cgraph.c: Fix typos in comments.
[gcc.git] / gcc / ggc-page.c
1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "toplev.h"
29 #include "flags.h"
30 #include "ggc.h"
31 #include "timevar.h"
32 #include "params.h"
33 #include "tree-flow.h"
34
35 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
36 file open. Prefer either to valloc. */
37 #ifdef HAVE_MMAP_ANON
38 # undef HAVE_MMAP_DEV_ZERO
39
40 # include <sys/mman.h>
41 # ifndef MAP_FAILED
42 # define MAP_FAILED -1
43 # endif
44 # if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
45 # define MAP_ANONYMOUS MAP_ANON
46 # endif
47 # define USING_MMAP
48
49 #endif
50
51 #ifdef HAVE_MMAP_DEV_ZERO
52
53 # include <sys/mman.h>
54 # ifndef MAP_FAILED
55 # define MAP_FAILED -1
56 # endif
57 # define USING_MMAP
58
59 #endif
60
61 #ifndef USING_MMAP
62 #define USING_MALLOC_PAGE_GROUPS
63 #endif
64
65 /* Strategy:
66
67 This garbage-collecting allocator allocates objects on one of a set
68 of pages. Each page can allocate objects of a single size only;
69 available sizes are powers of two starting at four bytes. The size
70 of an allocation request is rounded up to the next power of two
71 (`order'), and satisfied from the appropriate page.
72
73 Each page is recorded in a page-entry, which also maintains an
74 in-use bitmap of object positions on the page. This allows the
75 allocation state of a particular object to be flipped without
76 touching the page itself.
77
78 Each page-entry also has a context depth, which is used to track
79 pushing and popping of allocation contexts. Only objects allocated
80 in the current (highest-numbered) context may be collected.
81
82 Page entries are arranged in an array of singly-linked lists. The
83 array is indexed by the allocation size, in bits, of the pages on
84 it; i.e. all pages on a list allocate objects of the same size.
85 Pages are ordered on the list such that all non-full pages precede
86 all full pages, with non-full pages arranged in order of decreasing
87 context depth.
88
89 Empty pages (of all orders) are kept on a single page cache list,
90 and are considered first when new pages are required; they are
91 deallocated at the start of the next collection if they haven't
92 been recycled by then. */
93
94 /* Define GGC_DEBUG_LEVEL to print debugging information.
95 0: No debugging output.
96 1: GC statistics only.
97 2: Page-entry allocations/deallocations as well.
98 3: Object allocations as well.
99 4: Object marks as well. */
100 #define GGC_DEBUG_LEVEL (0)
101 \f
102 #ifndef HOST_BITS_PER_PTR
103 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
104 #endif
105
106 \f
107 /* A two-level tree is used to look up the page-entry for a given
108 pointer. Two chunks of the pointer's bits are extracted to index
109 the first and second levels of the tree, as follows:
110
111 HOST_PAGE_SIZE_BITS
112 32 | |
113 msb +----------------+----+------+------+ lsb
114 | | |
115 PAGE_L1_BITS |
116 | |
117 PAGE_L2_BITS
118
119 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
120 pages are aligned on system page boundaries. The next most
121 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
122 index values in the lookup table, respectively.
123
124 For 32-bit architectures and the settings below, there are no
125 leftover bits. For architectures with wider pointers, the lookup
126 tree points to a list of pages, which must be scanned to find the
127 correct one. */
128
129 #define PAGE_L1_BITS (8)
130 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
131 #define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
132 #define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
133
134 #define LOOKUP_L1(p) \
135 (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
136
137 #define LOOKUP_L2(p) \
138 (((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
139
140 /* The number of objects per allocation page, for objects on a page of
141 the indicated ORDER. */
142 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
143
144 /* The number of objects in P. */
145 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
146
147 /* The size of an object on a page of the indicated ORDER. */
148 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
149
150 /* For speed, we avoid doing a general integer divide to locate the
151 offset in the allocation bitmap, by precalculating numbers M, S
152 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
153 within the page which is evenly divisible by the object size Z. */
154 #define DIV_MULT(ORDER) inverse_table[ORDER].mult
155 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
156 #define OFFSET_TO_BIT(OFFSET, ORDER) \
157 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
158
159 /* The number of extra orders, not corresponding to power-of-two sized
160 objects. */
161
162 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
163
164 #define RTL_SIZE(NSLOTS) \
165 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
166
167 #define TREE_EXP_SIZE(OPS) \
168 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
169
170 /* The Ith entry is the maximum size of an object to be stored in the
171 Ith extra order. Adding a new entry to this array is the *only*
172 thing you need to do to add a new special allocation size. */
173
174 static const size_t extra_order_size_table[] = {
175 sizeof (struct stmt_ann_d),
176 sizeof (struct var_ann_d),
177 sizeof (struct tree_decl_non_common),
178 sizeof (struct tree_field_decl),
179 sizeof (struct tree_parm_decl),
180 sizeof (struct tree_var_decl),
181 sizeof (struct tree_list),
182 sizeof (struct tree_ssa_name),
183 sizeof (struct function),
184 sizeof (struct basic_block_def),
185 sizeof (bitmap_element),
186 sizeof (bitmap_head),
187 /* PHI nodes with one to three arguments are already covered by the
188 above sizes. */
189 sizeof (struct tree_phi_node) + sizeof (struct phi_arg_d) * 3,
190 TREE_EXP_SIZE (2),
191 RTL_SIZE (2), /* MEM, PLUS, etc. */
192 RTL_SIZE (9), /* INSN */
193 };
194
195 /* The total number of orders. */
196
197 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
198
199 /* We use this structure to determine the alignment required for
200 allocations. For power-of-two sized allocations, that's not a
201 problem, but it does matter for odd-sized allocations. */
202
203 struct max_alignment {
204 char c;
205 union {
206 HOST_WIDEST_INT i;
207 long double d;
208 } u;
209 };
210
211 /* The biggest alignment required. */
212
213 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
214
215 /* Compute the smallest nonnegative number which when added to X gives
216 a multiple of F. */
217
218 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
219
220 /* Compute the smallest multiple of F that is >= X. */
221
222 #define ROUND_UP(x, f) (CEIL (x, f) * (f))
223
224 /* The Ith entry is the number of objects on a page or order I. */
225
226 static unsigned objects_per_page_table[NUM_ORDERS];
227
228 /* The Ith entry is the size of an object on a page of order I. */
229
230 static size_t object_size_table[NUM_ORDERS];
231
232 /* The Ith entry is a pair of numbers (mult, shift) such that
233 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
234 for all k evenly divisible by OBJECT_SIZE(I). */
235
236 static struct
237 {
238 size_t mult;
239 unsigned int shift;
240 }
241 inverse_table[NUM_ORDERS];
242
243 /* A page_entry records the status of an allocation page. This
244 structure is dynamically sized to fit the bitmap in_use_p. */
245 typedef struct page_entry
246 {
247 /* The next page-entry with objects of the same size, or NULL if
248 this is the last page-entry. */
249 struct page_entry *next;
250
251 /* The previous page-entry with objects of the same size, or NULL if
252 this is the first page-entry. The PREV pointer exists solely to
253 keep the cost of ggc_free manageable. */
254 struct page_entry *prev;
255
256 /* The number of bytes allocated. (This will always be a multiple
257 of the host system page size.) */
258 size_t bytes;
259
260 /* The address at which the memory is allocated. */
261 char *page;
262
263 #ifdef USING_MALLOC_PAGE_GROUPS
264 /* Back pointer to the page group this page came from. */
265 struct page_group *group;
266 #endif
267
268 /* This is the index in the by_depth varray where this page table
269 can be found. */
270 unsigned long index_by_depth;
271
272 /* Context depth of this page. */
273 unsigned short context_depth;
274
275 /* The number of free objects remaining on this page. */
276 unsigned short num_free_objects;
277
278 /* A likely candidate for the bit position of a free object for the
279 next allocation from this page. */
280 unsigned short next_bit_hint;
281
282 /* The lg of size of objects allocated from this page. */
283 unsigned char order;
284
285 /* A bit vector indicating whether or not objects are in use. The
286 Nth bit is one if the Nth object on this page is allocated. This
287 array is dynamically sized. */
288 unsigned long in_use_p[1];
289 } page_entry;
290
291 #ifdef USING_MALLOC_PAGE_GROUPS
292 /* A page_group describes a large allocation from malloc, from which
293 we parcel out aligned pages. */
294 typedef struct page_group
295 {
296 /* A linked list of all extant page groups. */
297 struct page_group *next;
298
299 /* The address we received from malloc. */
300 char *allocation;
301
302 /* The size of the block. */
303 size_t alloc_size;
304
305 /* A bitmask of pages in use. */
306 unsigned int in_use;
307 } page_group;
308 #endif
309
310 #if HOST_BITS_PER_PTR <= 32
311
312 /* On 32-bit hosts, we use a two level page table, as pictured above. */
313 typedef page_entry **page_table[PAGE_L1_SIZE];
314
315 #else
316
317 /* On 64-bit hosts, we use the same two level page tables plus a linked
318 list that disambiguates the top 32-bits. There will almost always be
319 exactly one entry in the list. */
320 typedef struct page_table_chain
321 {
322 struct page_table_chain *next;
323 size_t high_bits;
324 page_entry **table[PAGE_L1_SIZE];
325 } *page_table;
326
327 #endif
328
329 /* The rest of the global variables. */
330 static struct globals
331 {
332 /* The Nth element in this array is a page with objects of size 2^N.
333 If there are any pages with free objects, they will be at the
334 head of the list. NULL if there are no page-entries for this
335 object size. */
336 page_entry *pages[NUM_ORDERS];
337
338 /* The Nth element in this array is the last page with objects of
339 size 2^N. NULL if there are no page-entries for this object
340 size. */
341 page_entry *page_tails[NUM_ORDERS];
342
343 /* Lookup table for associating allocation pages with object addresses. */
344 page_table lookup;
345
346 /* The system's page size. */
347 size_t pagesize;
348 size_t lg_pagesize;
349
350 /* Bytes currently allocated. */
351 size_t allocated;
352
353 /* Bytes currently allocated at the end of the last collection. */
354 size_t allocated_last_gc;
355
356 /* Total amount of memory mapped. */
357 size_t bytes_mapped;
358
359 /* Bit N set if any allocations have been done at context depth N. */
360 unsigned long context_depth_allocations;
361
362 /* Bit N set if any collections have been done at context depth N. */
363 unsigned long context_depth_collections;
364
365 /* The current depth in the context stack. */
366 unsigned short context_depth;
367
368 /* A file descriptor open to /dev/zero for reading. */
369 #if defined (HAVE_MMAP_DEV_ZERO)
370 int dev_zero_fd;
371 #endif
372
373 /* A cache of free system pages. */
374 page_entry *free_pages;
375
376 #ifdef USING_MALLOC_PAGE_GROUPS
377 page_group *page_groups;
378 #endif
379
380 /* The file descriptor for debugging output. */
381 FILE *debug_file;
382
383 /* Current number of elements in use in depth below. */
384 unsigned int depth_in_use;
385
386 /* Maximum number of elements that can be used before resizing. */
387 unsigned int depth_max;
388
389 /* Each element of this array is an index in by_depth where the given
390 depth starts. This structure is indexed by that given depth we
391 are interested in. */
392 unsigned int *depth;
393
394 /* Current number of elements in use in by_depth below. */
395 unsigned int by_depth_in_use;
396
397 /* Maximum number of elements that can be used before resizing. */
398 unsigned int by_depth_max;
399
400 /* Each element of this array is a pointer to a page_entry, all
401 page_entries can be found in here by increasing depth.
402 index_by_depth in the page_entry is the index into this data
403 structure where that page_entry can be found. This is used to
404 speed up finding all page_entries at a particular depth. */
405 page_entry **by_depth;
406
407 /* Each element is a pointer to the saved in_use_p bits, if any,
408 zero otherwise. We allocate them all together, to enable a
409 better runtime data access pattern. */
410 unsigned long **save_in_use;
411
412 #ifdef ENABLE_GC_ALWAYS_COLLECT
413 /* List of free objects to be verified as actually free on the
414 next collection. */
415 struct free_object
416 {
417 void *object;
418 struct free_object *next;
419 } *free_object_list;
420 #endif
421
422 #ifdef GATHER_STATISTICS
423 struct
424 {
425 /* Total memory allocated with ggc_alloc. */
426 unsigned long long total_allocated;
427 /* Total overhead for memory to be allocated with ggc_alloc. */
428 unsigned long long total_overhead;
429
430 /* Total allocations and overhead for sizes less than 32, 64 and 128.
431 These sizes are interesting because they are typical cache line
432 sizes. */
433
434 unsigned long long total_allocated_under32;
435 unsigned long long total_overhead_under32;
436
437 unsigned long long total_allocated_under64;
438 unsigned long long total_overhead_under64;
439
440 unsigned long long total_allocated_under128;
441 unsigned long long total_overhead_under128;
442
443 /* The allocations for each of the allocation orders. */
444 unsigned long long total_allocated_per_order[NUM_ORDERS];
445
446 /* The overhead for each of the allocation orders. */
447 unsigned long long total_overhead_per_order[NUM_ORDERS];
448 } stats;
449 #endif
450 } G;
451
452 /* The size in bytes required to maintain a bitmap for the objects
453 on a page-entry. */
454 #define BITMAP_SIZE(Num_objects) \
455 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
456
457 /* Allocate pages in chunks of this size, to throttle calls to memory
458 allocation routines. The first page is used, the rest go onto the
459 free list. This cannot be larger than HOST_BITS_PER_INT for the
460 in_use bitmask for page_group. Hosts that need a different value
461 can override this by defining GGC_QUIRE_SIZE explicitly. */
462 #ifndef GGC_QUIRE_SIZE
463 # ifdef USING_MMAP
464 # define GGC_QUIRE_SIZE 256
465 # else
466 # define GGC_QUIRE_SIZE 16
467 # endif
468 #endif
469
470 /* Initial guess as to how many page table entries we might need. */
471 #define INITIAL_PTE_COUNT 128
472 \f
473 static int ggc_allocated_p (const void *);
474 static page_entry *lookup_page_table_entry (const void *);
475 static void set_page_table_entry (void *, page_entry *);
476 #ifdef USING_MMAP
477 static char *alloc_anon (char *, size_t);
478 #endif
479 #ifdef USING_MALLOC_PAGE_GROUPS
480 static size_t page_group_index (char *, char *);
481 static void set_page_group_in_use (page_group *, char *);
482 static void clear_page_group_in_use (page_group *, char *);
483 #endif
484 static struct page_entry * alloc_page (unsigned);
485 static void free_page (struct page_entry *);
486 static void release_pages (void);
487 static void clear_marks (void);
488 static void sweep_pages (void);
489 static void ggc_recalculate_in_use_p (page_entry *);
490 static void compute_inverse (unsigned);
491 static inline void adjust_depth (void);
492 static void move_ptes_to_front (int, int);
493
494 void debug_print_page_list (int);
495 static void push_depth (unsigned int);
496 static void push_by_depth (page_entry *, unsigned long *);
497
498 /* Push an entry onto G.depth. */
499
500 inline static void
501 push_depth (unsigned int i)
502 {
503 if (G.depth_in_use >= G.depth_max)
504 {
505 G.depth_max *= 2;
506 G.depth = xrealloc (G.depth, G.depth_max * sizeof (unsigned int));
507 }
508 G.depth[G.depth_in_use++] = i;
509 }
510
511 /* Push an entry onto G.by_depth and G.save_in_use. */
512
513 inline static void
514 push_by_depth (page_entry *p, unsigned long *s)
515 {
516 if (G.by_depth_in_use >= G.by_depth_max)
517 {
518 G.by_depth_max *= 2;
519 G.by_depth = xrealloc (G.by_depth,
520 G.by_depth_max * sizeof (page_entry *));
521 G.save_in_use = xrealloc (G.save_in_use,
522 G.by_depth_max * sizeof (unsigned long *));
523 }
524 G.by_depth[G.by_depth_in_use] = p;
525 G.save_in_use[G.by_depth_in_use++] = s;
526 }
527
528 #if (GCC_VERSION < 3001)
529 #define prefetch(X) ((void) X)
530 #else
531 #define prefetch(X) __builtin_prefetch (X)
532 #endif
533
534 #define save_in_use_p_i(__i) \
535 (G.save_in_use[__i])
536 #define save_in_use_p(__p) \
537 (save_in_use_p_i (__p->index_by_depth))
538
539 /* Returns nonzero if P was allocated in GC'able memory. */
540
541 static inline int
542 ggc_allocated_p (const void *p)
543 {
544 page_entry ***base;
545 size_t L1, L2;
546
547 #if HOST_BITS_PER_PTR <= 32
548 base = &G.lookup[0];
549 #else
550 page_table table = G.lookup;
551 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
552 while (1)
553 {
554 if (table == NULL)
555 return 0;
556 if (table->high_bits == high_bits)
557 break;
558 table = table->next;
559 }
560 base = &table->table[0];
561 #endif
562
563 /* Extract the level 1 and 2 indices. */
564 L1 = LOOKUP_L1 (p);
565 L2 = LOOKUP_L2 (p);
566
567 return base[L1] && base[L1][L2];
568 }
569
570 /* Traverse the page table and find the entry for a page.
571 Die (probably) if the object wasn't allocated via GC. */
572
573 static inline page_entry *
574 lookup_page_table_entry (const void *p)
575 {
576 page_entry ***base;
577 size_t L1, L2;
578
579 #if HOST_BITS_PER_PTR <= 32
580 base = &G.lookup[0];
581 #else
582 page_table table = G.lookup;
583 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
584 while (table->high_bits != high_bits)
585 table = table->next;
586 base = &table->table[0];
587 #endif
588
589 /* Extract the level 1 and 2 indices. */
590 L1 = LOOKUP_L1 (p);
591 L2 = LOOKUP_L2 (p);
592
593 return base[L1][L2];
594 }
595
596 /* Set the page table entry for a page. */
597
598 static void
599 set_page_table_entry (void *p, page_entry *entry)
600 {
601 page_entry ***base;
602 size_t L1, L2;
603
604 #if HOST_BITS_PER_PTR <= 32
605 base = &G.lookup[0];
606 #else
607 page_table table;
608 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
609 for (table = G.lookup; table; table = table->next)
610 if (table->high_bits == high_bits)
611 goto found;
612
613 /* Not found -- allocate a new table. */
614 table = xcalloc (1, sizeof(*table));
615 table->next = G.lookup;
616 table->high_bits = high_bits;
617 G.lookup = table;
618 found:
619 base = &table->table[0];
620 #endif
621
622 /* Extract the level 1 and 2 indices. */
623 L1 = LOOKUP_L1 (p);
624 L2 = LOOKUP_L2 (p);
625
626 if (base[L1] == NULL)
627 base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
628
629 base[L1][L2] = entry;
630 }
631
632 /* Prints the page-entry for object size ORDER, for debugging. */
633
634 void
635 debug_print_page_list (int order)
636 {
637 page_entry *p;
638 printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
639 (void *) G.page_tails[order]);
640 p = G.pages[order];
641 while (p != NULL)
642 {
643 printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
644 p->num_free_objects);
645 p = p->next;
646 }
647 printf ("NULL\n");
648 fflush (stdout);
649 }
650
651 #ifdef USING_MMAP
652 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
653 (if non-null). The ifdef structure here is intended to cause a
654 compile error unless exactly one of the HAVE_* is defined. */
655
656 static inline char *
657 alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size)
658 {
659 #ifdef HAVE_MMAP_ANON
660 char *page = mmap (pref, size, PROT_READ | PROT_WRITE,
661 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
662 #endif
663 #ifdef HAVE_MMAP_DEV_ZERO
664 char *page = mmap (pref, size, PROT_READ | PROT_WRITE,
665 MAP_PRIVATE, G.dev_zero_fd, 0);
666 #endif
667
668 if (page == (char *) MAP_FAILED)
669 {
670 perror ("virtual memory exhausted");
671 exit (FATAL_EXIT_CODE);
672 }
673
674 /* Remember that we allocated this memory. */
675 G.bytes_mapped += size;
676
677 /* Pretend we don't have access to the allocated pages. We'll enable
678 access to smaller pieces of the area in ggc_alloc. Discard the
679 handle to avoid handle leak. */
680 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size));
681
682 return page;
683 }
684 #endif
685 #ifdef USING_MALLOC_PAGE_GROUPS
686 /* Compute the index for this page into the page group. */
687
688 static inline size_t
689 page_group_index (char *allocation, char *page)
690 {
691 return (size_t) (page - allocation) >> G.lg_pagesize;
692 }
693
694 /* Set and clear the in_use bit for this page in the page group. */
695
696 static inline void
697 set_page_group_in_use (page_group *group, char *page)
698 {
699 group->in_use |= 1 << page_group_index (group->allocation, page);
700 }
701
702 static inline void
703 clear_page_group_in_use (page_group *group, char *page)
704 {
705 group->in_use &= ~(1 << page_group_index (group->allocation, page));
706 }
707 #endif
708
709 /* Allocate a new page for allocating objects of size 2^ORDER,
710 and return an entry for it. The entry is not added to the
711 appropriate page_table list. */
712
713 static inline struct page_entry *
714 alloc_page (unsigned order)
715 {
716 struct page_entry *entry, *p, **pp;
717 char *page;
718 size_t num_objects;
719 size_t bitmap_size;
720 size_t page_entry_size;
721 size_t entry_size;
722 #ifdef USING_MALLOC_PAGE_GROUPS
723 page_group *group;
724 #endif
725
726 num_objects = OBJECTS_PER_PAGE (order);
727 bitmap_size = BITMAP_SIZE (num_objects + 1);
728 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
729 entry_size = num_objects * OBJECT_SIZE (order);
730 if (entry_size < G.pagesize)
731 entry_size = G.pagesize;
732
733 entry = NULL;
734 page = NULL;
735
736 /* Check the list of free pages for one we can use. */
737 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
738 if (p->bytes == entry_size)
739 break;
740
741 if (p != NULL)
742 {
743 /* Recycle the allocated memory from this page ... */
744 *pp = p->next;
745 page = p->page;
746
747 #ifdef USING_MALLOC_PAGE_GROUPS
748 group = p->group;
749 #endif
750
751 /* ... and, if possible, the page entry itself. */
752 if (p->order == order)
753 {
754 entry = p;
755 memset (entry, 0, page_entry_size);
756 }
757 else
758 free (p);
759 }
760 #ifdef USING_MMAP
761 else if (entry_size == G.pagesize)
762 {
763 /* We want just one page. Allocate a bunch of them and put the
764 extras on the freelist. (Can only do this optimization with
765 mmap for backing store.) */
766 struct page_entry *e, *f = G.free_pages;
767 int i;
768
769 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE);
770
771 /* This loop counts down so that the chain will be in ascending
772 memory order. */
773 for (i = GGC_QUIRE_SIZE - 1; i >= 1; i--)
774 {
775 e = xcalloc (1, page_entry_size);
776 e->order = order;
777 e->bytes = G.pagesize;
778 e->page = page + (i << G.lg_pagesize);
779 e->next = f;
780 f = e;
781 }
782
783 G.free_pages = f;
784 }
785 else
786 page = alloc_anon (NULL, entry_size);
787 #endif
788 #ifdef USING_MALLOC_PAGE_GROUPS
789 else
790 {
791 /* Allocate a large block of memory and serve out the aligned
792 pages therein. This results in much less memory wastage
793 than the traditional implementation of valloc. */
794
795 char *allocation, *a, *enda;
796 size_t alloc_size, head_slop, tail_slop;
797 int multiple_pages = (entry_size == G.pagesize);
798
799 if (multiple_pages)
800 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
801 else
802 alloc_size = entry_size + G.pagesize - 1;
803 allocation = xmalloc (alloc_size);
804
805 page = (char *) (((size_t) allocation + G.pagesize - 1) & -G.pagesize);
806 head_slop = page - allocation;
807 if (multiple_pages)
808 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
809 else
810 tail_slop = alloc_size - entry_size - head_slop;
811 enda = allocation + alloc_size - tail_slop;
812
813 /* We allocated N pages, which are likely not aligned, leaving
814 us with N-1 usable pages. We plan to place the page_group
815 structure somewhere in the slop. */
816 if (head_slop >= sizeof (page_group))
817 group = (page_group *)page - 1;
818 else
819 {
820 /* We magically got an aligned allocation. Too bad, we have
821 to waste a page anyway. */
822 if (tail_slop == 0)
823 {
824 enda -= G.pagesize;
825 tail_slop += G.pagesize;
826 }
827 gcc_assert (tail_slop >= sizeof (page_group));
828 group = (page_group *)enda;
829 tail_slop -= sizeof (page_group);
830 }
831
832 /* Remember that we allocated this memory. */
833 group->next = G.page_groups;
834 group->allocation = allocation;
835 group->alloc_size = alloc_size;
836 group->in_use = 0;
837 G.page_groups = group;
838 G.bytes_mapped += alloc_size;
839
840 /* If we allocated multiple pages, put the rest on the free list. */
841 if (multiple_pages)
842 {
843 struct page_entry *e, *f = G.free_pages;
844 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
845 {
846 e = xcalloc (1, page_entry_size);
847 e->order = order;
848 e->bytes = G.pagesize;
849 e->page = a;
850 e->group = group;
851 e->next = f;
852 f = e;
853 }
854 G.free_pages = f;
855 }
856 }
857 #endif
858
859 if (entry == NULL)
860 entry = xcalloc (1, page_entry_size);
861
862 entry->bytes = entry_size;
863 entry->page = page;
864 entry->context_depth = G.context_depth;
865 entry->order = order;
866 entry->num_free_objects = num_objects;
867 entry->next_bit_hint = 1;
868
869 G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
870
871 #ifdef USING_MALLOC_PAGE_GROUPS
872 entry->group = group;
873 set_page_group_in_use (group, page);
874 #endif
875
876 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
877 increment the hint. */
878 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
879 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
880
881 set_page_table_entry (page, entry);
882
883 if (GGC_DEBUG_LEVEL >= 2)
884 fprintf (G.debug_file,
885 "Allocating page at %p, object size=%lu, data %p-%p\n",
886 (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
887 page + entry_size - 1);
888
889 return entry;
890 }
891
892 /* Adjust the size of G.depth so that no index greater than the one
893 used by the top of the G.by_depth is used. */
894
895 static inline void
896 adjust_depth (void)
897 {
898 page_entry *top;
899
900 if (G.by_depth_in_use)
901 {
902 top = G.by_depth[G.by_depth_in_use-1];
903
904 /* Peel back indices in depth that index into by_depth, so that
905 as new elements are added to by_depth, we note the indices
906 of those elements, if they are for new context depths. */
907 while (G.depth_in_use > (size_t)top->context_depth+1)
908 --G.depth_in_use;
909 }
910 }
911
912 /* For a page that is no longer needed, put it on the free page list. */
913
914 static void
915 free_page (page_entry *entry)
916 {
917 if (GGC_DEBUG_LEVEL >= 2)
918 fprintf (G.debug_file,
919 "Deallocating page at %p, data %p-%p\n", (void *) entry,
920 entry->page, entry->page + entry->bytes - 1);
921
922 /* Mark the page as inaccessible. Discard the handle to avoid handle
923 leak. */
924 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->page, entry->bytes));
925
926 set_page_table_entry (entry->page, NULL);
927
928 #ifdef USING_MALLOC_PAGE_GROUPS
929 clear_page_group_in_use (entry->group, entry->page);
930 #endif
931
932 if (G.by_depth_in_use > 1)
933 {
934 page_entry *top = G.by_depth[G.by_depth_in_use-1];
935 int i = entry->index_by_depth;
936
937 /* We cannot free a page from a context deeper than the current
938 one. */
939 gcc_assert (entry->context_depth == top->context_depth);
940
941 /* Put top element into freed slot. */
942 G.by_depth[i] = top;
943 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
944 top->index_by_depth = i;
945 }
946 --G.by_depth_in_use;
947
948 adjust_depth ();
949
950 entry->next = G.free_pages;
951 G.free_pages = entry;
952 }
953
954 /* Release the free page cache to the system. */
955
956 static void
957 release_pages (void)
958 {
959 #ifdef USING_MMAP
960 page_entry *p, *next;
961 char *start;
962 size_t len;
963
964 /* Gather up adjacent pages so they are unmapped together. */
965 p = G.free_pages;
966
967 while (p)
968 {
969 start = p->page;
970 next = p->next;
971 len = p->bytes;
972 free (p);
973 p = next;
974
975 while (p && p->page == start + len)
976 {
977 next = p->next;
978 len += p->bytes;
979 free (p);
980 p = next;
981 }
982
983 munmap (start, len);
984 G.bytes_mapped -= len;
985 }
986
987 G.free_pages = NULL;
988 #endif
989 #ifdef USING_MALLOC_PAGE_GROUPS
990 page_entry **pp, *p;
991 page_group **gp, *g;
992
993 /* Remove all pages from free page groups from the list. */
994 pp = &G.free_pages;
995 while ((p = *pp) != NULL)
996 if (p->group->in_use == 0)
997 {
998 *pp = p->next;
999 free (p);
1000 }
1001 else
1002 pp = &p->next;
1003
1004 /* Remove all free page groups, and release the storage. */
1005 gp = &G.page_groups;
1006 while ((g = *gp) != NULL)
1007 if (g->in_use == 0)
1008 {
1009 *gp = g->next;
1010 G.bytes_mapped -= g->alloc_size;
1011 free (g->allocation);
1012 }
1013 else
1014 gp = &g->next;
1015 #endif
1016 }
1017
1018 /* This table provides a fast way to determine ceil(log_2(size)) for
1019 allocation requests. The minimum allocation size is eight bytes. */
1020 #define NUM_SIZE_LOOKUP 512
1021 static unsigned char size_lookup[NUM_SIZE_LOOKUP] =
1022 {
1023 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1024 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1025 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1026 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1027 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1028 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1029 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1030 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1031 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1032 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1033 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1034 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1035 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1036 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1037 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1038 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1039 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1040 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1041 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1042 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1043 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1044 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1045 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1046 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1047 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1048 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1049 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1050 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1051 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1052 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1053 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1054 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
1055 };
1056
1057 /* Typed allocation function. Does nothing special in this collector. */
1058
1059 void *
1060 ggc_alloc_typed_stat (enum gt_types_enum type ATTRIBUTE_UNUSED, size_t size
1061 MEM_STAT_DECL)
1062 {
1063 return ggc_alloc_stat (size PASS_MEM_STAT);
1064 }
1065
1066 /* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
1067
1068 void *
1069 ggc_alloc_stat (size_t size MEM_STAT_DECL)
1070 {
1071 size_t order, word, bit, object_offset, object_size;
1072 struct page_entry *entry;
1073 void *result;
1074
1075 if (size < NUM_SIZE_LOOKUP)
1076 {
1077 order = size_lookup[size];
1078 object_size = OBJECT_SIZE (order);
1079 }
1080 else
1081 {
1082 order = 10;
1083 while (size > (object_size = OBJECT_SIZE (order)))
1084 order++;
1085 }
1086
1087 /* If there are non-full pages for this size allocation, they are at
1088 the head of the list. */
1089 entry = G.pages[order];
1090
1091 /* If there is no page for this object size, or all pages in this
1092 context are full, allocate a new page. */
1093 if (entry == NULL || entry->num_free_objects == 0)
1094 {
1095 struct page_entry *new_entry;
1096 new_entry = alloc_page (order);
1097
1098 new_entry->index_by_depth = G.by_depth_in_use;
1099 push_by_depth (new_entry, 0);
1100
1101 /* We can skip context depths, if we do, make sure we go all the
1102 way to the new depth. */
1103 while (new_entry->context_depth >= G.depth_in_use)
1104 push_depth (G.by_depth_in_use-1);
1105
1106 /* If this is the only entry, it's also the tail. If it is not
1107 the only entry, then we must update the PREV pointer of the
1108 ENTRY (G.pages[order]) to point to our new page entry. */
1109 if (entry == NULL)
1110 G.page_tails[order] = new_entry;
1111 else
1112 entry->prev = new_entry;
1113
1114 /* Put new pages at the head of the page list. By definition the
1115 entry at the head of the list always has a NULL pointer. */
1116 new_entry->next = entry;
1117 new_entry->prev = NULL;
1118 entry = new_entry;
1119 G.pages[order] = new_entry;
1120
1121 /* For a new page, we know the word and bit positions (in the
1122 in_use bitmap) of the first available object -- they're zero. */
1123 new_entry->next_bit_hint = 1;
1124 word = 0;
1125 bit = 0;
1126 object_offset = 0;
1127 }
1128 else
1129 {
1130 /* First try to use the hint left from the previous allocation
1131 to locate a clear bit in the in-use bitmap. We've made sure
1132 that the one-past-the-end bit is always set, so if the hint
1133 has run over, this test will fail. */
1134 unsigned hint = entry->next_bit_hint;
1135 word = hint / HOST_BITS_PER_LONG;
1136 bit = hint % HOST_BITS_PER_LONG;
1137
1138 /* If the hint didn't work, scan the bitmap from the beginning. */
1139 if ((entry->in_use_p[word] >> bit) & 1)
1140 {
1141 word = bit = 0;
1142 while (~entry->in_use_p[word] == 0)
1143 ++word;
1144
1145 #if GCC_VERSION >= 3004
1146 bit = __builtin_ctzl (~entry->in_use_p[word]);
1147 #else
1148 while ((entry->in_use_p[word] >> bit) & 1)
1149 ++bit;
1150 #endif
1151
1152 hint = word * HOST_BITS_PER_LONG + bit;
1153 }
1154
1155 /* Next time, try the next bit. */
1156 entry->next_bit_hint = hint + 1;
1157
1158 object_offset = hint * object_size;
1159 }
1160
1161 /* Set the in-use bit. */
1162 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1163
1164 /* Keep a running total of the number of free objects. If this page
1165 fills up, we may have to move it to the end of the list if the
1166 next page isn't full. If the next page is full, all subsequent
1167 pages are full, so there's no need to move it. */
1168 if (--entry->num_free_objects == 0
1169 && entry->next != NULL
1170 && entry->next->num_free_objects > 0)
1171 {
1172 /* We have a new head for the list. */
1173 G.pages[order] = entry->next;
1174
1175 /* We are moving ENTRY to the end of the page table list.
1176 The new page at the head of the list will have NULL in
1177 its PREV field and ENTRY will have NULL in its NEXT field. */
1178 entry->next->prev = NULL;
1179 entry->next = NULL;
1180
1181 /* Append ENTRY to the tail of the list. */
1182 entry->prev = G.page_tails[order];
1183 G.page_tails[order]->next = entry;
1184 G.page_tails[order] = entry;
1185 }
1186
1187 /* Calculate the object's address. */
1188 result = entry->page + object_offset;
1189 #ifdef GATHER_STATISTICS
1190 ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
1191 result PASS_MEM_STAT);
1192 #endif
1193
1194 #ifdef ENABLE_GC_CHECKING
1195 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1196 exact same semantics in presence of memory bugs, regardless of
1197 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1198 handle to avoid handle leak. */
1199 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, object_size));
1200
1201 /* `Poison' the entire allocated object, including any padding at
1202 the end. */
1203 memset (result, 0xaf, object_size);
1204
1205 /* Make the bytes after the end of the object unaccessible. Discard the
1206 handle to avoid handle leak. */
1207 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) result + size,
1208 object_size - size));
1209 #endif
1210
1211 /* Tell Valgrind that the memory is there, but its content isn't
1212 defined. The bytes at the end of the object are still marked
1213 unaccessible. */
1214 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size));
1215
1216 /* Keep track of how many bytes are being allocated. This
1217 information is used in deciding when to collect. */
1218 G.allocated += object_size;
1219
1220 /* For timevar statistics. */
1221 timevar_ggc_mem_total += object_size;
1222
1223 #ifdef GATHER_STATISTICS
1224 {
1225 size_t overhead = object_size - size;
1226
1227 G.stats.total_overhead += overhead;
1228 G.stats.total_allocated += object_size;
1229 G.stats.total_overhead_per_order[order] += overhead;
1230 G.stats.total_allocated_per_order[order] += object_size;
1231
1232 if (size <= 32)
1233 {
1234 G.stats.total_overhead_under32 += overhead;
1235 G.stats.total_allocated_under32 += object_size;
1236 }
1237 if (size <= 64)
1238 {
1239 G.stats.total_overhead_under64 += overhead;
1240 G.stats.total_allocated_under64 += object_size;
1241 }
1242 if (size <= 128)
1243 {
1244 G.stats.total_overhead_under128 += overhead;
1245 G.stats.total_allocated_under128 += object_size;
1246 }
1247 }
1248 #endif
1249
1250 if (GGC_DEBUG_LEVEL >= 3)
1251 fprintf (G.debug_file,
1252 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
1253 (unsigned long) size, (unsigned long) object_size, result,
1254 (void *) entry);
1255
1256 return result;
1257 }
1258
1259 /* Mark function for strings. */
1260
1261 void
1262 gt_ggc_m_S (const void *p)
1263 {
1264 page_entry *entry;
1265 unsigned bit, word;
1266 unsigned long mask;
1267 unsigned long offset;
1268
1269 if (!p || !ggc_allocated_p (p))
1270 return;
1271
1272 /* Look up the page on which the object is alloced. . */
1273 entry = lookup_page_table_entry (p);
1274 gcc_assert (entry);
1275
1276 /* Calculate the index of the object on the page; this is its bit
1277 position in the in_use_p bitmap. Note that because a char* might
1278 point to the middle of an object, we need special code here to
1279 make sure P points to the start of an object. */
1280 offset = ((const char *) p - entry->page) % object_size_table[entry->order];
1281 if (offset)
1282 {
1283 /* Here we've seen a char* which does not point to the beginning
1284 of an allocated object. We assume it points to the middle of
1285 a STRING_CST. */
1286 gcc_assert (offset == offsetof (struct tree_string, str));
1287 p = ((const char *) p) - offset;
1288 gt_ggc_mx_lang_tree_node ((void *) p);
1289 return;
1290 }
1291
1292 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1293 word = bit / HOST_BITS_PER_LONG;
1294 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1295
1296 /* If the bit was previously set, skip it. */
1297 if (entry->in_use_p[word] & mask)
1298 return;
1299
1300 /* Otherwise set it, and decrement the free object count. */
1301 entry->in_use_p[word] |= mask;
1302 entry->num_free_objects -= 1;
1303
1304 if (GGC_DEBUG_LEVEL >= 4)
1305 fprintf (G.debug_file, "Marking %p\n", p);
1306
1307 return;
1308 }
1309
1310 /* If P is not marked, marks it and return false. Otherwise return true.
1311 P must have been allocated by the GC allocator; it mustn't point to
1312 static objects, stack variables, or memory allocated with malloc. */
1313
1314 int
1315 ggc_set_mark (const void *p)
1316 {
1317 page_entry *entry;
1318 unsigned bit, word;
1319 unsigned long mask;
1320
1321 /* Look up the page on which the object is alloced. If the object
1322 wasn't allocated by the collector, we'll probably die. */
1323 entry = lookup_page_table_entry (p);
1324 gcc_assert (entry);
1325
1326 /* Calculate the index of the object on the page; this is its bit
1327 position in the in_use_p bitmap. */
1328 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1329 word = bit / HOST_BITS_PER_LONG;
1330 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1331
1332 /* If the bit was previously set, skip it. */
1333 if (entry->in_use_p[word] & mask)
1334 return 1;
1335
1336 /* Otherwise set it, and decrement the free object count. */
1337 entry->in_use_p[word] |= mask;
1338 entry->num_free_objects -= 1;
1339
1340 if (GGC_DEBUG_LEVEL >= 4)
1341 fprintf (G.debug_file, "Marking %p\n", p);
1342
1343 return 0;
1344 }
1345
1346 /* Return 1 if P has been marked, zero otherwise.
1347 P must have been allocated by the GC allocator; it mustn't point to
1348 static objects, stack variables, or memory allocated with malloc. */
1349
1350 int
1351 ggc_marked_p (const void *p)
1352 {
1353 page_entry *entry;
1354 unsigned bit, word;
1355 unsigned long mask;
1356
1357 /* Look up the page on which the object is alloced. If the object
1358 wasn't allocated by the collector, we'll probably die. */
1359 entry = lookup_page_table_entry (p);
1360 gcc_assert (entry);
1361
1362 /* Calculate the index of the object on the page; this is its bit
1363 position in the in_use_p bitmap. */
1364 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1365 word = bit / HOST_BITS_PER_LONG;
1366 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1367
1368 return (entry->in_use_p[word] & mask) != 0;
1369 }
1370
1371 /* Return the size of the gc-able object P. */
1372
1373 size_t
1374 ggc_get_size (const void *p)
1375 {
1376 page_entry *pe = lookup_page_table_entry (p);
1377 return OBJECT_SIZE (pe->order);
1378 }
1379
1380 /* Release the memory for object P. */
1381
1382 void
1383 ggc_free (void *p)
1384 {
1385 page_entry *pe = lookup_page_table_entry (p);
1386 size_t order = pe->order;
1387 size_t size = OBJECT_SIZE (order);
1388
1389 #ifdef GATHER_STATISTICS
1390 ggc_free_overhead (p);
1391 #endif
1392
1393 if (GGC_DEBUG_LEVEL >= 3)
1394 fprintf (G.debug_file,
1395 "Freeing object, actual size=%lu, at %p on %p\n",
1396 (unsigned long) size, p, (void *) pe);
1397
1398 #ifdef ENABLE_GC_CHECKING
1399 /* Poison the data, to indicate the data is garbage. */
1400 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (p, size));
1401 memset (p, 0xa5, size);
1402 #endif
1403 /* Let valgrind know the object is free. */
1404 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (p, size));
1405
1406 #ifdef ENABLE_GC_ALWAYS_COLLECT
1407 /* In the completely-anal-checking mode, we do *not* immediately free
1408 the data, but instead verify that the data is *actually* not
1409 reachable the next time we collect. */
1410 {
1411 struct free_object *fo = XNEW (struct free_object);
1412 fo->object = p;
1413 fo->next = G.free_object_list;
1414 G.free_object_list = fo;
1415 }
1416 #else
1417 {
1418 unsigned int bit_offset, word, bit;
1419
1420 G.allocated -= size;
1421
1422 /* Mark the object not-in-use. */
1423 bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
1424 word = bit_offset / HOST_BITS_PER_LONG;
1425 bit = bit_offset % HOST_BITS_PER_LONG;
1426 pe->in_use_p[word] &= ~(1UL << bit);
1427
1428 if (pe->num_free_objects++ == 0)
1429 {
1430 page_entry *p, *q;
1431
1432 /* If the page is completely full, then it's supposed to
1433 be after all pages that aren't. Since we've freed one
1434 object from a page that was full, we need to move the
1435 page to the head of the list.
1436
1437 PE is the node we want to move. Q is the previous node
1438 and P is the next node in the list. */
1439 q = pe->prev;
1440 if (q && q->num_free_objects == 0)
1441 {
1442 p = pe->next;
1443
1444 q->next = p;
1445
1446 /* If PE was at the end of the list, then Q becomes the
1447 new end of the list. If PE was not the end of the
1448 list, then we need to update the PREV field for P. */
1449 if (!p)
1450 G.page_tails[order] = q;
1451 else
1452 p->prev = q;
1453
1454 /* Move PE to the head of the list. */
1455 pe->next = G.pages[order];
1456 pe->prev = NULL;
1457 G.pages[order]->prev = pe;
1458 G.pages[order] = pe;
1459 }
1460
1461 /* Reset the hint bit to point to the only free object. */
1462 pe->next_bit_hint = bit_offset;
1463 }
1464 }
1465 #endif
1466 }
1467 \f
1468 /* Subroutine of init_ggc which computes the pair of numbers used to
1469 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1470
1471 This algorithm is taken from Granlund and Montgomery's paper
1472 "Division by Invariant Integers using Multiplication"
1473 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1474 constants). */
1475
1476 static void
1477 compute_inverse (unsigned order)
1478 {
1479 size_t size, inv;
1480 unsigned int e;
1481
1482 size = OBJECT_SIZE (order);
1483 e = 0;
1484 while (size % 2 == 0)
1485 {
1486 e++;
1487 size >>= 1;
1488 }
1489
1490 inv = size;
1491 while (inv * size != 1)
1492 inv = inv * (2 - inv*size);
1493
1494 DIV_MULT (order) = inv;
1495 DIV_SHIFT (order) = e;
1496 }
1497
1498 /* Initialize the ggc-mmap allocator. */
1499 void
1500 init_ggc (void)
1501 {
1502 unsigned order;
1503
1504 G.pagesize = getpagesize();
1505 G.lg_pagesize = exact_log2 (G.pagesize);
1506
1507 #ifdef HAVE_MMAP_DEV_ZERO
1508 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1509 if (G.dev_zero_fd == -1)
1510 internal_error ("open /dev/zero: %m");
1511 #endif
1512
1513 #if 0
1514 G.debug_file = fopen ("ggc-mmap.debug", "w");
1515 #else
1516 G.debug_file = stdout;
1517 #endif
1518
1519 #ifdef USING_MMAP
1520 /* StunOS has an amazing off-by-one error for the first mmap allocation
1521 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1522 believe, is an unaligned page allocation, which would cause us to
1523 hork badly if we tried to use it. */
1524 {
1525 char *p = alloc_anon (NULL, G.pagesize);
1526 struct page_entry *e;
1527 if ((size_t)p & (G.pagesize - 1))
1528 {
1529 /* How losing. Discard this one and try another. If we still
1530 can't get something useful, give up. */
1531
1532 p = alloc_anon (NULL, G.pagesize);
1533 gcc_assert (!((size_t)p & (G.pagesize - 1)));
1534 }
1535
1536 /* We have a good page, might as well hold onto it... */
1537 e = XCNEW (struct page_entry);
1538 e->bytes = G.pagesize;
1539 e->page = p;
1540 e->next = G.free_pages;
1541 G.free_pages = e;
1542 }
1543 #endif
1544
1545 /* Initialize the object size table. */
1546 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1547 object_size_table[order] = (size_t) 1 << order;
1548 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1549 {
1550 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1551
1552 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1553 so that we're sure of getting aligned memory. */
1554 s = ROUND_UP (s, MAX_ALIGNMENT);
1555 object_size_table[order] = s;
1556 }
1557
1558 /* Initialize the objects-per-page and inverse tables. */
1559 for (order = 0; order < NUM_ORDERS; ++order)
1560 {
1561 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1562 if (objects_per_page_table[order] == 0)
1563 objects_per_page_table[order] = 1;
1564 compute_inverse (order);
1565 }
1566
1567 /* Reset the size_lookup array to put appropriately sized objects in
1568 the special orders. All objects bigger than the previous power
1569 of two, but no greater than the special size, should go in the
1570 new order. */
1571 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1572 {
1573 int o;
1574 int i;
1575
1576 i = OBJECT_SIZE (order);
1577 if (i >= NUM_SIZE_LOOKUP)
1578 continue;
1579
1580 for (o = size_lookup[i]; o == size_lookup [i]; --i)
1581 size_lookup[i] = order;
1582 }
1583
1584 G.depth_in_use = 0;
1585 G.depth_max = 10;
1586 G.depth = XNEWVEC (unsigned int, G.depth_max);
1587
1588 G.by_depth_in_use = 0;
1589 G.by_depth_max = INITIAL_PTE_COUNT;
1590 G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
1591 G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
1592 }
1593
1594 /* Start a new GGC zone. */
1595
1596 struct alloc_zone *
1597 new_ggc_zone (const char *name ATTRIBUTE_UNUSED)
1598 {
1599 return NULL;
1600 }
1601
1602 /* Destroy a GGC zone. */
1603 void
1604 destroy_ggc_zone (struct alloc_zone *zone ATTRIBUTE_UNUSED)
1605 {
1606 }
1607
1608 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1609 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1610
1611 static void
1612 ggc_recalculate_in_use_p (page_entry *p)
1613 {
1614 unsigned int i;
1615 size_t num_objects;
1616
1617 /* Because the past-the-end bit in in_use_p is always set, we
1618 pretend there is one additional object. */
1619 num_objects = OBJECTS_IN_PAGE (p) + 1;
1620
1621 /* Reset the free object count. */
1622 p->num_free_objects = num_objects;
1623
1624 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
1625 for (i = 0;
1626 i < CEIL (BITMAP_SIZE (num_objects),
1627 sizeof (*p->in_use_p));
1628 ++i)
1629 {
1630 unsigned long j;
1631
1632 /* Something is in use if it is marked, or if it was in use in a
1633 context further down the context stack. */
1634 p->in_use_p[i] |= save_in_use_p (p)[i];
1635
1636 /* Decrement the free object count for every object allocated. */
1637 for (j = p->in_use_p[i]; j; j >>= 1)
1638 p->num_free_objects -= (j & 1);
1639 }
1640
1641 gcc_assert (p->num_free_objects < num_objects);
1642 }
1643 \f
1644 /* Unmark all objects. */
1645
1646 static void
1647 clear_marks (void)
1648 {
1649 unsigned order;
1650
1651 for (order = 2; order < NUM_ORDERS; order++)
1652 {
1653 page_entry *p;
1654
1655 for (p = G.pages[order]; p != NULL; p = p->next)
1656 {
1657 size_t num_objects = OBJECTS_IN_PAGE (p);
1658 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1659
1660 /* The data should be page-aligned. */
1661 gcc_assert (!((size_t) p->page & (G.pagesize - 1)));
1662
1663 /* Pages that aren't in the topmost context are not collected;
1664 nevertheless, we need their in-use bit vectors to store GC
1665 marks. So, back them up first. */
1666 if (p->context_depth < G.context_depth)
1667 {
1668 if (! save_in_use_p (p))
1669 save_in_use_p (p) = xmalloc (bitmap_size);
1670 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
1671 }
1672
1673 /* Reset reset the number of free objects and clear the
1674 in-use bits. These will be adjusted by mark_obj. */
1675 p->num_free_objects = num_objects;
1676 memset (p->in_use_p, 0, bitmap_size);
1677
1678 /* Make sure the one-past-the-end bit is always set. */
1679 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1680 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1681 }
1682 }
1683 }
1684
1685 /* Free all empty pages. Partially empty pages need no attention
1686 because the `mark' bit doubles as an `unused' bit. */
1687
1688 static void
1689 sweep_pages (void)
1690 {
1691 unsigned order;
1692
1693 for (order = 2; order < NUM_ORDERS; order++)
1694 {
1695 /* The last page-entry to consider, regardless of entries
1696 placed at the end of the list. */
1697 page_entry * const last = G.page_tails[order];
1698
1699 size_t num_objects;
1700 size_t live_objects;
1701 page_entry *p, *previous;
1702 int done;
1703
1704 p = G.pages[order];
1705 if (p == NULL)
1706 continue;
1707
1708 previous = NULL;
1709 do
1710 {
1711 page_entry *next = p->next;
1712
1713 /* Loop until all entries have been examined. */
1714 done = (p == last);
1715
1716 num_objects = OBJECTS_IN_PAGE (p);
1717
1718 /* Add all live objects on this page to the count of
1719 allocated memory. */
1720 live_objects = num_objects - p->num_free_objects;
1721
1722 G.allocated += OBJECT_SIZE (order) * live_objects;
1723
1724 /* Only objects on pages in the topmost context should get
1725 collected. */
1726 if (p->context_depth < G.context_depth)
1727 ;
1728
1729 /* Remove the page if it's empty. */
1730 else if (live_objects == 0)
1731 {
1732 /* If P was the first page in the list, then NEXT
1733 becomes the new first page in the list, otherwise
1734 splice P out of the forward pointers. */
1735 if (! previous)
1736 G.pages[order] = next;
1737 else
1738 previous->next = next;
1739
1740 /* Splice P out of the back pointers too. */
1741 if (next)
1742 next->prev = previous;
1743
1744 /* Are we removing the last element? */
1745 if (p == G.page_tails[order])
1746 G.page_tails[order] = previous;
1747 free_page (p);
1748 p = previous;
1749 }
1750
1751 /* If the page is full, move it to the end. */
1752 else if (p->num_free_objects == 0)
1753 {
1754 /* Don't move it if it's already at the end. */
1755 if (p != G.page_tails[order])
1756 {
1757 /* Move p to the end of the list. */
1758 p->next = NULL;
1759 p->prev = G.page_tails[order];
1760 G.page_tails[order]->next = p;
1761
1762 /* Update the tail pointer... */
1763 G.page_tails[order] = p;
1764
1765 /* ... and the head pointer, if necessary. */
1766 if (! previous)
1767 G.pages[order] = next;
1768 else
1769 previous->next = next;
1770
1771 /* And update the backpointer in NEXT if necessary. */
1772 if (next)
1773 next->prev = previous;
1774
1775 p = previous;
1776 }
1777 }
1778
1779 /* If we've fallen through to here, it's a page in the
1780 topmost context that is neither full nor empty. Such a
1781 page must precede pages at lesser context depth in the
1782 list, so move it to the head. */
1783 else if (p != G.pages[order])
1784 {
1785 previous->next = p->next;
1786
1787 /* Update the backchain in the next node if it exists. */
1788 if (p->next)
1789 p->next->prev = previous;
1790
1791 /* Move P to the head of the list. */
1792 p->next = G.pages[order];
1793 p->prev = NULL;
1794 G.pages[order]->prev = p;
1795
1796 /* Update the head pointer. */
1797 G.pages[order] = p;
1798
1799 /* Are we moving the last element? */
1800 if (G.page_tails[order] == p)
1801 G.page_tails[order] = previous;
1802 p = previous;
1803 }
1804
1805 previous = p;
1806 p = next;
1807 }
1808 while (! done);
1809
1810 /* Now, restore the in_use_p vectors for any pages from contexts
1811 other than the current one. */
1812 for (p = G.pages[order]; p; p = p->next)
1813 if (p->context_depth != G.context_depth)
1814 ggc_recalculate_in_use_p (p);
1815 }
1816 }
1817
1818 #ifdef ENABLE_GC_CHECKING
1819 /* Clobber all free objects. */
1820
1821 static void
1822 poison_pages (void)
1823 {
1824 unsigned order;
1825
1826 for (order = 2; order < NUM_ORDERS; order++)
1827 {
1828 size_t size = OBJECT_SIZE (order);
1829 page_entry *p;
1830
1831 for (p = G.pages[order]; p != NULL; p = p->next)
1832 {
1833 size_t num_objects;
1834 size_t i;
1835
1836 if (p->context_depth != G.context_depth)
1837 /* Since we don't do any collection for pages in pushed
1838 contexts, there's no need to do any poisoning. And
1839 besides, the IN_USE_P array isn't valid until we pop
1840 contexts. */
1841 continue;
1842
1843 num_objects = OBJECTS_IN_PAGE (p);
1844 for (i = 0; i < num_objects; i++)
1845 {
1846 size_t word, bit;
1847 word = i / HOST_BITS_PER_LONG;
1848 bit = i % HOST_BITS_PER_LONG;
1849 if (((p->in_use_p[word] >> bit) & 1) == 0)
1850 {
1851 char *object = p->page + i * size;
1852
1853 /* Keep poison-by-write when we expect to use Valgrind,
1854 so the exact same memory semantics is kept, in case
1855 there are memory errors. We override this request
1856 below. */
1857 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (object,
1858 size));
1859 memset (object, 0xa5, size);
1860
1861 /* Drop the handle to avoid handle leak. */
1862 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (object, size));
1863 }
1864 }
1865 }
1866 }
1867 }
1868 #else
1869 #define poison_pages()
1870 #endif
1871
1872 #ifdef ENABLE_GC_ALWAYS_COLLECT
1873 /* Validate that the reportedly free objects actually are. */
1874
1875 static void
1876 validate_free_objects (void)
1877 {
1878 struct free_object *f, *next, *still_free = NULL;
1879
1880 for (f = G.free_object_list; f ; f = next)
1881 {
1882 page_entry *pe = lookup_page_table_entry (f->object);
1883 size_t bit, word;
1884
1885 bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
1886 word = bit / HOST_BITS_PER_LONG;
1887 bit = bit % HOST_BITS_PER_LONG;
1888 next = f->next;
1889
1890 /* Make certain it isn't visible from any root. Notice that we
1891 do this check before sweep_pages merges save_in_use_p. */
1892 gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
1893
1894 /* If the object comes from an outer context, then retain the
1895 free_object entry, so that we can verify that the address
1896 isn't live on the stack in some outer context. */
1897 if (pe->context_depth != G.context_depth)
1898 {
1899 f->next = still_free;
1900 still_free = f;
1901 }
1902 else
1903 free (f);
1904 }
1905
1906 G.free_object_list = still_free;
1907 }
1908 #else
1909 #define validate_free_objects()
1910 #endif
1911
1912 /* Top level mark-and-sweep routine. */
1913
1914 void
1915 ggc_collect (void)
1916 {
1917 /* Avoid frequent unnecessary work by skipping collection if the
1918 total allocations haven't expanded much since the last
1919 collection. */
1920 float allocated_last_gc =
1921 MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
1922
1923 float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
1924
1925 if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
1926 return;
1927
1928 timevar_push (TV_GC);
1929 if (!quiet_flag)
1930 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
1931 if (GGC_DEBUG_LEVEL >= 2)
1932 fprintf (G.debug_file, "BEGIN COLLECTING\n");
1933
1934 /* Zero the total allocated bytes. This will be recalculated in the
1935 sweep phase. */
1936 G.allocated = 0;
1937
1938 /* Release the pages we freed the last time we collected, but didn't
1939 reuse in the interim. */
1940 release_pages ();
1941
1942 /* Indicate that we've seen collections at this context depth. */
1943 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
1944
1945 clear_marks ();
1946 ggc_mark_roots ();
1947 #ifdef GATHER_STATISTICS
1948 ggc_prune_overhead_list ();
1949 #endif
1950 poison_pages ();
1951 validate_free_objects ();
1952 sweep_pages ();
1953
1954 G.allocated_last_gc = G.allocated;
1955
1956 timevar_pop (TV_GC);
1957
1958 if (!quiet_flag)
1959 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
1960 if (GGC_DEBUG_LEVEL >= 2)
1961 fprintf (G.debug_file, "END COLLECTING\n");
1962 }
1963
1964 /* Print allocation statistics. */
1965 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
1966 ? (x) \
1967 : ((x) < 1024*1024*10 \
1968 ? (x) / 1024 \
1969 : (x) / (1024*1024))))
1970 #define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
1971
1972 void
1973 ggc_print_statistics (void)
1974 {
1975 struct ggc_statistics stats;
1976 unsigned int i;
1977 size_t total_overhead = 0;
1978
1979 /* Clear the statistics. */
1980 memset (&stats, 0, sizeof (stats));
1981
1982 /* Make sure collection will really occur. */
1983 G.allocated_last_gc = 0;
1984
1985 /* Collect and print the statistics common across collectors. */
1986 ggc_print_common_statistics (stderr, &stats);
1987
1988 /* Release free pages so that we will not count the bytes allocated
1989 there as part of the total allocated memory. */
1990 release_pages ();
1991
1992 /* Collect some information about the various sizes of
1993 allocation. */
1994 fprintf (stderr,
1995 "Memory still allocated at the end of the compilation process\n");
1996 fprintf (stderr, "%-5s %10s %10s %10s\n",
1997 "Size", "Allocated", "Used", "Overhead");
1998 for (i = 0; i < NUM_ORDERS; ++i)
1999 {
2000 page_entry *p;
2001 size_t allocated;
2002 size_t in_use;
2003 size_t overhead;
2004
2005 /* Skip empty entries. */
2006 if (!G.pages[i])
2007 continue;
2008
2009 overhead = allocated = in_use = 0;
2010
2011 /* Figure out the total number of bytes allocated for objects of
2012 this size, and how many of them are actually in use. Also figure
2013 out how much memory the page table is using. */
2014 for (p = G.pages[i]; p; p = p->next)
2015 {
2016 allocated += p->bytes;
2017 in_use +=
2018 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
2019
2020 overhead += (sizeof (page_entry) - sizeof (long)
2021 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
2022 }
2023 fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n",
2024 (unsigned long) OBJECT_SIZE (i),
2025 SCALE (allocated), STAT_LABEL (allocated),
2026 SCALE (in_use), STAT_LABEL (in_use),
2027 SCALE (overhead), STAT_LABEL (overhead));
2028 total_overhead += overhead;
2029 }
2030 fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
2031 SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped),
2032 SCALE (G.allocated), STAT_LABEL(G.allocated),
2033 SCALE (total_overhead), STAT_LABEL (total_overhead));
2034
2035 #ifdef GATHER_STATISTICS
2036 {
2037 fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
2038
2039 fprintf (stderr, "Total Overhead: %10lld\n",
2040 G.stats.total_overhead);
2041 fprintf (stderr, "Total Allocated: %10lld\n",
2042 G.stats.total_allocated);
2043
2044 fprintf (stderr, "Total Overhead under 32B: %10lld\n",
2045 G.stats.total_overhead_under32);
2046 fprintf (stderr, "Total Allocated under 32B: %10lld\n",
2047 G.stats.total_allocated_under32);
2048 fprintf (stderr, "Total Overhead under 64B: %10lld\n",
2049 G.stats.total_overhead_under64);
2050 fprintf (stderr, "Total Allocated under 64B: %10lld\n",
2051 G.stats.total_allocated_under64);
2052 fprintf (stderr, "Total Overhead under 128B: %10lld\n",
2053 G.stats.total_overhead_under128);
2054 fprintf (stderr, "Total Allocated under 128B: %10lld\n",
2055 G.stats.total_allocated_under128);
2056
2057 for (i = 0; i < NUM_ORDERS; i++)
2058 if (G.stats.total_allocated_per_order[i])
2059 {
2060 fprintf (stderr, "Total Overhead page size %7lu: %10lld\n",
2061 (unsigned long) OBJECT_SIZE (i),
2062 G.stats.total_overhead_per_order[i]);
2063 fprintf (stderr, "Total Allocated page size %7lu: %10lld\n",
2064 (unsigned long) OBJECT_SIZE (i),
2065 G.stats.total_allocated_per_order[i]);
2066 }
2067 }
2068 #endif
2069 }
2070 \f
2071 struct ggc_pch_data
2072 {
2073 struct ggc_pch_ondisk
2074 {
2075 unsigned totals[NUM_ORDERS];
2076 } d;
2077 size_t base[NUM_ORDERS];
2078 size_t written[NUM_ORDERS];
2079 };
2080
2081 struct ggc_pch_data *
2082 init_ggc_pch (void)
2083 {
2084 return XCNEW (struct ggc_pch_data);
2085 }
2086
2087 void
2088 ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2089 size_t size, bool is_string ATTRIBUTE_UNUSED,
2090 enum gt_types_enum type ATTRIBUTE_UNUSED)
2091 {
2092 unsigned order;
2093
2094 if (size < NUM_SIZE_LOOKUP)
2095 order = size_lookup[size];
2096 else
2097 {
2098 order = 10;
2099 while (size > OBJECT_SIZE (order))
2100 order++;
2101 }
2102
2103 d->d.totals[order]++;
2104 }
2105
2106 size_t
2107 ggc_pch_total_size (struct ggc_pch_data *d)
2108 {
2109 size_t a = 0;
2110 unsigned i;
2111
2112 for (i = 0; i < NUM_ORDERS; i++)
2113 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2114 return a;
2115 }
2116
2117 void
2118 ggc_pch_this_base (struct ggc_pch_data *d, void *base)
2119 {
2120 size_t a = (size_t) base;
2121 unsigned i;
2122
2123 for (i = 0; i < NUM_ORDERS; i++)
2124 {
2125 d->base[i] = a;
2126 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2127 }
2128 }
2129
2130
2131 char *
2132 ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2133 size_t size, bool is_string ATTRIBUTE_UNUSED,
2134 enum gt_types_enum type ATTRIBUTE_UNUSED)
2135 {
2136 unsigned order;
2137 char *result;
2138
2139 if (size < NUM_SIZE_LOOKUP)
2140 order = size_lookup[size];
2141 else
2142 {
2143 order = 10;
2144 while (size > OBJECT_SIZE (order))
2145 order++;
2146 }
2147
2148 result = (char *) d->base[order];
2149 d->base[order] += OBJECT_SIZE (order);
2150 return result;
2151 }
2152
2153 void
2154 ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2155 FILE *f ATTRIBUTE_UNUSED)
2156 {
2157 /* Nothing to do. */
2158 }
2159
2160 void
2161 ggc_pch_write_object (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2162 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
2163 size_t size, bool is_string ATTRIBUTE_UNUSED)
2164 {
2165 unsigned order;
2166 static const char emptyBytes[256];
2167
2168 if (size < NUM_SIZE_LOOKUP)
2169 order = size_lookup[size];
2170 else
2171 {
2172 order = 10;
2173 while (size > OBJECT_SIZE (order))
2174 order++;
2175 }
2176
2177 if (fwrite (x, size, 1, f) != 1)
2178 fatal_error ("can't write PCH file: %m");
2179
2180 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2181 object out to OBJECT_SIZE(order). This happens for strings. */
2182
2183 if (size != OBJECT_SIZE (order))
2184 {
2185 unsigned padding = OBJECT_SIZE(order) - size;
2186
2187 /* To speed small writes, we use a nulled-out array that's larger
2188 than most padding requests as the source for our null bytes. This
2189 permits us to do the padding with fwrite() rather than fseek(), and
2190 limits the chance the OS may try to flush any outstanding writes. */
2191 if (padding <= sizeof(emptyBytes))
2192 {
2193 if (fwrite (emptyBytes, 1, padding, f) != padding)
2194 fatal_error ("can't write PCH file");
2195 }
2196 else
2197 {
2198 /* Larger than our buffer? Just default to fseek. */
2199 if (fseek (f, padding, SEEK_CUR) != 0)
2200 fatal_error ("can't write PCH file");
2201 }
2202 }
2203
2204 d->written[order]++;
2205 if (d->written[order] == d->d.totals[order]
2206 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2207 G.pagesize),
2208 SEEK_CUR) != 0)
2209 fatal_error ("can't write PCH file: %m");
2210 }
2211
2212 void
2213 ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
2214 {
2215 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
2216 fatal_error ("can't write PCH file: %m");
2217 free (d);
2218 }
2219
2220 /* Move the PCH PTE entries just added to the end of by_depth, to the
2221 front. */
2222
2223 static void
2224 move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
2225 {
2226 unsigned i;
2227
2228 /* First, we swap the new entries to the front of the varrays. */
2229 page_entry **new_by_depth;
2230 unsigned long **new_save_in_use;
2231
2232 new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
2233 new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
2234
2235 memcpy (&new_by_depth[0],
2236 &G.by_depth[count_old_page_tables],
2237 count_new_page_tables * sizeof (void *));
2238 memcpy (&new_by_depth[count_new_page_tables],
2239 &G.by_depth[0],
2240 count_old_page_tables * sizeof (void *));
2241 memcpy (&new_save_in_use[0],
2242 &G.save_in_use[count_old_page_tables],
2243 count_new_page_tables * sizeof (void *));
2244 memcpy (&new_save_in_use[count_new_page_tables],
2245 &G.save_in_use[0],
2246 count_old_page_tables * sizeof (void *));
2247
2248 free (G.by_depth);
2249 free (G.save_in_use);
2250
2251 G.by_depth = new_by_depth;
2252 G.save_in_use = new_save_in_use;
2253
2254 /* Now update all the index_by_depth fields. */
2255 for (i = G.by_depth_in_use; i > 0; --i)
2256 {
2257 page_entry *p = G.by_depth[i-1];
2258 p->index_by_depth = i-1;
2259 }
2260
2261 /* And last, we update the depth pointers in G.depth. The first
2262 entry is already 0, and context 0 entries always start at index
2263 0, so there is nothing to update in the first slot. We need a
2264 second slot, only if we have old ptes, and if we do, they start
2265 at index count_new_page_tables. */
2266 if (count_old_page_tables)
2267 push_depth (count_new_page_tables);
2268 }
2269
2270 void
2271 ggc_pch_read (FILE *f, void *addr)
2272 {
2273 struct ggc_pch_ondisk d;
2274 unsigned i;
2275 char *offs = addr;
2276 unsigned long count_old_page_tables;
2277 unsigned long count_new_page_tables;
2278
2279 count_old_page_tables = G.by_depth_in_use;
2280
2281 /* We've just read in a PCH file. So, every object that used to be
2282 allocated is now free. */
2283 clear_marks ();
2284 #ifdef ENABLE_GC_CHECKING
2285 poison_pages ();
2286 #endif
2287 /* Since we free all the allocated objects, the free list becomes
2288 useless. Validate it now, which will also clear it. */
2289 validate_free_objects();
2290
2291 /* No object read from a PCH file should ever be freed. So, set the
2292 context depth to 1, and set the depth of all the currently-allocated
2293 pages to be 1 too. PCH pages will have depth 0. */
2294 gcc_assert (!G.context_depth);
2295 G.context_depth = 1;
2296 for (i = 0; i < NUM_ORDERS; i++)
2297 {
2298 page_entry *p;
2299 for (p = G.pages[i]; p != NULL; p = p->next)
2300 p->context_depth = G.context_depth;
2301 }
2302
2303 /* Allocate the appropriate page-table entries for the pages read from
2304 the PCH file. */
2305 if (fread (&d, sizeof (d), 1, f) != 1)
2306 fatal_error ("can't read PCH file: %m");
2307
2308 for (i = 0; i < NUM_ORDERS; i++)
2309 {
2310 struct page_entry *entry;
2311 char *pte;
2312 size_t bytes;
2313 size_t num_objs;
2314 size_t j;
2315
2316 if (d.totals[i] == 0)
2317 continue;
2318
2319 bytes = ROUND_UP (d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2320 num_objs = bytes / OBJECT_SIZE (i);
2321 entry = xcalloc (1, (sizeof (struct page_entry)
2322 - sizeof (long)
2323 + BITMAP_SIZE (num_objs + 1)));
2324 entry->bytes = bytes;
2325 entry->page = offs;
2326 entry->context_depth = 0;
2327 offs += bytes;
2328 entry->num_free_objects = 0;
2329 entry->order = i;
2330
2331 for (j = 0;
2332 j + HOST_BITS_PER_LONG <= num_objs + 1;
2333 j += HOST_BITS_PER_LONG)
2334 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2335 for (; j < num_objs + 1; j++)
2336 entry->in_use_p[j / HOST_BITS_PER_LONG]
2337 |= 1L << (j % HOST_BITS_PER_LONG);
2338
2339 for (pte = entry->page;
2340 pte < entry->page + entry->bytes;
2341 pte += G.pagesize)
2342 set_page_table_entry (pte, entry);
2343
2344 if (G.page_tails[i] != NULL)
2345 G.page_tails[i]->next = entry;
2346 else
2347 G.pages[i] = entry;
2348 G.page_tails[i] = entry;
2349
2350 /* We start off by just adding all the new information to the
2351 end of the varrays, later, we will move the new information
2352 to the front of the varrays, as the PCH page tables are at
2353 context 0. */
2354 push_by_depth (entry, 0);
2355 }
2356
2357 /* Now, we update the various data structures that speed page table
2358 handling. */
2359 count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2360
2361 move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2362
2363 /* Update the statistics. */
2364 G.allocated = G.allocated_last_gc = offs - (char *)addr;
2365 }