c-typeck.c, [...]: Fix comment typos and formatting.
[gcc.git] / gcc / ggc-page.c
1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "toplev.h"
30 #include "flags.h"
31 #include "ggc.h"
32 #include "timevar.h"
33 #include "params.h"
34 #ifdef ENABLE_VALGRIND_CHECKING
35 # ifdef HAVE_VALGRIND_MEMCHECK_H
36 # include <valgrind/memcheck.h>
37 # elif defined HAVE_MEMCHECK_H
38 # include <memcheck.h>
39 # else
40 # include <valgrind.h>
41 # endif
42 #else
43 /* Avoid #ifdef:s when we can help it. */
44 #define VALGRIND_DISCARD(x)
45 #endif
46
47 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
48 file open. Prefer either to valloc. */
49 #ifdef HAVE_MMAP_ANON
50 # undef HAVE_MMAP_DEV_ZERO
51
52 # include <sys/mman.h>
53 # ifndef MAP_FAILED
54 # define MAP_FAILED -1
55 # endif
56 # if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
57 # define MAP_ANONYMOUS MAP_ANON
58 # endif
59 # define USING_MMAP
60
61 #endif
62
63 #ifdef HAVE_MMAP_DEV_ZERO
64
65 # include <sys/mman.h>
66 # ifndef MAP_FAILED
67 # define MAP_FAILED -1
68 # endif
69 # define USING_MMAP
70
71 #endif
72
73 #ifndef USING_MMAP
74 #define USING_MALLOC_PAGE_GROUPS
75 #endif
76
77 /* Stategy:
78
79 This garbage-collecting allocator allocates objects on one of a set
80 of pages. Each page can allocate objects of a single size only;
81 available sizes are powers of two starting at four bytes. The size
82 of an allocation request is rounded up to the next power of two
83 (`order'), and satisfied from the appropriate page.
84
85 Each page is recorded in a page-entry, which also maintains an
86 in-use bitmap of object positions on the page. This allows the
87 allocation state of a particular object to be flipped without
88 touching the page itself.
89
90 Each page-entry also has a context depth, which is used to track
91 pushing and popping of allocation contexts. Only objects allocated
92 in the current (highest-numbered) context may be collected.
93
94 Page entries are arranged in an array of singly-linked lists. The
95 array is indexed by the allocation size, in bits, of the pages on
96 it; i.e. all pages on a list allocate objects of the same size.
97 Pages are ordered on the list such that all non-full pages precede
98 all full pages, with non-full pages arranged in order of decreasing
99 context depth.
100
101 Empty pages (of all orders) are kept on a single page cache list,
102 and are considered first when new pages are required; they are
103 deallocated at the start of the next collection if they haven't
104 been recycled by then. */
105
106 /* Define GGC_DEBUG_LEVEL to print debugging information.
107 0: No debugging output.
108 1: GC statistics only.
109 2: Page-entry allocations/deallocations as well.
110 3: Object allocations as well.
111 4: Object marks as well. */
112 #define GGC_DEBUG_LEVEL (0)
113 \f
114 #ifndef HOST_BITS_PER_PTR
115 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
116 #endif
117
118 \f
119 /* A two-level tree is used to look up the page-entry for a given
120 pointer. Two chunks of the pointer's bits are extracted to index
121 the first and second levels of the tree, as follows:
122
123 HOST_PAGE_SIZE_BITS
124 32 | |
125 msb +----------------+----+------+------+ lsb
126 | | |
127 PAGE_L1_BITS |
128 | |
129 PAGE_L2_BITS
130
131 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
132 pages are aligned on system page boundaries. The next most
133 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
134 index values in the lookup table, respectively.
135
136 For 32-bit architectures and the settings below, there are no
137 leftover bits. For architectures with wider pointers, the lookup
138 tree points to a list of pages, which must be scanned to find the
139 correct one. */
140
141 #define PAGE_L1_BITS (8)
142 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
143 #define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
144 #define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
145
146 #define LOOKUP_L1(p) \
147 (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
148
149 #define LOOKUP_L2(p) \
150 (((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
151
152 /* The number of objects per allocation page, for objects on a page of
153 the indicated ORDER. */
154 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
155
156 /* The number of objects in P. */
157 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
158
159 /* The size of an object on a page of the indicated ORDER. */
160 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
161
162 /* For speed, we avoid doing a general integer divide to locate the
163 offset in the allocation bitmap, by precalculating numbers M, S
164 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
165 within the page which is evenly divisible by the object size Z. */
166 #define DIV_MULT(ORDER) inverse_table[ORDER].mult
167 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
168 #define OFFSET_TO_BIT(OFFSET, ORDER) \
169 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
170
171 /* The number of extra orders, not corresponding to power-of-two sized
172 objects. */
173
174 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
175
176 #define RTL_SIZE(NSLOTS) \
177 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
178
179 #define TREE_EXP_SIZE(OPS) \
180 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
181
182 /* The Ith entry is the maximum size of an object to be stored in the
183 Ith extra order. Adding a new entry to this array is the *only*
184 thing you need to do to add a new special allocation size. */
185
186 static const size_t extra_order_size_table[] = {
187 sizeof (struct tree_decl),
188 sizeof (struct tree_list),
189 TREE_EXP_SIZE (2),
190 RTL_SIZE (2), /* MEM, PLUS, etc. */
191 RTL_SIZE (9), /* INSN */
192 };
193
194 /* The total number of orders. */
195
196 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
197
198 /* We use this structure to determine the alignment required for
199 allocations. For power-of-two sized allocations, that's not a
200 problem, but it does matter for odd-sized allocations. */
201
202 struct max_alignment {
203 char c;
204 union {
205 HOST_WIDEST_INT i;
206 long double d;
207 } u;
208 };
209
210 /* The biggest alignment required. */
211
212 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
213
214 /* Compute the smallest nonnegative number which when added to X gives
215 a multiple of F. */
216
217 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
218
219 /* Compute the smallest multiple of F that is >= X. */
220
221 #define ROUND_UP(x, f) (CEIL (x, f) * (f))
222
223 /* The Ith entry is the number of objects on a page or order I. */
224
225 static unsigned objects_per_page_table[NUM_ORDERS];
226
227 /* The Ith entry is the size of an object on a page of order I. */
228
229 static size_t object_size_table[NUM_ORDERS];
230
231 /* The Ith entry is a pair of numbers (mult, shift) such that
232 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
233 for all k evenly divisible by OBJECT_SIZE(I). */
234
235 static struct
236 {
237 size_t mult;
238 unsigned int shift;
239 }
240 inverse_table[NUM_ORDERS];
241
242 /* A page_entry records the status of an allocation page. This
243 structure is dynamically sized to fit the bitmap in_use_p. */
244 typedef struct page_entry
245 {
246 /* The next page-entry with objects of the same size, or NULL if
247 this is the last page-entry. */
248 struct page_entry *next;
249
250 /* The previous page-entry with objects of the same size, or NULL if
251 this is the first page-entry. The PREV pointer exists solely to
252 keep the cost of ggc_free manageable. */
253 struct page_entry *prev;
254
255 /* The number of bytes allocated. (This will always be a multiple
256 of the host system page size.) */
257 size_t bytes;
258
259 /* The address at which the memory is allocated. */
260 char *page;
261
262 #ifdef USING_MALLOC_PAGE_GROUPS
263 /* Back pointer to the page group this page came from. */
264 struct page_group *group;
265 #endif
266
267 /* This is the index in the by_depth varray where this page table
268 can be found. */
269 unsigned long index_by_depth;
270
271 /* Context depth of this page. */
272 unsigned short context_depth;
273
274 /* The number of free objects remaining on this page. */
275 unsigned short num_free_objects;
276
277 /* A likely candidate for the bit position of a free object for the
278 next allocation from this page. */
279 unsigned short next_bit_hint;
280
281 /* The lg of size of objects allocated from this page. */
282 unsigned char order;
283
284 /* A bit vector indicating whether or not objects are in use. The
285 Nth bit is one if the Nth object on this page is allocated. This
286 array is dynamically sized. */
287 unsigned long in_use_p[1];
288 } page_entry;
289
290 #ifdef USING_MALLOC_PAGE_GROUPS
291 /* A page_group describes a large allocation from malloc, from which
292 we parcel out aligned pages. */
293 typedef struct page_group
294 {
295 /* A linked list of all extant page groups. */
296 struct page_group *next;
297
298 /* The address we received from malloc. */
299 char *allocation;
300
301 /* The size of the block. */
302 size_t alloc_size;
303
304 /* A bitmask of pages in use. */
305 unsigned int in_use;
306 } page_group;
307 #endif
308
309 #if HOST_BITS_PER_PTR <= 32
310
311 /* On 32-bit hosts, we use a two level page table, as pictured above. */
312 typedef page_entry **page_table[PAGE_L1_SIZE];
313
314 #else
315
316 /* On 64-bit hosts, we use the same two level page tables plus a linked
317 list that disambiguates the top 32-bits. There will almost always be
318 exactly one entry in the list. */
319 typedef struct page_table_chain
320 {
321 struct page_table_chain *next;
322 size_t high_bits;
323 page_entry **table[PAGE_L1_SIZE];
324 } *page_table;
325
326 #endif
327
328 /* The rest of the global variables. */
329 static struct globals
330 {
331 /* The Nth element in this array is a page with objects of size 2^N.
332 If there are any pages with free objects, they will be at the
333 head of the list. NULL if there are no page-entries for this
334 object size. */
335 page_entry *pages[NUM_ORDERS];
336
337 /* The Nth element in this array is the last page with objects of
338 size 2^N. NULL if there are no page-entries for this object
339 size. */
340 page_entry *page_tails[NUM_ORDERS];
341
342 /* Lookup table for associating allocation pages with object addresses. */
343 page_table lookup;
344
345 /* The system's page size. */
346 size_t pagesize;
347 size_t lg_pagesize;
348
349 /* Bytes currently allocated. */
350 size_t allocated;
351
352 /* Bytes currently allocated at the end of the last collection. */
353 size_t allocated_last_gc;
354
355 /* Total amount of memory mapped. */
356 size_t bytes_mapped;
357
358 /* Bit N set if any allocations have been done at context depth N. */
359 unsigned long context_depth_allocations;
360
361 /* Bit N set if any collections have been done at context depth N. */
362 unsigned long context_depth_collections;
363
364 /* The current depth in the context stack. */
365 unsigned short context_depth;
366
367 /* A file descriptor open to /dev/zero for reading. */
368 #if defined (HAVE_MMAP_DEV_ZERO)
369 int dev_zero_fd;
370 #endif
371
372 /* A cache of free system pages. */
373 page_entry *free_pages;
374
375 #ifdef USING_MALLOC_PAGE_GROUPS
376 page_group *page_groups;
377 #endif
378
379 /* The file descriptor for debugging output. */
380 FILE *debug_file;
381
382 /* Current number of elements in use in depth below. */
383 unsigned int depth_in_use;
384
385 /* Maximum number of elements that can be used before resizing. */
386 unsigned int depth_max;
387
388 /* Each element of this arry is an index in by_depth where the given
389 depth starts. This structure is indexed by that given depth we
390 are interested in. */
391 unsigned int *depth;
392
393 /* Current number of elements in use in by_depth below. */
394 unsigned int by_depth_in_use;
395
396 /* Maximum number of elements that can be used before resizing. */
397 unsigned int by_depth_max;
398
399 /* Each element of this array is a pointer to a page_entry, all
400 page_entries can be found in here by increasing depth.
401 index_by_depth in the page_entry is the index into this data
402 structure where that page_entry can be found. This is used to
403 speed up finding all page_entries at a particular depth. */
404 page_entry **by_depth;
405
406 /* Each element is a pointer to the saved in_use_p bits, if any,
407 zero otherwise. We allocate them all together, to enable a
408 better runtime data access pattern. */
409 unsigned long **save_in_use;
410
411 #ifdef ENABLE_GC_ALWAYS_COLLECT
412 /* List of free objects to be verified as actually free on the
413 next collection. */
414 struct free_object
415 {
416 void *object;
417 struct free_object *next;
418 } *free_object_list;
419 #endif
420
421 #ifdef GATHER_STATISTICS
422 struct
423 {
424 /* Total memory allocated with ggc_alloc. */
425 unsigned long long total_allocated;
426 /* Total overhead for memory to be allocated with ggc_alloc. */
427 unsigned long long total_overhead;
428
429 /* Total allocations and overhead for sizes less than 32, 64 and 128.
430 These sizes are interesting because they are typical cache line
431 sizes. */
432
433 unsigned long long total_allocated_under32;
434 unsigned long long total_overhead_under32;
435
436 unsigned long long total_allocated_under64;
437 unsigned long long total_overhead_under64;
438
439 unsigned long long total_allocated_under128;
440 unsigned long long total_overhead_under128;
441
442 /* The allocations for each of the allocation orders. */
443 unsigned long long total_allocated_per_order[NUM_ORDERS];
444
445 /* The overhead for each of the allocation orders. */
446 unsigned long long total_overhead_per_order[NUM_ORDERS];
447 } stats;
448 #endif
449 } G;
450
451 /* The size in bytes required to maintain a bitmap for the objects
452 on a page-entry. */
453 #define BITMAP_SIZE(Num_objects) \
454 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
455
456 /* Allocate pages in chunks of this size, to throttle calls to memory
457 allocation routines. The first page is used, the rest go onto the
458 free list. This cannot be larger than HOST_BITS_PER_INT for the
459 in_use bitmask for page_group. */
460 #define GGC_QUIRE_SIZE 16
461
462 /* Initial guess as to how many page table entries we might need. */
463 #define INITIAL_PTE_COUNT 128
464 \f
465 static int ggc_allocated_p (const void *);
466 static page_entry *lookup_page_table_entry (const void *);
467 static void set_page_table_entry (void *, page_entry *);
468 #ifdef USING_MMAP
469 static char *alloc_anon (char *, size_t);
470 #endif
471 #ifdef USING_MALLOC_PAGE_GROUPS
472 static size_t page_group_index (char *, char *);
473 static void set_page_group_in_use (page_group *, char *);
474 static void clear_page_group_in_use (page_group *, char *);
475 #endif
476 static struct page_entry * alloc_page (unsigned);
477 static void free_page (struct page_entry *);
478 static void release_pages (void);
479 static void clear_marks (void);
480 static void sweep_pages (void);
481 static void ggc_recalculate_in_use_p (page_entry *);
482 static void compute_inverse (unsigned);
483 static inline void adjust_depth (void);
484 static void move_ptes_to_front (int, int);
485
486 void debug_print_page_list (int);
487 static void push_depth (unsigned int);
488 static void push_by_depth (page_entry *, unsigned long *);
489 struct alloc_zone *rtl_zone = NULL;
490 struct alloc_zone *tree_zone = NULL;
491 struct alloc_zone *garbage_zone = NULL;
492
493 /* Push an entry onto G.depth. */
494
495 inline static void
496 push_depth (unsigned int i)
497 {
498 if (G.depth_in_use >= G.depth_max)
499 {
500 G.depth_max *= 2;
501 G.depth = xrealloc (G.depth, G.depth_max * sizeof (unsigned int));
502 }
503 G.depth[G.depth_in_use++] = i;
504 }
505
506 /* Push an entry onto G.by_depth and G.save_in_use. */
507
508 inline static void
509 push_by_depth (page_entry *p, unsigned long *s)
510 {
511 if (G.by_depth_in_use >= G.by_depth_max)
512 {
513 G.by_depth_max *= 2;
514 G.by_depth = xrealloc (G.by_depth,
515 G.by_depth_max * sizeof (page_entry *));
516 G.save_in_use = xrealloc (G.save_in_use,
517 G.by_depth_max * sizeof (unsigned long *));
518 }
519 G.by_depth[G.by_depth_in_use] = p;
520 G.save_in_use[G.by_depth_in_use++] = s;
521 }
522
523 #if (GCC_VERSION < 3001)
524 #define prefetch(X) ((void) X)
525 #else
526 #define prefetch(X) __builtin_prefetch (X)
527 #endif
528
529 #define save_in_use_p_i(__i) \
530 (G.save_in_use[__i])
531 #define save_in_use_p(__p) \
532 (save_in_use_p_i (__p->index_by_depth))
533
534 /* Returns nonzero if P was allocated in GC'able memory. */
535
536 static inline int
537 ggc_allocated_p (const void *p)
538 {
539 page_entry ***base;
540 size_t L1, L2;
541
542 #if HOST_BITS_PER_PTR <= 32
543 base = &G.lookup[0];
544 #else
545 page_table table = G.lookup;
546 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
547 while (1)
548 {
549 if (table == NULL)
550 return 0;
551 if (table->high_bits == high_bits)
552 break;
553 table = table->next;
554 }
555 base = &table->table[0];
556 #endif
557
558 /* Extract the level 1 and 2 indices. */
559 L1 = LOOKUP_L1 (p);
560 L2 = LOOKUP_L2 (p);
561
562 return base[L1] && base[L1][L2];
563 }
564
565 /* Traverse the page table and find the entry for a page.
566 Die (probably) if the object wasn't allocated via GC. */
567
568 static inline page_entry *
569 lookup_page_table_entry (const void *p)
570 {
571 page_entry ***base;
572 size_t L1, L2;
573
574 #if HOST_BITS_PER_PTR <= 32
575 base = &G.lookup[0];
576 #else
577 page_table table = G.lookup;
578 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
579 while (table->high_bits != high_bits)
580 table = table->next;
581 base = &table->table[0];
582 #endif
583
584 /* Extract the level 1 and 2 indices. */
585 L1 = LOOKUP_L1 (p);
586 L2 = LOOKUP_L2 (p);
587
588 return base[L1][L2];
589 }
590
591 /* Set the page table entry for a page. */
592
593 static void
594 set_page_table_entry (void *p, page_entry *entry)
595 {
596 page_entry ***base;
597 size_t L1, L2;
598
599 #if HOST_BITS_PER_PTR <= 32
600 base = &G.lookup[0];
601 #else
602 page_table table;
603 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
604 for (table = G.lookup; table; table = table->next)
605 if (table->high_bits == high_bits)
606 goto found;
607
608 /* Not found -- allocate a new table. */
609 table = xcalloc (1, sizeof(*table));
610 table->next = G.lookup;
611 table->high_bits = high_bits;
612 G.lookup = table;
613 found:
614 base = &table->table[0];
615 #endif
616
617 /* Extract the level 1 and 2 indices. */
618 L1 = LOOKUP_L1 (p);
619 L2 = LOOKUP_L2 (p);
620
621 if (base[L1] == NULL)
622 base[L1] = xcalloc (PAGE_L2_SIZE, sizeof (page_entry *));
623
624 base[L1][L2] = entry;
625 }
626
627 /* Prints the page-entry for object size ORDER, for debugging. */
628
629 void
630 debug_print_page_list (int order)
631 {
632 page_entry *p;
633 printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
634 (void *) G.page_tails[order]);
635 p = G.pages[order];
636 while (p != NULL)
637 {
638 printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
639 p->num_free_objects);
640 p = p->next;
641 }
642 printf ("NULL\n");
643 fflush (stdout);
644 }
645
646 #ifdef USING_MMAP
647 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
648 (if non-null). The ifdef structure here is intended to cause a
649 compile error unless exactly one of the HAVE_* is defined. */
650
651 static inline char *
652 alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size)
653 {
654 #ifdef HAVE_MMAP_ANON
655 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
656 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
657 #endif
658 #ifdef HAVE_MMAP_DEV_ZERO
659 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
660 MAP_PRIVATE, G.dev_zero_fd, 0);
661 #endif
662
663 if (page == (char *) MAP_FAILED)
664 {
665 perror ("virtual memory exhausted");
666 exit (FATAL_EXIT_CODE);
667 }
668
669 /* Remember that we allocated this memory. */
670 G.bytes_mapped += size;
671
672 /* Pretend we don't have access to the allocated pages. We'll enable
673 access to smaller pieces of the area in ggc_alloc. Discard the
674 handle to avoid handle leak. */
675 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (page, size));
676
677 return page;
678 }
679 #endif
680 #ifdef USING_MALLOC_PAGE_GROUPS
681 /* Compute the index for this page into the page group. */
682
683 static inline size_t
684 page_group_index (char *allocation, char *page)
685 {
686 return (size_t) (page - allocation) >> G.lg_pagesize;
687 }
688
689 /* Set and clear the in_use bit for this page in the page group. */
690
691 static inline void
692 set_page_group_in_use (page_group *group, char *page)
693 {
694 group->in_use |= 1 << page_group_index (group->allocation, page);
695 }
696
697 static inline void
698 clear_page_group_in_use (page_group *group, char *page)
699 {
700 group->in_use &= ~(1 << page_group_index (group->allocation, page));
701 }
702 #endif
703
704 /* Allocate a new page for allocating objects of size 2^ORDER,
705 and return an entry for it. The entry is not added to the
706 appropriate page_table list. */
707
708 static inline struct page_entry *
709 alloc_page (unsigned order)
710 {
711 struct page_entry *entry, *p, **pp;
712 char *page;
713 size_t num_objects;
714 size_t bitmap_size;
715 size_t page_entry_size;
716 size_t entry_size;
717 #ifdef USING_MALLOC_PAGE_GROUPS
718 page_group *group;
719 #endif
720
721 num_objects = OBJECTS_PER_PAGE (order);
722 bitmap_size = BITMAP_SIZE (num_objects + 1);
723 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
724 entry_size = num_objects * OBJECT_SIZE (order);
725 if (entry_size < G.pagesize)
726 entry_size = G.pagesize;
727
728 entry = NULL;
729 page = NULL;
730
731 /* Check the list of free pages for one we can use. */
732 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
733 if (p->bytes == entry_size)
734 break;
735
736 if (p != NULL)
737 {
738 /* Recycle the allocated memory from this page ... */
739 *pp = p->next;
740 page = p->page;
741
742 #ifdef USING_MALLOC_PAGE_GROUPS
743 group = p->group;
744 #endif
745
746 /* ... and, if possible, the page entry itself. */
747 if (p->order == order)
748 {
749 entry = p;
750 memset (entry, 0, page_entry_size);
751 }
752 else
753 free (p);
754 }
755 #ifdef USING_MMAP
756 else if (entry_size == G.pagesize)
757 {
758 /* We want just one page. Allocate a bunch of them and put the
759 extras on the freelist. (Can only do this optimization with
760 mmap for backing store.) */
761 struct page_entry *e, *f = G.free_pages;
762 int i;
763
764 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE);
765
766 /* This loop counts down so that the chain will be in ascending
767 memory order. */
768 for (i = GGC_QUIRE_SIZE - 1; i >= 1; i--)
769 {
770 e = xcalloc (1, page_entry_size);
771 e->order = order;
772 e->bytes = G.pagesize;
773 e->page = page + (i << G.lg_pagesize);
774 e->next = f;
775 f = e;
776 }
777
778 G.free_pages = f;
779 }
780 else
781 page = alloc_anon (NULL, entry_size);
782 #endif
783 #ifdef USING_MALLOC_PAGE_GROUPS
784 else
785 {
786 /* Allocate a large block of memory and serve out the aligned
787 pages therein. This results in much less memory wastage
788 than the traditional implementation of valloc. */
789
790 char *allocation, *a, *enda;
791 size_t alloc_size, head_slop, tail_slop;
792 int multiple_pages = (entry_size == G.pagesize);
793
794 if (multiple_pages)
795 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
796 else
797 alloc_size = entry_size + G.pagesize - 1;
798 allocation = xmalloc (alloc_size);
799
800 page = (char *) (((size_t) allocation + G.pagesize - 1) & -G.pagesize);
801 head_slop = page - allocation;
802 if (multiple_pages)
803 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
804 else
805 tail_slop = alloc_size - entry_size - head_slop;
806 enda = allocation + alloc_size - tail_slop;
807
808 /* We allocated N pages, which are likely not aligned, leaving
809 us with N-1 usable pages. We plan to place the page_group
810 structure somewhere in the slop. */
811 if (head_slop >= sizeof (page_group))
812 group = (page_group *)page - 1;
813 else
814 {
815 /* We magically got an aligned allocation. Too bad, we have
816 to waste a page anyway. */
817 if (tail_slop == 0)
818 {
819 enda -= G.pagesize;
820 tail_slop += G.pagesize;
821 }
822 if (tail_slop < sizeof (page_group))
823 abort ();
824 group = (page_group *)enda;
825 tail_slop -= sizeof (page_group);
826 }
827
828 /* Remember that we allocated this memory. */
829 group->next = G.page_groups;
830 group->allocation = allocation;
831 group->alloc_size = alloc_size;
832 group->in_use = 0;
833 G.page_groups = group;
834 G.bytes_mapped += alloc_size;
835
836 /* If we allocated multiple pages, put the rest on the free list. */
837 if (multiple_pages)
838 {
839 struct page_entry *e, *f = G.free_pages;
840 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
841 {
842 e = xcalloc (1, page_entry_size);
843 e->order = order;
844 e->bytes = G.pagesize;
845 e->page = a;
846 e->group = group;
847 e->next = f;
848 f = e;
849 }
850 G.free_pages = f;
851 }
852 }
853 #endif
854
855 if (entry == NULL)
856 entry = xcalloc (1, page_entry_size);
857
858 entry->bytes = entry_size;
859 entry->page = page;
860 entry->context_depth = G.context_depth;
861 entry->order = order;
862 entry->num_free_objects = num_objects;
863 entry->next_bit_hint = 1;
864
865 G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
866
867 #ifdef USING_MALLOC_PAGE_GROUPS
868 entry->group = group;
869 set_page_group_in_use (group, page);
870 #endif
871
872 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
873 increment the hint. */
874 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
875 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
876
877 set_page_table_entry (page, entry);
878
879 if (GGC_DEBUG_LEVEL >= 2)
880 fprintf (G.debug_file,
881 "Allocating page at %p, object size=%lu, data %p-%p\n",
882 (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
883 page + entry_size - 1);
884
885 return entry;
886 }
887
888 /* Adjust the size of G.depth so that no index greater than the one
889 used by the top of the G.by_depth is used. */
890
891 static inline void
892 adjust_depth (void)
893 {
894 page_entry *top;
895
896 if (G.by_depth_in_use)
897 {
898 top = G.by_depth[G.by_depth_in_use-1];
899
900 /* Peel back indices in depth that index into by_depth, so that
901 as new elements are added to by_depth, we note the indices
902 of those elements, if they are for new context depths. */
903 while (G.depth_in_use > (size_t)top->context_depth+1)
904 --G.depth_in_use;
905 }
906 }
907
908 /* For a page that is no longer needed, put it on the free page list. */
909
910 static void
911 free_page (page_entry *entry)
912 {
913 if (GGC_DEBUG_LEVEL >= 2)
914 fprintf (G.debug_file,
915 "Deallocating page at %p, data %p-%p\n", (void *) entry,
916 entry->page, entry->page + entry->bytes - 1);
917
918 /* Mark the page as inaccessible. Discard the handle to avoid handle
919 leak. */
920 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (entry->page, entry->bytes));
921
922 set_page_table_entry (entry->page, NULL);
923
924 #ifdef USING_MALLOC_PAGE_GROUPS
925 clear_page_group_in_use (entry->group, entry->page);
926 #endif
927
928 if (G.by_depth_in_use > 1)
929 {
930 page_entry *top = G.by_depth[G.by_depth_in_use-1];
931
932 /* If they are at the same depth, put top element into freed
933 slot. */
934 if (entry->context_depth == top->context_depth)
935 {
936 int i = entry->index_by_depth;
937 G.by_depth[i] = top;
938 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
939 top->index_by_depth = i;
940 }
941 else
942 {
943 /* We cannot free a page from a context deeper than the
944 current one. */
945 abort ();
946 }
947 }
948 --G.by_depth_in_use;
949
950 adjust_depth ();
951
952 entry->next = G.free_pages;
953 G.free_pages = entry;
954 }
955
956 /* Release the free page cache to the system. */
957
958 static void
959 release_pages (void)
960 {
961 #ifdef USING_MMAP
962 page_entry *p, *next;
963 char *start;
964 size_t len;
965
966 /* Gather up adjacent pages so they are unmapped together. */
967 p = G.free_pages;
968
969 while (p)
970 {
971 start = p->page;
972 next = p->next;
973 len = p->bytes;
974 free (p);
975 p = next;
976
977 while (p && p->page == start + len)
978 {
979 next = p->next;
980 len += p->bytes;
981 free (p);
982 p = next;
983 }
984
985 munmap (start, len);
986 G.bytes_mapped -= len;
987 }
988
989 G.free_pages = NULL;
990 #endif
991 #ifdef USING_MALLOC_PAGE_GROUPS
992 page_entry **pp, *p;
993 page_group **gp, *g;
994
995 /* Remove all pages from free page groups from the list. */
996 pp = &G.free_pages;
997 while ((p = *pp) != NULL)
998 if (p->group->in_use == 0)
999 {
1000 *pp = p->next;
1001 free (p);
1002 }
1003 else
1004 pp = &p->next;
1005
1006 /* Remove all free page groups, and release the storage. */
1007 gp = &G.page_groups;
1008 while ((g = *gp) != NULL)
1009 if (g->in_use == 0)
1010 {
1011 *gp = g->next;
1012 G.bytes_mapped -= g->alloc_size;
1013 free (g->allocation);
1014 }
1015 else
1016 gp = &g->next;
1017 #endif
1018 }
1019
1020 /* This table provides a fast way to determine ceil(log_2(size)) for
1021 allocation requests. The minimum allocation size is eight bytes. */
1022
1023 static unsigned char size_lookup[257] =
1024 {
1025 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1026 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1027 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1028 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1029 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1030 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1031 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1032 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1033 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1034 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1035 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1036 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1037 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1038 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1039 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1040 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1041 8
1042 };
1043
1044 /* Typed allocation function. Does nothing special in this collector. */
1045
1046 void *
1047 ggc_alloc_typed_stat (enum gt_types_enum type ATTRIBUTE_UNUSED, size_t size
1048 MEM_STAT_DECL)
1049 {
1050 return ggc_alloc_stat (size PASS_MEM_STAT);
1051 }
1052
1053 /* Zone allocation function. Does nothing special in this collector. */
1054
1055 void *
1056 ggc_alloc_zone_stat (size_t size, struct alloc_zone *zone ATTRIBUTE_UNUSED
1057 MEM_STAT_DECL)
1058 {
1059 return ggc_alloc_stat (size PASS_MEM_STAT);
1060 }
1061
1062 /* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
1063
1064 void *
1065 ggc_alloc_stat (size_t size MEM_STAT_DECL)
1066 {
1067 size_t order, word, bit, object_offset, object_size;
1068 struct page_entry *entry;
1069 void *result;
1070
1071 if (size <= 256)
1072 {
1073 order = size_lookup[size];
1074 object_size = OBJECT_SIZE (order);
1075 }
1076 else
1077 {
1078 order = 9;
1079 while (size > (object_size = OBJECT_SIZE (order)))
1080 order++;
1081 }
1082
1083 /* If there are non-full pages for this size allocation, they are at
1084 the head of the list. */
1085 entry = G.pages[order];
1086
1087 /* If there is no page for this object size, or all pages in this
1088 context are full, allocate a new page. */
1089 if (entry == NULL || entry->num_free_objects == 0)
1090 {
1091 struct page_entry *new_entry;
1092 new_entry = alloc_page (order);
1093
1094 new_entry->index_by_depth = G.by_depth_in_use;
1095 push_by_depth (new_entry, 0);
1096
1097 /* We can skip context depths, if we do, make sure we go all the
1098 way to the new depth. */
1099 while (new_entry->context_depth >= G.depth_in_use)
1100 push_depth (G.by_depth_in_use-1);
1101
1102 /* If this is the only entry, it's also the tail. If it is not
1103 the only entry, then we must update the PREV pointer of the
1104 ENTRY (G.pages[order]) to point to our new page entry. */
1105 if (entry == NULL)
1106 G.page_tails[order] = new_entry;
1107 else
1108 entry->prev = new_entry;
1109
1110 /* Put new pages at the head of the page list. By definition the
1111 entry at the head of the list always has a NULL pointer. */
1112 new_entry->next = entry;
1113 new_entry->prev = NULL;
1114 entry = new_entry;
1115 G.pages[order] = new_entry;
1116
1117 /* For a new page, we know the word and bit positions (in the
1118 in_use bitmap) of the first available object -- they're zero. */
1119 new_entry->next_bit_hint = 1;
1120 word = 0;
1121 bit = 0;
1122 object_offset = 0;
1123 }
1124 else
1125 {
1126 /* First try to use the hint left from the previous allocation
1127 to locate a clear bit in the in-use bitmap. We've made sure
1128 that the one-past-the-end bit is always set, so if the hint
1129 has run over, this test will fail. */
1130 unsigned hint = entry->next_bit_hint;
1131 word = hint / HOST_BITS_PER_LONG;
1132 bit = hint % HOST_BITS_PER_LONG;
1133
1134 /* If the hint didn't work, scan the bitmap from the beginning. */
1135 if ((entry->in_use_p[word] >> bit) & 1)
1136 {
1137 word = bit = 0;
1138 while (~entry->in_use_p[word] == 0)
1139 ++word;
1140 while ((entry->in_use_p[word] >> bit) & 1)
1141 ++bit;
1142 hint = word * HOST_BITS_PER_LONG + bit;
1143 }
1144
1145 /* Next time, try the next bit. */
1146 entry->next_bit_hint = hint + 1;
1147
1148 object_offset = hint * object_size;
1149 }
1150
1151 /* Set the in-use bit. */
1152 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1153
1154 /* Keep a running total of the number of free objects. If this page
1155 fills up, we may have to move it to the end of the list if the
1156 next page isn't full. If the next page is full, all subsequent
1157 pages are full, so there's no need to move it. */
1158 if (--entry->num_free_objects == 0
1159 && entry->next != NULL
1160 && entry->next->num_free_objects > 0)
1161 {
1162 /* We have a new head for the list. */
1163 G.pages[order] = entry->next;
1164
1165 /* We are moving ENTRY to the end of the page table list.
1166 The new page at the head of the list will have NULL in
1167 its PREV field and ENTRY will have NULL in its NEXT field. */
1168 entry->next->prev = NULL;
1169 entry->next = NULL;
1170
1171 /* Append ENTRY to the tail of the list. */
1172 entry->prev = G.page_tails[order];
1173 G.page_tails[order]->next = entry;
1174 G.page_tails[order] = entry;
1175 }
1176 #ifdef GATHER_STATISTICS
1177 ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size PASS_MEM_STAT);
1178 #endif
1179
1180 /* Calculate the object's address. */
1181 result = entry->page + object_offset;
1182
1183 #ifdef ENABLE_GC_CHECKING
1184 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1185 exact same semantics in presence of memory bugs, regardless of
1186 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1187 handle to avoid handle leak. */
1188 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result, object_size));
1189
1190 /* `Poison' the entire allocated object, including any padding at
1191 the end. */
1192 memset (result, 0xaf, object_size);
1193
1194 /* Make the bytes after the end of the object unaccessible. Discard the
1195 handle to avoid handle leak. */
1196 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS ((char *) result + size,
1197 object_size - size));
1198 #endif
1199
1200 /* Tell Valgrind that the memory is there, but its content isn't
1201 defined. The bytes at the end of the object are still marked
1202 unaccessible. */
1203 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result, size));
1204
1205 /* Keep track of how many bytes are being allocated. This
1206 information is used in deciding when to collect. */
1207 G.allocated += object_size;
1208
1209 #ifdef GATHER_STATISTICS
1210 {
1211 size_t overhead = object_size - size;
1212
1213 G.stats.total_overhead += overhead;
1214 G.stats.total_allocated += object_size;
1215 G.stats.total_overhead_per_order[order] += overhead;
1216 G.stats.total_allocated_per_order[order] += object_size;
1217
1218 if (size <= 32)
1219 {
1220 G.stats.total_overhead_under32 += overhead;
1221 G.stats.total_allocated_under32 += object_size;
1222 }
1223 if (size <= 64)
1224 {
1225 G.stats.total_overhead_under64 += overhead;
1226 G.stats.total_allocated_under64 += object_size;
1227 }
1228 if (size <= 128)
1229 {
1230 G.stats.total_overhead_under128 += overhead;
1231 G.stats.total_allocated_under128 += object_size;
1232 }
1233 }
1234 #endif
1235
1236 if (GGC_DEBUG_LEVEL >= 3)
1237 fprintf (G.debug_file,
1238 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
1239 (unsigned long) size, (unsigned long) object_size, result,
1240 (void *) entry);
1241
1242 return result;
1243 }
1244
1245 /* If P is not marked, marks it and return false. Otherwise return true.
1246 P must have been allocated by the GC allocator; it mustn't point to
1247 static objects, stack variables, or memory allocated with malloc. */
1248
1249 int
1250 ggc_set_mark (const void *p)
1251 {
1252 page_entry *entry;
1253 unsigned bit, word;
1254 unsigned long mask;
1255
1256 /* Look up the page on which the object is alloced. If the object
1257 wasn't allocated by the collector, we'll probably die. */
1258 entry = lookup_page_table_entry (p);
1259 #ifdef ENABLE_CHECKING
1260 if (entry == NULL)
1261 abort ();
1262 #endif
1263
1264 /* Calculate the index of the object on the page; this is its bit
1265 position in the in_use_p bitmap. */
1266 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1267 word = bit / HOST_BITS_PER_LONG;
1268 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1269
1270 /* If the bit was previously set, skip it. */
1271 if (entry->in_use_p[word] & mask)
1272 return 1;
1273
1274 /* Otherwise set it, and decrement the free object count. */
1275 entry->in_use_p[word] |= mask;
1276 entry->num_free_objects -= 1;
1277
1278 if (GGC_DEBUG_LEVEL >= 4)
1279 fprintf (G.debug_file, "Marking %p\n", p);
1280
1281 return 0;
1282 }
1283
1284 /* Return 1 if P has been marked, zero otherwise.
1285 P must have been allocated by the GC allocator; it mustn't point to
1286 static objects, stack variables, or memory allocated with malloc. */
1287
1288 int
1289 ggc_marked_p (const void *p)
1290 {
1291 page_entry *entry;
1292 unsigned bit, word;
1293 unsigned long mask;
1294
1295 /* Look up the page on which the object is alloced. If the object
1296 wasn't allocated by the collector, we'll probably die. */
1297 entry = lookup_page_table_entry (p);
1298 #ifdef ENABLE_CHECKING
1299 if (entry == NULL)
1300 abort ();
1301 #endif
1302
1303 /* Calculate the index of the object on the page; this is its bit
1304 position in the in_use_p bitmap. */
1305 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1306 word = bit / HOST_BITS_PER_LONG;
1307 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1308
1309 return (entry->in_use_p[word] & mask) != 0;
1310 }
1311
1312 /* Return the size of the gc-able object P. */
1313
1314 size_t
1315 ggc_get_size (const void *p)
1316 {
1317 page_entry *pe = lookup_page_table_entry (p);
1318 return OBJECT_SIZE (pe->order);
1319 }
1320
1321 /* Release the memory for object P. */
1322
1323 void
1324 ggc_free (void *p)
1325 {
1326 page_entry *pe = lookup_page_table_entry (p);
1327 size_t order = pe->order;
1328 size_t size = OBJECT_SIZE (order);
1329
1330 if (GGC_DEBUG_LEVEL >= 3)
1331 fprintf (G.debug_file,
1332 "Freeing object, actual size=%lu, at %p on %p\n",
1333 (unsigned long) size, p, (void *) pe);
1334
1335 #ifdef ENABLE_GC_CHECKING
1336 /* Poison the data, to indicate the data is garbage. */
1337 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (p, size));
1338 memset (p, 0xa5, size);
1339 #endif
1340 /* Let valgrind know the object is free. */
1341 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (p, size));
1342
1343 #ifdef ENABLE_GC_ALWAYS_COLLECT
1344 /* In the completely-anal-checking mode, we do *not* immediately free
1345 the data, but instead verify that the data is *actually* not
1346 reachable the next time we collect. */
1347 {
1348 struct free_object *fo = xmalloc (sizeof (struct free_object));
1349 fo->object = p;
1350 fo->next = G.free_object_list;
1351 G.free_object_list = fo;
1352 }
1353 #else
1354 {
1355 unsigned int bit_offset, word, bit;
1356
1357 G.allocated -= size;
1358
1359 /* Mark the object not-in-use. */
1360 bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
1361 word = bit_offset / HOST_BITS_PER_LONG;
1362 bit = bit_offset % HOST_BITS_PER_LONG;
1363 pe->in_use_p[word] &= ~(1UL << bit);
1364
1365 if (pe->num_free_objects++ == 0)
1366 {
1367 page_entry *p, *q;
1368
1369 /* If the page is completely full, then it's supposed to
1370 be after all pages that aren't. Since we've freed one
1371 object from a page that was full, we need to move the
1372 page to the head of the list.
1373
1374 PE is the node we want to move. Q is the previous node
1375 and P is the next node in the list. */
1376 q = pe->prev;
1377 if (q && q->num_free_objects == 0)
1378 {
1379 p = pe->next;
1380
1381 q->next = p;
1382
1383 /* If PE was at the end of the list, then Q becomes the
1384 new end of the list. If PE was not the end of the
1385 list, then we need to update the PREV field for P. */
1386 if (!p)
1387 G.page_tails[order] = q;
1388 else
1389 p->prev = q;
1390
1391 /* Move PE to the head of the list. */
1392 pe->next = G.pages[order];
1393 pe->prev = NULL;
1394 G.pages[order]->prev = pe;
1395 G.pages[order] = pe;
1396 }
1397
1398 /* Reset the hint bit to point to the only free object. */
1399 pe->next_bit_hint = bit_offset;
1400 }
1401 }
1402 #endif
1403 }
1404 \f
1405 /* Subroutine of init_ggc which computes the pair of numbers used to
1406 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1407
1408 This algorithm is taken from Granlund and Montgomery's paper
1409 "Division by Invariant Integers using Multiplication"
1410 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1411 constants). */
1412
1413 static void
1414 compute_inverse (unsigned order)
1415 {
1416 size_t size, inv;
1417 unsigned int e;
1418
1419 size = OBJECT_SIZE (order);
1420 e = 0;
1421 while (size % 2 == 0)
1422 {
1423 e++;
1424 size >>= 1;
1425 }
1426
1427 inv = size;
1428 while (inv * size != 1)
1429 inv = inv * (2 - inv*size);
1430
1431 DIV_MULT (order) = inv;
1432 DIV_SHIFT (order) = e;
1433 }
1434
1435 /* Initialize the ggc-mmap allocator. */
1436 void
1437 init_ggc (void)
1438 {
1439 unsigned order;
1440
1441 G.pagesize = getpagesize();
1442 G.lg_pagesize = exact_log2 (G.pagesize);
1443
1444 #ifdef HAVE_MMAP_DEV_ZERO
1445 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1446 if (G.dev_zero_fd == -1)
1447 internal_error ("open /dev/zero: %m");
1448 #endif
1449
1450 #if 0
1451 G.debug_file = fopen ("ggc-mmap.debug", "w");
1452 #else
1453 G.debug_file = stdout;
1454 #endif
1455
1456 #ifdef USING_MMAP
1457 /* StunOS has an amazing off-by-one error for the first mmap allocation
1458 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1459 believe, is an unaligned page allocation, which would cause us to
1460 hork badly if we tried to use it. */
1461 {
1462 char *p = alloc_anon (NULL, G.pagesize);
1463 struct page_entry *e;
1464 if ((size_t)p & (G.pagesize - 1))
1465 {
1466 /* How losing. Discard this one and try another. If we still
1467 can't get something useful, give up. */
1468
1469 p = alloc_anon (NULL, G.pagesize);
1470 if ((size_t)p & (G.pagesize - 1))
1471 abort ();
1472 }
1473
1474 /* We have a good page, might as well hold onto it... */
1475 e = xcalloc (1, sizeof (struct page_entry));
1476 e->bytes = G.pagesize;
1477 e->page = p;
1478 e->next = G.free_pages;
1479 G.free_pages = e;
1480 }
1481 #endif
1482
1483 /* Initialize the object size table. */
1484 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1485 object_size_table[order] = (size_t) 1 << order;
1486 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1487 {
1488 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1489
1490 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1491 so that we're sure of getting aligned memory. */
1492 s = ROUND_UP (s, MAX_ALIGNMENT);
1493 object_size_table[order] = s;
1494 }
1495
1496 /* Initialize the objects-per-page and inverse tables. */
1497 for (order = 0; order < NUM_ORDERS; ++order)
1498 {
1499 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1500 if (objects_per_page_table[order] == 0)
1501 objects_per_page_table[order] = 1;
1502 compute_inverse (order);
1503 }
1504
1505 /* Reset the size_lookup array to put appropriately sized objects in
1506 the special orders. All objects bigger than the previous power
1507 of two, but no greater than the special size, should go in the
1508 new order. */
1509 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1510 {
1511 int o;
1512 int i;
1513
1514 o = size_lookup[OBJECT_SIZE (order)];
1515 for (i = OBJECT_SIZE (order); size_lookup [i] == o; --i)
1516 size_lookup[i] = order;
1517 }
1518
1519 G.depth_in_use = 0;
1520 G.depth_max = 10;
1521 G.depth = xmalloc (G.depth_max * sizeof (unsigned int));
1522
1523 G.by_depth_in_use = 0;
1524 G.by_depth_max = INITIAL_PTE_COUNT;
1525 G.by_depth = xmalloc (G.by_depth_max * sizeof (page_entry *));
1526 G.save_in_use = xmalloc (G.by_depth_max * sizeof (unsigned long *));
1527 }
1528
1529 /* Start a new GGC zone. */
1530
1531 struct alloc_zone *
1532 new_ggc_zone (const char *name ATTRIBUTE_UNUSED)
1533 {
1534 return NULL;
1535 }
1536
1537 /* Destroy a GGC zone. */
1538 void
1539 destroy_ggc_zone (struct alloc_zone *zone ATTRIBUTE_UNUSED)
1540 {
1541 }
1542
1543 /* Increment the `GC context'. Objects allocated in an outer context
1544 are never freed, eliminating the need to register their roots. */
1545
1546 void
1547 ggc_push_context (void)
1548 {
1549 ++G.context_depth;
1550
1551 /* Die on wrap. */
1552 if (G.context_depth >= HOST_BITS_PER_LONG)
1553 abort ();
1554 }
1555
1556 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1557 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1558
1559 static void
1560 ggc_recalculate_in_use_p (page_entry *p)
1561 {
1562 unsigned int i;
1563 size_t num_objects;
1564
1565 /* Because the past-the-end bit in in_use_p is always set, we
1566 pretend there is one additional object. */
1567 num_objects = OBJECTS_IN_PAGE (p) + 1;
1568
1569 /* Reset the free object count. */
1570 p->num_free_objects = num_objects;
1571
1572 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
1573 for (i = 0;
1574 i < CEIL (BITMAP_SIZE (num_objects),
1575 sizeof (*p->in_use_p));
1576 ++i)
1577 {
1578 unsigned long j;
1579
1580 /* Something is in use if it is marked, or if it was in use in a
1581 context further down the context stack. */
1582 p->in_use_p[i] |= save_in_use_p (p)[i];
1583
1584 /* Decrement the free object count for every object allocated. */
1585 for (j = p->in_use_p[i]; j; j >>= 1)
1586 p->num_free_objects -= (j & 1);
1587 }
1588
1589 if (p->num_free_objects >= num_objects)
1590 abort ();
1591 }
1592
1593 /* Decrement the `GC context'. All objects allocated since the
1594 previous ggc_push_context are migrated to the outer context. */
1595
1596 void
1597 ggc_pop_context (void)
1598 {
1599 unsigned long omask;
1600 unsigned int depth, i, e;
1601 #ifdef ENABLE_CHECKING
1602 unsigned int order;
1603 #endif
1604
1605 depth = --G.context_depth;
1606 omask = (unsigned long)1 << (depth + 1);
1607
1608 if (!((G.context_depth_allocations | G.context_depth_collections) & omask))
1609 return;
1610
1611 G.context_depth_allocations |= (G.context_depth_allocations & omask) >> 1;
1612 G.context_depth_allocations &= omask - 1;
1613 G.context_depth_collections &= omask - 1;
1614
1615 /* The G.depth array is shortened so that the last index is the
1616 context_depth of the top element of by_depth. */
1617 if (depth+1 < G.depth_in_use)
1618 e = G.depth[depth+1];
1619 else
1620 e = G.by_depth_in_use;
1621
1622 /* We might not have any PTEs of depth depth. */
1623 if (depth < G.depth_in_use)
1624 {
1625
1626 /* First we go through all the pages at depth depth to
1627 recalculate the in use bits. */
1628 for (i = G.depth[depth]; i < e; ++i)
1629 {
1630 page_entry *p;
1631
1632 #ifdef ENABLE_CHECKING
1633 p = G.by_depth[i];
1634
1635 /* Check that all of the pages really are at the depth that
1636 we expect. */
1637 if (p->context_depth != depth)
1638 abort ();
1639 if (p->index_by_depth != i)
1640 abort ();
1641 #endif
1642
1643 prefetch (&save_in_use_p_i (i+8));
1644 prefetch (&save_in_use_p_i (i+16));
1645 if (save_in_use_p_i (i))
1646 {
1647 p = G.by_depth[i];
1648 ggc_recalculate_in_use_p (p);
1649 free (save_in_use_p_i (i));
1650 save_in_use_p_i (i) = 0;
1651 }
1652 }
1653 }
1654
1655 /* Then, we reset all page_entries with a depth greater than depth
1656 to be at depth. */
1657 for (i = e; i < G.by_depth_in_use; ++i)
1658 {
1659 page_entry *p = G.by_depth[i];
1660
1661 /* Check that all of the pages really are at the depth we
1662 expect. */
1663 #ifdef ENABLE_CHECKING
1664 if (p->context_depth <= depth)
1665 abort ();
1666 if (p->index_by_depth != i)
1667 abort ();
1668 #endif
1669 p->context_depth = depth;
1670 }
1671
1672 adjust_depth ();
1673
1674 #ifdef ENABLE_CHECKING
1675 for (order = 2; order < NUM_ORDERS; order++)
1676 {
1677 page_entry *p;
1678
1679 for (p = G.pages[order]; p != NULL; p = p->next)
1680 {
1681 if (p->context_depth > depth)
1682 abort ();
1683 else if (p->context_depth == depth && save_in_use_p (p))
1684 abort ();
1685 }
1686 }
1687 #endif
1688 }
1689 \f
1690 /* Unmark all objects. */
1691
1692 static void
1693 clear_marks (void)
1694 {
1695 unsigned order;
1696
1697 for (order = 2; order < NUM_ORDERS; order++)
1698 {
1699 page_entry *p;
1700
1701 for (p = G.pages[order]; p != NULL; p = p->next)
1702 {
1703 size_t num_objects = OBJECTS_IN_PAGE (p);
1704 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1705
1706 #ifdef ENABLE_CHECKING
1707 /* The data should be page-aligned. */
1708 if ((size_t) p->page & (G.pagesize - 1))
1709 abort ();
1710 #endif
1711
1712 /* Pages that aren't in the topmost context are not collected;
1713 nevertheless, we need their in-use bit vectors to store GC
1714 marks. So, back them up first. */
1715 if (p->context_depth < G.context_depth)
1716 {
1717 if (! save_in_use_p (p))
1718 save_in_use_p (p) = xmalloc (bitmap_size);
1719 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
1720 }
1721
1722 /* Reset reset the number of free objects and clear the
1723 in-use bits. These will be adjusted by mark_obj. */
1724 p->num_free_objects = num_objects;
1725 memset (p->in_use_p, 0, bitmap_size);
1726
1727 /* Make sure the one-past-the-end bit is always set. */
1728 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1729 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1730 }
1731 }
1732 }
1733
1734 /* Free all empty pages. Partially empty pages need no attention
1735 because the `mark' bit doubles as an `unused' bit. */
1736
1737 static void
1738 sweep_pages (void)
1739 {
1740 unsigned order;
1741
1742 for (order = 2; order < NUM_ORDERS; order++)
1743 {
1744 /* The last page-entry to consider, regardless of entries
1745 placed at the end of the list. */
1746 page_entry * const last = G.page_tails[order];
1747
1748 size_t num_objects;
1749 size_t live_objects;
1750 page_entry *p, *previous;
1751 int done;
1752
1753 p = G.pages[order];
1754 if (p == NULL)
1755 continue;
1756
1757 previous = NULL;
1758 do
1759 {
1760 page_entry *next = p->next;
1761
1762 /* Loop until all entries have been examined. */
1763 done = (p == last);
1764
1765 num_objects = OBJECTS_IN_PAGE (p);
1766
1767 /* Add all live objects on this page to the count of
1768 allocated memory. */
1769 live_objects = num_objects - p->num_free_objects;
1770
1771 G.allocated += OBJECT_SIZE (order) * live_objects;
1772
1773 /* Only objects on pages in the topmost context should get
1774 collected. */
1775 if (p->context_depth < G.context_depth)
1776 ;
1777
1778 /* Remove the page if it's empty. */
1779 else if (live_objects == 0)
1780 {
1781 /* If P was the first page in the list, then NEXT
1782 becomes the new first page in the list, otherwise
1783 splice P out of the forward pointers. */
1784 if (! previous)
1785 G.pages[order] = next;
1786 else
1787 previous->next = next;
1788
1789 /* Splice P out of the back pointers too. */
1790 if (next)
1791 next->prev = previous;
1792
1793 /* Are we removing the last element? */
1794 if (p == G.page_tails[order])
1795 G.page_tails[order] = previous;
1796 free_page (p);
1797 p = previous;
1798 }
1799
1800 /* If the page is full, move it to the end. */
1801 else if (p->num_free_objects == 0)
1802 {
1803 /* Don't move it if it's already at the end. */
1804 if (p != G.page_tails[order])
1805 {
1806 /* Move p to the end of the list. */
1807 p->next = NULL;
1808 p->prev = G.page_tails[order];
1809 G.page_tails[order]->next = p;
1810
1811 /* Update the tail pointer... */
1812 G.page_tails[order] = p;
1813
1814 /* ... and the head pointer, if necessary. */
1815 if (! previous)
1816 G.pages[order] = next;
1817 else
1818 previous->next = next;
1819
1820 /* And update the backpointer in NEXT if necessary. */
1821 if (next)
1822 next->prev = previous;
1823
1824 p = previous;
1825 }
1826 }
1827
1828 /* If we've fallen through to here, it's a page in the
1829 topmost context that is neither full nor empty. Such a
1830 page must precede pages at lesser context depth in the
1831 list, so move it to the head. */
1832 else if (p != G.pages[order])
1833 {
1834 previous->next = p->next;
1835
1836 /* Update the backchain in the next node if it exists. */
1837 if (p->next)
1838 p->next->prev = previous;
1839
1840 /* Move P to the head of the list. */
1841 p->next = G.pages[order];
1842 p->prev = NULL;
1843 G.pages[order]->prev = p;
1844
1845 /* Update the head pointer. */
1846 G.pages[order] = p;
1847
1848 /* Are we moving the last element? */
1849 if (G.page_tails[order] == p)
1850 G.page_tails[order] = previous;
1851 p = previous;
1852 }
1853
1854 previous = p;
1855 p = next;
1856 }
1857 while (! done);
1858
1859 /* Now, restore the in_use_p vectors for any pages from contexts
1860 other than the current one. */
1861 for (p = G.pages[order]; p; p = p->next)
1862 if (p->context_depth != G.context_depth)
1863 ggc_recalculate_in_use_p (p);
1864 }
1865 }
1866
1867 #ifdef ENABLE_GC_CHECKING
1868 /* Clobber all free objects. */
1869
1870 static void
1871 poison_pages (void)
1872 {
1873 unsigned order;
1874
1875 for (order = 2; order < NUM_ORDERS; order++)
1876 {
1877 size_t size = OBJECT_SIZE (order);
1878 page_entry *p;
1879
1880 for (p = G.pages[order]; p != NULL; p = p->next)
1881 {
1882 size_t num_objects;
1883 size_t i;
1884
1885 if (p->context_depth != G.context_depth)
1886 /* Since we don't do any collection for pages in pushed
1887 contexts, there's no need to do any poisoning. And
1888 besides, the IN_USE_P array isn't valid until we pop
1889 contexts. */
1890 continue;
1891
1892 num_objects = OBJECTS_IN_PAGE (p);
1893 for (i = 0; i < num_objects; i++)
1894 {
1895 size_t word, bit;
1896 word = i / HOST_BITS_PER_LONG;
1897 bit = i % HOST_BITS_PER_LONG;
1898 if (((p->in_use_p[word] >> bit) & 1) == 0)
1899 {
1900 char *object = p->page + i * size;
1901
1902 /* Keep poison-by-write when we expect to use Valgrind,
1903 so the exact same memory semantics is kept, in case
1904 there are memory errors. We override this request
1905 below. */
1906 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (object, size));
1907 memset (object, 0xa5, size);
1908
1909 /* Drop the handle to avoid handle leak. */
1910 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (object, size));
1911 }
1912 }
1913 }
1914 }
1915 }
1916 #else
1917 #define poison_pages()
1918 #endif
1919
1920 #ifdef ENABLE_GC_ALWAYS_COLLECT
1921 /* Validate that the reportedly free objects actually are. */
1922
1923 static void
1924 validate_free_objects (void)
1925 {
1926 struct free_object *f, *next, *still_free = NULL;
1927
1928 for (f = G.free_object_list; f ; f = next)
1929 {
1930 page_entry *pe = lookup_page_table_entry (f->object);
1931 size_t bit, word;
1932
1933 bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
1934 word = bit / HOST_BITS_PER_LONG;
1935 bit = bit % HOST_BITS_PER_LONG;
1936 next = f->next;
1937
1938 /* Make certain it isn't visible from any root. Notice that we
1939 do this check before sweep_pages merges save_in_use_p. */
1940 if (pe->in_use_p[word] & (1UL << bit))
1941 abort ();
1942
1943 /* If the object comes from an outer context, then retain the
1944 free_object entry, so that we can verify that the address
1945 isn't live on the stack in some outer context. */
1946 if (pe->context_depth != G.context_depth)
1947 {
1948 f->next = still_free;
1949 still_free = f;
1950 }
1951 else
1952 free (f);
1953 }
1954
1955 G.free_object_list = still_free;
1956 }
1957 #else
1958 #define validate_free_objects()
1959 #endif
1960
1961 /* Top level mark-and-sweep routine. */
1962
1963 void
1964 ggc_collect (void)
1965 {
1966 /* Avoid frequent unnecessary work by skipping collection if the
1967 total allocations haven't expanded much since the last
1968 collection. */
1969 float allocated_last_gc =
1970 MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
1971
1972 float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
1973
1974 if (G.allocated < allocated_last_gc + min_expand)
1975 return;
1976
1977 timevar_push (TV_GC);
1978 if (!quiet_flag)
1979 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
1980 if (GGC_DEBUG_LEVEL >= 2)
1981 fprintf (G.debug_file, "BEGIN COLLECTING\n");
1982
1983 /* Zero the total allocated bytes. This will be recalculated in the
1984 sweep phase. */
1985 G.allocated = 0;
1986
1987 /* Release the pages we freed the last time we collected, but didn't
1988 reuse in the interim. */
1989 release_pages ();
1990
1991 /* Indicate that we've seen collections at this context depth. */
1992 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
1993
1994 clear_marks ();
1995 ggc_mark_roots ();
1996 poison_pages ();
1997 validate_free_objects ();
1998 sweep_pages ();
1999
2000 G.allocated_last_gc = G.allocated;
2001
2002 timevar_pop (TV_GC);
2003
2004 if (!quiet_flag)
2005 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
2006 if (GGC_DEBUG_LEVEL >= 2)
2007 fprintf (G.debug_file, "END COLLECTING\n");
2008 }
2009
2010 /* Print allocation statistics. */
2011 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
2012 ? (x) \
2013 : ((x) < 1024*1024*10 \
2014 ? (x) / 1024 \
2015 : (x) / (1024*1024))))
2016 #define LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
2017
2018 void
2019 ggc_print_statistics (void)
2020 {
2021 struct ggc_statistics stats;
2022 unsigned int i;
2023 size_t total_overhead = 0;
2024
2025 /* Clear the statistics. */
2026 memset (&stats, 0, sizeof (stats));
2027
2028 /* Make sure collection will really occur. */
2029 G.allocated_last_gc = 0;
2030
2031 /* Collect and print the statistics common across collectors. */
2032 ggc_print_common_statistics (stderr, &stats);
2033
2034 /* Release free pages so that we will not count the bytes allocated
2035 there as part of the total allocated memory. */
2036 release_pages ();
2037
2038 /* Collect some information about the various sizes of
2039 allocation. */
2040 fprintf (stderr,
2041 "Memory still allocated at the end of the compilation process\n");
2042 fprintf (stderr, "%-5s %10s %10s %10s\n",
2043 "Size", "Allocated", "Used", "Overhead");
2044 for (i = 0; i < NUM_ORDERS; ++i)
2045 {
2046 page_entry *p;
2047 size_t allocated;
2048 size_t in_use;
2049 size_t overhead;
2050
2051 /* Skip empty entries. */
2052 if (!G.pages[i])
2053 continue;
2054
2055 overhead = allocated = in_use = 0;
2056
2057 /* Figure out the total number of bytes allocated for objects of
2058 this size, and how many of them are actually in use. Also figure
2059 out how much memory the page table is using. */
2060 for (p = G.pages[i]; p; p = p->next)
2061 {
2062 allocated += p->bytes;
2063 in_use +=
2064 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
2065
2066 overhead += (sizeof (page_entry) - sizeof (long)
2067 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
2068 }
2069 fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n",
2070 (unsigned long) OBJECT_SIZE (i),
2071 SCALE (allocated), LABEL (allocated),
2072 SCALE (in_use), LABEL (in_use),
2073 SCALE (overhead), LABEL (overhead));
2074 total_overhead += overhead;
2075 }
2076 fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
2077 SCALE (G.bytes_mapped), LABEL (G.bytes_mapped),
2078 SCALE (G.allocated), LABEL(G.allocated),
2079 SCALE (total_overhead), LABEL (total_overhead));
2080
2081 #ifdef GATHER_STATISTICS
2082 {
2083 fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
2084
2085 fprintf (stderr, "Total Overhead: %10lld\n",
2086 G.stats.total_overhead);
2087 fprintf (stderr, "Total Allocated: %10lld\n",
2088 G.stats.total_allocated);
2089
2090 fprintf (stderr, "Total Overhead under 32B: %10lld\n",
2091 G.stats.total_overhead_under32);
2092 fprintf (stderr, "Total Allocated under 32B: %10lld\n",
2093 G.stats.total_allocated_under32);
2094 fprintf (stderr, "Total Overhead under 64B: %10lld\n",
2095 G.stats.total_overhead_under64);
2096 fprintf (stderr, "Total Allocated under 64B: %10lld\n",
2097 G.stats.total_allocated_under64);
2098 fprintf (stderr, "Total Overhead under 128B: %10lld\n",
2099 G.stats.total_overhead_under128);
2100 fprintf (stderr, "Total Allocated under 128B: %10lld\n",
2101 G.stats.total_allocated_under128);
2102
2103 for (i = 0; i < NUM_ORDERS; i++)
2104 if (G.stats.total_allocated_per_order[i])
2105 {
2106 fprintf (stderr, "Total Overhead page size %7d: %10lld\n",
2107 OBJECT_SIZE (i), G.stats.total_overhead_per_order[i]);
2108 fprintf (stderr, "Total Allocated page size %7d: %10lld\n",
2109 OBJECT_SIZE (i), G.stats.total_allocated_per_order[i]);
2110 }
2111 }
2112 #endif
2113 }
2114 \f
2115 struct ggc_pch_data
2116 {
2117 struct ggc_pch_ondisk
2118 {
2119 unsigned totals[NUM_ORDERS];
2120 } d;
2121 size_t base[NUM_ORDERS];
2122 size_t written[NUM_ORDERS];
2123 };
2124
2125 struct ggc_pch_data *
2126 init_ggc_pch (void)
2127 {
2128 return xcalloc (sizeof (struct ggc_pch_data), 1);
2129 }
2130
2131 void
2132 ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2133 size_t size, bool is_string ATTRIBUTE_UNUSED)
2134 {
2135 unsigned order;
2136
2137 if (size <= 256)
2138 order = size_lookup[size];
2139 else
2140 {
2141 order = 9;
2142 while (size > OBJECT_SIZE (order))
2143 order++;
2144 }
2145
2146 d->d.totals[order]++;
2147 }
2148
2149 size_t
2150 ggc_pch_total_size (struct ggc_pch_data *d)
2151 {
2152 size_t a = 0;
2153 unsigned i;
2154
2155 for (i = 0; i < NUM_ORDERS; i++)
2156 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2157 return a;
2158 }
2159
2160 void
2161 ggc_pch_this_base (struct ggc_pch_data *d, void *base)
2162 {
2163 size_t a = (size_t) base;
2164 unsigned i;
2165
2166 for (i = 0; i < NUM_ORDERS; i++)
2167 {
2168 d->base[i] = a;
2169 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2170 }
2171 }
2172
2173
2174 char *
2175 ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2176 size_t size, bool is_string ATTRIBUTE_UNUSED)
2177 {
2178 unsigned order;
2179 char *result;
2180
2181 if (size <= 256)
2182 order = size_lookup[size];
2183 else
2184 {
2185 order = 9;
2186 while (size > OBJECT_SIZE (order))
2187 order++;
2188 }
2189
2190 result = (char *) d->base[order];
2191 d->base[order] += OBJECT_SIZE (order);
2192 return result;
2193 }
2194
2195 void
2196 ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2197 FILE *f ATTRIBUTE_UNUSED)
2198 {
2199 /* Nothing to do. */
2200 }
2201
2202 void
2203 ggc_pch_write_object (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2204 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
2205 size_t size, bool is_string ATTRIBUTE_UNUSED)
2206 {
2207 unsigned order;
2208 static const char emptyBytes[256];
2209
2210 if (size <= 256)
2211 order = size_lookup[size];
2212 else
2213 {
2214 order = 9;
2215 while (size > OBJECT_SIZE (order))
2216 order++;
2217 }
2218
2219 if (fwrite (x, size, 1, f) != 1)
2220 fatal_error ("can't write PCH file: %m");
2221
2222 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2223 object out to OBJECT_SIZE(order). This happens for strings. */
2224
2225 if (size != OBJECT_SIZE (order))
2226 {
2227 unsigned padding = OBJECT_SIZE(order) - size;
2228
2229 /* To speed small writes, we use a nulled-out array that's larger
2230 than most padding requests as the source for our null bytes. This
2231 permits us to do the padding with fwrite() rather than fseek(), and
2232 limits the chance the the OS may try to flush any outstanding
2233 writes. */
2234 if (padding <= sizeof(emptyBytes))
2235 {
2236 if (fwrite (emptyBytes, 1, padding, f) != padding)
2237 fatal_error ("can't write PCH file");
2238 }
2239 else
2240 {
2241 /* Larger than our buffer? Just default to fseek. */
2242 if (fseek (f, padding, SEEK_CUR) != 0)
2243 fatal_error ("can't write PCH file");
2244 }
2245 }
2246
2247 d->written[order]++;
2248 if (d->written[order] == d->d.totals[order]
2249 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2250 G.pagesize),
2251 SEEK_CUR) != 0)
2252 fatal_error ("can't write PCH file: %m");
2253 }
2254
2255 void
2256 ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
2257 {
2258 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
2259 fatal_error ("can't write PCH file: %m");
2260 free (d);
2261 }
2262
2263 /* Move the PCH PTE entries just added to the end of by_depth, to the
2264 front. */
2265
2266 static void
2267 move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
2268 {
2269 unsigned i;
2270
2271 /* First, we swap the new entries to the front of the varrays. */
2272 page_entry **new_by_depth;
2273 unsigned long **new_save_in_use;
2274
2275 new_by_depth = xmalloc (G.by_depth_max * sizeof (page_entry *));
2276 new_save_in_use = xmalloc (G.by_depth_max * sizeof (unsigned long *));
2277
2278 memcpy (&new_by_depth[0],
2279 &G.by_depth[count_old_page_tables],
2280 count_new_page_tables * sizeof (void *));
2281 memcpy (&new_by_depth[count_new_page_tables],
2282 &G.by_depth[0],
2283 count_old_page_tables * sizeof (void *));
2284 memcpy (&new_save_in_use[0],
2285 &G.save_in_use[count_old_page_tables],
2286 count_new_page_tables * sizeof (void *));
2287 memcpy (&new_save_in_use[count_new_page_tables],
2288 &G.save_in_use[0],
2289 count_old_page_tables * sizeof (void *));
2290
2291 free (G.by_depth);
2292 free (G.save_in_use);
2293
2294 G.by_depth = new_by_depth;
2295 G.save_in_use = new_save_in_use;
2296
2297 /* Now update all the index_by_depth fields. */
2298 for (i = G.by_depth_in_use; i > 0; --i)
2299 {
2300 page_entry *p = G.by_depth[i-1];
2301 p->index_by_depth = i-1;
2302 }
2303
2304 /* And last, we update the depth pointers in G.depth. The first
2305 entry is already 0, and context 0 entries always start at index
2306 0, so there is nothing to update in the first slot. We need a
2307 second slot, only if we have old ptes, and if we do, they start
2308 at index count_new_page_tables. */
2309 if (count_old_page_tables)
2310 push_depth (count_new_page_tables);
2311 }
2312
2313 void
2314 ggc_pch_read (FILE *f, void *addr)
2315 {
2316 struct ggc_pch_ondisk d;
2317 unsigned i;
2318 char *offs = addr;
2319 unsigned long count_old_page_tables;
2320 unsigned long count_new_page_tables;
2321
2322 count_old_page_tables = G.by_depth_in_use;
2323
2324 /* We've just read in a PCH file. So, every object that used to be
2325 allocated is now free. */
2326 clear_marks ();
2327 #ifdef ENABLE_GC_CHECKING
2328 poison_pages ();
2329 #endif
2330
2331 /* No object read from a PCH file should ever be freed. So, set the
2332 context depth to 1, and set the depth of all the currently-allocated
2333 pages to be 1 too. PCH pages will have depth 0. */
2334 if (G.context_depth != 0)
2335 abort ();
2336 G.context_depth = 1;
2337 for (i = 0; i < NUM_ORDERS; i++)
2338 {
2339 page_entry *p;
2340 for (p = G.pages[i]; p != NULL; p = p->next)
2341 p->context_depth = G.context_depth;
2342 }
2343
2344 /* Allocate the appropriate page-table entries for the pages read from
2345 the PCH file. */
2346 if (fread (&d, sizeof (d), 1, f) != 1)
2347 fatal_error ("can't read PCH file: %m");
2348
2349 for (i = 0; i < NUM_ORDERS; i++)
2350 {
2351 struct page_entry *entry;
2352 char *pte;
2353 size_t bytes;
2354 size_t num_objs;
2355 size_t j;
2356
2357 if (d.totals[i] == 0)
2358 continue;
2359
2360 bytes = ROUND_UP (d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2361 num_objs = bytes / OBJECT_SIZE (i);
2362 entry = xcalloc (1, (sizeof (struct page_entry)
2363 - sizeof (long)
2364 + BITMAP_SIZE (num_objs + 1)));
2365 entry->bytes = bytes;
2366 entry->page = offs;
2367 entry->context_depth = 0;
2368 offs += bytes;
2369 entry->num_free_objects = 0;
2370 entry->order = i;
2371
2372 for (j = 0;
2373 j + HOST_BITS_PER_LONG <= num_objs + 1;
2374 j += HOST_BITS_PER_LONG)
2375 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2376 for (; j < num_objs + 1; j++)
2377 entry->in_use_p[j / HOST_BITS_PER_LONG]
2378 |= 1L << (j % HOST_BITS_PER_LONG);
2379
2380 for (pte = entry->page;
2381 pte < entry->page + entry->bytes;
2382 pte += G.pagesize)
2383 set_page_table_entry (pte, entry);
2384
2385 if (G.page_tails[i] != NULL)
2386 G.page_tails[i]->next = entry;
2387 else
2388 G.pages[i] = entry;
2389 G.page_tails[i] = entry;
2390
2391 /* We start off by just adding all the new information to the
2392 end of the varrays, later, we will move the new information
2393 to the front of the varrays, as the PCH page tables are at
2394 context 0. */
2395 push_by_depth (entry, 0);
2396 }
2397
2398 /* Now, we update the various data structures that speed page table
2399 handling. */
2400 count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2401
2402 move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2403
2404 /* Update the statistics. */
2405 G.allocated = G.allocated_last_gc = offs - (char *)addr;
2406 }