Support valgrind 3.3 for --enable-checking=valgrind.
[gcc.git] / gcc / ggc-page.c
1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "toplev.h"
29 #include "flags.h"
30 #include "ggc.h"
31 #include "timevar.h"
32 #include "params.h"
33 #include "tree-flow.h"
34
35 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
36 file open. Prefer either to valloc. */
37 #ifdef HAVE_MMAP_ANON
38 # undef HAVE_MMAP_DEV_ZERO
39
40 # include <sys/mman.h>
41 # ifndef MAP_FAILED
42 # define MAP_FAILED -1
43 # endif
44 # if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
45 # define MAP_ANONYMOUS MAP_ANON
46 # endif
47 # define USING_MMAP
48
49 #endif
50
51 #ifdef HAVE_MMAP_DEV_ZERO
52
53 # include <sys/mman.h>
54 # ifndef MAP_FAILED
55 # define MAP_FAILED -1
56 # endif
57 # define USING_MMAP
58
59 #endif
60
61 #ifndef USING_MMAP
62 #define USING_MALLOC_PAGE_GROUPS
63 #endif
64
65 /* Strategy:
66
67 This garbage-collecting allocator allocates objects on one of a set
68 of pages. Each page can allocate objects of a single size only;
69 available sizes are powers of two starting at four bytes. The size
70 of an allocation request is rounded up to the next power of two
71 (`order'), and satisfied from the appropriate page.
72
73 Each page is recorded in a page-entry, which also maintains an
74 in-use bitmap of object positions on the page. This allows the
75 allocation state of a particular object to be flipped without
76 touching the page itself.
77
78 Each page-entry also has a context depth, which is used to track
79 pushing and popping of allocation contexts. Only objects allocated
80 in the current (highest-numbered) context may be collected.
81
82 Page entries are arranged in an array of singly-linked lists. The
83 array is indexed by the allocation size, in bits, of the pages on
84 it; i.e. all pages on a list allocate objects of the same size.
85 Pages are ordered on the list such that all non-full pages precede
86 all full pages, with non-full pages arranged in order of decreasing
87 context depth.
88
89 Empty pages (of all orders) are kept on a single page cache list,
90 and are considered first when new pages are required; they are
91 deallocated at the start of the next collection if they haven't
92 been recycled by then. */
93
94 /* Define GGC_DEBUG_LEVEL to print debugging information.
95 0: No debugging output.
96 1: GC statistics only.
97 2: Page-entry allocations/deallocations as well.
98 3: Object allocations as well.
99 4: Object marks as well. */
100 #define GGC_DEBUG_LEVEL (0)
101 \f
102 #ifndef HOST_BITS_PER_PTR
103 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
104 #endif
105
106 \f
107 /* A two-level tree is used to look up the page-entry for a given
108 pointer. Two chunks of the pointer's bits are extracted to index
109 the first and second levels of the tree, as follows:
110
111 HOST_PAGE_SIZE_BITS
112 32 | |
113 msb +----------------+----+------+------+ lsb
114 | | |
115 PAGE_L1_BITS |
116 | |
117 PAGE_L2_BITS
118
119 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
120 pages are aligned on system page boundaries. The next most
121 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
122 index values in the lookup table, respectively.
123
124 For 32-bit architectures and the settings below, there are no
125 leftover bits. For architectures with wider pointers, the lookup
126 tree points to a list of pages, which must be scanned to find the
127 correct one. */
128
129 #define PAGE_L1_BITS (8)
130 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
131 #define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
132 #define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
133
134 #define LOOKUP_L1(p) \
135 (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
136
137 #define LOOKUP_L2(p) \
138 (((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
139
140 /* The number of objects per allocation page, for objects on a page of
141 the indicated ORDER. */
142 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
143
144 /* The number of objects in P. */
145 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
146
147 /* The size of an object on a page of the indicated ORDER. */
148 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
149
150 /* For speed, we avoid doing a general integer divide to locate the
151 offset in the allocation bitmap, by precalculating numbers M, S
152 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
153 within the page which is evenly divisible by the object size Z. */
154 #define DIV_MULT(ORDER) inverse_table[ORDER].mult
155 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
156 #define OFFSET_TO_BIT(OFFSET, ORDER) \
157 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
158
159 /* The number of extra orders, not corresponding to power-of-two sized
160 objects. */
161
162 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
163
164 #define RTL_SIZE(NSLOTS) \
165 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
166
167 #define TREE_EXP_SIZE(OPS) \
168 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
169
170 /* The Ith entry is the maximum size of an object to be stored in the
171 Ith extra order. Adding a new entry to this array is the *only*
172 thing you need to do to add a new special allocation size. */
173
174 static const size_t extra_order_size_table[] = {
175 sizeof (struct stmt_ann_d),
176 sizeof (struct var_ann_d),
177 sizeof (struct tree_decl_non_common),
178 sizeof (struct tree_field_decl),
179 sizeof (struct tree_parm_decl),
180 sizeof (struct tree_var_decl),
181 sizeof (struct tree_list),
182 sizeof (struct tree_ssa_name),
183 sizeof (struct function),
184 sizeof (struct basic_block_def),
185 sizeof (bitmap_element),
186 sizeof (bitmap_head),
187 /* PHI nodes with one to three arguments are already covered by the
188 above sizes. */
189 sizeof (struct tree_phi_node) + sizeof (struct phi_arg_d) * 3,
190 TREE_EXP_SIZE (2),
191 RTL_SIZE (2), /* MEM, PLUS, etc. */
192 RTL_SIZE (9), /* INSN */
193 };
194
195 /* The total number of orders. */
196
197 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
198
199 /* We use this structure to determine the alignment required for
200 allocations. For power-of-two sized allocations, that's not a
201 problem, but it does matter for odd-sized allocations. */
202
203 struct max_alignment {
204 char c;
205 union {
206 HOST_WIDEST_INT i;
207 long double d;
208 } u;
209 };
210
211 /* The biggest alignment required. */
212
213 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
214
215 /* Compute the smallest nonnegative number which when added to X gives
216 a multiple of F. */
217
218 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
219
220 /* Compute the smallest multiple of F that is >= X. */
221
222 #define ROUND_UP(x, f) (CEIL (x, f) * (f))
223
224 /* The Ith entry is the number of objects on a page or order I. */
225
226 static unsigned objects_per_page_table[NUM_ORDERS];
227
228 /* The Ith entry is the size of an object on a page of order I. */
229
230 static size_t object_size_table[NUM_ORDERS];
231
232 /* The Ith entry is a pair of numbers (mult, shift) such that
233 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
234 for all k evenly divisible by OBJECT_SIZE(I). */
235
236 static struct
237 {
238 size_t mult;
239 unsigned int shift;
240 }
241 inverse_table[NUM_ORDERS];
242
243 /* A page_entry records the status of an allocation page. This
244 structure is dynamically sized to fit the bitmap in_use_p. */
245 typedef struct page_entry
246 {
247 /* The next page-entry with objects of the same size, or NULL if
248 this is the last page-entry. */
249 struct page_entry *next;
250
251 /* The previous page-entry with objects of the same size, or NULL if
252 this is the first page-entry. The PREV pointer exists solely to
253 keep the cost of ggc_free manageable. */
254 struct page_entry *prev;
255
256 /* The number of bytes allocated. (This will always be a multiple
257 of the host system page size.) */
258 size_t bytes;
259
260 /* The address at which the memory is allocated. */
261 char *page;
262
263 #ifdef USING_MALLOC_PAGE_GROUPS
264 /* Back pointer to the page group this page came from. */
265 struct page_group *group;
266 #endif
267
268 /* This is the index in the by_depth varray where this page table
269 can be found. */
270 unsigned long index_by_depth;
271
272 /* Context depth of this page. */
273 unsigned short context_depth;
274
275 /* The number of free objects remaining on this page. */
276 unsigned short num_free_objects;
277
278 /* A likely candidate for the bit position of a free object for the
279 next allocation from this page. */
280 unsigned short next_bit_hint;
281
282 /* The lg of size of objects allocated from this page. */
283 unsigned char order;
284
285 /* A bit vector indicating whether or not objects are in use. The
286 Nth bit is one if the Nth object on this page is allocated. This
287 array is dynamically sized. */
288 unsigned long in_use_p[1];
289 } page_entry;
290
291 #ifdef USING_MALLOC_PAGE_GROUPS
292 /* A page_group describes a large allocation from malloc, from which
293 we parcel out aligned pages. */
294 typedef struct page_group
295 {
296 /* A linked list of all extant page groups. */
297 struct page_group *next;
298
299 /* The address we received from malloc. */
300 char *allocation;
301
302 /* The size of the block. */
303 size_t alloc_size;
304
305 /* A bitmask of pages in use. */
306 unsigned int in_use;
307 } page_group;
308 #endif
309
310 #if HOST_BITS_PER_PTR <= 32
311
312 /* On 32-bit hosts, we use a two level page table, as pictured above. */
313 typedef page_entry **page_table[PAGE_L1_SIZE];
314
315 #else
316
317 /* On 64-bit hosts, we use the same two level page tables plus a linked
318 list that disambiguates the top 32-bits. There will almost always be
319 exactly one entry in the list. */
320 typedef struct page_table_chain
321 {
322 struct page_table_chain *next;
323 size_t high_bits;
324 page_entry **table[PAGE_L1_SIZE];
325 } *page_table;
326
327 #endif
328
329 /* The rest of the global variables. */
330 static struct globals
331 {
332 /* The Nth element in this array is a page with objects of size 2^N.
333 If there are any pages with free objects, they will be at the
334 head of the list. NULL if there are no page-entries for this
335 object size. */
336 page_entry *pages[NUM_ORDERS];
337
338 /* The Nth element in this array is the last page with objects of
339 size 2^N. NULL if there are no page-entries for this object
340 size. */
341 page_entry *page_tails[NUM_ORDERS];
342
343 /* Lookup table for associating allocation pages with object addresses. */
344 page_table lookup;
345
346 /* The system's page size. */
347 size_t pagesize;
348 size_t lg_pagesize;
349
350 /* Bytes currently allocated. */
351 size_t allocated;
352
353 /* Bytes currently allocated at the end of the last collection. */
354 size_t allocated_last_gc;
355
356 /* Total amount of memory mapped. */
357 size_t bytes_mapped;
358
359 /* Bit N set if any allocations have been done at context depth N. */
360 unsigned long context_depth_allocations;
361
362 /* Bit N set if any collections have been done at context depth N. */
363 unsigned long context_depth_collections;
364
365 /* The current depth in the context stack. */
366 unsigned short context_depth;
367
368 /* A file descriptor open to /dev/zero for reading. */
369 #if defined (HAVE_MMAP_DEV_ZERO)
370 int dev_zero_fd;
371 #endif
372
373 /* A cache of free system pages. */
374 page_entry *free_pages;
375
376 #ifdef USING_MALLOC_PAGE_GROUPS
377 page_group *page_groups;
378 #endif
379
380 /* The file descriptor for debugging output. */
381 FILE *debug_file;
382
383 /* Current number of elements in use in depth below. */
384 unsigned int depth_in_use;
385
386 /* Maximum number of elements that can be used before resizing. */
387 unsigned int depth_max;
388
389 /* Each element of this arry is an index in by_depth where the given
390 depth starts. This structure is indexed by that given depth we
391 are interested in. */
392 unsigned int *depth;
393
394 /* Current number of elements in use in by_depth below. */
395 unsigned int by_depth_in_use;
396
397 /* Maximum number of elements that can be used before resizing. */
398 unsigned int by_depth_max;
399
400 /* Each element of this array is a pointer to a page_entry, all
401 page_entries can be found in here by increasing depth.
402 index_by_depth in the page_entry is the index into this data
403 structure where that page_entry can be found. This is used to
404 speed up finding all page_entries at a particular depth. */
405 page_entry **by_depth;
406
407 /* Each element is a pointer to the saved in_use_p bits, if any,
408 zero otherwise. We allocate them all together, to enable a
409 better runtime data access pattern. */
410 unsigned long **save_in_use;
411
412 #ifdef ENABLE_GC_ALWAYS_COLLECT
413 /* List of free objects to be verified as actually free on the
414 next collection. */
415 struct free_object
416 {
417 void *object;
418 struct free_object *next;
419 } *free_object_list;
420 #endif
421
422 #ifdef GATHER_STATISTICS
423 struct
424 {
425 /* Total memory allocated with ggc_alloc. */
426 unsigned long long total_allocated;
427 /* Total overhead for memory to be allocated with ggc_alloc. */
428 unsigned long long total_overhead;
429
430 /* Total allocations and overhead for sizes less than 32, 64 and 128.
431 These sizes are interesting because they are typical cache line
432 sizes. */
433
434 unsigned long long total_allocated_under32;
435 unsigned long long total_overhead_under32;
436
437 unsigned long long total_allocated_under64;
438 unsigned long long total_overhead_under64;
439
440 unsigned long long total_allocated_under128;
441 unsigned long long total_overhead_under128;
442
443 /* The allocations for each of the allocation orders. */
444 unsigned long long total_allocated_per_order[NUM_ORDERS];
445
446 /* The overhead for each of the allocation orders. */
447 unsigned long long total_overhead_per_order[NUM_ORDERS];
448 } stats;
449 #endif
450 } G;
451
452 /* The size in bytes required to maintain a bitmap for the objects
453 on a page-entry. */
454 #define BITMAP_SIZE(Num_objects) \
455 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
456
457 /* Allocate pages in chunks of this size, to throttle calls to memory
458 allocation routines. The first page is used, the rest go onto the
459 free list. This cannot be larger than HOST_BITS_PER_INT for the
460 in_use bitmask for page_group. Hosts that need a different value
461 can override this by defining GGC_QUIRE_SIZE explicitly. */
462 #ifndef GGC_QUIRE_SIZE
463 # ifdef USING_MMAP
464 # define GGC_QUIRE_SIZE 256
465 # else
466 # define GGC_QUIRE_SIZE 16
467 # endif
468 #endif
469
470 /* Initial guess as to how many page table entries we might need. */
471 #define INITIAL_PTE_COUNT 128
472 \f
473 static int ggc_allocated_p (const void *);
474 static page_entry *lookup_page_table_entry (const void *);
475 static void set_page_table_entry (void *, page_entry *);
476 #ifdef USING_MMAP
477 static char *alloc_anon (char *, size_t);
478 #endif
479 #ifdef USING_MALLOC_PAGE_GROUPS
480 static size_t page_group_index (char *, char *);
481 static void set_page_group_in_use (page_group *, char *);
482 static void clear_page_group_in_use (page_group *, char *);
483 #endif
484 static struct page_entry * alloc_page (unsigned);
485 static void free_page (struct page_entry *);
486 static void release_pages (void);
487 static void clear_marks (void);
488 static void sweep_pages (void);
489 static void ggc_recalculate_in_use_p (page_entry *);
490 static void compute_inverse (unsigned);
491 static inline void adjust_depth (void);
492 static void move_ptes_to_front (int, int);
493
494 void debug_print_page_list (int);
495 static void push_depth (unsigned int);
496 static void push_by_depth (page_entry *, unsigned long *);
497
498 /* Push an entry onto G.depth. */
499
500 inline static void
501 push_depth (unsigned int i)
502 {
503 if (G.depth_in_use >= G.depth_max)
504 {
505 G.depth_max *= 2;
506 G.depth = xrealloc (G.depth, G.depth_max * sizeof (unsigned int));
507 }
508 G.depth[G.depth_in_use++] = i;
509 }
510
511 /* Push an entry onto G.by_depth and G.save_in_use. */
512
513 inline static void
514 push_by_depth (page_entry *p, unsigned long *s)
515 {
516 if (G.by_depth_in_use >= G.by_depth_max)
517 {
518 G.by_depth_max *= 2;
519 G.by_depth = xrealloc (G.by_depth,
520 G.by_depth_max * sizeof (page_entry *));
521 G.save_in_use = xrealloc (G.save_in_use,
522 G.by_depth_max * sizeof (unsigned long *));
523 }
524 G.by_depth[G.by_depth_in_use] = p;
525 G.save_in_use[G.by_depth_in_use++] = s;
526 }
527
528 #if (GCC_VERSION < 3001)
529 #define prefetch(X) ((void) X)
530 #else
531 #define prefetch(X) __builtin_prefetch (X)
532 #endif
533
534 #define save_in_use_p_i(__i) \
535 (G.save_in_use[__i])
536 #define save_in_use_p(__p) \
537 (save_in_use_p_i (__p->index_by_depth))
538
539 /* Returns nonzero if P was allocated in GC'able memory. */
540
541 static inline int
542 ggc_allocated_p (const void *p)
543 {
544 page_entry ***base;
545 size_t L1, L2;
546
547 #if HOST_BITS_PER_PTR <= 32
548 base = &G.lookup[0];
549 #else
550 page_table table = G.lookup;
551 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
552 while (1)
553 {
554 if (table == NULL)
555 return 0;
556 if (table->high_bits == high_bits)
557 break;
558 table = table->next;
559 }
560 base = &table->table[0];
561 #endif
562
563 /* Extract the level 1 and 2 indices. */
564 L1 = LOOKUP_L1 (p);
565 L2 = LOOKUP_L2 (p);
566
567 return base[L1] && base[L1][L2];
568 }
569
570 /* Traverse the page table and find the entry for a page.
571 Die (probably) if the object wasn't allocated via GC. */
572
573 static inline page_entry *
574 lookup_page_table_entry (const void *p)
575 {
576 page_entry ***base;
577 size_t L1, L2;
578
579 #if HOST_BITS_PER_PTR <= 32
580 base = &G.lookup[0];
581 #else
582 page_table table = G.lookup;
583 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
584 while (table->high_bits != high_bits)
585 table = table->next;
586 base = &table->table[0];
587 #endif
588
589 /* Extract the level 1 and 2 indices. */
590 L1 = LOOKUP_L1 (p);
591 L2 = LOOKUP_L2 (p);
592
593 return base[L1][L2];
594 }
595
596 /* Set the page table entry for a page. */
597
598 static void
599 set_page_table_entry (void *p, page_entry *entry)
600 {
601 page_entry ***base;
602 size_t L1, L2;
603
604 #if HOST_BITS_PER_PTR <= 32
605 base = &G.lookup[0];
606 #else
607 page_table table;
608 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
609 for (table = G.lookup; table; table = table->next)
610 if (table->high_bits == high_bits)
611 goto found;
612
613 /* Not found -- allocate a new table. */
614 table = xcalloc (1, sizeof(*table));
615 table->next = G.lookup;
616 table->high_bits = high_bits;
617 G.lookup = table;
618 found:
619 base = &table->table[0];
620 #endif
621
622 /* Extract the level 1 and 2 indices. */
623 L1 = LOOKUP_L1 (p);
624 L2 = LOOKUP_L2 (p);
625
626 if (base[L1] == NULL)
627 base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
628
629 base[L1][L2] = entry;
630 }
631
632 /* Prints the page-entry for object size ORDER, for debugging. */
633
634 void
635 debug_print_page_list (int order)
636 {
637 page_entry *p;
638 printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
639 (void *) G.page_tails[order]);
640 p = G.pages[order];
641 while (p != NULL)
642 {
643 printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
644 p->num_free_objects);
645 p = p->next;
646 }
647 printf ("NULL\n");
648 fflush (stdout);
649 }
650
651 #ifdef USING_MMAP
652 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
653 (if non-null). The ifdef structure here is intended to cause a
654 compile error unless exactly one of the HAVE_* is defined. */
655
656 static inline char *
657 alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size)
658 {
659 #ifdef HAVE_MMAP_ANON
660 char *page = mmap (pref, size, PROT_READ | PROT_WRITE,
661 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
662 #endif
663 #ifdef HAVE_MMAP_DEV_ZERO
664 char *page = mmap (pref, size, PROT_READ | PROT_WRITE,
665 MAP_PRIVATE, G.dev_zero_fd, 0);
666 #endif
667
668 if (page == (char *) MAP_FAILED)
669 {
670 perror ("virtual memory exhausted");
671 exit (FATAL_EXIT_CODE);
672 }
673
674 /* Remember that we allocated this memory. */
675 G.bytes_mapped += size;
676
677 /* Pretend we don't have access to the allocated pages. We'll enable
678 access to smaller pieces of the area in ggc_alloc. Discard the
679 handle to avoid handle leak. */
680 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size));
681
682 return page;
683 }
684 #endif
685 #ifdef USING_MALLOC_PAGE_GROUPS
686 /* Compute the index for this page into the page group. */
687
688 static inline size_t
689 page_group_index (char *allocation, char *page)
690 {
691 return (size_t) (page - allocation) >> G.lg_pagesize;
692 }
693
694 /* Set and clear the in_use bit for this page in the page group. */
695
696 static inline void
697 set_page_group_in_use (page_group *group, char *page)
698 {
699 group->in_use |= 1 << page_group_index (group->allocation, page);
700 }
701
702 static inline void
703 clear_page_group_in_use (page_group *group, char *page)
704 {
705 group->in_use &= ~(1 << page_group_index (group->allocation, page));
706 }
707 #endif
708
709 /* Allocate a new page for allocating objects of size 2^ORDER,
710 and return an entry for it. The entry is not added to the
711 appropriate page_table list. */
712
713 static inline struct page_entry *
714 alloc_page (unsigned order)
715 {
716 struct page_entry *entry, *p, **pp;
717 char *page;
718 size_t num_objects;
719 size_t bitmap_size;
720 size_t page_entry_size;
721 size_t entry_size;
722 #ifdef USING_MALLOC_PAGE_GROUPS
723 page_group *group;
724 #endif
725
726 num_objects = OBJECTS_PER_PAGE (order);
727 bitmap_size = BITMAP_SIZE (num_objects + 1);
728 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
729 entry_size = num_objects * OBJECT_SIZE (order);
730 if (entry_size < G.pagesize)
731 entry_size = G.pagesize;
732
733 entry = NULL;
734 page = NULL;
735
736 /* Check the list of free pages for one we can use. */
737 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
738 if (p->bytes == entry_size)
739 break;
740
741 if (p != NULL)
742 {
743 /* Recycle the allocated memory from this page ... */
744 *pp = p->next;
745 page = p->page;
746
747 #ifdef USING_MALLOC_PAGE_GROUPS
748 group = p->group;
749 #endif
750
751 /* ... and, if possible, the page entry itself. */
752 if (p->order == order)
753 {
754 entry = p;
755 memset (entry, 0, page_entry_size);
756 }
757 else
758 free (p);
759 }
760 #ifdef USING_MMAP
761 else if (entry_size == G.pagesize)
762 {
763 /* We want just one page. Allocate a bunch of them and put the
764 extras on the freelist. (Can only do this optimization with
765 mmap for backing store.) */
766 struct page_entry *e, *f = G.free_pages;
767 int i;
768
769 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE);
770
771 /* This loop counts down so that the chain will be in ascending
772 memory order. */
773 for (i = GGC_QUIRE_SIZE - 1; i >= 1; i--)
774 {
775 e = xcalloc (1, page_entry_size);
776 e->order = order;
777 e->bytes = G.pagesize;
778 e->page = page + (i << G.lg_pagesize);
779 e->next = f;
780 f = e;
781 }
782
783 G.free_pages = f;
784 }
785 else
786 page = alloc_anon (NULL, entry_size);
787 #endif
788 #ifdef USING_MALLOC_PAGE_GROUPS
789 else
790 {
791 /* Allocate a large block of memory and serve out the aligned
792 pages therein. This results in much less memory wastage
793 than the traditional implementation of valloc. */
794
795 char *allocation, *a, *enda;
796 size_t alloc_size, head_slop, tail_slop;
797 int multiple_pages = (entry_size == G.pagesize);
798
799 if (multiple_pages)
800 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
801 else
802 alloc_size = entry_size + G.pagesize - 1;
803 allocation = xmalloc (alloc_size);
804
805 page = (char *) (((size_t) allocation + G.pagesize - 1) & -G.pagesize);
806 head_slop = page - allocation;
807 if (multiple_pages)
808 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
809 else
810 tail_slop = alloc_size - entry_size - head_slop;
811 enda = allocation + alloc_size - tail_slop;
812
813 /* We allocated N pages, which are likely not aligned, leaving
814 us with N-1 usable pages. We plan to place the page_group
815 structure somewhere in the slop. */
816 if (head_slop >= sizeof (page_group))
817 group = (page_group *)page - 1;
818 else
819 {
820 /* We magically got an aligned allocation. Too bad, we have
821 to waste a page anyway. */
822 if (tail_slop == 0)
823 {
824 enda -= G.pagesize;
825 tail_slop += G.pagesize;
826 }
827 gcc_assert (tail_slop >= sizeof (page_group));
828 group = (page_group *)enda;
829 tail_slop -= sizeof (page_group);
830 }
831
832 /* Remember that we allocated this memory. */
833 group->next = G.page_groups;
834 group->allocation = allocation;
835 group->alloc_size = alloc_size;
836 group->in_use = 0;
837 G.page_groups = group;
838 G.bytes_mapped += alloc_size;
839
840 /* If we allocated multiple pages, put the rest on the free list. */
841 if (multiple_pages)
842 {
843 struct page_entry *e, *f = G.free_pages;
844 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
845 {
846 e = xcalloc (1, page_entry_size);
847 e->order = order;
848 e->bytes = G.pagesize;
849 e->page = a;
850 e->group = group;
851 e->next = f;
852 f = e;
853 }
854 G.free_pages = f;
855 }
856 }
857 #endif
858
859 if (entry == NULL)
860 entry = xcalloc (1, page_entry_size);
861
862 entry->bytes = entry_size;
863 entry->page = page;
864 entry->context_depth = G.context_depth;
865 entry->order = order;
866 entry->num_free_objects = num_objects;
867 entry->next_bit_hint = 1;
868
869 G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
870
871 #ifdef USING_MALLOC_PAGE_GROUPS
872 entry->group = group;
873 set_page_group_in_use (group, page);
874 #endif
875
876 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
877 increment the hint. */
878 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
879 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
880
881 set_page_table_entry (page, entry);
882
883 if (GGC_DEBUG_LEVEL >= 2)
884 fprintf (G.debug_file,
885 "Allocating page at %p, object size=%lu, data %p-%p\n",
886 (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
887 page + entry_size - 1);
888
889 return entry;
890 }
891
892 /* Adjust the size of G.depth so that no index greater than the one
893 used by the top of the G.by_depth is used. */
894
895 static inline void
896 adjust_depth (void)
897 {
898 page_entry *top;
899
900 if (G.by_depth_in_use)
901 {
902 top = G.by_depth[G.by_depth_in_use-1];
903
904 /* Peel back indices in depth that index into by_depth, so that
905 as new elements are added to by_depth, we note the indices
906 of those elements, if they are for new context depths. */
907 while (G.depth_in_use > (size_t)top->context_depth+1)
908 --G.depth_in_use;
909 }
910 }
911
912 /* For a page that is no longer needed, put it on the free page list. */
913
914 static void
915 free_page (page_entry *entry)
916 {
917 if (GGC_DEBUG_LEVEL >= 2)
918 fprintf (G.debug_file,
919 "Deallocating page at %p, data %p-%p\n", (void *) entry,
920 entry->page, entry->page + entry->bytes - 1);
921
922 /* Mark the page as inaccessible. Discard the handle to avoid handle
923 leak. */
924 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->page, entry->bytes));
925
926 set_page_table_entry (entry->page, NULL);
927
928 #ifdef USING_MALLOC_PAGE_GROUPS
929 clear_page_group_in_use (entry->group, entry->page);
930 #endif
931
932 if (G.by_depth_in_use > 1)
933 {
934 page_entry *top = G.by_depth[G.by_depth_in_use-1];
935 int i = entry->index_by_depth;
936
937 /* We cannot free a page from a context deeper than the current
938 one. */
939 gcc_assert (entry->context_depth == top->context_depth);
940
941 /* Put top element into freed slot. */
942 G.by_depth[i] = top;
943 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
944 top->index_by_depth = i;
945 }
946 --G.by_depth_in_use;
947
948 adjust_depth ();
949
950 entry->next = G.free_pages;
951 G.free_pages = entry;
952 }
953
954 /* Release the free page cache to the system. */
955
956 static void
957 release_pages (void)
958 {
959 #ifdef USING_MMAP
960 page_entry *p, *next;
961 char *start;
962 size_t len;
963
964 /* Gather up adjacent pages so they are unmapped together. */
965 p = G.free_pages;
966
967 while (p)
968 {
969 start = p->page;
970 next = p->next;
971 len = p->bytes;
972 free (p);
973 p = next;
974
975 while (p && p->page == start + len)
976 {
977 next = p->next;
978 len += p->bytes;
979 free (p);
980 p = next;
981 }
982
983 munmap (start, len);
984 G.bytes_mapped -= len;
985 }
986
987 G.free_pages = NULL;
988 #endif
989 #ifdef USING_MALLOC_PAGE_GROUPS
990 page_entry **pp, *p;
991 page_group **gp, *g;
992
993 /* Remove all pages from free page groups from the list. */
994 pp = &G.free_pages;
995 while ((p = *pp) != NULL)
996 if (p->group->in_use == 0)
997 {
998 *pp = p->next;
999 free (p);
1000 }
1001 else
1002 pp = &p->next;
1003
1004 /* Remove all free page groups, and release the storage. */
1005 gp = &G.page_groups;
1006 while ((g = *gp) != NULL)
1007 if (g->in_use == 0)
1008 {
1009 *gp = g->next;
1010 G.bytes_mapped -= g->alloc_size;
1011 free (g->allocation);
1012 }
1013 else
1014 gp = &g->next;
1015 #endif
1016 }
1017
1018 /* This table provides a fast way to determine ceil(log_2(size)) for
1019 allocation requests. The minimum allocation size is eight bytes. */
1020 #define NUM_SIZE_LOOKUP 512
1021 static unsigned char size_lookup[NUM_SIZE_LOOKUP] =
1022 {
1023 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1024 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1025 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1026 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1027 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1028 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1029 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1030 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1031 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1032 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1033 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1034 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1035 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1036 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1037 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1038 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1039 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1040 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1041 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1042 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1043 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1044 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1045 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1046 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1047 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1048 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1049 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1050 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1051 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1052 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1053 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1054 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
1055 };
1056
1057 /* Typed allocation function. Does nothing special in this collector. */
1058
1059 void *
1060 ggc_alloc_typed_stat (enum gt_types_enum type ATTRIBUTE_UNUSED, size_t size
1061 MEM_STAT_DECL)
1062 {
1063 return ggc_alloc_stat (size PASS_MEM_STAT);
1064 }
1065
1066 /* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
1067
1068 void *
1069 ggc_alloc_stat (size_t size MEM_STAT_DECL)
1070 {
1071 size_t order, word, bit, object_offset, object_size;
1072 struct page_entry *entry;
1073 void *result;
1074
1075 if (size < NUM_SIZE_LOOKUP)
1076 {
1077 order = size_lookup[size];
1078 object_size = OBJECT_SIZE (order);
1079 }
1080 else
1081 {
1082 order = 10;
1083 while (size > (object_size = OBJECT_SIZE (order)))
1084 order++;
1085 }
1086
1087 /* If there are non-full pages for this size allocation, they are at
1088 the head of the list. */
1089 entry = G.pages[order];
1090
1091 /* If there is no page for this object size, or all pages in this
1092 context are full, allocate a new page. */
1093 if (entry == NULL || entry->num_free_objects == 0)
1094 {
1095 struct page_entry *new_entry;
1096 new_entry = alloc_page (order);
1097
1098 new_entry->index_by_depth = G.by_depth_in_use;
1099 push_by_depth (new_entry, 0);
1100
1101 /* We can skip context depths, if we do, make sure we go all the
1102 way to the new depth. */
1103 while (new_entry->context_depth >= G.depth_in_use)
1104 push_depth (G.by_depth_in_use-1);
1105
1106 /* If this is the only entry, it's also the tail. If it is not
1107 the only entry, then we must update the PREV pointer of the
1108 ENTRY (G.pages[order]) to point to our new page entry. */
1109 if (entry == NULL)
1110 G.page_tails[order] = new_entry;
1111 else
1112 entry->prev = new_entry;
1113
1114 /* Put new pages at the head of the page list. By definition the
1115 entry at the head of the list always has a NULL pointer. */
1116 new_entry->next = entry;
1117 new_entry->prev = NULL;
1118 entry = new_entry;
1119 G.pages[order] = new_entry;
1120
1121 /* For a new page, we know the word and bit positions (in the
1122 in_use bitmap) of the first available object -- they're zero. */
1123 new_entry->next_bit_hint = 1;
1124 word = 0;
1125 bit = 0;
1126 object_offset = 0;
1127 }
1128 else
1129 {
1130 /* First try to use the hint left from the previous allocation
1131 to locate a clear bit in the in-use bitmap. We've made sure
1132 that the one-past-the-end bit is always set, so if the hint
1133 has run over, this test will fail. */
1134 unsigned hint = entry->next_bit_hint;
1135 word = hint / HOST_BITS_PER_LONG;
1136 bit = hint % HOST_BITS_PER_LONG;
1137
1138 /* If the hint didn't work, scan the bitmap from the beginning. */
1139 if ((entry->in_use_p[word] >> bit) & 1)
1140 {
1141 word = bit = 0;
1142 while (~entry->in_use_p[word] == 0)
1143 ++word;
1144
1145 #if GCC_VERSION >= 3004
1146 bit = __builtin_ctzl (~entry->in_use_p[word]);
1147 #else
1148 while ((entry->in_use_p[word] >> bit) & 1)
1149 ++bit;
1150 #endif
1151
1152 hint = word * HOST_BITS_PER_LONG + bit;
1153 }
1154
1155 /* Next time, try the next bit. */
1156 entry->next_bit_hint = hint + 1;
1157
1158 object_offset = hint * object_size;
1159 }
1160
1161 /* Set the in-use bit. */
1162 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1163
1164 /* Keep a running total of the number of free objects. If this page
1165 fills up, we may have to move it to the end of the list if the
1166 next page isn't full. If the next page is full, all subsequent
1167 pages are full, so there's no need to move it. */
1168 if (--entry->num_free_objects == 0
1169 && entry->next != NULL
1170 && entry->next->num_free_objects > 0)
1171 {
1172 /* We have a new head for the list. */
1173 G.pages[order] = entry->next;
1174
1175 /* We are moving ENTRY to the end of the page table list.
1176 The new page at the head of the list will have NULL in
1177 its PREV field and ENTRY will have NULL in its NEXT field. */
1178 entry->next->prev = NULL;
1179 entry->next = NULL;
1180
1181 /* Append ENTRY to the tail of the list. */
1182 entry->prev = G.page_tails[order];
1183 G.page_tails[order]->next = entry;
1184 G.page_tails[order] = entry;
1185 }
1186
1187 /* Calculate the object's address. */
1188 result = entry->page + object_offset;
1189 #ifdef GATHER_STATISTICS
1190 ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
1191 result PASS_MEM_STAT);
1192 #endif
1193
1194 #ifdef ENABLE_GC_CHECKING
1195 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1196 exact same semantics in presence of memory bugs, regardless of
1197 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1198 handle to avoid handle leak. */
1199 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, object_size));
1200
1201 /* `Poison' the entire allocated object, including any padding at
1202 the end. */
1203 memset (result, 0xaf, object_size);
1204
1205 /* Make the bytes after the end of the object unaccessible. Discard the
1206 handle to avoid handle leak. */
1207 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) result + size,
1208 object_size - size));
1209 #endif
1210
1211 /* Tell Valgrind that the memory is there, but its content isn't
1212 defined. The bytes at the end of the object are still marked
1213 unaccessible. */
1214 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size));
1215
1216 /* Keep track of how many bytes are being allocated. This
1217 information is used in deciding when to collect. */
1218 G.allocated += object_size;
1219
1220 /* For timevar statistics. */
1221 timevar_ggc_mem_total += object_size;
1222
1223 #ifdef GATHER_STATISTICS
1224 {
1225 size_t overhead = object_size - size;
1226
1227 G.stats.total_overhead += overhead;
1228 G.stats.total_allocated += object_size;
1229 G.stats.total_overhead_per_order[order] += overhead;
1230 G.stats.total_allocated_per_order[order] += object_size;
1231
1232 if (size <= 32)
1233 {
1234 G.stats.total_overhead_under32 += overhead;
1235 G.stats.total_allocated_under32 += object_size;
1236 }
1237 if (size <= 64)
1238 {
1239 G.stats.total_overhead_under64 += overhead;
1240 G.stats.total_allocated_under64 += object_size;
1241 }
1242 if (size <= 128)
1243 {
1244 G.stats.total_overhead_under128 += overhead;
1245 G.stats.total_allocated_under128 += object_size;
1246 }
1247 }
1248 #endif
1249
1250 if (GGC_DEBUG_LEVEL >= 3)
1251 fprintf (G.debug_file,
1252 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
1253 (unsigned long) size, (unsigned long) object_size, result,
1254 (void *) entry);
1255
1256 return result;
1257 }
1258
1259 /* If P is not marked, marks it and return false. Otherwise return true.
1260 P must have been allocated by the GC allocator; it mustn't point to
1261 static objects, stack variables, or memory allocated with malloc. */
1262
1263 int
1264 ggc_set_mark (const void *p)
1265 {
1266 page_entry *entry;
1267 unsigned bit, word;
1268 unsigned long mask;
1269
1270 /* Look up the page on which the object is alloced. If the object
1271 wasn't allocated by the collector, we'll probably die. */
1272 entry = lookup_page_table_entry (p);
1273 gcc_assert (entry);
1274
1275 /* Calculate the index of the object on the page; this is its bit
1276 position in the in_use_p bitmap. */
1277 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1278 word = bit / HOST_BITS_PER_LONG;
1279 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1280
1281 /* If the bit was previously set, skip it. */
1282 if (entry->in_use_p[word] & mask)
1283 return 1;
1284
1285 /* Otherwise set it, and decrement the free object count. */
1286 entry->in_use_p[word] |= mask;
1287 entry->num_free_objects -= 1;
1288
1289 if (GGC_DEBUG_LEVEL >= 4)
1290 fprintf (G.debug_file, "Marking %p\n", p);
1291
1292 return 0;
1293 }
1294
1295 /* Return 1 if P has been marked, zero otherwise.
1296 P must have been allocated by the GC allocator; it mustn't point to
1297 static objects, stack variables, or memory allocated with malloc. */
1298
1299 int
1300 ggc_marked_p (const void *p)
1301 {
1302 page_entry *entry;
1303 unsigned bit, word;
1304 unsigned long mask;
1305
1306 /* Look up the page on which the object is alloced. If the object
1307 wasn't allocated by the collector, we'll probably die. */
1308 entry = lookup_page_table_entry (p);
1309 gcc_assert (entry);
1310
1311 /* Calculate the index of the object on the page; this is its bit
1312 position in the in_use_p bitmap. */
1313 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1314 word = bit / HOST_BITS_PER_LONG;
1315 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1316
1317 return (entry->in_use_p[word] & mask) != 0;
1318 }
1319
1320 /* Return the size of the gc-able object P. */
1321
1322 size_t
1323 ggc_get_size (const void *p)
1324 {
1325 page_entry *pe = lookup_page_table_entry (p);
1326 return OBJECT_SIZE (pe->order);
1327 }
1328
1329 /* Release the memory for object P. */
1330
1331 void
1332 ggc_free (void *p)
1333 {
1334 page_entry *pe = lookup_page_table_entry (p);
1335 size_t order = pe->order;
1336 size_t size = OBJECT_SIZE (order);
1337
1338 #ifdef GATHER_STATISTICS
1339 ggc_free_overhead (p);
1340 #endif
1341
1342 if (GGC_DEBUG_LEVEL >= 3)
1343 fprintf (G.debug_file,
1344 "Freeing object, actual size=%lu, at %p on %p\n",
1345 (unsigned long) size, p, (void *) pe);
1346
1347 #ifdef ENABLE_GC_CHECKING
1348 /* Poison the data, to indicate the data is garbage. */
1349 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (p, size));
1350 memset (p, 0xa5, size);
1351 #endif
1352 /* Let valgrind know the object is free. */
1353 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (p, size));
1354
1355 #ifdef ENABLE_GC_ALWAYS_COLLECT
1356 /* In the completely-anal-checking mode, we do *not* immediately free
1357 the data, but instead verify that the data is *actually* not
1358 reachable the next time we collect. */
1359 {
1360 struct free_object *fo = XNEW (struct free_object);
1361 fo->object = p;
1362 fo->next = G.free_object_list;
1363 G.free_object_list = fo;
1364 }
1365 #else
1366 {
1367 unsigned int bit_offset, word, bit;
1368
1369 G.allocated -= size;
1370
1371 /* Mark the object not-in-use. */
1372 bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
1373 word = bit_offset / HOST_BITS_PER_LONG;
1374 bit = bit_offset % HOST_BITS_PER_LONG;
1375 pe->in_use_p[word] &= ~(1UL << bit);
1376
1377 if (pe->num_free_objects++ == 0)
1378 {
1379 page_entry *p, *q;
1380
1381 /* If the page is completely full, then it's supposed to
1382 be after all pages that aren't. Since we've freed one
1383 object from a page that was full, we need to move the
1384 page to the head of the list.
1385
1386 PE is the node we want to move. Q is the previous node
1387 and P is the next node in the list. */
1388 q = pe->prev;
1389 if (q && q->num_free_objects == 0)
1390 {
1391 p = pe->next;
1392
1393 q->next = p;
1394
1395 /* If PE was at the end of the list, then Q becomes the
1396 new end of the list. If PE was not the end of the
1397 list, then we need to update the PREV field for P. */
1398 if (!p)
1399 G.page_tails[order] = q;
1400 else
1401 p->prev = q;
1402
1403 /* Move PE to the head of the list. */
1404 pe->next = G.pages[order];
1405 pe->prev = NULL;
1406 G.pages[order]->prev = pe;
1407 G.pages[order] = pe;
1408 }
1409
1410 /* Reset the hint bit to point to the only free object. */
1411 pe->next_bit_hint = bit_offset;
1412 }
1413 }
1414 #endif
1415 }
1416 \f
1417 /* Subroutine of init_ggc which computes the pair of numbers used to
1418 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1419
1420 This algorithm is taken from Granlund and Montgomery's paper
1421 "Division by Invariant Integers using Multiplication"
1422 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1423 constants). */
1424
1425 static void
1426 compute_inverse (unsigned order)
1427 {
1428 size_t size, inv;
1429 unsigned int e;
1430
1431 size = OBJECT_SIZE (order);
1432 e = 0;
1433 while (size % 2 == 0)
1434 {
1435 e++;
1436 size >>= 1;
1437 }
1438
1439 inv = size;
1440 while (inv * size != 1)
1441 inv = inv * (2 - inv*size);
1442
1443 DIV_MULT (order) = inv;
1444 DIV_SHIFT (order) = e;
1445 }
1446
1447 /* Initialize the ggc-mmap allocator. */
1448 void
1449 init_ggc (void)
1450 {
1451 unsigned order;
1452
1453 G.pagesize = getpagesize();
1454 G.lg_pagesize = exact_log2 (G.pagesize);
1455
1456 #ifdef HAVE_MMAP_DEV_ZERO
1457 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1458 if (G.dev_zero_fd == -1)
1459 internal_error ("open /dev/zero: %m");
1460 #endif
1461
1462 #if 0
1463 G.debug_file = fopen ("ggc-mmap.debug", "w");
1464 #else
1465 G.debug_file = stdout;
1466 #endif
1467
1468 #ifdef USING_MMAP
1469 /* StunOS has an amazing off-by-one error for the first mmap allocation
1470 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1471 believe, is an unaligned page allocation, which would cause us to
1472 hork badly if we tried to use it. */
1473 {
1474 char *p = alloc_anon (NULL, G.pagesize);
1475 struct page_entry *e;
1476 if ((size_t)p & (G.pagesize - 1))
1477 {
1478 /* How losing. Discard this one and try another. If we still
1479 can't get something useful, give up. */
1480
1481 p = alloc_anon (NULL, G.pagesize);
1482 gcc_assert (!((size_t)p & (G.pagesize - 1)));
1483 }
1484
1485 /* We have a good page, might as well hold onto it... */
1486 e = XCNEW (struct page_entry);
1487 e->bytes = G.pagesize;
1488 e->page = p;
1489 e->next = G.free_pages;
1490 G.free_pages = e;
1491 }
1492 #endif
1493
1494 /* Initialize the object size table. */
1495 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1496 object_size_table[order] = (size_t) 1 << order;
1497 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1498 {
1499 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1500
1501 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1502 so that we're sure of getting aligned memory. */
1503 s = ROUND_UP (s, MAX_ALIGNMENT);
1504 object_size_table[order] = s;
1505 }
1506
1507 /* Initialize the objects-per-page and inverse tables. */
1508 for (order = 0; order < NUM_ORDERS; ++order)
1509 {
1510 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1511 if (objects_per_page_table[order] == 0)
1512 objects_per_page_table[order] = 1;
1513 compute_inverse (order);
1514 }
1515
1516 /* Reset the size_lookup array to put appropriately sized objects in
1517 the special orders. All objects bigger than the previous power
1518 of two, but no greater than the special size, should go in the
1519 new order. */
1520 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1521 {
1522 int o;
1523 int i;
1524
1525 i = OBJECT_SIZE (order);
1526 if (i >= NUM_SIZE_LOOKUP)
1527 continue;
1528
1529 for (o = size_lookup[i]; o == size_lookup [i]; --i)
1530 size_lookup[i] = order;
1531 }
1532
1533 G.depth_in_use = 0;
1534 G.depth_max = 10;
1535 G.depth = XNEWVEC (unsigned int, G.depth_max);
1536
1537 G.by_depth_in_use = 0;
1538 G.by_depth_max = INITIAL_PTE_COUNT;
1539 G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
1540 G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
1541 }
1542
1543 /* Start a new GGC zone. */
1544
1545 struct alloc_zone *
1546 new_ggc_zone (const char *name ATTRIBUTE_UNUSED)
1547 {
1548 return NULL;
1549 }
1550
1551 /* Destroy a GGC zone. */
1552 void
1553 destroy_ggc_zone (struct alloc_zone *zone ATTRIBUTE_UNUSED)
1554 {
1555 }
1556
1557 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1558 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1559
1560 static void
1561 ggc_recalculate_in_use_p (page_entry *p)
1562 {
1563 unsigned int i;
1564 size_t num_objects;
1565
1566 /* Because the past-the-end bit in in_use_p is always set, we
1567 pretend there is one additional object. */
1568 num_objects = OBJECTS_IN_PAGE (p) + 1;
1569
1570 /* Reset the free object count. */
1571 p->num_free_objects = num_objects;
1572
1573 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
1574 for (i = 0;
1575 i < CEIL (BITMAP_SIZE (num_objects),
1576 sizeof (*p->in_use_p));
1577 ++i)
1578 {
1579 unsigned long j;
1580
1581 /* Something is in use if it is marked, or if it was in use in a
1582 context further down the context stack. */
1583 p->in_use_p[i] |= save_in_use_p (p)[i];
1584
1585 /* Decrement the free object count for every object allocated. */
1586 for (j = p->in_use_p[i]; j; j >>= 1)
1587 p->num_free_objects -= (j & 1);
1588 }
1589
1590 gcc_assert (p->num_free_objects < num_objects);
1591 }
1592 \f
1593 /* Unmark all objects. */
1594
1595 static void
1596 clear_marks (void)
1597 {
1598 unsigned order;
1599
1600 for (order = 2; order < NUM_ORDERS; order++)
1601 {
1602 page_entry *p;
1603
1604 for (p = G.pages[order]; p != NULL; p = p->next)
1605 {
1606 size_t num_objects = OBJECTS_IN_PAGE (p);
1607 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1608
1609 /* The data should be page-aligned. */
1610 gcc_assert (!((size_t) p->page & (G.pagesize - 1)));
1611
1612 /* Pages that aren't in the topmost context are not collected;
1613 nevertheless, we need their in-use bit vectors to store GC
1614 marks. So, back them up first. */
1615 if (p->context_depth < G.context_depth)
1616 {
1617 if (! save_in_use_p (p))
1618 save_in_use_p (p) = xmalloc (bitmap_size);
1619 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
1620 }
1621
1622 /* Reset reset the number of free objects and clear the
1623 in-use bits. These will be adjusted by mark_obj. */
1624 p->num_free_objects = num_objects;
1625 memset (p->in_use_p, 0, bitmap_size);
1626
1627 /* Make sure the one-past-the-end bit is always set. */
1628 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1629 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1630 }
1631 }
1632 }
1633
1634 /* Free all empty pages. Partially empty pages need no attention
1635 because the `mark' bit doubles as an `unused' bit. */
1636
1637 static void
1638 sweep_pages (void)
1639 {
1640 unsigned order;
1641
1642 for (order = 2; order < NUM_ORDERS; order++)
1643 {
1644 /* The last page-entry to consider, regardless of entries
1645 placed at the end of the list. */
1646 page_entry * const last = G.page_tails[order];
1647
1648 size_t num_objects;
1649 size_t live_objects;
1650 page_entry *p, *previous;
1651 int done;
1652
1653 p = G.pages[order];
1654 if (p == NULL)
1655 continue;
1656
1657 previous = NULL;
1658 do
1659 {
1660 page_entry *next = p->next;
1661
1662 /* Loop until all entries have been examined. */
1663 done = (p == last);
1664
1665 num_objects = OBJECTS_IN_PAGE (p);
1666
1667 /* Add all live objects on this page to the count of
1668 allocated memory. */
1669 live_objects = num_objects - p->num_free_objects;
1670
1671 G.allocated += OBJECT_SIZE (order) * live_objects;
1672
1673 /* Only objects on pages in the topmost context should get
1674 collected. */
1675 if (p->context_depth < G.context_depth)
1676 ;
1677
1678 /* Remove the page if it's empty. */
1679 else if (live_objects == 0)
1680 {
1681 /* If P was the first page in the list, then NEXT
1682 becomes the new first page in the list, otherwise
1683 splice P out of the forward pointers. */
1684 if (! previous)
1685 G.pages[order] = next;
1686 else
1687 previous->next = next;
1688
1689 /* Splice P out of the back pointers too. */
1690 if (next)
1691 next->prev = previous;
1692
1693 /* Are we removing the last element? */
1694 if (p == G.page_tails[order])
1695 G.page_tails[order] = previous;
1696 free_page (p);
1697 p = previous;
1698 }
1699
1700 /* If the page is full, move it to the end. */
1701 else if (p->num_free_objects == 0)
1702 {
1703 /* Don't move it if it's already at the end. */
1704 if (p != G.page_tails[order])
1705 {
1706 /* Move p to the end of the list. */
1707 p->next = NULL;
1708 p->prev = G.page_tails[order];
1709 G.page_tails[order]->next = p;
1710
1711 /* Update the tail pointer... */
1712 G.page_tails[order] = p;
1713
1714 /* ... and the head pointer, if necessary. */
1715 if (! previous)
1716 G.pages[order] = next;
1717 else
1718 previous->next = next;
1719
1720 /* And update the backpointer in NEXT if necessary. */
1721 if (next)
1722 next->prev = previous;
1723
1724 p = previous;
1725 }
1726 }
1727
1728 /* If we've fallen through to here, it's a page in the
1729 topmost context that is neither full nor empty. Such a
1730 page must precede pages at lesser context depth in the
1731 list, so move it to the head. */
1732 else if (p != G.pages[order])
1733 {
1734 previous->next = p->next;
1735
1736 /* Update the backchain in the next node if it exists. */
1737 if (p->next)
1738 p->next->prev = previous;
1739
1740 /* Move P to the head of the list. */
1741 p->next = G.pages[order];
1742 p->prev = NULL;
1743 G.pages[order]->prev = p;
1744
1745 /* Update the head pointer. */
1746 G.pages[order] = p;
1747
1748 /* Are we moving the last element? */
1749 if (G.page_tails[order] == p)
1750 G.page_tails[order] = previous;
1751 p = previous;
1752 }
1753
1754 previous = p;
1755 p = next;
1756 }
1757 while (! done);
1758
1759 /* Now, restore the in_use_p vectors for any pages from contexts
1760 other than the current one. */
1761 for (p = G.pages[order]; p; p = p->next)
1762 if (p->context_depth != G.context_depth)
1763 ggc_recalculate_in_use_p (p);
1764 }
1765 }
1766
1767 #ifdef ENABLE_GC_CHECKING
1768 /* Clobber all free objects. */
1769
1770 static void
1771 poison_pages (void)
1772 {
1773 unsigned order;
1774
1775 for (order = 2; order < NUM_ORDERS; order++)
1776 {
1777 size_t size = OBJECT_SIZE (order);
1778 page_entry *p;
1779
1780 for (p = G.pages[order]; p != NULL; p = p->next)
1781 {
1782 size_t num_objects;
1783 size_t i;
1784
1785 if (p->context_depth != G.context_depth)
1786 /* Since we don't do any collection for pages in pushed
1787 contexts, there's no need to do any poisoning. And
1788 besides, the IN_USE_P array isn't valid until we pop
1789 contexts. */
1790 continue;
1791
1792 num_objects = OBJECTS_IN_PAGE (p);
1793 for (i = 0; i < num_objects; i++)
1794 {
1795 size_t word, bit;
1796 word = i / HOST_BITS_PER_LONG;
1797 bit = i % HOST_BITS_PER_LONG;
1798 if (((p->in_use_p[word] >> bit) & 1) == 0)
1799 {
1800 char *object = p->page + i * size;
1801
1802 /* Keep poison-by-write when we expect to use Valgrind,
1803 so the exact same memory semantics is kept, in case
1804 there are memory errors. We override this request
1805 below. */
1806 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (object,
1807 size));
1808 memset (object, 0xa5, size);
1809
1810 /* Drop the handle to avoid handle leak. */
1811 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (object, size));
1812 }
1813 }
1814 }
1815 }
1816 }
1817 #else
1818 #define poison_pages()
1819 #endif
1820
1821 #ifdef ENABLE_GC_ALWAYS_COLLECT
1822 /* Validate that the reportedly free objects actually are. */
1823
1824 static void
1825 validate_free_objects (void)
1826 {
1827 struct free_object *f, *next, *still_free = NULL;
1828
1829 for (f = G.free_object_list; f ; f = next)
1830 {
1831 page_entry *pe = lookup_page_table_entry (f->object);
1832 size_t bit, word;
1833
1834 bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
1835 word = bit / HOST_BITS_PER_LONG;
1836 bit = bit % HOST_BITS_PER_LONG;
1837 next = f->next;
1838
1839 /* Make certain it isn't visible from any root. Notice that we
1840 do this check before sweep_pages merges save_in_use_p. */
1841 gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
1842
1843 /* If the object comes from an outer context, then retain the
1844 free_object entry, so that we can verify that the address
1845 isn't live on the stack in some outer context. */
1846 if (pe->context_depth != G.context_depth)
1847 {
1848 f->next = still_free;
1849 still_free = f;
1850 }
1851 else
1852 free (f);
1853 }
1854
1855 G.free_object_list = still_free;
1856 }
1857 #else
1858 #define validate_free_objects()
1859 #endif
1860
1861 /* Top level mark-and-sweep routine. */
1862
1863 void
1864 ggc_collect (void)
1865 {
1866 /* Avoid frequent unnecessary work by skipping collection if the
1867 total allocations haven't expanded much since the last
1868 collection. */
1869 float allocated_last_gc =
1870 MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
1871
1872 float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
1873
1874 if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
1875 return;
1876
1877 timevar_push (TV_GC);
1878 if (!quiet_flag)
1879 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
1880 if (GGC_DEBUG_LEVEL >= 2)
1881 fprintf (G.debug_file, "BEGIN COLLECTING\n");
1882
1883 /* Zero the total allocated bytes. This will be recalculated in the
1884 sweep phase. */
1885 G.allocated = 0;
1886
1887 /* Release the pages we freed the last time we collected, but didn't
1888 reuse in the interim. */
1889 release_pages ();
1890
1891 /* Indicate that we've seen collections at this context depth. */
1892 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
1893
1894 clear_marks ();
1895 ggc_mark_roots ();
1896 #ifdef GATHER_STATISTICS
1897 ggc_prune_overhead_list ();
1898 #endif
1899 poison_pages ();
1900 validate_free_objects ();
1901 sweep_pages ();
1902
1903 G.allocated_last_gc = G.allocated;
1904
1905 timevar_pop (TV_GC);
1906
1907 if (!quiet_flag)
1908 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
1909 if (GGC_DEBUG_LEVEL >= 2)
1910 fprintf (G.debug_file, "END COLLECTING\n");
1911 }
1912
1913 /* Print allocation statistics. */
1914 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
1915 ? (x) \
1916 : ((x) < 1024*1024*10 \
1917 ? (x) / 1024 \
1918 : (x) / (1024*1024))))
1919 #define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
1920
1921 void
1922 ggc_print_statistics (void)
1923 {
1924 struct ggc_statistics stats;
1925 unsigned int i;
1926 size_t total_overhead = 0;
1927
1928 /* Clear the statistics. */
1929 memset (&stats, 0, sizeof (stats));
1930
1931 /* Make sure collection will really occur. */
1932 G.allocated_last_gc = 0;
1933
1934 /* Collect and print the statistics common across collectors. */
1935 ggc_print_common_statistics (stderr, &stats);
1936
1937 /* Release free pages so that we will not count the bytes allocated
1938 there as part of the total allocated memory. */
1939 release_pages ();
1940
1941 /* Collect some information about the various sizes of
1942 allocation. */
1943 fprintf (stderr,
1944 "Memory still allocated at the end of the compilation process\n");
1945 fprintf (stderr, "%-5s %10s %10s %10s\n",
1946 "Size", "Allocated", "Used", "Overhead");
1947 for (i = 0; i < NUM_ORDERS; ++i)
1948 {
1949 page_entry *p;
1950 size_t allocated;
1951 size_t in_use;
1952 size_t overhead;
1953
1954 /* Skip empty entries. */
1955 if (!G.pages[i])
1956 continue;
1957
1958 overhead = allocated = in_use = 0;
1959
1960 /* Figure out the total number of bytes allocated for objects of
1961 this size, and how many of them are actually in use. Also figure
1962 out how much memory the page table is using. */
1963 for (p = G.pages[i]; p; p = p->next)
1964 {
1965 allocated += p->bytes;
1966 in_use +=
1967 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
1968
1969 overhead += (sizeof (page_entry) - sizeof (long)
1970 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
1971 }
1972 fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n",
1973 (unsigned long) OBJECT_SIZE (i),
1974 SCALE (allocated), STAT_LABEL (allocated),
1975 SCALE (in_use), STAT_LABEL (in_use),
1976 SCALE (overhead), STAT_LABEL (overhead));
1977 total_overhead += overhead;
1978 }
1979 fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
1980 SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped),
1981 SCALE (G.allocated), STAT_LABEL(G.allocated),
1982 SCALE (total_overhead), STAT_LABEL (total_overhead));
1983
1984 #ifdef GATHER_STATISTICS
1985 {
1986 fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
1987
1988 fprintf (stderr, "Total Overhead: %10lld\n",
1989 G.stats.total_overhead);
1990 fprintf (stderr, "Total Allocated: %10lld\n",
1991 G.stats.total_allocated);
1992
1993 fprintf (stderr, "Total Overhead under 32B: %10lld\n",
1994 G.stats.total_overhead_under32);
1995 fprintf (stderr, "Total Allocated under 32B: %10lld\n",
1996 G.stats.total_allocated_under32);
1997 fprintf (stderr, "Total Overhead under 64B: %10lld\n",
1998 G.stats.total_overhead_under64);
1999 fprintf (stderr, "Total Allocated under 64B: %10lld\n",
2000 G.stats.total_allocated_under64);
2001 fprintf (stderr, "Total Overhead under 128B: %10lld\n",
2002 G.stats.total_overhead_under128);
2003 fprintf (stderr, "Total Allocated under 128B: %10lld\n",
2004 G.stats.total_allocated_under128);
2005
2006 for (i = 0; i < NUM_ORDERS; i++)
2007 if (G.stats.total_allocated_per_order[i])
2008 {
2009 fprintf (stderr, "Total Overhead page size %7lu: %10lld\n",
2010 (unsigned long) OBJECT_SIZE (i),
2011 G.stats.total_overhead_per_order[i]);
2012 fprintf (stderr, "Total Allocated page size %7lu: %10lld\n",
2013 (unsigned long) OBJECT_SIZE (i),
2014 G.stats.total_allocated_per_order[i]);
2015 }
2016 }
2017 #endif
2018 }
2019 \f
2020 struct ggc_pch_data
2021 {
2022 struct ggc_pch_ondisk
2023 {
2024 unsigned totals[NUM_ORDERS];
2025 } d;
2026 size_t base[NUM_ORDERS];
2027 size_t written[NUM_ORDERS];
2028 };
2029
2030 struct ggc_pch_data *
2031 init_ggc_pch (void)
2032 {
2033 return XCNEW (struct ggc_pch_data);
2034 }
2035
2036 void
2037 ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2038 size_t size, bool is_string ATTRIBUTE_UNUSED,
2039 enum gt_types_enum type ATTRIBUTE_UNUSED)
2040 {
2041 unsigned order;
2042
2043 if (size < NUM_SIZE_LOOKUP)
2044 order = size_lookup[size];
2045 else
2046 {
2047 order = 10;
2048 while (size > OBJECT_SIZE (order))
2049 order++;
2050 }
2051
2052 d->d.totals[order]++;
2053 }
2054
2055 size_t
2056 ggc_pch_total_size (struct ggc_pch_data *d)
2057 {
2058 size_t a = 0;
2059 unsigned i;
2060
2061 for (i = 0; i < NUM_ORDERS; i++)
2062 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2063 return a;
2064 }
2065
2066 void
2067 ggc_pch_this_base (struct ggc_pch_data *d, void *base)
2068 {
2069 size_t a = (size_t) base;
2070 unsigned i;
2071
2072 for (i = 0; i < NUM_ORDERS; i++)
2073 {
2074 d->base[i] = a;
2075 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2076 }
2077 }
2078
2079
2080 char *
2081 ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2082 size_t size, bool is_string ATTRIBUTE_UNUSED,
2083 enum gt_types_enum type ATTRIBUTE_UNUSED)
2084 {
2085 unsigned order;
2086 char *result;
2087
2088 if (size < NUM_SIZE_LOOKUP)
2089 order = size_lookup[size];
2090 else
2091 {
2092 order = 10;
2093 while (size > OBJECT_SIZE (order))
2094 order++;
2095 }
2096
2097 result = (char *) d->base[order];
2098 d->base[order] += OBJECT_SIZE (order);
2099 return result;
2100 }
2101
2102 void
2103 ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2104 FILE *f ATTRIBUTE_UNUSED)
2105 {
2106 /* Nothing to do. */
2107 }
2108
2109 void
2110 ggc_pch_write_object (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2111 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
2112 size_t size, bool is_string ATTRIBUTE_UNUSED)
2113 {
2114 unsigned order;
2115 static const char emptyBytes[256];
2116
2117 if (size < NUM_SIZE_LOOKUP)
2118 order = size_lookup[size];
2119 else
2120 {
2121 order = 10;
2122 while (size > OBJECT_SIZE (order))
2123 order++;
2124 }
2125
2126 if (fwrite (x, size, 1, f) != 1)
2127 fatal_error ("can't write PCH file: %m");
2128
2129 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2130 object out to OBJECT_SIZE(order). This happens for strings. */
2131
2132 if (size != OBJECT_SIZE (order))
2133 {
2134 unsigned padding = OBJECT_SIZE(order) - size;
2135
2136 /* To speed small writes, we use a nulled-out array that's larger
2137 than most padding requests as the source for our null bytes. This
2138 permits us to do the padding with fwrite() rather than fseek(), and
2139 limits the chance the OS may try to flush any outstanding writes. */
2140 if (padding <= sizeof(emptyBytes))
2141 {
2142 if (fwrite (emptyBytes, 1, padding, f) != padding)
2143 fatal_error ("can't write PCH file");
2144 }
2145 else
2146 {
2147 /* Larger than our buffer? Just default to fseek. */
2148 if (fseek (f, padding, SEEK_CUR) != 0)
2149 fatal_error ("can't write PCH file");
2150 }
2151 }
2152
2153 d->written[order]++;
2154 if (d->written[order] == d->d.totals[order]
2155 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2156 G.pagesize),
2157 SEEK_CUR) != 0)
2158 fatal_error ("can't write PCH file: %m");
2159 }
2160
2161 void
2162 ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
2163 {
2164 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
2165 fatal_error ("can't write PCH file: %m");
2166 free (d);
2167 }
2168
2169 /* Move the PCH PTE entries just added to the end of by_depth, to the
2170 front. */
2171
2172 static void
2173 move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
2174 {
2175 unsigned i;
2176
2177 /* First, we swap the new entries to the front of the varrays. */
2178 page_entry **new_by_depth;
2179 unsigned long **new_save_in_use;
2180
2181 new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
2182 new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
2183
2184 memcpy (&new_by_depth[0],
2185 &G.by_depth[count_old_page_tables],
2186 count_new_page_tables * sizeof (void *));
2187 memcpy (&new_by_depth[count_new_page_tables],
2188 &G.by_depth[0],
2189 count_old_page_tables * sizeof (void *));
2190 memcpy (&new_save_in_use[0],
2191 &G.save_in_use[count_old_page_tables],
2192 count_new_page_tables * sizeof (void *));
2193 memcpy (&new_save_in_use[count_new_page_tables],
2194 &G.save_in_use[0],
2195 count_old_page_tables * sizeof (void *));
2196
2197 free (G.by_depth);
2198 free (G.save_in_use);
2199
2200 G.by_depth = new_by_depth;
2201 G.save_in_use = new_save_in_use;
2202
2203 /* Now update all the index_by_depth fields. */
2204 for (i = G.by_depth_in_use; i > 0; --i)
2205 {
2206 page_entry *p = G.by_depth[i-1];
2207 p->index_by_depth = i-1;
2208 }
2209
2210 /* And last, we update the depth pointers in G.depth. The first
2211 entry is already 0, and context 0 entries always start at index
2212 0, so there is nothing to update in the first slot. We need a
2213 second slot, only if we have old ptes, and if we do, they start
2214 at index count_new_page_tables. */
2215 if (count_old_page_tables)
2216 push_depth (count_new_page_tables);
2217 }
2218
2219 void
2220 ggc_pch_read (FILE *f, void *addr)
2221 {
2222 struct ggc_pch_ondisk d;
2223 unsigned i;
2224 char *offs = addr;
2225 unsigned long count_old_page_tables;
2226 unsigned long count_new_page_tables;
2227
2228 count_old_page_tables = G.by_depth_in_use;
2229
2230 /* We've just read in a PCH file. So, every object that used to be
2231 allocated is now free. */
2232 clear_marks ();
2233 #ifdef ENABLE_GC_CHECKING
2234 poison_pages ();
2235 #endif
2236 /* Since we free all the allocated objects, the free list becomes
2237 useless. Validate it now, which will also clear it. */
2238 validate_free_objects();
2239
2240 /* No object read from a PCH file should ever be freed. So, set the
2241 context depth to 1, and set the depth of all the currently-allocated
2242 pages to be 1 too. PCH pages will have depth 0. */
2243 gcc_assert (!G.context_depth);
2244 G.context_depth = 1;
2245 for (i = 0; i < NUM_ORDERS; i++)
2246 {
2247 page_entry *p;
2248 for (p = G.pages[i]; p != NULL; p = p->next)
2249 p->context_depth = G.context_depth;
2250 }
2251
2252 /* Allocate the appropriate page-table entries for the pages read from
2253 the PCH file. */
2254 if (fread (&d, sizeof (d), 1, f) != 1)
2255 fatal_error ("can't read PCH file: %m");
2256
2257 for (i = 0; i < NUM_ORDERS; i++)
2258 {
2259 struct page_entry *entry;
2260 char *pte;
2261 size_t bytes;
2262 size_t num_objs;
2263 size_t j;
2264
2265 if (d.totals[i] == 0)
2266 continue;
2267
2268 bytes = ROUND_UP (d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2269 num_objs = bytes / OBJECT_SIZE (i);
2270 entry = xcalloc (1, (sizeof (struct page_entry)
2271 - sizeof (long)
2272 + BITMAP_SIZE (num_objs + 1)));
2273 entry->bytes = bytes;
2274 entry->page = offs;
2275 entry->context_depth = 0;
2276 offs += bytes;
2277 entry->num_free_objects = 0;
2278 entry->order = i;
2279
2280 for (j = 0;
2281 j + HOST_BITS_PER_LONG <= num_objs + 1;
2282 j += HOST_BITS_PER_LONG)
2283 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2284 for (; j < num_objs + 1; j++)
2285 entry->in_use_p[j / HOST_BITS_PER_LONG]
2286 |= 1L << (j % HOST_BITS_PER_LONG);
2287
2288 for (pte = entry->page;
2289 pte < entry->page + entry->bytes;
2290 pte += G.pagesize)
2291 set_page_table_entry (pte, entry);
2292
2293 if (G.page_tails[i] != NULL)
2294 G.page_tails[i]->next = entry;
2295 else
2296 G.pages[i] = entry;
2297 G.page_tails[i] = entry;
2298
2299 /* We start off by just adding all the new information to the
2300 end of the varrays, later, we will move the new information
2301 to the front of the varrays, as the PCH page tables are at
2302 context 0. */
2303 push_by_depth (entry, 0);
2304 }
2305
2306 /* Now, we update the various data structures that speed page table
2307 handling. */
2308 count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2309
2310 move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2311
2312 /* Update the statistics. */
2313 G.allocated = G.allocated_last_gc = offs - (char *)addr;
2314 }