* jvspec.c (jvgenmain_spec): Don't handle -fnew-verifier.
[gcc.git] / gcc / ggc-page.c
1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009,
3 2010 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "toplev.h" /* exact_log2 */
29 #include "diagnostic-core.h"
30 #include "flags.h"
31 #include "ggc.h"
32 #include "ggc-internal.h"
33 #include "timevar.h"
34 #include "params.h"
35 #include "tree-flow.h"
36 #include "cfgloop.h"
37 #include "plugin.h"
38
39 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
40 file open. Prefer either to valloc. */
41 #ifdef HAVE_MMAP_ANON
42 # undef HAVE_MMAP_DEV_ZERO
43
44 # include <sys/mman.h>
45 # ifndef MAP_FAILED
46 # define MAP_FAILED -1
47 # endif
48 # if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
49 # define MAP_ANONYMOUS MAP_ANON
50 # endif
51 # define USING_MMAP
52
53 #endif
54
55 #ifdef HAVE_MMAP_DEV_ZERO
56
57 # include <sys/mman.h>
58 # ifndef MAP_FAILED
59 # define MAP_FAILED -1
60 # endif
61 # define USING_MMAP
62
63 #endif
64
65 #ifndef USING_MMAP
66 #define USING_MALLOC_PAGE_GROUPS
67 #endif
68
69 /* Strategy:
70
71 This garbage-collecting allocator allocates objects on one of a set
72 of pages. Each page can allocate objects of a single size only;
73 available sizes are powers of two starting at four bytes. The size
74 of an allocation request is rounded up to the next power of two
75 (`order'), and satisfied from the appropriate page.
76
77 Each page is recorded in a page-entry, which also maintains an
78 in-use bitmap of object positions on the page. This allows the
79 allocation state of a particular object to be flipped without
80 touching the page itself.
81
82 Each page-entry also has a context depth, which is used to track
83 pushing and popping of allocation contexts. Only objects allocated
84 in the current (highest-numbered) context may be collected.
85
86 Page entries are arranged in an array of singly-linked lists. The
87 array is indexed by the allocation size, in bits, of the pages on
88 it; i.e. all pages on a list allocate objects of the same size.
89 Pages are ordered on the list such that all non-full pages precede
90 all full pages, with non-full pages arranged in order of decreasing
91 context depth.
92
93 Empty pages (of all orders) are kept on a single page cache list,
94 and are considered first when new pages are required; they are
95 deallocated at the start of the next collection if they haven't
96 been recycled by then. */
97
98 /* Define GGC_DEBUG_LEVEL to print debugging information.
99 0: No debugging output.
100 1: GC statistics only.
101 2: Page-entry allocations/deallocations as well.
102 3: Object allocations as well.
103 4: Object marks as well. */
104 #define GGC_DEBUG_LEVEL (0)
105 \f
106 #ifndef HOST_BITS_PER_PTR
107 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
108 #endif
109
110 \f
111 /* A two-level tree is used to look up the page-entry for a given
112 pointer. Two chunks of the pointer's bits are extracted to index
113 the first and second levels of the tree, as follows:
114
115 HOST_PAGE_SIZE_BITS
116 32 | |
117 msb +----------------+----+------+------+ lsb
118 | | |
119 PAGE_L1_BITS |
120 | |
121 PAGE_L2_BITS
122
123 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
124 pages are aligned on system page boundaries. The next most
125 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
126 index values in the lookup table, respectively.
127
128 For 32-bit architectures and the settings below, there are no
129 leftover bits. For architectures with wider pointers, the lookup
130 tree points to a list of pages, which must be scanned to find the
131 correct one. */
132
133 #define PAGE_L1_BITS (8)
134 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
135 #define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
136 #define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
137
138 #define LOOKUP_L1(p) \
139 (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
140
141 #define LOOKUP_L2(p) \
142 (((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
143
144 /* The number of objects per allocation page, for objects on a page of
145 the indicated ORDER. */
146 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
147
148 /* The number of objects in P. */
149 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
150
151 /* The size of an object on a page of the indicated ORDER. */
152 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
153
154 /* For speed, we avoid doing a general integer divide to locate the
155 offset in the allocation bitmap, by precalculating numbers M, S
156 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
157 within the page which is evenly divisible by the object size Z. */
158 #define DIV_MULT(ORDER) inverse_table[ORDER].mult
159 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
160 #define OFFSET_TO_BIT(OFFSET, ORDER) \
161 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
162
163 /* We use this structure to determine the alignment required for
164 allocations. For power-of-two sized allocations, that's not a
165 problem, but it does matter for odd-sized allocations.
166 We do not care about alignment for floating-point types. */
167
168 struct max_alignment {
169 char c;
170 union {
171 HOST_WIDEST_INT i;
172 void *p;
173 } u;
174 };
175
176 /* The biggest alignment required. */
177
178 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
179
180
181 /* The number of extra orders, not corresponding to power-of-two sized
182 objects. */
183
184 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
185
186 #define RTL_SIZE(NSLOTS) \
187 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
188
189 #define TREE_EXP_SIZE(OPS) \
190 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
191
192 /* The Ith entry is the maximum size of an object to be stored in the
193 Ith extra order. Adding a new entry to this array is the *only*
194 thing you need to do to add a new special allocation size. */
195
196 static const size_t extra_order_size_table[] = {
197 /* Extra orders for small non-power-of-two multiples of MAX_ALIGNMENT.
198 There are a lot of structures with these sizes and explicitly
199 listing them risks orders being dropped because they changed size. */
200 MAX_ALIGNMENT * 3,
201 MAX_ALIGNMENT * 5,
202 MAX_ALIGNMENT * 6,
203 MAX_ALIGNMENT * 7,
204 MAX_ALIGNMENT * 9,
205 MAX_ALIGNMENT * 10,
206 MAX_ALIGNMENT * 11,
207 MAX_ALIGNMENT * 12,
208 MAX_ALIGNMENT * 13,
209 MAX_ALIGNMENT * 14,
210 MAX_ALIGNMENT * 15,
211 sizeof (struct tree_decl_non_common),
212 sizeof (struct tree_field_decl),
213 sizeof (struct tree_parm_decl),
214 sizeof (struct tree_var_decl),
215 sizeof (struct tree_type),
216 sizeof (struct function),
217 sizeof (struct basic_block_def),
218 sizeof (struct cgraph_node),
219 sizeof (struct loop),
220 };
221
222 /* The total number of orders. */
223
224 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
225
226 /* Compute the smallest nonnegative number which when added to X gives
227 a multiple of F. */
228
229 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
230
231 /* Compute the smallest multiple of F that is >= X. */
232
233 #define ROUND_UP(x, f) (CEIL (x, f) * (f))
234
235 /* The Ith entry is the number of objects on a page or order I. */
236
237 static unsigned objects_per_page_table[NUM_ORDERS];
238
239 /* The Ith entry is the size of an object on a page of order I. */
240
241 static size_t object_size_table[NUM_ORDERS];
242
243 /* The Ith entry is a pair of numbers (mult, shift) such that
244 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
245 for all k evenly divisible by OBJECT_SIZE(I). */
246
247 static struct
248 {
249 size_t mult;
250 unsigned int shift;
251 }
252 inverse_table[NUM_ORDERS];
253
254 /* A page_entry records the status of an allocation page. This
255 structure is dynamically sized to fit the bitmap in_use_p. */
256 typedef struct page_entry
257 {
258 /* The next page-entry with objects of the same size, or NULL if
259 this is the last page-entry. */
260 struct page_entry *next;
261
262 /* The previous page-entry with objects of the same size, or NULL if
263 this is the first page-entry. The PREV pointer exists solely to
264 keep the cost of ggc_free manageable. */
265 struct page_entry *prev;
266
267 /* The number of bytes allocated. (This will always be a multiple
268 of the host system page size.) */
269 size_t bytes;
270
271 /* The address at which the memory is allocated. */
272 char *page;
273
274 #ifdef USING_MALLOC_PAGE_GROUPS
275 /* Back pointer to the page group this page came from. */
276 struct page_group *group;
277 #endif
278
279 /* This is the index in the by_depth varray where this page table
280 can be found. */
281 unsigned long index_by_depth;
282
283 /* Context depth of this page. */
284 unsigned short context_depth;
285
286 /* The number of free objects remaining on this page. */
287 unsigned short num_free_objects;
288
289 /* A likely candidate for the bit position of a free object for the
290 next allocation from this page. */
291 unsigned short next_bit_hint;
292
293 /* The lg of size of objects allocated from this page. */
294 unsigned char order;
295
296 /* A bit vector indicating whether or not objects are in use. The
297 Nth bit is one if the Nth object on this page is allocated. This
298 array is dynamically sized. */
299 unsigned long in_use_p[1];
300 } page_entry;
301
302 #ifdef USING_MALLOC_PAGE_GROUPS
303 /* A page_group describes a large allocation from malloc, from which
304 we parcel out aligned pages. */
305 typedef struct page_group
306 {
307 /* A linked list of all extant page groups. */
308 struct page_group *next;
309
310 /* The address we received from malloc. */
311 char *allocation;
312
313 /* The size of the block. */
314 size_t alloc_size;
315
316 /* A bitmask of pages in use. */
317 unsigned int in_use;
318 } page_group;
319 #endif
320
321 #if HOST_BITS_PER_PTR <= 32
322
323 /* On 32-bit hosts, we use a two level page table, as pictured above. */
324 typedef page_entry **page_table[PAGE_L1_SIZE];
325
326 #else
327
328 /* On 64-bit hosts, we use the same two level page tables plus a linked
329 list that disambiguates the top 32-bits. There will almost always be
330 exactly one entry in the list. */
331 typedef struct page_table_chain
332 {
333 struct page_table_chain *next;
334 size_t high_bits;
335 page_entry **table[PAGE_L1_SIZE];
336 } *page_table;
337
338 #endif
339
340 #ifdef ENABLE_GC_ALWAYS_COLLECT
341 /* List of free objects to be verified as actually free on the
342 next collection. */
343 struct free_object
344 {
345 void *object;
346 struct free_object *next;
347 };
348 #endif
349
350 /* The rest of the global variables. */
351 static struct globals
352 {
353 /* The Nth element in this array is a page with objects of size 2^N.
354 If there are any pages with free objects, they will be at the
355 head of the list. NULL if there are no page-entries for this
356 object size. */
357 page_entry *pages[NUM_ORDERS];
358
359 /* The Nth element in this array is the last page with objects of
360 size 2^N. NULL if there are no page-entries for this object
361 size. */
362 page_entry *page_tails[NUM_ORDERS];
363
364 /* Lookup table for associating allocation pages with object addresses. */
365 page_table lookup;
366
367 /* The system's page size. */
368 size_t pagesize;
369 size_t lg_pagesize;
370
371 /* Bytes currently allocated. */
372 size_t allocated;
373
374 /* Bytes currently allocated at the end of the last collection. */
375 size_t allocated_last_gc;
376
377 /* Total amount of memory mapped. */
378 size_t bytes_mapped;
379
380 /* Bit N set if any allocations have been done at context depth N. */
381 unsigned long context_depth_allocations;
382
383 /* Bit N set if any collections have been done at context depth N. */
384 unsigned long context_depth_collections;
385
386 /* The current depth in the context stack. */
387 unsigned short context_depth;
388
389 /* A file descriptor open to /dev/zero for reading. */
390 #if defined (HAVE_MMAP_DEV_ZERO)
391 int dev_zero_fd;
392 #endif
393
394 /* A cache of free system pages. */
395 page_entry *free_pages;
396
397 #ifdef USING_MALLOC_PAGE_GROUPS
398 page_group *page_groups;
399 #endif
400
401 /* The file descriptor for debugging output. */
402 FILE *debug_file;
403
404 /* Current number of elements in use in depth below. */
405 unsigned int depth_in_use;
406
407 /* Maximum number of elements that can be used before resizing. */
408 unsigned int depth_max;
409
410 /* Each element of this array is an index in by_depth where the given
411 depth starts. This structure is indexed by that given depth we
412 are interested in. */
413 unsigned int *depth;
414
415 /* Current number of elements in use in by_depth below. */
416 unsigned int by_depth_in_use;
417
418 /* Maximum number of elements that can be used before resizing. */
419 unsigned int by_depth_max;
420
421 /* Each element of this array is a pointer to a page_entry, all
422 page_entries can be found in here by increasing depth.
423 index_by_depth in the page_entry is the index into this data
424 structure where that page_entry can be found. This is used to
425 speed up finding all page_entries at a particular depth. */
426 page_entry **by_depth;
427
428 /* Each element is a pointer to the saved in_use_p bits, if any,
429 zero otherwise. We allocate them all together, to enable a
430 better runtime data access pattern. */
431 unsigned long **save_in_use;
432
433 #ifdef ENABLE_GC_ALWAYS_COLLECT
434 /* List of free objects to be verified as actually free on the
435 next collection. */
436 struct free_object *free_object_list;
437 #endif
438
439 #ifdef GATHER_STATISTICS
440 struct
441 {
442 /* Total GC-allocated memory. */
443 unsigned long long total_allocated;
444 /* Total overhead for GC-allocated memory. */
445 unsigned long long total_overhead;
446
447 /* Total allocations and overhead for sizes less than 32, 64 and 128.
448 These sizes are interesting because they are typical cache line
449 sizes. */
450
451 unsigned long long total_allocated_under32;
452 unsigned long long total_overhead_under32;
453
454 unsigned long long total_allocated_under64;
455 unsigned long long total_overhead_under64;
456
457 unsigned long long total_allocated_under128;
458 unsigned long long total_overhead_under128;
459
460 /* The allocations for each of the allocation orders. */
461 unsigned long long total_allocated_per_order[NUM_ORDERS];
462
463 /* The overhead for each of the allocation orders. */
464 unsigned long long total_overhead_per_order[NUM_ORDERS];
465 } stats;
466 #endif
467 } G;
468
469 /* The size in bytes required to maintain a bitmap for the objects
470 on a page-entry. */
471 #define BITMAP_SIZE(Num_objects) \
472 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
473
474 /* Allocate pages in chunks of this size, to throttle calls to memory
475 allocation routines. The first page is used, the rest go onto the
476 free list. This cannot be larger than HOST_BITS_PER_INT for the
477 in_use bitmask for page_group. Hosts that need a different value
478 can override this by defining GGC_QUIRE_SIZE explicitly. */
479 #ifndef GGC_QUIRE_SIZE
480 # ifdef USING_MMAP
481 # define GGC_QUIRE_SIZE 256
482 # else
483 # define GGC_QUIRE_SIZE 16
484 # endif
485 #endif
486
487 /* Initial guess as to how many page table entries we might need. */
488 #define INITIAL_PTE_COUNT 128
489 \f
490 static int ggc_allocated_p (const void *);
491 static page_entry *lookup_page_table_entry (const void *);
492 static void set_page_table_entry (void *, page_entry *);
493 #ifdef USING_MMAP
494 static char *alloc_anon (char *, size_t);
495 #endif
496 #ifdef USING_MALLOC_PAGE_GROUPS
497 static size_t page_group_index (char *, char *);
498 static void set_page_group_in_use (page_group *, char *);
499 static void clear_page_group_in_use (page_group *, char *);
500 #endif
501 static struct page_entry * alloc_page (unsigned);
502 static void free_page (struct page_entry *);
503 static void release_pages (void);
504 static void clear_marks (void);
505 static void sweep_pages (void);
506 static void ggc_recalculate_in_use_p (page_entry *);
507 static void compute_inverse (unsigned);
508 static inline void adjust_depth (void);
509 static void move_ptes_to_front (int, int);
510
511 void debug_print_page_list (int);
512 static void push_depth (unsigned int);
513 static void push_by_depth (page_entry *, unsigned long *);
514
515 /* Push an entry onto G.depth. */
516
517 inline static void
518 push_depth (unsigned int i)
519 {
520 if (G.depth_in_use >= G.depth_max)
521 {
522 G.depth_max *= 2;
523 G.depth = XRESIZEVEC (unsigned int, G.depth, G.depth_max);
524 }
525 G.depth[G.depth_in_use++] = i;
526 }
527
528 /* Push an entry onto G.by_depth and G.save_in_use. */
529
530 inline static void
531 push_by_depth (page_entry *p, unsigned long *s)
532 {
533 if (G.by_depth_in_use >= G.by_depth_max)
534 {
535 G.by_depth_max *= 2;
536 G.by_depth = XRESIZEVEC (page_entry *, G.by_depth, G.by_depth_max);
537 G.save_in_use = XRESIZEVEC (unsigned long *, G.save_in_use,
538 G.by_depth_max);
539 }
540 G.by_depth[G.by_depth_in_use] = p;
541 G.save_in_use[G.by_depth_in_use++] = s;
542 }
543
544 #if (GCC_VERSION < 3001)
545 #define prefetch(X) ((void) X)
546 #else
547 #define prefetch(X) __builtin_prefetch (X)
548 #endif
549
550 #define save_in_use_p_i(__i) \
551 (G.save_in_use[__i])
552 #define save_in_use_p(__p) \
553 (save_in_use_p_i (__p->index_by_depth))
554
555 /* Returns nonzero if P was allocated in GC'able memory. */
556
557 static inline int
558 ggc_allocated_p (const void *p)
559 {
560 page_entry ***base;
561 size_t L1, L2;
562
563 #if HOST_BITS_PER_PTR <= 32
564 base = &G.lookup[0];
565 #else
566 page_table table = G.lookup;
567 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
568 while (1)
569 {
570 if (table == NULL)
571 return 0;
572 if (table->high_bits == high_bits)
573 break;
574 table = table->next;
575 }
576 base = &table->table[0];
577 #endif
578
579 /* Extract the level 1 and 2 indices. */
580 L1 = LOOKUP_L1 (p);
581 L2 = LOOKUP_L2 (p);
582
583 return base[L1] && base[L1][L2];
584 }
585
586 /* Traverse the page table and find the entry for a page.
587 Die (probably) if the object wasn't allocated via GC. */
588
589 static inline page_entry *
590 lookup_page_table_entry (const void *p)
591 {
592 page_entry ***base;
593 size_t L1, L2;
594
595 #if HOST_BITS_PER_PTR <= 32
596 base = &G.lookup[0];
597 #else
598 page_table table = G.lookup;
599 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
600 while (table->high_bits != high_bits)
601 table = table->next;
602 base = &table->table[0];
603 #endif
604
605 /* Extract the level 1 and 2 indices. */
606 L1 = LOOKUP_L1 (p);
607 L2 = LOOKUP_L2 (p);
608
609 return base[L1][L2];
610 }
611
612 /* Set the page table entry for a page. */
613
614 static void
615 set_page_table_entry (void *p, page_entry *entry)
616 {
617 page_entry ***base;
618 size_t L1, L2;
619
620 #if HOST_BITS_PER_PTR <= 32
621 base = &G.lookup[0];
622 #else
623 page_table table;
624 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
625 for (table = G.lookup; table; table = table->next)
626 if (table->high_bits == high_bits)
627 goto found;
628
629 /* Not found -- allocate a new table. */
630 table = XCNEW (struct page_table_chain);
631 table->next = G.lookup;
632 table->high_bits = high_bits;
633 G.lookup = table;
634 found:
635 base = &table->table[0];
636 #endif
637
638 /* Extract the level 1 and 2 indices. */
639 L1 = LOOKUP_L1 (p);
640 L2 = LOOKUP_L2 (p);
641
642 if (base[L1] == NULL)
643 base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
644
645 base[L1][L2] = entry;
646 }
647
648 /* Prints the page-entry for object size ORDER, for debugging. */
649
650 DEBUG_FUNCTION void
651 debug_print_page_list (int order)
652 {
653 page_entry *p;
654 printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
655 (void *) G.page_tails[order]);
656 p = G.pages[order];
657 while (p != NULL)
658 {
659 printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
660 p->num_free_objects);
661 p = p->next;
662 }
663 printf ("NULL\n");
664 fflush (stdout);
665 }
666
667 #ifdef USING_MMAP
668 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
669 (if non-null). The ifdef structure here is intended to cause a
670 compile error unless exactly one of the HAVE_* is defined. */
671
672 static inline char *
673 alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size)
674 {
675 #ifdef HAVE_MMAP_ANON
676 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
677 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
678 #endif
679 #ifdef HAVE_MMAP_DEV_ZERO
680 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
681 MAP_PRIVATE, G.dev_zero_fd, 0);
682 #endif
683
684 if (page == (char *) MAP_FAILED)
685 {
686 perror ("virtual memory exhausted");
687 exit (FATAL_EXIT_CODE);
688 }
689
690 /* Remember that we allocated this memory. */
691 G.bytes_mapped += size;
692
693 /* Pretend we don't have access to the allocated pages. We'll enable
694 access to smaller pieces of the area in ggc_internal_alloc. Discard the
695 handle to avoid handle leak. */
696 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size));
697
698 return page;
699 }
700 #endif
701 #ifdef USING_MALLOC_PAGE_GROUPS
702 /* Compute the index for this page into the page group. */
703
704 static inline size_t
705 page_group_index (char *allocation, char *page)
706 {
707 return (size_t) (page - allocation) >> G.lg_pagesize;
708 }
709
710 /* Set and clear the in_use bit for this page in the page group. */
711
712 static inline void
713 set_page_group_in_use (page_group *group, char *page)
714 {
715 group->in_use |= 1 << page_group_index (group->allocation, page);
716 }
717
718 static inline void
719 clear_page_group_in_use (page_group *group, char *page)
720 {
721 group->in_use &= ~(1 << page_group_index (group->allocation, page));
722 }
723 #endif
724
725 /* Allocate a new page for allocating objects of size 2^ORDER,
726 and return an entry for it. The entry is not added to the
727 appropriate page_table list. */
728
729 static inline struct page_entry *
730 alloc_page (unsigned order)
731 {
732 struct page_entry *entry, *p, **pp;
733 char *page;
734 size_t num_objects;
735 size_t bitmap_size;
736 size_t page_entry_size;
737 size_t entry_size;
738 #ifdef USING_MALLOC_PAGE_GROUPS
739 page_group *group;
740 #endif
741
742 num_objects = OBJECTS_PER_PAGE (order);
743 bitmap_size = BITMAP_SIZE (num_objects + 1);
744 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
745 entry_size = num_objects * OBJECT_SIZE (order);
746 if (entry_size < G.pagesize)
747 entry_size = G.pagesize;
748
749 entry = NULL;
750 page = NULL;
751
752 /* Check the list of free pages for one we can use. */
753 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
754 if (p->bytes == entry_size)
755 break;
756
757 if (p != NULL)
758 {
759 /* Recycle the allocated memory from this page ... */
760 *pp = p->next;
761 page = p->page;
762
763 #ifdef USING_MALLOC_PAGE_GROUPS
764 group = p->group;
765 #endif
766
767 /* ... and, if possible, the page entry itself. */
768 if (p->order == order)
769 {
770 entry = p;
771 memset (entry, 0, page_entry_size);
772 }
773 else
774 free (p);
775 }
776 #ifdef USING_MMAP
777 else if (entry_size == G.pagesize)
778 {
779 /* We want just one page. Allocate a bunch of them and put the
780 extras on the freelist. (Can only do this optimization with
781 mmap for backing store.) */
782 struct page_entry *e, *f = G.free_pages;
783 int i;
784
785 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE);
786
787 /* This loop counts down so that the chain will be in ascending
788 memory order. */
789 for (i = GGC_QUIRE_SIZE - 1; i >= 1; i--)
790 {
791 e = XCNEWVAR (struct page_entry, page_entry_size);
792 e->order = order;
793 e->bytes = G.pagesize;
794 e->page = page + (i << G.lg_pagesize);
795 e->next = f;
796 f = e;
797 }
798
799 G.free_pages = f;
800 }
801 else
802 page = alloc_anon (NULL, entry_size);
803 #endif
804 #ifdef USING_MALLOC_PAGE_GROUPS
805 else
806 {
807 /* Allocate a large block of memory and serve out the aligned
808 pages therein. This results in much less memory wastage
809 than the traditional implementation of valloc. */
810
811 char *allocation, *a, *enda;
812 size_t alloc_size, head_slop, tail_slop;
813 int multiple_pages = (entry_size == G.pagesize);
814
815 if (multiple_pages)
816 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
817 else
818 alloc_size = entry_size + G.pagesize - 1;
819 allocation = XNEWVEC (char, alloc_size);
820
821 page = (char *) (((size_t) allocation + G.pagesize - 1) & -G.pagesize);
822 head_slop = page - allocation;
823 if (multiple_pages)
824 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
825 else
826 tail_slop = alloc_size - entry_size - head_slop;
827 enda = allocation + alloc_size - tail_slop;
828
829 /* We allocated N pages, which are likely not aligned, leaving
830 us with N-1 usable pages. We plan to place the page_group
831 structure somewhere in the slop. */
832 if (head_slop >= sizeof (page_group))
833 group = (page_group *)page - 1;
834 else
835 {
836 /* We magically got an aligned allocation. Too bad, we have
837 to waste a page anyway. */
838 if (tail_slop == 0)
839 {
840 enda -= G.pagesize;
841 tail_slop += G.pagesize;
842 }
843 gcc_assert (tail_slop >= sizeof (page_group));
844 group = (page_group *)enda;
845 tail_slop -= sizeof (page_group);
846 }
847
848 /* Remember that we allocated this memory. */
849 group->next = G.page_groups;
850 group->allocation = allocation;
851 group->alloc_size = alloc_size;
852 group->in_use = 0;
853 G.page_groups = group;
854 G.bytes_mapped += alloc_size;
855
856 /* If we allocated multiple pages, put the rest on the free list. */
857 if (multiple_pages)
858 {
859 struct page_entry *e, *f = G.free_pages;
860 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
861 {
862 e = XCNEWVAR (struct page_entry, page_entry_size);
863 e->order = order;
864 e->bytes = G.pagesize;
865 e->page = a;
866 e->group = group;
867 e->next = f;
868 f = e;
869 }
870 G.free_pages = f;
871 }
872 }
873 #endif
874
875 if (entry == NULL)
876 entry = XCNEWVAR (struct page_entry, page_entry_size);
877
878 entry->bytes = entry_size;
879 entry->page = page;
880 entry->context_depth = G.context_depth;
881 entry->order = order;
882 entry->num_free_objects = num_objects;
883 entry->next_bit_hint = 1;
884
885 G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
886
887 #ifdef USING_MALLOC_PAGE_GROUPS
888 entry->group = group;
889 set_page_group_in_use (group, page);
890 #endif
891
892 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
893 increment the hint. */
894 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
895 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
896
897 set_page_table_entry (page, entry);
898
899 if (GGC_DEBUG_LEVEL >= 2)
900 fprintf (G.debug_file,
901 "Allocating page at %p, object size=%lu, data %p-%p\n",
902 (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
903 page + entry_size - 1);
904
905 return entry;
906 }
907
908 /* Adjust the size of G.depth so that no index greater than the one
909 used by the top of the G.by_depth is used. */
910
911 static inline void
912 adjust_depth (void)
913 {
914 page_entry *top;
915
916 if (G.by_depth_in_use)
917 {
918 top = G.by_depth[G.by_depth_in_use-1];
919
920 /* Peel back indices in depth that index into by_depth, so that
921 as new elements are added to by_depth, we note the indices
922 of those elements, if they are for new context depths. */
923 while (G.depth_in_use > (size_t)top->context_depth+1)
924 --G.depth_in_use;
925 }
926 }
927
928 /* For a page that is no longer needed, put it on the free page list. */
929
930 static void
931 free_page (page_entry *entry)
932 {
933 if (GGC_DEBUG_LEVEL >= 2)
934 fprintf (G.debug_file,
935 "Deallocating page at %p, data %p-%p\n", (void *) entry,
936 entry->page, entry->page + entry->bytes - 1);
937
938 /* Mark the page as inaccessible. Discard the handle to avoid handle
939 leak. */
940 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->page, entry->bytes));
941
942 set_page_table_entry (entry->page, NULL);
943
944 #ifdef USING_MALLOC_PAGE_GROUPS
945 clear_page_group_in_use (entry->group, entry->page);
946 #endif
947
948 if (G.by_depth_in_use > 1)
949 {
950 page_entry *top = G.by_depth[G.by_depth_in_use-1];
951 int i = entry->index_by_depth;
952
953 /* We cannot free a page from a context deeper than the current
954 one. */
955 gcc_assert (entry->context_depth == top->context_depth);
956
957 /* Put top element into freed slot. */
958 G.by_depth[i] = top;
959 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
960 top->index_by_depth = i;
961 }
962 --G.by_depth_in_use;
963
964 adjust_depth ();
965
966 entry->next = G.free_pages;
967 G.free_pages = entry;
968 }
969
970 /* Release the free page cache to the system. */
971
972 static void
973 release_pages (void)
974 {
975 #ifdef USING_MMAP
976 page_entry *p, *next;
977 char *start;
978 size_t len;
979
980 /* Gather up adjacent pages so they are unmapped together. */
981 p = G.free_pages;
982
983 while (p)
984 {
985 start = p->page;
986 next = p->next;
987 len = p->bytes;
988 free (p);
989 p = next;
990
991 while (p && p->page == start + len)
992 {
993 next = p->next;
994 len += p->bytes;
995 free (p);
996 p = next;
997 }
998
999 munmap (start, len);
1000 G.bytes_mapped -= len;
1001 }
1002
1003 G.free_pages = NULL;
1004 #endif
1005 #ifdef USING_MALLOC_PAGE_GROUPS
1006 page_entry **pp, *p;
1007 page_group **gp, *g;
1008
1009 /* Remove all pages from free page groups from the list. */
1010 pp = &G.free_pages;
1011 while ((p = *pp) != NULL)
1012 if (p->group->in_use == 0)
1013 {
1014 *pp = p->next;
1015 free (p);
1016 }
1017 else
1018 pp = &p->next;
1019
1020 /* Remove all free page groups, and release the storage. */
1021 gp = &G.page_groups;
1022 while ((g = *gp) != NULL)
1023 if (g->in_use == 0)
1024 {
1025 *gp = g->next;
1026 G.bytes_mapped -= g->alloc_size;
1027 free (g->allocation);
1028 }
1029 else
1030 gp = &g->next;
1031 #endif
1032 }
1033
1034 /* This table provides a fast way to determine ceil(log_2(size)) for
1035 allocation requests. The minimum allocation size is eight bytes. */
1036 #define NUM_SIZE_LOOKUP 512
1037 static unsigned char size_lookup[NUM_SIZE_LOOKUP] =
1038 {
1039 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1040 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1041 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1042 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1043 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1044 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1045 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1046 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1047 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1048 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1049 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1050 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1051 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1052 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1053 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1054 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1055 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1056 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1057 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1058 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1059 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1060 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1061 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1062 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1063 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1064 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1065 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1066 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1067 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1068 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1069 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1070 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
1071 };
1072
1073 /* Typed allocation function. Does nothing special in this collector. */
1074
1075 void *
1076 ggc_alloc_typed_stat (enum gt_types_enum type ATTRIBUTE_UNUSED, size_t size
1077 MEM_STAT_DECL)
1078 {
1079 return ggc_internal_alloc_stat (size PASS_MEM_STAT);
1080 }
1081
1082 /* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
1083
1084 void *
1085 ggc_internal_alloc_stat (size_t size MEM_STAT_DECL)
1086 {
1087 size_t order, word, bit, object_offset, object_size;
1088 struct page_entry *entry;
1089 void *result;
1090
1091 if (size < NUM_SIZE_LOOKUP)
1092 {
1093 order = size_lookup[size];
1094 object_size = OBJECT_SIZE (order);
1095 }
1096 else
1097 {
1098 order = 10;
1099 while (size > (object_size = OBJECT_SIZE (order)))
1100 order++;
1101 }
1102
1103 /* If there are non-full pages for this size allocation, they are at
1104 the head of the list. */
1105 entry = G.pages[order];
1106
1107 /* If there is no page for this object size, or all pages in this
1108 context are full, allocate a new page. */
1109 if (entry == NULL || entry->num_free_objects == 0)
1110 {
1111 struct page_entry *new_entry;
1112 new_entry = alloc_page (order);
1113
1114 new_entry->index_by_depth = G.by_depth_in_use;
1115 push_by_depth (new_entry, 0);
1116
1117 /* We can skip context depths, if we do, make sure we go all the
1118 way to the new depth. */
1119 while (new_entry->context_depth >= G.depth_in_use)
1120 push_depth (G.by_depth_in_use-1);
1121
1122 /* If this is the only entry, it's also the tail. If it is not
1123 the only entry, then we must update the PREV pointer of the
1124 ENTRY (G.pages[order]) to point to our new page entry. */
1125 if (entry == NULL)
1126 G.page_tails[order] = new_entry;
1127 else
1128 entry->prev = new_entry;
1129
1130 /* Put new pages at the head of the page list. By definition the
1131 entry at the head of the list always has a NULL pointer. */
1132 new_entry->next = entry;
1133 new_entry->prev = NULL;
1134 entry = new_entry;
1135 G.pages[order] = new_entry;
1136
1137 /* For a new page, we know the word and bit positions (in the
1138 in_use bitmap) of the first available object -- they're zero. */
1139 new_entry->next_bit_hint = 1;
1140 word = 0;
1141 bit = 0;
1142 object_offset = 0;
1143 }
1144 else
1145 {
1146 /* First try to use the hint left from the previous allocation
1147 to locate a clear bit in the in-use bitmap. We've made sure
1148 that the one-past-the-end bit is always set, so if the hint
1149 has run over, this test will fail. */
1150 unsigned hint = entry->next_bit_hint;
1151 word = hint / HOST_BITS_PER_LONG;
1152 bit = hint % HOST_BITS_PER_LONG;
1153
1154 /* If the hint didn't work, scan the bitmap from the beginning. */
1155 if ((entry->in_use_p[word] >> bit) & 1)
1156 {
1157 word = bit = 0;
1158 while (~entry->in_use_p[word] == 0)
1159 ++word;
1160
1161 #if GCC_VERSION >= 3004
1162 bit = __builtin_ctzl (~entry->in_use_p[word]);
1163 #else
1164 while ((entry->in_use_p[word] >> bit) & 1)
1165 ++bit;
1166 #endif
1167
1168 hint = word * HOST_BITS_PER_LONG + bit;
1169 }
1170
1171 /* Next time, try the next bit. */
1172 entry->next_bit_hint = hint + 1;
1173
1174 object_offset = hint * object_size;
1175 }
1176
1177 /* Set the in-use bit. */
1178 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1179
1180 /* Keep a running total of the number of free objects. If this page
1181 fills up, we may have to move it to the end of the list if the
1182 next page isn't full. If the next page is full, all subsequent
1183 pages are full, so there's no need to move it. */
1184 if (--entry->num_free_objects == 0
1185 && entry->next != NULL
1186 && entry->next->num_free_objects > 0)
1187 {
1188 /* We have a new head for the list. */
1189 G.pages[order] = entry->next;
1190
1191 /* We are moving ENTRY to the end of the page table list.
1192 The new page at the head of the list will have NULL in
1193 its PREV field and ENTRY will have NULL in its NEXT field. */
1194 entry->next->prev = NULL;
1195 entry->next = NULL;
1196
1197 /* Append ENTRY to the tail of the list. */
1198 entry->prev = G.page_tails[order];
1199 G.page_tails[order]->next = entry;
1200 G.page_tails[order] = entry;
1201 }
1202
1203 /* Calculate the object's address. */
1204 result = entry->page + object_offset;
1205 #ifdef GATHER_STATISTICS
1206 ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
1207 result PASS_MEM_STAT);
1208 #endif
1209
1210 #ifdef ENABLE_GC_CHECKING
1211 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1212 exact same semantics in presence of memory bugs, regardless of
1213 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1214 handle to avoid handle leak. */
1215 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, object_size));
1216
1217 /* `Poison' the entire allocated object, including any padding at
1218 the end. */
1219 memset (result, 0xaf, object_size);
1220
1221 /* Make the bytes after the end of the object unaccessible. Discard the
1222 handle to avoid handle leak. */
1223 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) result + size,
1224 object_size - size));
1225 #endif
1226
1227 /* Tell Valgrind that the memory is there, but its content isn't
1228 defined. The bytes at the end of the object are still marked
1229 unaccessible. */
1230 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size));
1231
1232 /* Keep track of how many bytes are being allocated. This
1233 information is used in deciding when to collect. */
1234 G.allocated += object_size;
1235
1236 /* For timevar statistics. */
1237 timevar_ggc_mem_total += object_size;
1238
1239 #ifdef GATHER_STATISTICS
1240 {
1241 size_t overhead = object_size - size;
1242
1243 G.stats.total_overhead += overhead;
1244 G.stats.total_allocated += object_size;
1245 G.stats.total_overhead_per_order[order] += overhead;
1246 G.stats.total_allocated_per_order[order] += object_size;
1247
1248 if (size <= 32)
1249 {
1250 G.stats.total_overhead_under32 += overhead;
1251 G.stats.total_allocated_under32 += object_size;
1252 }
1253 if (size <= 64)
1254 {
1255 G.stats.total_overhead_under64 += overhead;
1256 G.stats.total_allocated_under64 += object_size;
1257 }
1258 if (size <= 128)
1259 {
1260 G.stats.total_overhead_under128 += overhead;
1261 G.stats.total_allocated_under128 += object_size;
1262 }
1263 }
1264 #endif
1265
1266 if (GGC_DEBUG_LEVEL >= 3)
1267 fprintf (G.debug_file,
1268 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
1269 (unsigned long) size, (unsigned long) object_size, result,
1270 (void *) entry);
1271
1272 return result;
1273 }
1274
1275 /* Mark function for strings. */
1276
1277 void
1278 gt_ggc_m_S (const void *p)
1279 {
1280 page_entry *entry;
1281 unsigned bit, word;
1282 unsigned long mask;
1283 unsigned long offset;
1284
1285 if (!p || !ggc_allocated_p (p))
1286 return;
1287
1288 /* Look up the page on which the object is alloced. . */
1289 entry = lookup_page_table_entry (p);
1290 gcc_assert (entry);
1291
1292 /* Calculate the index of the object on the page; this is its bit
1293 position in the in_use_p bitmap. Note that because a char* might
1294 point to the middle of an object, we need special code here to
1295 make sure P points to the start of an object. */
1296 offset = ((const char *) p - entry->page) % object_size_table[entry->order];
1297 if (offset)
1298 {
1299 /* Here we've seen a char* which does not point to the beginning
1300 of an allocated object. We assume it points to the middle of
1301 a STRING_CST. */
1302 gcc_assert (offset == offsetof (struct tree_string, str));
1303 p = ((const char *) p) - offset;
1304 gt_ggc_mx_lang_tree_node (CONST_CAST (void *, p));
1305 return;
1306 }
1307
1308 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1309 word = bit / HOST_BITS_PER_LONG;
1310 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1311
1312 /* If the bit was previously set, skip it. */
1313 if (entry->in_use_p[word] & mask)
1314 return;
1315
1316 /* Otherwise set it, and decrement the free object count. */
1317 entry->in_use_p[word] |= mask;
1318 entry->num_free_objects -= 1;
1319
1320 if (GGC_DEBUG_LEVEL >= 4)
1321 fprintf (G.debug_file, "Marking %p\n", p);
1322
1323 return;
1324 }
1325
1326 /* If P is not marked, marks it and return false. Otherwise return true.
1327 P must have been allocated by the GC allocator; it mustn't point to
1328 static objects, stack variables, or memory allocated with malloc. */
1329
1330 int
1331 ggc_set_mark (const void *p)
1332 {
1333 page_entry *entry;
1334 unsigned bit, word;
1335 unsigned long mask;
1336
1337 /* Look up the page on which the object is alloced. If the object
1338 wasn't allocated by the collector, we'll probably die. */
1339 entry = lookup_page_table_entry (p);
1340 gcc_assert (entry);
1341
1342 /* Calculate the index of the object on the page; this is its bit
1343 position in the in_use_p bitmap. */
1344 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1345 word = bit / HOST_BITS_PER_LONG;
1346 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1347
1348 /* If the bit was previously set, skip it. */
1349 if (entry->in_use_p[word] & mask)
1350 return 1;
1351
1352 /* Otherwise set it, and decrement the free object count. */
1353 entry->in_use_p[word] |= mask;
1354 entry->num_free_objects -= 1;
1355
1356 if (GGC_DEBUG_LEVEL >= 4)
1357 fprintf (G.debug_file, "Marking %p\n", p);
1358
1359 return 0;
1360 }
1361
1362 /* Return 1 if P has been marked, zero otherwise.
1363 P must have been allocated by the GC allocator; it mustn't point to
1364 static objects, stack variables, or memory allocated with malloc. */
1365
1366 int
1367 ggc_marked_p (const void *p)
1368 {
1369 page_entry *entry;
1370 unsigned bit, word;
1371 unsigned long mask;
1372
1373 /* Look up the page on which the object is alloced. If the object
1374 wasn't allocated by the collector, we'll probably die. */
1375 entry = lookup_page_table_entry (p);
1376 gcc_assert (entry);
1377
1378 /* Calculate the index of the object on the page; this is its bit
1379 position in the in_use_p bitmap. */
1380 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1381 word = bit / HOST_BITS_PER_LONG;
1382 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1383
1384 return (entry->in_use_p[word] & mask) != 0;
1385 }
1386
1387 /* Return the size of the gc-able object P. */
1388
1389 size_t
1390 ggc_get_size (const void *p)
1391 {
1392 page_entry *pe = lookup_page_table_entry (p);
1393 return OBJECT_SIZE (pe->order);
1394 }
1395
1396 /* Release the memory for object P. */
1397
1398 void
1399 ggc_free (void *p)
1400 {
1401 page_entry *pe = lookup_page_table_entry (p);
1402 size_t order = pe->order;
1403 size_t size = OBJECT_SIZE (order);
1404
1405 #ifdef GATHER_STATISTICS
1406 ggc_free_overhead (p);
1407 #endif
1408
1409 if (GGC_DEBUG_LEVEL >= 3)
1410 fprintf (G.debug_file,
1411 "Freeing object, actual size=%lu, at %p on %p\n",
1412 (unsigned long) size, p, (void *) pe);
1413
1414 #ifdef ENABLE_GC_CHECKING
1415 /* Poison the data, to indicate the data is garbage. */
1416 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (p, size));
1417 memset (p, 0xa5, size);
1418 #endif
1419 /* Let valgrind know the object is free. */
1420 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (p, size));
1421
1422 #ifdef ENABLE_GC_ALWAYS_COLLECT
1423 /* In the completely-anal-checking mode, we do *not* immediately free
1424 the data, but instead verify that the data is *actually* not
1425 reachable the next time we collect. */
1426 {
1427 struct free_object *fo = XNEW (struct free_object);
1428 fo->object = p;
1429 fo->next = G.free_object_list;
1430 G.free_object_list = fo;
1431 }
1432 #else
1433 {
1434 unsigned int bit_offset, word, bit;
1435
1436 G.allocated -= size;
1437
1438 /* Mark the object not-in-use. */
1439 bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
1440 word = bit_offset / HOST_BITS_PER_LONG;
1441 bit = bit_offset % HOST_BITS_PER_LONG;
1442 pe->in_use_p[word] &= ~(1UL << bit);
1443
1444 if (pe->num_free_objects++ == 0)
1445 {
1446 page_entry *p, *q;
1447
1448 /* If the page is completely full, then it's supposed to
1449 be after all pages that aren't. Since we've freed one
1450 object from a page that was full, we need to move the
1451 page to the head of the list.
1452
1453 PE is the node we want to move. Q is the previous node
1454 and P is the next node in the list. */
1455 q = pe->prev;
1456 if (q && q->num_free_objects == 0)
1457 {
1458 p = pe->next;
1459
1460 q->next = p;
1461
1462 /* If PE was at the end of the list, then Q becomes the
1463 new end of the list. If PE was not the end of the
1464 list, then we need to update the PREV field for P. */
1465 if (!p)
1466 G.page_tails[order] = q;
1467 else
1468 p->prev = q;
1469
1470 /* Move PE to the head of the list. */
1471 pe->next = G.pages[order];
1472 pe->prev = NULL;
1473 G.pages[order]->prev = pe;
1474 G.pages[order] = pe;
1475 }
1476
1477 /* Reset the hint bit to point to the only free object. */
1478 pe->next_bit_hint = bit_offset;
1479 }
1480 }
1481 #endif
1482 }
1483 \f
1484 /* Subroutine of init_ggc which computes the pair of numbers used to
1485 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1486
1487 This algorithm is taken from Granlund and Montgomery's paper
1488 "Division by Invariant Integers using Multiplication"
1489 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1490 constants). */
1491
1492 static void
1493 compute_inverse (unsigned order)
1494 {
1495 size_t size, inv;
1496 unsigned int e;
1497
1498 size = OBJECT_SIZE (order);
1499 e = 0;
1500 while (size % 2 == 0)
1501 {
1502 e++;
1503 size >>= 1;
1504 }
1505
1506 inv = size;
1507 while (inv * size != 1)
1508 inv = inv * (2 - inv*size);
1509
1510 DIV_MULT (order) = inv;
1511 DIV_SHIFT (order) = e;
1512 }
1513
1514 /* Initialize the ggc-mmap allocator. */
1515 void
1516 init_ggc (void)
1517 {
1518 unsigned order;
1519
1520 G.pagesize = getpagesize();
1521 G.lg_pagesize = exact_log2 (G.pagesize);
1522
1523 #ifdef HAVE_MMAP_DEV_ZERO
1524 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1525 if (G.dev_zero_fd == -1)
1526 internal_error ("open /dev/zero: %m");
1527 #endif
1528
1529 #if 0
1530 G.debug_file = fopen ("ggc-mmap.debug", "w");
1531 #else
1532 G.debug_file = stdout;
1533 #endif
1534
1535 #ifdef USING_MMAP
1536 /* StunOS has an amazing off-by-one error for the first mmap allocation
1537 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1538 believe, is an unaligned page allocation, which would cause us to
1539 hork badly if we tried to use it. */
1540 {
1541 char *p = alloc_anon (NULL, G.pagesize);
1542 struct page_entry *e;
1543 if ((size_t)p & (G.pagesize - 1))
1544 {
1545 /* How losing. Discard this one and try another. If we still
1546 can't get something useful, give up. */
1547
1548 p = alloc_anon (NULL, G.pagesize);
1549 gcc_assert (!((size_t)p & (G.pagesize - 1)));
1550 }
1551
1552 /* We have a good page, might as well hold onto it... */
1553 e = XCNEW (struct page_entry);
1554 e->bytes = G.pagesize;
1555 e->page = p;
1556 e->next = G.free_pages;
1557 G.free_pages = e;
1558 }
1559 #endif
1560
1561 /* Initialize the object size table. */
1562 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1563 object_size_table[order] = (size_t) 1 << order;
1564 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1565 {
1566 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1567
1568 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1569 so that we're sure of getting aligned memory. */
1570 s = ROUND_UP (s, MAX_ALIGNMENT);
1571 object_size_table[order] = s;
1572 }
1573
1574 /* Initialize the objects-per-page and inverse tables. */
1575 for (order = 0; order < NUM_ORDERS; ++order)
1576 {
1577 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1578 if (objects_per_page_table[order] == 0)
1579 objects_per_page_table[order] = 1;
1580 compute_inverse (order);
1581 }
1582
1583 /* Reset the size_lookup array to put appropriately sized objects in
1584 the special orders. All objects bigger than the previous power
1585 of two, but no greater than the special size, should go in the
1586 new order. */
1587 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1588 {
1589 int o;
1590 int i;
1591
1592 i = OBJECT_SIZE (order);
1593 if (i >= NUM_SIZE_LOOKUP)
1594 continue;
1595
1596 for (o = size_lookup[i]; o == size_lookup [i]; --i)
1597 size_lookup[i] = order;
1598 }
1599
1600 G.depth_in_use = 0;
1601 G.depth_max = 10;
1602 G.depth = XNEWVEC (unsigned int, G.depth_max);
1603
1604 G.by_depth_in_use = 0;
1605 G.by_depth_max = INITIAL_PTE_COUNT;
1606 G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
1607 G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
1608 }
1609
1610 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1611 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1612
1613 static void
1614 ggc_recalculate_in_use_p (page_entry *p)
1615 {
1616 unsigned int i;
1617 size_t num_objects;
1618
1619 /* Because the past-the-end bit in in_use_p is always set, we
1620 pretend there is one additional object. */
1621 num_objects = OBJECTS_IN_PAGE (p) + 1;
1622
1623 /* Reset the free object count. */
1624 p->num_free_objects = num_objects;
1625
1626 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
1627 for (i = 0;
1628 i < CEIL (BITMAP_SIZE (num_objects),
1629 sizeof (*p->in_use_p));
1630 ++i)
1631 {
1632 unsigned long j;
1633
1634 /* Something is in use if it is marked, or if it was in use in a
1635 context further down the context stack. */
1636 p->in_use_p[i] |= save_in_use_p (p)[i];
1637
1638 /* Decrement the free object count for every object allocated. */
1639 for (j = p->in_use_p[i]; j; j >>= 1)
1640 p->num_free_objects -= (j & 1);
1641 }
1642
1643 gcc_assert (p->num_free_objects < num_objects);
1644 }
1645 \f
1646 /* Unmark all objects. */
1647
1648 static void
1649 clear_marks (void)
1650 {
1651 unsigned order;
1652
1653 for (order = 2; order < NUM_ORDERS; order++)
1654 {
1655 page_entry *p;
1656
1657 for (p = G.pages[order]; p != NULL; p = p->next)
1658 {
1659 size_t num_objects = OBJECTS_IN_PAGE (p);
1660 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1661
1662 /* The data should be page-aligned. */
1663 gcc_assert (!((size_t) p->page & (G.pagesize - 1)));
1664
1665 /* Pages that aren't in the topmost context are not collected;
1666 nevertheless, we need their in-use bit vectors to store GC
1667 marks. So, back them up first. */
1668 if (p->context_depth < G.context_depth)
1669 {
1670 if (! save_in_use_p (p))
1671 save_in_use_p (p) = XNEWVAR (unsigned long, bitmap_size);
1672 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
1673 }
1674
1675 /* Reset reset the number of free objects and clear the
1676 in-use bits. These will be adjusted by mark_obj. */
1677 p->num_free_objects = num_objects;
1678 memset (p->in_use_p, 0, bitmap_size);
1679
1680 /* Make sure the one-past-the-end bit is always set. */
1681 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1682 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1683 }
1684 }
1685 }
1686
1687 /* Free all empty pages. Partially empty pages need no attention
1688 because the `mark' bit doubles as an `unused' bit. */
1689
1690 static void
1691 sweep_pages (void)
1692 {
1693 unsigned order;
1694
1695 for (order = 2; order < NUM_ORDERS; order++)
1696 {
1697 /* The last page-entry to consider, regardless of entries
1698 placed at the end of the list. */
1699 page_entry * const last = G.page_tails[order];
1700
1701 size_t num_objects;
1702 size_t live_objects;
1703 page_entry *p, *previous;
1704 int done;
1705
1706 p = G.pages[order];
1707 if (p == NULL)
1708 continue;
1709
1710 previous = NULL;
1711 do
1712 {
1713 page_entry *next = p->next;
1714
1715 /* Loop until all entries have been examined. */
1716 done = (p == last);
1717
1718 num_objects = OBJECTS_IN_PAGE (p);
1719
1720 /* Add all live objects on this page to the count of
1721 allocated memory. */
1722 live_objects = num_objects - p->num_free_objects;
1723
1724 G.allocated += OBJECT_SIZE (order) * live_objects;
1725
1726 /* Only objects on pages in the topmost context should get
1727 collected. */
1728 if (p->context_depth < G.context_depth)
1729 ;
1730
1731 /* Remove the page if it's empty. */
1732 else if (live_objects == 0)
1733 {
1734 /* If P was the first page in the list, then NEXT
1735 becomes the new first page in the list, otherwise
1736 splice P out of the forward pointers. */
1737 if (! previous)
1738 G.pages[order] = next;
1739 else
1740 previous->next = next;
1741
1742 /* Splice P out of the back pointers too. */
1743 if (next)
1744 next->prev = previous;
1745
1746 /* Are we removing the last element? */
1747 if (p == G.page_tails[order])
1748 G.page_tails[order] = previous;
1749 free_page (p);
1750 p = previous;
1751 }
1752
1753 /* If the page is full, move it to the end. */
1754 else if (p->num_free_objects == 0)
1755 {
1756 /* Don't move it if it's already at the end. */
1757 if (p != G.page_tails[order])
1758 {
1759 /* Move p to the end of the list. */
1760 p->next = NULL;
1761 p->prev = G.page_tails[order];
1762 G.page_tails[order]->next = p;
1763
1764 /* Update the tail pointer... */
1765 G.page_tails[order] = p;
1766
1767 /* ... and the head pointer, if necessary. */
1768 if (! previous)
1769 G.pages[order] = next;
1770 else
1771 previous->next = next;
1772
1773 /* And update the backpointer in NEXT if necessary. */
1774 if (next)
1775 next->prev = previous;
1776
1777 p = previous;
1778 }
1779 }
1780
1781 /* If we've fallen through to here, it's a page in the
1782 topmost context that is neither full nor empty. Such a
1783 page must precede pages at lesser context depth in the
1784 list, so move it to the head. */
1785 else if (p != G.pages[order])
1786 {
1787 previous->next = p->next;
1788
1789 /* Update the backchain in the next node if it exists. */
1790 if (p->next)
1791 p->next->prev = previous;
1792
1793 /* Move P to the head of the list. */
1794 p->next = G.pages[order];
1795 p->prev = NULL;
1796 G.pages[order]->prev = p;
1797
1798 /* Update the head pointer. */
1799 G.pages[order] = p;
1800
1801 /* Are we moving the last element? */
1802 if (G.page_tails[order] == p)
1803 G.page_tails[order] = previous;
1804 p = previous;
1805 }
1806
1807 previous = p;
1808 p = next;
1809 }
1810 while (! done);
1811
1812 /* Now, restore the in_use_p vectors for any pages from contexts
1813 other than the current one. */
1814 for (p = G.pages[order]; p; p = p->next)
1815 if (p->context_depth != G.context_depth)
1816 ggc_recalculate_in_use_p (p);
1817 }
1818 }
1819
1820 #ifdef ENABLE_GC_CHECKING
1821 /* Clobber all free objects. */
1822
1823 static void
1824 poison_pages (void)
1825 {
1826 unsigned order;
1827
1828 for (order = 2; order < NUM_ORDERS; order++)
1829 {
1830 size_t size = OBJECT_SIZE (order);
1831 page_entry *p;
1832
1833 for (p = G.pages[order]; p != NULL; p = p->next)
1834 {
1835 size_t num_objects;
1836 size_t i;
1837
1838 if (p->context_depth != G.context_depth)
1839 /* Since we don't do any collection for pages in pushed
1840 contexts, there's no need to do any poisoning. And
1841 besides, the IN_USE_P array isn't valid until we pop
1842 contexts. */
1843 continue;
1844
1845 num_objects = OBJECTS_IN_PAGE (p);
1846 for (i = 0; i < num_objects; i++)
1847 {
1848 size_t word, bit;
1849 word = i / HOST_BITS_PER_LONG;
1850 bit = i % HOST_BITS_PER_LONG;
1851 if (((p->in_use_p[word] >> bit) & 1) == 0)
1852 {
1853 char *object = p->page + i * size;
1854
1855 /* Keep poison-by-write when we expect to use Valgrind,
1856 so the exact same memory semantics is kept, in case
1857 there are memory errors. We override this request
1858 below. */
1859 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (object,
1860 size));
1861 memset (object, 0xa5, size);
1862
1863 /* Drop the handle to avoid handle leak. */
1864 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (object, size));
1865 }
1866 }
1867 }
1868 }
1869 }
1870 #else
1871 #define poison_pages()
1872 #endif
1873
1874 #ifdef ENABLE_GC_ALWAYS_COLLECT
1875 /* Validate that the reportedly free objects actually are. */
1876
1877 static void
1878 validate_free_objects (void)
1879 {
1880 struct free_object *f, *next, *still_free = NULL;
1881
1882 for (f = G.free_object_list; f ; f = next)
1883 {
1884 page_entry *pe = lookup_page_table_entry (f->object);
1885 size_t bit, word;
1886
1887 bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
1888 word = bit / HOST_BITS_PER_LONG;
1889 bit = bit % HOST_BITS_PER_LONG;
1890 next = f->next;
1891
1892 /* Make certain it isn't visible from any root. Notice that we
1893 do this check before sweep_pages merges save_in_use_p. */
1894 gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
1895
1896 /* If the object comes from an outer context, then retain the
1897 free_object entry, so that we can verify that the address
1898 isn't live on the stack in some outer context. */
1899 if (pe->context_depth != G.context_depth)
1900 {
1901 f->next = still_free;
1902 still_free = f;
1903 }
1904 else
1905 free (f);
1906 }
1907
1908 G.free_object_list = still_free;
1909 }
1910 #else
1911 #define validate_free_objects()
1912 #endif
1913
1914 /* Top level mark-and-sweep routine. */
1915
1916 void
1917 ggc_collect (void)
1918 {
1919 /* Avoid frequent unnecessary work by skipping collection if the
1920 total allocations haven't expanded much since the last
1921 collection. */
1922 float allocated_last_gc =
1923 MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
1924
1925 float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
1926
1927 if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
1928 return;
1929
1930 timevar_push (TV_GC);
1931 if (!quiet_flag)
1932 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
1933 if (GGC_DEBUG_LEVEL >= 2)
1934 fprintf (G.debug_file, "BEGIN COLLECTING\n");
1935
1936 /* Zero the total allocated bytes. This will be recalculated in the
1937 sweep phase. */
1938 G.allocated = 0;
1939
1940 /* Release the pages we freed the last time we collected, but didn't
1941 reuse in the interim. */
1942 release_pages ();
1943
1944 /* Indicate that we've seen collections at this context depth. */
1945 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
1946
1947 invoke_plugin_callbacks (PLUGIN_GGC_START, NULL);
1948
1949 clear_marks ();
1950 ggc_mark_roots ();
1951 #ifdef GATHER_STATISTICS
1952 ggc_prune_overhead_list ();
1953 #endif
1954 poison_pages ();
1955 validate_free_objects ();
1956 sweep_pages ();
1957
1958 G.allocated_last_gc = G.allocated;
1959
1960 invoke_plugin_callbacks (PLUGIN_GGC_END, NULL);
1961
1962 timevar_pop (TV_GC);
1963
1964 if (!quiet_flag)
1965 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
1966 if (GGC_DEBUG_LEVEL >= 2)
1967 fprintf (G.debug_file, "END COLLECTING\n");
1968 }
1969
1970 /* Print allocation statistics. */
1971 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
1972 ? (x) \
1973 : ((x) < 1024*1024*10 \
1974 ? (x) / 1024 \
1975 : (x) / (1024*1024))))
1976 #define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
1977
1978 void
1979 ggc_print_statistics (void)
1980 {
1981 struct ggc_statistics stats;
1982 unsigned int i;
1983 size_t total_overhead = 0;
1984
1985 /* Clear the statistics. */
1986 memset (&stats, 0, sizeof (stats));
1987
1988 /* Make sure collection will really occur. */
1989 G.allocated_last_gc = 0;
1990
1991 /* Collect and print the statistics common across collectors. */
1992 ggc_print_common_statistics (stderr, &stats);
1993
1994 /* Release free pages so that we will not count the bytes allocated
1995 there as part of the total allocated memory. */
1996 release_pages ();
1997
1998 /* Collect some information about the various sizes of
1999 allocation. */
2000 fprintf (stderr,
2001 "Memory still allocated at the end of the compilation process\n");
2002 fprintf (stderr, "%-5s %10s %10s %10s\n",
2003 "Size", "Allocated", "Used", "Overhead");
2004 for (i = 0; i < NUM_ORDERS; ++i)
2005 {
2006 page_entry *p;
2007 size_t allocated;
2008 size_t in_use;
2009 size_t overhead;
2010
2011 /* Skip empty entries. */
2012 if (!G.pages[i])
2013 continue;
2014
2015 overhead = allocated = in_use = 0;
2016
2017 /* Figure out the total number of bytes allocated for objects of
2018 this size, and how many of them are actually in use. Also figure
2019 out how much memory the page table is using. */
2020 for (p = G.pages[i]; p; p = p->next)
2021 {
2022 allocated += p->bytes;
2023 in_use +=
2024 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
2025
2026 overhead += (sizeof (page_entry) - sizeof (long)
2027 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
2028 }
2029 fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n",
2030 (unsigned long) OBJECT_SIZE (i),
2031 SCALE (allocated), STAT_LABEL (allocated),
2032 SCALE (in_use), STAT_LABEL (in_use),
2033 SCALE (overhead), STAT_LABEL (overhead));
2034 total_overhead += overhead;
2035 }
2036 fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
2037 SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped),
2038 SCALE (G.allocated), STAT_LABEL(G.allocated),
2039 SCALE (total_overhead), STAT_LABEL (total_overhead));
2040
2041 #ifdef GATHER_STATISTICS
2042 {
2043 fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
2044
2045 fprintf (stderr, "Total Overhead: %10lld\n",
2046 G.stats.total_overhead);
2047 fprintf (stderr, "Total Allocated: %10lld\n",
2048 G.stats.total_allocated);
2049
2050 fprintf (stderr, "Total Overhead under 32B: %10lld\n",
2051 G.stats.total_overhead_under32);
2052 fprintf (stderr, "Total Allocated under 32B: %10lld\n",
2053 G.stats.total_allocated_under32);
2054 fprintf (stderr, "Total Overhead under 64B: %10lld\n",
2055 G.stats.total_overhead_under64);
2056 fprintf (stderr, "Total Allocated under 64B: %10lld\n",
2057 G.stats.total_allocated_under64);
2058 fprintf (stderr, "Total Overhead under 128B: %10lld\n",
2059 G.stats.total_overhead_under128);
2060 fprintf (stderr, "Total Allocated under 128B: %10lld\n",
2061 G.stats.total_allocated_under128);
2062
2063 for (i = 0; i < NUM_ORDERS; i++)
2064 if (G.stats.total_allocated_per_order[i])
2065 {
2066 fprintf (stderr, "Total Overhead page size %7lu: %10lld\n",
2067 (unsigned long) OBJECT_SIZE (i),
2068 G.stats.total_overhead_per_order[i]);
2069 fprintf (stderr, "Total Allocated page size %7lu: %10lld\n",
2070 (unsigned long) OBJECT_SIZE (i),
2071 G.stats.total_allocated_per_order[i]);
2072 }
2073 }
2074 #endif
2075 }
2076 \f
2077 struct ggc_pch_ondisk
2078 {
2079 unsigned totals[NUM_ORDERS];
2080 };
2081
2082 struct ggc_pch_data
2083 {
2084 struct ggc_pch_ondisk d;
2085 size_t base[NUM_ORDERS];
2086 size_t written[NUM_ORDERS];
2087 };
2088
2089 struct ggc_pch_data *
2090 init_ggc_pch (void)
2091 {
2092 return XCNEW (struct ggc_pch_data);
2093 }
2094
2095 void
2096 ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2097 size_t size, bool is_string ATTRIBUTE_UNUSED,
2098 enum gt_types_enum type ATTRIBUTE_UNUSED)
2099 {
2100 unsigned order;
2101
2102 if (size < NUM_SIZE_LOOKUP)
2103 order = size_lookup[size];
2104 else
2105 {
2106 order = 10;
2107 while (size > OBJECT_SIZE (order))
2108 order++;
2109 }
2110
2111 d->d.totals[order]++;
2112 }
2113
2114 size_t
2115 ggc_pch_total_size (struct ggc_pch_data *d)
2116 {
2117 size_t a = 0;
2118 unsigned i;
2119
2120 for (i = 0; i < NUM_ORDERS; i++)
2121 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2122 return a;
2123 }
2124
2125 void
2126 ggc_pch_this_base (struct ggc_pch_data *d, void *base)
2127 {
2128 size_t a = (size_t) base;
2129 unsigned i;
2130
2131 for (i = 0; i < NUM_ORDERS; i++)
2132 {
2133 d->base[i] = a;
2134 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2135 }
2136 }
2137
2138
2139 char *
2140 ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2141 size_t size, bool is_string ATTRIBUTE_UNUSED,
2142 enum gt_types_enum type ATTRIBUTE_UNUSED)
2143 {
2144 unsigned order;
2145 char *result;
2146
2147 if (size < NUM_SIZE_LOOKUP)
2148 order = size_lookup[size];
2149 else
2150 {
2151 order = 10;
2152 while (size > OBJECT_SIZE (order))
2153 order++;
2154 }
2155
2156 result = (char *) d->base[order];
2157 d->base[order] += OBJECT_SIZE (order);
2158 return result;
2159 }
2160
2161 void
2162 ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2163 FILE *f ATTRIBUTE_UNUSED)
2164 {
2165 /* Nothing to do. */
2166 }
2167
2168 void
2169 ggc_pch_write_object (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2170 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
2171 size_t size, bool is_string ATTRIBUTE_UNUSED)
2172 {
2173 unsigned order;
2174 static const char emptyBytes[256] = { 0 };
2175
2176 if (size < NUM_SIZE_LOOKUP)
2177 order = size_lookup[size];
2178 else
2179 {
2180 order = 10;
2181 while (size > OBJECT_SIZE (order))
2182 order++;
2183 }
2184
2185 if (fwrite (x, size, 1, f) != 1)
2186 fatal_error ("can't write PCH file: %m");
2187
2188 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2189 object out to OBJECT_SIZE(order). This happens for strings. */
2190
2191 if (size != OBJECT_SIZE (order))
2192 {
2193 unsigned padding = OBJECT_SIZE(order) - size;
2194
2195 /* To speed small writes, we use a nulled-out array that's larger
2196 than most padding requests as the source for our null bytes. This
2197 permits us to do the padding with fwrite() rather than fseek(), and
2198 limits the chance the OS may try to flush any outstanding writes. */
2199 if (padding <= sizeof(emptyBytes))
2200 {
2201 if (fwrite (emptyBytes, 1, padding, f) != padding)
2202 fatal_error ("can't write PCH file");
2203 }
2204 else
2205 {
2206 /* Larger than our buffer? Just default to fseek. */
2207 if (fseek (f, padding, SEEK_CUR) != 0)
2208 fatal_error ("can't write PCH file");
2209 }
2210 }
2211
2212 d->written[order]++;
2213 if (d->written[order] == d->d.totals[order]
2214 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2215 G.pagesize),
2216 SEEK_CUR) != 0)
2217 fatal_error ("can't write PCH file: %m");
2218 }
2219
2220 void
2221 ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
2222 {
2223 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
2224 fatal_error ("can't write PCH file: %m");
2225 free (d);
2226 }
2227
2228 /* Move the PCH PTE entries just added to the end of by_depth, to the
2229 front. */
2230
2231 static void
2232 move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
2233 {
2234 unsigned i;
2235
2236 /* First, we swap the new entries to the front of the varrays. */
2237 page_entry **new_by_depth;
2238 unsigned long **new_save_in_use;
2239
2240 new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
2241 new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
2242
2243 memcpy (&new_by_depth[0],
2244 &G.by_depth[count_old_page_tables],
2245 count_new_page_tables * sizeof (void *));
2246 memcpy (&new_by_depth[count_new_page_tables],
2247 &G.by_depth[0],
2248 count_old_page_tables * sizeof (void *));
2249 memcpy (&new_save_in_use[0],
2250 &G.save_in_use[count_old_page_tables],
2251 count_new_page_tables * sizeof (void *));
2252 memcpy (&new_save_in_use[count_new_page_tables],
2253 &G.save_in_use[0],
2254 count_old_page_tables * sizeof (void *));
2255
2256 free (G.by_depth);
2257 free (G.save_in_use);
2258
2259 G.by_depth = new_by_depth;
2260 G.save_in_use = new_save_in_use;
2261
2262 /* Now update all the index_by_depth fields. */
2263 for (i = G.by_depth_in_use; i > 0; --i)
2264 {
2265 page_entry *p = G.by_depth[i-1];
2266 p->index_by_depth = i-1;
2267 }
2268
2269 /* And last, we update the depth pointers in G.depth. The first
2270 entry is already 0, and context 0 entries always start at index
2271 0, so there is nothing to update in the first slot. We need a
2272 second slot, only if we have old ptes, and if we do, they start
2273 at index count_new_page_tables. */
2274 if (count_old_page_tables)
2275 push_depth (count_new_page_tables);
2276 }
2277
2278 void
2279 ggc_pch_read (FILE *f, void *addr)
2280 {
2281 struct ggc_pch_ondisk d;
2282 unsigned i;
2283 char *offs = (char *) addr;
2284 unsigned long count_old_page_tables;
2285 unsigned long count_new_page_tables;
2286
2287 count_old_page_tables = G.by_depth_in_use;
2288
2289 /* We've just read in a PCH file. So, every object that used to be
2290 allocated is now free. */
2291 clear_marks ();
2292 #ifdef ENABLE_GC_CHECKING
2293 poison_pages ();
2294 #endif
2295 /* Since we free all the allocated objects, the free list becomes
2296 useless. Validate it now, which will also clear it. */
2297 validate_free_objects();
2298
2299 /* No object read from a PCH file should ever be freed. So, set the
2300 context depth to 1, and set the depth of all the currently-allocated
2301 pages to be 1 too. PCH pages will have depth 0. */
2302 gcc_assert (!G.context_depth);
2303 G.context_depth = 1;
2304 for (i = 0; i < NUM_ORDERS; i++)
2305 {
2306 page_entry *p;
2307 for (p = G.pages[i]; p != NULL; p = p->next)
2308 p->context_depth = G.context_depth;
2309 }
2310
2311 /* Allocate the appropriate page-table entries for the pages read from
2312 the PCH file. */
2313 if (fread (&d, sizeof (d), 1, f) != 1)
2314 fatal_error ("can't read PCH file: %m");
2315
2316 for (i = 0; i < NUM_ORDERS; i++)
2317 {
2318 struct page_entry *entry;
2319 char *pte;
2320 size_t bytes;
2321 size_t num_objs;
2322 size_t j;
2323
2324 if (d.totals[i] == 0)
2325 continue;
2326
2327 bytes = ROUND_UP (d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2328 num_objs = bytes / OBJECT_SIZE (i);
2329 entry = XCNEWVAR (struct page_entry, (sizeof (struct page_entry)
2330 - sizeof (long)
2331 + BITMAP_SIZE (num_objs + 1)));
2332 entry->bytes = bytes;
2333 entry->page = offs;
2334 entry->context_depth = 0;
2335 offs += bytes;
2336 entry->num_free_objects = 0;
2337 entry->order = i;
2338
2339 for (j = 0;
2340 j + HOST_BITS_PER_LONG <= num_objs + 1;
2341 j += HOST_BITS_PER_LONG)
2342 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2343 for (; j < num_objs + 1; j++)
2344 entry->in_use_p[j / HOST_BITS_PER_LONG]
2345 |= 1L << (j % HOST_BITS_PER_LONG);
2346
2347 for (pte = entry->page;
2348 pte < entry->page + entry->bytes;
2349 pte += G.pagesize)
2350 set_page_table_entry (pte, entry);
2351
2352 if (G.page_tails[i] != NULL)
2353 G.page_tails[i]->next = entry;
2354 else
2355 G.pages[i] = entry;
2356 G.page_tails[i] = entry;
2357
2358 /* We start off by just adding all the new information to the
2359 end of the varrays, later, we will move the new information
2360 to the front of the varrays, as the PCH page tables are at
2361 context 0. */
2362 push_by_depth (entry, 0);
2363 }
2364
2365 /* Now, we update the various data structures that speed page table
2366 handling. */
2367 count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2368
2369 move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2370
2371 /* Update the statistics. */
2372 G.allocated = G.allocated_last_gc = offs - (char *)addr;
2373 }
2374
2375 struct alloc_zone
2376 {
2377 int dummy;
2378 };
2379
2380 struct alloc_zone rtl_zone;
2381 struct alloc_zone tree_zone;
2382 struct alloc_zone tree_id_zone;