not-in-use. */
1438 bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
1439 word = bit_offset / HOST_BITS_PER_LONG;
1440 bit = bit_offset % HOST_BITS_PER_LONG;
1441 pe->in_use_p[word] &= ~(1UL << bit);
1442
1443 if (pe->num_free_objects++ == 0)
1444 {
1445 page_entry *p, *q;
1446
1447 /* If the page is completely full, then it's supposed to
1448 be after all pages that aren't. Since we've freed one
1449 object from a page that was full, we need to move the
1450 page to the head of the list.
1451
1452 PE is the node we want to move. Q is the previous node
1453 and P is the next node in the list. */
1454 q = pe->prev;
1455 if (q && q->num_free_objects == 0)
1456 {
1457 p = pe->next;
1458
1459 q->next = p;
1460
1461 /* If PE was at the end of the list, then Q becomes the
1462 new end of the list. If PE was not the end of the
1463 list, then we need to update the PREV field for P. */
1464 if (!p)
1465 G.page_tails[order] = q;
1466 else
1467 p->prev = q;
1468
1469 /* Move PE to the head of the list. */
1470 pe->next = G.pages[order];
1471 pe->prev = NULL;
1472 G.pages[order]->prev = pe;
1473 G.pages[order] = pe;
1474 }
1475
1476 /* Reset the hint bit to point to the only free object. */
1477 pe->next_bit_hint = bit_offset;
1478 }
1479 }
1480 #endif
1481 }
1482 \f
1483 /* Subroutine of init_ggc which computes the pair of numbers used to
1484 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1485
1486 This algorithm is taken from Granlund and Montgomery's paper
1487 "Division by Invariant Integers using Multiplication"
1488 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1489 constants). */
1490
1491 static void
1492 compute_inverse (unsigned order)
1493 {
1494 size_t size, inv;
1495 unsigned int e;
1496
1497 size = OBJECT_SIZE (order);
1498 e = 0;
1499 while (size % 2 == 0)
1500 {
1501 e++;
1502 size >>= 1;
1503 }
1504
1505 inv = size;
1506 while (inv * size != 1)
1507 inv = inv * (2 - inv*size);
1508
1509 DIV_MULT (order) = inv;
1510 DIV_SHIFT (order) = e;
1511 }
1512
1513 /* Initialize the ggc-mmap allocator. */
1514 void
1515 init_ggc (void)
1516 {
1517 unsigned order;
1518
1519 G.pagesize = getpagesize();
1520 G.lg_pagesize = exact_log2 (G.pagesize);
1521
1522 #ifdef HAVE_MMAP_DEV_ZERO
1523 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1524 if (G.dev_zero_fd == -1)
1525 internal_error ("open /dev/zero: %m");
1526 #endif
1527
1528 #if 0
1529 G.debug_file = fopen ("ggc-mmap.debug", "w");
1530 #else
1531 G.debug_file = stdout;
1532 #endif
1533
1534 #ifdef USING_MMAP
1535 /* StunOS has an amazing off-by-one error for the first mmap allocation
1536 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1537 believe, is an unaligned page allocation, which would cause us to
1538 hork badly if we tried to use it. */
1539 {
1540 char *p = alloc_anon (NULL, G.pagesize);
1541 struct page_entry *e;
1542 if ((size_t)p & (G.pagesize - 1))
1543 {
1544 /* How losing. Discard this one and try another. If we still
1545 can't get something useful, give up. */
1546
1547 p = alloc_anon (NULL, G.pagesize);
1548 gcc_assert (!((size_t)p & (G.pagesize - 1)));
1549 }
1550
1551 /* We have a good page, might as well hold onto it... */
1552 e = XCNEW (struct page_entry);
1553 e->bytes = G.pagesize;
1554 e->page = p;
1555 e->next = G.free_pages;
1556 G.free_pages = e;
1557 }
1558 #endif
1559
1560 /* Initialize the object size table. */
1561 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1562 object_size_table[order] = (size_t) 1 << order;
1563 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1564 {
1565 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1566
1567 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1568 so that we're sure of getting aligned memory. */
1569 s = ROUND_UP (s, MAX_ALIGNMENT);
1570 object_size_table[order] = s;
1571 }
1572
1573 /* Initialize the objects-per-page and inverse tables. */
1574 for (order = 0; order < NUM_ORDERS; ++order)
1575 {
1576 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1577 if (objects_per_page_table[order] == 0)
1578 objects_per_page_table[order] = 1;
1579 compute_inverse (order);
1580 }
1581
1582 /* Reset the size_lookup array to put appropriately sized objects in
1583 the special orders. All objects bigger than the previous power
1584 of two, but no greater than the special size, should go in the
1585 new order. */
1586 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1587 {
1588 int o;
1589 int i;
1590
1591 i = OBJECT_SIZE (order);
1592 if (i >= NUM_SIZE_LOOKUP)
1593 continue;
1594
1595 for (o = size_lookup[i]; o == size_lookup [i]; --i)
1596 size_lookup[i] = order;
1597 }
1598
1599 G.depth_in_use = 0;
1600 G.depth_max = 10;
1601 G.depth = XNEWVEC (unsigned int, G.depth_max);
1602
1603 G.by_depth_in_use = 0;
1604 G.by_depth_max = INITIAL_PTE_COUNT;
1605 G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
1606 G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
1607 }
1608
1609 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1610 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1611
1612 static void
1613 ggc_recalculate_in_use_p (page_entry *p)
1614 {
1615 unsigned int i;
1616 size_t num_objects;
1617
1618 /* Because the past-the-end bit in in_use_p is always set, we
1619 pretend there is one additional object. */
1620 num_objects = OBJECTS_IN_PAGE (p) + 1;
1621
1622 /* Reset the free object count. */
1623 p->num_free_objects = num_objects;
1624
1625 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
1626 for (i = 0;
1627 i < CEIL (BITMAP_SIZE (num_objects),
1628 sizeof (*p->in_use_p));
1629 ++i)
1630 {
1631 unsigned long j;
1632
1633 /* Something is in use if it is marked, or if it was in use in a
1634 context further down the context stack. */
1635 p->in_use_p[i] |= save_in_use_p (p)[i];
1636
1637 /* Decrement the free object count for every object allocated. */
1638 for (j = p->in_use_p[i]; j; j >>= 1)
1639 p->num_free_objects -= (j & 1);
1640 }
1641
1642 gcc_assert (p->num_free_objects < num_objects);
1643 }
1644 \f
1645 /* Unmark all objects. */
1646
1647 static void
1648 clear_marks (void)
1649 {
1650 unsigned order;
1651
1652 for (order = 2; order < NUM_ORDERS; order++)
1653 {
1654 page_entry *p;
1655
1656 for (p = G.pages[order]; p != NULL; p = p->next)
1657 {
1658 size_t num_objects = OBJECTS_IN_PAGE (p);
1659 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1660
1661 /* The data should be page-aligned. */
1662 gcc_assert (!((size_t) p->page & (G.pagesize - 1)));
1663
1664 /* Pages that aren't in the topmost context are not collected;
1665 nevertheless, we need their in-use bit vectors to store GC
1666 marks. So, back them up first. */
1667 if (p->context_depth < G.context_depth)
1668 {
1669 if (! save_in_use_p (p))
1670 save_in_use_p (p) = XNEWVAR (unsigned long, bitmap_size);
1671 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
1672 }
1673
1674 /* Reset reset the number of free objects and clear the
1675 in-use bits. These will be adjusted by mark_obj. */
1676 p->num_free_objects = num_objects;
1677 memset (p->in_use_p, 0, bitmap_size);
1678
1679 /* Make sure the one-past-the-end bit is always set. */
1680 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1681 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1682 }
1683 }
1684 }
1685
1686 /* Free all empty pages. Partially empty pages need no attention
1687 because the `mark' bit doubles as an `unused' bit. */
1688
1689 static void
1690 sweep_pages (void)
1691 {
1692 unsigned order;
1693
1694 for (order = 2; order < NUM_ORDERS; order++)
1695 {
1696 /* The last page-entry to consider, regardless of entries
1697 placed at the end of the list. */
1698 page_entry * const last = G.page_tails[order];
1699
1700 size_t num_objects;
1701 size_t live_objects;
1702 page_entry *p, *previous;
1703 int done;
1704
1705 p = G.pages[order];
1706 if (p == NULL)
1707 continue;
1708
1709 previous = NULL;
1710 do
1711 {
1712 page_entry *next = p->next;
1713
1714 /* Loop until all entries have been examined. */
1715 done = (p == last);
1716
1717 num_objects = OBJECTS_IN_PAGE (p);
1718
1719 /* Add all live objects on this page to the count of
1720 allocated memory. */
1721 live_objects = num_objects - p->num_free_objects;
1722
1723 G.allocated += OBJECT_SIZE (order) * live_objects;
1724
1725 /* Only objects on pages in the topmost context should get
1726 collected. */
1727 if (p->context_depth < G.context_depth)
1728 ;
1729
1730 /* Remove the page if it's empty. */
1731 else if (live_objects == 0)
1732 {
1733 /* If P was the first page in the list, then NEXT
1734 becomes the new first page in the list, otherwise
1735 splice P out of the forward pointers. */
1736 if (! previous)
1737 G.pages[order] = next;
1738 else
1739 previous->next = next;
1740
1741 /* Splice P out of the back pointers too. */
1742 if (next)
1743 next->prev = previous;
1744
1745 /* Are we removing the last element? */
1746 if (p == G.page_tails[order])
1747 G.page_tails[order] = previous;
1748 free_page (p);
1749 p = previous;
1750 }
1751
1752 /* If the page is full, move it to the end. */
1753 else if (p->num_free_objects == 0)
1754 {
1755 /* Don't move it if it's already at the end. */
1756 if (p != G.page_tails[order])
1757 {
1758 /* Move p to the end of the list. */
1759 p->next = NULL;
1760 p->prev = G.page_tails[order];
1761 G.page_tails[order]->next = p;
1762
1763 /* Update the tail pointer... */
1764 G.page_tails[order] = p;
1765
1766 /* ... and the head pointer, if necessary. */
1767 if (! previous)
1768 G.pages[order] = next;
1769 else
1770 previous->next = next;
1771
1772 /* And update the backpointer in NEXT if necessary. */
1773 if (next)
1774 next->prev = previous;
1775
1776 p = previous;
1777 }
1778 }
1779
1780 /* If we've fallen through to here, it's a page in the
1781 topmost context that is neither full nor empty. Such a
1782 page must precede pages at lesser context depth in the
1783 list, so move it to the head. */
1784 else if (p != G.pages[order])
1785 {
1786 previous->next = p->next;
1787
1788 /* Update the backchain in the next node if it exists. */
1789 if (p->next)
1790 p->next->prev = previous;
1791
1792 /* Move P to the head of the list. */
1793 p->next = G.pages[order];
1794 p->prev = NULL;
1795 G.pages[order]->prev = p;
1796
1797 /* Update the head pointer. */
1798 G.pages[order] = p;
1799
1800 /* Are we moving the last element? */
1801 if (G.page_tails[order] == p)
1802 G.page_tails[order] = previous;
1803 p = previous;
1804 }
1805
1806 previous = p;
1807 p = next;
1808 }
1809 while (! done);
1810
1811 /* Now, restore the in_use_p vectors for any pages from contexts
1812 other than the current one. */
1813 for (p = G.pages[order]; p; p = p->next)
1814 if (p->context_depth != G.context_depth)
1815 ggc_recalculate_in_use_p (p);
1816 }
1817 }
1818
1819 #ifdef ENABLE_GC_CHECKING
1820 /* Clobber all free objects. */
1821
1822 static void
1823 poison_pages (void)
1824 {
1825 unsigned order;
1826
1827 for (order = 2; order < NUM_ORDERS; order++)
1828 {
1829 size_t size = OBJECT_SIZE (order);
1830 page_entry *p;
1831
1832 for (p = G.pages[order]; p != NULL; p = p->next)
1833 {
1834 size_t num_objects;
1835 size_t i;
1836
1837 if (p->context_depth != G.context_depth)
1838 /* Since we don't do any collection for pages in pushed
1839 contexts, there's no need to do any poisoning. And
1840 besides, the IN_USE_P array isn't valid until we pop
1841 contexts. */
1842 continue;
1843
1844 num_objects = OBJECTS_IN_PAGE (p);
1845 for (i = 0; i < num_objects; i++)
1846 {
1847 size_t word, bit;
1848 word = i / HOST_BITS_PER_LONG;
1849 bit = i % HOST_BITS_PER_LONG;
1850 if (((p->in_use_p[word] >> bit) & 1) == 0)
1851 {
1852 char *object = p->page + i * size;
1853
1854 /* Keep poison-by-write when we expect to use Valgrind,
1855 so the exact same memory semantics is kept, in case
1856 there are memory errors. We override this request
1857 below. */
1858 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (object,
1859 size));
1860 memset (object, 0xa5, size);
1861
1862 /* Drop the handle to avoid handle leak. */
1863 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (object, size));
1864 }
1865 }
1866 }
1867 }
1868 }
1869 #else
1870 #define poison_pages()
1871 #endif
1872
1873 #ifdef ENABLE_GC_ALWAYS_COLLECT
1874 /* Validate that the reportedly free objects actually are. */
1875
1876 static void
1877 validate_free_objects (void)
1878 {
1879 struct free_object *f, *next, *still_free = NULL;
1880
1881 for (f = G.free_object_list; f ; f = next)
1882 {
1883 page_entry *pe = lookup_page_table_entry (f->object);
1884 size_t bit, word;
1885
1886 bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
1887 word = bit / HOST_BITS_PER_LONG;
1888 bit = bit % HOST_BITS_PER_LONG;
1889 next = f->next;
1890
1891 /* Make certain it isn't visible from any root. Notice that we
1892 do this check before sweep_pages merges save_in_use_p. */
1893 gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
1894
1895 /* If the object comes from an outer context, then retain the
1896 free_object entry, so that we can verify that the address
1897 isn't live on the stack in some outer context. */
1898 if (pe->context_depth != G.context_depth)
1899 {
1900 f->next = still_free;
1901 still_free = f;
1902 }
1903 else
1904 free (f);
1905 }
1906
1907 G.free_object_list = still_free;
1908 }
1909 #else
1910 #define validate_free_objects()
1911 #endif
1912
1913 /* Top level mark-and-sweep routine. */
1914
1915 void
1916 ggc_collect (void)
1917 {
1918 /* Avoid frequent unnecessary work by skipping collection if the
1919 total allocations haven't expanded much since the last
1920 collection. */
1921 float allocated_last_gc =
1922 MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
1923
1924 float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
1925
1926 if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
1927 return;
1928
1929 timevar_push (TV_GC);
1930 if (!quiet_flag)
1931 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
1932 if (GGC_DEBUG_LEVEL >= 2)
1933 fprintf (G.debug_file, "BEGIN COLLECTING\n");
1934
1935 /* Zero the total allocated bytes. This will be recalculated in the
1936 sweep phase. */
1937 G.allocated = 0;
1938
1939 /* Release the pages we freed the last time we collected, but didn't
1940 reuse in the interim. */
1941 release_pages ();
1942
1943 /* Indicate that we've seen collections at this context depth. */
1944 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
1945
1946 invoke_plugin_callbacks (PLUGIN_GGC_START, NULL);
1947
1948 clear_marks ();
1949 ggc_mark_roots ();
1950 #ifdef GATHER_STATISTICS
1951 ggc_prune_overhead_list ();
1952 #endif
1953 poison_pages ();
1954 validate_free_objects ();
1955 sweep_pages ();
1956
1957 G.allocated_last_gc = G.allocated;
1958
1959 invoke_plugin_callbacks (PLUGIN_GGC_END, NULL);
1960
1961 timevar_pop (TV_GC);
1962
1963 if (!quiet_flag)
1964 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
1965 if (GGC_DEBUG_LEVEL >= 2)
1966 fprintf (G.debug_file, "END COLLECTING\n");
1967 }
1968
1969 /* Print allocation statistics. */
1970 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
1971 ? (x) \
1972 : ((x) < 1024*1024*10 \
1973 ? (x) / 1024 \
1974 : (x) / (1024*1024))))
1975 #define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
1976
1977 void
1978 ggc_print_statistics (void)
1979 {
1980 struct ggc_statistics stats;
1981 unsigned int i;
1982 size_t total_overhead = 0;
1983
1984 /* Clear the statistics. */
1985 memset (&stats, 0, sizeof (stats));
1986
1987 /* Make sure collection will really occur. */
1988 G.allocated_last_gc = 0;
1989
1990 /* Collect and print the statistics common across collectors. */
1991 ggc_print_common_statistics (stderr, &stats);
1992
1993 /* Release free pages so that we will not count the bytes allocated
1994 there as part of the total allocated memory. */
1995 release_pages ();
1996
1997 /* Collect some information about the various sizes of
1998 allocation. */
1999 fprintf (stderr,
2000 "Memory still allocated at the end of the compilation process\n");
2001 fprintf (stderr, "%-5s %10s %10s %10s\n",
2002 "Size", "Allocated", "Used", "Overhead");
2003 for (i = 0; i < NUM_ORDERS; ++i)
2004 {
2005 page_entry *p;
2006 size_t allocated;
2007 size_t in_use;
2008 size_t overhead;
2009
2010 /* Skip empty entries. */
2011 if (!G.pages[i])
2012 continue;
2013
2014 overhead = allocated = in_use = 0;
2015
2016 /* Figure out the total number of bytes allocated for objects of
2017 this size, and how many of them are actually in use. Also figure
2018 out how much memory the page table is using. */
2019 for (p = G.pages[i]; p; p = p->next)
2020 {
2021 allocated += p->bytes;
2022 in_use +=
2023 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
2024
2025 overhead += (sizeof (page_entry) - sizeof (long)
2026 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
2027 }
2028 fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n",
2029 (unsigned long) OBJECT_SIZE (i),
2030 SCALE (allocated), STAT_LABEL (allocated),
2031 SCALE (in_use), STAT_LABEL (in_use),
2032 SCALE (overhead), STAT_LABEL (overhead));
2033 total_overhead += overhead;
2034 }
2035 fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
2036 SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped),
2037 SCALE (G.allocated), STAT_LABEL(G.allocated),
2038 SCALE (total_overhead), STAT_LABEL (total_overhead));
2039
2040 #ifdef GATHER_STATISTICS
2041 {
2042 fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
2043
2044 fprintf (stderr, "Total Overhead: %10lld\n",
2045 G.stats.total_overhead);
2046 fprintf (stderr, "Total Allocated: %10lld\n",
2047 G.stats.total_allocated);
2048
2049 fprintf (stderr, "Total Overhead under 32B: %10lld\n",
2050 G.stats.total_overhead_under32);
2051 fprintf (stderr, "Total Allocated under 32B: %10lld\n",
2052 G.stats.total_allocated_under32);
2053 fprintf (stderr, "Total Overhead under 64B: %10lld\n",
2054 G.stats.total_overhead_under64);
2055 fprintf (stderr, "Total Allocated under 64B: %10lld\n",
2056 G.stats.total_allocated_under64);
2057 fprintf (stderr, "Total Overhead under 128B: %10lld\n",
2058 G.stats.total_overhead_under128);
2059 fprintf (stderr, "Total Allocated under 128B: %10lld\n",
2060 G.stats.total_allocated_under128);
2061
2062 for (i = 0; i < NUM_ORDERS; i++)
2063 if (G.stats.total_allocated_per_order[i])
2064 {
2065 fprintf (stderr, "Total Overhead page size %7lu: %10lld\n",
2066 (unsigned long) OBJECT_SIZE (i),
2067 G.stats.total_overhead_per_order[i]);
2068 fprintf (stderr, "Total Allocated page size %7lu: %10lld\n",
2069 (unsigned long) OBJECT_SIZE (i),
2070 G.stats.total_allocated_per_order[i]);
2071 }
2072 }
2073 #endif
2074 }
2075 \f
2076 struct ggc_pch_ondisk
2077 {
2078 unsigned totals[NUM_ORDERS];
2079 };
2080
2081 struct ggc_pch_data
2082 {
2083 struct ggc_pch_ondisk d;
2084 size_t base[NUM_ORDERS];
2085 size_t written[NUM_ORDERS];
2086 };
2087
2088 struct ggc_pch_data *
2089 init_ggc_pch (void)
2090 {
2091 return XCNEW (struct ggc_pch_data);
2092 }
2093
2094 void
2095 ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2096 size_t size, bool is_string ATTRIBUTE_UNUSED,
2097 enum gt_types_enum type ATTRIBUTE_UNUSED)
2098 {
2099 unsigned order;
2100
2101 if (size < NUM_SIZE_LOOKUP)
2102 order = size_lookup[size];
2103 else
2104 {
2105 order = 10;
2106 while (size > OBJECT_SIZE (order))
2107 order++;
2108 }
2109
2110 d->d.totals[order]++;
2111 }
2112
2113 size_t
2114 ggc_pch_total_size (struct ggc_pch_data *d)
2115 {
2116 size_t a = 0;
2117 unsigned i;
2118
2119 for (i = 0; i < NUM_ORDERS; i++)
2120 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2121 return a;
2122 }
2123
2124 void
2125 ggc_pch_this_base (struct ggc_pch_data *d, void *base)
2126 {
2127 size_t a = (size_t) base;
2128 unsigned i;
2129
2130 for (i = 0; i < NUM_ORDERS; i++)
2131 {
2132 d->base[i] = a;
2133 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2134 }
2135 }
2136
2137
2138 char *
2139 ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2140 size_t size, bool is_string ATTRIBUTE_UNUSED,
2141 enum gt_types_enum type ATTRIBUTE_UNUSED)
2142 {
2143 unsigned order;
2144 char *result;
2145
2146 if (size < NUM_SIZE_LOOKUP)
2147 order = size_lookup[size];
2148 else
2149 {
2150 order = 10;
2151 while (size > OBJECT_SIZE (order))
2152 order++;
2153 }
2154
2155 result = (char *) d->base[order];
2156 d->base[order] += OBJECT_SIZE (order);
2157 return result;
2158 }
2159
2160 void
2161 ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2162 FILE *f ATTRIBUTE_UNUSED)
2163 {
2164 /* Nothing to do. */
2165 }
2166
2167 void
2168 ggc_pch_write_object (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2169 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
2170 size_t size, bool is_string ATTRIBUTE_UNUSED)
2171 {
2172 unsigned order;
2173 static const char emptyBytes[256] = { 0 };
2174
2175 if (size < NUM_SIZE_LOOKUP)
2176 order = size_lookup[size];
2177 else
2178 {
2179 order = 10;
2180 while (size > OBJECT_SIZE (order))
2181 order++;
2182 }
2183
2184 if (fwrite (x, size, 1, f) != 1)
2185 fatal_error ("can't write PCH file: %m");
2186
2187 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2188 object out to OBJECT_SIZE(order). This happens for strings. */
2189
2190 if (size != OBJECT_SIZE (order))
2191 {
2192 unsigned padding = OBJECT_SIZE(order) - size;
2193
2194 /* To speed small writes, we use a nulled-out array that's larger
2195 than most padding requests as the source for our null bytes. This
2196 permits us to do the padding with fwrite() rather than fseek(), and
2197 limits the chance the OS may try to flush any outstanding writes. */
2198 if (padding <= sizeof(emptyBytes))
2199 {
2200 if (fwrite (emptyBytes, 1, padding, f) != padding)
2201 fatal_error ("can't write PCH file");
2202 }
2203 else
2204 {
2205 /* Larger than our buffer? Just default to fseek. */
2206 if (fseek (f, padding, SEEK_CUR) != 0)
2207 fatal_error ("can't write PCH file");
2208 }
2209 }
2210
2211 d->written[order]++;
2212 if (d->written[order] == d->d.totals[order]
2213 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2214 G.pagesize),
2215 SEEK_CUR) != 0)
2216 fatal_error ("can't write PCH file: %m");
2217 }
2218
2219 void
2220 ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
2221 {
2222 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
2223 fatal_error ("can't write PCH file: %m");
2224 free (d);
2225 }
2226
2227 /* Move the PCH PTE entries just added to the end of by_depth, to the
2228 front. */
2229
2230 static void
2231 move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
2232 {
2233 unsigned i;
2234
2235 /* First, we swap the new entries to the front of the varrays. */
2236 page_entry **new_by_depth;
2237 unsigned long **new_save_in_use;
2238
2239 new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
2240 new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
2241
2242 memcpy (&new_by_depth[0],
2243 &G.by_depth[count_old_page_tables],
2244 count_new_page_tables * sizeof (void *));
2245 memcpy (&new_by_depth[count_new_page_tables],
2246 &G.by_depth[0],
2247 count_old_page_tables * sizeof (void *));
2248 memcpy (&new_save_in_use[0],
2249 &G.save_in_use[count_old_page_tables],
2250 count_new_page_tables * sizeof (void *));
2251 memcpy (&new_save_in_use[count_new_page_tables],
2252 &G.save_in_use[0],
2253 count_old_page_tables * sizeof (void *));
2254
2255 free (G.by_depth);
2256 free (G.save_in_use);
2257
2258 G.by_depth = new_by_depth;
2259 G.save_in_use = new_save_in_use;
2260
2261 /* Now update all the index_by_depth fields. */
2262 for (i = G.by_depth_in_use; i > 0; --i)
2263 {
2264 page_entry *p = G.by_depth[i-1];
2265 p->index_by_depth = i-1;
2266 }
2267
2268 /* And last, we update the depth pointers in G.depth. The first
2269 entry is already 0, and context 0 entries always start at index
2270 0, so there is nothing to update in the first slot. We need a
2271 second slot, only if we have old ptes, and if we do, they start
2272 at index count_new_page_tables. */
2273 if (count_old_page_tables)
2274 push_depth (count_new_page_tables);
2275 }
2276
2277 void
2278 ggc_pch_read (FILE *f, void *addr)
2279 {
2280 struct ggc_pch_ondisk d;
2281 unsigned i;
2282 char *offs = (char *) addr;
2283 unsigned long count_old_page_tables;
2284 unsigned long count_new_page_tables;
2285
2286 count_old_page_tables = G.by_depth_in_use;
2287
2288 /* We've just read in a PCH file. So, every object that used to be
2289 allocated is now free. */
2290 clear_marks ();
2291 #ifdef ENABLE_GC_CHECKING
2292 poison_pages ();
2293 #endif
2294 /* Since we free all the allocated objects, the free list becomes
2295 useless. Validate it now, which will also clear it. */
2296 validate_free_objects();
2297
2298 /* No object read from a PCH file should ever be freed. So, set the
2299 context depth to 1, and set the depth of all the currently-allocated
2300 pages to be 1 too. PCH pages will have depth 0. */
2301 gcc_assert (!G.context_depth);
2302 G.context_depth = 1;
2303 for (i = 0; i < NUM_ORDERS; i++)
2304 {
2305 page_entry *p;
2306 for (p = G.pages[i]; p != NULL; p = p->next)
2307 p->context_depth = G.context_depth;
2308 }
2309
2310 /* Allocate the appropriate page-table entries for the pages read from
2311 the PCH file. */
2312 if (fread (&d, sizeof (d), 1, f) != 1)
2313 fatal_error ("can't read PCH file: %m");
2314
2315 for (i = 0; i < NUM_ORDERS; i++)
2316 {
2317 struct page_entry *entry;
2318 char *pte;
2319 size_t bytes;
2320 size_t num_objs;
2321 size_t j;
2322
2323 if (d.totals[i] == 0)
2324 continue;
2325
2326 bytes = ROUND_UP (d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2327 num_objs = bytes / OBJECT_SIZE (i);
2328 entry = XCNEWVAR (struct page_entry, (sizeof (struct page_entry)
2329 - sizeof (long)
2330 + BITMAP_SIZE (num_objs + 1)));
2331 entry->bytes = bytes;
2332 entry->page = offs;
2333 entry->context_depth = 0;
2334 offs += bytes;
2335 entry->num_free_objects = 0;
2336 entry->order = i;
2337
2338 for (j = 0;
2339 j + HOST_BITS_PER_LONG <= num_objs + 1;
2340 j += HOST_BITS_PER_LONG)
2341 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2342 for (; j < num_objs + 1; j++)
2343 entry->in_use_p[j / HOST_BITS_PER_LONG]
2344 |= 1L << (j % HOST_BITS_PER_LONG);
2345
2346 for (pte = entry->page;
2347 pte < entry->page + entry->bytes;
2348 pte += G.pagesize)
2349 set_page_table_entry (pte, entry);
2350
2351 if (G.page_tails[i] != NULL)
2352 G.page_tails[i]->next = entry;
2353 else
2354 G.pages[i] = entry;
2355 G.page_tails[i] = entry;
2356
2357 /* We start off by just adding all the new information to the
2358 end of the varrays, later, we will move the new information
2359 to the front of the varrays, as the PCH page tables are at
2360 context 0. */
2361 push_by_depth (entry, 0);
2362 }
2363
2364 /* Now, we update the various data structures that speed page table
2365 handling. */
2366 count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2367
2368 move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2369
2370 /* Update the statistics. */
2371 G.allocated = G.allocated_last_gc = offs - (char *)addr;
2372 }
2373
2374 struct alloc_zone
2375 {
2376 int dummy;
2377 };
2378
2379 struct alloc_zone rtl_zone;
2380 struct alloc_zone tree_zone;
2381 struct alloc_zone tree_id_zone;