* g++.dg/cpp0x/nullptr21.c: Remove printfs, make self-checking.
[gcc.git] / gcc / ggc-page.c
1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009,
3 2010, 2011 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "diagnostic-core.h"
29 #include "flags.h"
30 #include "ggc.h"
31 #include "ggc-internal.h"
32 #include "timevar.h"
33 #include "params.h"
34 #include "tree-flow.h"
35 #include "cfgloop.h"
36 #include "plugin.h"
37
38 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
39 file open. Prefer either to valloc. */
40 #ifdef HAVE_MMAP_ANON
41 # undef HAVE_MMAP_DEV_ZERO
42 # define USING_MMAP
43 #endif
44
45 #ifdef HAVE_MMAP_DEV_ZERO
46 # define USING_MMAP
47 #endif
48
49 #ifndef USING_MMAP
50 #define USING_MALLOC_PAGE_GROUPS
51 #endif
52
53 #if defined(HAVE_MADVISE) && HAVE_DECL_MADVISE && defined(MADV_DONTNEED) \
54 && defined(USING_MMAP)
55 # define USING_MADVISE
56 #endif
57
58 /* Strategy:
59
60 This garbage-collecting allocator allocates objects on one of a set
61 of pages. Each page can allocate objects of a single size only;
62 available sizes are powers of two starting at four bytes. The size
63 of an allocation request is rounded up to the next power of two
64 (`order'), and satisfied from the appropriate page.
65
66 Each page is recorded in a page-entry, which also maintains an
67 in-use bitmap of object positions on the page. This allows the
68 allocation state of a particular object to be flipped without
69 touching the page itself.
70
71 Each page-entry also has a context depth, which is used to track
72 pushing and popping of allocation contexts. Only objects allocated
73 in the current (highest-numbered) context may be collected.
74
75 Page entries are arranged in an array of singly-linked lists. The
76 array is indexed by the allocation size, in bits, of the pages on
77 it; i.e. all pages on a list allocate objects of the same size.
78 Pages are ordered on the list such that all non-full pages precede
79 all full pages, with non-full pages arranged in order of decreasing
80 context depth.
81
82 Empty pages (of all orders) are kept on a single page cache list,
83 and are considered first when new pages are required; they are
84 deallocated at the start of the next collection if they haven't
85 been recycled by then. */
86
87 /* Define GGC_DEBUG_LEVEL to print debugging information.
88 0: No debugging output.
89 1: GC statistics only.
90 2: Page-entry allocations/deallocations as well.
91 3: Object allocations as well.
92 4: Object marks as well. */
93 #define GGC_DEBUG_LEVEL (0)
94 \f
95 #ifndef HOST_BITS_PER_PTR
96 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
97 #endif
98
99 \f
100 /* A two-level tree is used to look up the page-entry for a given
101 pointer. Two chunks of the pointer's bits are extracted to index
102 the first and second levels of the tree, as follows:
103
104 HOST_PAGE_SIZE_BITS
105 32 | |
106 msb +----------------+----+------+------+ lsb
107 | | |
108 PAGE_L1_BITS |
109 | |
110 PAGE_L2_BITS
111
112 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
113 pages are aligned on system page boundaries. The next most
114 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
115 index values in the lookup table, respectively.
116
117 For 32-bit architectures and the settings below, there are no
118 leftover bits. For architectures with wider pointers, the lookup
119 tree points to a list of pages, which must be scanned to find the
120 correct one. */
121
122 #define PAGE_L1_BITS (8)
123 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
124 #define PAGE_L1_SIZE ((uintptr_t) 1 << PAGE_L1_BITS)
125 #define PAGE_L2_SIZE ((uintptr_t) 1 << PAGE_L2_BITS)
126
127 #define LOOKUP_L1(p) \
128 (((uintptr_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
129
130 #define LOOKUP_L2(p) \
131 (((uintptr_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
132
133 /* The number of objects per allocation page, for objects on a page of
134 the indicated ORDER. */
135 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
136
137 /* The number of objects in P. */
138 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
139
140 /* The size of an object on a page of the indicated ORDER. */
141 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
142
143 /* For speed, we avoid doing a general integer divide to locate the
144 offset in the allocation bitmap, by precalculating numbers M, S
145 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
146 within the page which is evenly divisible by the object size Z. */
147 #define DIV_MULT(ORDER) inverse_table[ORDER].mult
148 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
149 #define OFFSET_TO_BIT(OFFSET, ORDER) \
150 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
151
152 /* We use this structure to determine the alignment required for
153 allocations. For power-of-two sized allocations, that's not a
154 problem, but it does matter for odd-sized allocations.
155 We do not care about alignment for floating-point types. */
156
157 struct max_alignment {
158 char c;
159 union {
160 HOST_WIDEST_INT i;
161 void *p;
162 } u;
163 };
164
165 /* The biggest alignment required. */
166
167 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
168
169
170 /* The number of extra orders, not corresponding to power-of-two sized
171 objects. */
172
173 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
174
175 #define RTL_SIZE(NSLOTS) \
176 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
177
178 #define TREE_EXP_SIZE(OPS) \
179 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
180
181 /* The Ith entry is the maximum size of an object to be stored in the
182 Ith extra order. Adding a new entry to this array is the *only*
183 thing you need to do to add a new special allocation size. */
184
185 static const size_t extra_order_size_table[] = {
186 /* Extra orders for small non-power-of-two multiples of MAX_ALIGNMENT.
187 There are a lot of structures with these sizes and explicitly
188 listing them risks orders being dropped because they changed size. */
189 MAX_ALIGNMENT * 3,
190 MAX_ALIGNMENT * 5,
191 MAX_ALIGNMENT * 6,
192 MAX_ALIGNMENT * 7,
193 MAX_ALIGNMENT * 9,
194 MAX_ALIGNMENT * 10,
195 MAX_ALIGNMENT * 11,
196 MAX_ALIGNMENT * 12,
197 MAX_ALIGNMENT * 13,
198 MAX_ALIGNMENT * 14,
199 MAX_ALIGNMENT * 15,
200 sizeof (struct tree_decl_non_common),
201 sizeof (struct tree_field_decl),
202 sizeof (struct tree_parm_decl),
203 sizeof (struct tree_var_decl),
204 sizeof (struct tree_type_non_common),
205 sizeof (struct function),
206 sizeof (struct basic_block_def),
207 sizeof (struct cgraph_node),
208 sizeof (struct loop),
209 };
210
211 /* The total number of orders. */
212
213 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
214
215 /* Compute the smallest nonnegative number which when added to X gives
216 a multiple of F. */
217
218 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
219
220 /* Compute the smallest multiple of F that is >= X. */
221
222 #define ROUND_UP(x, f) (CEIL (x, f) * (f))
223
224 /* Round X to next multiple of the page size */
225
226 #define PAGE_ALIGN(x) (((x) + G.pagesize - 1) & ~(G.pagesize - 1))
227
228 /* The Ith entry is the number of objects on a page or order I. */
229
230 static unsigned objects_per_page_table[NUM_ORDERS];
231
232 /* The Ith entry is the size of an object on a page of order I. */
233
234 static size_t object_size_table[NUM_ORDERS];
235
236 /* The Ith entry is a pair of numbers (mult, shift) such that
237 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
238 for all k evenly divisible by OBJECT_SIZE(I). */
239
240 static struct
241 {
242 size_t mult;
243 unsigned int shift;
244 }
245 inverse_table[NUM_ORDERS];
246
247 /* A page_entry records the status of an allocation page. This
248 structure is dynamically sized to fit the bitmap in_use_p. */
249 typedef struct page_entry
250 {
251 /* The next page-entry with objects of the same size, or NULL if
252 this is the last page-entry. */
253 struct page_entry *next;
254
255 /* The previous page-entry with objects of the same size, or NULL if
256 this is the first page-entry. The PREV pointer exists solely to
257 keep the cost of ggc_free manageable. */
258 struct page_entry *prev;
259
260 /* The number of bytes allocated. (This will always be a multiple
261 of the host system page size.) */
262 size_t bytes;
263
264 /* The address at which the memory is allocated. */
265 char *page;
266
267 #ifdef USING_MALLOC_PAGE_GROUPS
268 /* Back pointer to the page group this page came from. */
269 struct page_group *group;
270 #endif
271
272 /* This is the index in the by_depth varray where this page table
273 can be found. */
274 unsigned long index_by_depth;
275
276 /* Context depth of this page. */
277 unsigned short context_depth;
278
279 /* The number of free objects remaining on this page. */
280 unsigned short num_free_objects;
281
282 /* A likely candidate for the bit position of a free object for the
283 next allocation from this page. */
284 unsigned short next_bit_hint;
285
286 /* The lg of size of objects allocated from this page. */
287 unsigned char order;
288
289 /* Discarded page? */
290 bool discarded;
291
292 /* A bit vector indicating whether or not objects are in use. The
293 Nth bit is one if the Nth object on this page is allocated. This
294 array is dynamically sized. */
295 unsigned long in_use_p[1];
296 } page_entry;
297
298 #ifdef USING_MALLOC_PAGE_GROUPS
299 /* A page_group describes a large allocation from malloc, from which
300 we parcel out aligned pages. */
301 typedef struct page_group
302 {
303 /* A linked list of all extant page groups. */
304 struct page_group *next;
305
306 /* The address we received from malloc. */
307 char *allocation;
308
309 /* The size of the block. */
310 size_t alloc_size;
311
312 /* A bitmask of pages in use. */
313 unsigned int in_use;
314 } page_group;
315 #endif
316
317 #if HOST_BITS_PER_PTR <= 32
318
319 /* On 32-bit hosts, we use a two level page table, as pictured above. */
320 typedef page_entry **page_table[PAGE_L1_SIZE];
321
322 #else
323
324 /* On 64-bit hosts, we use the same two level page tables plus a linked
325 list that disambiguates the top 32-bits. There will almost always be
326 exactly one entry in the list. */
327 typedef struct page_table_chain
328 {
329 struct page_table_chain *next;
330 size_t high_bits;
331 page_entry **table[PAGE_L1_SIZE];
332 } *page_table;
333
334 #endif
335
336 #ifdef ENABLE_GC_ALWAYS_COLLECT
337 /* List of free objects to be verified as actually free on the
338 next collection. */
339 struct free_object
340 {
341 void *object;
342 struct free_object *next;
343 };
344 #endif
345
346 /* The rest of the global variables. */
347 static struct globals
348 {
349 /* The Nth element in this array is a page with objects of size 2^N.
350 If there are any pages with free objects, they will be at the
351 head of the list. NULL if there are no page-entries for this
352 object size. */
353 page_entry *pages[NUM_ORDERS];
354
355 /* The Nth element in this array is the last page with objects of
356 size 2^N. NULL if there are no page-entries for this object
357 size. */
358 page_entry *page_tails[NUM_ORDERS];
359
360 /* Lookup table for associating allocation pages with object addresses. */
361 page_table lookup;
362
363 /* The system's page size. */
364 size_t pagesize;
365 size_t lg_pagesize;
366
367 /* Bytes currently allocated. */
368 size_t allocated;
369
370 /* Bytes currently allocated at the end of the last collection. */
371 size_t allocated_last_gc;
372
373 /* Total amount of memory mapped. */
374 size_t bytes_mapped;
375
376 /* Bit N set if any allocations have been done at context depth N. */
377 unsigned long context_depth_allocations;
378
379 /* Bit N set if any collections have been done at context depth N. */
380 unsigned long context_depth_collections;
381
382 /* The current depth in the context stack. */
383 unsigned short context_depth;
384
385 /* A file descriptor open to /dev/zero for reading. */
386 #if defined (HAVE_MMAP_DEV_ZERO)
387 int dev_zero_fd;
388 #endif
389
390 /* A cache of free system pages. */
391 page_entry *free_pages;
392
393 #ifdef USING_MALLOC_PAGE_GROUPS
394 page_group *page_groups;
395 #endif
396
397 /* The file descriptor for debugging output. */
398 FILE *debug_file;
399
400 /* Current number of elements in use in depth below. */
401 unsigned int depth_in_use;
402
403 /* Maximum number of elements that can be used before resizing. */
404 unsigned int depth_max;
405
406 /* Each element of this array is an index in by_depth where the given
407 depth starts. This structure is indexed by that given depth we
408 are interested in. */
409 unsigned int *depth;
410
411 /* Current number of elements in use in by_depth below. */
412 unsigned int by_depth_in_use;
413
414 /* Maximum number of elements that can be used before resizing. */
415 unsigned int by_depth_max;
416
417 /* Each element of this array is a pointer to a page_entry, all
418 page_entries can be found in here by increasing depth.
419 index_by_depth in the page_entry is the index into this data
420 structure where that page_entry can be found. This is used to
421 speed up finding all page_entries at a particular depth. */
422 page_entry **by_depth;
423
424 /* Each element is a pointer to the saved in_use_p bits, if any,
425 zero otherwise. We allocate them all together, to enable a
426 better runtime data access pattern. */
427 unsigned long **save_in_use;
428
429 #ifdef ENABLE_GC_ALWAYS_COLLECT
430 /* List of free objects to be verified as actually free on the
431 next collection. */
432 struct free_object *free_object_list;
433 #endif
434
435 struct
436 {
437 /* Total GC-allocated memory. */
438 unsigned long long total_allocated;
439 /* Total overhead for GC-allocated memory. */
440 unsigned long long total_overhead;
441
442 /* Total allocations and overhead for sizes less than 32, 64 and 128.
443 These sizes are interesting because they are typical cache line
444 sizes. */
445
446 unsigned long long total_allocated_under32;
447 unsigned long long total_overhead_under32;
448
449 unsigned long long total_allocated_under64;
450 unsigned long long total_overhead_under64;
451
452 unsigned long long total_allocated_under128;
453 unsigned long long total_overhead_under128;
454
455 /* The allocations for each of the allocation orders. */
456 unsigned long long total_allocated_per_order[NUM_ORDERS];
457
458 /* The overhead for each of the allocation orders. */
459 unsigned long long total_overhead_per_order[NUM_ORDERS];
460 } stats;
461 } G;
462
463 /* The size in bytes required to maintain a bitmap for the objects
464 on a page-entry. */
465 #define BITMAP_SIZE(Num_objects) \
466 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
467
468 /* Allocate pages in chunks of this size, to throttle calls to memory
469 allocation routines. The first page is used, the rest go onto the
470 free list. This cannot be larger than HOST_BITS_PER_INT for the
471 in_use bitmask for page_group. Hosts that need a different value
472 can override this by defining GGC_QUIRE_SIZE explicitly. */
473 #ifndef GGC_QUIRE_SIZE
474 # ifdef USING_MMAP
475 # define GGC_QUIRE_SIZE 512 /* 2MB for 4K pages */
476 # else
477 # define GGC_QUIRE_SIZE 16
478 # endif
479 #endif
480
481 /* Initial guess as to how many page table entries we might need. */
482 #define INITIAL_PTE_COUNT 128
483 \f
484 static int ggc_allocated_p (const void *);
485 static page_entry *lookup_page_table_entry (const void *);
486 static void set_page_table_entry (void *, page_entry *);
487 #ifdef USING_MMAP
488 static char *alloc_anon (char *, size_t, bool check);
489 #endif
490 #ifdef USING_MALLOC_PAGE_GROUPS
491 static size_t page_group_index (char *, char *);
492 static void set_page_group_in_use (page_group *, char *);
493 static void clear_page_group_in_use (page_group *, char *);
494 #endif
495 static struct page_entry * alloc_page (unsigned);
496 static void free_page (struct page_entry *);
497 static void release_pages (void);
498 static void clear_marks (void);
499 static void sweep_pages (void);
500 static void ggc_recalculate_in_use_p (page_entry *);
501 static void compute_inverse (unsigned);
502 static inline void adjust_depth (void);
503 static void move_ptes_to_front (int, int);
504
505 void debug_print_page_list (int);
506 static void push_depth (unsigned int);
507 static void push_by_depth (page_entry *, unsigned long *);
508
509 /* Push an entry onto G.depth. */
510
511 inline static void
512 push_depth (unsigned int i)
513 {
514 if (G.depth_in_use >= G.depth_max)
515 {
516 G.depth_max *= 2;
517 G.depth = XRESIZEVEC (unsigned int, G.depth, G.depth_max);
518 }
519 G.depth[G.depth_in_use++] = i;
520 }
521
522 /* Push an entry onto G.by_depth and G.save_in_use. */
523
524 inline static void
525 push_by_depth (page_entry *p, unsigned long *s)
526 {
527 if (G.by_depth_in_use >= G.by_depth_max)
528 {
529 G.by_depth_max *= 2;
530 G.by_depth = XRESIZEVEC (page_entry *, G.by_depth, G.by_depth_max);
531 G.save_in_use = XRESIZEVEC (unsigned long *, G.save_in_use,
532 G.by_depth_max);
533 }
534 G.by_depth[G.by_depth_in_use] = p;
535 G.save_in_use[G.by_depth_in_use++] = s;
536 }
537
538 #if (GCC_VERSION < 3001)
539 #define prefetch(X) ((void) X)
540 #else
541 #define prefetch(X) __builtin_prefetch (X)
542 #endif
543
544 #define save_in_use_p_i(__i) \
545 (G.save_in_use[__i])
546 #define save_in_use_p(__p) \
547 (save_in_use_p_i (__p->index_by_depth))
548
549 /* Returns nonzero if P was allocated in GC'able memory. */
550
551 static inline int
552 ggc_allocated_p (const void *p)
553 {
554 page_entry ***base;
555 size_t L1, L2;
556
557 #if HOST_BITS_PER_PTR <= 32
558 base = &G.lookup[0];
559 #else
560 page_table table = G.lookup;
561 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
562 while (1)
563 {
564 if (table == NULL)
565 return 0;
566 if (table->high_bits == high_bits)
567 break;
568 table = table->next;
569 }
570 base = &table->table[0];
571 #endif
572
573 /* Extract the level 1 and 2 indices. */
574 L1 = LOOKUP_L1 (p);
575 L2 = LOOKUP_L2 (p);
576
577 return base[L1] && base[L1][L2];
578 }
579
580 /* Traverse the page table and find the entry for a page.
581 Die (probably) if the object wasn't allocated via GC. */
582
583 static inline page_entry *
584 lookup_page_table_entry (const void *p)
585 {
586 page_entry ***base;
587 size_t L1, L2;
588
589 #if HOST_BITS_PER_PTR <= 32
590 base = &G.lookup[0];
591 #else
592 page_table table = G.lookup;
593 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
594 while (table->high_bits != high_bits)
595 table = table->next;
596 base = &table->table[0];
597 #endif
598
599 /* Extract the level 1 and 2 indices. */
600 L1 = LOOKUP_L1 (p);
601 L2 = LOOKUP_L2 (p);
602
603 return base[L1][L2];
604 }
605
606 /* Set the page table entry for a page. */
607
608 static void
609 set_page_table_entry (void *p, page_entry *entry)
610 {
611 page_entry ***base;
612 size_t L1, L2;
613
614 #if HOST_BITS_PER_PTR <= 32
615 base = &G.lookup[0];
616 #else
617 page_table table;
618 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
619 for (table = G.lookup; table; table = table->next)
620 if (table->high_bits == high_bits)
621 goto found;
622
623 /* Not found -- allocate a new table. */
624 table = XCNEW (struct page_table_chain);
625 table->next = G.lookup;
626 table->high_bits = high_bits;
627 G.lookup = table;
628 found:
629 base = &table->table[0];
630 #endif
631
632 /* Extract the level 1 and 2 indices. */
633 L1 = LOOKUP_L1 (p);
634 L2 = LOOKUP_L2 (p);
635
636 if (base[L1] == NULL)
637 base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
638
639 base[L1][L2] = entry;
640 }
641
642 /* Prints the page-entry for object size ORDER, for debugging. */
643
644 DEBUG_FUNCTION void
645 debug_print_page_list (int order)
646 {
647 page_entry *p;
648 printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
649 (void *) G.page_tails[order]);
650 p = G.pages[order];
651 while (p != NULL)
652 {
653 printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
654 p->num_free_objects);
655 p = p->next;
656 }
657 printf ("NULL\n");
658 fflush (stdout);
659 }
660
661 #ifdef USING_MMAP
662 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
663 (if non-null). The ifdef structure here is intended to cause a
664 compile error unless exactly one of the HAVE_* is defined. */
665
666 static inline char *
667 alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size, bool check)
668 {
669 #ifdef HAVE_MMAP_ANON
670 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
671 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
672 #endif
673 #ifdef HAVE_MMAP_DEV_ZERO
674 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
675 MAP_PRIVATE, G.dev_zero_fd, 0);
676 #endif
677
678 if (page == (char *) MAP_FAILED)
679 {
680 if (!check)
681 return NULL;
682 perror ("virtual memory exhausted");
683 exit (FATAL_EXIT_CODE);
684 }
685
686 /* Remember that we allocated this memory. */
687 G.bytes_mapped += size;
688
689 /* Pretend we don't have access to the allocated pages. We'll enable
690 access to smaller pieces of the area in ggc_internal_alloc. Discard the
691 handle to avoid handle leak. */
692 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size));
693
694 return page;
695 }
696 #endif
697 #ifdef USING_MALLOC_PAGE_GROUPS
698 /* Compute the index for this page into the page group. */
699
700 static inline size_t
701 page_group_index (char *allocation, char *page)
702 {
703 return (size_t) (page - allocation) >> G.lg_pagesize;
704 }
705
706 /* Set and clear the in_use bit for this page in the page group. */
707
708 static inline void
709 set_page_group_in_use (page_group *group, char *page)
710 {
711 group->in_use |= 1 << page_group_index (group->allocation, page);
712 }
713
714 static inline void
715 clear_page_group_in_use (page_group *group, char *page)
716 {
717 group->in_use &= ~(1 << page_group_index (group->allocation, page));
718 }
719 #endif
720
721 /* Allocate a new page for allocating objects of size 2^ORDER,
722 and return an entry for it. The entry is not added to the
723 appropriate page_table list. */
724
725 static inline struct page_entry *
726 alloc_page (unsigned order)
727 {
728 struct page_entry *entry, *p, **pp;
729 char *page;
730 size_t num_objects;
731 size_t bitmap_size;
732 size_t page_entry_size;
733 size_t entry_size;
734 #ifdef USING_MALLOC_PAGE_GROUPS
735 page_group *group;
736 #endif
737
738 num_objects = OBJECTS_PER_PAGE (order);
739 bitmap_size = BITMAP_SIZE (num_objects + 1);
740 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
741 entry_size = num_objects * OBJECT_SIZE (order);
742 if (entry_size < G.pagesize)
743 entry_size = G.pagesize;
744 entry_size = PAGE_ALIGN (entry_size);
745
746 entry = NULL;
747 page = NULL;
748
749 /* Check the list of free pages for one we can use. */
750 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
751 if (p->bytes == entry_size)
752 break;
753
754 if (p != NULL)
755 {
756 if (p->discarded)
757 G.bytes_mapped += p->bytes;
758 p->discarded = false;
759
760 /* Recycle the allocated memory from this page ... */
761 *pp = p->next;
762 page = p->page;
763
764 #ifdef USING_MALLOC_PAGE_GROUPS
765 group = p->group;
766 #endif
767
768 /* ... and, if possible, the page entry itself. */
769 if (p->order == order)
770 {
771 entry = p;
772 memset (entry, 0, page_entry_size);
773 }
774 else
775 free (p);
776 }
777 #ifdef USING_MMAP
778 else if (entry_size == G.pagesize)
779 {
780 /* We want just one page. Allocate a bunch of them and put the
781 extras on the freelist. (Can only do this optimization with
782 mmap for backing store.) */
783 struct page_entry *e, *f = G.free_pages;
784 int i, entries = GGC_QUIRE_SIZE;
785
786 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE, false);
787 if (page == NULL)
788 {
789 page = alloc_anon(NULL, G.pagesize, true);
790 entries = 1;
791 }
792
793 /* This loop counts down so that the chain will be in ascending
794 memory order. */
795 for (i = entries - 1; i >= 1; i--)
796 {
797 e = XCNEWVAR (struct page_entry, page_entry_size);
798 e->order = order;
799 e->bytes = G.pagesize;
800 e->page = page + (i << G.lg_pagesize);
801 e->next = f;
802 f = e;
803 }
804
805 G.free_pages = f;
806 }
807 else
808 page = alloc_anon (NULL, entry_size, true);
809 #endif
810 #ifdef USING_MALLOC_PAGE_GROUPS
811 else
812 {
813 /* Allocate a large block of memory and serve out the aligned
814 pages therein. This results in much less memory wastage
815 than the traditional implementation of valloc. */
816
817 char *allocation, *a, *enda;
818 size_t alloc_size, head_slop, tail_slop;
819 int multiple_pages = (entry_size == G.pagesize);
820
821 if (multiple_pages)
822 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
823 else
824 alloc_size = entry_size + G.pagesize - 1;
825 allocation = XNEWVEC (char, alloc_size);
826
827 page = (char *) (((uintptr_t) allocation + G.pagesize - 1) & -G.pagesize);
828 head_slop = page - allocation;
829 if (multiple_pages)
830 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
831 else
832 tail_slop = alloc_size - entry_size - head_slop;
833 enda = allocation + alloc_size - tail_slop;
834
835 /* We allocated N pages, which are likely not aligned, leaving
836 us with N-1 usable pages. We plan to place the page_group
837 structure somewhere in the slop. */
838 if (head_slop >= sizeof (page_group))
839 group = (page_group *)page - 1;
840 else
841 {
842 /* We magically got an aligned allocation. Too bad, we have
843 to waste a page anyway. */
844 if (tail_slop == 0)
845 {
846 enda -= G.pagesize;
847 tail_slop += G.pagesize;
848 }
849 gcc_assert (tail_slop >= sizeof (page_group));
850 group = (page_group *)enda;
851 tail_slop -= sizeof (page_group);
852 }
853
854 /* Remember that we allocated this memory. */
855 group->next = G.page_groups;
856 group->allocation = allocation;
857 group->alloc_size = alloc_size;
858 group->in_use = 0;
859 G.page_groups = group;
860 G.bytes_mapped += alloc_size;
861
862 /* If we allocated multiple pages, put the rest on the free list. */
863 if (multiple_pages)
864 {
865 struct page_entry *e, *f = G.free_pages;
866 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
867 {
868 e = XCNEWVAR (struct page_entry, page_entry_size);
869 e->order = order;
870 e->bytes = G.pagesize;
871 e->page = a;
872 e->group = group;
873 e->next = f;
874 f = e;
875 }
876 G.free_pages = f;
877 }
878 }
879 #endif
880
881 if (entry == NULL)
882 entry = XCNEWVAR (struct page_entry, page_entry_size);
883
884 entry->bytes = entry_size;
885 entry->page = page;
886 entry->context_depth = G.context_depth;
887 entry->order = order;
888 entry->num_free_objects = num_objects;
889 entry->next_bit_hint = 1;
890
891 G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
892
893 #ifdef USING_MALLOC_PAGE_GROUPS
894 entry->group = group;
895 set_page_group_in_use (group, page);
896 #endif
897
898 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
899 increment the hint. */
900 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
901 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
902
903 set_page_table_entry (page, entry);
904
905 if (GGC_DEBUG_LEVEL >= 2)
906 fprintf (G.debug_file,
907 "Allocating page at %p, object size=%lu, data %p-%p\n",
908 (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
909 page + entry_size - 1);
910
911 return entry;
912 }
913
914 /* Adjust the size of G.depth so that no index greater than the one
915 used by the top of the G.by_depth is used. */
916
917 static inline void
918 adjust_depth (void)
919 {
920 page_entry *top;
921
922 if (G.by_depth_in_use)
923 {
924 top = G.by_depth[G.by_depth_in_use-1];
925
926 /* Peel back indices in depth that index into by_depth, so that
927 as new elements are added to by_depth, we note the indices
928 of those elements, if they are for new context depths. */
929 while (G.depth_in_use > (size_t)top->context_depth+1)
930 --G.depth_in_use;
931 }
932 }
933
934 /* For a page that is no longer needed, put it on the free page list. */
935
936 static void
937 free_page (page_entry *entry)
938 {
939 if (GGC_DEBUG_LEVEL >= 2)
940 fprintf (G.debug_file,
941 "Deallocating page at %p, data %p-%p\n", (void *) entry,
942 entry->page, entry->page + entry->bytes - 1);
943
944 /* Mark the page as inaccessible. Discard the handle to avoid handle
945 leak. */
946 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->page, entry->bytes));
947
948 set_page_table_entry (entry->page, NULL);
949
950 #ifdef USING_MALLOC_PAGE_GROUPS
951 clear_page_group_in_use (entry->group, entry->page);
952 #endif
953
954 if (G.by_depth_in_use > 1)
955 {
956 page_entry *top = G.by_depth[G.by_depth_in_use-1];
957 int i = entry->index_by_depth;
958
959 /* We cannot free a page from a context deeper than the current
960 one. */
961 gcc_assert (entry->context_depth == top->context_depth);
962
963 /* Put top element into freed slot. */
964 G.by_depth[i] = top;
965 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
966 top->index_by_depth = i;
967 }
968 --G.by_depth_in_use;
969
970 adjust_depth ();
971
972 entry->next = G.free_pages;
973 G.free_pages = entry;
974 }
975
976 /* Release the free page cache to the system. */
977
978 static void
979 release_pages (void)
980 {
981 #ifdef USING_MADVISE
982 page_entry *p, *start_p;
983 char *start;
984 size_t len;
985 size_t mapped_len;
986 page_entry *next, *prev, *newprev;
987 size_t free_unit = (GGC_QUIRE_SIZE/2) * G.pagesize;
988
989 /* First free larger continuous areas to the OS.
990 This allows other allocators to grab these areas if needed.
991 This is only done on larger chunks to avoid fragmentation.
992 This does not always work because the free_pages list is only
993 approximately sorted. */
994
995 p = G.free_pages;
996 prev = NULL;
997 while (p)
998 {
999 start = p->page;
1000 start_p = p;
1001 len = 0;
1002 mapped_len = 0;
1003 newprev = prev;
1004 while (p && p->page == start + len)
1005 {
1006 len += p->bytes;
1007 if (!p->discarded)
1008 mapped_len += p->bytes;
1009 newprev = p;
1010 p = p->next;
1011 }
1012 if (len >= free_unit)
1013 {
1014 while (start_p != p)
1015 {
1016 next = start_p->next;
1017 free (start_p);
1018 start_p = next;
1019 }
1020 munmap (start, len);
1021 if (prev)
1022 prev->next = p;
1023 else
1024 G.free_pages = p;
1025 G.bytes_mapped -= mapped_len;
1026 continue;
1027 }
1028 prev = newprev;
1029 }
1030
1031 /* Now give back the fragmented pages to the OS, but keep the address
1032 space to reuse it next time. */
1033
1034 for (p = G.free_pages; p; )
1035 {
1036 if (p->discarded)
1037 {
1038 p = p->next;
1039 continue;
1040 }
1041 start = p->page;
1042 len = p->bytes;
1043 start_p = p;
1044 p = p->next;
1045 while (p && p->page == start + len)
1046 {
1047 len += p->bytes;
1048 p = p->next;
1049 }
1050 /* Give the page back to the kernel, but don't free the mapping.
1051 This avoids fragmentation in the virtual memory map of the
1052 process. Next time we can reuse it by just touching it. */
1053 madvise (start, len, MADV_DONTNEED);
1054 /* Don't count those pages as mapped to not touch the garbage collector
1055 unnecessarily. */
1056 G.bytes_mapped -= len;
1057 while (start_p != p)
1058 {
1059 start_p->discarded = true;
1060 start_p = start_p->next;
1061 }
1062 }
1063 #endif
1064 #if defined(USING_MMAP) && !defined(USING_MADVISE)
1065 page_entry *p, *next;
1066 char *start;
1067 size_t len;
1068
1069 /* Gather up adjacent pages so they are unmapped together. */
1070 p = G.free_pages;
1071
1072 while (p)
1073 {
1074 start = p->page;
1075 next = p->next;
1076 len = p->bytes;
1077 free (p);
1078 p = next;
1079
1080 while (p && p->page == start + len)
1081 {
1082 next = p->next;
1083 len += p->bytes;
1084 free (p);
1085 p = next;
1086 }
1087
1088 munmap (start, len);
1089 G.bytes_mapped -= len;
1090 }
1091
1092 G.free_pages = NULL;
1093 #endif
1094 #ifdef USING_MALLOC_PAGE_GROUPS
1095 page_entry **pp, *p;
1096 page_group **gp, *g;
1097
1098 /* Remove all pages from free page groups from the list. */
1099 pp = &G.free_pages;
1100 while ((p = *pp) != NULL)
1101 if (p->group->in_use == 0)
1102 {
1103 *pp = p->next;
1104 free (p);
1105 }
1106 else
1107 pp = &p->next;
1108
1109 /* Remove all free page groups, and release the storage. */
1110 gp = &G.page_groups;
1111 while ((g = *gp) != NULL)
1112 if (g->in_use == 0)
1113 {
1114 *gp = g->next;
1115 G.bytes_mapped -= g->alloc_size;
1116 free (g->allocation);
1117 }
1118 else
1119 gp = &g->next;
1120 #endif
1121 }
1122
1123 /* This table provides a fast way to determine ceil(log_2(size)) for
1124 allocation requests. The minimum allocation size is eight bytes. */
1125 #define NUM_SIZE_LOOKUP 512
1126 static unsigned char size_lookup[NUM_SIZE_LOOKUP] =
1127 {
1128 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1129 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1130 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1131 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1132 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1133 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1134 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1135 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1136 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1137 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1138 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1139 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1140 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1141 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1142 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1143 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1144 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1145 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1146 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1147 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1148 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1149 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1150 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1151 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1152 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1153 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1154 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1155 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1156 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1157 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1158 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1159 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
1160 };
1161
1162 /* For a given size of memory requested for allocation, return the
1163 actual size that is going to be allocated, as well as the size
1164 order. */
1165
1166 static void
1167 ggc_round_alloc_size_1 (size_t requested_size,
1168 size_t *size_order,
1169 size_t *alloced_size)
1170 {
1171 size_t order, object_size;
1172
1173 if (requested_size < NUM_SIZE_LOOKUP)
1174 {
1175 order = size_lookup[requested_size];
1176 object_size = OBJECT_SIZE (order);
1177 }
1178 else
1179 {
1180 order = 10;
1181 while (requested_size > (object_size = OBJECT_SIZE (order)))
1182 order++;
1183 }
1184
1185 if (size_order)
1186 *size_order = order;
1187 if (alloced_size)
1188 *alloced_size = object_size;
1189 }
1190
1191 /* For a given size of memory requested for allocation, return the
1192 actual size that is going to be allocated. */
1193
1194 size_t
1195 ggc_round_alloc_size (size_t requested_size)
1196 {
1197 size_t size = 0;
1198
1199 ggc_round_alloc_size_1 (requested_size, NULL, &size);
1200 return size;
1201 }
1202
1203 /* Typed allocation function. Does nothing special in this collector. */
1204
1205 void *
1206 ggc_alloc_typed_stat (enum gt_types_enum type ATTRIBUTE_UNUSED, size_t size
1207 MEM_STAT_DECL)
1208 {
1209 return ggc_internal_alloc_stat (size PASS_MEM_STAT);
1210 }
1211
1212 /* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
1213
1214 void *
1215 ggc_internal_alloc_stat (size_t size MEM_STAT_DECL)
1216 {
1217 size_t order, word, bit, object_offset, object_size;
1218 struct page_entry *entry;
1219 void *result;
1220
1221 ggc_round_alloc_size_1 (size, &order, &object_size);
1222
1223 /* If there are non-full pages for this size allocation, they are at
1224 the head of the list. */
1225 entry = G.pages[order];
1226
1227 /* If there is no page for this object size, or all pages in this
1228 context are full, allocate a new page. */
1229 if (entry == NULL || entry->num_free_objects == 0)
1230 {
1231 struct page_entry *new_entry;
1232 new_entry = alloc_page (order);
1233
1234 new_entry->index_by_depth = G.by_depth_in_use;
1235 push_by_depth (new_entry, 0);
1236
1237 /* We can skip context depths, if we do, make sure we go all the
1238 way to the new depth. */
1239 while (new_entry->context_depth >= G.depth_in_use)
1240 push_depth (G.by_depth_in_use-1);
1241
1242 /* If this is the only entry, it's also the tail. If it is not
1243 the only entry, then we must update the PREV pointer of the
1244 ENTRY (G.pages[order]) to point to our new page entry. */
1245 if (entry == NULL)
1246 G.page_tails[order] = new_entry;
1247 else
1248 entry->prev = new_entry;
1249
1250 /* Put new pages at the head of the page list. By definition the
1251 entry at the head of the list always has a NULL pointer. */
1252 new_entry->next = entry;
1253 new_entry->prev = NULL;
1254 entry = new_entry;
1255 G.pages[order] = new_entry;
1256
1257 /* For a new page, we know the word and bit positions (in the
1258 in_use bitmap) of the first available object -- they're zero. */
1259 new_entry->next_bit_hint = 1;
1260 word = 0;
1261 bit = 0;
1262 object_offset = 0;
1263 }
1264 else
1265 {
1266 /* First try to use the hint left from the previous allocation
1267 to locate a clear bit in the in-use bitmap. We've made sure
1268 that the one-past-the-end bit is always set, so if the hint
1269 has run over, this test will fail. */
1270 unsigned hint = entry->next_bit_hint;
1271 word = hint / HOST_BITS_PER_LONG;
1272 bit = hint % HOST_BITS_PER_LONG;
1273
1274 /* If the hint didn't work, scan the bitmap from the beginning. */
1275 if ((entry->in_use_p[word] >> bit) & 1)
1276 {
1277 word = bit = 0;
1278 while (~entry->in_use_p[word] == 0)
1279 ++word;
1280
1281 #if GCC_VERSION >= 3004
1282 bit = __builtin_ctzl (~entry->in_use_p[word]);
1283 #else
1284 while ((entry->in_use_p[word] >> bit) & 1)
1285 ++bit;
1286 #endif
1287
1288 hint = word * HOST_BITS_PER_LONG + bit;
1289 }
1290
1291 /* Next time, try the next bit. */
1292 entry->next_bit_hint = hint + 1;
1293
1294 object_offset = hint * object_size;
1295 }
1296
1297 /* Set the in-use bit. */
1298 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1299
1300 /* Keep a running total of the number of free objects. If this page
1301 fills up, we may have to move it to the end of the list if the
1302 next page isn't full. If the next page is full, all subsequent
1303 pages are full, so there's no need to move it. */
1304 if (--entry->num_free_objects == 0
1305 && entry->next != NULL
1306 && entry->next->num_free_objects > 0)
1307 {
1308 /* We have a new head for the list. */
1309 G.pages[order] = entry->next;
1310
1311 /* We are moving ENTRY to the end of the page table list.
1312 The new page at the head of the list will have NULL in
1313 its PREV field and ENTRY will have NULL in its NEXT field. */
1314 entry->next->prev = NULL;
1315 entry->next = NULL;
1316
1317 /* Append ENTRY to the tail of the list. */
1318 entry->prev = G.page_tails[order];
1319 G.page_tails[order]->next = entry;
1320 G.page_tails[order] = entry;
1321 }
1322
1323 /* Calculate the object's address. */
1324 result = entry->page + object_offset;
1325 if (GATHER_STATISTICS)
1326 ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
1327 result FINAL_PASS_MEM_STAT);
1328
1329 #ifdef ENABLE_GC_CHECKING
1330 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1331 exact same semantics in presence of memory bugs, regardless of
1332 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1333 handle to avoid handle leak. */
1334 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, object_size));
1335
1336 /* `Poison' the entire allocated object, including any padding at
1337 the end. */
1338 memset (result, 0xaf, object_size);
1339
1340 /* Make the bytes after the end of the object unaccessible. Discard the
1341 handle to avoid handle leak. */
1342 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) result + size,
1343 object_size - size));
1344 #endif
1345
1346 /* Tell Valgrind that the memory is there, but its content isn't
1347 defined. The bytes at the end of the object are still marked
1348 unaccessible. */
1349 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size));
1350
1351 /* Keep track of how many bytes are being allocated. This
1352 information is used in deciding when to collect. */
1353 G.allocated += object_size;
1354
1355 /* For timevar statistics. */
1356 timevar_ggc_mem_total += object_size;
1357
1358 if (GATHER_STATISTICS)
1359 {
1360 size_t overhead = object_size - size;
1361
1362 G.stats.total_overhead += overhead;
1363 G.stats.total_allocated += object_size;
1364 G.stats.total_overhead_per_order[order] += overhead;
1365 G.stats.total_allocated_per_order[order] += object_size;
1366
1367 if (size <= 32)
1368 {
1369 G.stats.total_overhead_under32 += overhead;
1370 G.stats.total_allocated_under32 += object_size;
1371 }
1372 if (size <= 64)
1373 {
1374 G.stats.total_overhead_under64 += overhead;
1375 G.stats.total_allocated_under64 += object_size;
1376 }
1377 if (size <= 128)
1378 {
1379 G.stats.total_overhead_under128 += overhead;
1380 G.stats.total_allocated_under128 += object_size;
1381 }
1382 }
1383
1384 if (GGC_DEBUG_LEVEL >= 3)
1385 fprintf (G.debug_file,
1386 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
1387 (unsigned long) size, (unsigned long) object_size, result,
1388 (void *) entry);
1389
1390 return result;
1391 }
1392
1393 /* Mark function for strings. */
1394
1395 void
1396 gt_ggc_m_S (const void *p)
1397 {
1398 page_entry *entry;
1399 unsigned bit, word;
1400 unsigned long mask;
1401 unsigned long offset;
1402
1403 if (!p || !ggc_allocated_p (p))
1404 return;
1405
1406 /* Look up the page on which the object is alloced. . */
1407 entry = lookup_page_table_entry (p);
1408 gcc_assert (entry);
1409
1410 /* Calculate the index of the object on the page; this is its bit
1411 position in the in_use_p bitmap. Note that because a char* might
1412 point to the middle of an object, we need special code here to
1413 make sure P points to the start of an object. */
1414 offset = ((const char *) p - entry->page) % object_size_table[entry->order];
1415 if (offset)
1416 {
1417 /* Here we've seen a char* which does not point to the beginning
1418 of an allocated object. We assume it points to the middle of
1419 a STRING_CST. */
1420 gcc_assert (offset == offsetof (struct tree_string, str));
1421 p = ((const char *) p) - offset;
1422 gt_ggc_mx_lang_tree_node (CONST_CAST (void *, p));
1423 return;
1424 }
1425
1426 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1427 word = bit / HOST_BITS_PER_LONG;
1428 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1429
1430 /* If the bit was previously set, skip it. */
1431 if (entry->in_use_p[word] & mask)
1432 return;
1433
1434 /* Otherwise set it, and decrement the free object count. */
1435 entry->in_use_p[word] |= mask;
1436 entry->num_free_objects -= 1;
1437
1438 if (GGC_DEBUG_LEVEL >= 4)
1439 fprintf (G.debug_file, "Marking %p\n", p);
1440
1441 return;
1442 }
1443
1444 /* If P is not marked, marks it and return false. Otherwise return true.
1445 P must have been allocated by the GC allocator; it mustn't point to
1446 static objects, stack variables, or memory allocated with malloc. */
1447
1448 int
1449 ggc_set_mark (const void *p)
1450 {
1451 page_entry *entry;
1452 unsigned bit, word;
1453 unsigned long mask;
1454
1455 /* Look up the page on which the object is alloced. If the object
1456 wasn't allocated by the collector, we'll probably die. */
1457 entry = lookup_page_table_entry (p);
1458 gcc_assert (entry);
1459
1460 /* Calculate the index of the object on the page; this is its bit
1461 position in the in_use_p bitmap. */
1462 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1463 word = bit / HOST_BITS_PER_LONG;
1464 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1465
1466 /* If the bit was previously set, skip it. */
1467 if (entry->in_use_p[word] & mask)
1468 return 1;
1469
1470 /* Otherwise set it, and decrement the free object count. */
1471 entry->in_use_p[word] |= mask;
1472 entry->num_free_objects -= 1;
1473
1474 if (GGC_DEBUG_LEVEL >= 4)
1475 fprintf (G.debug_file, "Marking %p\n", p);
1476
1477 return 0;
1478 }
1479
1480 /* Return 1 if P has been marked, zero otherwise.
1481 P must have been allocated by the GC allocator; it mustn't point to
1482 static objects, stack variables, or memory allocated with malloc. */
1483
1484 int
1485 ggc_marked_p (const void *p)
1486 {
1487 page_entry *entry;
1488 unsigned bit, word;
1489 unsigned long mask;
1490
1491 /* Look up the page on which the object is alloced. If the object
1492 wasn't allocated by the collector, we'll probably die. */
1493 entry = lookup_page_table_entry (p);
1494 gcc_assert (entry);
1495
1496 /* Calculate the index of the object on the page; this is its bit
1497 position in the in_use_p bitmap. */
1498 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1499 word = bit / HOST_BITS_PER_LONG;
1500 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1501
1502 return (entry->in_use_p[word] & mask) != 0;
1503 }
1504
1505 /* Return the size of the gc-able object P. */
1506
1507 size_t
1508 ggc_get_size (const void *p)
1509 {
1510 page_entry *pe = lookup_page_table_entry (p);
1511 return OBJECT_SIZE (pe->order);
1512 }
1513
1514 /* Release the memory for object P. */
1515
1516 void
1517 ggc_free (void *p)
1518 {
1519 page_entry *pe = lookup_page_table_entry (p);
1520 size_t order = pe->order;
1521 size_t size = OBJECT_SIZE (order);
1522
1523 if (GATHER_STATISTICS)
1524 ggc_free_overhead (p);
1525
1526 if (GGC_DEBUG_LEVEL >= 3)
1527 fprintf (G.debug_file,
1528 "Freeing object, actual size=%lu, at %p on %p\n",
1529 (unsigned long) size, p, (void *) pe);
1530
1531 #ifdef ENABLE_GC_CHECKING
1532 /* Poison the data, to indicate the data is garbage. */
1533 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (p, size));
1534 memset (p, 0xa5, size);
1535 #endif
1536 /* Let valgrind know the object is free. */
1537 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (p, size));
1538
1539 #ifdef ENABLE_GC_ALWAYS_COLLECT
1540 /* In the completely-anal-checking mode, we do *not* immediately free
1541 the data, but instead verify that the data is *actually* not
1542 reachable the next time we collect. */
1543 {
1544 struct free_object *fo = XNEW (struct free_object);
1545 fo->object = p;
1546 fo->next = G.free_object_list;
1547 G.free_object_list = fo;
1548 }
1549 #else
1550 {
1551 unsigned int bit_offset, word, bit;
1552
1553 G.allocated -= size;
1554
1555 /* Mark the object not-in-use. */
1556 bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
1557 word = bit_offset / HOST_BITS_PER_LONG;
1558 bit = bit_offset % HOST_BITS_PER_LONG;
1559 pe->in_use_p[word] &= ~(1UL << bit);
1560
1561 if (pe->num_free_objects++ == 0)
1562 {
1563 page_entry *p, *q;
1564
1565 /* If the page is completely full, then it's supposed to
1566 be after all pages that aren't. Since we've freed one
1567 object from a page that was full, we need to move the
1568 page to the head of the list.
1569
1570 PE is the node we want to move. Q is the previous node
1571 and P is the next node in the list. */
1572 q = pe->prev;
1573 if (q && q->num_free_objects == 0)
1574 {
1575 p = pe->next;
1576
1577 q->next = p;
1578
1579 /* If PE was at the end of the list, then Q becomes the
1580 new end of the list. If PE was not the end of the
1581 list, then we need to update the PREV field for P. */
1582 if (!p)
1583 G.page_tails[order] = q;
1584 else
1585 p->prev = q;
1586
1587 /* Move PE to the head of the list. */
1588 pe->next = G.pages[order];
1589 pe->prev = NULL;
1590 G.pages[order]->prev = pe;
1591 G.pages[order] = pe;
1592 }
1593
1594 /* Reset the hint bit to point to the only free object. */
1595 pe->next_bit_hint = bit_offset;
1596 }
1597 }
1598 #endif
1599 }
1600 \f
1601 /* Subroutine of init_ggc which computes the pair of numbers used to
1602 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1603
1604 This algorithm is taken from Granlund and Montgomery's paper
1605 "Division by Invariant Integers using Multiplication"
1606 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1607 constants). */
1608
1609 static void
1610 compute_inverse (unsigned order)
1611 {
1612 size_t size, inv;
1613 unsigned int e;
1614
1615 size = OBJECT_SIZE (order);
1616 e = 0;
1617 while (size % 2 == 0)
1618 {
1619 e++;
1620 size >>= 1;
1621 }
1622
1623 inv = size;
1624 while (inv * size != 1)
1625 inv = inv * (2 - inv*size);
1626
1627 DIV_MULT (order) = inv;
1628 DIV_SHIFT (order) = e;
1629 }
1630
1631 /* Initialize the ggc-mmap allocator. */
1632 void
1633 init_ggc (void)
1634 {
1635 unsigned order;
1636
1637 G.pagesize = getpagesize();
1638 G.lg_pagesize = exact_log2 (G.pagesize);
1639
1640 #ifdef HAVE_MMAP_DEV_ZERO
1641 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1642 if (G.dev_zero_fd == -1)
1643 internal_error ("open /dev/zero: %m");
1644 #endif
1645
1646 #if 0
1647 G.debug_file = fopen ("ggc-mmap.debug", "w");
1648 #else
1649 G.debug_file = stdout;
1650 #endif
1651
1652 #ifdef USING_MMAP
1653 /* StunOS has an amazing off-by-one error for the first mmap allocation
1654 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1655 believe, is an unaligned page allocation, which would cause us to
1656 hork badly if we tried to use it. */
1657 {
1658 char *p = alloc_anon (NULL, G.pagesize, true);
1659 struct page_entry *e;
1660 if ((uintptr_t)p & (G.pagesize - 1))
1661 {
1662 /* How losing. Discard this one and try another. If we still
1663 can't get something useful, give up. */
1664
1665 p = alloc_anon (NULL, G.pagesize, true);
1666 gcc_assert (!((uintptr_t)p & (G.pagesize - 1)));
1667 }
1668
1669 /* We have a good page, might as well hold onto it... */
1670 e = XCNEW (struct page_entry);
1671 e->bytes = G.pagesize;
1672 e->page = p;
1673 e->next = G.free_pages;
1674 G.free_pages = e;
1675 }
1676 #endif
1677
1678 /* Initialize the object size table. */
1679 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1680 object_size_table[order] = (size_t) 1 << order;
1681 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1682 {
1683 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1684
1685 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1686 so that we're sure of getting aligned memory. */
1687 s = ROUND_UP (s, MAX_ALIGNMENT);
1688 object_size_table[order] = s;
1689 }
1690
1691 /* Initialize the objects-per-page and inverse tables. */
1692 for (order = 0; order < NUM_ORDERS; ++order)
1693 {
1694 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1695 if (objects_per_page_table[order] == 0)
1696 objects_per_page_table[order] = 1;
1697 compute_inverse (order);
1698 }
1699
1700 /* Reset the size_lookup array to put appropriately sized objects in
1701 the special orders. All objects bigger than the previous power
1702 of two, but no greater than the special size, should go in the
1703 new order. */
1704 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1705 {
1706 int o;
1707 int i;
1708
1709 i = OBJECT_SIZE (order);
1710 if (i >= NUM_SIZE_LOOKUP)
1711 continue;
1712
1713 for (o = size_lookup[i]; o == size_lookup [i]; --i)
1714 size_lookup[i] = order;
1715 }
1716
1717 G.depth_in_use = 0;
1718 G.depth_max = 10;
1719 G.depth = XNEWVEC (unsigned int, G.depth_max);
1720
1721 G.by_depth_in_use = 0;
1722 G.by_depth_max = INITIAL_PTE_COUNT;
1723 G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
1724 G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
1725 }
1726
1727 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1728 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1729
1730 static void
1731 ggc_recalculate_in_use_p (page_entry *p)
1732 {
1733 unsigned int i;
1734 size_t num_objects;
1735
1736 /* Because the past-the-end bit in in_use_p is always set, we
1737 pretend there is one additional object. */
1738 num_objects = OBJECTS_IN_PAGE (p) + 1;
1739
1740 /* Reset the free object count. */
1741 p->num_free_objects = num_objects;
1742
1743 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
1744 for (i = 0;
1745 i < CEIL (BITMAP_SIZE (num_objects),
1746 sizeof (*p->in_use_p));
1747 ++i)
1748 {
1749 unsigned long j;
1750
1751 /* Something is in use if it is marked, or if it was in use in a
1752 context further down the context stack. */
1753 p->in_use_p[i] |= save_in_use_p (p)[i];
1754
1755 /* Decrement the free object count for every object allocated. */
1756 for (j = p->in_use_p[i]; j; j >>= 1)
1757 p->num_free_objects -= (j & 1);
1758 }
1759
1760 gcc_assert (p->num_free_objects < num_objects);
1761 }
1762 \f
1763 /* Unmark all objects. */
1764
1765 static void
1766 clear_marks (void)
1767 {
1768 unsigned order;
1769
1770 for (order = 2; order < NUM_ORDERS; order++)
1771 {
1772 page_entry *p;
1773
1774 for (p = G.pages[order]; p != NULL; p = p->next)
1775 {
1776 size_t num_objects = OBJECTS_IN_PAGE (p);
1777 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1778
1779 /* The data should be page-aligned. */
1780 gcc_assert (!((uintptr_t) p->page & (G.pagesize - 1)));
1781
1782 /* Pages that aren't in the topmost context are not collected;
1783 nevertheless, we need their in-use bit vectors to store GC
1784 marks. So, back them up first. */
1785 if (p->context_depth < G.context_depth)
1786 {
1787 if (! save_in_use_p (p))
1788 save_in_use_p (p) = XNEWVAR (unsigned long, bitmap_size);
1789 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
1790 }
1791
1792 /* Reset reset the number of free objects and clear the
1793 in-use bits. These will be adjusted by mark_obj. */
1794 p->num_free_objects = num_objects;
1795 memset (p->in_use_p, 0, bitmap_size);
1796
1797 /* Make sure the one-past-the-end bit is always set. */
1798 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1799 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1800 }
1801 }
1802 }
1803
1804 /* Free all empty pages. Partially empty pages need no attention
1805 because the `mark' bit doubles as an `unused' bit. */
1806
1807 static void
1808 sweep_pages (void)
1809 {
1810 unsigned order;
1811
1812 for (order = 2; order < NUM_ORDERS; order++)
1813 {
1814 /* The last page-entry to consider, regardless of entries
1815 placed at the end of the list. */
1816 page_entry * const last = G.page_tails[order];
1817
1818 size_t num_objects;
1819 size_t live_objects;
1820 page_entry *p, *previous;
1821 int done;
1822
1823 p = G.pages[order];
1824 if (p == NULL)
1825 continue;
1826
1827 previous = NULL;
1828 do
1829 {
1830 page_entry *next = p->next;
1831
1832 /* Loop until all entries have been examined. */
1833 done = (p == last);
1834
1835 num_objects = OBJECTS_IN_PAGE (p);
1836
1837 /* Add all live objects on this page to the count of
1838 allocated memory. */
1839 live_objects = num_objects - p->num_free_objects;
1840
1841 G.allocated += OBJECT_SIZE (order) * live_objects;
1842
1843 /* Only objects on pages in the topmost context should get
1844 collected. */
1845 if (p->context_depth < G.context_depth)
1846 ;
1847
1848 /* Remove the page if it's empty. */
1849 else if (live_objects == 0)
1850 {
1851 /* If P was the first page in the list, then NEXT
1852 becomes the new first page in the list, otherwise
1853 splice P out of the forward pointers. */
1854 if (! previous)
1855 G.pages[order] = next;
1856 else
1857 previous->next = next;
1858
1859 /* Splice P out of the back pointers too. */
1860 if (next)
1861 next->prev = previous;
1862
1863 /* Are we removing the last element? */
1864 if (p == G.page_tails[order])
1865 G.page_tails[order] = previous;
1866 free_page (p);
1867 p = previous;
1868 }
1869
1870 /* If the page is full, move it to the end. */
1871 else if (p->num_free_objects == 0)
1872 {
1873 /* Don't move it if it's already at the end. */
1874 if (p != G.page_tails[order])
1875 {
1876 /* Move p to the end of the list. */
1877 p->next = NULL;
1878 p->prev = G.page_tails[order];
1879 G.page_tails[order]->next = p;
1880
1881 /* Update the tail pointer... */
1882 G.page_tails[order] = p;
1883
1884 /* ... and the head pointer, if necessary. */
1885 if (! previous)
1886 G.pages[order] = next;
1887 else
1888 previous->next = next;
1889
1890 /* And update the backpointer in NEXT if necessary. */
1891 if (next)
1892 next->prev = previous;
1893
1894 p = previous;
1895 }
1896 }
1897
1898 /* If we've fallen through to here, it's a page in the
1899 topmost context that is neither full nor empty. Such a
1900 page must precede pages at lesser context depth in the
1901 list, so move it to the head. */
1902 else if (p != G.pages[order])
1903 {
1904 previous->next = p->next;
1905
1906 /* Update the backchain in the next node if it exists. */
1907 if (p->next)
1908 p->next->prev = previous;
1909
1910 /* Move P to the head of the list. */
1911 p->next = G.pages[order];
1912 p->prev = NULL;
1913 G.pages[order]->prev = p;
1914
1915 /* Update the head pointer. */
1916 G.pages[order] = p;
1917
1918 /* Are we moving the last element? */
1919 if (G.page_tails[order] == p)
1920 G.page_tails[order] = previous;
1921 p = previous;
1922 }
1923
1924 previous = p;
1925 p = next;
1926 }
1927 while (! done);
1928
1929 /* Now, restore the in_use_p vectors for any pages from contexts
1930 other than the current one. */
1931 for (p = G.pages[order]; p; p = p->next)
1932 if (p->context_depth != G.context_depth)
1933 ggc_recalculate_in_use_p (p);
1934 }
1935 }
1936
1937 #ifdef ENABLE_GC_CHECKING
1938 /* Clobber all free objects. */
1939
1940 static void
1941 poison_pages (void)
1942 {
1943 unsigned order;
1944
1945 for (order = 2; order < NUM_ORDERS; order++)
1946 {
1947 size_t size = OBJECT_SIZE (order);
1948 page_entry *p;
1949
1950 for (p = G.pages[order]; p != NULL; p = p->next)
1951 {
1952 size_t num_objects;
1953 size_t i;
1954
1955 if (p->context_depth != G.context_depth)
1956 /* Since we don't do any collection for pages in pushed
1957 contexts, there's no need to do any poisoning. And
1958 besides, the IN_USE_P array isn't valid until we pop
1959 contexts. */
1960 continue;
1961
1962 num_objects = OBJECTS_IN_PAGE (p);
1963 for (i = 0; i < num_objects; i++)
1964 {
1965 size_t word, bit;
1966 word = i / HOST_BITS_PER_LONG;
1967 bit = i % HOST_BITS_PER_LONG;
1968 if (((p->in_use_p[word] >> bit) & 1) == 0)
1969 {
1970 char *object = p->page + i * size;
1971
1972 /* Keep poison-by-write when we expect to use Valgrind,
1973 so the exact same memory semantics is kept, in case
1974 there are memory errors. We override this request
1975 below. */
1976 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (object,
1977 size));
1978 memset (object, 0xa5, size);
1979
1980 /* Drop the handle to avoid handle leak. */
1981 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (object, size));
1982 }
1983 }
1984 }
1985 }
1986 }
1987 #else
1988 #define poison_pages()
1989 #endif
1990
1991 #ifdef ENABLE_GC_ALWAYS_COLLECT
1992 /* Validate that the reportedly free objects actually are. */
1993
1994 static void
1995 validate_free_objects (void)
1996 {
1997 struct free_object *f, *next, *still_free = NULL;
1998
1999 for (f = G.free_object_list; f ; f = next)
2000 {
2001 page_entry *pe = lookup_page_table_entry (f->object);
2002 size_t bit, word;
2003
2004 bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
2005 word = bit / HOST_BITS_PER_LONG;
2006 bit = bit % HOST_BITS_PER_LONG;
2007 next = f->next;
2008
2009 /* Make certain it isn't visible from any root. Notice that we
2010 do this check before sweep_pages merges save_in_use_p. */
2011 gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
2012
2013 /* If the object comes from an outer context, then retain the
2014 free_object entry, so that we can verify that the address
2015 isn't live on the stack in some outer context. */
2016 if (pe->context_depth != G.context_depth)
2017 {
2018 f->next = still_free;
2019 still_free = f;
2020 }
2021 else
2022 free (f);
2023 }
2024
2025 G.free_object_list = still_free;
2026 }
2027 #else
2028 #define validate_free_objects()
2029 #endif
2030
2031 /* Top level mark-and-sweep routine. */
2032
2033 void
2034 ggc_collect (void)
2035 {
2036 /* Avoid frequent unnecessary work by skipping collection if the
2037 total allocations haven't expanded much since the last
2038 collection. */
2039 float allocated_last_gc =
2040 MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
2041
2042 float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
2043
2044 if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
2045 return;
2046
2047 timevar_push (TV_GC);
2048 if (!quiet_flag)
2049 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
2050 if (GGC_DEBUG_LEVEL >= 2)
2051 fprintf (G.debug_file, "BEGIN COLLECTING\n");
2052
2053 /* Zero the total allocated bytes. This will be recalculated in the
2054 sweep phase. */
2055 G.allocated = 0;
2056
2057 /* Release the pages we freed the last time we collected, but didn't
2058 reuse in the interim. */
2059 release_pages ();
2060
2061 /* Indicate that we've seen collections at this context depth. */
2062 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
2063
2064 invoke_plugin_callbacks (PLUGIN_GGC_START, NULL);
2065
2066 clear_marks ();
2067 ggc_mark_roots ();
2068
2069 if (GATHER_STATISTICS)
2070 ggc_prune_overhead_list ();
2071
2072 poison_pages ();
2073 validate_free_objects ();
2074 sweep_pages ();
2075
2076 G.allocated_last_gc = G.allocated;
2077
2078 invoke_plugin_callbacks (PLUGIN_GGC_END, NULL);
2079
2080 timevar_pop (TV_GC);
2081
2082 if (!quiet_flag)
2083 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
2084 if (GGC_DEBUG_LEVEL >= 2)
2085 fprintf (G.debug_file, "END COLLECTING\n");
2086 }
2087
2088 /* Print allocation statistics. */
2089 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
2090 ? (x) \
2091 : ((x) < 1024*1024*10 \
2092 ? (x) / 1024 \
2093 : (x) / (1024*1024))))
2094 #define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
2095
2096 void
2097 ggc_print_statistics (void)
2098 {
2099 struct ggc_statistics stats;
2100 unsigned int i;
2101 size_t total_overhead = 0;
2102
2103 /* Clear the statistics. */
2104 memset (&stats, 0, sizeof (stats));
2105
2106 /* Make sure collection will really occur. */
2107 G.allocated_last_gc = 0;
2108
2109 /* Collect and print the statistics common across collectors. */
2110 ggc_print_common_statistics (stderr, &stats);
2111
2112 /* Release free pages so that we will not count the bytes allocated
2113 there as part of the total allocated memory. */
2114 release_pages ();
2115
2116 /* Collect some information about the various sizes of
2117 allocation. */
2118 fprintf (stderr,
2119 "Memory still allocated at the end of the compilation process\n");
2120 fprintf (stderr, "%-5s %10s %10s %10s\n",
2121 "Size", "Allocated", "Used", "Overhead");
2122 for (i = 0; i < NUM_ORDERS; ++i)
2123 {
2124 page_entry *p;
2125 size_t allocated;
2126 size_t in_use;
2127 size_t overhead;
2128
2129 /* Skip empty entries. */
2130 if (!G.pages[i])
2131 continue;
2132
2133 overhead = allocated = in_use = 0;
2134
2135 /* Figure out the total number of bytes allocated for objects of
2136 this size, and how many of them are actually in use. Also figure
2137 out how much memory the page table is using. */
2138 for (p = G.pages[i]; p; p = p->next)
2139 {
2140 allocated += p->bytes;
2141 in_use +=
2142 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
2143
2144 overhead += (sizeof (page_entry) - sizeof (long)
2145 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
2146 }
2147 fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n",
2148 (unsigned long) OBJECT_SIZE (i),
2149 SCALE (allocated), STAT_LABEL (allocated),
2150 SCALE (in_use), STAT_LABEL (in_use),
2151 SCALE (overhead), STAT_LABEL (overhead));
2152 total_overhead += overhead;
2153 }
2154 fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
2155 SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped),
2156 SCALE (G.allocated), STAT_LABEL(G.allocated),
2157 SCALE (total_overhead), STAT_LABEL (total_overhead));
2158
2159 if (GATHER_STATISTICS)
2160 {
2161 fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
2162
2163 fprintf (stderr, "Total Overhead: %10lld\n",
2164 G.stats.total_overhead);
2165 fprintf (stderr, "Total Allocated: %10lld\n",
2166 G.stats.total_allocated);
2167
2168 fprintf (stderr, "Total Overhead under 32B: %10lld\n",
2169 G.stats.total_overhead_under32);
2170 fprintf (stderr, "Total Allocated under 32B: %10lld\n",
2171 G.stats.total_allocated_under32);
2172 fprintf (stderr, "Total Overhead under 64B: %10lld\n",
2173 G.stats.total_overhead_under64);
2174 fprintf (stderr, "Total Allocated under 64B: %10lld\n",
2175 G.stats.total_allocated_under64);
2176 fprintf (stderr, "Total Overhead under 128B: %10lld\n",
2177 G.stats.total_overhead_under128);
2178 fprintf (stderr, "Total Allocated under 128B: %10lld\n",
2179 G.stats.total_allocated_under128);
2180
2181 for (i = 0; i < NUM_ORDERS; i++)
2182 if (G.stats.total_allocated_per_order[i])
2183 {
2184 fprintf (stderr, "Total Overhead page size %7lu: %10lld\n",
2185 (unsigned long) OBJECT_SIZE (i),
2186 G.stats.total_overhead_per_order[i]);
2187 fprintf (stderr, "Total Allocated page size %7lu: %10lld\n",
2188 (unsigned long) OBJECT_SIZE (i),
2189 G.stats.total_allocated_per_order[i]);
2190 }
2191 }
2192 }
2193 \f
2194 struct ggc_pch_ondisk
2195 {
2196 unsigned totals[NUM_ORDERS];
2197 };
2198
2199 struct ggc_pch_data
2200 {
2201 struct ggc_pch_ondisk d;
2202 uintptr_t base[NUM_ORDERS];
2203 size_t written[NUM_ORDERS];
2204 };
2205
2206 struct ggc_pch_data *
2207 init_ggc_pch (void)
2208 {
2209 return XCNEW (struct ggc_pch_data);
2210 }
2211
2212 void
2213 ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2214 size_t size, bool is_string ATTRIBUTE_UNUSED,
2215 enum gt_types_enum type ATTRIBUTE_UNUSED)
2216 {
2217 unsigned order;
2218
2219 if (size < NUM_SIZE_LOOKUP)
2220 order = size_lookup[size];
2221 else
2222 {
2223 order = 10;
2224 while (size > OBJECT_SIZE (order))
2225 order++;
2226 }
2227
2228 d->d.totals[order]++;
2229 }
2230
2231 size_t
2232 ggc_pch_total_size (struct ggc_pch_data *d)
2233 {
2234 size_t a = 0;
2235 unsigned i;
2236
2237 for (i = 0; i < NUM_ORDERS; i++)
2238 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
2239 return a;
2240 }
2241
2242 void
2243 ggc_pch_this_base (struct ggc_pch_data *d, void *base)
2244 {
2245 uintptr_t a = (uintptr_t) base;
2246 unsigned i;
2247
2248 for (i = 0; i < NUM_ORDERS; i++)
2249 {
2250 d->base[i] = a;
2251 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
2252 }
2253 }
2254
2255
2256 char *
2257 ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2258 size_t size, bool is_string ATTRIBUTE_UNUSED,
2259 enum gt_types_enum type ATTRIBUTE_UNUSED)
2260 {
2261 unsigned order;
2262 char *result;
2263
2264 if (size < NUM_SIZE_LOOKUP)
2265 order = size_lookup[size];
2266 else
2267 {
2268 order = 10;
2269 while (size > OBJECT_SIZE (order))
2270 order++;
2271 }
2272
2273 result = (char *) d->base[order];
2274 d->base[order] += OBJECT_SIZE (order);
2275 return result;
2276 }
2277
2278 void
2279 ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2280 FILE *f ATTRIBUTE_UNUSED)
2281 {
2282 /* Nothing to do. */
2283 }
2284
2285 void
2286 ggc_pch_write_object (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2287 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
2288 size_t size, bool is_string ATTRIBUTE_UNUSED)
2289 {
2290 unsigned order;
2291 static const char emptyBytes[256] = { 0 };
2292
2293 if (size < NUM_SIZE_LOOKUP)
2294 order = size_lookup[size];
2295 else
2296 {
2297 order = 10;
2298 while (size > OBJECT_SIZE (order))
2299 order++;
2300 }
2301
2302 if (fwrite (x, size, 1, f) != 1)
2303 fatal_error ("can%'t write PCH file: %m");
2304
2305 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2306 object out to OBJECT_SIZE(order). This happens for strings. */
2307
2308 if (size != OBJECT_SIZE (order))
2309 {
2310 unsigned padding = OBJECT_SIZE(order) - size;
2311
2312 /* To speed small writes, we use a nulled-out array that's larger
2313 than most padding requests as the source for our null bytes. This
2314 permits us to do the padding with fwrite() rather than fseek(), and
2315 limits the chance the OS may try to flush any outstanding writes. */
2316 if (padding <= sizeof(emptyBytes))
2317 {
2318 if (fwrite (emptyBytes, 1, padding, f) != padding)
2319 fatal_error ("can%'t write PCH file");
2320 }
2321 else
2322 {
2323 /* Larger than our buffer? Just default to fseek. */
2324 if (fseek (f, padding, SEEK_CUR) != 0)
2325 fatal_error ("can%'t write PCH file");
2326 }
2327 }
2328
2329 d->written[order]++;
2330 if (d->written[order] == d->d.totals[order]
2331 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2332 G.pagesize),
2333 SEEK_CUR) != 0)
2334 fatal_error ("can%'t write PCH file: %m");
2335 }
2336
2337 void
2338 ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
2339 {
2340 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
2341 fatal_error ("can%'t write PCH file: %m");
2342 free (d);
2343 }
2344
2345 /* Move the PCH PTE entries just added to the end of by_depth, to the
2346 front. */
2347
2348 static void
2349 move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
2350 {
2351 unsigned i;
2352
2353 /* First, we swap the new entries to the front of the varrays. */
2354 page_entry **new_by_depth;
2355 unsigned long **new_save_in_use;
2356
2357 new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
2358 new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
2359
2360 memcpy (&new_by_depth[0],
2361 &G.by_depth[count_old_page_tables],
2362 count_new_page_tables * sizeof (void *));
2363 memcpy (&new_by_depth[count_new_page_tables],
2364 &G.by_depth[0],
2365 count_old_page_tables * sizeof (void *));
2366 memcpy (&new_save_in_use[0],
2367 &G.save_in_use[count_old_page_tables],
2368 count_new_page_tables * sizeof (void *));
2369 memcpy (&new_save_in_use[count_new_page_tables],
2370 &G.save_in_use[0],
2371 count_old_page_tables * sizeof (void *));
2372
2373 free (G.by_depth);
2374 free (G.save_in_use);
2375
2376 G.by_depth = new_by_depth;
2377 G.save_in_use = new_save_in_use;
2378
2379 /* Now update all the index_by_depth fields. */
2380 for (i = G.by_depth_in_use; i > 0; --i)
2381 {
2382 page_entry *p = G.by_depth[i-1];
2383 p->index_by_depth = i-1;
2384 }
2385
2386 /* And last, we update the depth pointers in G.depth. The first
2387 entry is already 0, and context 0 entries always start at index
2388 0, so there is nothing to update in the first slot. We need a
2389 second slot, only if we have old ptes, and if we do, they start
2390 at index count_new_page_tables. */
2391 if (count_old_page_tables)
2392 push_depth (count_new_page_tables);
2393 }
2394
2395 void
2396 ggc_pch_read (FILE *f, void *addr)
2397 {
2398 struct ggc_pch_ondisk d;
2399 unsigned i;
2400 char *offs = (char *) addr;
2401 unsigned long count_old_page_tables;
2402 unsigned long count_new_page_tables;
2403
2404 count_old_page_tables = G.by_depth_in_use;
2405
2406 /* We've just read in a PCH file. So, every object that used to be
2407 allocated is now free. */
2408 clear_marks ();
2409 #ifdef ENABLE_GC_CHECKING
2410 poison_pages ();
2411 #endif
2412 /* Since we free all the allocated objects, the free list becomes
2413 useless. Validate it now, which will also clear it. */
2414 validate_free_objects();
2415
2416 /* No object read from a PCH file should ever be freed. So, set the
2417 context depth to 1, and set the depth of all the currently-allocated
2418 pages to be 1 too. PCH pages will have depth 0. */
2419 gcc_assert (!G.context_depth);
2420 G.context_depth = 1;
2421 for (i = 0; i < NUM_ORDERS; i++)
2422 {
2423 page_entry *p;
2424 for (p = G.pages[i]; p != NULL; p = p->next)
2425 p->context_depth = G.context_depth;
2426 }
2427
2428 /* Allocate the appropriate page-table entries for the pages read from
2429 the PCH file. */
2430 if (fread (&d, sizeof (d), 1, f) != 1)
2431 fatal_error ("can%'t read PCH file: %m");
2432
2433 for (i = 0; i < NUM_ORDERS; i++)
2434 {
2435 struct page_entry *entry;
2436 char *pte;
2437 size_t bytes;
2438 size_t num_objs;
2439 size_t j;
2440
2441 if (d.totals[i] == 0)
2442 continue;
2443
2444 bytes = PAGE_ALIGN (d.totals[i] * OBJECT_SIZE (i));
2445 num_objs = bytes / OBJECT_SIZE (i);
2446 entry = XCNEWVAR (struct page_entry, (sizeof (struct page_entry)
2447 - sizeof (long)
2448 + BITMAP_SIZE (num_objs + 1)));
2449 entry->bytes = bytes;
2450 entry->page = offs;
2451 entry->context_depth = 0;
2452 offs += bytes;
2453 entry->num_free_objects = 0;
2454 entry->order = i;
2455
2456 for (j = 0;
2457 j + HOST_BITS_PER_LONG <= num_objs + 1;
2458 j += HOST_BITS_PER_LONG)
2459 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2460 for (; j < num_objs + 1; j++)
2461 entry->in_use_p[j / HOST_BITS_PER_LONG]
2462 |= 1L << (j % HOST_BITS_PER_LONG);
2463
2464 for (pte = entry->page;
2465 pte < entry->page + entry->bytes;
2466 pte += G.pagesize)
2467 set_page_table_entry (pte, entry);
2468
2469 if (G.page_tails[i] != NULL)
2470 G.page_tails[i]->next = entry;
2471 else
2472 G.pages[i] = entry;
2473 G.page_tails[i] = entry;
2474
2475 /* We start off by just adding all the new information to the
2476 end of the varrays, later, we will move the new information
2477 to the front of the varrays, as the PCH page tables are at
2478 context 0. */
2479 push_by_depth (entry, 0);
2480 }
2481
2482 /* Now, we update the various data structures that speed page table
2483 handling. */
2484 count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2485
2486 move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2487
2488 /* Update the statistics. */
2489 G.allocated = G.allocated_last_gc = offs - (char *)addr;
2490 }
2491
2492 struct alloc_zone
2493 {
2494 int dummy;
2495 };
2496
2497 struct alloc_zone rtl_zone;
2498 struct alloc_zone tree_zone;
2499 struct alloc_zone tree_id_zone;