target-supports.exp (check_effective_target_tls): Compile test stubs using ${tool...
[gcc.git] / gcc / ggc-page.c
1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "toplev.h"
30 #include "flags.h"
31 #include "ggc.h"
32 #include "timevar.h"
33 #include "params.h"
34 #include "tree-flow.h"
35 #ifdef ENABLE_VALGRIND_CHECKING
36 # ifdef HAVE_VALGRIND_MEMCHECK_H
37 # include <valgrind/memcheck.h>
38 # elif defined HAVE_MEMCHECK_H
39 # include <memcheck.h>
40 # else
41 # include <valgrind.h>
42 # endif
43 #else
44 /* Avoid #ifdef:s when we can help it. */
45 #define VALGRIND_DISCARD(x)
46 #endif
47
48 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
49 file open. Prefer either to valloc. */
50 #ifdef HAVE_MMAP_ANON
51 # undef HAVE_MMAP_DEV_ZERO
52
53 # include <sys/mman.h>
54 # ifndef MAP_FAILED
55 # define MAP_FAILED -1
56 # endif
57 # if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
58 # define MAP_ANONYMOUS MAP_ANON
59 # endif
60 # define USING_MMAP
61
62 #endif
63
64 #ifdef HAVE_MMAP_DEV_ZERO
65
66 # include <sys/mman.h>
67 # ifndef MAP_FAILED
68 # define MAP_FAILED -1
69 # endif
70 # define USING_MMAP
71
72 #endif
73
74 #ifndef USING_MMAP
75 #define USING_MALLOC_PAGE_GROUPS
76 #endif
77
78 /* Strategy:
79
80 This garbage-collecting allocator allocates objects on one of a set
81 of pages. Each page can allocate objects of a single size only;
82 available sizes are powers of two starting at four bytes. The size
83 of an allocation request is rounded up to the next power of two
84 (`order'), and satisfied from the appropriate page.
85
86 Each page is recorded in a page-entry, which also maintains an
87 in-use bitmap of object positions on the page. This allows the
88 allocation state of a particular object to be flipped without
89 touching the page itself.
90
91 Each page-entry also has a context depth, which is used to track
92 pushing and popping of allocation contexts. Only objects allocated
93 in the current (highest-numbered) context may be collected.
94
95 Page entries are arranged in an array of singly-linked lists. The
96 array is indexed by the allocation size, in bits, of the pages on
97 it; i.e. all pages on a list allocate objects of the same size.
98 Pages are ordered on the list such that all non-full pages precede
99 all full pages, with non-full pages arranged in order of decreasing
100 context depth.
101
102 Empty pages (of all orders) are kept on a single page cache list,
103 and are considered first when new pages are required; they are
104 deallocated at the start of the next collection if they haven't
105 been recycled by then. */
106
107 /* Define GGC_DEBUG_LEVEL to print debugging information.
108 0: No debugging output.
109 1: GC statistics only.
110 2: Page-entry allocations/deallocations as well.
111 3: Object allocations as well.
112 4: Object marks as well. */
113 #define GGC_DEBUG_LEVEL (0)
114 \f
115 #ifndef HOST_BITS_PER_PTR
116 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
117 #endif
118
119 \f
120 /* A two-level tree is used to look up the page-entry for a given
121 pointer. Two chunks of the pointer's bits are extracted to index
122 the first and second levels of the tree, as follows:
123
124 HOST_PAGE_SIZE_BITS
125 32 | |
126 msb +----------------+----+------+------+ lsb
127 | | |
128 PAGE_L1_BITS |
129 | |
130 PAGE_L2_BITS
131
132 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
133 pages are aligned on system page boundaries. The next most
134 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
135 index values in the lookup table, respectively.
136
137 For 32-bit architectures and the settings below, there are no
138 leftover bits. For architectures with wider pointers, the lookup
139 tree points to a list of pages, which must be scanned to find the
140 correct one. */
141
142 #define PAGE_L1_BITS (8)
143 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
144 #define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
145 #define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
146
147 #define LOOKUP_L1(p) \
148 (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
149
150 #define LOOKUP_L2(p) \
151 (((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
152
153 /* The number of objects per allocation page, for objects on a page of
154 the indicated ORDER. */
155 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
156
157 /* The number of objects in P. */
158 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
159
160 /* The size of an object on a page of the indicated ORDER. */
161 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
162
163 /* For speed, we avoid doing a general integer divide to locate the
164 offset in the allocation bitmap, by precalculating numbers M, S
165 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
166 within the page which is evenly divisible by the object size Z. */
167 #define DIV_MULT(ORDER) inverse_table[ORDER].mult
168 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
169 #define OFFSET_TO_BIT(OFFSET, ORDER) \
170 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
171
172 /* The number of extra orders, not corresponding to power-of-two sized
173 objects. */
174
175 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
176
177 #define RTL_SIZE(NSLOTS) \
178 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
179
180 #define TREE_EXP_SIZE(OPS) \
181 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
182
183 /* The Ith entry is the maximum size of an object to be stored in the
184 Ith extra order. Adding a new entry to this array is the *only*
185 thing you need to do to add a new special allocation size. */
186
187 static const size_t extra_order_size_table[] = {
188 sizeof (struct stmt_ann_d),
189 sizeof (struct var_ann_d),
190 sizeof (struct tree_decl_non_common),
191 sizeof (struct tree_field_decl),
192 sizeof (struct tree_parm_decl),
193 sizeof (struct tree_var_decl),
194 sizeof (struct tree_list),
195 sizeof (struct tree_ssa_name),
196 sizeof (struct function),
197 sizeof (struct basic_block_def),
198 sizeof (bitmap_element),
199 /* PHI nodes with one to three arguments are already covered by the
200 above sizes. */
201 sizeof (struct tree_phi_node) + sizeof (struct phi_arg_d) * 3,
202 TREE_EXP_SIZE (2),
203 RTL_SIZE (2), /* MEM, PLUS, etc. */
204 RTL_SIZE (9), /* INSN */
205 };
206
207 /* The total number of orders. */
208
209 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
210
211 /* We use this structure to determine the alignment required for
212 allocations. For power-of-two sized allocations, that's not a
213 problem, but it does matter for odd-sized allocations. */
214
215 struct max_alignment {
216 char c;
217 union {
218 HOST_WIDEST_INT i;
219 long double d;
220 } u;
221 };
222
223 /* The biggest alignment required. */
224
225 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
226
227 /* Compute the smallest nonnegative number which when added to X gives
228 a multiple of F. */
229
230 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
231
232 /* Compute the smallest multiple of F that is >= X. */
233
234 #define ROUND_UP(x, f) (CEIL (x, f) * (f))
235
236 /* The Ith entry is the number of objects on a page or order I. */
237
238 static unsigned objects_per_page_table[NUM_ORDERS];
239
240 /* The Ith entry is the size of an object on a page of order I. */
241
242 static size_t object_size_table[NUM_ORDERS];
243
244 /* The Ith entry is a pair of numbers (mult, shift) such that
245 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
246 for all k evenly divisible by OBJECT_SIZE(I). */
247
248 static struct
249 {
250 size_t mult;
251 unsigned int shift;
252 }
253 inverse_table[NUM_ORDERS];
254
255 /* A page_entry records the status of an allocation page. This
256 structure is dynamically sized to fit the bitmap in_use_p. */
257 typedef struct page_entry
258 {
259 /* The next page-entry with objects of the same size, or NULL if
260 this is the last page-entry. */
261 struct page_entry *next;
262
263 /* The previous page-entry with objects of the same size, or NULL if
264 this is the first page-entry. The PREV pointer exists solely to
265 keep the cost of ggc_free manageable. */
266 struct page_entry *prev;
267
268 /* The number of bytes allocated. (This will always be a multiple
269 of the host system page size.) */
270 size_t bytes;
271
272 /* The address at which the memory is allocated. */
273 char *page;
274
275 #ifdef USING_MALLOC_PAGE_GROUPS
276 /* Back pointer to the page group this page came from. */
277 struct page_group *group;
278 #endif
279
280 /* This is the index in the by_depth varray where this page table
281 can be found. */
282 unsigned long index_by_depth;
283
284 /* Context depth of this page. */
285 unsigned short context_depth;
286
287 /* The number of free objects remaining on this page. */
288 unsigned short num_free_objects;
289
290 /* A likely candidate for the bit position of a free object for the
291 next allocation from this page. */
292 unsigned short next_bit_hint;
293
294 /* The lg of size of objects allocated from this page. */
295 unsigned char order;
296
297 /* A bit vector indicating whether or not objects are in use. The
298 Nth bit is one if the Nth object on this page is allocated. This
299 array is dynamically sized. */
300 unsigned long in_use_p[1];
301 } page_entry;
302
303 #ifdef USING_MALLOC_PAGE_GROUPS
304 /* A page_group describes a large allocation from malloc, from which
305 we parcel out aligned pages. */
306 typedef struct page_group
307 {
308 /* A linked list of all extant page groups. */
309 struct page_group *next;
310
311 /* The address we received from malloc. */
312 char *allocation;
313
314 /* The size of the block. */
315 size_t alloc_size;
316
317 /* A bitmask of pages in use. */
318 unsigned int in_use;
319 } page_group;
320 #endif
321
322 #if HOST_BITS_PER_PTR <= 32
323
324 /* On 32-bit hosts, we use a two level page table, as pictured above. */
325 typedef page_entry **page_table[PAGE_L1_SIZE];
326
327 #else
328
329 /* On 64-bit hosts, we use the same two level page tables plus a linked
330 list that disambiguates the top 32-bits. There will almost always be
331 exactly one entry in the list. */
332 typedef struct page_table_chain
333 {
334 struct page_table_chain *next;
335 size_t high_bits;
336 page_entry **table[PAGE_L1_SIZE];
337 } *page_table;
338
339 #endif
340
341 /* The rest of the global variables. */
342 static struct globals
343 {
344 /* The Nth element in this array is a page with objects of size 2^N.
345 If there are any pages with free objects, they will be at the
346 head of the list. NULL if there are no page-entries for this
347 object size. */
348 page_entry *pages[NUM_ORDERS];
349
350 /* The Nth element in this array is the last page with objects of
351 size 2^N. NULL if there are no page-entries for this object
352 size. */
353 page_entry *page_tails[NUM_ORDERS];
354
355 /* Lookup table for associating allocation pages with object addresses. */
356 page_table lookup;
357
358 /* The system's page size. */
359 size_t pagesize;
360 size_t lg_pagesize;
361
362 /* Bytes currently allocated. */
363 size_t allocated;
364
365 /* Bytes currently allocated at the end of the last collection. */
366 size_t allocated_last_gc;
367
368 /* Total amount of memory mapped. */
369 size_t bytes_mapped;
370
371 /* Bit N set if any allocations have been done at context depth N. */
372 unsigned long context_depth_allocations;
373
374 /* Bit N set if any collections have been done at context depth N. */
375 unsigned long context_depth_collections;
376
377 /* The current depth in the context stack. */
378 unsigned short context_depth;
379
380 /* A file descriptor open to /dev/zero for reading. */
381 #if defined (HAVE_MMAP_DEV_ZERO)
382 int dev_zero_fd;
383 #endif
384
385 /* A cache of free system pages. */
386 page_entry *free_pages;
387
388 #ifdef USING_MALLOC_PAGE_GROUPS
389 page_group *page_groups;
390 #endif
391
392 /* The file descriptor for debugging output. */
393 FILE *debug_file;
394
395 /* Current number of elements in use in depth below. */
396 unsigned int depth_in_use;
397
398 /* Maximum number of elements that can be used before resizing. */
399 unsigned int depth_max;
400
401 /* Each element of this arry is an index in by_depth where the given
402 depth starts. This structure is indexed by that given depth we
403 are interested in. */
404 unsigned int *depth;
405
406 /* Current number of elements in use in by_depth below. */
407 unsigned int by_depth_in_use;
408
409 /* Maximum number of elements that can be used before resizing. */
410 unsigned int by_depth_max;
411
412 /* Each element of this array is a pointer to a page_entry, all
413 page_entries can be found in here by increasing depth.
414 index_by_depth in the page_entry is the index into this data
415 structure where that page_entry can be found. This is used to
416 speed up finding all page_entries at a particular depth. */
417 page_entry **by_depth;
418
419 /* Each element is a pointer to the saved in_use_p bits, if any,
420 zero otherwise. We allocate them all together, to enable a
421 better runtime data access pattern. */
422 unsigned long **save_in_use;
423
424 #ifdef ENABLE_GC_ALWAYS_COLLECT
425 /* List of free objects to be verified as actually free on the
426 next collection. */
427 struct free_object
428 {
429 void *object;
430 struct free_object *next;
431 } *free_object_list;
432 #endif
433
434 #ifdef GATHER_STATISTICS
435 struct
436 {
437 /* Total memory allocated with ggc_alloc. */
438 unsigned long long total_allocated;
439 /* Total overhead for memory to be allocated with ggc_alloc. */
440 unsigned long long total_overhead;
441
442 /* Total allocations and overhead for sizes less than 32, 64 and 128.
443 These sizes are interesting because they are typical cache line
444 sizes. */
445
446 unsigned long long total_allocated_under32;
447 unsigned long long total_overhead_under32;
448
449 unsigned long long total_allocated_under64;
450 unsigned long long total_overhead_under64;
451
452 unsigned long long total_allocated_under128;
453 unsigned long long total_overhead_under128;
454
455 /* The allocations for each of the allocation orders. */
456 unsigned long long total_allocated_per_order[NUM_ORDERS];
457
458 /* The overhead for each of the allocation orders. */
459 unsigned long long total_overhead_per_order[NUM_ORDERS];
460 } stats;
461 #endif
462 } G;
463
464 /* The size in bytes required to maintain a bitmap for the objects
465 on a page-entry. */
466 #define BITMAP_SIZE(Num_objects) \
467 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
468
469 /* Allocate pages in chunks of this size, to throttle calls to memory
470 allocation routines. The first page is used, the rest go onto the
471 free list. This cannot be larger than HOST_BITS_PER_INT for the
472 in_use bitmask for page_group. Hosts that need a different value
473 can override this by defining GGC_QUIRE_SIZE explicitly. */
474 #ifndef GGC_QUIRE_SIZE
475 # ifdef USING_MMAP
476 # define GGC_QUIRE_SIZE 256
477 # else
478 # define GGC_QUIRE_SIZE 16
479 # endif
480 #endif
481
482 /* Initial guess as to how many page table entries we might need. */
483 #define INITIAL_PTE_COUNT 128
484 \f
485 static int ggc_allocated_p (const void *);
486 static page_entry *lookup_page_table_entry (const void *);
487 static void set_page_table_entry (void *, page_entry *);
488 #ifdef USING_MMAP
489 static char *alloc_anon (char *, size_t);
490 #endif
491 #ifdef USING_MALLOC_PAGE_GROUPS
492 static size_t page_group_index (char *, char *);
493 static void set_page_group_in_use (page_group *, char *);
494 static void clear_page_group_in_use (page_group *, char *);
495 #endif
496 static struct page_entry * alloc_page (unsigned);
497 static void free_page (struct page_entry *);
498 static void release_pages (void);
499 static void clear_marks (void);
500 static void sweep_pages (void);
501 static void ggc_recalculate_in_use_p (page_entry *);
502 static void compute_inverse (unsigned);
503 static inline void adjust_depth (void);
504 static void move_ptes_to_front (int, int);
505
506 void debug_print_page_list (int);
507 static void push_depth (unsigned int);
508 static void push_by_depth (page_entry *, unsigned long *);
509
510 /* Push an entry onto G.depth. */
511
512 inline static void
513 push_depth (unsigned int i)
514 {
515 if (G.depth_in_use >= G.depth_max)
516 {
517 G.depth_max *= 2;
518 G.depth = xrealloc (G.depth, G.depth_max * sizeof (unsigned int));
519 }
520 G.depth[G.depth_in_use++] = i;
521 }
522
523 /* Push an entry onto G.by_depth and G.save_in_use. */
524
525 inline static void
526 push_by_depth (page_entry *p, unsigned long *s)
527 {
528 if (G.by_depth_in_use >= G.by_depth_max)
529 {
530 G.by_depth_max *= 2;
531 G.by_depth = xrealloc (G.by_depth,
532 G.by_depth_max * sizeof (page_entry *));
533 G.save_in_use = xrealloc (G.save_in_use,
534 G.by_depth_max * sizeof (unsigned long *));
535 }
536 G.by_depth[G.by_depth_in_use] = p;
537 G.save_in_use[G.by_depth_in_use++] = s;
538 }
539
540 #if (GCC_VERSION < 3001)
541 #define prefetch(X) ((void) X)
542 #else
543 #define prefetch(X) __builtin_prefetch (X)
544 #endif
545
546 #define save_in_use_p_i(__i) \
547 (G.save_in_use[__i])
548 #define save_in_use_p(__p) \
549 (save_in_use_p_i (__p->index_by_depth))
550
551 /* Returns nonzero if P was allocated in GC'able memory. */
552
553 static inline int
554 ggc_allocated_p (const void *p)
555 {
556 page_entry ***base;
557 size_t L1, L2;
558
559 #if HOST_BITS_PER_PTR <= 32
560 base = &G.lookup[0];
561 #else
562 page_table table = G.lookup;
563 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
564 while (1)
565 {
566 if (table == NULL)
567 return 0;
568 if (table->high_bits == high_bits)
569 break;
570 table = table->next;
571 }
572 base = &table->table[0];
573 #endif
574
575 /* Extract the level 1 and 2 indices. */
576 L1 = LOOKUP_L1 (p);
577 L2 = LOOKUP_L2 (p);
578
579 return base[L1] && base[L1][L2];
580 }
581
582 /* Traverse the page table and find the entry for a page.
583 Die (probably) if the object wasn't allocated via GC. */
584
585 static inline page_entry *
586 lookup_page_table_entry (const void *p)
587 {
588 page_entry ***base;
589 size_t L1, L2;
590
591 #if HOST_BITS_PER_PTR <= 32
592 base = &G.lookup[0];
593 #else
594 page_table table = G.lookup;
595 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
596 while (table->high_bits != high_bits)
597 table = table->next;
598 base = &table->table[0];
599 #endif
600
601 /* Extract the level 1 and 2 indices. */
602 L1 = LOOKUP_L1 (p);
603 L2 = LOOKUP_L2 (p);
604
605 return base[L1][L2];
606 }
607
608 /* Set the page table entry for a page. */
609
610 static void
611 set_page_table_entry (void *p, page_entry *entry)
612 {
613 page_entry ***base;
614 size_t L1, L2;
615
616 #if HOST_BITS_PER_PTR <= 32
617 base = &G.lookup[0];
618 #else
619 page_table table;
620 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
621 for (table = G.lookup; table; table = table->next)
622 if (table->high_bits == high_bits)
623 goto found;
624
625 /* Not found -- allocate a new table. */
626 table = xcalloc (1, sizeof(*table));
627 table->next = G.lookup;
628 table->high_bits = high_bits;
629 G.lookup = table;
630 found:
631 base = &table->table[0];
632 #endif
633
634 /* Extract the level 1 and 2 indices. */
635 L1 = LOOKUP_L1 (p);
636 L2 = LOOKUP_L2 (p);
637
638 if (base[L1] == NULL)
639 base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
640
641 base[L1][L2] = entry;
642 }
643
644 /* Prints the page-entry for object size ORDER, for debugging. */
645
646 void
647 debug_print_page_list (int order)
648 {
649 page_entry *p;
650 printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
651 (void *) G.page_tails[order]);
652 p = G.pages[order];
653 while (p != NULL)
654 {
655 printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
656 p->num_free_objects);
657 p = p->next;
658 }
659 printf ("NULL\n");
660 fflush (stdout);
661 }
662
663 #ifdef USING_MMAP
664 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
665 (if non-null). The ifdef structure here is intended to cause a
666 compile error unless exactly one of the HAVE_* is defined. */
667
668 static inline char *
669 alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size)
670 {
671 #ifdef HAVE_MMAP_ANON
672 char *page = mmap (pref, size, PROT_READ | PROT_WRITE,
673 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
674 #endif
675 #ifdef HAVE_MMAP_DEV_ZERO
676 char *page = mmap (pref, size, PROT_READ | PROT_WRITE,
677 MAP_PRIVATE, G.dev_zero_fd, 0);
678 #endif
679
680 if (page == (char *) MAP_FAILED)
681 {
682 perror ("virtual memory exhausted");
683 exit (FATAL_EXIT_CODE);
684 }
685
686 /* Remember that we allocated this memory. */
687 G.bytes_mapped += size;
688
689 /* Pretend we don't have access to the allocated pages. We'll enable
690 access to smaller pieces of the area in ggc_alloc. Discard the
691 handle to avoid handle leak. */
692 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (page, size));
693
694 return page;
695 }
696 #endif
697 #ifdef USING_MALLOC_PAGE_GROUPS
698 /* Compute the index for this page into the page group. */
699
700 static inline size_t
701 page_group_index (char *allocation, char *page)
702 {
703 return (size_t) (page - allocation) >> G.lg_pagesize;
704 }
705
706 /* Set and clear the in_use bit for this page in the page group. */
707
708 static inline void
709 set_page_group_in_use (page_group *group, char *page)
710 {
711 group->in_use |= 1 << page_group_index (group->allocation, page);
712 }
713
714 static inline void
715 clear_page_group_in_use (page_group *group, char *page)
716 {
717 group->in_use &= ~(1 << page_group_index (group->allocation, page));
718 }
719 #endif
720
721 /* Allocate a new page for allocating objects of size 2^ORDER,
722 and return an entry for it. The entry is not added to the
723 appropriate page_table list. */
724
725 static inline struct page_entry *
726 alloc_page (unsigned order)
727 {
728 struct page_entry *entry, *p, **pp;
729 char *page;
730 size_t num_objects;
731 size_t bitmap_size;
732 size_t page_entry_size;
733 size_t entry_size;
734 #ifdef USING_MALLOC_PAGE_GROUPS
735 page_group *group;
736 #endif
737
738 num_objects = OBJECTS_PER_PAGE (order);
739 bitmap_size = BITMAP_SIZE (num_objects + 1);
740 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
741 entry_size = num_objects * OBJECT_SIZE (order);
742 if (entry_size < G.pagesize)
743 entry_size = G.pagesize;
744
745 entry = NULL;
746 page = NULL;
747
748 /* Check the list of free pages for one we can use. */
749 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
750 if (p->bytes == entry_size)
751 break;
752
753 if (p != NULL)
754 {
755 /* Recycle the allocated memory from this page ... */
756 *pp = p->next;
757 page = p->page;
758
759 #ifdef USING_MALLOC_PAGE_GROUPS
760 group = p->group;
761 #endif
762
763 /* ... and, if possible, the page entry itself. */
764 if (p->order == order)
765 {
766 entry = p;
767 memset (entry, 0, page_entry_size);
768 }
769 else
770 free (p);
771 }
772 #ifdef USING_MMAP
773 else if (entry_size == G.pagesize)
774 {
775 /* We want just one page. Allocate a bunch of them and put the
776 extras on the freelist. (Can only do this optimization with
777 mmap for backing store.) */
778 struct page_entry *e, *f = G.free_pages;
779 int i;
780
781 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE);
782
783 /* This loop counts down so that the chain will be in ascending
784 memory order. */
785 for (i = GGC_QUIRE_SIZE - 1; i >= 1; i--)
786 {
787 e = xcalloc (1, page_entry_size);
788 e->order = order;
789 e->bytes = G.pagesize;
790 e->page = page + (i << G.lg_pagesize);
791 e->next = f;
792 f = e;
793 }
794
795 G.free_pages = f;
796 }
797 else
798 page = alloc_anon (NULL, entry_size);
799 #endif
800 #ifdef USING_MALLOC_PAGE_GROUPS
801 else
802 {
803 /* Allocate a large block of memory and serve out the aligned
804 pages therein. This results in much less memory wastage
805 than the traditional implementation of valloc. */
806
807 char *allocation, *a, *enda;
808 size_t alloc_size, head_slop, tail_slop;
809 int multiple_pages = (entry_size == G.pagesize);
810
811 if (multiple_pages)
812 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
813 else
814 alloc_size = entry_size + G.pagesize - 1;
815 allocation = xmalloc (alloc_size);
816
817 page = (char *) (((size_t) allocation + G.pagesize - 1) & -G.pagesize);
818 head_slop = page - allocation;
819 if (multiple_pages)
820 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
821 else
822 tail_slop = alloc_size - entry_size - head_slop;
823 enda = allocation + alloc_size - tail_slop;
824
825 /* We allocated N pages, which are likely not aligned, leaving
826 us with N-1 usable pages. We plan to place the page_group
827 structure somewhere in the slop. */
828 if (head_slop >= sizeof (page_group))
829 group = (page_group *)page - 1;
830 else
831 {
832 /* We magically got an aligned allocation. Too bad, we have
833 to waste a page anyway. */
834 if (tail_slop == 0)
835 {
836 enda -= G.pagesize;
837 tail_slop += G.pagesize;
838 }
839 gcc_assert (tail_slop >= sizeof (page_group));
840 group = (page_group *)enda;
841 tail_slop -= sizeof (page_group);
842 }
843
844 /* Remember that we allocated this memory. */
845 group->next = G.page_groups;
846 group->allocation = allocation;
847 group->alloc_size = alloc_size;
848 group->in_use = 0;
849 G.page_groups = group;
850 G.bytes_mapped += alloc_size;
851
852 /* If we allocated multiple pages, put the rest on the free list. */
853 if (multiple_pages)
854 {
855 struct page_entry *e, *f = G.free_pages;
856 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
857 {
858 e = xcalloc (1, page_entry_size);
859 e->order = order;
860 e->bytes = G.pagesize;
861 e->page = a;
862 e->group = group;
863 e->next = f;
864 f = e;
865 }
866 G.free_pages = f;
867 }
868 }
869 #endif
870
871 if (entry == NULL)
872 entry = xcalloc (1, page_entry_size);
873
874 entry->bytes = entry_size;
875 entry->page = page;
876 entry->context_depth = G.context_depth;
877 entry->order = order;
878 entry->num_free_objects = num_objects;
879 entry->next_bit_hint = 1;
880
881 G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
882
883 #ifdef USING_MALLOC_PAGE_GROUPS
884 entry->group = group;
885 set_page_group_in_use (group, page);
886 #endif
887
888 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
889 increment the hint. */
890 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
891 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
892
893 set_page_table_entry (page, entry);
894
895 if (GGC_DEBUG_LEVEL >= 2)
896 fprintf (G.debug_file,
897 "Allocating page at %p, object size=%lu, data %p-%p\n",
898 (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
899 page + entry_size - 1);
900
901 return entry;
902 }
903
904 /* Adjust the size of G.depth so that no index greater than the one
905 used by the top of the G.by_depth is used. */
906
907 static inline void
908 adjust_depth (void)
909 {
910 page_entry *top;
911
912 if (G.by_depth_in_use)
913 {
914 top = G.by_depth[G.by_depth_in_use-1];
915
916 /* Peel back indices in depth that index into by_depth, so that
917 as new elements are added to by_depth, we note the indices
918 of those elements, if they are for new context depths. */
919 while (G.depth_in_use > (size_t)top->context_depth+1)
920 --G.depth_in_use;
921 }
922 }
923
924 /* For a page that is no longer needed, put it on the free page list. */
925
926 static void
927 free_page (page_entry *entry)
928 {
929 if (GGC_DEBUG_LEVEL >= 2)
930 fprintf (G.debug_file,
931 "Deallocating page at %p, data %p-%p\n", (void *) entry,
932 entry->page, entry->page + entry->bytes - 1);
933
934 /* Mark the page as inaccessible. Discard the handle to avoid handle
935 leak. */
936 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (entry->page, entry->bytes));
937
938 set_page_table_entry (entry->page, NULL);
939
940 #ifdef USING_MALLOC_PAGE_GROUPS
941 clear_page_group_in_use (entry->group, entry->page);
942 #endif
943
944 if (G.by_depth_in_use > 1)
945 {
946 page_entry *top = G.by_depth[G.by_depth_in_use-1];
947 int i = entry->index_by_depth;
948
949 /* We cannot free a page from a context deeper than the current
950 one. */
951 gcc_assert (entry->context_depth == top->context_depth);
952
953 /* Put top element into freed slot. */
954 G.by_depth[i] = top;
955 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
956 top->index_by_depth = i;
957 }
958 --G.by_depth_in_use;
959
960 adjust_depth ();
961
962 entry->next = G.free_pages;
963 G.free_pages = entry;
964 }
965
966 /* Release the free page cache to the system. */
967
968 static void
969 release_pages (void)
970 {
971 #ifdef USING_MMAP
972 page_entry *p, *next;
973 char *start;
974 size_t len;
975
976 /* Gather up adjacent pages so they are unmapped together. */
977 p = G.free_pages;
978
979 while (p)
980 {
981 start = p->page;
982 next = p->next;
983 len = p->bytes;
984 free (p);
985 p = next;
986
987 while (p && p->page == start + len)
988 {
989 next = p->next;
990 len += p->bytes;
991 free (p);
992 p = next;
993 }
994
995 munmap (start, len);
996 G.bytes_mapped -= len;
997 }
998
999 G.free_pages = NULL;
1000 #endif
1001 #ifdef USING_MALLOC_PAGE_GROUPS
1002 page_entry **pp, *p;
1003 page_group **gp, *g;
1004
1005 /* Remove all pages from free page groups from the list. */
1006 pp = &G.free_pages;
1007 while ((p = *pp) != NULL)
1008 if (p->group->in_use == 0)
1009 {
1010 *pp = p->next;
1011 free (p);
1012 }
1013 else
1014 pp = &p->next;
1015
1016 /* Remove all free page groups, and release the storage. */
1017 gp = &G.page_groups;
1018 while ((g = *gp) != NULL)
1019 if (g->in_use == 0)
1020 {
1021 *gp = g->next;
1022 G.bytes_mapped -= g->alloc_size;
1023 free (g->allocation);
1024 }
1025 else
1026 gp = &g->next;
1027 #endif
1028 }
1029
1030 /* This table provides a fast way to determine ceil(log_2(size)) for
1031 allocation requests. The minimum allocation size is eight bytes. */
1032 #define NUM_SIZE_LOOKUP 512
1033 static unsigned char size_lookup[NUM_SIZE_LOOKUP] =
1034 {
1035 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1036 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1037 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1038 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1039 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1040 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1041 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1042 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1043 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1044 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1045 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1046 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1047 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1048 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1049 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1050 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1051 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1052 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1053 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1054 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1055 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1056 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1057 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1058 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1059 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1060 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1061 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1062 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1063 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1064 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1065 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1066 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
1067 };
1068
1069 /* Typed allocation function. Does nothing special in this collector. */
1070
1071 void *
1072 ggc_alloc_typed_stat (enum gt_types_enum type ATTRIBUTE_UNUSED, size_t size
1073 MEM_STAT_DECL)
1074 {
1075 return ggc_alloc_stat (size PASS_MEM_STAT);
1076 }
1077
1078 /* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
1079
1080 void *
1081 ggc_alloc_stat (size_t size MEM_STAT_DECL)
1082 {
1083 size_t order, word, bit, object_offset, object_size;
1084 struct page_entry *entry;
1085 void *result;
1086
1087 if (size < NUM_SIZE_LOOKUP)
1088 {
1089 order = size_lookup[size];
1090 object_size = OBJECT_SIZE (order);
1091 }
1092 else
1093 {
1094 order = 10;
1095 while (size > (object_size = OBJECT_SIZE (order)))
1096 order++;
1097 }
1098
1099 /* If there are non-full pages for this size allocation, they are at
1100 the head of the list. */
1101 entry = G.pages[order];
1102
1103 /* If there is no page for this object size, or all pages in this
1104 context are full, allocate a new page. */
1105 if (entry == NULL || entry->num_free_objects == 0)
1106 {
1107 struct page_entry *new_entry;
1108 new_entry = alloc_page (order);
1109
1110 new_entry->index_by_depth = G.by_depth_in_use;
1111 push_by_depth (new_entry, 0);
1112
1113 /* We can skip context depths, if we do, make sure we go all the
1114 way to the new depth. */
1115 while (new_entry->context_depth >= G.depth_in_use)
1116 push_depth (G.by_depth_in_use-1);
1117
1118 /* If this is the only entry, it's also the tail. If it is not
1119 the only entry, then we must update the PREV pointer of the
1120 ENTRY (G.pages[order]) to point to our new page entry. */
1121 if (entry == NULL)
1122 G.page_tails[order] = new_entry;
1123 else
1124 entry->prev = new_entry;
1125
1126 /* Put new pages at the head of the page list. By definition the
1127 entry at the head of the list always has a NULL pointer. */
1128 new_entry->next = entry;
1129 new_entry->prev = NULL;
1130 entry = new_entry;
1131 G.pages[order] = new_entry;
1132
1133 /* For a new page, we know the word and bit positions (in the
1134 in_use bitmap) of the first available object -- they're zero. */
1135 new_entry->next_bit_hint = 1;
1136 word = 0;
1137 bit = 0;
1138 object_offset = 0;
1139 }
1140 else
1141 {
1142 /* First try to use the hint left from the previous allocation
1143 to locate a clear bit in the in-use bitmap. We've made sure
1144 that the one-past-the-end bit is always set, so if the hint
1145 has run over, this test will fail. */
1146 unsigned hint = entry->next_bit_hint;
1147 word = hint / HOST_BITS_PER_LONG;
1148 bit = hint % HOST_BITS_PER_LONG;
1149
1150 /* If the hint didn't work, scan the bitmap from the beginning. */
1151 if ((entry->in_use_p[word] >> bit) & 1)
1152 {
1153 word = bit = 0;
1154 while (~entry->in_use_p[word] == 0)
1155 ++word;
1156
1157 #if GCC_VERSION >= 3004
1158 bit = __builtin_ctzl (~entry->in_use_p[word]);
1159 #else
1160 while ((entry->in_use_p[word] >> bit) & 1)
1161 ++bit;
1162 #endif
1163
1164 hint = word * HOST_BITS_PER_LONG + bit;
1165 }
1166
1167 /* Next time, try the next bit. */
1168 entry->next_bit_hint = hint + 1;
1169
1170 object_offset = hint * object_size;
1171 }
1172
1173 /* Set the in-use bit. */
1174 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1175
1176 /* Keep a running total of the number of free objects. If this page
1177 fills up, we may have to move it to the end of the list if the
1178 next page isn't full. If the next page is full, all subsequent
1179 pages are full, so there's no need to move it. */
1180 if (--entry->num_free_objects == 0
1181 && entry->next != NULL
1182 && entry->next->num_free_objects > 0)
1183 {
1184 /* We have a new head for the list. */
1185 G.pages[order] = entry->next;
1186
1187 /* We are moving ENTRY to the end of the page table list.
1188 The new page at the head of the list will have NULL in
1189 its PREV field and ENTRY will have NULL in its NEXT field. */
1190 entry->next->prev = NULL;
1191 entry->next = NULL;
1192
1193 /* Append ENTRY to the tail of the list. */
1194 entry->prev = G.page_tails[order];
1195 G.page_tails[order]->next = entry;
1196 G.page_tails[order] = entry;
1197 }
1198
1199 /* Calculate the object's address. */
1200 result = entry->page + object_offset;
1201 #ifdef GATHER_STATISTICS
1202 ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
1203 result PASS_MEM_STAT);
1204 #endif
1205
1206 #ifdef ENABLE_GC_CHECKING
1207 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1208 exact same semantics in presence of memory bugs, regardless of
1209 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1210 handle to avoid handle leak. */
1211 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result, object_size));
1212
1213 /* `Poison' the entire allocated object, including any padding at
1214 the end. */
1215 memset (result, 0xaf, object_size);
1216
1217 /* Make the bytes after the end of the object unaccessible. Discard the
1218 handle to avoid handle leak. */
1219 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS ((char *) result + size,
1220 object_size - size));
1221 #endif
1222
1223 /* Tell Valgrind that the memory is there, but its content isn't
1224 defined. The bytes at the end of the object are still marked
1225 unaccessible. */
1226 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result, size));
1227
1228 /* Keep track of how many bytes are being allocated. This
1229 information is used in deciding when to collect. */
1230 G.allocated += object_size;
1231
1232 /* For timevar statistics. */
1233 timevar_ggc_mem_total += object_size;
1234
1235 #ifdef GATHER_STATISTICS
1236 {
1237 size_t overhead = object_size - size;
1238
1239 G.stats.total_overhead += overhead;
1240 G.stats.total_allocated += object_size;
1241 G.stats.total_overhead_per_order[order] += overhead;
1242 G.stats.total_allocated_per_order[order] += object_size;
1243
1244 if (size <= 32)
1245 {
1246 G.stats.total_overhead_under32 += overhead;
1247 G.stats.total_allocated_under32 += object_size;
1248 }
1249 if (size <= 64)
1250 {
1251 G.stats.total_overhead_under64 += overhead;
1252 G.stats.total_allocated_under64 += object_size;
1253 }
1254 if (size <= 128)
1255 {
1256 G.stats.total_overhead_under128 += overhead;
1257 G.stats.total_allocated_under128 += object_size;
1258 }
1259 }
1260 #endif
1261
1262 if (GGC_DEBUG_LEVEL >= 3)
1263 fprintf (G.debug_file,
1264 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
1265 (unsigned long) size, (unsigned long) object_size, result,
1266 (void *) entry);
1267
1268 return result;
1269 }
1270
1271 /* If P is not marked, marks it and return false. Otherwise return true.
1272 P must have been allocated by the GC allocator; it mustn't point to
1273 static objects, stack variables, or memory allocated with malloc. */
1274
1275 int
1276 ggc_set_mark (const void *p)
1277 {
1278 page_entry *entry;
1279 unsigned bit, word;
1280 unsigned long mask;
1281
1282 /* Look up the page on which the object is alloced. If the object
1283 wasn't allocated by the collector, we'll probably die. */
1284 entry = lookup_page_table_entry (p);
1285 gcc_assert (entry);
1286
1287 /* Calculate the index of the object on the page; this is its bit
1288 position in the in_use_p bitmap. */
1289 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1290 word = bit / HOST_BITS_PER_LONG;
1291 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1292
1293 /* If the bit was previously set, skip it. */
1294 if (entry->in_use_p[word] & mask)
1295 return 1;
1296
1297 /* Otherwise set it, and decrement the free object count. */
1298 entry->in_use_p[word] |= mask;
1299 entry->num_free_objects -= 1;
1300
1301 if (GGC_DEBUG_LEVEL >= 4)
1302 fprintf (G.debug_file, "Marking %p\n", p);
1303
1304 return 0;
1305 }
1306
1307 /* Return 1 if P has been marked, zero otherwise.
1308 P must have been allocated by the GC allocator; it mustn't point to
1309 static objects, stack variables, or memory allocated with malloc. */
1310
1311 int
1312 ggc_marked_p (const void *p)
1313 {
1314 page_entry *entry;
1315 unsigned bit, word;
1316 unsigned long mask;
1317
1318 /* Look up the page on which the object is alloced. If the object
1319 wasn't allocated by the collector, we'll probably die. */
1320 entry = lookup_page_table_entry (p);
1321 gcc_assert (entry);
1322
1323 /* Calculate the index of the object on the page; this is its bit
1324 position in the in_use_p bitmap. */
1325 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1326 word = bit / HOST_BITS_PER_LONG;
1327 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1328
1329 return (entry->in_use_p[word] & mask) != 0;
1330 }
1331
1332 /* Return the size of the gc-able object P. */
1333
1334 size_t
1335 ggc_get_size (const void *p)
1336 {
1337 page_entry *pe = lookup_page_table_entry (p);
1338 return OBJECT_SIZE (pe->order);
1339 }
1340
1341 /* Release the memory for object P. */
1342
1343 void
1344 ggc_free (void *p)
1345 {
1346 page_entry *pe = lookup_page_table_entry (p);
1347 size_t order = pe->order;
1348 size_t size = OBJECT_SIZE (order);
1349
1350 #ifdef GATHER_STATISTICS
1351 ggc_free_overhead (p);
1352 #endif
1353
1354 if (GGC_DEBUG_LEVEL >= 3)
1355 fprintf (G.debug_file,
1356 "Freeing object, actual size=%lu, at %p on %p\n",
1357 (unsigned long) size, p, (void *) pe);
1358
1359 #ifdef ENABLE_GC_CHECKING
1360 /* Poison the data, to indicate the data is garbage. */
1361 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (p, size));
1362 memset (p, 0xa5, size);
1363 #endif
1364 /* Let valgrind know the object is free. */
1365 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (p, size));
1366
1367 #ifdef ENABLE_GC_ALWAYS_COLLECT
1368 /* In the completely-anal-checking mode, we do *not* immediately free
1369 the data, but instead verify that the data is *actually* not
1370 reachable the next time we collect. */
1371 {
1372 struct free_object *fo = XNEW (struct free_object);
1373 fo->object = p;
1374 fo->next = G.free_object_list;
1375 G.free_object_list = fo;
1376 }
1377 #else
1378 {
1379 unsigned int bit_offset, word, bit;
1380
1381 G.allocated -= size;
1382
1383 /* Mark the object not-in-use. */
1384 bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
1385 word = bit_offset / HOST_BITS_PER_LONG;
1386 bit = bit_offset % HOST_BITS_PER_LONG;
1387 pe->in_use_p[word] &= ~(1UL << bit);
1388
1389 if (pe->num_free_objects++ == 0)
1390 {
1391 page_entry *p, *q;
1392
1393 /* If the page is completely full, then it's supposed to
1394 be after all pages that aren't. Since we've freed one
1395 object from a page that was full, we need to move the
1396 page to the head of the list.
1397
1398 PE is the node we want to move. Q is the previous node
1399 and P is the next node in the list. */
1400 q = pe->prev;
1401 if (q && q->num_free_objects == 0)
1402 {
1403 p = pe->next;
1404
1405 q->next = p;
1406
1407 /* If PE was at the end of the list, then Q becomes the
1408 new end of the list. If PE was not the end of the
1409 list, then we need to update the PREV field for P. */
1410 if (!p)
1411 G.page_tails[order] = q;
1412 else
1413 p->prev = q;
1414
1415 /* Move PE to the head of the list. */
1416 pe->next = G.pages[order];
1417 pe->prev = NULL;
1418 G.pages[order]->prev = pe;
1419 G.pages[order] = pe;
1420 }
1421
1422 /* Reset the hint bit to point to the only free object. */
1423 pe->next_bit_hint = bit_offset;
1424 }
1425 }
1426 #endif
1427 }
1428 \f
1429 /* Subroutine of init_ggc which computes the pair of numbers used to
1430 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1431
1432 This algorithm is taken from Granlund and Montgomery's paper
1433 "Division by Invariant Integers using Multiplication"
1434 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1435 constants). */
1436
1437 static void
1438 compute_inverse (unsigned order)
1439 {
1440 size_t size, inv;
1441 unsigned int e;
1442
1443 size = OBJECT_SIZE (order);
1444 e = 0;
1445 while (size % 2 == 0)
1446 {
1447 e++;
1448 size >>= 1;
1449 }
1450
1451 inv = size;
1452 while (inv * size != 1)
1453 inv = inv * (2 - inv*size);
1454
1455 DIV_MULT (order) = inv;
1456 DIV_SHIFT (order) = e;
1457 }
1458
1459 /* Initialize the ggc-mmap allocator. */
1460 void
1461 init_ggc (void)
1462 {
1463 unsigned order;
1464
1465 G.pagesize = getpagesize();
1466 G.lg_pagesize = exact_log2 (G.pagesize);
1467
1468 #ifdef HAVE_MMAP_DEV_ZERO
1469 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1470 if (G.dev_zero_fd == -1)
1471 internal_error ("open /dev/zero: %m");
1472 #endif
1473
1474 #if 0
1475 G.debug_file = fopen ("ggc-mmap.debug", "w");
1476 #else
1477 G.debug_file = stdout;
1478 #endif
1479
1480 #ifdef USING_MMAP
1481 /* StunOS has an amazing off-by-one error for the first mmap allocation
1482 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1483 believe, is an unaligned page allocation, which would cause us to
1484 hork badly if we tried to use it. */
1485 {
1486 char *p = alloc_anon (NULL, G.pagesize);
1487 struct page_entry *e;
1488 if ((size_t)p & (G.pagesize - 1))
1489 {
1490 /* How losing. Discard this one and try another. If we still
1491 can't get something useful, give up. */
1492
1493 p = alloc_anon (NULL, G.pagesize);
1494 gcc_assert (!((size_t)p & (G.pagesize - 1)));
1495 }
1496
1497 /* We have a good page, might as well hold onto it... */
1498 e = XCNEW (struct page_entry);
1499 e->bytes = G.pagesize;
1500 e->page = p;
1501 e->next = G.free_pages;
1502 G.free_pages = e;
1503 }
1504 #endif
1505
1506 /* Initialize the object size table. */
1507 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1508 object_size_table[order] = (size_t) 1 << order;
1509 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1510 {
1511 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1512
1513 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1514 so that we're sure of getting aligned memory. */
1515 s = ROUND_UP (s, MAX_ALIGNMENT);
1516 object_size_table[order] = s;
1517 }
1518
1519 /* Initialize the objects-per-page and inverse tables. */
1520 for (order = 0; order < NUM_ORDERS; ++order)
1521 {
1522 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1523 if (objects_per_page_table[order] == 0)
1524 objects_per_page_table[order] = 1;
1525 compute_inverse (order);
1526 }
1527
1528 /* Reset the size_lookup array to put appropriately sized objects in
1529 the special orders. All objects bigger than the previous power
1530 of two, but no greater than the special size, should go in the
1531 new order. */
1532 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1533 {
1534 int o;
1535 int i;
1536
1537 i = OBJECT_SIZE (order);
1538 if (i >= NUM_SIZE_LOOKUP)
1539 continue;
1540
1541 for (o = size_lookup[i]; o == size_lookup [i]; --i)
1542 size_lookup[i] = order;
1543 }
1544
1545 G.depth_in_use = 0;
1546 G.depth_max = 10;
1547 G.depth = XNEWVEC (unsigned int, G.depth_max);
1548
1549 G.by_depth_in_use = 0;
1550 G.by_depth_max = INITIAL_PTE_COUNT;
1551 G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
1552 G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
1553 }
1554
1555 /* Start a new GGC zone. */
1556
1557 struct alloc_zone *
1558 new_ggc_zone (const char *name ATTRIBUTE_UNUSED)
1559 {
1560 return NULL;
1561 }
1562
1563 /* Destroy a GGC zone. */
1564 void
1565 destroy_ggc_zone (struct alloc_zone *zone ATTRIBUTE_UNUSED)
1566 {
1567 }
1568
1569 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1570 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1571
1572 static void
1573 ggc_recalculate_in_use_p (page_entry *p)
1574 {
1575 unsigned int i;
1576 size_t num_objects;
1577
1578 /* Because the past-the-end bit in in_use_p is always set, we
1579 pretend there is one additional object. */
1580 num_objects = OBJECTS_IN_PAGE (p) + 1;
1581
1582 /* Reset the free object count. */
1583 p->num_free_objects = num_objects;
1584
1585 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
1586 for (i = 0;
1587 i < CEIL (BITMAP_SIZE (num_objects),
1588 sizeof (*p->in_use_p));
1589 ++i)
1590 {
1591 unsigned long j;
1592
1593 /* Something is in use if it is marked, or if it was in use in a
1594 context further down the context stack. */
1595 p->in_use_p[i] |= save_in_use_p (p)[i];
1596
1597 /* Decrement the free object count for every object allocated. */
1598 for (j = p->in_use_p[i]; j; j >>= 1)
1599 p->num_free_objects -= (j & 1);
1600 }
1601
1602 gcc_assert (p->num_free_objects < num_objects);
1603 }
1604 \f
1605 /* Unmark all objects. */
1606
1607 static void
1608 clear_marks (void)
1609 {
1610 unsigned order;
1611
1612 for (order = 2; order < NUM_ORDERS; order++)
1613 {
1614 page_entry *p;
1615
1616 for (p = G.pages[order]; p != NULL; p = p->next)
1617 {
1618 size_t num_objects = OBJECTS_IN_PAGE (p);
1619 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1620
1621 /* The data should be page-aligned. */
1622 gcc_assert (!((size_t) p->page & (G.pagesize - 1)));
1623
1624 /* Pages that aren't in the topmost context are not collected;
1625 nevertheless, we need their in-use bit vectors to store GC
1626 marks. So, back them up first. */
1627 if (p->context_depth < G.context_depth)
1628 {
1629 if (! save_in_use_p (p))
1630 save_in_use_p (p) = xmalloc (bitmap_size);
1631 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
1632 }
1633
1634 /* Reset reset the number of free objects and clear the
1635 in-use bits. These will be adjusted by mark_obj. */
1636 p->num_free_objects = num_objects;
1637 memset (p->in_use_p, 0, bitmap_size);
1638
1639 /* Make sure the one-past-the-end bit is always set. */
1640 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1641 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1642 }
1643 }
1644 }
1645
1646 /* Free all empty pages. Partially empty pages need no attention
1647 because the `mark' bit doubles as an `unused' bit. */
1648
1649 static void
1650 sweep_pages (void)
1651 {
1652 unsigned order;
1653
1654 for (order = 2; order < NUM_ORDERS; order++)
1655 {
1656 /* The last page-entry to consider, regardless of entries
1657 placed at the end of the list. */
1658 page_entry * const last = G.page_tails[order];
1659
1660 size_t num_objects;
1661 size_t live_objects;
1662 page_entry *p, *previous;
1663 int done;
1664
1665 p = G.pages[order];
1666 if (p == NULL)
1667 continue;
1668
1669 previous = NULL;
1670 do
1671 {
1672 page_entry *next = p->next;
1673
1674 /* Loop until all entries have been examined. */
1675 done = (p == last);
1676
1677 num_objects = OBJECTS_IN_PAGE (p);
1678
1679 /* Add all live objects on this page to the count of
1680 allocated memory. */
1681 live_objects = num_objects - p->num_free_objects;
1682
1683 G.allocated += OBJECT_SIZE (order) * live_objects;
1684
1685 /* Only objects on pages in the topmost context should get
1686 collected. */
1687 if (p->context_depth < G.context_depth)
1688 ;
1689
1690 /* Remove the page if it's empty. */
1691 else if (live_objects == 0)
1692 {
1693 /* If P was the first page in the list, then NEXT
1694 becomes the new first page in the list, otherwise
1695 splice P out of the forward pointers. */
1696 if (! previous)
1697 G.pages[order] = next;
1698 else
1699 previous->next = next;
1700
1701 /* Splice P out of the back pointers too. */
1702 if (next)
1703 next->prev = previous;
1704
1705 /* Are we removing the last element? */
1706 if (p == G.page_tails[order])
1707 G.page_tails[order] = previous;
1708 free_page (p);
1709 p = previous;
1710 }
1711
1712 /* If the page is full, move it to the end. */
1713 else if (p->num_free_objects == 0)
1714 {
1715 /* Don't move it if it's already at the end. */
1716 if (p != G.page_tails[order])
1717 {
1718 /* Move p to the end of the list. */
1719 p->next = NULL;
1720 p->prev = G.page_tails[order];
1721 G.page_tails[order]->next = p;
1722
1723 /* Update the tail pointer... */
1724 G.page_tails[order] = p;
1725
1726 /* ... and the head pointer, if necessary. */
1727 if (! previous)
1728 G.pages[order] = next;
1729 else
1730 previous->next = next;
1731
1732 /* And update the backpointer in NEXT if necessary. */
1733 if (next)
1734 next->prev = previous;
1735
1736 p = previous;
1737 }
1738 }
1739
1740 /* If we've fallen through to here, it's a page in the
1741 topmost context that is neither full nor empty. Such a
1742 page must precede pages at lesser context depth in the
1743 list, so move it to the head. */
1744 else if (p != G.pages[order])
1745 {
1746 previous->next = p->next;
1747
1748 /* Update the backchain in the next node if it exists. */
1749 if (p->next)
1750 p->next->prev = previous;
1751
1752 /* Move P to the head of the list. */
1753 p->next = G.pages[order];
1754 p->prev = NULL;
1755 G.pages[order]->prev = p;
1756
1757 /* Update the head pointer. */
1758 G.pages[order] = p;
1759
1760 /* Are we moving the last element? */
1761 if (G.page_tails[order] == p)
1762 G.page_tails[order] = previous;
1763 p = previous;
1764 }
1765
1766 previous = p;
1767 p = next;
1768 }
1769 while (! done);
1770
1771 /* Now, restore the in_use_p vectors for any pages from contexts
1772 other than the current one. */
1773 for (p = G.pages[order]; p; p = p->next)
1774 if (p->context_depth != G.context_depth)
1775 ggc_recalculate_in_use_p (p);
1776 }
1777 }
1778
1779 #ifdef ENABLE_GC_CHECKING
1780 /* Clobber all free objects. */
1781
1782 static void
1783 poison_pages (void)
1784 {
1785 unsigned order;
1786
1787 for (order = 2; order < NUM_ORDERS; order++)
1788 {
1789 size_t size = OBJECT_SIZE (order);
1790 page_entry *p;
1791
1792 for (p = G.pages[order]; p != NULL; p = p->next)
1793 {
1794 size_t num_objects;
1795 size_t i;
1796
1797 if (p->context_depth != G.context_depth)
1798 /* Since we don't do any collection for pages in pushed
1799 contexts, there's no need to do any poisoning. And
1800 besides, the IN_USE_P array isn't valid until we pop
1801 contexts. */
1802 continue;
1803
1804 num_objects = OBJECTS_IN_PAGE (p);
1805 for (i = 0; i < num_objects; i++)
1806 {
1807 size_t word, bit;
1808 word = i / HOST_BITS_PER_LONG;
1809 bit = i % HOST_BITS_PER_LONG;
1810 if (((p->in_use_p[word] >> bit) & 1) == 0)
1811 {
1812 char *object = p->page + i * size;
1813
1814 /* Keep poison-by-write when we expect to use Valgrind,
1815 so the exact same memory semantics is kept, in case
1816 there are memory errors. We override this request
1817 below. */
1818 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (object, size));
1819 memset (object, 0xa5, size);
1820
1821 /* Drop the handle to avoid handle leak. */
1822 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (object, size));
1823 }
1824 }
1825 }
1826 }
1827 }
1828 #else
1829 #define poison_pages()
1830 #endif
1831
1832 #ifdef ENABLE_GC_ALWAYS_COLLECT
1833 /* Validate that the reportedly free objects actually are. */
1834
1835 static void
1836 validate_free_objects (void)
1837 {
1838 struct free_object *f, *next, *still_free = NULL;
1839
1840 for (f = G.free_object_list; f ; f = next)
1841 {
1842 page_entry *pe = lookup_page_table_entry (f->object);
1843 size_t bit, word;
1844
1845 bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
1846 word = bit / HOST_BITS_PER_LONG;
1847 bit = bit % HOST_BITS_PER_LONG;
1848 next = f->next;
1849
1850 /* Make certain it isn't visible from any root. Notice that we
1851 do this check before sweep_pages merges save_in_use_p. */
1852 gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
1853
1854 /* If the object comes from an outer context, then retain the
1855 free_object entry, so that we can verify that the address
1856 isn't live on the stack in some outer context. */
1857 if (pe->context_depth != G.context_depth)
1858 {
1859 f->next = still_free;
1860 still_free = f;
1861 }
1862 else
1863 free (f);
1864 }
1865
1866 G.free_object_list = still_free;
1867 }
1868 #else
1869 #define validate_free_objects()
1870 #endif
1871
1872 /* Top level mark-and-sweep routine. */
1873
1874 void
1875 ggc_collect (void)
1876 {
1877 /* Avoid frequent unnecessary work by skipping collection if the
1878 total allocations haven't expanded much since the last
1879 collection. */
1880 float allocated_last_gc =
1881 MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
1882
1883 float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
1884
1885 if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
1886 return;
1887
1888 timevar_push (TV_GC);
1889 if (!quiet_flag)
1890 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
1891 if (GGC_DEBUG_LEVEL >= 2)
1892 fprintf (G.debug_file, "BEGIN COLLECTING\n");
1893
1894 /* Zero the total allocated bytes. This will be recalculated in the
1895 sweep phase. */
1896 G.allocated = 0;
1897
1898 /* Release the pages we freed the last time we collected, but didn't
1899 reuse in the interim. */
1900 release_pages ();
1901
1902 /* Indicate that we've seen collections at this context depth. */
1903 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
1904
1905 clear_marks ();
1906 ggc_mark_roots ();
1907 #ifdef GATHER_STATISTICS
1908 ggc_prune_overhead_list ();
1909 #endif
1910 poison_pages ();
1911 validate_free_objects ();
1912 sweep_pages ();
1913
1914 G.allocated_last_gc = G.allocated;
1915
1916 timevar_pop (TV_GC);
1917
1918 if (!quiet_flag)
1919 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
1920 if (GGC_DEBUG_LEVEL >= 2)
1921 fprintf (G.debug_file, "END COLLECTING\n");
1922 }
1923
1924 /* Print allocation statistics. */
1925 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
1926 ? (x) \
1927 : ((x) < 1024*1024*10 \
1928 ? (x) / 1024 \
1929 : (x) / (1024*1024))))
1930 #define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
1931
1932 void
1933 ggc_print_statistics (void)
1934 {
1935 struct ggc_statistics stats;
1936 unsigned int i;
1937 size_t total_overhead = 0;
1938
1939 /* Clear the statistics. */
1940 memset (&stats, 0, sizeof (stats));
1941
1942 /* Make sure collection will really occur. */
1943 G.allocated_last_gc = 0;
1944
1945 /* Collect and print the statistics common across collectors. */
1946 ggc_print_common_statistics (stderr, &stats);
1947
1948 /* Release free pages so that we will not count the bytes allocated
1949 there as part of the total allocated memory. */
1950 release_pages ();
1951
1952 /* Collect some information about the various sizes of
1953 allocation. */
1954 fprintf (stderr,
1955 "Memory still allocated at the end of the compilation process\n");
1956 fprintf (stderr, "%-5s %10s %10s %10s\n",
1957 "Size", "Allocated", "Used", "Overhead");
1958 for (i = 0; i < NUM_ORDERS; ++i)
1959 {
1960 page_entry *p;
1961 size_t allocated;
1962 size_t in_use;
1963 size_t overhead;
1964
1965 /* Skip empty entries. */
1966 if (!G.pages[i])
1967 continue;
1968
1969 overhead = allocated = in_use = 0;
1970
1971 /* Figure out the total number of bytes allocated for objects of
1972 this size, and how many of them are actually in use. Also figure
1973 out how much memory the page table is using. */
1974 for (p = G.pages[i]; p; p = p->next)
1975 {
1976 allocated += p->bytes;
1977 in_use +=
1978 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
1979
1980 overhead += (sizeof (page_entry) - sizeof (long)
1981 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
1982 }
1983 fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n",
1984 (unsigned long) OBJECT_SIZE (i),
1985 SCALE (allocated), STAT_LABEL (allocated),
1986 SCALE (in_use), STAT_LABEL (in_use),
1987 SCALE (overhead), STAT_LABEL (overhead));
1988 total_overhead += overhead;
1989 }
1990 fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
1991 SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped),
1992 SCALE (G.allocated), STAT_LABEL(G.allocated),
1993 SCALE (total_overhead), STAT_LABEL (total_overhead));
1994
1995 #ifdef GATHER_STATISTICS
1996 {
1997 fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
1998
1999 fprintf (stderr, "Total Overhead: %10lld\n",
2000 G.stats.total_overhead);
2001 fprintf (stderr, "Total Allocated: %10lld\n",
2002 G.stats.total_allocated);
2003
2004 fprintf (stderr, "Total Overhead under 32B: %10lld\n",
2005 G.stats.total_overhead_under32);
2006 fprintf (stderr, "Total Allocated under 32B: %10lld\n",
2007 G.stats.total_allocated_under32);
2008 fprintf (stderr, "Total Overhead under 64B: %10lld\n",
2009 G.stats.total_overhead_under64);
2010 fprintf (stderr, "Total Allocated under 64B: %10lld\n",
2011 G.stats.total_allocated_under64);
2012 fprintf (stderr, "Total Overhead under 128B: %10lld\n",
2013 G.stats.total_overhead_under128);
2014 fprintf (stderr, "Total Allocated under 128B: %10lld\n",
2015 G.stats.total_allocated_under128);
2016
2017 for (i = 0; i < NUM_ORDERS; i++)
2018 if (G.stats.total_allocated_per_order[i])
2019 {
2020 fprintf (stderr, "Total Overhead page size %7d: %10lld\n",
2021 OBJECT_SIZE (i), G.stats.total_overhead_per_order[i]);
2022 fprintf (stderr, "Total Allocated page size %7d: %10lld\n",
2023 OBJECT_SIZE (i), G.stats.total_allocated_per_order[i]);
2024 }
2025 }
2026 #endif
2027 }
2028 \f
2029 struct ggc_pch_data
2030 {
2031 struct ggc_pch_ondisk
2032 {
2033 unsigned totals[NUM_ORDERS];
2034 } d;
2035 size_t base[NUM_ORDERS];
2036 size_t written[NUM_ORDERS];
2037 };
2038
2039 struct ggc_pch_data *
2040 init_ggc_pch (void)
2041 {
2042 return XCNEW (struct ggc_pch_data);
2043 }
2044
2045 void
2046 ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2047 size_t size, bool is_string ATTRIBUTE_UNUSED,
2048 enum gt_types_enum type ATTRIBUTE_UNUSED)
2049 {
2050 unsigned order;
2051
2052 if (size < NUM_SIZE_LOOKUP)
2053 order = size_lookup[size];
2054 else
2055 {
2056 order = 10;
2057 while (size > OBJECT_SIZE (order))
2058 order++;
2059 }
2060
2061 d->d.totals[order]++;
2062 }
2063
2064 size_t
2065 ggc_pch_total_size (struct ggc_pch_data *d)
2066 {
2067 size_t a = 0;
2068 unsigned i;
2069
2070 for (i = 0; i < NUM_ORDERS; i++)
2071 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2072 return a;
2073 }
2074
2075 void
2076 ggc_pch_this_base (struct ggc_pch_data *d, void *base)
2077 {
2078 size_t a = (size_t) base;
2079 unsigned i;
2080
2081 for (i = 0; i < NUM_ORDERS; i++)
2082 {
2083 d->base[i] = a;
2084 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2085 }
2086 }
2087
2088
2089 char *
2090 ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2091 size_t size, bool is_string ATTRIBUTE_UNUSED,
2092 enum gt_types_enum type ATTRIBUTE_UNUSED)
2093 {
2094 unsigned order;
2095 char *result;
2096
2097 if (size < NUM_SIZE_LOOKUP)
2098 order = size_lookup[size];
2099 else
2100 {
2101 order = 10;
2102 while (size > OBJECT_SIZE (order))
2103 order++;
2104 }
2105
2106 result = (char *) d->base[order];
2107 d->base[order] += OBJECT_SIZE (order);
2108 return result;
2109 }
2110
2111 void
2112 ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2113 FILE *f ATTRIBUTE_UNUSED)
2114 {
2115 /* Nothing to do. */
2116 }
2117
2118 void
2119 ggc_pch_write_object (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2120 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
2121 size_t size, bool is_string ATTRIBUTE_UNUSED)
2122 {
2123 unsigned order;
2124 static const char emptyBytes[256];
2125
2126 if (size < NUM_SIZE_LOOKUP)
2127 order = size_lookup[size];
2128 else
2129 {
2130 order = 10;
2131 while (size > OBJECT_SIZE (order))
2132 order++;
2133 }
2134
2135 if (fwrite (x, size, 1, f) != 1)
2136 fatal_error ("can't write PCH file: %m");
2137
2138 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2139 object out to OBJECT_SIZE(order). This happens for strings. */
2140
2141 if (size != OBJECT_SIZE (order))
2142 {
2143 unsigned padding = OBJECT_SIZE(order) - size;
2144
2145 /* To speed small writes, we use a nulled-out array that's larger
2146 than most padding requests as the source for our null bytes. This
2147 permits us to do the padding with fwrite() rather than fseek(), and
2148 limits the chance the OS may try to flush any outstanding writes. */
2149 if (padding <= sizeof(emptyBytes))
2150 {
2151 if (fwrite (emptyBytes, 1, padding, f) != padding)
2152 fatal_error ("can't write PCH file");
2153 }
2154 else
2155 {
2156 /* Larger than our buffer? Just default to fseek. */
2157 if (fseek (f, padding, SEEK_CUR) != 0)
2158 fatal_error ("can't write PCH file");
2159 }
2160 }
2161
2162 d->written[order]++;
2163 if (d->written[order] == d->d.totals[order]
2164 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2165 G.pagesize),
2166 SEEK_CUR) != 0)
2167 fatal_error ("can't write PCH file: %m");
2168 }
2169
2170 void
2171 ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
2172 {
2173 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
2174 fatal_error ("can't write PCH file: %m");
2175 free (d);
2176 }
2177
2178 /* Move the PCH PTE entries just added to the end of by_depth, to the
2179 front. */
2180
2181 static void
2182 move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
2183 {
2184 unsigned i;
2185
2186 /* First, we swap the new entries to the front of the varrays. */
2187 page_entry **new_by_depth;
2188 unsigned long **new_save_in_use;
2189
2190 new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
2191 new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
2192
2193 memcpy (&new_by_depth[0],
2194 &G.by_depth[count_old_page_tables],
2195 count_new_page_tables * sizeof (void *));
2196 memcpy (&new_by_depth[count_new_page_tables],
2197 &G.by_depth[0],
2198 count_old_page_tables * sizeof (void *));
2199 memcpy (&new_save_in_use[0],
2200 &G.save_in_use[count_old_page_tables],
2201 count_new_page_tables * sizeof (void *));
2202 memcpy (&new_save_in_use[count_new_page_tables],
2203 &G.save_in_use[0],
2204 count_old_page_tables * sizeof (void *));
2205
2206 free (G.by_depth);
2207 free (G.save_in_use);
2208
2209 G.by_depth = new_by_depth;
2210 G.save_in_use = new_save_in_use;
2211
2212 /* Now update all the index_by_depth fields. */
2213 for (i = G.by_depth_in_use; i > 0; --i)
2214 {
2215 page_entry *p = G.by_depth[i-1];
2216 p->index_by_depth = i-1;
2217 }
2218
2219 /* And last, we update the depth pointers in G.depth. The first
2220 entry is already 0, and context 0 entries always start at index
2221 0, so there is nothing to update in the first slot. We need a
2222 second slot, only if we have old ptes, and if we do, they start
2223 at index count_new_page_tables. */
2224 if (count_old_page_tables)
2225 push_depth (count_new_page_tables);
2226 }
2227
2228 void
2229 ggc_pch_read (FILE *f, void *addr)
2230 {
2231 struct ggc_pch_ondisk d;
2232 unsigned i;
2233 char *offs = addr;
2234 unsigned long count_old_page_tables;
2235 unsigned long count_new_page_tables;
2236
2237 count_old_page_tables = G.by_depth_in_use;
2238
2239 /* We've just read in a PCH file. So, every object that used to be
2240 allocated is now free. */
2241 clear_marks ();
2242 #ifdef ENABLE_GC_CHECKING
2243 poison_pages ();
2244 #endif
2245
2246 /* No object read from a PCH file should ever be freed. So, set the
2247 context depth to 1, and set the depth of all the currently-allocated
2248 pages to be 1 too. PCH pages will have depth 0. */
2249 gcc_assert (!G.context_depth);
2250 G.context_depth = 1;
2251 for (i = 0; i < NUM_ORDERS; i++)
2252 {
2253 page_entry *p;
2254 for (p = G.pages[i]; p != NULL; p = p->next)
2255 p->context_depth = G.context_depth;
2256 }
2257
2258 /* Allocate the appropriate page-table entries for the pages read from
2259 the PCH file. */
2260 if (fread (&d, sizeof (d), 1, f) != 1)
2261 fatal_error ("can't read PCH file: %m");
2262
2263 for (i = 0; i < NUM_ORDERS; i++)
2264 {
2265 struct page_entry *entry;
2266 char *pte;
2267 size_t bytes;
2268 size_t num_objs;
2269 size_t j;
2270
2271 if (d.totals[i] == 0)
2272 continue;
2273
2274 bytes = ROUND_UP (d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2275 num_objs = bytes / OBJECT_SIZE (i);
2276 entry = xcalloc (1, (sizeof (struct page_entry)
2277 - sizeof (long)
2278 + BITMAP_SIZE (num_objs + 1)));
2279 entry->bytes = bytes;
2280 entry->page = offs;
2281 entry->context_depth = 0;
2282 offs += bytes;
2283 entry->num_free_objects = 0;
2284 entry->order = i;
2285
2286 for (j = 0;
2287 j + HOST_BITS_PER_LONG <= num_objs + 1;
2288 j += HOST_BITS_PER_LONG)
2289 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2290 for (; j < num_objs + 1; j++)
2291 entry->in_use_p[j / HOST_BITS_PER_LONG]
2292 |= 1L << (j % HOST_BITS_PER_LONG);
2293
2294 for (pte = entry->page;
2295 pte < entry->page + entry->bytes;
2296 pte += G.pagesize)
2297 set_page_table_entry (pte, entry);
2298
2299 if (G.page_tails[i] != NULL)
2300 G.page_tails[i]->next = entry;
2301 else
2302 G.pages[i] = entry;
2303 G.page_tails[i] = entry;
2304
2305 /* We start off by just adding all the new information to the
2306 end of the varrays, later, we will move the new information
2307 to the front of the varrays, as the PCH page tables are at
2308 context 0. */
2309 push_by_depth (entry, 0);
2310 }
2311
2312 /* Now, we update the various data structures that speed page table
2313 handling. */
2314 count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2315
2316 move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2317
2318 /* Update the statistics. */
2319 G.allocated = G.allocated_last_gc = offs - (char *)addr;
2320 }