Update comment for ggc_alloc - to match API change made 2000-6-9.
[gcc.git] / gcc / ggc-page.c
1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "toplev.h"
29 #include "flags.h"
30 #include "ggc.h"
31 #include "timevar.h"
32 #include "params.h"
33 #ifdef ENABLE_VALGRIND_CHECKING
34 # ifdef HAVE_MEMCHECK_H
35 # include <memcheck.h>
36 # else
37 # include <valgrind.h>
38 # endif
39 #else
40 /* Avoid #ifdef:s when we can help it. */
41 #define VALGRIND_DISCARD(x)
42 #endif
43
44 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
45 file open. Prefer either to valloc. */
46 #ifdef HAVE_MMAP_ANON
47 # undef HAVE_MMAP_DEV_ZERO
48
49 # include <sys/mman.h>
50 # ifndef MAP_FAILED
51 # define MAP_FAILED -1
52 # endif
53 # if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
54 # define MAP_ANONYMOUS MAP_ANON
55 # endif
56 # define USING_MMAP
57
58 #endif
59
60 #ifdef HAVE_MMAP_DEV_ZERO
61
62 # include <sys/mman.h>
63 # ifndef MAP_FAILED
64 # define MAP_FAILED -1
65 # endif
66 # define USING_MMAP
67
68 #endif
69
70 #ifndef USING_MMAP
71 #define USING_MALLOC_PAGE_GROUPS
72 #endif
73
74 /* Stategy:
75
76 This garbage-collecting allocator allocates objects on one of a set
77 of pages. Each page can allocate objects of a single size only;
78 available sizes are powers of two starting at four bytes. The size
79 of an allocation request is rounded up to the next power of two
80 (`order'), and satisfied from the appropriate page.
81
82 Each page is recorded in a page-entry, which also maintains an
83 in-use bitmap of object positions on the page. This allows the
84 allocation state of a particular object to be flipped without
85 touching the page itself.
86
87 Each page-entry also has a context depth, which is used to track
88 pushing and popping of allocation contexts. Only objects allocated
89 in the current (highest-numbered) context may be collected.
90
91 Page entries are arranged in an array of singly-linked lists. The
92 array is indexed by the allocation size, in bits, of the pages on
93 it; i.e. all pages on a list allocate objects of the same size.
94 Pages are ordered on the list such that all non-full pages precede
95 all full pages, with non-full pages arranged in order of decreasing
96 context depth.
97
98 Empty pages (of all orders) are kept on a single page cache list,
99 and are considered first when new pages are required; they are
100 deallocated at the start of the next collection if they haven't
101 been recycled by then. */
102
103 /* Define GGC_DEBUG_LEVEL to print debugging information.
104 0: No debugging output.
105 1: GC statistics only.
106 2: Page-entry allocations/deallocations as well.
107 3: Object allocations as well.
108 4: Object marks as well. */
109 #define GGC_DEBUG_LEVEL (0)
110 \f
111 #ifndef HOST_BITS_PER_PTR
112 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
113 #endif
114
115 \f
116 /* A two-level tree is used to look up the page-entry for a given
117 pointer. Two chunks of the pointer's bits are extracted to index
118 the first and second levels of the tree, as follows:
119
120 HOST_PAGE_SIZE_BITS
121 32 | |
122 msb +----------------+----+------+------+ lsb
123 | | |
124 PAGE_L1_BITS |
125 | |
126 PAGE_L2_BITS
127
128 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
129 pages are aligned on system page boundaries. The next most
130 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
131 index values in the lookup table, respectively.
132
133 For 32-bit architectures and the settings below, there are no
134 leftover bits. For architectures with wider pointers, the lookup
135 tree points to a list of pages, which must be scanned to find the
136 correct one. */
137
138 #define PAGE_L1_BITS (8)
139 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
140 #define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
141 #define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
142
143 #define LOOKUP_L1(p) \
144 (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
145
146 #define LOOKUP_L2(p) \
147 (((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
148
149 /* The number of objects per allocation page, for objects on a page of
150 the indicated ORDER. */
151 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
152
153 /* The number of objects in P. */
154 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
155
156 /* The size of an object on a page of the indicated ORDER. */
157 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
158
159 /* For speed, we avoid doing a general integer divide to locate the
160 offset in the allocation bitmap, by precalculating numbers M, S
161 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
162 within the page which is evenly divisible by the object size Z. */
163 #define DIV_MULT(ORDER) inverse_table[ORDER].mult
164 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
165 #define OFFSET_TO_BIT(OFFSET, ORDER) \
166 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
167
168 /* The number of extra orders, not corresponding to power-of-two sized
169 objects. */
170
171 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
172
173 #define RTL_SIZE(NSLOTS) \
174 (sizeof (struct rtx_def) + ((NSLOTS) - 1) * sizeof (rtunion))
175
176 /* The Ith entry is the maximum size of an object to be stored in the
177 Ith extra order. Adding a new entry to this array is the *only*
178 thing you need to do to add a new special allocation size. */
179
180 static const size_t extra_order_size_table[] = {
181 sizeof (struct tree_decl),
182 sizeof (struct tree_list),
183 RTL_SIZE (2), /* REG, MEM, PLUS, etc. */
184 RTL_SIZE (10), /* INSN, CALL_INSN, JUMP_INSN */
185 };
186
187 /* The total number of orders. */
188
189 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
190
191 /* We use this structure to determine the alignment required for
192 allocations. For power-of-two sized allocations, that's not a
193 problem, but it does matter for odd-sized allocations. */
194
195 struct max_alignment {
196 char c;
197 union {
198 HOST_WIDEST_INT i;
199 #ifdef HAVE_LONG_DOUBLE
200 long double d;
201 #else
202 double d;
203 #endif
204 } u;
205 };
206
207 /* The biggest alignment required. */
208
209 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
210
211 /* Compute the smallest nonnegative number which when added to X gives
212 a multiple of F. */
213
214 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
215
216 /* Compute the smallest multiple of F that is >= X. */
217
218 #define ROUND_UP(x, f) (CEIL (x, f) * (f))
219
220 /* The Ith entry is the number of objects on a page or order I. */
221
222 static unsigned objects_per_page_table[NUM_ORDERS];
223
224 /* The Ith entry is the size of an object on a page of order I. */
225
226 static size_t object_size_table[NUM_ORDERS];
227
228 /* The Ith entry is a pair of numbers (mult, shift) such that
229 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
230 for all k evenly divisible by OBJECT_SIZE(I). */
231
232 static struct
233 {
234 unsigned int mult;
235 unsigned int shift;
236 }
237 inverse_table[NUM_ORDERS];
238
239 /* A page_entry records the status of an allocation page. This
240 structure is dynamically sized to fit the bitmap in_use_p. */
241 typedef struct page_entry
242 {
243 /* The next page-entry with objects of the same size, or NULL if
244 this is the last page-entry. */
245 struct page_entry *next;
246
247 /* The number of bytes allocated. (This will always be a multiple
248 of the host system page size.) */
249 size_t bytes;
250
251 /* The address at which the memory is allocated. */
252 char *page;
253
254 #ifdef USING_MALLOC_PAGE_GROUPS
255 /* Back pointer to the page group this page came from. */
256 struct page_group *group;
257 #endif
258
259 /* This is the index in the by_depth varray where this page table
260 can be found. */
261 unsigned long index_by_depth;
262
263 /* Context depth of this page. */
264 unsigned short context_depth;
265
266 /* The number of free objects remaining on this page. */
267 unsigned short num_free_objects;
268
269 /* A likely candidate for the bit position of a free object for the
270 next allocation from this page. */
271 unsigned short next_bit_hint;
272
273 /* The lg of size of objects allocated from this page. */
274 unsigned char order;
275
276 /* A bit vector indicating whether or not objects are in use. The
277 Nth bit is one if the Nth object on this page is allocated. This
278 array is dynamically sized. */
279 unsigned long in_use_p[1];
280 } page_entry;
281
282 #ifdef USING_MALLOC_PAGE_GROUPS
283 /* A page_group describes a large allocation from malloc, from which
284 we parcel out aligned pages. */
285 typedef struct page_group
286 {
287 /* A linked list of all extant page groups. */
288 struct page_group *next;
289
290 /* The address we received from malloc. */
291 char *allocation;
292
293 /* The size of the block. */
294 size_t alloc_size;
295
296 /* A bitmask of pages in use. */
297 unsigned int in_use;
298 } page_group;
299 #endif
300
301 #if HOST_BITS_PER_PTR <= 32
302
303 /* On 32-bit hosts, we use a two level page table, as pictured above. */
304 typedef page_entry **page_table[PAGE_L1_SIZE];
305
306 #else
307
308 /* On 64-bit hosts, we use the same two level page tables plus a linked
309 list that disambiguates the top 32-bits. There will almost always be
310 exactly one entry in the list. */
311 typedef struct page_table_chain
312 {
313 struct page_table_chain *next;
314 size_t high_bits;
315 page_entry **table[PAGE_L1_SIZE];
316 } *page_table;
317
318 #endif
319
320 /* The rest of the global variables. */
321 static struct globals
322 {
323 /* The Nth element in this array is a page with objects of size 2^N.
324 If there are any pages with free objects, they will be at the
325 head of the list. NULL if there are no page-entries for this
326 object size. */
327 page_entry *pages[NUM_ORDERS];
328
329 /* The Nth element in this array is the last page with objects of
330 size 2^N. NULL if there are no page-entries for this object
331 size. */
332 page_entry *page_tails[NUM_ORDERS];
333
334 /* Lookup table for associating allocation pages with object addresses. */
335 page_table lookup;
336
337 /* The system's page size. */
338 size_t pagesize;
339 size_t lg_pagesize;
340
341 /* Bytes currently allocated. */
342 size_t allocated;
343
344 /* Bytes currently allocated at the end of the last collection. */
345 size_t allocated_last_gc;
346
347 /* Total amount of memory mapped. */
348 size_t bytes_mapped;
349
350 /* Bit N set if any allocations have been done at context depth N. */
351 unsigned long context_depth_allocations;
352
353 /* Bit N set if any collections have been done at context depth N. */
354 unsigned long context_depth_collections;
355
356 /* The current depth in the context stack. */
357 unsigned short context_depth;
358
359 /* A file descriptor open to /dev/zero for reading. */
360 #if defined (HAVE_MMAP_DEV_ZERO)
361 int dev_zero_fd;
362 #endif
363
364 /* A cache of free system pages. */
365 page_entry *free_pages;
366
367 #ifdef USING_MALLOC_PAGE_GROUPS
368 page_group *page_groups;
369 #endif
370
371 /* The file descriptor for debugging output. */
372 FILE *debug_file;
373
374 /* Current number of elements in use in depth below. */
375 unsigned int depth_in_use;
376
377 /* Maximum number of elements that can be used before resizing. */
378 unsigned int depth_max;
379
380 /* Each element of this arry is an index in by_depth where the given
381 depth starts. This structure is indexed by that given depth we
382 are interested in. */
383 unsigned int *depth;
384
385 /* Current number of elements in use in by_depth below. */
386 unsigned int by_depth_in_use;
387
388 /* Maximum number of elements that can be used before resizing. */
389 unsigned int by_depth_max;
390
391 /* Each element of this array is a pointer to a page_entry, all
392 page_entries can be found in here by increasing depth.
393 index_by_depth in the page_entry is the index into this data
394 structure where that page_entry can be found. This is used to
395 speed up finding all page_entries at a particular depth. */
396 page_entry **by_depth;
397
398 /* Each element is a pointer to the saved in_use_p bits, if any,
399 zero otherwise. We allocate them all together, to enable a
400 better runtime data access pattern. */
401 unsigned long **save_in_use;
402
403 } G;
404
405 /* The size in bytes required to maintain a bitmap for the objects
406 on a page-entry. */
407 #define BITMAP_SIZE(Num_objects) \
408 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
409
410 /* Allocate pages in chunks of this size, to throttle calls to memory
411 allocation routines. The first page is used, the rest go onto the
412 free list. This cannot be larger than HOST_BITS_PER_INT for the
413 in_use bitmask for page_group. */
414 #define GGC_QUIRE_SIZE 16
415
416 /* Initial guess as to how many page table entries we might need. */
417 #define INITIAL_PTE_COUNT 128
418 \f
419 static int ggc_allocated_p PARAMS ((const void *));
420 static page_entry *lookup_page_table_entry PARAMS ((const void *));
421 static void set_page_table_entry PARAMS ((void *, page_entry *));
422 #ifdef USING_MMAP
423 static char *alloc_anon PARAMS ((char *, size_t));
424 #endif
425 #ifdef USING_MALLOC_PAGE_GROUPS
426 static size_t page_group_index PARAMS ((char *, char *));
427 static void set_page_group_in_use PARAMS ((page_group *, char *));
428 static void clear_page_group_in_use PARAMS ((page_group *, char *));
429 #endif
430 static struct page_entry * alloc_page PARAMS ((unsigned));
431 static void free_page PARAMS ((struct page_entry *));
432 static void release_pages PARAMS ((void));
433 static void clear_marks PARAMS ((void));
434 static void sweep_pages PARAMS ((void));
435 static void ggc_recalculate_in_use_p PARAMS ((page_entry *));
436 static void compute_inverse PARAMS ((unsigned));
437 static inline void adjust_depth PARAMS ((void));
438 static void move_ptes_to_front PARAMS ((int, int));
439
440 #ifdef ENABLE_GC_CHECKING
441 static void poison_pages PARAMS ((void));
442 #endif
443
444 void debug_print_page_list PARAMS ((int));
445 static void push_depth PARAMS ((unsigned int));
446 static void push_by_depth PARAMS ((page_entry *, unsigned long *));
447 \f
448 /* Push an entry onto G.depth. */
449
450 inline static void
451 push_depth (i)
452 unsigned int i;
453 {
454 if (G.depth_in_use >= G.depth_max)
455 {
456 G.depth_max *= 2;
457 G.depth = (unsigned int *) xrealloc ((char *) G.depth,
458 G.depth_max * sizeof (unsigned int));
459 }
460 G.depth[G.depth_in_use++] = i;
461 }
462
463 /* Push an entry onto G.by_depth and G.save_in_use. */
464
465 inline static void
466 push_by_depth (p, s)
467 page_entry *p;
468 unsigned long *s;
469 {
470 if (G.by_depth_in_use >= G.by_depth_max)
471 {
472 G.by_depth_max *= 2;
473 G.by_depth = (page_entry **) xrealloc ((char *) G.by_depth,
474 G.by_depth_max * sizeof (page_entry *));
475 G.save_in_use = (unsigned long **) xrealloc ((char *) G.save_in_use,
476 G.by_depth_max * sizeof (unsigned long *));
477 }
478 G.by_depth[G.by_depth_in_use] = p;
479 G.save_in_use[G.by_depth_in_use++] = s;
480 }
481
482 #if (GCC_VERSION < 3001)
483 #define prefetch(X) ((void) X)
484 #else
485 #define prefetch(X) __builtin_prefetch (X)
486 #endif
487
488 #define save_in_use_p_i(__i) \
489 (G.save_in_use[__i])
490 #define save_in_use_p(__p) \
491 (save_in_use_p_i (__p->index_by_depth))
492
493 /* Returns nonzero if P was allocated in GC'able memory. */
494
495 static inline int
496 ggc_allocated_p (p)
497 const void *p;
498 {
499 page_entry ***base;
500 size_t L1, L2;
501
502 #if HOST_BITS_PER_PTR <= 32
503 base = &G.lookup[0];
504 #else
505 page_table table = G.lookup;
506 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
507 while (1)
508 {
509 if (table == NULL)
510 return 0;
511 if (table->high_bits == high_bits)
512 break;
513 table = table->next;
514 }
515 base = &table->table[0];
516 #endif
517
518 /* Extract the level 1 and 2 indices. */
519 L1 = LOOKUP_L1 (p);
520 L2 = LOOKUP_L2 (p);
521
522 return base[L1] && base[L1][L2];
523 }
524
525 /* Traverse the page table and find the entry for a page.
526 Die (probably) if the object wasn't allocated via GC. */
527
528 static inline page_entry *
529 lookup_page_table_entry(p)
530 const void *p;
531 {
532 page_entry ***base;
533 size_t L1, L2;
534
535 #if HOST_BITS_PER_PTR <= 32
536 base = &G.lookup[0];
537 #else
538 page_table table = G.lookup;
539 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
540 while (table->high_bits != high_bits)
541 table = table->next;
542 base = &table->table[0];
543 #endif
544
545 /* Extract the level 1 and 2 indices. */
546 L1 = LOOKUP_L1 (p);
547 L2 = LOOKUP_L2 (p);
548
549 return base[L1][L2];
550 }
551
552 /* Set the page table entry for a page. */
553
554 static void
555 set_page_table_entry(p, entry)
556 void *p;
557 page_entry *entry;
558 {
559 page_entry ***base;
560 size_t L1, L2;
561
562 #if HOST_BITS_PER_PTR <= 32
563 base = &G.lookup[0];
564 #else
565 page_table table;
566 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
567 for (table = G.lookup; table; table = table->next)
568 if (table->high_bits == high_bits)
569 goto found;
570
571 /* Not found -- allocate a new table. */
572 table = (page_table) xcalloc (1, sizeof(*table));
573 table->next = G.lookup;
574 table->high_bits = high_bits;
575 G.lookup = table;
576 found:
577 base = &table->table[0];
578 #endif
579
580 /* Extract the level 1 and 2 indices. */
581 L1 = LOOKUP_L1 (p);
582 L2 = LOOKUP_L2 (p);
583
584 if (base[L1] == NULL)
585 base[L1] = (page_entry **) xcalloc (PAGE_L2_SIZE, sizeof (page_entry *));
586
587 base[L1][L2] = entry;
588 }
589
590 /* Prints the page-entry for object size ORDER, for debugging. */
591
592 void
593 debug_print_page_list (order)
594 int order;
595 {
596 page_entry *p;
597 printf ("Head=%p, Tail=%p:\n", (PTR) G.pages[order],
598 (PTR) G.page_tails[order]);
599 p = G.pages[order];
600 while (p != NULL)
601 {
602 printf ("%p(%1d|%3d) -> ", (PTR) p, p->context_depth,
603 p->num_free_objects);
604 p = p->next;
605 }
606 printf ("NULL\n");
607 fflush (stdout);
608 }
609
610 #ifdef USING_MMAP
611 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
612 (if non-null). The ifdef structure here is intended to cause a
613 compile error unless exactly one of the HAVE_* is defined. */
614
615 static inline char *
616 alloc_anon (pref, size)
617 char *pref ATTRIBUTE_UNUSED;
618 size_t size;
619 {
620 #ifdef HAVE_MMAP_ANON
621 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
622 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
623 #endif
624 #ifdef HAVE_MMAP_DEV_ZERO
625 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
626 MAP_PRIVATE, G.dev_zero_fd, 0);
627 #endif
628
629 if (page == (char *) MAP_FAILED)
630 {
631 perror ("virtual memory exhausted");
632 exit (FATAL_EXIT_CODE);
633 }
634
635 /* Remember that we allocated this memory. */
636 G.bytes_mapped += size;
637
638 /* Pretend we don't have access to the allocated pages. We'll enable
639 access to smaller pieces of the area in ggc_alloc. Discard the
640 handle to avoid handle leak. */
641 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (page, size));
642
643 return page;
644 }
645 #endif
646 #ifdef USING_MALLOC_PAGE_GROUPS
647 /* Compute the index for this page into the page group. */
648
649 static inline size_t
650 page_group_index (allocation, page)
651 char *allocation, *page;
652 {
653 return (size_t) (page - allocation) >> G.lg_pagesize;
654 }
655
656 /* Set and clear the in_use bit for this page in the page group. */
657
658 static inline void
659 set_page_group_in_use (group, page)
660 page_group *group;
661 char *page;
662 {
663 group->in_use |= 1 << page_group_index (group->allocation, page);
664 }
665
666 static inline void
667 clear_page_group_in_use (group, page)
668 page_group *group;
669 char *page;
670 {
671 group->in_use &= ~(1 << page_group_index (group->allocation, page));
672 }
673 #endif
674
675 /* Allocate a new page for allocating objects of size 2^ORDER,
676 and return an entry for it. The entry is not added to the
677 appropriate page_table list. */
678
679 static inline struct page_entry *
680 alloc_page (order)
681 unsigned order;
682 {
683 struct page_entry *entry, *p, **pp;
684 char *page;
685 size_t num_objects;
686 size_t bitmap_size;
687 size_t page_entry_size;
688 size_t entry_size;
689 #ifdef USING_MALLOC_PAGE_GROUPS
690 page_group *group;
691 #endif
692
693 num_objects = OBJECTS_PER_PAGE (order);
694 bitmap_size = BITMAP_SIZE (num_objects + 1);
695 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
696 entry_size = num_objects * OBJECT_SIZE (order);
697 if (entry_size < G.pagesize)
698 entry_size = G.pagesize;
699
700 entry = NULL;
701 page = NULL;
702
703 /* Check the list of free pages for one we can use. */
704 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
705 if (p->bytes == entry_size)
706 break;
707
708 if (p != NULL)
709 {
710 /* Recycle the allocated memory from this page ... */
711 *pp = p->next;
712 page = p->page;
713
714 #ifdef USING_MALLOC_PAGE_GROUPS
715 group = p->group;
716 #endif
717
718 /* ... and, if possible, the page entry itself. */
719 if (p->order == order)
720 {
721 entry = p;
722 memset (entry, 0, page_entry_size);
723 }
724 else
725 free (p);
726 }
727 #ifdef USING_MMAP
728 else if (entry_size == G.pagesize)
729 {
730 /* We want just one page. Allocate a bunch of them and put the
731 extras on the freelist. (Can only do this optimization with
732 mmap for backing store.) */
733 struct page_entry *e, *f = G.free_pages;
734 int i;
735
736 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE);
737
738 /* This loop counts down so that the chain will be in ascending
739 memory order. */
740 for (i = GGC_QUIRE_SIZE - 1; i >= 1; i--)
741 {
742 e = (struct page_entry *) xcalloc (1, page_entry_size);
743 e->order = order;
744 e->bytes = G.pagesize;
745 e->page = page + (i << G.lg_pagesize);
746 e->next = f;
747 f = e;
748 }
749
750 G.free_pages = f;
751 }
752 else
753 page = alloc_anon (NULL, entry_size);
754 #endif
755 #ifdef USING_MALLOC_PAGE_GROUPS
756 else
757 {
758 /* Allocate a large block of memory and serve out the aligned
759 pages therein. This results in much less memory wastage
760 than the traditional implementation of valloc. */
761
762 char *allocation, *a, *enda;
763 size_t alloc_size, head_slop, tail_slop;
764 int multiple_pages = (entry_size == G.pagesize);
765
766 if (multiple_pages)
767 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
768 else
769 alloc_size = entry_size + G.pagesize - 1;
770 allocation = xmalloc (alloc_size);
771
772 page = (char *) (((size_t) allocation + G.pagesize - 1) & -G.pagesize);
773 head_slop = page - allocation;
774 if (multiple_pages)
775 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
776 else
777 tail_slop = alloc_size - entry_size - head_slop;
778 enda = allocation + alloc_size - tail_slop;
779
780 /* We allocated N pages, which are likely not aligned, leaving
781 us with N-1 usable pages. We plan to place the page_group
782 structure somewhere in the slop. */
783 if (head_slop >= sizeof (page_group))
784 group = (page_group *)page - 1;
785 else
786 {
787 /* We magically got an aligned allocation. Too bad, we have
788 to waste a page anyway. */
789 if (tail_slop == 0)
790 {
791 enda -= G.pagesize;
792 tail_slop += G.pagesize;
793 }
794 if (tail_slop < sizeof (page_group))
795 abort ();
796 group = (page_group *)enda;
797 tail_slop -= sizeof (page_group);
798 }
799
800 /* Remember that we allocated this memory. */
801 group->next = G.page_groups;
802 group->allocation = allocation;
803 group->alloc_size = alloc_size;
804 group->in_use = 0;
805 G.page_groups = group;
806 G.bytes_mapped += alloc_size;
807
808 /* If we allocated multiple pages, put the rest on the free list. */
809 if (multiple_pages)
810 {
811 struct page_entry *e, *f = G.free_pages;
812 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
813 {
814 e = (struct page_entry *) xcalloc (1, page_entry_size);
815 e->order = order;
816 e->bytes = G.pagesize;
817 e->page = a;
818 e->group = group;
819 e->next = f;
820 f = e;
821 }
822 G.free_pages = f;
823 }
824 }
825 #endif
826
827 if (entry == NULL)
828 entry = (struct page_entry *) xcalloc (1, page_entry_size);
829
830 entry->bytes = entry_size;
831 entry->page = page;
832 entry->context_depth = G.context_depth;
833 entry->order = order;
834 entry->num_free_objects = num_objects;
835 entry->next_bit_hint = 1;
836
837 G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
838
839 #ifdef USING_MALLOC_PAGE_GROUPS
840 entry->group = group;
841 set_page_group_in_use (group, page);
842 #endif
843
844 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
845 increment the hint. */
846 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
847 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
848
849 set_page_table_entry (page, entry);
850
851 if (GGC_DEBUG_LEVEL >= 2)
852 fprintf (G.debug_file,
853 "Allocating page at %p, object size=%lu, data %p-%p\n",
854 (PTR) entry, (unsigned long) OBJECT_SIZE (order), page,
855 page + entry_size - 1);
856
857 return entry;
858 }
859
860 /* Adjust the size of G.depth so that no index greater than the one
861 used by the top of the G.by_depth is used. */
862
863 static inline void
864 adjust_depth ()
865 {
866 page_entry *top;
867
868 if (G.by_depth_in_use)
869 {
870 top = G.by_depth[G.by_depth_in_use-1];
871
872 /* Peel back indicies in depth that index into by_depth, so that
873 as new elements are added to by_depth, we note the indicies
874 of those elements, if they are for new context depths. */
875 while (G.depth_in_use > (size_t)top->context_depth+1)
876 --G.depth_in_use;
877 }
878 }
879
880 /* For a page that is no longer needed, put it on the free page list. */
881
882 static inline void
883 free_page (entry)
884 page_entry *entry;
885 {
886 if (GGC_DEBUG_LEVEL >= 2)
887 fprintf (G.debug_file,
888 "Deallocating page at %p, data %p-%p\n", (PTR) entry,
889 entry->page, entry->page + entry->bytes - 1);
890
891 /* Mark the page as inaccessible. Discard the handle to avoid handle
892 leak. */
893 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (entry->page, entry->bytes));
894
895 set_page_table_entry (entry->page, NULL);
896
897 #ifdef USING_MALLOC_PAGE_GROUPS
898 clear_page_group_in_use (entry->group, entry->page);
899 #endif
900
901 if (G.by_depth_in_use > 1)
902 {
903 page_entry *top = G.by_depth[G.by_depth_in_use-1];
904
905 /* If they are at the same depth, put top element into freed
906 slot. */
907 if (entry->context_depth == top->context_depth)
908 {
909 int i = entry->index_by_depth;
910 G.by_depth[i] = top;
911 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
912 top->index_by_depth = i;
913 }
914 else
915 {
916 /* We cannot free a page from a context deeper than the
917 current one. */
918 abort ();
919 }
920 }
921 --G.by_depth_in_use;
922
923 adjust_depth ();
924
925 entry->next = G.free_pages;
926 G.free_pages = entry;
927 }
928
929 /* Release the free page cache to the system. */
930
931 static void
932 release_pages ()
933 {
934 #ifdef USING_MMAP
935 page_entry *p, *next;
936 char *start;
937 size_t len;
938
939 /* Gather up adjacent pages so they are unmapped together. */
940 p = G.free_pages;
941
942 while (p)
943 {
944 start = p->page;
945 next = p->next;
946 len = p->bytes;
947 free (p);
948 p = next;
949
950 while (p && p->page == start + len)
951 {
952 next = p->next;
953 len += p->bytes;
954 free (p);
955 p = next;
956 }
957
958 munmap (start, len);
959 G.bytes_mapped -= len;
960 }
961
962 G.free_pages = NULL;
963 #endif
964 #ifdef USING_MALLOC_PAGE_GROUPS
965 page_entry **pp, *p;
966 page_group **gp, *g;
967
968 /* Remove all pages from free page groups from the list. */
969 pp = &G.free_pages;
970 while ((p = *pp) != NULL)
971 if (p->group->in_use == 0)
972 {
973 *pp = p->next;
974 free (p);
975 }
976 else
977 pp = &p->next;
978
979 /* Remove all free page groups, and release the storage. */
980 gp = &G.page_groups;
981 while ((g = *gp) != NULL)
982 if (g->in_use == 0)
983 {
984 *gp = g->next;
985 G.bytes_mapped -= g->alloc_size;
986 free (g->allocation);
987 }
988 else
989 gp = &g->next;
990 #endif
991 }
992
993 /* This table provides a fast way to determine ceil(log_2(size)) for
994 allocation requests. The minimum allocation size is eight bytes. */
995
996 static unsigned char size_lookup[257] =
997 {
998 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
999 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1000 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1001 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1002 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1003 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1004 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1005 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1006 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1007 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1008 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1009 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1010 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1011 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1012 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1013 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1014 8
1015 };
1016
1017 /* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
1018
1019 void *
1020 ggc_alloc (size)
1021 size_t size;
1022 {
1023 unsigned order, word, bit, object_offset;
1024 struct page_entry *entry;
1025 void *result;
1026
1027 if (size <= 256)
1028 order = size_lookup[size];
1029 else
1030 {
1031 order = 9;
1032 while (size > OBJECT_SIZE (order))
1033 order++;
1034 }
1035
1036 /* If there are non-full pages for this size allocation, they are at
1037 the head of the list. */
1038 entry = G.pages[order];
1039
1040 /* If there is no page for this object size, or all pages in this
1041 context are full, allocate a new page. */
1042 if (entry == NULL || entry->num_free_objects == 0)
1043 {
1044 struct page_entry *new_entry;
1045 new_entry = alloc_page (order);
1046
1047 new_entry->index_by_depth = G.by_depth_in_use;
1048 push_by_depth (new_entry, 0);
1049
1050 /* We can skip context depths, if we do, make sure we go all the
1051 way to the new depth. */
1052 while (new_entry->context_depth >= G.depth_in_use)
1053 push_depth (G.by_depth_in_use-1);
1054
1055 /* If this is the only entry, it's also the tail. */
1056 if (entry == NULL)
1057 G.page_tails[order] = new_entry;
1058
1059 /* Put new pages at the head of the page list. */
1060 new_entry->next = entry;
1061 entry = new_entry;
1062 G.pages[order] = new_entry;
1063
1064 /* For a new page, we know the word and bit positions (in the
1065 in_use bitmap) of the first available object -- they're zero. */
1066 new_entry->next_bit_hint = 1;
1067 word = 0;
1068 bit = 0;
1069 object_offset = 0;
1070 }
1071 else
1072 {
1073 /* First try to use the hint left from the previous allocation
1074 to locate a clear bit in the in-use bitmap. We've made sure
1075 that the one-past-the-end bit is always set, so if the hint
1076 has run over, this test will fail. */
1077 unsigned hint = entry->next_bit_hint;
1078 word = hint / HOST_BITS_PER_LONG;
1079 bit = hint % HOST_BITS_PER_LONG;
1080
1081 /* If the hint didn't work, scan the bitmap from the beginning. */
1082 if ((entry->in_use_p[word] >> bit) & 1)
1083 {
1084 word = bit = 0;
1085 while (~entry->in_use_p[word] == 0)
1086 ++word;
1087 while ((entry->in_use_p[word] >> bit) & 1)
1088 ++bit;
1089 hint = word * HOST_BITS_PER_LONG + bit;
1090 }
1091
1092 /* Next time, try the next bit. */
1093 entry->next_bit_hint = hint + 1;
1094
1095 object_offset = hint * OBJECT_SIZE (order);
1096 }
1097
1098 /* Set the in-use bit. */
1099 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1100
1101 /* Keep a running total of the number of free objects. If this page
1102 fills up, we may have to move it to the end of the list if the
1103 next page isn't full. If the next page is full, all subsequent
1104 pages are full, so there's no need to move it. */
1105 if (--entry->num_free_objects == 0
1106 && entry->next != NULL
1107 && entry->next->num_free_objects > 0)
1108 {
1109 G.pages[order] = entry->next;
1110 entry->next = NULL;
1111 G.page_tails[order]->next = entry;
1112 G.page_tails[order] = entry;
1113 }
1114
1115 /* Calculate the object's address. */
1116 result = entry->page + object_offset;
1117
1118 #ifdef ENABLE_GC_CHECKING
1119 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1120 exact same semantics in presence of memory bugs, regardless of
1121 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1122 handle to avoid handle leak. */
1123 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result, OBJECT_SIZE (order)));
1124
1125 /* `Poison' the entire allocated object, including any padding at
1126 the end. */
1127 memset (result, 0xaf, OBJECT_SIZE (order));
1128
1129 /* Make the bytes after the end of the object unaccessible. Discard the
1130 handle to avoid handle leak. */
1131 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS ((char *) result + size,
1132 OBJECT_SIZE (order) - size));
1133 #endif
1134
1135 /* Tell Valgrind that the memory is there, but its content isn't
1136 defined. The bytes at the end of the object are still marked
1137 unaccessible. */
1138 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result, size));
1139
1140 /* Keep track of how many bytes are being allocated. This
1141 information is used in deciding when to collect. */
1142 G.allocated += OBJECT_SIZE (order);
1143
1144 if (GGC_DEBUG_LEVEL >= 3)
1145 fprintf (G.debug_file,
1146 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
1147 (unsigned long) size, (unsigned long) OBJECT_SIZE (order), result,
1148 (PTR) entry);
1149
1150 return result;
1151 }
1152
1153 /* If P is not marked, marks it and return false. Otherwise return true.
1154 P must have been allocated by the GC allocator; it mustn't point to
1155 static objects, stack variables, or memory allocated with malloc. */
1156
1157 int
1158 ggc_set_mark (p)
1159 const void *p;
1160 {
1161 page_entry *entry;
1162 unsigned bit, word;
1163 unsigned long mask;
1164
1165 /* Look up the page on which the object is alloced. If the object
1166 wasn't allocated by the collector, we'll probably die. */
1167 entry = lookup_page_table_entry (p);
1168 #ifdef ENABLE_CHECKING
1169 if (entry == NULL)
1170 abort ();
1171 #endif
1172
1173 /* Calculate the index of the object on the page; this is its bit
1174 position in the in_use_p bitmap. */
1175 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1176 word = bit / HOST_BITS_PER_LONG;
1177 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1178
1179 /* If the bit was previously set, skip it. */
1180 if (entry->in_use_p[word] & mask)
1181 return 1;
1182
1183 /* Otherwise set it, and decrement the free object count. */
1184 entry->in_use_p[word] |= mask;
1185 entry->num_free_objects -= 1;
1186
1187 if (GGC_DEBUG_LEVEL >= 4)
1188 fprintf (G.debug_file, "Marking %p\n", p);
1189
1190 return 0;
1191 }
1192
1193 /* Return 1 if P has been marked, zero otherwise.
1194 P must have been allocated by the GC allocator; it mustn't point to
1195 static objects, stack variables, or memory allocated with malloc. */
1196
1197 int
1198 ggc_marked_p (p)
1199 const void *p;
1200 {
1201 page_entry *entry;
1202 unsigned bit, word;
1203 unsigned long mask;
1204
1205 /* Look up the page on which the object is alloced. If the object
1206 wasn't allocated by the collector, we'll probably die. */
1207 entry = lookup_page_table_entry (p);
1208 #ifdef ENABLE_CHECKING
1209 if (entry == NULL)
1210 abort ();
1211 #endif
1212
1213 /* Calculate the index of the object on the page; this is its bit
1214 position in the in_use_p bitmap. */
1215 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1216 word = bit / HOST_BITS_PER_LONG;
1217 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1218
1219 return (entry->in_use_p[word] & mask) != 0;
1220 }
1221
1222 /* Return the size of the gc-able object P. */
1223
1224 size_t
1225 ggc_get_size (p)
1226 const void *p;
1227 {
1228 page_entry *pe = lookup_page_table_entry (p);
1229 return OBJECT_SIZE (pe->order);
1230 }
1231 \f
1232 /* Subroutine of init_ggc which computes the pair of numbers used to
1233 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1234
1235 This algorithm is taken from Granlund and Montgomery's paper
1236 "Division by Invariant Integers using Multiplication"
1237 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1238 constants). */
1239
1240 static void
1241 compute_inverse (order)
1242 unsigned order;
1243 {
1244 unsigned size, inv, e;
1245
1246 /* There can be only one object per "page" in a bucket for sizes
1247 larger than half a machine page; it will always have offset zero. */
1248 if (OBJECT_SIZE (order) > G.pagesize/2)
1249 {
1250 if (OBJECTS_PER_PAGE (order) != 1)
1251 abort ();
1252
1253 DIV_MULT (order) = 1;
1254 DIV_SHIFT (order) = 0;
1255 return;
1256 }
1257
1258 size = OBJECT_SIZE (order);
1259 e = 0;
1260 while (size % 2 == 0)
1261 {
1262 e++;
1263 size >>= 1;
1264 }
1265
1266 inv = size;
1267 while (inv * size != 1)
1268 inv = inv * (2 - inv*size);
1269
1270 DIV_MULT (order) = inv;
1271 DIV_SHIFT (order) = e;
1272 }
1273
1274 /* Initialize the ggc-mmap allocator. */
1275 void
1276 init_ggc ()
1277 {
1278 unsigned order;
1279
1280 G.pagesize = getpagesize();
1281 G.lg_pagesize = exact_log2 (G.pagesize);
1282
1283 #ifdef HAVE_MMAP_DEV_ZERO
1284 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1285 if (G.dev_zero_fd == -1)
1286 abort ();
1287 #endif
1288
1289 #if 0
1290 G.debug_file = fopen ("ggc-mmap.debug", "w");
1291 #else
1292 G.debug_file = stdout;
1293 #endif
1294
1295 #ifdef USING_MMAP
1296 /* StunOS has an amazing off-by-one error for the first mmap allocation
1297 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1298 believe, is an unaligned page allocation, which would cause us to
1299 hork badly if we tried to use it. */
1300 {
1301 char *p = alloc_anon (NULL, G.pagesize);
1302 struct page_entry *e;
1303 if ((size_t)p & (G.pagesize - 1))
1304 {
1305 /* How losing. Discard this one and try another. If we still
1306 can't get something useful, give up. */
1307
1308 p = alloc_anon (NULL, G.pagesize);
1309 if ((size_t)p & (G.pagesize - 1))
1310 abort ();
1311 }
1312
1313 /* We have a good page, might as well hold onto it... */
1314 e = (struct page_entry *) xcalloc (1, sizeof (struct page_entry));
1315 e->bytes = G.pagesize;
1316 e->page = p;
1317 e->next = G.free_pages;
1318 G.free_pages = e;
1319 }
1320 #endif
1321
1322 /* Initialize the object size table. */
1323 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1324 object_size_table[order] = (size_t) 1 << order;
1325 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1326 {
1327 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1328
1329 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1330 so that we're sure of getting aligned memory. */
1331 s = ROUND_UP (s, MAX_ALIGNMENT);
1332 object_size_table[order] = s;
1333 }
1334
1335 /* Initialize the objects-per-page and inverse tables. */
1336 for (order = 0; order < NUM_ORDERS; ++order)
1337 {
1338 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1339 if (objects_per_page_table[order] == 0)
1340 objects_per_page_table[order] = 1;
1341 compute_inverse (order);
1342 }
1343
1344 /* Reset the size_lookup array to put appropriately sized objects in
1345 the special orders. All objects bigger than the previous power
1346 of two, but no greater than the special size, should go in the
1347 new order. */
1348 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1349 {
1350 int o;
1351 int i;
1352
1353 o = size_lookup[OBJECT_SIZE (order)];
1354 for (i = OBJECT_SIZE (order); size_lookup [i] == o; --i)
1355 size_lookup[i] = order;
1356 }
1357
1358 G.depth_in_use = 0;
1359 G.depth_max = 10;
1360 G.depth = (unsigned int *) xmalloc (G.depth_max * sizeof (unsigned int));
1361
1362 G.by_depth_in_use = 0;
1363 G.by_depth_max = INITIAL_PTE_COUNT;
1364 G.by_depth = (page_entry **) xmalloc (G.by_depth_max * sizeof (page_entry *));
1365 G.save_in_use = (unsigned long **) xmalloc (G.by_depth_max * sizeof (unsigned long *));
1366 }
1367
1368 /* Increment the `GC context'. Objects allocated in an outer context
1369 are never freed, eliminating the need to register their roots. */
1370
1371 void
1372 ggc_push_context ()
1373 {
1374 ++G.context_depth;
1375
1376 /* Die on wrap. */
1377 if (G.context_depth >= HOST_BITS_PER_LONG)
1378 abort ();
1379 }
1380
1381 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1382 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1383
1384 static void
1385 ggc_recalculate_in_use_p (p)
1386 page_entry *p;
1387 {
1388 unsigned int i;
1389 size_t num_objects;
1390
1391 /* Because the past-the-end bit in in_use_p is always set, we
1392 pretend there is one additional object. */
1393 num_objects = OBJECTS_IN_PAGE (p) + 1;
1394
1395 /* Reset the free object count. */
1396 p->num_free_objects = num_objects;
1397
1398 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
1399 for (i = 0;
1400 i < CEIL (BITMAP_SIZE (num_objects),
1401 sizeof (*p->in_use_p));
1402 ++i)
1403 {
1404 unsigned long j;
1405
1406 /* Something is in use if it is marked, or if it was in use in a
1407 context further down the context stack. */
1408 p->in_use_p[i] |= save_in_use_p (p)[i];
1409
1410 /* Decrement the free object count for every object allocated. */
1411 for (j = p->in_use_p[i]; j; j >>= 1)
1412 p->num_free_objects -= (j & 1);
1413 }
1414
1415 if (p->num_free_objects >= num_objects)
1416 abort ();
1417 }
1418
1419 /* Decrement the `GC context'. All objects allocated since the
1420 previous ggc_push_context are migrated to the outer context. */
1421
1422 void
1423 ggc_pop_context ()
1424 {
1425 unsigned long omask;
1426 unsigned int depth, i, e;
1427 #ifdef ENABLE_CHECKING
1428 unsigned int order;
1429 #endif
1430
1431 depth = --G.context_depth;
1432 omask = (unsigned long)1 << (depth + 1);
1433
1434 if (!((G.context_depth_allocations | G.context_depth_collections) & omask))
1435 return;
1436
1437 G.context_depth_allocations |= (G.context_depth_allocations & omask) >> 1;
1438 G.context_depth_allocations &= omask - 1;
1439 G.context_depth_collections &= omask - 1;
1440
1441 /* The G.depth array is shortend so that the last index is the
1442 context_depth of the top element of by_depth. */
1443 if (depth+1 < G.depth_in_use)
1444 e = G.depth[depth+1];
1445 else
1446 e = G.by_depth_in_use;
1447
1448 /* We might not have any PTEs of depth depth. */
1449 if (depth < G.depth_in_use)
1450 {
1451
1452 /* First we go through all the pages at depth depth to
1453 recalculate the in use bits. */
1454 for (i = G.depth[depth]; i < e; ++i)
1455 {
1456 page_entry *p;
1457
1458 #ifdef ENABLE_CHECKING
1459 p = G.by_depth[i];
1460
1461 /* Check that all of the pages really are at the depth that
1462 we expect. */
1463 if (p->context_depth != depth)
1464 abort ();
1465 if (p->index_by_depth != i)
1466 abort ();
1467 #endif
1468
1469 prefetch (&save_in_use_p_i (i+8));
1470 prefetch (&save_in_use_p_i (i+16));
1471 if (save_in_use_p_i (i))
1472 {
1473 p = G.by_depth[i];
1474 ggc_recalculate_in_use_p (p);
1475 free (save_in_use_p_i (i));
1476 save_in_use_p_i (i) = 0;
1477 }
1478 }
1479 }
1480
1481 /* Then, we reset all page_entries with a depth greater than depth
1482 to be at depth. */
1483 for (i = e; i < G.by_depth_in_use; ++i)
1484 {
1485 page_entry *p = G.by_depth[i];
1486
1487 /* Check that all of the pages really are at the depth we
1488 expect. */
1489 #ifdef ENABLE_CHECKING
1490 if (p->context_depth <= depth)
1491 abort ();
1492 if (p->index_by_depth != i)
1493 abort ();
1494 #endif
1495 p->context_depth = depth;
1496 }
1497
1498 adjust_depth ();
1499
1500 #ifdef ENABLE_CHECKING
1501 for (order = 2; order < NUM_ORDERS; order++)
1502 {
1503 page_entry *p;
1504
1505 for (p = G.pages[order]; p != NULL; p = p->next)
1506 {
1507 if (p->context_depth > depth)
1508 abort ();
1509 else if (p->context_depth == depth && save_in_use_p (p))
1510 abort ();
1511 }
1512 }
1513 #endif
1514 }
1515 \f
1516 /* Unmark all objects. */
1517
1518 static inline void
1519 clear_marks ()
1520 {
1521 unsigned order;
1522
1523 for (order = 2; order < NUM_ORDERS; order++)
1524 {
1525 page_entry *p;
1526
1527 for (p = G.pages[order]; p != NULL; p = p->next)
1528 {
1529 size_t num_objects = OBJECTS_IN_PAGE (p);
1530 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1531
1532 #ifdef ENABLE_CHECKING
1533 /* The data should be page-aligned. */
1534 if ((size_t) p->page & (G.pagesize - 1))
1535 abort ();
1536 #endif
1537
1538 /* Pages that aren't in the topmost context are not collected;
1539 nevertheless, we need their in-use bit vectors to store GC
1540 marks. So, back them up first. */
1541 if (p->context_depth < G.context_depth)
1542 {
1543 if (! save_in_use_p (p))
1544 save_in_use_p (p) = xmalloc (bitmap_size);
1545 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
1546 }
1547
1548 /* Reset reset the number of free objects and clear the
1549 in-use bits. These will be adjusted by mark_obj. */
1550 p->num_free_objects = num_objects;
1551 memset (p->in_use_p, 0, bitmap_size);
1552
1553 /* Make sure the one-past-the-end bit is always set. */
1554 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1555 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1556 }
1557 }
1558 }
1559
1560 /* Free all empty pages. Partially empty pages need no attention
1561 because the `mark' bit doubles as an `unused' bit. */
1562
1563 static inline void
1564 sweep_pages ()
1565 {
1566 unsigned order;
1567
1568 for (order = 2; order < NUM_ORDERS; order++)
1569 {
1570 /* The last page-entry to consider, regardless of entries
1571 placed at the end of the list. */
1572 page_entry * const last = G.page_tails[order];
1573
1574 size_t num_objects;
1575 size_t live_objects;
1576 page_entry *p, *previous;
1577 int done;
1578
1579 p = G.pages[order];
1580 if (p == NULL)
1581 continue;
1582
1583 previous = NULL;
1584 do
1585 {
1586 page_entry *next = p->next;
1587
1588 /* Loop until all entries have been examined. */
1589 done = (p == last);
1590
1591 num_objects = OBJECTS_IN_PAGE (p);
1592
1593 /* Add all live objects on this page to the count of
1594 allocated memory. */
1595 live_objects = num_objects - p->num_free_objects;
1596
1597 G.allocated += OBJECT_SIZE (order) * live_objects;
1598
1599 /* Only objects on pages in the topmost context should get
1600 collected. */
1601 if (p->context_depth < G.context_depth)
1602 ;
1603
1604 /* Remove the page if it's empty. */
1605 else if (live_objects == 0)
1606 {
1607 if (! previous)
1608 G.pages[order] = next;
1609 else
1610 previous->next = next;
1611
1612 /* Are we removing the last element? */
1613 if (p == G.page_tails[order])
1614 G.page_tails[order] = previous;
1615 free_page (p);
1616 p = previous;
1617 }
1618
1619 /* If the page is full, move it to the end. */
1620 else if (p->num_free_objects == 0)
1621 {
1622 /* Don't move it if it's already at the end. */
1623 if (p != G.page_tails[order])
1624 {
1625 /* Move p to the end of the list. */
1626 p->next = NULL;
1627 G.page_tails[order]->next = p;
1628
1629 /* Update the tail pointer... */
1630 G.page_tails[order] = p;
1631
1632 /* ... and the head pointer, if necessary. */
1633 if (! previous)
1634 G.pages[order] = next;
1635 else
1636 previous->next = next;
1637 p = previous;
1638 }
1639 }
1640
1641 /* If we've fallen through to here, it's a page in the
1642 topmost context that is neither full nor empty. Such a
1643 page must precede pages at lesser context depth in the
1644 list, so move it to the head. */
1645 else if (p != G.pages[order])
1646 {
1647 previous->next = p->next;
1648 p->next = G.pages[order];
1649 G.pages[order] = p;
1650 /* Are we moving the last element? */
1651 if (G.page_tails[order] == p)
1652 G.page_tails[order] = previous;
1653 p = previous;
1654 }
1655
1656 previous = p;
1657 p = next;
1658 }
1659 while (! done);
1660
1661 /* Now, restore the in_use_p vectors for any pages from contexts
1662 other than the current one. */
1663 for (p = G.pages[order]; p; p = p->next)
1664 if (p->context_depth != G.context_depth)
1665 ggc_recalculate_in_use_p (p);
1666 }
1667 }
1668
1669 #ifdef ENABLE_GC_CHECKING
1670 /* Clobber all free objects. */
1671
1672 static inline void
1673 poison_pages ()
1674 {
1675 unsigned order;
1676
1677 for (order = 2; order < NUM_ORDERS; order++)
1678 {
1679 size_t size = OBJECT_SIZE (order);
1680 page_entry *p;
1681
1682 for (p = G.pages[order]; p != NULL; p = p->next)
1683 {
1684 size_t num_objects;
1685 size_t i;
1686
1687 if (p->context_depth != G.context_depth)
1688 /* Since we don't do any collection for pages in pushed
1689 contexts, there's no need to do any poisoning. And
1690 besides, the IN_USE_P array isn't valid until we pop
1691 contexts. */
1692 continue;
1693
1694 num_objects = OBJECTS_IN_PAGE (p);
1695 for (i = 0; i < num_objects; i++)
1696 {
1697 size_t word, bit;
1698 word = i / HOST_BITS_PER_LONG;
1699 bit = i % HOST_BITS_PER_LONG;
1700 if (((p->in_use_p[word] >> bit) & 1) == 0)
1701 {
1702 char *object = p->page + i * size;
1703
1704 /* Keep poison-by-write when we expect to use Valgrind,
1705 so the exact same memory semantics is kept, in case
1706 there are memory errors. We override this request
1707 below. */
1708 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (object, size));
1709 memset (object, 0xa5, size);
1710
1711 /* Drop the handle to avoid handle leak. */
1712 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (object, size));
1713 }
1714 }
1715 }
1716 }
1717 }
1718 #endif
1719
1720 /* Top level mark-and-sweep routine. */
1721
1722 void
1723 ggc_collect ()
1724 {
1725 /* Avoid frequent unnecessary work by skipping collection if the
1726 total allocations haven't expanded much since the last
1727 collection. */
1728 float allocated_last_gc =
1729 MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
1730
1731 float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
1732
1733 if (G.allocated < allocated_last_gc + min_expand)
1734 return;
1735
1736 timevar_push (TV_GC);
1737 if (!quiet_flag)
1738 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
1739
1740 /* Zero the total allocated bytes. This will be recalculated in the
1741 sweep phase. */
1742 G.allocated = 0;
1743
1744 /* Release the pages we freed the last time we collected, but didn't
1745 reuse in the interim. */
1746 release_pages ();
1747
1748 /* Indicate that we've seen collections at this context depth. */
1749 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
1750
1751 clear_marks ();
1752 ggc_mark_roots ();
1753
1754 #ifdef ENABLE_GC_CHECKING
1755 poison_pages ();
1756 #endif
1757
1758 sweep_pages ();
1759
1760 G.allocated_last_gc = G.allocated;
1761
1762 timevar_pop (TV_GC);
1763
1764 if (!quiet_flag)
1765 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
1766 }
1767
1768 /* Print allocation statistics. */
1769 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
1770 ? (x) \
1771 : ((x) < 1024*1024*10 \
1772 ? (x) / 1024 \
1773 : (x) / (1024*1024))))
1774 #define LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
1775
1776 void
1777 ggc_print_statistics ()
1778 {
1779 struct ggc_statistics stats;
1780 unsigned int i;
1781 size_t total_overhead = 0;
1782
1783 /* Clear the statistics. */
1784 memset (&stats, 0, sizeof (stats));
1785
1786 /* Make sure collection will really occur. */
1787 G.allocated_last_gc = 0;
1788
1789 /* Collect and print the statistics common across collectors. */
1790 ggc_print_common_statistics (stderr, &stats);
1791
1792 /* Release free pages so that we will not count the bytes allocated
1793 there as part of the total allocated memory. */
1794 release_pages ();
1795
1796 /* Collect some information about the various sizes of
1797 allocation. */
1798 fprintf (stderr, "\n%-5s %10s %10s %10s\n",
1799 "Size", "Allocated", "Used", "Overhead");
1800 for (i = 0; i < NUM_ORDERS; ++i)
1801 {
1802 page_entry *p;
1803 size_t allocated;
1804 size_t in_use;
1805 size_t overhead;
1806
1807 /* Skip empty entries. */
1808 if (!G.pages[i])
1809 continue;
1810
1811 overhead = allocated = in_use = 0;
1812
1813 /* Figure out the total number of bytes allocated for objects of
1814 this size, and how many of them are actually in use. Also figure
1815 out how much memory the page table is using. */
1816 for (p = G.pages[i]; p; p = p->next)
1817 {
1818 allocated += p->bytes;
1819 in_use +=
1820 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
1821
1822 overhead += (sizeof (page_entry) - sizeof (long)
1823 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
1824 }
1825 fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n",
1826 (unsigned long) OBJECT_SIZE (i),
1827 SCALE (allocated), LABEL (allocated),
1828 SCALE (in_use), LABEL (in_use),
1829 SCALE (overhead), LABEL (overhead));
1830 total_overhead += overhead;
1831 }
1832 fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
1833 SCALE (G.bytes_mapped), LABEL (G.bytes_mapped),
1834 SCALE (G.allocated), LABEL(G.allocated),
1835 SCALE (total_overhead), LABEL (total_overhead));
1836 }
1837 \f
1838 struct ggc_pch_data
1839 {
1840 struct ggc_pch_ondisk
1841 {
1842 unsigned totals[NUM_ORDERS];
1843 } d;
1844 size_t base[NUM_ORDERS];
1845 size_t written[NUM_ORDERS];
1846 };
1847
1848 struct ggc_pch_data *
1849 init_ggc_pch ()
1850 {
1851 return xcalloc (sizeof (struct ggc_pch_data), 1);
1852 }
1853
1854 void
1855 ggc_pch_count_object (d, x, size)
1856 struct ggc_pch_data *d;
1857 void *x ATTRIBUTE_UNUSED;
1858 size_t size;
1859 {
1860 unsigned order;
1861
1862 if (size <= 256)
1863 order = size_lookup[size];
1864 else
1865 {
1866 order = 9;
1867 while (size > OBJECT_SIZE (order))
1868 order++;
1869 }
1870
1871 d->d.totals[order]++;
1872 }
1873
1874 size_t
1875 ggc_pch_total_size (d)
1876 struct ggc_pch_data *d;
1877 {
1878 size_t a = 0;
1879 unsigned i;
1880
1881 for (i = 0; i < NUM_ORDERS; i++)
1882 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
1883 return a;
1884 }
1885
1886 void
1887 ggc_pch_this_base (d, base)
1888 struct ggc_pch_data *d;
1889 void *base;
1890 {
1891 size_t a = (size_t) base;
1892 unsigned i;
1893
1894 for (i = 0; i < NUM_ORDERS; i++)
1895 {
1896 d->base[i] = a;
1897 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
1898 }
1899 }
1900
1901
1902 char *
1903 ggc_pch_alloc_object (d, x, size)
1904 struct ggc_pch_data *d;
1905 void *x ATTRIBUTE_UNUSED;
1906 size_t size;
1907 {
1908 unsigned order;
1909 char *result;
1910
1911 if (size <= 256)
1912 order = size_lookup[size];
1913 else
1914 {
1915 order = 9;
1916 while (size > OBJECT_SIZE (order))
1917 order++;
1918 }
1919
1920 result = (char *) d->base[order];
1921 d->base[order] += OBJECT_SIZE (order);
1922 return result;
1923 }
1924
1925 void
1926 ggc_pch_prepare_write (d, f)
1927 struct ggc_pch_data * d ATTRIBUTE_UNUSED;
1928 FILE * f ATTRIBUTE_UNUSED;
1929 {
1930 /* Nothing to do. */
1931 }
1932
1933 void
1934 ggc_pch_write_object (d, f, x, newx, size)
1935 struct ggc_pch_data * d ATTRIBUTE_UNUSED;
1936 FILE *f;
1937 void *x;
1938 void *newx ATTRIBUTE_UNUSED;
1939 size_t size;
1940 {
1941 unsigned order;
1942
1943 if (size <= 256)
1944 order = size_lookup[size];
1945 else
1946 {
1947 order = 9;
1948 while (size > OBJECT_SIZE (order))
1949 order++;
1950 }
1951
1952 if (fwrite (x, size, 1, f) != 1)
1953 fatal_io_error ("can't write PCH file");
1954
1955 /* In the current implementation, SIZE is always equal to
1956 OBJECT_SIZE (order) and so the fseek is never executed. */
1957 if (size != OBJECT_SIZE (order)
1958 && fseek (f, OBJECT_SIZE (order) - size, SEEK_CUR) != 0)
1959 fatal_io_error ("can't write PCH file");
1960
1961 d->written[order]++;
1962 if (d->written[order] == d->d.totals[order]
1963 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
1964 G.pagesize),
1965 SEEK_CUR) != 0)
1966 fatal_io_error ("can't write PCH file");
1967 }
1968
1969 void
1970 ggc_pch_finish (d, f)
1971 struct ggc_pch_data * d;
1972 FILE *f;
1973 {
1974 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
1975 fatal_io_error ("can't write PCH file");
1976 free (d);
1977 }
1978
1979 /* Move the PCH PTE entries just added to the end of by_depth, to the
1980 front. */
1981
1982 static void
1983 move_ptes_to_front (count_old_page_tables, count_new_page_tables)
1984 int count_old_page_tables;
1985 int count_new_page_tables;
1986 {
1987 unsigned i;
1988
1989 /* First, we swap the new entries to the front of the varrays. */
1990 page_entry **new_by_depth;
1991 unsigned long **new_save_in_use;
1992
1993 new_by_depth = (page_entry **) xmalloc (G.by_depth_max * sizeof (page_entry *));
1994 new_save_in_use = (unsigned long **) xmalloc (G.by_depth_max * sizeof (unsigned long *));
1995
1996 memcpy (&new_by_depth[0],
1997 &G.by_depth[count_old_page_tables],
1998 count_new_page_tables * sizeof (void *));
1999 memcpy (&new_by_depth[count_new_page_tables],
2000 &G.by_depth[0],
2001 count_old_page_tables * sizeof (void *));
2002 memcpy (&new_save_in_use[0],
2003 &G.save_in_use[count_old_page_tables],
2004 count_new_page_tables * sizeof (void *));
2005 memcpy (&new_save_in_use[count_new_page_tables],
2006 &G.save_in_use[0],
2007 count_old_page_tables * sizeof (void *));
2008
2009 free (G.by_depth);
2010 free (G.save_in_use);
2011
2012 G.by_depth = new_by_depth;
2013 G.save_in_use = new_save_in_use;
2014
2015 /* Now update all the index_by_depth fields. */
2016 for (i = G.by_depth_in_use; i > 0; --i)
2017 {
2018 page_entry *p = G.by_depth[i-1];
2019 p->index_by_depth = i-1;
2020 }
2021
2022 /* And last, we update the depth pointers in G.depth. The first
2023 entry is already 0, and context 0 entries always start at index
2024 0, so there is nothing to update in the first slot. We need a
2025 second slot, only if we have old ptes, and if we do, they start
2026 at index count_new_page_tables. */
2027 if (count_old_page_tables)
2028 push_depth (count_new_page_tables);
2029 }
2030
2031 void
2032 ggc_pch_read (f, addr)
2033 FILE *f;
2034 void *addr;
2035 {
2036 struct ggc_pch_ondisk d;
2037 unsigned i;
2038 char *offs = addr;
2039 unsigned long count_old_page_tables;
2040 unsigned long count_new_page_tables;
2041
2042 count_old_page_tables = G.by_depth_in_use;
2043
2044 /* We've just read in a PCH file. So, every object that used to be
2045 allocated is now free. */
2046 clear_marks ();
2047 #ifdef GGC_POISON
2048 poison_pages ();
2049 #endif
2050
2051 /* No object read from a PCH file should ever be freed. So, set the
2052 context depth to 1, and set the depth of all the currently-allocated
2053 pages to be 1 too. PCH pages will have depth 0. */
2054 if (G.context_depth != 0)
2055 abort ();
2056 G.context_depth = 1;
2057 for (i = 0; i < NUM_ORDERS; i++)
2058 {
2059 page_entry *p;
2060 for (p = G.pages[i]; p != NULL; p = p->next)
2061 p->context_depth = G.context_depth;
2062 }
2063
2064 /* Allocate the appropriate page-table entries for the pages read from
2065 the PCH file. */
2066 if (fread (&d, sizeof (d), 1, f) != 1)
2067 fatal_io_error ("can't read PCH file");
2068
2069 for (i = 0; i < NUM_ORDERS; i++)
2070 {
2071 struct page_entry *entry;
2072 char *pte;
2073 size_t bytes;
2074 size_t num_objs;
2075 size_t j;
2076
2077 if (d.totals[i] == 0)
2078 continue;
2079
2080 bytes = ROUND_UP (d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2081 num_objs = bytes / OBJECT_SIZE (i);
2082 entry = xcalloc (1, (sizeof (struct page_entry)
2083 - sizeof (long)
2084 + BITMAP_SIZE (num_objs + 1)));
2085 entry->bytes = bytes;
2086 entry->page = offs;
2087 entry->context_depth = 0;
2088 offs += bytes;
2089 entry->num_free_objects = 0;
2090 entry->order = i;
2091
2092 for (j = 0;
2093 j + HOST_BITS_PER_LONG <= num_objs + 1;
2094 j += HOST_BITS_PER_LONG)
2095 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2096 for (; j < num_objs + 1; j++)
2097 entry->in_use_p[j / HOST_BITS_PER_LONG]
2098 |= 1L << (j % HOST_BITS_PER_LONG);
2099
2100 for (pte = entry->page;
2101 pte < entry->page + entry->bytes;
2102 pte += G.pagesize)
2103 set_page_table_entry (pte, entry);
2104
2105 if (G.page_tails[i] != NULL)
2106 G.page_tails[i]->next = entry;
2107 else
2108 G.pages[i] = entry;
2109 G.page_tails[i] = entry;
2110
2111 /* We start off by just adding all the new information to the
2112 end of the varrays, later, we will move the new information
2113 to the front of the varrays, as the PCH page tables are at
2114 context 0. */
2115 push_by_depth (entry, 0);
2116 }
2117
2118 /* Now, we update the various data structures that speed page table
2119 handling. */
2120 count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2121
2122 move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2123
2124 /* Update the statistics. */
2125 G.allocated = G.allocated_last_gc = offs - (char *)addr;
2126 }