expmed.c (struct init_expmed_rtl): Change all fields but pow2 and cint from struct...
[gcc.git] / gcc / ggc-page.c
1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2 Copyright (C) 1999-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "diagnostic-core.h"
28 #include "flags.h"
29 #include "ggc.h"
30 #include "ggc-internal.h"
31 #include "timevar.h"
32 #include "params.h"
33 #include "cgraph.h"
34 #include "cfgloop.h"
35 #include "plugin.h"
36
37 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
38 file open. Prefer either to valloc. */
39 #ifdef HAVE_MMAP_ANON
40 # undef HAVE_MMAP_DEV_ZERO
41 # define USING_MMAP
42 #endif
43
44 #ifdef HAVE_MMAP_DEV_ZERO
45 # define USING_MMAP
46 #endif
47
48 #ifndef USING_MMAP
49 #define USING_MALLOC_PAGE_GROUPS
50 #endif
51
52 #if defined(HAVE_MADVISE) && HAVE_DECL_MADVISE && defined(MADV_DONTNEED) \
53 && defined(USING_MMAP)
54 # define USING_MADVISE
55 #endif
56
57 /* Strategy:
58
59 This garbage-collecting allocator allocates objects on one of a set
60 of pages. Each page can allocate objects of a single size only;
61 available sizes are powers of two starting at four bytes. The size
62 of an allocation request is rounded up to the next power of two
63 (`order'), and satisfied from the appropriate page.
64
65 Each page is recorded in a page-entry, which also maintains an
66 in-use bitmap of object positions on the page. This allows the
67 allocation state of a particular object to be flipped without
68 touching the page itself.
69
70 Each page-entry also has a context depth, which is used to track
71 pushing and popping of allocation contexts. Only objects allocated
72 in the current (highest-numbered) context may be collected.
73
74 Page entries are arranged in an array of singly-linked lists. The
75 array is indexed by the allocation size, in bits, of the pages on
76 it; i.e. all pages on a list allocate objects of the same size.
77 Pages are ordered on the list such that all non-full pages precede
78 all full pages, with non-full pages arranged in order of decreasing
79 context depth.
80
81 Empty pages (of all orders) are kept on a single page cache list,
82 and are considered first when new pages are required; they are
83 deallocated at the start of the next collection if they haven't
84 been recycled by then. */
85
86 /* Define GGC_DEBUG_LEVEL to print debugging information.
87 0: No debugging output.
88 1: GC statistics only.
89 2: Page-entry allocations/deallocations as well.
90 3: Object allocations as well.
91 4: Object marks as well. */
92 #define GGC_DEBUG_LEVEL (0)
93 \f
94 #ifndef HOST_BITS_PER_PTR
95 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
96 #endif
97
98 \f
99 /* A two-level tree is used to look up the page-entry for a given
100 pointer. Two chunks of the pointer's bits are extracted to index
101 the first and second levels of the tree, as follows:
102
103 HOST_PAGE_SIZE_BITS
104 32 | |
105 msb +----------------+----+------+------+ lsb
106 | | |
107 PAGE_L1_BITS |
108 | |
109 PAGE_L2_BITS
110
111 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
112 pages are aligned on system page boundaries. The next most
113 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
114 index values in the lookup table, respectively.
115
116 For 32-bit architectures and the settings below, there are no
117 leftover bits. For architectures with wider pointers, the lookup
118 tree points to a list of pages, which must be scanned to find the
119 correct one. */
120
121 #define PAGE_L1_BITS (8)
122 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
123 #define PAGE_L1_SIZE ((uintptr_t) 1 << PAGE_L1_BITS)
124 #define PAGE_L2_SIZE ((uintptr_t) 1 << PAGE_L2_BITS)
125
126 #define LOOKUP_L1(p) \
127 (((uintptr_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
128
129 #define LOOKUP_L2(p) \
130 (((uintptr_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
131
132 /* The number of objects per allocation page, for objects on a page of
133 the indicated ORDER. */
134 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
135
136 /* The number of objects in P. */
137 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
138
139 /* The size of an object on a page of the indicated ORDER. */
140 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
141
142 /* For speed, we avoid doing a general integer divide to locate the
143 offset in the allocation bitmap, by precalculating numbers M, S
144 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
145 within the page which is evenly divisible by the object size Z. */
146 #define DIV_MULT(ORDER) inverse_table[ORDER].mult
147 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
148 #define OFFSET_TO_BIT(OFFSET, ORDER) \
149 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
150
151 /* We use this structure to determine the alignment required for
152 allocations. For power-of-two sized allocations, that's not a
153 problem, but it does matter for odd-sized allocations.
154 We do not care about alignment for floating-point types. */
155
156 struct max_alignment {
157 char c;
158 union {
159 int64_t i;
160 void *p;
161 } u;
162 };
163
164 /* The biggest alignment required. */
165
166 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
167
168
169 /* The number of extra orders, not corresponding to power-of-two sized
170 objects. */
171
172 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
173
174 #define RTL_SIZE(NSLOTS) \
175 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
176
177 #define TREE_EXP_SIZE(OPS) \
178 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
179
180 /* The Ith entry is the maximum size of an object to be stored in the
181 Ith extra order. Adding a new entry to this array is the *only*
182 thing you need to do to add a new special allocation size. */
183
184 static const size_t extra_order_size_table[] = {
185 /* Extra orders for small non-power-of-two multiples of MAX_ALIGNMENT.
186 There are a lot of structures with these sizes and explicitly
187 listing them risks orders being dropped because they changed size. */
188 MAX_ALIGNMENT * 3,
189 MAX_ALIGNMENT * 5,
190 MAX_ALIGNMENT * 6,
191 MAX_ALIGNMENT * 7,
192 MAX_ALIGNMENT * 9,
193 MAX_ALIGNMENT * 10,
194 MAX_ALIGNMENT * 11,
195 MAX_ALIGNMENT * 12,
196 MAX_ALIGNMENT * 13,
197 MAX_ALIGNMENT * 14,
198 MAX_ALIGNMENT * 15,
199 sizeof (struct tree_decl_non_common),
200 sizeof (struct tree_field_decl),
201 sizeof (struct tree_parm_decl),
202 sizeof (struct tree_var_decl),
203 sizeof (struct tree_type_non_common),
204 sizeof (struct function),
205 sizeof (struct basic_block_def),
206 sizeof (struct cgraph_node),
207 sizeof (struct loop),
208 };
209
210 /* The total number of orders. */
211
212 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
213
214 /* Compute the smallest nonnegative number which when added to X gives
215 a multiple of F. */
216
217 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
218
219 /* Compute the smallest multiple of F that is >= X. */
220
221 #define ROUND_UP(x, f) (CEIL (x, f) * (f))
222
223 /* Round X to next multiple of the page size */
224
225 #define PAGE_ALIGN(x) (((x) + G.pagesize - 1) & ~(G.pagesize - 1))
226
227 /* The Ith entry is the number of objects on a page or order I. */
228
229 static unsigned objects_per_page_table[NUM_ORDERS];
230
231 /* The Ith entry is the size of an object on a page of order I. */
232
233 static size_t object_size_table[NUM_ORDERS];
234
235 /* The Ith entry is a pair of numbers (mult, shift) such that
236 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
237 for all k evenly divisible by OBJECT_SIZE(I). */
238
239 static struct
240 {
241 size_t mult;
242 unsigned int shift;
243 }
244 inverse_table[NUM_ORDERS];
245
246 /* A page_entry records the status of an allocation page. This
247 structure is dynamically sized to fit the bitmap in_use_p. */
248 typedef struct page_entry
249 {
250 /* The next page-entry with objects of the same size, or NULL if
251 this is the last page-entry. */
252 struct page_entry *next;
253
254 /* The previous page-entry with objects of the same size, or NULL if
255 this is the first page-entry. The PREV pointer exists solely to
256 keep the cost of ggc_free manageable. */
257 struct page_entry *prev;
258
259 /* The number of bytes allocated. (This will always be a multiple
260 of the host system page size.) */
261 size_t bytes;
262
263 /* The address at which the memory is allocated. */
264 char *page;
265
266 #ifdef USING_MALLOC_PAGE_GROUPS
267 /* Back pointer to the page group this page came from. */
268 struct page_group *group;
269 #endif
270
271 /* This is the index in the by_depth varray where this page table
272 can be found. */
273 unsigned long index_by_depth;
274
275 /* Context depth of this page. */
276 unsigned short context_depth;
277
278 /* The number of free objects remaining on this page. */
279 unsigned short num_free_objects;
280
281 /* A likely candidate for the bit position of a free object for the
282 next allocation from this page. */
283 unsigned short next_bit_hint;
284
285 /* The lg of size of objects allocated from this page. */
286 unsigned char order;
287
288 /* Discarded page? */
289 bool discarded;
290
291 /* A bit vector indicating whether or not objects are in use. The
292 Nth bit is one if the Nth object on this page is allocated. This
293 array is dynamically sized. */
294 unsigned long in_use_p[1];
295 } page_entry;
296
297 #ifdef USING_MALLOC_PAGE_GROUPS
298 /* A page_group describes a large allocation from malloc, from which
299 we parcel out aligned pages. */
300 typedef struct page_group
301 {
302 /* A linked list of all extant page groups. */
303 struct page_group *next;
304
305 /* The address we received from malloc. */
306 char *allocation;
307
308 /* The size of the block. */
309 size_t alloc_size;
310
311 /* A bitmask of pages in use. */
312 unsigned int in_use;
313 } page_group;
314 #endif
315
316 #if HOST_BITS_PER_PTR <= 32
317
318 /* On 32-bit hosts, we use a two level page table, as pictured above. */
319 typedef page_entry **page_table[PAGE_L1_SIZE];
320
321 #else
322
323 /* On 64-bit hosts, we use the same two level page tables plus a linked
324 list that disambiguates the top 32-bits. There will almost always be
325 exactly one entry in the list. */
326 typedef struct page_table_chain
327 {
328 struct page_table_chain *next;
329 size_t high_bits;
330 page_entry **table[PAGE_L1_SIZE];
331 } *page_table;
332
333 #endif
334
335 class finalizer
336 {
337 public:
338 finalizer (void *addr, void (*f)(void *)) : m_addr (addr), m_function (f) {}
339
340 void *addr () const { return m_addr; }
341
342 void call () const { m_function (m_addr); }
343
344 private:
345 void *m_addr;
346 void (*m_function)(void *);
347 };
348
349 class vec_finalizer
350 {
351 public:
352 vec_finalizer (uintptr_t addr, void (*f)(void *), size_t s, size_t n) :
353 m_addr (addr), m_function (f), m_object_size (s), m_n_objects (n) {}
354
355 void call () const
356 {
357 for (size_t i = 0; i < m_n_objects; i++)
358 m_function (reinterpret_cast<void *> (m_addr + (i * m_object_size)));
359 }
360
361 void *addr () const { return reinterpret_cast<void *> (m_addr); }
362
363 private:
364 uintptr_t m_addr;
365 void (*m_function)(void *);
366 size_t m_object_size;
367 size_t m_n_objects;
368 };
369
370 #ifdef ENABLE_GC_ALWAYS_COLLECT
371 /* List of free objects to be verified as actually free on the
372 next collection. */
373 struct free_object
374 {
375 void *object;
376 struct free_object *next;
377 };
378 #endif
379
380 /* The rest of the global variables. */
381 static struct globals
382 {
383 /* The Nth element in this array is a page with objects of size 2^N.
384 If there are any pages with free objects, they will be at the
385 head of the list. NULL if there are no page-entries for this
386 object size. */
387 page_entry *pages[NUM_ORDERS];
388
389 /* The Nth element in this array is the last page with objects of
390 size 2^N. NULL if there are no page-entries for this object
391 size. */
392 page_entry *page_tails[NUM_ORDERS];
393
394 /* Lookup table for associating allocation pages with object addresses. */
395 page_table lookup;
396
397 /* The system's page size. */
398 size_t pagesize;
399 size_t lg_pagesize;
400
401 /* Bytes currently allocated. */
402 size_t allocated;
403
404 /* Bytes currently allocated at the end of the last collection. */
405 size_t allocated_last_gc;
406
407 /* Total amount of memory mapped. */
408 size_t bytes_mapped;
409
410 /* Bit N set if any allocations have been done at context depth N. */
411 unsigned long context_depth_allocations;
412
413 /* Bit N set if any collections have been done at context depth N. */
414 unsigned long context_depth_collections;
415
416 /* The current depth in the context stack. */
417 unsigned short context_depth;
418
419 /* A file descriptor open to /dev/zero for reading. */
420 #if defined (HAVE_MMAP_DEV_ZERO)
421 int dev_zero_fd;
422 #endif
423
424 /* A cache of free system pages. */
425 page_entry *free_pages;
426
427 #ifdef USING_MALLOC_PAGE_GROUPS
428 page_group *page_groups;
429 #endif
430
431 /* The file descriptor for debugging output. */
432 FILE *debug_file;
433
434 /* Current number of elements in use in depth below. */
435 unsigned int depth_in_use;
436
437 /* Maximum number of elements that can be used before resizing. */
438 unsigned int depth_max;
439
440 /* Each element of this array is an index in by_depth where the given
441 depth starts. This structure is indexed by that given depth we
442 are interested in. */
443 unsigned int *depth;
444
445 /* Current number of elements in use in by_depth below. */
446 unsigned int by_depth_in_use;
447
448 /* Maximum number of elements that can be used before resizing. */
449 unsigned int by_depth_max;
450
451 /* Each element of this array is a pointer to a page_entry, all
452 page_entries can be found in here by increasing depth.
453 index_by_depth in the page_entry is the index into this data
454 structure where that page_entry can be found. This is used to
455 speed up finding all page_entries at a particular depth. */
456 page_entry **by_depth;
457
458 /* Each element is a pointer to the saved in_use_p bits, if any,
459 zero otherwise. We allocate them all together, to enable a
460 better runtime data access pattern. */
461 unsigned long **save_in_use;
462
463 /* Finalizers for single objects. */
464 vec<finalizer> finalizers;
465
466 /* Finalizers for vectors of objects. */
467 vec<vec_finalizer> vec_finalizers;
468
469 #ifdef ENABLE_GC_ALWAYS_COLLECT
470 /* List of free objects to be verified as actually free on the
471 next collection. */
472 struct free_object *free_object_list;
473 #endif
474
475 struct
476 {
477 /* Total GC-allocated memory. */
478 unsigned long long total_allocated;
479 /* Total overhead for GC-allocated memory. */
480 unsigned long long total_overhead;
481
482 /* Total allocations and overhead for sizes less than 32, 64 and 128.
483 These sizes are interesting because they are typical cache line
484 sizes. */
485
486 unsigned long long total_allocated_under32;
487 unsigned long long total_overhead_under32;
488
489 unsigned long long total_allocated_under64;
490 unsigned long long total_overhead_under64;
491
492 unsigned long long total_allocated_under128;
493 unsigned long long total_overhead_under128;
494
495 /* The allocations for each of the allocation orders. */
496 unsigned long long total_allocated_per_order[NUM_ORDERS];
497
498 /* The overhead for each of the allocation orders. */
499 unsigned long long total_overhead_per_order[NUM_ORDERS];
500 } stats;
501 } G;
502
503 /* The size in bytes required to maintain a bitmap for the objects
504 on a page-entry. */
505 #define BITMAP_SIZE(Num_objects) \
506 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof (long))
507
508 /* Allocate pages in chunks of this size, to throttle calls to memory
509 allocation routines. The first page is used, the rest go onto the
510 free list. This cannot be larger than HOST_BITS_PER_INT for the
511 in_use bitmask for page_group. Hosts that need a different value
512 can override this by defining GGC_QUIRE_SIZE explicitly. */
513 #ifndef GGC_QUIRE_SIZE
514 # ifdef USING_MMAP
515 # define GGC_QUIRE_SIZE 512 /* 2MB for 4K pages */
516 # else
517 # define GGC_QUIRE_SIZE 16
518 # endif
519 #endif
520
521 /* Initial guess as to how many page table entries we might need. */
522 #define INITIAL_PTE_COUNT 128
523 \f
524 static int ggc_allocated_p (const void *);
525 static page_entry *lookup_page_table_entry (const void *);
526 static void set_page_table_entry (void *, page_entry *);
527 #ifdef USING_MMAP
528 static char *alloc_anon (char *, size_t, bool check);
529 #endif
530 #ifdef USING_MALLOC_PAGE_GROUPS
531 static size_t page_group_index (char *, char *);
532 static void set_page_group_in_use (page_group *, char *);
533 static void clear_page_group_in_use (page_group *, char *);
534 #endif
535 static struct page_entry * alloc_page (unsigned);
536 static void free_page (struct page_entry *);
537 static void release_pages (void);
538 static void clear_marks (void);
539 static void sweep_pages (void);
540 static void ggc_recalculate_in_use_p (page_entry *);
541 static void compute_inverse (unsigned);
542 static inline void adjust_depth (void);
543 static void move_ptes_to_front (int, int);
544
545 void debug_print_page_list (int);
546 static void push_depth (unsigned int);
547 static void push_by_depth (page_entry *, unsigned long *);
548
549 /* Push an entry onto G.depth. */
550
551 inline static void
552 push_depth (unsigned int i)
553 {
554 if (G.depth_in_use >= G.depth_max)
555 {
556 G.depth_max *= 2;
557 G.depth = XRESIZEVEC (unsigned int, G.depth, G.depth_max);
558 }
559 G.depth[G.depth_in_use++] = i;
560 }
561
562 /* Push an entry onto G.by_depth and G.save_in_use. */
563
564 inline static void
565 push_by_depth (page_entry *p, unsigned long *s)
566 {
567 if (G.by_depth_in_use >= G.by_depth_max)
568 {
569 G.by_depth_max *= 2;
570 G.by_depth = XRESIZEVEC (page_entry *, G.by_depth, G.by_depth_max);
571 G.save_in_use = XRESIZEVEC (unsigned long *, G.save_in_use,
572 G.by_depth_max);
573 }
574 G.by_depth[G.by_depth_in_use] = p;
575 G.save_in_use[G.by_depth_in_use++] = s;
576 }
577
578 #if (GCC_VERSION < 3001)
579 #define prefetch(X) ((void) X)
580 #else
581 #define prefetch(X) __builtin_prefetch (X)
582 #endif
583
584 #define save_in_use_p_i(__i) \
585 (G.save_in_use[__i])
586 #define save_in_use_p(__p) \
587 (save_in_use_p_i (__p->index_by_depth))
588
589 /* Returns nonzero if P was allocated in GC'able memory. */
590
591 static inline int
592 ggc_allocated_p (const void *p)
593 {
594 page_entry ***base;
595 size_t L1, L2;
596
597 #if HOST_BITS_PER_PTR <= 32
598 base = &G.lookup[0];
599 #else
600 page_table table = G.lookup;
601 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
602 while (1)
603 {
604 if (table == NULL)
605 return 0;
606 if (table->high_bits == high_bits)
607 break;
608 table = table->next;
609 }
610 base = &table->table[0];
611 #endif
612
613 /* Extract the level 1 and 2 indices. */
614 L1 = LOOKUP_L1 (p);
615 L2 = LOOKUP_L2 (p);
616
617 return base[L1] && base[L1][L2];
618 }
619
620 /* Traverse the page table and find the entry for a page.
621 Die (probably) if the object wasn't allocated via GC. */
622
623 static inline page_entry *
624 lookup_page_table_entry (const void *p)
625 {
626 page_entry ***base;
627 size_t L1, L2;
628
629 #if HOST_BITS_PER_PTR <= 32
630 base = &G.lookup[0];
631 #else
632 page_table table = G.lookup;
633 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
634 while (table->high_bits != high_bits)
635 table = table->next;
636 base = &table->table[0];
637 #endif
638
639 /* Extract the level 1 and 2 indices. */
640 L1 = LOOKUP_L1 (p);
641 L2 = LOOKUP_L2 (p);
642
643 return base[L1][L2];
644 }
645
646 /* Set the page table entry for a page. */
647
648 static void
649 set_page_table_entry (void *p, page_entry *entry)
650 {
651 page_entry ***base;
652 size_t L1, L2;
653
654 #if HOST_BITS_PER_PTR <= 32
655 base = &G.lookup[0];
656 #else
657 page_table table;
658 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
659 for (table = G.lookup; table; table = table->next)
660 if (table->high_bits == high_bits)
661 goto found;
662
663 /* Not found -- allocate a new table. */
664 table = XCNEW (struct page_table_chain);
665 table->next = G.lookup;
666 table->high_bits = high_bits;
667 G.lookup = table;
668 found:
669 base = &table->table[0];
670 #endif
671
672 /* Extract the level 1 and 2 indices. */
673 L1 = LOOKUP_L1 (p);
674 L2 = LOOKUP_L2 (p);
675
676 if (base[L1] == NULL)
677 base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
678
679 base[L1][L2] = entry;
680 }
681
682 /* Prints the page-entry for object size ORDER, for debugging. */
683
684 DEBUG_FUNCTION void
685 debug_print_page_list (int order)
686 {
687 page_entry *p;
688 printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
689 (void *) G.page_tails[order]);
690 p = G.pages[order];
691 while (p != NULL)
692 {
693 printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
694 p->num_free_objects);
695 p = p->next;
696 }
697 printf ("NULL\n");
698 fflush (stdout);
699 }
700
701 #ifdef USING_MMAP
702 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
703 (if non-null). The ifdef structure here is intended to cause a
704 compile error unless exactly one of the HAVE_* is defined. */
705
706 static inline char *
707 alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size, bool check)
708 {
709 #ifdef HAVE_MMAP_ANON
710 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
711 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
712 #endif
713 #ifdef HAVE_MMAP_DEV_ZERO
714 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
715 MAP_PRIVATE, G.dev_zero_fd, 0);
716 #endif
717
718 if (page == (char *) MAP_FAILED)
719 {
720 if (!check)
721 return NULL;
722 perror ("virtual memory exhausted");
723 exit (FATAL_EXIT_CODE);
724 }
725
726 /* Remember that we allocated this memory. */
727 G.bytes_mapped += size;
728
729 /* Pretend we don't have access to the allocated pages. We'll enable
730 access to smaller pieces of the area in ggc_internal_alloc. Discard the
731 handle to avoid handle leak. */
732 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size));
733
734 return page;
735 }
736 #endif
737 #ifdef USING_MALLOC_PAGE_GROUPS
738 /* Compute the index for this page into the page group. */
739
740 static inline size_t
741 page_group_index (char *allocation, char *page)
742 {
743 return (size_t) (page - allocation) >> G.lg_pagesize;
744 }
745
746 /* Set and clear the in_use bit for this page in the page group. */
747
748 static inline void
749 set_page_group_in_use (page_group *group, char *page)
750 {
751 group->in_use |= 1 << page_group_index (group->allocation, page);
752 }
753
754 static inline void
755 clear_page_group_in_use (page_group *group, char *page)
756 {
757 group->in_use &= ~(1 << page_group_index (group->allocation, page));
758 }
759 #endif
760
761 /* Allocate a new page for allocating objects of size 2^ORDER,
762 and return an entry for it. The entry is not added to the
763 appropriate page_table list. */
764
765 static inline struct page_entry *
766 alloc_page (unsigned order)
767 {
768 struct page_entry *entry, *p, **pp;
769 char *page;
770 size_t num_objects;
771 size_t bitmap_size;
772 size_t page_entry_size;
773 size_t entry_size;
774 #ifdef USING_MALLOC_PAGE_GROUPS
775 page_group *group;
776 #endif
777
778 num_objects = OBJECTS_PER_PAGE (order);
779 bitmap_size = BITMAP_SIZE (num_objects + 1);
780 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
781 entry_size = num_objects * OBJECT_SIZE (order);
782 if (entry_size < G.pagesize)
783 entry_size = G.pagesize;
784 entry_size = PAGE_ALIGN (entry_size);
785
786 entry = NULL;
787 page = NULL;
788
789 /* Check the list of free pages for one we can use. */
790 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
791 if (p->bytes == entry_size)
792 break;
793
794 if (p != NULL)
795 {
796 if (p->discarded)
797 G.bytes_mapped += p->bytes;
798 p->discarded = false;
799
800 /* Recycle the allocated memory from this page ... */
801 *pp = p->next;
802 page = p->page;
803
804 #ifdef USING_MALLOC_PAGE_GROUPS
805 group = p->group;
806 #endif
807
808 /* ... and, if possible, the page entry itself. */
809 if (p->order == order)
810 {
811 entry = p;
812 memset (entry, 0, page_entry_size);
813 }
814 else
815 free (p);
816 }
817 #ifdef USING_MMAP
818 else if (entry_size == G.pagesize)
819 {
820 /* We want just one page. Allocate a bunch of them and put the
821 extras on the freelist. (Can only do this optimization with
822 mmap for backing store.) */
823 struct page_entry *e, *f = G.free_pages;
824 int i, entries = GGC_QUIRE_SIZE;
825
826 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE, false);
827 if (page == NULL)
828 {
829 page = alloc_anon (NULL, G.pagesize, true);
830 entries = 1;
831 }
832
833 /* This loop counts down so that the chain will be in ascending
834 memory order. */
835 for (i = entries - 1; i >= 1; i--)
836 {
837 e = XCNEWVAR (struct page_entry, page_entry_size);
838 e->order = order;
839 e->bytes = G.pagesize;
840 e->page = page + (i << G.lg_pagesize);
841 e->next = f;
842 f = e;
843 }
844
845 G.free_pages = f;
846 }
847 else
848 page = alloc_anon (NULL, entry_size, true);
849 #endif
850 #ifdef USING_MALLOC_PAGE_GROUPS
851 else
852 {
853 /* Allocate a large block of memory and serve out the aligned
854 pages therein. This results in much less memory wastage
855 than the traditional implementation of valloc. */
856
857 char *allocation, *a, *enda;
858 size_t alloc_size, head_slop, tail_slop;
859 int multiple_pages = (entry_size == G.pagesize);
860
861 if (multiple_pages)
862 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
863 else
864 alloc_size = entry_size + G.pagesize - 1;
865 allocation = XNEWVEC (char, alloc_size);
866
867 page = (char *) (((uintptr_t) allocation + G.pagesize - 1) & -G.pagesize);
868 head_slop = page - allocation;
869 if (multiple_pages)
870 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
871 else
872 tail_slop = alloc_size - entry_size - head_slop;
873 enda = allocation + alloc_size - tail_slop;
874
875 /* We allocated N pages, which are likely not aligned, leaving
876 us with N-1 usable pages. We plan to place the page_group
877 structure somewhere in the slop. */
878 if (head_slop >= sizeof (page_group))
879 group = (page_group *)page - 1;
880 else
881 {
882 /* We magically got an aligned allocation. Too bad, we have
883 to waste a page anyway. */
884 if (tail_slop == 0)
885 {
886 enda -= G.pagesize;
887 tail_slop += G.pagesize;
888 }
889 gcc_assert (tail_slop >= sizeof (page_group));
890 group = (page_group *)enda;
891 tail_slop -= sizeof (page_group);
892 }
893
894 /* Remember that we allocated this memory. */
895 group->next = G.page_groups;
896 group->allocation = allocation;
897 group->alloc_size = alloc_size;
898 group->in_use = 0;
899 G.page_groups = group;
900 G.bytes_mapped += alloc_size;
901
902 /* If we allocated multiple pages, put the rest on the free list. */
903 if (multiple_pages)
904 {
905 struct page_entry *e, *f = G.free_pages;
906 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
907 {
908 e = XCNEWVAR (struct page_entry, page_entry_size);
909 e->order = order;
910 e->bytes = G.pagesize;
911 e->page = a;
912 e->group = group;
913 e->next = f;
914 f = e;
915 }
916 G.free_pages = f;
917 }
918 }
919 #endif
920
921 if (entry == NULL)
922 entry = XCNEWVAR (struct page_entry, page_entry_size);
923
924 entry->bytes = entry_size;
925 entry->page = page;
926 entry->context_depth = G.context_depth;
927 entry->order = order;
928 entry->num_free_objects = num_objects;
929 entry->next_bit_hint = 1;
930
931 G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
932
933 #ifdef USING_MALLOC_PAGE_GROUPS
934 entry->group = group;
935 set_page_group_in_use (group, page);
936 #endif
937
938 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
939 increment the hint. */
940 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
941 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
942
943 set_page_table_entry (page, entry);
944
945 if (GGC_DEBUG_LEVEL >= 2)
946 fprintf (G.debug_file,
947 "Allocating page at %p, object size=%lu, data %p-%p\n",
948 (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
949 page + entry_size - 1);
950
951 return entry;
952 }
953
954 /* Adjust the size of G.depth so that no index greater than the one
955 used by the top of the G.by_depth is used. */
956
957 static inline void
958 adjust_depth (void)
959 {
960 page_entry *top;
961
962 if (G.by_depth_in_use)
963 {
964 top = G.by_depth[G.by_depth_in_use-1];
965
966 /* Peel back indices in depth that index into by_depth, so that
967 as new elements are added to by_depth, we note the indices
968 of those elements, if they are for new context depths. */
969 while (G.depth_in_use > (size_t)top->context_depth+1)
970 --G.depth_in_use;
971 }
972 }
973
974 /* For a page that is no longer needed, put it on the free page list. */
975
976 static void
977 free_page (page_entry *entry)
978 {
979 if (GGC_DEBUG_LEVEL >= 2)
980 fprintf (G.debug_file,
981 "Deallocating page at %p, data %p-%p\n", (void *) entry,
982 entry->page, entry->page + entry->bytes - 1);
983
984 /* Mark the page as inaccessible. Discard the handle to avoid handle
985 leak. */
986 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->page, entry->bytes));
987
988 set_page_table_entry (entry->page, NULL);
989
990 #ifdef USING_MALLOC_PAGE_GROUPS
991 clear_page_group_in_use (entry->group, entry->page);
992 #endif
993
994 if (G.by_depth_in_use > 1)
995 {
996 page_entry *top = G.by_depth[G.by_depth_in_use-1];
997 int i = entry->index_by_depth;
998
999 /* We cannot free a page from a context deeper than the current
1000 one. */
1001 gcc_assert (entry->context_depth == top->context_depth);
1002
1003 /* Put top element into freed slot. */
1004 G.by_depth[i] = top;
1005 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
1006 top->index_by_depth = i;
1007 }
1008 --G.by_depth_in_use;
1009
1010 adjust_depth ();
1011
1012 entry->next = G.free_pages;
1013 G.free_pages = entry;
1014 }
1015
1016 /* Release the free page cache to the system. */
1017
1018 static void
1019 release_pages (void)
1020 {
1021 #ifdef USING_MADVISE
1022 page_entry *p, *start_p;
1023 char *start;
1024 size_t len;
1025 size_t mapped_len;
1026 page_entry *next, *prev, *newprev;
1027 size_t free_unit = (GGC_QUIRE_SIZE/2) * G.pagesize;
1028
1029 /* First free larger continuous areas to the OS.
1030 This allows other allocators to grab these areas if needed.
1031 This is only done on larger chunks to avoid fragmentation.
1032 This does not always work because the free_pages list is only
1033 approximately sorted. */
1034
1035 p = G.free_pages;
1036 prev = NULL;
1037 while (p)
1038 {
1039 start = p->page;
1040 start_p = p;
1041 len = 0;
1042 mapped_len = 0;
1043 newprev = prev;
1044 while (p && p->page == start + len)
1045 {
1046 len += p->bytes;
1047 if (!p->discarded)
1048 mapped_len += p->bytes;
1049 newprev = p;
1050 p = p->next;
1051 }
1052 if (len >= free_unit)
1053 {
1054 while (start_p != p)
1055 {
1056 next = start_p->next;
1057 free (start_p);
1058 start_p = next;
1059 }
1060 munmap (start, len);
1061 if (prev)
1062 prev->next = p;
1063 else
1064 G.free_pages = p;
1065 G.bytes_mapped -= mapped_len;
1066 continue;
1067 }
1068 prev = newprev;
1069 }
1070
1071 /* Now give back the fragmented pages to the OS, but keep the address
1072 space to reuse it next time. */
1073
1074 for (p = G.free_pages; p; )
1075 {
1076 if (p->discarded)
1077 {
1078 p = p->next;
1079 continue;
1080 }
1081 start = p->page;
1082 len = p->bytes;
1083 start_p = p;
1084 p = p->next;
1085 while (p && p->page == start + len)
1086 {
1087 len += p->bytes;
1088 p = p->next;
1089 }
1090 /* Give the page back to the kernel, but don't free the mapping.
1091 This avoids fragmentation in the virtual memory map of the
1092 process. Next time we can reuse it by just touching it. */
1093 madvise (start, len, MADV_DONTNEED);
1094 /* Don't count those pages as mapped to not touch the garbage collector
1095 unnecessarily. */
1096 G.bytes_mapped -= len;
1097 while (start_p != p)
1098 {
1099 start_p->discarded = true;
1100 start_p = start_p->next;
1101 }
1102 }
1103 #endif
1104 #if defined(USING_MMAP) && !defined(USING_MADVISE)
1105 page_entry *p, *next;
1106 char *start;
1107 size_t len;
1108
1109 /* Gather up adjacent pages so they are unmapped together. */
1110 p = G.free_pages;
1111
1112 while (p)
1113 {
1114 start = p->page;
1115 next = p->next;
1116 len = p->bytes;
1117 free (p);
1118 p = next;
1119
1120 while (p && p->page == start + len)
1121 {
1122 next = p->next;
1123 len += p->bytes;
1124 free (p);
1125 p = next;
1126 }
1127
1128 munmap (start, len);
1129 G.bytes_mapped -= len;
1130 }
1131
1132 G.free_pages = NULL;
1133 #endif
1134 #ifdef USING_MALLOC_PAGE_GROUPS
1135 page_entry **pp, *p;
1136 page_group **gp, *g;
1137
1138 /* Remove all pages from free page groups from the list. */
1139 pp = &G.free_pages;
1140 while ((p = *pp) != NULL)
1141 if (p->group->in_use == 0)
1142 {
1143 *pp = p->next;
1144 free (p);
1145 }
1146 else
1147 pp = &p->next;
1148
1149 /* Remove all free page groups, and release the storage. */
1150 gp = &G.page_groups;
1151 while ((g = *gp) != NULL)
1152 if (g->in_use == 0)
1153 {
1154 *gp = g->next;
1155 G.bytes_mapped -= g->alloc_size;
1156 free (g->allocation);
1157 }
1158 else
1159 gp = &g->next;
1160 #endif
1161 }
1162
1163 /* This table provides a fast way to determine ceil(log_2(size)) for
1164 allocation requests. The minimum allocation size is eight bytes. */
1165 #define NUM_SIZE_LOOKUP 512
1166 static unsigned char size_lookup[NUM_SIZE_LOOKUP] =
1167 {
1168 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1169 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1170 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1171 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1172 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1173 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1174 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1175 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1176 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1177 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1178 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1179 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1180 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1181 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1182 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1183 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1184 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1185 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1186 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1187 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1188 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1189 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1190 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1191 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1192 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1193 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1194 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1195 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1196 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1197 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1198 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1199 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
1200 };
1201
1202 /* For a given size of memory requested for allocation, return the
1203 actual size that is going to be allocated, as well as the size
1204 order. */
1205
1206 static void
1207 ggc_round_alloc_size_1 (size_t requested_size,
1208 size_t *size_order,
1209 size_t *alloced_size)
1210 {
1211 size_t order, object_size;
1212
1213 if (requested_size < NUM_SIZE_LOOKUP)
1214 {
1215 order = size_lookup[requested_size];
1216 object_size = OBJECT_SIZE (order);
1217 }
1218 else
1219 {
1220 order = 10;
1221 while (requested_size > (object_size = OBJECT_SIZE (order)))
1222 order++;
1223 }
1224
1225 if (size_order)
1226 *size_order = order;
1227 if (alloced_size)
1228 *alloced_size = object_size;
1229 }
1230
1231 /* For a given size of memory requested for allocation, return the
1232 actual size that is going to be allocated. */
1233
1234 size_t
1235 ggc_round_alloc_size (size_t requested_size)
1236 {
1237 size_t size = 0;
1238
1239 ggc_round_alloc_size_1 (requested_size, NULL, &size);
1240 return size;
1241 }
1242
1243 /* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
1244
1245 void *
1246 ggc_internal_alloc (size_t size, void (*f)(void *), size_t s, size_t n
1247 MEM_STAT_DECL)
1248 {
1249 size_t order, word, bit, object_offset, object_size;
1250 struct page_entry *entry;
1251 void *result;
1252
1253 ggc_round_alloc_size_1 (size, &order, &object_size);
1254
1255 /* If there are non-full pages for this size allocation, they are at
1256 the head of the list. */
1257 entry = G.pages[order];
1258
1259 /* If there is no page for this object size, or all pages in this
1260 context are full, allocate a new page. */
1261 if (entry == NULL || entry->num_free_objects == 0)
1262 {
1263 struct page_entry *new_entry;
1264 new_entry = alloc_page (order);
1265
1266 new_entry->index_by_depth = G.by_depth_in_use;
1267 push_by_depth (new_entry, 0);
1268
1269 /* We can skip context depths, if we do, make sure we go all the
1270 way to the new depth. */
1271 while (new_entry->context_depth >= G.depth_in_use)
1272 push_depth (G.by_depth_in_use-1);
1273
1274 /* If this is the only entry, it's also the tail. If it is not
1275 the only entry, then we must update the PREV pointer of the
1276 ENTRY (G.pages[order]) to point to our new page entry. */
1277 if (entry == NULL)
1278 G.page_tails[order] = new_entry;
1279 else
1280 entry->prev = new_entry;
1281
1282 /* Put new pages at the head of the page list. By definition the
1283 entry at the head of the list always has a NULL pointer. */
1284 new_entry->next = entry;
1285 new_entry->prev = NULL;
1286 entry = new_entry;
1287 G.pages[order] = new_entry;
1288
1289 /* For a new page, we know the word and bit positions (in the
1290 in_use bitmap) of the first available object -- they're zero. */
1291 new_entry->next_bit_hint = 1;
1292 word = 0;
1293 bit = 0;
1294 object_offset = 0;
1295 }
1296 else
1297 {
1298 /* First try to use the hint left from the previous allocation
1299 to locate a clear bit in the in-use bitmap. We've made sure
1300 that the one-past-the-end bit is always set, so if the hint
1301 has run over, this test will fail. */
1302 unsigned hint = entry->next_bit_hint;
1303 word = hint / HOST_BITS_PER_LONG;
1304 bit = hint % HOST_BITS_PER_LONG;
1305
1306 /* If the hint didn't work, scan the bitmap from the beginning. */
1307 if ((entry->in_use_p[word] >> bit) & 1)
1308 {
1309 word = bit = 0;
1310 while (~entry->in_use_p[word] == 0)
1311 ++word;
1312
1313 #if GCC_VERSION >= 3004
1314 bit = __builtin_ctzl (~entry->in_use_p[word]);
1315 #else
1316 while ((entry->in_use_p[word] >> bit) & 1)
1317 ++bit;
1318 #endif
1319
1320 hint = word * HOST_BITS_PER_LONG + bit;
1321 }
1322
1323 /* Next time, try the next bit. */
1324 entry->next_bit_hint = hint + 1;
1325
1326 object_offset = hint * object_size;
1327 }
1328
1329 /* Set the in-use bit. */
1330 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1331
1332 /* Keep a running total of the number of free objects. If this page
1333 fills up, we may have to move it to the end of the list if the
1334 next page isn't full. If the next page is full, all subsequent
1335 pages are full, so there's no need to move it. */
1336 if (--entry->num_free_objects == 0
1337 && entry->next != NULL
1338 && entry->next->num_free_objects > 0)
1339 {
1340 /* We have a new head for the list. */
1341 G.pages[order] = entry->next;
1342
1343 /* We are moving ENTRY to the end of the page table list.
1344 The new page at the head of the list will have NULL in
1345 its PREV field and ENTRY will have NULL in its NEXT field. */
1346 entry->next->prev = NULL;
1347 entry->next = NULL;
1348
1349 /* Append ENTRY to the tail of the list. */
1350 entry->prev = G.page_tails[order];
1351 G.page_tails[order]->next = entry;
1352 G.page_tails[order] = entry;
1353 }
1354
1355 /* Calculate the object's address. */
1356 result = entry->page + object_offset;
1357 if (GATHER_STATISTICS)
1358 ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
1359 result FINAL_PASS_MEM_STAT);
1360
1361 #ifdef ENABLE_GC_CHECKING
1362 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1363 exact same semantics in presence of memory bugs, regardless of
1364 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1365 handle to avoid handle leak. */
1366 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, object_size));
1367
1368 /* `Poison' the entire allocated object, including any padding at
1369 the end. */
1370 memset (result, 0xaf, object_size);
1371
1372 /* Make the bytes after the end of the object unaccessible. Discard the
1373 handle to avoid handle leak. */
1374 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) result + size,
1375 object_size - size));
1376 #endif
1377
1378 /* Tell Valgrind that the memory is there, but its content isn't
1379 defined. The bytes at the end of the object are still marked
1380 unaccessible. */
1381 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size));
1382
1383 /* Keep track of how many bytes are being allocated. This
1384 information is used in deciding when to collect. */
1385 G.allocated += object_size;
1386
1387 /* For timevar statistics. */
1388 timevar_ggc_mem_total += object_size;
1389
1390 if (f && n == 1)
1391 G.finalizers.safe_push (finalizer (result, f));
1392 else if (f)
1393 G.vec_finalizers.safe_push
1394 (vec_finalizer (reinterpret_cast<uintptr_t> (result), f, s, n));
1395
1396 if (GATHER_STATISTICS)
1397 {
1398 size_t overhead = object_size - size;
1399
1400 G.stats.total_overhead += overhead;
1401 G.stats.total_allocated += object_size;
1402 G.stats.total_overhead_per_order[order] += overhead;
1403 G.stats.total_allocated_per_order[order] += object_size;
1404
1405 if (size <= 32)
1406 {
1407 G.stats.total_overhead_under32 += overhead;
1408 G.stats.total_allocated_under32 += object_size;
1409 }
1410 if (size <= 64)
1411 {
1412 G.stats.total_overhead_under64 += overhead;
1413 G.stats.total_allocated_under64 += object_size;
1414 }
1415 if (size <= 128)
1416 {
1417 G.stats.total_overhead_under128 += overhead;
1418 G.stats.total_allocated_under128 += object_size;
1419 }
1420 }
1421
1422 if (GGC_DEBUG_LEVEL >= 3)
1423 fprintf (G.debug_file,
1424 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
1425 (unsigned long) size, (unsigned long) object_size, result,
1426 (void *) entry);
1427
1428 return result;
1429 }
1430
1431 /* Mark function for strings. */
1432
1433 void
1434 gt_ggc_m_S (const void *p)
1435 {
1436 page_entry *entry;
1437 unsigned bit, word;
1438 unsigned long mask;
1439 unsigned long offset;
1440
1441 if (!p || !ggc_allocated_p (p))
1442 return;
1443
1444 /* Look up the page on which the object is alloced. . */
1445 entry = lookup_page_table_entry (p);
1446 gcc_assert (entry);
1447
1448 /* Calculate the index of the object on the page; this is its bit
1449 position in the in_use_p bitmap. Note that because a char* might
1450 point to the middle of an object, we need special code here to
1451 make sure P points to the start of an object. */
1452 offset = ((const char *) p - entry->page) % object_size_table[entry->order];
1453 if (offset)
1454 {
1455 /* Here we've seen a char* which does not point to the beginning
1456 of an allocated object. We assume it points to the middle of
1457 a STRING_CST. */
1458 gcc_assert (offset == offsetof (struct tree_string, str));
1459 p = ((const char *) p) - offset;
1460 gt_ggc_mx_lang_tree_node (CONST_CAST (void *, p));
1461 return;
1462 }
1463
1464 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1465 word = bit / HOST_BITS_PER_LONG;
1466 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1467
1468 /* If the bit was previously set, skip it. */
1469 if (entry->in_use_p[word] & mask)
1470 return;
1471
1472 /* Otherwise set it, and decrement the free object count. */
1473 entry->in_use_p[word] |= mask;
1474 entry->num_free_objects -= 1;
1475
1476 if (GGC_DEBUG_LEVEL >= 4)
1477 fprintf (G.debug_file, "Marking %p\n", p);
1478
1479 return;
1480 }
1481
1482
1483 /* User-callable entry points for marking string X. */
1484
1485 void
1486 gt_ggc_mx (const char *& x)
1487 {
1488 gt_ggc_m_S (x);
1489 }
1490
1491 void
1492 gt_ggc_mx (unsigned char *& x)
1493 {
1494 gt_ggc_m_S (x);
1495 }
1496
1497 void
1498 gt_ggc_mx (unsigned char& x ATTRIBUTE_UNUSED)
1499 {
1500 }
1501
1502 /* If P is not marked, marks it and return false. Otherwise return true.
1503 P must have been allocated by the GC allocator; it mustn't point to
1504 static objects, stack variables, or memory allocated with malloc. */
1505
1506 int
1507 ggc_set_mark (const void *p)
1508 {
1509 page_entry *entry;
1510 unsigned bit, word;
1511 unsigned long mask;
1512
1513 /* Look up the page on which the object is alloced. If the object
1514 wasn't allocated by the collector, we'll probably die. */
1515 entry = lookup_page_table_entry (p);
1516 gcc_assert (entry);
1517
1518 /* Calculate the index of the object on the page; this is its bit
1519 position in the in_use_p bitmap. */
1520 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1521 word = bit / HOST_BITS_PER_LONG;
1522 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1523
1524 /* If the bit was previously set, skip it. */
1525 if (entry->in_use_p[word] & mask)
1526 return 1;
1527
1528 /* Otherwise set it, and decrement the free object count. */
1529 entry->in_use_p[word] |= mask;
1530 entry->num_free_objects -= 1;
1531
1532 if (GGC_DEBUG_LEVEL >= 4)
1533 fprintf (G.debug_file, "Marking %p\n", p);
1534
1535 return 0;
1536 }
1537
1538 /* Return 1 if P has been marked, zero otherwise.
1539 P must have been allocated by the GC allocator; it mustn't point to
1540 static objects, stack variables, or memory allocated with malloc. */
1541
1542 int
1543 ggc_marked_p (const void *p)
1544 {
1545 page_entry *entry;
1546 unsigned bit, word;
1547 unsigned long mask;
1548
1549 /* Look up the page on which the object is alloced. If the object
1550 wasn't allocated by the collector, we'll probably die. */
1551 entry = lookup_page_table_entry (p);
1552 gcc_assert (entry);
1553
1554 /* Calculate the index of the object on the page; this is its bit
1555 position in the in_use_p bitmap. */
1556 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1557 word = bit / HOST_BITS_PER_LONG;
1558 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1559
1560 return (entry->in_use_p[word] & mask) != 0;
1561 }
1562
1563 /* Return the size of the gc-able object P. */
1564
1565 size_t
1566 ggc_get_size (const void *p)
1567 {
1568 page_entry *pe = lookup_page_table_entry (p);
1569 return OBJECT_SIZE (pe->order);
1570 }
1571
1572 /* Release the memory for object P. */
1573
1574 void
1575 ggc_free (void *p)
1576 {
1577 page_entry *pe = lookup_page_table_entry (p);
1578 size_t order = pe->order;
1579 size_t size = OBJECT_SIZE (order);
1580
1581 if (GATHER_STATISTICS)
1582 ggc_free_overhead (p);
1583
1584 if (GGC_DEBUG_LEVEL >= 3)
1585 fprintf (G.debug_file,
1586 "Freeing object, actual size=%lu, at %p on %p\n",
1587 (unsigned long) size, p, (void *) pe);
1588
1589 #ifdef ENABLE_GC_CHECKING
1590 /* Poison the data, to indicate the data is garbage. */
1591 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (p, size));
1592 memset (p, 0xa5, size);
1593 #endif
1594 /* Let valgrind know the object is free. */
1595 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (p, size));
1596
1597 #ifdef ENABLE_GC_ALWAYS_COLLECT
1598 /* In the completely-anal-checking mode, we do *not* immediately free
1599 the data, but instead verify that the data is *actually* not
1600 reachable the next time we collect. */
1601 {
1602 struct free_object *fo = XNEW (struct free_object);
1603 fo->object = p;
1604 fo->next = G.free_object_list;
1605 G.free_object_list = fo;
1606 }
1607 #else
1608 {
1609 unsigned int bit_offset, word, bit;
1610
1611 G.allocated -= size;
1612
1613 /* Mark the object not-in-use. */
1614 bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
1615 word = bit_offset / HOST_BITS_PER_LONG;
1616 bit = bit_offset % HOST_BITS_PER_LONG;
1617 pe->in_use_p[word] &= ~(1UL << bit);
1618
1619 if (pe->num_free_objects++ == 0)
1620 {
1621 page_entry *p, *q;
1622
1623 /* If the page is completely full, then it's supposed to
1624 be after all pages that aren't. Since we've freed one
1625 object from a page that was full, we need to move the
1626 page to the head of the list.
1627
1628 PE is the node we want to move. Q is the previous node
1629 and P is the next node in the list. */
1630 q = pe->prev;
1631 if (q && q->num_free_objects == 0)
1632 {
1633 p = pe->next;
1634
1635 q->next = p;
1636
1637 /* If PE was at the end of the list, then Q becomes the
1638 new end of the list. If PE was not the end of the
1639 list, then we need to update the PREV field for P. */
1640 if (!p)
1641 G.page_tails[order] = q;
1642 else
1643 p->prev = q;
1644
1645 /* Move PE to the head of the list. */
1646 pe->next = G.pages[order];
1647 pe->prev = NULL;
1648 G.pages[order]->prev = pe;
1649 G.pages[order] = pe;
1650 }
1651
1652 /* Reset the hint bit to point to the only free object. */
1653 pe->next_bit_hint = bit_offset;
1654 }
1655 }
1656 #endif
1657 }
1658 \f
1659 /* Subroutine of init_ggc which computes the pair of numbers used to
1660 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1661
1662 This algorithm is taken from Granlund and Montgomery's paper
1663 "Division by Invariant Integers using Multiplication"
1664 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1665 constants). */
1666
1667 static void
1668 compute_inverse (unsigned order)
1669 {
1670 size_t size, inv;
1671 unsigned int e;
1672
1673 size = OBJECT_SIZE (order);
1674 e = 0;
1675 while (size % 2 == 0)
1676 {
1677 e++;
1678 size >>= 1;
1679 }
1680
1681 inv = size;
1682 while (inv * size != 1)
1683 inv = inv * (2 - inv*size);
1684
1685 DIV_MULT (order) = inv;
1686 DIV_SHIFT (order) = e;
1687 }
1688
1689 /* Initialize the ggc-mmap allocator. */
1690 void
1691 init_ggc (void)
1692 {
1693 unsigned order;
1694
1695 G.pagesize = getpagesize ();
1696 G.lg_pagesize = exact_log2 (G.pagesize);
1697
1698 #ifdef HAVE_MMAP_DEV_ZERO
1699 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1700 if (G.dev_zero_fd == -1)
1701 internal_error ("open /dev/zero: %m");
1702 #endif
1703
1704 #if 0
1705 G.debug_file = fopen ("ggc-mmap.debug", "w");
1706 #else
1707 G.debug_file = stdout;
1708 #endif
1709
1710 #ifdef USING_MMAP
1711 /* StunOS has an amazing off-by-one error for the first mmap allocation
1712 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1713 believe, is an unaligned page allocation, which would cause us to
1714 hork badly if we tried to use it. */
1715 {
1716 char *p = alloc_anon (NULL, G.pagesize, true);
1717 struct page_entry *e;
1718 if ((uintptr_t)p & (G.pagesize - 1))
1719 {
1720 /* How losing. Discard this one and try another. If we still
1721 can't get something useful, give up. */
1722
1723 p = alloc_anon (NULL, G.pagesize, true);
1724 gcc_assert (!((uintptr_t)p & (G.pagesize - 1)));
1725 }
1726
1727 /* We have a good page, might as well hold onto it... */
1728 e = XCNEW (struct page_entry);
1729 e->bytes = G.pagesize;
1730 e->page = p;
1731 e->next = G.free_pages;
1732 G.free_pages = e;
1733 }
1734 #endif
1735
1736 /* Initialize the object size table. */
1737 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1738 object_size_table[order] = (size_t) 1 << order;
1739 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1740 {
1741 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1742
1743 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1744 so that we're sure of getting aligned memory. */
1745 s = ROUND_UP (s, MAX_ALIGNMENT);
1746 object_size_table[order] = s;
1747 }
1748
1749 /* Initialize the objects-per-page and inverse tables. */
1750 for (order = 0; order < NUM_ORDERS; ++order)
1751 {
1752 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1753 if (objects_per_page_table[order] == 0)
1754 objects_per_page_table[order] = 1;
1755 compute_inverse (order);
1756 }
1757
1758 /* Reset the size_lookup array to put appropriately sized objects in
1759 the special orders. All objects bigger than the previous power
1760 of two, but no greater than the special size, should go in the
1761 new order. */
1762 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1763 {
1764 int o;
1765 int i;
1766
1767 i = OBJECT_SIZE (order);
1768 if (i >= NUM_SIZE_LOOKUP)
1769 continue;
1770
1771 for (o = size_lookup[i]; o == size_lookup [i]; --i)
1772 size_lookup[i] = order;
1773 }
1774
1775 G.depth_in_use = 0;
1776 G.depth_max = 10;
1777 G.depth = XNEWVEC (unsigned int, G.depth_max);
1778
1779 G.by_depth_in_use = 0;
1780 G.by_depth_max = INITIAL_PTE_COUNT;
1781 G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
1782 G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
1783 }
1784
1785 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1786 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1787
1788 static void
1789 ggc_recalculate_in_use_p (page_entry *p)
1790 {
1791 unsigned int i;
1792 size_t num_objects;
1793
1794 /* Because the past-the-end bit in in_use_p is always set, we
1795 pretend there is one additional object. */
1796 num_objects = OBJECTS_IN_PAGE (p) + 1;
1797
1798 /* Reset the free object count. */
1799 p->num_free_objects = num_objects;
1800
1801 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
1802 for (i = 0;
1803 i < CEIL (BITMAP_SIZE (num_objects),
1804 sizeof (*p->in_use_p));
1805 ++i)
1806 {
1807 unsigned long j;
1808
1809 /* Something is in use if it is marked, or if it was in use in a
1810 context further down the context stack. */
1811 p->in_use_p[i] |= save_in_use_p (p)[i];
1812
1813 /* Decrement the free object count for every object allocated. */
1814 for (j = p->in_use_p[i]; j; j >>= 1)
1815 p->num_free_objects -= (j & 1);
1816 }
1817
1818 gcc_assert (p->num_free_objects < num_objects);
1819 }
1820 \f
1821 /* Unmark all objects. */
1822
1823 static void
1824 clear_marks (void)
1825 {
1826 unsigned order;
1827
1828 for (order = 2; order < NUM_ORDERS; order++)
1829 {
1830 page_entry *p;
1831
1832 for (p = G.pages[order]; p != NULL; p = p->next)
1833 {
1834 size_t num_objects = OBJECTS_IN_PAGE (p);
1835 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1836
1837 /* The data should be page-aligned. */
1838 gcc_assert (!((uintptr_t) p->page & (G.pagesize - 1)));
1839
1840 /* Pages that aren't in the topmost context are not collected;
1841 nevertheless, we need their in-use bit vectors to store GC
1842 marks. So, back them up first. */
1843 if (p->context_depth < G.context_depth)
1844 {
1845 if (! save_in_use_p (p))
1846 save_in_use_p (p) = XNEWVAR (unsigned long, bitmap_size);
1847 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
1848 }
1849
1850 /* Reset reset the number of free objects and clear the
1851 in-use bits. These will be adjusted by mark_obj. */
1852 p->num_free_objects = num_objects;
1853 memset (p->in_use_p, 0, bitmap_size);
1854
1855 /* Make sure the one-past-the-end bit is always set. */
1856 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1857 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1858 }
1859 }
1860 }
1861
1862 /* Check if any blocks with a registered finalizer have become unmarked. If so
1863 run the finalizer and unregister it because the block is about to be freed.
1864 Note that no garantee is made about what order finalizers will run in so
1865 touching other objects in gc memory is extremely unwise. */
1866
1867 static void
1868 ggc_handle_finalizers ()
1869 {
1870 if (G.context_depth != 0)
1871 return;
1872
1873 unsigned length = G.finalizers.length ();
1874 for (unsigned int i = 0; i < length;)
1875 {
1876 finalizer &f = G.finalizers[i];
1877 if (!ggc_marked_p (f.addr ()))
1878 {
1879 f.call ();
1880 G.finalizers.unordered_remove (i);
1881 length--;
1882 }
1883 else
1884 i++;
1885 }
1886
1887
1888 length = G.vec_finalizers.length ();
1889 for (unsigned int i = 0; i < length;)
1890 {
1891 vec_finalizer &f = G.vec_finalizers[i];
1892 if (!ggc_marked_p (f.addr ()))
1893 {
1894 f.call ();
1895 G.vec_finalizers.unordered_remove (i);
1896 length--;
1897 }
1898 else
1899 i++;
1900 }
1901 }
1902
1903 /* Free all empty pages. Partially empty pages need no attention
1904 because the `mark' bit doubles as an `unused' bit. */
1905
1906 static void
1907 sweep_pages (void)
1908 {
1909 unsigned order;
1910
1911 for (order = 2; order < NUM_ORDERS; order++)
1912 {
1913 /* The last page-entry to consider, regardless of entries
1914 placed at the end of the list. */
1915 page_entry * const last = G.page_tails[order];
1916
1917 size_t num_objects;
1918 size_t live_objects;
1919 page_entry *p, *previous;
1920 int done;
1921
1922 p = G.pages[order];
1923 if (p == NULL)
1924 continue;
1925
1926 previous = NULL;
1927 do
1928 {
1929 page_entry *next = p->next;
1930
1931 /* Loop until all entries have been examined. */
1932 done = (p == last);
1933
1934 num_objects = OBJECTS_IN_PAGE (p);
1935
1936 /* Add all live objects on this page to the count of
1937 allocated memory. */
1938 live_objects = num_objects - p->num_free_objects;
1939
1940 G.allocated += OBJECT_SIZE (order) * live_objects;
1941
1942 /* Only objects on pages in the topmost context should get
1943 collected. */
1944 if (p->context_depth < G.context_depth)
1945 ;
1946
1947 /* Remove the page if it's empty. */
1948 else if (live_objects == 0)
1949 {
1950 /* If P was the first page in the list, then NEXT
1951 becomes the new first page in the list, otherwise
1952 splice P out of the forward pointers. */
1953 if (! previous)
1954 G.pages[order] = next;
1955 else
1956 previous->next = next;
1957
1958 /* Splice P out of the back pointers too. */
1959 if (next)
1960 next->prev = previous;
1961
1962 /* Are we removing the last element? */
1963 if (p == G.page_tails[order])
1964 G.page_tails[order] = previous;
1965 free_page (p);
1966 p = previous;
1967 }
1968
1969 /* If the page is full, move it to the end. */
1970 else if (p->num_free_objects == 0)
1971 {
1972 /* Don't move it if it's already at the end. */
1973 if (p != G.page_tails[order])
1974 {
1975 /* Move p to the end of the list. */
1976 p->next = NULL;
1977 p->prev = G.page_tails[order];
1978 G.page_tails[order]->next = p;
1979
1980 /* Update the tail pointer... */
1981 G.page_tails[order] = p;
1982
1983 /* ... and the head pointer, if necessary. */
1984 if (! previous)
1985 G.pages[order] = next;
1986 else
1987 previous->next = next;
1988
1989 /* And update the backpointer in NEXT if necessary. */
1990 if (next)
1991 next->prev = previous;
1992
1993 p = previous;
1994 }
1995 }
1996
1997 /* If we've fallen through to here, it's a page in the
1998 topmost context that is neither full nor empty. Such a
1999 page must precede pages at lesser context depth in the
2000 list, so move it to the head. */
2001 else if (p != G.pages[order])
2002 {
2003 previous->next = p->next;
2004
2005 /* Update the backchain in the next node if it exists. */
2006 if (p->next)
2007 p->next->prev = previous;
2008
2009 /* Move P to the head of the list. */
2010 p->next = G.pages[order];
2011 p->prev = NULL;
2012 G.pages[order]->prev = p;
2013
2014 /* Update the head pointer. */
2015 G.pages[order] = p;
2016
2017 /* Are we moving the last element? */
2018 if (G.page_tails[order] == p)
2019 G.page_tails[order] = previous;
2020 p = previous;
2021 }
2022
2023 previous = p;
2024 p = next;
2025 }
2026 while (! done);
2027
2028 /* Now, restore the in_use_p vectors for any pages from contexts
2029 other than the current one. */
2030 for (p = G.pages[order]; p; p = p->next)
2031 if (p->context_depth != G.context_depth)
2032 ggc_recalculate_in_use_p (p);
2033 }
2034 }
2035
2036 #ifdef ENABLE_GC_CHECKING
2037 /* Clobber all free objects. */
2038
2039 static void
2040 poison_pages (void)
2041 {
2042 unsigned order;
2043
2044 for (order = 2; order < NUM_ORDERS; order++)
2045 {
2046 size_t size = OBJECT_SIZE (order);
2047 page_entry *p;
2048
2049 for (p = G.pages[order]; p != NULL; p = p->next)
2050 {
2051 size_t num_objects;
2052 size_t i;
2053
2054 if (p->context_depth != G.context_depth)
2055 /* Since we don't do any collection for pages in pushed
2056 contexts, there's no need to do any poisoning. And
2057 besides, the IN_USE_P array isn't valid until we pop
2058 contexts. */
2059 continue;
2060
2061 num_objects = OBJECTS_IN_PAGE (p);
2062 for (i = 0; i < num_objects; i++)
2063 {
2064 size_t word, bit;
2065 word = i / HOST_BITS_PER_LONG;
2066 bit = i % HOST_BITS_PER_LONG;
2067 if (((p->in_use_p[word] >> bit) & 1) == 0)
2068 {
2069 char *object = p->page + i * size;
2070
2071 /* Keep poison-by-write when we expect to use Valgrind,
2072 so the exact same memory semantics is kept, in case
2073 there are memory errors. We override this request
2074 below. */
2075 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (object,
2076 size));
2077 memset (object, 0xa5, size);
2078
2079 /* Drop the handle to avoid handle leak. */
2080 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (object, size));
2081 }
2082 }
2083 }
2084 }
2085 }
2086 #else
2087 #define poison_pages()
2088 #endif
2089
2090 #ifdef ENABLE_GC_ALWAYS_COLLECT
2091 /* Validate that the reportedly free objects actually are. */
2092
2093 static void
2094 validate_free_objects (void)
2095 {
2096 struct free_object *f, *next, *still_free = NULL;
2097
2098 for (f = G.free_object_list; f ; f = next)
2099 {
2100 page_entry *pe = lookup_page_table_entry (f->object);
2101 size_t bit, word;
2102
2103 bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
2104 word = bit / HOST_BITS_PER_LONG;
2105 bit = bit % HOST_BITS_PER_LONG;
2106 next = f->next;
2107
2108 /* Make certain it isn't visible from any root. Notice that we
2109 do this check before sweep_pages merges save_in_use_p. */
2110 gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
2111
2112 /* If the object comes from an outer context, then retain the
2113 free_object entry, so that we can verify that the address
2114 isn't live on the stack in some outer context. */
2115 if (pe->context_depth != G.context_depth)
2116 {
2117 f->next = still_free;
2118 still_free = f;
2119 }
2120 else
2121 free (f);
2122 }
2123
2124 G.free_object_list = still_free;
2125 }
2126 #else
2127 #define validate_free_objects()
2128 #endif
2129
2130 /* Top level mark-and-sweep routine. */
2131
2132 void
2133 ggc_collect (void)
2134 {
2135 /* Avoid frequent unnecessary work by skipping collection if the
2136 total allocations haven't expanded much since the last
2137 collection. */
2138 float allocated_last_gc =
2139 MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
2140
2141 float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
2142
2143 if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
2144 return;
2145
2146 timevar_push (TV_GC);
2147 if (!quiet_flag)
2148 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
2149 if (GGC_DEBUG_LEVEL >= 2)
2150 fprintf (G.debug_file, "BEGIN COLLECTING\n");
2151
2152 /* Zero the total allocated bytes. This will be recalculated in the
2153 sweep phase. */
2154 G.allocated = 0;
2155
2156 /* Release the pages we freed the last time we collected, but didn't
2157 reuse in the interim. */
2158 release_pages ();
2159
2160 /* Indicate that we've seen collections at this context depth. */
2161 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
2162
2163 invoke_plugin_callbacks (PLUGIN_GGC_START, NULL);
2164
2165 clear_marks ();
2166 ggc_mark_roots ();
2167 ggc_handle_finalizers ();
2168
2169 if (GATHER_STATISTICS)
2170 ggc_prune_overhead_list ();
2171
2172 poison_pages ();
2173 validate_free_objects ();
2174 sweep_pages ();
2175
2176 G.allocated_last_gc = G.allocated;
2177
2178 invoke_plugin_callbacks (PLUGIN_GGC_END, NULL);
2179
2180 timevar_pop (TV_GC);
2181
2182 if (!quiet_flag)
2183 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
2184 if (GGC_DEBUG_LEVEL >= 2)
2185 fprintf (G.debug_file, "END COLLECTING\n");
2186 }
2187
2188 /* Assume that all GGC memory is reachable and grow the limits for next collection.
2189 With checking, trigger GGC so -Q compilation outputs how much of memory really is
2190 reachable. */
2191
2192 void
2193 ggc_grow (void)
2194 {
2195 #ifndef ENABLE_CHECKING
2196 G.allocated_last_gc = MAX (G.allocated_last_gc,
2197 G.allocated);
2198 #else
2199 ggc_collect ();
2200 #endif
2201 if (!quiet_flag)
2202 fprintf (stderr, " {GC start %luk} ", (unsigned long) G.allocated / 1024);
2203 }
2204
2205 /* Print allocation statistics. */
2206 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
2207 ? (x) \
2208 : ((x) < 1024*1024*10 \
2209 ? (x) / 1024 \
2210 : (x) / (1024*1024))))
2211 #define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
2212
2213 void
2214 ggc_print_statistics (void)
2215 {
2216 struct ggc_statistics stats;
2217 unsigned int i;
2218 size_t total_overhead = 0;
2219
2220 /* Clear the statistics. */
2221 memset (&stats, 0, sizeof (stats));
2222
2223 /* Make sure collection will really occur. */
2224 G.allocated_last_gc = 0;
2225
2226 /* Collect and print the statistics common across collectors. */
2227 ggc_print_common_statistics (stderr, &stats);
2228
2229 /* Release free pages so that we will not count the bytes allocated
2230 there as part of the total allocated memory. */
2231 release_pages ();
2232
2233 /* Collect some information about the various sizes of
2234 allocation. */
2235 fprintf (stderr,
2236 "Memory still allocated at the end of the compilation process\n");
2237 fprintf (stderr, "%-5s %10s %10s %10s\n",
2238 "Size", "Allocated", "Used", "Overhead");
2239 for (i = 0; i < NUM_ORDERS; ++i)
2240 {
2241 page_entry *p;
2242 size_t allocated;
2243 size_t in_use;
2244 size_t overhead;
2245
2246 /* Skip empty entries. */
2247 if (!G.pages[i])
2248 continue;
2249
2250 overhead = allocated = in_use = 0;
2251
2252 /* Figure out the total number of bytes allocated for objects of
2253 this size, and how many of them are actually in use. Also figure
2254 out how much memory the page table is using. */
2255 for (p = G.pages[i]; p; p = p->next)
2256 {
2257 allocated += p->bytes;
2258 in_use +=
2259 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
2260
2261 overhead += (sizeof (page_entry) - sizeof (long)
2262 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
2263 }
2264 fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n",
2265 (unsigned long) OBJECT_SIZE (i),
2266 SCALE (allocated), STAT_LABEL (allocated),
2267 SCALE (in_use), STAT_LABEL (in_use),
2268 SCALE (overhead), STAT_LABEL (overhead));
2269 total_overhead += overhead;
2270 }
2271 fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
2272 SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped),
2273 SCALE (G.allocated), STAT_LABEL (G.allocated),
2274 SCALE (total_overhead), STAT_LABEL (total_overhead));
2275
2276 if (GATHER_STATISTICS)
2277 {
2278 fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
2279
2280 fprintf (stderr, "Total Overhead: %10" HOST_LONG_LONG_FORMAT "d\n",
2281 G.stats.total_overhead);
2282 fprintf (stderr, "Total Allocated: %10" HOST_LONG_LONG_FORMAT "d\n",
2283 G.stats.total_allocated);
2284
2285 fprintf (stderr, "Total Overhead under 32B: %10" HOST_LONG_LONG_FORMAT "d\n",
2286 G.stats.total_overhead_under32);
2287 fprintf (stderr, "Total Allocated under 32B: %10" HOST_LONG_LONG_FORMAT "d\n",
2288 G.stats.total_allocated_under32);
2289 fprintf (stderr, "Total Overhead under 64B: %10" HOST_LONG_LONG_FORMAT "d\n",
2290 G.stats.total_overhead_under64);
2291 fprintf (stderr, "Total Allocated under 64B: %10" HOST_LONG_LONG_FORMAT "d\n",
2292 G.stats.total_allocated_under64);
2293 fprintf (stderr, "Total Overhead under 128B: %10" HOST_LONG_LONG_FORMAT "d\n",
2294 G.stats.total_overhead_under128);
2295 fprintf (stderr, "Total Allocated under 128B: %10" HOST_LONG_LONG_FORMAT "d\n",
2296 G.stats.total_allocated_under128);
2297
2298 for (i = 0; i < NUM_ORDERS; i++)
2299 if (G.stats.total_allocated_per_order[i])
2300 {
2301 fprintf (stderr, "Total Overhead page size %7lu: %10" HOST_LONG_LONG_FORMAT "d\n",
2302 (unsigned long) OBJECT_SIZE (i),
2303 G.stats.total_overhead_per_order[i]);
2304 fprintf (stderr, "Total Allocated page size %7lu: %10" HOST_LONG_LONG_FORMAT "d\n",
2305 (unsigned long) OBJECT_SIZE (i),
2306 G.stats.total_allocated_per_order[i]);
2307 }
2308 }
2309 }
2310 \f
2311 struct ggc_pch_ondisk
2312 {
2313 unsigned totals[NUM_ORDERS];
2314 };
2315
2316 struct ggc_pch_data
2317 {
2318 struct ggc_pch_ondisk d;
2319 uintptr_t base[NUM_ORDERS];
2320 size_t written[NUM_ORDERS];
2321 };
2322
2323 struct ggc_pch_data *
2324 init_ggc_pch (void)
2325 {
2326 return XCNEW (struct ggc_pch_data);
2327 }
2328
2329 void
2330 ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2331 size_t size, bool is_string ATTRIBUTE_UNUSED)
2332 {
2333 unsigned order;
2334
2335 if (size < NUM_SIZE_LOOKUP)
2336 order = size_lookup[size];
2337 else
2338 {
2339 order = 10;
2340 while (size > OBJECT_SIZE (order))
2341 order++;
2342 }
2343
2344 d->d.totals[order]++;
2345 }
2346
2347 size_t
2348 ggc_pch_total_size (struct ggc_pch_data *d)
2349 {
2350 size_t a = 0;
2351 unsigned i;
2352
2353 for (i = 0; i < NUM_ORDERS; i++)
2354 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
2355 return a;
2356 }
2357
2358 void
2359 ggc_pch_this_base (struct ggc_pch_data *d, void *base)
2360 {
2361 uintptr_t a = (uintptr_t) base;
2362 unsigned i;
2363
2364 for (i = 0; i < NUM_ORDERS; i++)
2365 {
2366 d->base[i] = a;
2367 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
2368 }
2369 }
2370
2371
2372 char *
2373 ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2374 size_t size, bool is_string ATTRIBUTE_UNUSED)
2375 {
2376 unsigned order;
2377 char *result;
2378
2379 if (size < NUM_SIZE_LOOKUP)
2380 order = size_lookup[size];
2381 else
2382 {
2383 order = 10;
2384 while (size > OBJECT_SIZE (order))
2385 order++;
2386 }
2387
2388 result = (char *) d->base[order];
2389 d->base[order] += OBJECT_SIZE (order);
2390 return result;
2391 }
2392
2393 void
2394 ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2395 FILE *f ATTRIBUTE_UNUSED)
2396 {
2397 /* Nothing to do. */
2398 }
2399
2400 void
2401 ggc_pch_write_object (struct ggc_pch_data *d,
2402 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
2403 size_t size, bool is_string ATTRIBUTE_UNUSED)
2404 {
2405 unsigned order;
2406 static const char emptyBytes[256] = { 0 };
2407
2408 if (size < NUM_SIZE_LOOKUP)
2409 order = size_lookup[size];
2410 else
2411 {
2412 order = 10;
2413 while (size > OBJECT_SIZE (order))
2414 order++;
2415 }
2416
2417 if (fwrite (x, size, 1, f) != 1)
2418 fatal_error ("can%'t write PCH file: %m");
2419
2420 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2421 object out to OBJECT_SIZE(order). This happens for strings. */
2422
2423 if (size != OBJECT_SIZE (order))
2424 {
2425 unsigned padding = OBJECT_SIZE (order) - size;
2426
2427 /* To speed small writes, we use a nulled-out array that's larger
2428 than most padding requests as the source for our null bytes. This
2429 permits us to do the padding with fwrite() rather than fseek(), and
2430 limits the chance the OS may try to flush any outstanding writes. */
2431 if (padding <= sizeof (emptyBytes))
2432 {
2433 if (fwrite (emptyBytes, 1, padding, f) != padding)
2434 fatal_error ("can%'t write PCH file");
2435 }
2436 else
2437 {
2438 /* Larger than our buffer? Just default to fseek. */
2439 if (fseek (f, padding, SEEK_CUR) != 0)
2440 fatal_error ("can%'t write PCH file");
2441 }
2442 }
2443
2444 d->written[order]++;
2445 if (d->written[order] == d->d.totals[order]
2446 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2447 G.pagesize),
2448 SEEK_CUR) != 0)
2449 fatal_error ("can%'t write PCH file: %m");
2450 }
2451
2452 void
2453 ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
2454 {
2455 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
2456 fatal_error ("can%'t write PCH file: %m");
2457 free (d);
2458 }
2459
2460 /* Move the PCH PTE entries just added to the end of by_depth, to the
2461 front. */
2462
2463 static void
2464 move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
2465 {
2466 unsigned i;
2467
2468 /* First, we swap the new entries to the front of the varrays. */
2469 page_entry **new_by_depth;
2470 unsigned long **new_save_in_use;
2471
2472 new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
2473 new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
2474
2475 memcpy (&new_by_depth[0],
2476 &G.by_depth[count_old_page_tables],
2477 count_new_page_tables * sizeof (void *));
2478 memcpy (&new_by_depth[count_new_page_tables],
2479 &G.by_depth[0],
2480 count_old_page_tables * sizeof (void *));
2481 memcpy (&new_save_in_use[0],
2482 &G.save_in_use[count_old_page_tables],
2483 count_new_page_tables * sizeof (void *));
2484 memcpy (&new_save_in_use[count_new_page_tables],
2485 &G.save_in_use[0],
2486 count_old_page_tables * sizeof (void *));
2487
2488 free (G.by_depth);
2489 free (G.save_in_use);
2490
2491 G.by_depth = new_by_depth;
2492 G.save_in_use = new_save_in_use;
2493
2494 /* Now update all the index_by_depth fields. */
2495 for (i = G.by_depth_in_use; i > 0; --i)
2496 {
2497 page_entry *p = G.by_depth[i-1];
2498 p->index_by_depth = i-1;
2499 }
2500
2501 /* And last, we update the depth pointers in G.depth. The first
2502 entry is already 0, and context 0 entries always start at index
2503 0, so there is nothing to update in the first slot. We need a
2504 second slot, only if we have old ptes, and if we do, they start
2505 at index count_new_page_tables. */
2506 if (count_old_page_tables)
2507 push_depth (count_new_page_tables);
2508 }
2509
2510 void
2511 ggc_pch_read (FILE *f, void *addr)
2512 {
2513 struct ggc_pch_ondisk d;
2514 unsigned i;
2515 char *offs = (char *) addr;
2516 unsigned long count_old_page_tables;
2517 unsigned long count_new_page_tables;
2518
2519 count_old_page_tables = G.by_depth_in_use;
2520
2521 /* We've just read in a PCH file. So, every object that used to be
2522 allocated is now free. */
2523 clear_marks ();
2524 #ifdef ENABLE_GC_CHECKING
2525 poison_pages ();
2526 #endif
2527 /* Since we free all the allocated objects, the free list becomes
2528 useless. Validate it now, which will also clear it. */
2529 validate_free_objects ();
2530
2531 /* No object read from a PCH file should ever be freed. So, set the
2532 context depth to 1, and set the depth of all the currently-allocated
2533 pages to be 1 too. PCH pages will have depth 0. */
2534 gcc_assert (!G.context_depth);
2535 G.context_depth = 1;
2536 for (i = 0; i < NUM_ORDERS; i++)
2537 {
2538 page_entry *p;
2539 for (p = G.pages[i]; p != NULL; p = p->next)
2540 p->context_depth = G.context_depth;
2541 }
2542
2543 /* Allocate the appropriate page-table entries for the pages read from
2544 the PCH file. */
2545 if (fread (&d, sizeof (d), 1, f) != 1)
2546 fatal_error ("can%'t read PCH file: %m");
2547
2548 for (i = 0; i < NUM_ORDERS; i++)
2549 {
2550 struct page_entry *entry;
2551 char *pte;
2552 size_t bytes;
2553 size_t num_objs;
2554 size_t j;
2555
2556 if (d.totals[i] == 0)
2557 continue;
2558
2559 bytes = PAGE_ALIGN (d.totals[i] * OBJECT_SIZE (i));
2560 num_objs = bytes / OBJECT_SIZE (i);
2561 entry = XCNEWVAR (struct page_entry, (sizeof (struct page_entry)
2562 - sizeof (long)
2563 + BITMAP_SIZE (num_objs + 1)));
2564 entry->bytes = bytes;
2565 entry->page = offs;
2566 entry->context_depth = 0;
2567 offs += bytes;
2568 entry->num_free_objects = 0;
2569 entry->order = i;
2570
2571 for (j = 0;
2572 j + HOST_BITS_PER_LONG <= num_objs + 1;
2573 j += HOST_BITS_PER_LONG)
2574 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2575 for (; j < num_objs + 1; j++)
2576 entry->in_use_p[j / HOST_BITS_PER_LONG]
2577 |= 1L << (j % HOST_BITS_PER_LONG);
2578
2579 for (pte = entry->page;
2580 pte < entry->page + entry->bytes;
2581 pte += G.pagesize)
2582 set_page_table_entry (pte, entry);
2583
2584 if (G.page_tails[i] != NULL)
2585 G.page_tails[i]->next = entry;
2586 else
2587 G.pages[i] = entry;
2588 G.page_tails[i] = entry;
2589
2590 /* We start off by just adding all the new information to the
2591 end of the varrays, later, we will move the new information
2592 to the front of the varrays, as the PCH page tables are at
2593 context 0. */
2594 push_by_depth (entry, 0);
2595 }
2596
2597 /* Now, we update the various data structures that speed page table
2598 handling. */
2599 count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2600
2601 move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2602
2603 /* Update the statistics. */
2604 G.allocated = G.allocated_last_gc = offs - (char *)addr;
2605 }