usage.adb: Change "pragma inline" to "pragma Inline" in information and error messages
[gcc.git] / gcc / ggc-page.c
1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "toplev.h"
30 #include "flags.h"
31 #include "ggc.h"
32 #include "timevar.h"
33 #include "params.h"
34 #include "tree-flow.h"
35 #ifdef ENABLE_VALGRIND_CHECKING
36 # ifdef HAVE_VALGRIND_MEMCHECK_H
37 # include <valgrind/memcheck.h>
38 # elif defined HAVE_MEMCHECK_H
39 # include <memcheck.h>
40 # else
41 # include <valgrind.h>
42 # endif
43 #else
44 /* Avoid #ifdef:s when we can help it. */
45 #define VALGRIND_DISCARD(x)
46 #endif
47
48 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
49 file open. Prefer either to valloc. */
50 #ifdef HAVE_MMAP_ANON
51 # undef HAVE_MMAP_DEV_ZERO
52
53 # include <sys/mman.h>
54 # ifndef MAP_FAILED
55 # define MAP_FAILED -1
56 # endif
57 # if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
58 # define MAP_ANONYMOUS MAP_ANON
59 # endif
60 # define USING_MMAP
61
62 #endif
63
64 #ifdef HAVE_MMAP_DEV_ZERO
65
66 # include <sys/mman.h>
67 # ifndef MAP_FAILED
68 # define MAP_FAILED -1
69 # endif
70 # define USING_MMAP
71
72 #endif
73
74 #ifndef USING_MMAP
75 #define USING_MALLOC_PAGE_GROUPS
76 #endif
77
78 /* Stategy:
79
80 This garbage-collecting allocator allocates objects on one of a set
81 of pages. Each page can allocate objects of a single size only;
82 available sizes are powers of two starting at four bytes. The size
83 of an allocation request is rounded up to the next power of two
84 (`order'), and satisfied from the appropriate page.
85
86 Each page is recorded in a page-entry, which also maintains an
87 in-use bitmap of object positions on the page. This allows the
88 allocation state of a particular object to be flipped without
89 touching the page itself.
90
91 Each page-entry also has a context depth, which is used to track
92 pushing and popping of allocation contexts. Only objects allocated
93 in the current (highest-numbered) context may be collected.
94
95 Page entries are arranged in an array of singly-linked lists. The
96 array is indexed by the allocation size, in bits, of the pages on
97 it; i.e. all pages on a list allocate objects of the same size.
98 Pages are ordered on the list such that all non-full pages precede
99 all full pages, with non-full pages arranged in order of decreasing
100 context depth.
101
102 Empty pages (of all orders) are kept on a single page cache list,
103 and are considered first when new pages are required; they are
104 deallocated at the start of the next collection if they haven't
105 been recycled by then. */
106
107 /* Define GGC_DEBUG_LEVEL to print debugging information.
108 0: No debugging output.
109 1: GC statistics only.
110 2: Page-entry allocations/deallocations as well.
111 3: Object allocations as well.
112 4: Object marks as well. */
113 #define GGC_DEBUG_LEVEL (0)
114 \f
115 #ifndef HOST_BITS_PER_PTR
116 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
117 #endif
118
119 \f
120 /* A two-level tree is used to look up the page-entry for a given
121 pointer. Two chunks of the pointer's bits are extracted to index
122 the first and second levels of the tree, as follows:
123
124 HOST_PAGE_SIZE_BITS
125 32 | |
126 msb +----------------+----+------+------+ lsb
127 | | |
128 PAGE_L1_BITS |
129 | |
130 PAGE_L2_BITS
131
132 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
133 pages are aligned on system page boundaries. The next most
134 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
135 index values in the lookup table, respectively.
136
137 For 32-bit architectures and the settings below, there are no
138 leftover bits. For architectures with wider pointers, the lookup
139 tree points to a list of pages, which must be scanned to find the
140 correct one. */
141
142 #define PAGE_L1_BITS (8)
143 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
144 #define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
145 #define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
146
147 #define LOOKUP_L1(p) \
148 (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
149
150 #define LOOKUP_L2(p) \
151 (((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
152
153 /* The number of objects per allocation page, for objects on a page of
154 the indicated ORDER. */
155 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
156
157 /* The number of objects in P. */
158 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
159
160 /* The size of an object on a page of the indicated ORDER. */
161 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
162
163 /* For speed, we avoid doing a general integer divide to locate the
164 offset in the allocation bitmap, by precalculating numbers M, S
165 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
166 within the page which is evenly divisible by the object size Z. */
167 #define DIV_MULT(ORDER) inverse_table[ORDER].mult
168 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
169 #define OFFSET_TO_BIT(OFFSET, ORDER) \
170 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
171
172 /* The number of extra orders, not corresponding to power-of-two sized
173 objects. */
174
175 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
176
177 #define RTL_SIZE(NSLOTS) \
178 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
179
180 #define TREE_EXP_SIZE(OPS) \
181 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
182
183 /* The Ith entry is the maximum size of an object to be stored in the
184 Ith extra order. Adding a new entry to this array is the *only*
185 thing you need to do to add a new special allocation size. */
186
187 static const size_t extra_order_size_table[] = {
188 sizeof (struct stmt_ann_d),
189 sizeof (struct tree_decl),
190 sizeof (struct tree_list),
191 TREE_EXP_SIZE (2),
192 RTL_SIZE (2), /* MEM, PLUS, etc. */
193 RTL_SIZE (9), /* INSN */
194 };
195
196 /* The total number of orders. */
197
198 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
199
200 /* We use this structure to determine the alignment required for
201 allocations. For power-of-two sized allocations, that's not a
202 problem, but it does matter for odd-sized allocations. */
203
204 struct max_alignment {
205 char c;
206 union {
207 HOST_WIDEST_INT i;
208 long double d;
209 } u;
210 };
211
212 /* The biggest alignment required. */
213
214 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
215
216 /* Compute the smallest nonnegative number which when added to X gives
217 a multiple of F. */
218
219 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
220
221 /* Compute the smallest multiple of F that is >= X. */
222
223 #define ROUND_UP(x, f) (CEIL (x, f) * (f))
224
225 /* The Ith entry is the number of objects on a page or order I. */
226
227 static unsigned objects_per_page_table[NUM_ORDERS];
228
229 /* The Ith entry is the size of an object on a page of order I. */
230
231 static size_t object_size_table[NUM_ORDERS];
232
233 /* The Ith entry is a pair of numbers (mult, shift) such that
234 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
235 for all k evenly divisible by OBJECT_SIZE(I). */
236
237 static struct
238 {
239 size_t mult;
240 unsigned int shift;
241 }
242 inverse_table[NUM_ORDERS];
243
244 /* A page_entry records the status of an allocation page. This
245 structure is dynamically sized to fit the bitmap in_use_p. */
246 typedef struct page_entry
247 {
248 /* The next page-entry with objects of the same size, or NULL if
249 this is the last page-entry. */
250 struct page_entry *next;
251
252 /* The previous page-entry with objects of the same size, or NULL if
253 this is the first page-entry. The PREV pointer exists solely to
254 keep the cost of ggc_free manageable. */
255 struct page_entry *prev;
256
257 /* The number of bytes allocated. (This will always be a multiple
258 of the host system page size.) */
259 size_t bytes;
260
261 /* The address at which the memory is allocated. */
262 char *page;
263
264 #ifdef USING_MALLOC_PAGE_GROUPS
265 /* Back pointer to the page group this page came from. */
266 struct page_group *group;
267 #endif
268
269 /* This is the index in the by_depth varray where this page table
270 can be found. */
271 unsigned long index_by_depth;
272
273 /* Context depth of this page. */
274 unsigned short context_depth;
275
276 /* The number of free objects remaining on this page. */
277 unsigned short num_free_objects;
278
279 /* A likely candidate for the bit position of a free object for the
280 next allocation from this page. */
281 unsigned short next_bit_hint;
282
283 /* The lg of size of objects allocated from this page. */
284 unsigned char order;
285
286 /* A bit vector indicating whether or not objects are in use. The
287 Nth bit is one if the Nth object on this page is allocated. This
288 array is dynamically sized. */
289 unsigned long in_use_p[1];
290 } page_entry;
291
292 #ifdef USING_MALLOC_PAGE_GROUPS
293 /* A page_group describes a large allocation from malloc, from which
294 we parcel out aligned pages. */
295 typedef struct page_group
296 {
297 /* A linked list of all extant page groups. */
298 struct page_group *next;
299
300 /* The address we received from malloc. */
301 char *allocation;
302
303 /* The size of the block. */
304 size_t alloc_size;
305
306 /* A bitmask of pages in use. */
307 unsigned int in_use;
308 } page_group;
309 #endif
310
311 #if HOST_BITS_PER_PTR <= 32
312
313 /* On 32-bit hosts, we use a two level page table, as pictured above. */
314 typedef page_entry **page_table[PAGE_L1_SIZE];
315
316 #else
317
318 /* On 64-bit hosts, we use the same two level page tables plus a linked
319 list that disambiguates the top 32-bits. There will almost always be
320 exactly one entry in the list. */
321 typedef struct page_table_chain
322 {
323 struct page_table_chain *next;
324 size_t high_bits;
325 page_entry **table[PAGE_L1_SIZE];
326 } *page_table;
327
328 #endif
329
330 /* The rest of the global variables. */
331 static struct globals
332 {
333 /* The Nth element in this array is a page with objects of size 2^N.
334 If there are any pages with free objects, they will be at the
335 head of the list. NULL if there are no page-entries for this
336 object size. */
337 page_entry *pages[NUM_ORDERS];
338
339 /* The Nth element in this array is the last page with objects of
340 size 2^N. NULL if there are no page-entries for this object
341 size. */
342 page_entry *page_tails[NUM_ORDERS];
343
344 /* Lookup table for associating allocation pages with object addresses. */
345 page_table lookup;
346
347 /* The system's page size. */
348 size_t pagesize;
349 size_t lg_pagesize;
350
351 /* Bytes currently allocated. */
352 size_t allocated;
353
354 /* Bytes currently allocated at the end of the last collection. */
355 size_t allocated_last_gc;
356
357 /* Total amount of memory mapped. */
358 size_t bytes_mapped;
359
360 /* Bit N set if any allocations have been done at context depth N. */
361 unsigned long context_depth_allocations;
362
363 /* Bit N set if any collections have been done at context depth N. */
364 unsigned long context_depth_collections;
365
366 /* The current depth in the context stack. */
367 unsigned short context_depth;
368
369 /* A file descriptor open to /dev/zero for reading. */
370 #if defined (HAVE_MMAP_DEV_ZERO)
371 int dev_zero_fd;
372 #endif
373
374 /* A cache of free system pages. */
375 page_entry *free_pages;
376
377 #ifdef USING_MALLOC_PAGE_GROUPS
378 page_group *page_groups;
379 #endif
380
381 /* The file descriptor for debugging output. */
382 FILE *debug_file;
383
384 /* Current number of elements in use in depth below. */
385 unsigned int depth_in_use;
386
387 /* Maximum number of elements that can be used before resizing. */
388 unsigned int depth_max;
389
390 /* Each element of this arry is an index in by_depth where the given
391 depth starts. This structure is indexed by that given depth we
392 are interested in. */
393 unsigned int *depth;
394
395 /* Current number of elements in use in by_depth below. */
396 unsigned int by_depth_in_use;
397
398 /* Maximum number of elements that can be used before resizing. */
399 unsigned int by_depth_max;
400
401 /* Each element of this array is a pointer to a page_entry, all
402 page_entries can be found in here by increasing depth.
403 index_by_depth in the page_entry is the index into this data
404 structure where that page_entry can be found. This is used to
405 speed up finding all page_entries at a particular depth. */
406 page_entry **by_depth;
407
408 /* Each element is a pointer to the saved in_use_p bits, if any,
409 zero otherwise. We allocate them all together, to enable a
410 better runtime data access pattern. */
411 unsigned long **save_in_use;
412
413 #ifdef ENABLE_GC_ALWAYS_COLLECT
414 /* List of free objects to be verified as actually free on the
415 next collection. */
416 struct free_object
417 {
418 void *object;
419 struct free_object *next;
420 } *free_object_list;
421 #endif
422
423 #ifdef GATHER_STATISTICS
424 struct
425 {
426 /* Total memory allocated with ggc_alloc. */
427 unsigned long long total_allocated;
428 /* Total overhead for memory to be allocated with ggc_alloc. */
429 unsigned long long total_overhead;
430
431 /* Total allocations and overhead for sizes less than 32, 64 and 128.
432 These sizes are interesting because they are typical cache line
433 sizes. */
434
435 unsigned long long total_allocated_under32;
436 unsigned long long total_overhead_under32;
437
438 unsigned long long total_allocated_under64;
439 unsigned long long total_overhead_under64;
440
441 unsigned long long total_allocated_under128;
442 unsigned long long total_overhead_under128;
443
444 /* The allocations for each of the allocation orders. */
445 unsigned long long total_allocated_per_order[NUM_ORDERS];
446
447 /* The overhead for each of the allocation orders. */
448 unsigned long long total_overhead_per_order[NUM_ORDERS];
449 } stats;
450 #endif
451 } G;
452
453 /* The size in bytes required to maintain a bitmap for the objects
454 on a page-entry. */
455 #define BITMAP_SIZE(Num_objects) \
456 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
457
458 /* Allocate pages in chunks of this size, to throttle calls to memory
459 allocation routines. The first page is used, the rest go onto the
460 free list. This cannot be larger than HOST_BITS_PER_INT for the
461 in_use bitmask for page_group. Hosts that need a different value
462 can override this by defining GGC_QUIRE_SIZE explicitly. */
463 #ifndef GGC_QUIRE_SIZE
464 # ifdef USING_MMAP
465 # define GGC_QUIRE_SIZE 256
466 # else
467 # define GGC_QUIRE_SIZE 16
468 # endif
469 #endif
470
471 /* Initial guess as to how many page table entries we might need. */
472 #define INITIAL_PTE_COUNT 128
473 \f
474 static int ggc_allocated_p (const void *);
475 static page_entry *lookup_page_table_entry (const void *);
476 static void set_page_table_entry (void *, page_entry *);
477 #ifdef USING_MMAP
478 static char *alloc_anon (char *, size_t);
479 #endif
480 #ifdef USING_MALLOC_PAGE_GROUPS
481 static size_t page_group_index (char *, char *);
482 static void set_page_group_in_use (page_group *, char *);
483 static void clear_page_group_in_use (page_group *, char *);
484 #endif
485 static struct page_entry * alloc_page (unsigned);
486 static void free_page (struct page_entry *);
487 static void release_pages (void);
488 static void clear_marks (void);
489 static void sweep_pages (void);
490 static void ggc_recalculate_in_use_p (page_entry *);
491 static void compute_inverse (unsigned);
492 static inline void adjust_depth (void);
493 static void move_ptes_to_front (int, int);
494
495 void debug_print_page_list (int);
496 static void push_depth (unsigned int);
497 static void push_by_depth (page_entry *, unsigned long *);
498 struct alloc_zone *rtl_zone = NULL;
499 struct alloc_zone *tree_zone = NULL;
500 struct alloc_zone *garbage_zone = NULL;
501
502 /* Push an entry onto G.depth. */
503
504 inline static void
505 push_depth (unsigned int i)
506 {
507 if (G.depth_in_use >= G.depth_max)
508 {
509 G.depth_max *= 2;
510 G.depth = xrealloc (G.depth, G.depth_max * sizeof (unsigned int));
511 }
512 G.depth[G.depth_in_use++] = i;
513 }
514
515 /* Push an entry onto G.by_depth and G.save_in_use. */
516
517 inline static void
518 push_by_depth (page_entry *p, unsigned long *s)
519 {
520 if (G.by_depth_in_use >= G.by_depth_max)
521 {
522 G.by_depth_max *= 2;
523 G.by_depth = xrealloc (G.by_depth,
524 G.by_depth_max * sizeof (page_entry *));
525 G.save_in_use = xrealloc (G.save_in_use,
526 G.by_depth_max * sizeof (unsigned long *));
527 }
528 G.by_depth[G.by_depth_in_use] = p;
529 G.save_in_use[G.by_depth_in_use++] = s;
530 }
531
532 #if (GCC_VERSION < 3001)
533 #define prefetch(X) ((void) X)
534 #else
535 #define prefetch(X) __builtin_prefetch (X)
536 #endif
537
538 #define save_in_use_p_i(__i) \
539 (G.save_in_use[__i])
540 #define save_in_use_p(__p) \
541 (save_in_use_p_i (__p->index_by_depth))
542
543 /* Returns nonzero if P was allocated in GC'able memory. */
544
545 static inline int
546 ggc_allocated_p (const void *p)
547 {
548 page_entry ***base;
549 size_t L1, L2;
550
551 #if HOST_BITS_PER_PTR <= 32
552 base = &G.lookup[0];
553 #else
554 page_table table = G.lookup;
555 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
556 while (1)
557 {
558 if (table == NULL)
559 return 0;
560 if (table->high_bits == high_bits)
561 break;
562 table = table->next;
563 }
564 base = &table->table[0];
565 #endif
566
567 /* Extract the level 1 and 2 indices. */
568 L1 = LOOKUP_L1 (p);
569 L2 = LOOKUP_L2 (p);
570
571 return base[L1] && base[L1][L2];
572 }
573
574 /* Traverse the page table and find the entry for a page.
575 Die (probably) if the object wasn't allocated via GC. */
576
577 static inline page_entry *
578 lookup_page_table_entry (const void *p)
579 {
580 page_entry ***base;
581 size_t L1, L2;
582
583 #if HOST_BITS_PER_PTR <= 32
584 base = &G.lookup[0];
585 #else
586 page_table table = G.lookup;
587 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
588 while (table->high_bits != high_bits)
589 table = table->next;
590 base = &table->table[0];
591 #endif
592
593 /* Extract the level 1 and 2 indices. */
594 L1 = LOOKUP_L1 (p);
595 L2 = LOOKUP_L2 (p);
596
597 return base[L1][L2];
598 }
599
600 /* Set the page table entry for a page. */
601
602 static void
603 set_page_table_entry (void *p, page_entry *entry)
604 {
605 page_entry ***base;
606 size_t L1, L2;
607
608 #if HOST_BITS_PER_PTR <= 32
609 base = &G.lookup[0];
610 #else
611 page_table table;
612 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
613 for (table = G.lookup; table; table = table->next)
614 if (table->high_bits == high_bits)
615 goto found;
616
617 /* Not found -- allocate a new table. */
618 table = xcalloc (1, sizeof(*table));
619 table->next = G.lookup;
620 table->high_bits = high_bits;
621 G.lookup = table;
622 found:
623 base = &table->table[0];
624 #endif
625
626 /* Extract the level 1 and 2 indices. */
627 L1 = LOOKUP_L1 (p);
628 L2 = LOOKUP_L2 (p);
629
630 if (base[L1] == NULL)
631 base[L1] = xcalloc (PAGE_L2_SIZE, sizeof (page_entry *));
632
633 base[L1][L2] = entry;
634 }
635
636 /* Prints the page-entry for object size ORDER, for debugging. */
637
638 void
639 debug_print_page_list (int order)
640 {
641 page_entry *p;
642 printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
643 (void *) G.page_tails[order]);
644 p = G.pages[order];
645 while (p != NULL)
646 {
647 printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
648 p->num_free_objects);
649 p = p->next;
650 }
651 printf ("NULL\n");
652 fflush (stdout);
653 }
654
655 #ifdef USING_MMAP
656 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
657 (if non-null). The ifdef structure here is intended to cause a
658 compile error unless exactly one of the HAVE_* is defined. */
659
660 static inline char *
661 alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size)
662 {
663 #ifdef HAVE_MMAP_ANON
664 char *page = mmap (pref, size, PROT_READ | PROT_WRITE,
665 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
666 #endif
667 #ifdef HAVE_MMAP_DEV_ZERO
668 char *page = mmap (pref, size, PROT_READ | PROT_WRITE,
669 MAP_PRIVATE, G.dev_zero_fd, 0);
670 #endif
671
672 if (page == (char *) MAP_FAILED)
673 {
674 perror ("virtual memory exhausted");
675 exit (FATAL_EXIT_CODE);
676 }
677
678 /* Remember that we allocated this memory. */
679 G.bytes_mapped += size;
680
681 /* Pretend we don't have access to the allocated pages. We'll enable
682 access to smaller pieces of the area in ggc_alloc. Discard the
683 handle to avoid handle leak. */
684 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (page, size));
685
686 return page;
687 }
688 #endif
689 #ifdef USING_MALLOC_PAGE_GROUPS
690 /* Compute the index for this page into the page group. */
691
692 static inline size_t
693 page_group_index (char *allocation, char *page)
694 {
695 return (size_t) (page - allocation) >> G.lg_pagesize;
696 }
697
698 /* Set and clear the in_use bit for this page in the page group. */
699
700 static inline void
701 set_page_group_in_use (page_group *group, char *page)
702 {
703 group->in_use |= 1 << page_group_index (group->allocation, page);
704 }
705
706 static inline void
707 clear_page_group_in_use (page_group *group, char *page)
708 {
709 group->in_use &= ~(1 << page_group_index (group->allocation, page));
710 }
711 #endif
712
713 /* Allocate a new page for allocating objects of size 2^ORDER,
714 and return an entry for it. The entry is not added to the
715 appropriate page_table list. */
716
717 static inline struct page_entry *
718 alloc_page (unsigned order)
719 {
720 struct page_entry *entry, *p, **pp;
721 char *page;
722 size_t num_objects;
723 size_t bitmap_size;
724 size_t page_entry_size;
725 size_t entry_size;
726 #ifdef USING_MALLOC_PAGE_GROUPS
727 page_group *group;
728 #endif
729
730 num_objects = OBJECTS_PER_PAGE (order);
731 bitmap_size = BITMAP_SIZE (num_objects + 1);
732 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
733 entry_size = num_objects * OBJECT_SIZE (order);
734 if (entry_size < G.pagesize)
735 entry_size = G.pagesize;
736
737 entry = NULL;
738 page = NULL;
739
740 /* Check the list of free pages for one we can use. */
741 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
742 if (p->bytes == entry_size)
743 break;
744
745 if (p != NULL)
746 {
747 /* Recycle the allocated memory from this page ... */
748 *pp = p->next;
749 page = p->page;
750
751 #ifdef USING_MALLOC_PAGE_GROUPS
752 group = p->group;
753 #endif
754
755 /* ... and, if possible, the page entry itself. */
756 if (p->order == order)
757 {
758 entry = p;
759 memset (entry, 0, page_entry_size);
760 }
761 else
762 free (p);
763 }
764 #ifdef USING_MMAP
765 else if (entry_size == G.pagesize)
766 {
767 /* We want just one page. Allocate a bunch of them and put the
768 extras on the freelist. (Can only do this optimization with
769 mmap for backing store.) */
770 struct page_entry *e, *f = G.free_pages;
771 int i;
772
773 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE);
774
775 /* This loop counts down so that the chain will be in ascending
776 memory order. */
777 for (i = GGC_QUIRE_SIZE - 1; i >= 1; i--)
778 {
779 e = xcalloc (1, page_entry_size);
780 e->order = order;
781 e->bytes = G.pagesize;
782 e->page = page + (i << G.lg_pagesize);
783 e->next = f;
784 f = e;
785 }
786
787 G.free_pages = f;
788 }
789 else
790 page = alloc_anon (NULL, entry_size);
791 #endif
792 #ifdef USING_MALLOC_PAGE_GROUPS
793 else
794 {
795 /* Allocate a large block of memory and serve out the aligned
796 pages therein. This results in much less memory wastage
797 than the traditional implementation of valloc. */
798
799 char *allocation, *a, *enda;
800 size_t alloc_size, head_slop, tail_slop;
801 int multiple_pages = (entry_size == G.pagesize);
802
803 if (multiple_pages)
804 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
805 else
806 alloc_size = entry_size + G.pagesize - 1;
807 allocation = xmalloc (alloc_size);
808
809 page = (char *) (((size_t) allocation + G.pagesize - 1) & -G.pagesize);
810 head_slop = page - allocation;
811 if (multiple_pages)
812 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
813 else
814 tail_slop = alloc_size - entry_size - head_slop;
815 enda = allocation + alloc_size - tail_slop;
816
817 /* We allocated N pages, which are likely not aligned, leaving
818 us with N-1 usable pages. We plan to place the page_group
819 structure somewhere in the slop. */
820 if (head_slop >= sizeof (page_group))
821 group = (page_group *)page - 1;
822 else
823 {
824 /* We magically got an aligned allocation. Too bad, we have
825 to waste a page anyway. */
826 if (tail_slop == 0)
827 {
828 enda -= G.pagesize;
829 tail_slop += G.pagesize;
830 }
831 gcc_assert (tail_slop >= sizeof (page_group));
832 group = (page_group *)enda;
833 tail_slop -= sizeof (page_group);
834 }
835
836 /* Remember that we allocated this memory. */
837 group->next = G.page_groups;
838 group->allocation = allocation;
839 group->alloc_size = alloc_size;
840 group->in_use = 0;
841 G.page_groups = group;
842 G.bytes_mapped += alloc_size;
843
844 /* If we allocated multiple pages, put the rest on the free list. */
845 if (multiple_pages)
846 {
847 struct page_entry *e, *f = G.free_pages;
848 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
849 {
850 e = xcalloc (1, page_entry_size);
851 e->order = order;
852 e->bytes = G.pagesize;
853 e->page = a;
854 e->group = group;
855 e->next = f;
856 f = e;
857 }
858 G.free_pages = f;
859 }
860 }
861 #endif
862
863 if (entry == NULL)
864 entry = xcalloc (1, page_entry_size);
865
866 entry->bytes = entry_size;
867 entry->page = page;
868 entry->context_depth = G.context_depth;
869 entry->order = order;
870 entry->num_free_objects = num_objects;
871 entry->next_bit_hint = 1;
872
873 G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
874
875 #ifdef USING_MALLOC_PAGE_GROUPS
876 entry->group = group;
877 set_page_group_in_use (group, page);
878 #endif
879
880 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
881 increment the hint. */
882 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
883 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
884
885 set_page_table_entry (page, entry);
886
887 if (GGC_DEBUG_LEVEL >= 2)
888 fprintf (G.debug_file,
889 "Allocating page at %p, object size=%lu, data %p-%p\n",
890 (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
891 page + entry_size - 1);
892
893 return entry;
894 }
895
896 /* Adjust the size of G.depth so that no index greater than the one
897 used by the top of the G.by_depth is used. */
898
899 static inline void
900 adjust_depth (void)
901 {
902 page_entry *top;
903
904 if (G.by_depth_in_use)
905 {
906 top = G.by_depth[G.by_depth_in_use-1];
907
908 /* Peel back indices in depth that index into by_depth, so that
909 as new elements are added to by_depth, we note the indices
910 of those elements, if they are for new context depths. */
911 while (G.depth_in_use > (size_t)top->context_depth+1)
912 --G.depth_in_use;
913 }
914 }
915
916 /* For a page that is no longer needed, put it on the free page list. */
917
918 static void
919 free_page (page_entry *entry)
920 {
921 if (GGC_DEBUG_LEVEL >= 2)
922 fprintf (G.debug_file,
923 "Deallocating page at %p, data %p-%p\n", (void *) entry,
924 entry->page, entry->page + entry->bytes - 1);
925
926 /* Mark the page as inaccessible. Discard the handle to avoid handle
927 leak. */
928 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (entry->page, entry->bytes));
929
930 set_page_table_entry (entry->page, NULL);
931
932 #ifdef USING_MALLOC_PAGE_GROUPS
933 clear_page_group_in_use (entry->group, entry->page);
934 #endif
935
936 if (G.by_depth_in_use > 1)
937 {
938 page_entry *top = G.by_depth[G.by_depth_in_use-1];
939 int i = entry->index_by_depth;
940
941 /* We cannot free a page from a context deeper than the current
942 one. */
943 gcc_assert (entry->context_depth == top->context_depth);
944
945 /* Put top element into freed slot. */
946 G.by_depth[i] = top;
947 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
948 top->index_by_depth = i;
949 }
950 --G.by_depth_in_use;
951
952 adjust_depth ();
953
954 entry->next = G.free_pages;
955 G.free_pages = entry;
956 }
957
958 /* Release the free page cache to the system. */
959
960 static void
961 release_pages (void)
962 {
963 #ifdef USING_MMAP
964 page_entry *p, *next;
965 char *start;
966 size_t len;
967
968 /* Gather up adjacent pages so they are unmapped together. */
969 p = G.free_pages;
970
971 while (p)
972 {
973 start = p->page;
974 next = p->next;
975 len = p->bytes;
976 free (p);
977 p = next;
978
979 while (p && p->page == start + len)
980 {
981 next = p->next;
982 len += p->bytes;
983 free (p);
984 p = next;
985 }
986
987 munmap (start, len);
988 G.bytes_mapped -= len;
989 }
990
991 G.free_pages = NULL;
992 #endif
993 #ifdef USING_MALLOC_PAGE_GROUPS
994 page_entry **pp, *p;
995 page_group **gp, *g;
996
997 /* Remove all pages from free page groups from the list. */
998 pp = &G.free_pages;
999 while ((p = *pp) != NULL)
1000 if (p->group->in_use == 0)
1001 {
1002 *pp = p->next;
1003 free (p);
1004 }
1005 else
1006 pp = &p->next;
1007
1008 /* Remove all free page groups, and release the storage. */
1009 gp = &G.page_groups;
1010 while ((g = *gp) != NULL)
1011 if (g->in_use == 0)
1012 {
1013 *gp = g->next;
1014 G.bytes_mapped -= g->alloc_size;
1015 free (g->allocation);
1016 }
1017 else
1018 gp = &g->next;
1019 #endif
1020 }
1021
1022 /* This table provides a fast way to determine ceil(log_2(size)) for
1023 allocation requests. The minimum allocation size is eight bytes. */
1024
1025 static unsigned char size_lookup[257] =
1026 {
1027 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1028 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1029 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1030 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1031 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1032 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1033 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1034 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1035 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1036 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1037 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1038 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1039 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1040 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1041 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1042 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1043 8
1044 };
1045
1046 /* Typed allocation function. Does nothing special in this collector. */
1047
1048 void *
1049 ggc_alloc_typed_stat (enum gt_types_enum type ATTRIBUTE_UNUSED, size_t size
1050 MEM_STAT_DECL)
1051 {
1052 return ggc_alloc_stat (size PASS_MEM_STAT);
1053 }
1054
1055 /* Zone allocation function. Does nothing special in this collector. */
1056
1057 void *
1058 ggc_alloc_zone_stat (size_t size, struct alloc_zone *zone ATTRIBUTE_UNUSED
1059 MEM_STAT_DECL)
1060 {
1061 return ggc_alloc_stat (size PASS_MEM_STAT);
1062 }
1063
1064 /* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
1065
1066 void *
1067 ggc_alloc_stat (size_t size MEM_STAT_DECL)
1068 {
1069 size_t order, word, bit, object_offset, object_size;
1070 struct page_entry *entry;
1071 void *result;
1072
1073 if (size <= 256)
1074 {
1075 order = size_lookup[size];
1076 object_size = OBJECT_SIZE (order);
1077 }
1078 else
1079 {
1080 order = 9;
1081 while (size > (object_size = OBJECT_SIZE (order)))
1082 order++;
1083 }
1084
1085 /* If there are non-full pages for this size allocation, they are at
1086 the head of the list. */
1087 entry = G.pages[order];
1088
1089 /* If there is no page for this object size, or all pages in this
1090 context are full, allocate a new page. */
1091 if (entry == NULL || entry->num_free_objects == 0)
1092 {
1093 struct page_entry *new_entry;
1094 new_entry = alloc_page (order);
1095
1096 new_entry->index_by_depth = G.by_depth_in_use;
1097 push_by_depth (new_entry, 0);
1098
1099 /* We can skip context depths, if we do, make sure we go all the
1100 way to the new depth. */
1101 while (new_entry->context_depth >= G.depth_in_use)
1102 push_depth (G.by_depth_in_use-1);
1103
1104 /* If this is the only entry, it's also the tail. If it is not
1105 the only entry, then we must update the PREV pointer of the
1106 ENTRY (G.pages[order]) to point to our new page entry. */
1107 if (entry == NULL)
1108 G.page_tails[order] = new_entry;
1109 else
1110 entry->prev = new_entry;
1111
1112 /* Put new pages at the head of the page list. By definition the
1113 entry at the head of the list always has a NULL pointer. */
1114 new_entry->next = entry;
1115 new_entry->prev = NULL;
1116 entry = new_entry;
1117 G.pages[order] = new_entry;
1118
1119 /* For a new page, we know the word and bit positions (in the
1120 in_use bitmap) of the first available object -- they're zero. */
1121 new_entry->next_bit_hint = 1;
1122 word = 0;
1123 bit = 0;
1124 object_offset = 0;
1125 }
1126 else
1127 {
1128 /* First try to use the hint left from the previous allocation
1129 to locate a clear bit in the in-use bitmap. We've made sure
1130 that the one-past-the-end bit is always set, so if the hint
1131 has run over, this test will fail. */
1132 unsigned hint = entry->next_bit_hint;
1133 word = hint / HOST_BITS_PER_LONG;
1134 bit = hint % HOST_BITS_PER_LONG;
1135
1136 /* If the hint didn't work, scan the bitmap from the beginning. */
1137 if ((entry->in_use_p[word] >> bit) & 1)
1138 {
1139 word = bit = 0;
1140 while (~entry->in_use_p[word] == 0)
1141 ++word;
1142 while ((entry->in_use_p[word] >> bit) & 1)
1143 ++bit;
1144 hint = word * HOST_BITS_PER_LONG + bit;
1145 }
1146
1147 /* Next time, try the next bit. */
1148 entry->next_bit_hint = hint + 1;
1149
1150 object_offset = hint * object_size;
1151 }
1152
1153 /* Set the in-use bit. */
1154 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1155
1156 /* Keep a running total of the number of free objects. If this page
1157 fills up, we may have to move it to the end of the list if the
1158 next page isn't full. If the next page is full, all subsequent
1159 pages are full, so there's no need to move it. */
1160 if (--entry->num_free_objects == 0
1161 && entry->next != NULL
1162 && entry->next->num_free_objects > 0)
1163 {
1164 /* We have a new head for the list. */
1165 G.pages[order] = entry->next;
1166
1167 /* We are moving ENTRY to the end of the page table list.
1168 The new page at the head of the list will have NULL in
1169 its PREV field and ENTRY will have NULL in its NEXT field. */
1170 entry->next->prev = NULL;
1171 entry->next = NULL;
1172
1173 /* Append ENTRY to the tail of the list. */
1174 entry->prev = G.page_tails[order];
1175 G.page_tails[order]->next = entry;
1176 G.page_tails[order] = entry;
1177 }
1178
1179 /* Calculate the object's address. */
1180 result = entry->page + object_offset;
1181 #ifdef GATHER_STATISTICS
1182 ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
1183 result PASS_MEM_STAT);
1184 #endif
1185
1186 #ifdef ENABLE_GC_CHECKING
1187 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1188 exact same semantics in presence of memory bugs, regardless of
1189 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1190 handle to avoid handle leak. */
1191 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result, object_size));
1192
1193 /* `Poison' the entire allocated object, including any padding at
1194 the end. */
1195 memset (result, 0xaf, object_size);
1196
1197 /* Make the bytes after the end of the object unaccessible. Discard the
1198 handle to avoid handle leak. */
1199 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS ((char *) result + size,
1200 object_size - size));
1201 #endif
1202
1203 /* Tell Valgrind that the memory is there, but its content isn't
1204 defined. The bytes at the end of the object are still marked
1205 unaccessible. */
1206 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result, size));
1207
1208 /* Keep track of how many bytes are being allocated. This
1209 information is used in deciding when to collect. */
1210 G.allocated += object_size;
1211
1212 #ifdef GATHER_STATISTICS
1213 {
1214 size_t overhead = object_size - size;
1215
1216 G.stats.total_overhead += overhead;
1217 G.stats.total_allocated += object_size;
1218 G.stats.total_overhead_per_order[order] += overhead;
1219 G.stats.total_allocated_per_order[order] += object_size;
1220
1221 if (size <= 32)
1222 {
1223 G.stats.total_overhead_under32 += overhead;
1224 G.stats.total_allocated_under32 += object_size;
1225 }
1226 if (size <= 64)
1227 {
1228 G.stats.total_overhead_under64 += overhead;
1229 G.stats.total_allocated_under64 += object_size;
1230 }
1231 if (size <= 128)
1232 {
1233 G.stats.total_overhead_under128 += overhead;
1234 G.stats.total_allocated_under128 += object_size;
1235 }
1236 }
1237 #endif
1238
1239 if (GGC_DEBUG_LEVEL >= 3)
1240 fprintf (G.debug_file,
1241 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
1242 (unsigned long) size, (unsigned long) object_size, result,
1243 (void *) entry);
1244
1245 return result;
1246 }
1247
1248 /* If P is not marked, marks it and return false. Otherwise return true.
1249 P must have been allocated by the GC allocator; it mustn't point to
1250 static objects, stack variables, or memory allocated with malloc. */
1251
1252 int
1253 ggc_set_mark (const void *p)
1254 {
1255 page_entry *entry;
1256 unsigned bit, word;
1257 unsigned long mask;
1258
1259 /* Look up the page on which the object is alloced. If the object
1260 wasn't allocated by the collector, we'll probably die. */
1261 entry = lookup_page_table_entry (p);
1262 gcc_assert (entry);
1263
1264 /* Calculate the index of the object on the page; this is its bit
1265 position in the in_use_p bitmap. */
1266 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1267 word = bit / HOST_BITS_PER_LONG;
1268 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1269
1270 /* If the bit was previously set, skip it. */
1271 if (entry->in_use_p[word] & mask)
1272 return 1;
1273
1274 /* Otherwise set it, and decrement the free object count. */
1275 entry->in_use_p[word] |= mask;
1276 entry->num_free_objects -= 1;
1277
1278 if (GGC_DEBUG_LEVEL >= 4)
1279 fprintf (G.debug_file, "Marking %p\n", p);
1280
1281 return 0;
1282 }
1283
1284 /* Return 1 if P has been marked, zero otherwise.
1285 P must have been allocated by the GC allocator; it mustn't point to
1286 static objects, stack variables, or memory allocated with malloc. */
1287
1288 int
1289 ggc_marked_p (const void *p)
1290 {
1291 page_entry *entry;
1292 unsigned bit, word;
1293 unsigned long mask;
1294
1295 /* Look up the page on which the object is alloced. If the object
1296 wasn't allocated by the collector, we'll probably die. */
1297 entry = lookup_page_table_entry (p);
1298 gcc_assert (entry);
1299
1300 /* Calculate the index of the object on the page; this is its bit
1301 position in the in_use_p bitmap. */
1302 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1303 word = bit / HOST_BITS_PER_LONG;
1304 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1305
1306 return (entry->in_use_p[word] & mask) != 0;
1307 }
1308
1309 /* Return the size of the gc-able object P. */
1310
1311 size_t
1312 ggc_get_size (const void *p)
1313 {
1314 page_entry *pe = lookup_page_table_entry (p);
1315 return OBJECT_SIZE (pe->order);
1316 }
1317
1318 /* Release the memory for object P. */
1319
1320 void
1321 ggc_free (void *p)
1322 {
1323 page_entry *pe = lookup_page_table_entry (p);
1324 size_t order = pe->order;
1325 size_t size = OBJECT_SIZE (order);
1326
1327 #ifdef GATHER_STATISTICS
1328 ggc_free_overhead (p);
1329 #endif
1330
1331 if (GGC_DEBUG_LEVEL >= 3)
1332 fprintf (G.debug_file,
1333 "Freeing object, actual size=%lu, at %p on %p\n",
1334 (unsigned long) size, p, (void *) pe);
1335
1336 #ifdef ENABLE_GC_CHECKING
1337 /* Poison the data, to indicate the data is garbage. */
1338 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (p, size));
1339 memset (p, 0xa5, size);
1340 #endif
1341 /* Let valgrind know the object is free. */
1342 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (p, size));
1343
1344 #ifdef ENABLE_GC_ALWAYS_COLLECT
1345 /* In the completely-anal-checking mode, we do *not* immediately free
1346 the data, but instead verify that the data is *actually* not
1347 reachable the next time we collect. */
1348 {
1349 struct free_object *fo = xmalloc (sizeof (struct free_object));
1350 fo->object = p;
1351 fo->next = G.free_object_list;
1352 G.free_object_list = fo;
1353 }
1354 #else
1355 {
1356 unsigned int bit_offset, word, bit;
1357
1358 G.allocated -= size;
1359
1360 /* Mark the object not-in-use. */
1361 bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
1362 word = bit_offset / HOST_BITS_PER_LONG;
1363 bit = bit_offset % HOST_BITS_PER_LONG;
1364 pe->in_use_p[word] &= ~(1UL << bit);
1365
1366 if (pe->num_free_objects++ == 0)
1367 {
1368 page_entry *p, *q;
1369
1370 /* If the page is completely full, then it's supposed to
1371 be after all pages that aren't. Since we've freed one
1372 object from a page that was full, we need to move the
1373 page to the head of the list.
1374
1375 PE is the node we want to move. Q is the previous node
1376 and P is the next node in the list. */
1377 q = pe->prev;
1378 if (q && q->num_free_objects == 0)
1379 {
1380 p = pe->next;
1381
1382 q->next = p;
1383
1384 /* If PE was at the end of the list, then Q becomes the
1385 new end of the list. If PE was not the end of the
1386 list, then we need to update the PREV field for P. */
1387 if (!p)
1388 G.page_tails[order] = q;
1389 else
1390 p->prev = q;
1391
1392 /* Move PE to the head of the list. */
1393 pe->next = G.pages[order];
1394 pe->prev = NULL;
1395 G.pages[order]->prev = pe;
1396 G.pages[order] = pe;
1397 }
1398
1399 /* Reset the hint bit to point to the only free object. */
1400 pe->next_bit_hint = bit_offset;
1401 }
1402 }
1403 #endif
1404 }
1405 \f
1406 /* Subroutine of init_ggc which computes the pair of numbers used to
1407 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1408
1409 This algorithm is taken from Granlund and Montgomery's paper
1410 "Division by Invariant Integers using Multiplication"
1411 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1412 constants). */
1413
1414 static void
1415 compute_inverse (unsigned order)
1416 {
1417 size_t size, inv;
1418 unsigned int e;
1419
1420 size = OBJECT_SIZE (order);
1421 e = 0;
1422 while (size % 2 == 0)
1423 {
1424 e++;
1425 size >>= 1;
1426 }
1427
1428 inv = size;
1429 while (inv * size != 1)
1430 inv = inv * (2 - inv*size);
1431
1432 DIV_MULT (order) = inv;
1433 DIV_SHIFT (order) = e;
1434 }
1435
1436 /* Initialize the ggc-mmap allocator. */
1437 void
1438 init_ggc (void)
1439 {
1440 unsigned order;
1441
1442 G.pagesize = getpagesize();
1443 G.lg_pagesize = exact_log2 (G.pagesize);
1444
1445 #ifdef HAVE_MMAP_DEV_ZERO
1446 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1447 if (G.dev_zero_fd == -1)
1448 internal_error ("open /dev/zero: %m");
1449 #endif
1450
1451 #if 0
1452 G.debug_file = fopen ("ggc-mmap.debug", "w");
1453 #else
1454 G.debug_file = stdout;
1455 #endif
1456
1457 #ifdef USING_MMAP
1458 /* StunOS has an amazing off-by-one error for the first mmap allocation
1459 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1460 believe, is an unaligned page allocation, which would cause us to
1461 hork badly if we tried to use it. */
1462 {
1463 char *p = alloc_anon (NULL, G.pagesize);
1464 struct page_entry *e;
1465 if ((size_t)p & (G.pagesize - 1))
1466 {
1467 /* How losing. Discard this one and try another. If we still
1468 can't get something useful, give up. */
1469
1470 p = alloc_anon (NULL, G.pagesize);
1471 gcc_assert (!((size_t)p & (G.pagesize - 1)));
1472 }
1473
1474 /* We have a good page, might as well hold onto it... */
1475 e = xcalloc (1, sizeof (struct page_entry));
1476 e->bytes = G.pagesize;
1477 e->page = p;
1478 e->next = G.free_pages;
1479 G.free_pages = e;
1480 }
1481 #endif
1482
1483 /* Initialize the object size table. */
1484 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1485 object_size_table[order] = (size_t) 1 << order;
1486 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1487 {
1488 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1489
1490 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1491 so that we're sure of getting aligned memory. */
1492 s = ROUND_UP (s, MAX_ALIGNMENT);
1493 object_size_table[order] = s;
1494 }
1495
1496 /* Initialize the objects-per-page and inverse tables. */
1497 for (order = 0; order < NUM_ORDERS; ++order)
1498 {
1499 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1500 if (objects_per_page_table[order] == 0)
1501 objects_per_page_table[order] = 1;
1502 compute_inverse (order);
1503 }
1504
1505 /* Reset the size_lookup array to put appropriately sized objects in
1506 the special orders. All objects bigger than the previous power
1507 of two, but no greater than the special size, should go in the
1508 new order. */
1509 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1510 {
1511 int o;
1512 int i;
1513
1514 o = size_lookup[OBJECT_SIZE (order)];
1515 for (i = OBJECT_SIZE (order); size_lookup [i] == o; --i)
1516 size_lookup[i] = order;
1517 }
1518
1519 G.depth_in_use = 0;
1520 G.depth_max = 10;
1521 G.depth = xmalloc (G.depth_max * sizeof (unsigned int));
1522
1523 G.by_depth_in_use = 0;
1524 G.by_depth_max = INITIAL_PTE_COUNT;
1525 G.by_depth = xmalloc (G.by_depth_max * sizeof (page_entry *));
1526 G.save_in_use = xmalloc (G.by_depth_max * sizeof (unsigned long *));
1527 }
1528
1529 /* Start a new GGC zone. */
1530
1531 struct alloc_zone *
1532 new_ggc_zone (const char *name ATTRIBUTE_UNUSED)
1533 {
1534 return NULL;
1535 }
1536
1537 /* Destroy a GGC zone. */
1538 void
1539 destroy_ggc_zone (struct alloc_zone *zone ATTRIBUTE_UNUSED)
1540 {
1541 }
1542
1543 /* Increment the `GC context'. Objects allocated in an outer context
1544 are never freed, eliminating the need to register their roots. */
1545
1546 void
1547 ggc_push_context (void)
1548 {
1549 ++G.context_depth;
1550
1551 /* Die on wrap. */
1552 gcc_assert (G.context_depth < HOST_BITS_PER_LONG);
1553 }
1554
1555 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1556 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1557
1558 static void
1559 ggc_recalculate_in_use_p (page_entry *p)
1560 {
1561 unsigned int i;
1562 size_t num_objects;
1563
1564 /* Because the past-the-end bit in in_use_p is always set, we
1565 pretend there is one additional object. */
1566 num_objects = OBJECTS_IN_PAGE (p) + 1;
1567
1568 /* Reset the free object count. */
1569 p->num_free_objects = num_objects;
1570
1571 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
1572 for (i = 0;
1573 i < CEIL (BITMAP_SIZE (num_objects),
1574 sizeof (*p->in_use_p));
1575 ++i)
1576 {
1577 unsigned long j;
1578
1579 /* Something is in use if it is marked, or if it was in use in a
1580 context further down the context stack. */
1581 p->in_use_p[i] |= save_in_use_p (p)[i];
1582
1583 /* Decrement the free object count for every object allocated. */
1584 for (j = p->in_use_p[i]; j; j >>= 1)
1585 p->num_free_objects -= (j & 1);
1586 }
1587
1588 gcc_assert (p->num_free_objects < num_objects);
1589 }
1590
1591 /* Decrement the `GC context'. All objects allocated since the
1592 previous ggc_push_context are migrated to the outer context. */
1593
1594 void
1595 ggc_pop_context (void)
1596 {
1597 unsigned long omask;
1598 unsigned int depth, i, e;
1599 #ifdef ENABLE_CHECKING
1600 unsigned int order;
1601 #endif
1602
1603 depth = --G.context_depth;
1604 omask = (unsigned long)1 << (depth + 1);
1605
1606 if (!((G.context_depth_allocations | G.context_depth_collections) & omask))
1607 return;
1608
1609 G.context_depth_allocations |= (G.context_depth_allocations & omask) >> 1;
1610 G.context_depth_allocations &= omask - 1;
1611 G.context_depth_collections &= omask - 1;
1612
1613 /* The G.depth array is shortened so that the last index is the
1614 context_depth of the top element of by_depth. */
1615 if (depth+1 < G.depth_in_use)
1616 e = G.depth[depth+1];
1617 else
1618 e = G.by_depth_in_use;
1619
1620 /* We might not have any PTEs of depth depth. */
1621 if (depth < G.depth_in_use)
1622 {
1623
1624 /* First we go through all the pages at depth depth to
1625 recalculate the in use bits. */
1626 for (i = G.depth[depth]; i < e; ++i)
1627 {
1628 page_entry *p = G.by_depth[i];
1629
1630 /* Check that all of the pages really are at the depth that
1631 we expect. */
1632 gcc_assert (p->context_depth == depth);
1633 gcc_assert (p->index_by_depth == i);
1634
1635 prefetch (&save_in_use_p_i (i+8));
1636 prefetch (&save_in_use_p_i (i+16));
1637 if (save_in_use_p_i (i))
1638 {
1639 p = G.by_depth[i];
1640 ggc_recalculate_in_use_p (p);
1641 free (save_in_use_p_i (i));
1642 save_in_use_p_i (i) = 0;
1643 }
1644 }
1645 }
1646
1647 /* Then, we reset all page_entries with a depth greater than depth
1648 to be at depth. */
1649 for (i = e; i < G.by_depth_in_use; ++i)
1650 {
1651 page_entry *p = G.by_depth[i];
1652
1653 /* Check that all of the pages really are at the depth we
1654 expect. */
1655 gcc_assert (p->context_depth > depth);
1656 gcc_assert (p->index_by_depth == i);
1657 p->context_depth = depth;
1658 }
1659
1660 adjust_depth ();
1661
1662 #ifdef ENABLE_CHECKING
1663 for (order = 2; order < NUM_ORDERS; order++)
1664 {
1665 page_entry *p;
1666
1667 for (p = G.pages[order]; p != NULL; p = p->next)
1668 gcc_assert (p->context_depth < depth ||
1669 (p->context_depth == depth && !save_in_use_p (p)));
1670 }
1671 #endif
1672 }
1673 \f
1674 /* Unmark all objects. */
1675
1676 static void
1677 clear_marks (void)
1678 {
1679 unsigned order;
1680
1681 for (order = 2; order < NUM_ORDERS; order++)
1682 {
1683 page_entry *p;
1684
1685 for (p = G.pages[order]; p != NULL; p = p->next)
1686 {
1687 size_t num_objects = OBJECTS_IN_PAGE (p);
1688 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1689
1690 /* The data should be page-aligned. */
1691 gcc_assert (!((size_t) p->page & (G.pagesize - 1)));
1692
1693 /* Pages that aren't in the topmost context are not collected;
1694 nevertheless, we need their in-use bit vectors to store GC
1695 marks. So, back them up first. */
1696 if (p->context_depth < G.context_depth)
1697 {
1698 if (! save_in_use_p (p))
1699 save_in_use_p (p) = xmalloc (bitmap_size);
1700 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
1701 }
1702
1703 /* Reset reset the number of free objects and clear the
1704 in-use bits. These will be adjusted by mark_obj. */
1705 p->num_free_objects = num_objects;
1706 memset (p->in_use_p, 0, bitmap_size);
1707
1708 /* Make sure the one-past-the-end bit is always set. */
1709 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1710 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1711 }
1712 }
1713 }
1714
1715 /* Free all empty pages. Partially empty pages need no attention
1716 because the `mark' bit doubles as an `unused' bit. */
1717
1718 static void
1719 sweep_pages (void)
1720 {
1721 unsigned order;
1722
1723 for (order = 2; order < NUM_ORDERS; order++)
1724 {
1725 /* The last page-entry to consider, regardless of entries
1726 placed at the end of the list. */
1727 page_entry * const last = G.page_tails[order];
1728
1729 size_t num_objects;
1730 size_t live_objects;
1731 page_entry *p, *previous;
1732 int done;
1733
1734 p = G.pages[order];
1735 if (p == NULL)
1736 continue;
1737
1738 previous = NULL;
1739 do
1740 {
1741 page_entry *next = p->next;
1742
1743 /* Loop until all entries have been examined. */
1744 done = (p == last);
1745
1746 num_objects = OBJECTS_IN_PAGE (p);
1747
1748 /* Add all live objects on this page to the count of
1749 allocated memory. */
1750 live_objects = num_objects - p->num_free_objects;
1751
1752 G.allocated += OBJECT_SIZE (order) * live_objects;
1753
1754 /* Only objects on pages in the topmost context should get
1755 collected. */
1756 if (p->context_depth < G.context_depth)
1757 ;
1758
1759 /* Remove the page if it's empty. */
1760 else if (live_objects == 0)
1761 {
1762 /* If P was the first page in the list, then NEXT
1763 becomes the new first page in the list, otherwise
1764 splice P out of the forward pointers. */
1765 if (! previous)
1766 G.pages[order] = next;
1767 else
1768 previous->next = next;
1769
1770 /* Splice P out of the back pointers too. */
1771 if (next)
1772 next->prev = previous;
1773
1774 /* Are we removing the last element? */
1775 if (p == G.page_tails[order])
1776 G.page_tails[order] = previous;
1777 free_page (p);
1778 p = previous;
1779 }
1780
1781 /* If the page is full, move it to the end. */
1782 else if (p->num_free_objects == 0)
1783 {
1784 /* Don't move it if it's already at the end. */
1785 if (p != G.page_tails[order])
1786 {
1787 /* Move p to the end of the list. */
1788 p->next = NULL;
1789 p->prev = G.page_tails[order];
1790 G.page_tails[order]->next = p;
1791
1792 /* Update the tail pointer... */
1793 G.page_tails[order] = p;
1794
1795 /* ... and the head pointer, if necessary. */
1796 if (! previous)
1797 G.pages[order] = next;
1798 else
1799 previous->next = next;
1800
1801 /* And update the backpointer in NEXT if necessary. */
1802 if (next)
1803 next->prev = previous;
1804
1805 p = previous;
1806 }
1807 }
1808
1809 /* If we've fallen through to here, it's a page in the
1810 topmost context that is neither full nor empty. Such a
1811 page must precede pages at lesser context depth in the
1812 list, so move it to the head. */
1813 else if (p != G.pages[order])
1814 {
1815 previous->next = p->next;
1816
1817 /* Update the backchain in the next node if it exists. */
1818 if (p->next)
1819 p->next->prev = previous;
1820
1821 /* Move P to the head of the list. */
1822 p->next = G.pages[order];
1823 p->prev = NULL;
1824 G.pages[order]->prev = p;
1825
1826 /* Update the head pointer. */
1827 G.pages[order] = p;
1828
1829 /* Are we moving the last element? */
1830 if (G.page_tails[order] == p)
1831 G.page_tails[order] = previous;
1832 p = previous;
1833 }
1834
1835 previous = p;
1836 p = next;
1837 }
1838 while (! done);
1839
1840 /* Now, restore the in_use_p vectors for any pages from contexts
1841 other than the current one. */
1842 for (p = G.pages[order]; p; p = p->next)
1843 if (p->context_depth != G.context_depth)
1844 ggc_recalculate_in_use_p (p);
1845 }
1846 }
1847
1848 #ifdef ENABLE_GC_CHECKING
1849 /* Clobber all free objects. */
1850
1851 static void
1852 poison_pages (void)
1853 {
1854 unsigned order;
1855
1856 for (order = 2; order < NUM_ORDERS; order++)
1857 {
1858 size_t size = OBJECT_SIZE (order);
1859 page_entry *p;
1860
1861 for (p = G.pages[order]; p != NULL; p = p->next)
1862 {
1863 size_t num_objects;
1864 size_t i;
1865
1866 if (p->context_depth != G.context_depth)
1867 /* Since we don't do any collection for pages in pushed
1868 contexts, there's no need to do any poisoning. And
1869 besides, the IN_USE_P array isn't valid until we pop
1870 contexts. */
1871 continue;
1872
1873 num_objects = OBJECTS_IN_PAGE (p);
1874 for (i = 0; i < num_objects; i++)
1875 {
1876 size_t word, bit;
1877 word = i / HOST_BITS_PER_LONG;
1878 bit = i % HOST_BITS_PER_LONG;
1879 if (((p->in_use_p[word] >> bit) & 1) == 0)
1880 {
1881 char *object = p->page + i * size;
1882
1883 /* Keep poison-by-write when we expect to use Valgrind,
1884 so the exact same memory semantics is kept, in case
1885 there are memory errors. We override this request
1886 below. */
1887 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (object, size));
1888 memset (object, 0xa5, size);
1889
1890 /* Drop the handle to avoid handle leak. */
1891 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (object, size));
1892 }
1893 }
1894 }
1895 }
1896 }
1897 #else
1898 #define poison_pages()
1899 #endif
1900
1901 #ifdef ENABLE_GC_ALWAYS_COLLECT
1902 /* Validate that the reportedly free objects actually are. */
1903
1904 static void
1905 validate_free_objects (void)
1906 {
1907 struct free_object *f, *next, *still_free = NULL;
1908
1909 for (f = G.free_object_list; f ; f = next)
1910 {
1911 page_entry *pe = lookup_page_table_entry (f->object);
1912 size_t bit, word;
1913
1914 bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
1915 word = bit / HOST_BITS_PER_LONG;
1916 bit = bit % HOST_BITS_PER_LONG;
1917 next = f->next;
1918
1919 /* Make certain it isn't visible from any root. Notice that we
1920 do this check before sweep_pages merges save_in_use_p. */
1921 gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
1922
1923 /* If the object comes from an outer context, then retain the
1924 free_object entry, so that we can verify that the address
1925 isn't live on the stack in some outer context. */
1926 if (pe->context_depth != G.context_depth)
1927 {
1928 f->next = still_free;
1929 still_free = f;
1930 }
1931 else
1932 free (f);
1933 }
1934
1935 G.free_object_list = still_free;
1936 }
1937 #else
1938 #define validate_free_objects()
1939 #endif
1940
1941 /* Top level mark-and-sweep routine. */
1942
1943 void
1944 ggc_collect (void)
1945 {
1946 /* Avoid frequent unnecessary work by skipping collection if the
1947 total allocations haven't expanded much since the last
1948 collection. */
1949 float allocated_last_gc =
1950 MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
1951
1952 float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
1953
1954 if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
1955 return;
1956
1957 timevar_push (TV_GC);
1958 if (!quiet_flag)
1959 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
1960 if (GGC_DEBUG_LEVEL >= 2)
1961 fprintf (G.debug_file, "BEGIN COLLECTING\n");
1962
1963 /* Zero the total allocated bytes. This will be recalculated in the
1964 sweep phase. */
1965 G.allocated = 0;
1966
1967 /* Release the pages we freed the last time we collected, but didn't
1968 reuse in the interim. */
1969 release_pages ();
1970
1971 /* Indicate that we've seen collections at this context depth. */
1972 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
1973
1974 clear_marks ();
1975 ggc_mark_roots ();
1976 #ifdef GATHER_STATISTICS
1977 ggc_prune_overhead_list ();
1978 #endif
1979 poison_pages ();
1980 validate_free_objects ();
1981 sweep_pages ();
1982
1983 G.allocated_last_gc = G.allocated;
1984
1985 timevar_pop (TV_GC);
1986
1987 if (!quiet_flag)
1988 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
1989 if (GGC_DEBUG_LEVEL >= 2)
1990 fprintf (G.debug_file, "END COLLECTING\n");
1991 }
1992
1993 /* Print allocation statistics. */
1994 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
1995 ? (x) \
1996 : ((x) < 1024*1024*10 \
1997 ? (x) / 1024 \
1998 : (x) / (1024*1024))))
1999 #define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
2000
2001 void
2002 ggc_print_statistics (void)
2003 {
2004 struct ggc_statistics stats;
2005 unsigned int i;
2006 size_t total_overhead = 0;
2007
2008 /* Clear the statistics. */
2009 memset (&stats, 0, sizeof (stats));
2010
2011 /* Make sure collection will really occur. */
2012 G.allocated_last_gc = 0;
2013
2014 /* Collect and print the statistics common across collectors. */
2015 ggc_print_common_statistics (stderr, &stats);
2016
2017 /* Release free pages so that we will not count the bytes allocated
2018 there as part of the total allocated memory. */
2019 release_pages ();
2020
2021 /* Collect some information about the various sizes of
2022 allocation. */
2023 fprintf (stderr,
2024 "Memory still allocated at the end of the compilation process\n");
2025 fprintf (stderr, "%-5s %10s %10s %10s\n",
2026 "Size", "Allocated", "Used", "Overhead");
2027 for (i = 0; i < NUM_ORDERS; ++i)
2028 {
2029 page_entry *p;
2030 size_t allocated;
2031 size_t in_use;
2032 size_t overhead;
2033
2034 /* Skip empty entries. */
2035 if (!G.pages[i])
2036 continue;
2037
2038 overhead = allocated = in_use = 0;
2039
2040 /* Figure out the total number of bytes allocated for objects of
2041 this size, and how many of them are actually in use. Also figure
2042 out how much memory the page table is using. */
2043 for (p = G.pages[i]; p; p = p->next)
2044 {
2045 allocated += p->bytes;
2046 in_use +=
2047 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
2048
2049 overhead += (sizeof (page_entry) - sizeof (long)
2050 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
2051 }
2052 fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n",
2053 (unsigned long) OBJECT_SIZE (i),
2054 SCALE (allocated), STAT_LABEL (allocated),
2055 SCALE (in_use), STAT_LABEL (in_use),
2056 SCALE (overhead), STAT_LABEL (overhead));
2057 total_overhead += overhead;
2058 }
2059 fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
2060 SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped),
2061 SCALE (G.allocated), STAT_LABEL(G.allocated),
2062 SCALE (total_overhead), STAT_LABEL (total_overhead));
2063
2064 #ifdef GATHER_STATISTICS
2065 {
2066 fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
2067
2068 fprintf (stderr, "Total Overhead: %10lld\n",
2069 G.stats.total_overhead);
2070 fprintf (stderr, "Total Allocated: %10lld\n",
2071 G.stats.total_allocated);
2072
2073 fprintf (stderr, "Total Overhead under 32B: %10lld\n",
2074 G.stats.total_overhead_under32);
2075 fprintf (stderr, "Total Allocated under 32B: %10lld\n",
2076 G.stats.total_allocated_under32);
2077 fprintf (stderr, "Total Overhead under 64B: %10lld\n",
2078 G.stats.total_overhead_under64);
2079 fprintf (stderr, "Total Allocated under 64B: %10lld\n",
2080 G.stats.total_allocated_under64);
2081 fprintf (stderr, "Total Overhead under 128B: %10lld\n",
2082 G.stats.total_overhead_under128);
2083 fprintf (stderr, "Total Allocated under 128B: %10lld\n",
2084 G.stats.total_allocated_under128);
2085
2086 for (i = 0; i < NUM_ORDERS; i++)
2087 if (G.stats.total_allocated_per_order[i])
2088 {
2089 fprintf (stderr, "Total Overhead page size %7d: %10lld\n",
2090 OBJECT_SIZE (i), G.stats.total_overhead_per_order[i]);
2091 fprintf (stderr, "Total Allocated page size %7d: %10lld\n",
2092 OBJECT_SIZE (i), G.stats.total_allocated_per_order[i]);
2093 }
2094 }
2095 #endif
2096 }
2097 \f
2098 struct ggc_pch_data
2099 {
2100 struct ggc_pch_ondisk
2101 {
2102 unsigned totals[NUM_ORDERS];
2103 } d;
2104 size_t base[NUM_ORDERS];
2105 size_t written[NUM_ORDERS];
2106 };
2107
2108 struct ggc_pch_data *
2109 init_ggc_pch (void)
2110 {
2111 return xcalloc (sizeof (struct ggc_pch_data), 1);
2112 }
2113
2114 void
2115 ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2116 size_t size, bool is_string ATTRIBUTE_UNUSED)
2117 {
2118 unsigned order;
2119
2120 if (size <= 256)
2121 order = size_lookup[size];
2122 else
2123 {
2124 order = 9;
2125 while (size > OBJECT_SIZE (order))
2126 order++;
2127 }
2128
2129 d->d.totals[order]++;
2130 }
2131
2132 size_t
2133 ggc_pch_total_size (struct ggc_pch_data *d)
2134 {
2135 size_t a = 0;
2136 unsigned i;
2137
2138 for (i = 0; i < NUM_ORDERS; i++)
2139 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2140 return a;
2141 }
2142
2143 void
2144 ggc_pch_this_base (struct ggc_pch_data *d, void *base)
2145 {
2146 size_t a = (size_t) base;
2147 unsigned i;
2148
2149 for (i = 0; i < NUM_ORDERS; i++)
2150 {
2151 d->base[i] = a;
2152 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2153 }
2154 }
2155
2156
2157 char *
2158 ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2159 size_t size, bool is_string ATTRIBUTE_UNUSED)
2160 {
2161 unsigned order;
2162 char *result;
2163
2164 if (size <= 256)
2165 order = size_lookup[size];
2166 else
2167 {
2168 order = 9;
2169 while (size > OBJECT_SIZE (order))
2170 order++;
2171 }
2172
2173 result = (char *) d->base[order];
2174 d->base[order] += OBJECT_SIZE (order);
2175 return result;
2176 }
2177
2178 void
2179 ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2180 FILE *f ATTRIBUTE_UNUSED)
2181 {
2182 /* Nothing to do. */
2183 }
2184
2185 void
2186 ggc_pch_write_object (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2187 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
2188 size_t size, bool is_string ATTRIBUTE_UNUSED)
2189 {
2190 unsigned order;
2191 static const char emptyBytes[256];
2192
2193 if (size <= 256)
2194 order = size_lookup[size];
2195 else
2196 {
2197 order = 9;
2198 while (size > OBJECT_SIZE (order))
2199 order++;
2200 }
2201
2202 if (fwrite (x, size, 1, f) != 1)
2203 fatal_error ("can't write PCH file: %m");
2204
2205 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2206 object out to OBJECT_SIZE(order). This happens for strings. */
2207
2208 if (size != OBJECT_SIZE (order))
2209 {
2210 unsigned padding = OBJECT_SIZE(order) - size;
2211
2212 /* To speed small writes, we use a nulled-out array that's larger
2213 than most padding requests as the source for our null bytes. This
2214 permits us to do the padding with fwrite() rather than fseek(), and
2215 limits the chance the the OS may try to flush any outstanding
2216 writes. */
2217 if (padding <= sizeof(emptyBytes))
2218 {
2219 if (fwrite (emptyBytes, 1, padding, f) != padding)
2220 fatal_error ("can't write PCH file");
2221 }
2222 else
2223 {
2224 /* Larger than our buffer? Just default to fseek. */
2225 if (fseek (f, padding, SEEK_CUR) != 0)
2226 fatal_error ("can't write PCH file");
2227 }
2228 }
2229
2230 d->written[order]++;
2231 if (d->written[order] == d->d.totals[order]
2232 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2233 G.pagesize),
2234 SEEK_CUR) != 0)
2235 fatal_error ("can't write PCH file: %m");
2236 }
2237
2238 void
2239 ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
2240 {
2241 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
2242 fatal_error ("can't write PCH file: %m");
2243 free (d);
2244 }
2245
2246 /* Move the PCH PTE entries just added to the end of by_depth, to the
2247 front. */
2248
2249 static void
2250 move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
2251 {
2252 unsigned i;
2253
2254 /* First, we swap the new entries to the front of the varrays. */
2255 page_entry **new_by_depth;
2256 unsigned long **new_save_in_use;
2257
2258 new_by_depth = xmalloc (G.by_depth_max * sizeof (page_entry *));
2259 new_save_in_use = xmalloc (G.by_depth_max * sizeof (unsigned long *));
2260
2261 memcpy (&new_by_depth[0],
2262 &G.by_depth[count_old_page_tables],
2263 count_new_page_tables * sizeof (void *));
2264 memcpy (&new_by_depth[count_new_page_tables],
2265 &G.by_depth[0],
2266 count_old_page_tables * sizeof (void *));
2267 memcpy (&new_save_in_use[0],
2268 &G.save_in_use[count_old_page_tables],
2269 count_new_page_tables * sizeof (void *));
2270 memcpy (&new_save_in_use[count_new_page_tables],
2271 &G.save_in_use[0],
2272 count_old_page_tables * sizeof (void *));
2273
2274 free (G.by_depth);
2275 free (G.save_in_use);
2276
2277 G.by_depth = new_by_depth;
2278 G.save_in_use = new_save_in_use;
2279
2280 /* Now update all the index_by_depth fields. */
2281 for (i = G.by_depth_in_use; i > 0; --i)
2282 {
2283 page_entry *p = G.by_depth[i-1];
2284 p->index_by_depth = i-1;
2285 }
2286
2287 /* And last, we update the depth pointers in G.depth. The first
2288 entry is already 0, and context 0 entries always start at index
2289 0, so there is nothing to update in the first slot. We need a
2290 second slot, only if we have old ptes, and if we do, they start
2291 at index count_new_page_tables. */
2292 if (count_old_page_tables)
2293 push_depth (count_new_page_tables);
2294 }
2295
2296 void
2297 ggc_pch_read (FILE *f, void *addr)
2298 {
2299 struct ggc_pch_ondisk d;
2300 unsigned i;
2301 char *offs = addr;
2302 unsigned long count_old_page_tables;
2303 unsigned long count_new_page_tables;
2304
2305 count_old_page_tables = G.by_depth_in_use;
2306
2307 /* We've just read in a PCH file. So, every object that used to be
2308 allocated is now free. */
2309 clear_marks ();
2310 #ifdef ENABLE_GC_CHECKING
2311 poison_pages ();
2312 #endif
2313
2314 /* No object read from a PCH file should ever be freed. So, set the
2315 context depth to 1, and set the depth of all the currently-allocated
2316 pages to be 1 too. PCH pages will have depth 0. */
2317 gcc_assert (!G.context_depth);
2318 G.context_depth = 1;
2319 for (i = 0; i < NUM_ORDERS; i++)
2320 {
2321 page_entry *p;
2322 for (p = G.pages[i]; p != NULL; p = p->next)
2323 p->context_depth = G.context_depth;
2324 }
2325
2326 /* Allocate the appropriate page-table entries for the pages read from
2327 the PCH file. */
2328 if (fread (&d, sizeof (d), 1, f) != 1)
2329 fatal_error ("can't read PCH file: %m");
2330
2331 for (i = 0; i < NUM_ORDERS; i++)
2332 {
2333 struct page_entry *entry;
2334 char *pte;
2335 size_t bytes;
2336 size_t num_objs;
2337 size_t j;
2338
2339 if (d.totals[i] == 0)
2340 continue;
2341
2342 bytes = ROUND_UP (d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2343 num_objs = bytes / OBJECT_SIZE (i);
2344 entry = xcalloc (1, (sizeof (struct page_entry)
2345 - sizeof (long)
2346 + BITMAP_SIZE (num_objs + 1)));
2347 entry->bytes = bytes;
2348 entry->page = offs;
2349 entry->context_depth = 0;
2350 offs += bytes;
2351 entry->num_free_objects = 0;
2352 entry->order = i;
2353
2354 for (j = 0;
2355 j + HOST_BITS_PER_LONG <= num_objs + 1;
2356 j += HOST_BITS_PER_LONG)
2357 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2358 for (; j < num_objs + 1; j++)
2359 entry->in_use_p[j / HOST_BITS_PER_LONG]
2360 |= 1L << (j % HOST_BITS_PER_LONG);
2361
2362 for (pte = entry->page;
2363 pte < entry->page + entry->bytes;
2364 pte += G.pagesize)
2365 set_page_table_entry (pte, entry);
2366
2367 if (G.page_tails[i] != NULL)
2368 G.page_tails[i]->next = entry;
2369 else
2370 G.pages[i] = entry;
2371 G.page_tails[i] = entry;
2372
2373 /* We start off by just adding all the new information to the
2374 end of the varrays, later, we will move the new information
2375 to the front of the varrays, as the PCH page tables are at
2376 context 0. */
2377 push_by_depth (entry, 0);
2378 }
2379
2380 /* Now, we update the various data structures that speed page table
2381 handling. */
2382 count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2383
2384 move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2385
2386 /* Update the statistics. */
2387 G.allocated = G.allocated_last_gc = offs - (char *)addr;
2388 }